Before primes are added to the List of Largest Known Primes, they
must be first be verified, comments must be checked, and they must meet the
size requirements. Below we show the
status of these primes (if any) that are awaiting verification (of any age) as well as those
modified (for any reason) in the last 1000 hours. Click on the prime's id for more detailed information.
The color code is at the bottom of the page.
id | prime |
digits | who | when | comment |
124104 | 277232917 - 1 |
23249425 |
G15 |
Jan 2018 |
Mersenne 50 (**) |
134762 | 2 · 310852677 + 1 |
5178044 |
L4965 |
Jan 2023 |
Divides Phi(3^10852674,2) (**) |
141037 | 18099898524288 + 1 |
3805113 |
x50 |
Sep 2025 |
Generalized Fermat |
141135 | 17177670524288 + 1 |
3793205 |
L5186 |
Oct 2025 |
Generalized Fermat |
141148 | 271357 · 28943013 - 1 |
2692121 |
A33 |
Oct 2025 |
(**) |
141134 | 38118498221 · 27552807 + 1 |
2273633 |
L5327 |
Oct 2025 |
|
141105 | 1871 · 27207954 - 1 |
2169814 |
L6283 |
Sep 2025 |
|
141151 | 71380700262144 + 1 |
2058770 |
L6015 |
Oct 2025 |
|
141144 | 71107798262144 + 1 |
2058333 |
L5370 |
Oct 2025 |
|
141118 | 70520422262144 + 1 |
2057389 |
L5057 |
Sep 2025 |
Generalized Fermat |
141108 | 70349734262144 + 1 |
2057113 |
L4400 |
Sep 2025 |
Generalized Fermat |
141098 | 69844790262144 + 1 |
2056293 |
L4387 |
Sep 2025 |
Generalized Fermat |
141097 | 69810332262144 + 1 |
2056237 |
L4387 |
Sep 2025 |
Generalized Fermat |
141091 | 69290228262144 + 1 |
2055386 |
L4387 |
Sep 2025 |
Generalized Fermat |
141070 | 69170386262144 + 1 |
2055189 |
L5700 |
Sep 2025 |
Generalized Fermat |
141076 | 1243041 · 25371459 - 1 |
1616977 |
L5327 |
Sep 2025 |
|
141139 | 6 · 71786775 - 1 |
1510001 |
A2 |
Oct 2025 |
|
141130 | 136 · 859512270 + 1 |
1502999 |
A11 |
Oct 2025 |
|
141131 | 111 · 23875095 - 1 |
1166522 |
A76 |
Oct 2025 |
|
141142 | 963 · 23786073 + 1 |
1139725 |
L5302 |
Oct 2025 |
|
141136 | 1145 · 23778331 + 1 |
1137395 |
L5614 |
Oct 2025 |
(**) |
141133 | 1017 · 23774168 + 1 |
1136141 |
L6246 |
Oct 2025 |
|
141129 | 765 · 23767432 + 1 |
1134113 |
L5178 |
Oct 2025 |
|
141121 | 1115 · 23758721 + 1 |
1131491 |
L5302 |
Sep 2025 |
Divides GF(3758718,5) |
138937 | 1981 · 23754984 + 1 |
1130367 |
A24 |
Jan 2025 |
Divides GF(3754983,12) [GG] (**) |
141110 | 817 · 23753850 + 1 |
1130025 |
L6013 |
Sep 2025 |
|
141090 | 907 · 23738564 + 1 |
1125423 |
L6018 |
Sep 2025 |
Divides GF(3738563,3) |
141150 | 364868948131072 + 1 |
1122257 |
L5457 |
Oct 2025 |
|
141145 | 364593526131072 + 1 |
1122214 |
L4672 |
Oct 2025 |
|
141143 | 364500114131072 + 1 |
1122199 |
L5755 |
Oct 2025 |
|
141141 | 364246694131072 + 1 |
1122160 |
L6129 |
Oct 2025 |
|
141137 | 363776570131072 + 1 |
1122086 |
L5457 |
Oct 2025 |
Generalized Fermat |
141149 | 363423146131072 + 1 |
1122031 |
L5416 |
Oct 2025 |
|
141128 | 363276136131072 + 1 |
1122008 |
L5101 |
Oct 2025 |
Generalized Fermat |
141075 | 939 · 23727057 + 1 |
1121959 |
L6246 |
Sep 2025 |
|
141120 | 362256066131072 + 1 |
1121848 |
L6272 |
Sep 2025 |
Generalized Fermat |
141119 | 362246504131072 + 1 |
1121846 |
L6129 |
Sep 2025 |
Generalized Fermat |
141109 | 361913206131072 + 1 |
1121794 |
L5816 |
Sep 2025 |
Generalized Fermat |
141112 | 361776104131072 + 1 |
1121772 |
L6285 |
Sep 2025 |
Generalized Fermat |
141107 | 361544758131072 + 1 |
1121736 |
L5639 |
Sep 2025 |
Generalized Fermat |
141106 | 361467126131072 + 1 |
1121724 |
L6284 |
Sep 2025 |
Generalized Fermat |
141117 | 361402590131072 + 1 |
1121714 |
L5850 |
Sep 2025 |
Generalized Fermat |
141102 | 361129912131072 + 1 |
1121671 |
L5755 |
Sep 2025 |
Generalized Fermat |
141101 | 360976084131072 + 1 |
1121646 |
L5639 |
Sep 2025 |
Generalized Fermat |
141100 | 360926726131072 + 1 |
1121639 |
L5755 |
Sep 2025 |
Generalized Fermat |
141096 | 360333892131072 + 1 |
1121545 |
L5755 |
Sep 2025 |
Generalized Fermat |
141095 | 360331718131072 + 1 |
1121545 |
L4726 |
Sep 2025 |
Generalized Fermat |
141094 | 360194030131072 + 1 |
1121523 |
L5639 |
Sep 2025 |
Generalized Fermat |
141140 | 360172726131072 + 1 |
1121519 |
L6287 |
Oct 2025 |
|
141093 | 360078180131072 + 1 |
1121505 |
L5755 |
Sep 2025 |
Generalized Fermat |
141089 | 359903130131072 + 1 |
1121477 |
L5755 |
Sep 2025 |
Generalized Fermat |
141087 | 359693996131072 + 1 |
1121444 |
L5755 |
Sep 2025 |
Generalized Fermat |
141086 | 359533444131072 + 1 |
1121418 |
L4726 |
Sep 2025 |
Generalized Fermat |
141085 | 359529844131072 + 1 |
1121418 |
L4984 |
Sep 2025 |
Generalized Fermat |
141084 | 359511110131072 + 1 |
1121415 |
L6282 |
Sep 2025 |
Generalized Fermat |
141083 | 359465736131072 + 1 |
1121408 |
L4559 |
Sep 2025 |
Generalized Fermat |
141081 | 359012068131072 + 1 |
1121336 |
L5639 |
Sep 2025 |
Generalized Fermat |
141080 | 358863220131072 + 1 |
1121312 |
L4559 |
Sep 2025 |
Generalized Fermat |
141078 | 358747772131072 + 1 |
1121294 |
L5755 |
Sep 2025 |
Generalized Fermat |
141074 | 358465776131072 + 1 |
1121249 |
L5755 |
Sep 2025 |
Generalized Fermat |
141064 | 357751492131072 + 1 |
1121136 |
L6281 |
Sep 2025 |
Generalized Fermat |
141063 | 357702788131072 + 1 |
1121128 |
L6092 |
Sep 2025 |
Generalized Fermat |
141055 | 357575604131072 + 1 |
1121108 |
L6281 |
Sep 2025 |
Generalized Fermat |
141047 | 357070956131072 + 1 |
1121027 |
L4387 |
Sep 2025 |
Generalized Fermat |
141038 | 356295678131072 + 1 |
1120903 |
L6090 |
Sep 2025 |
Generalized Fermat |
141068 | 915 · 23719305 + 1 |
1119626 |
L5783 |
Sep 2025 |
|
141071 | 1183 · 23718480 + 1 |
1119378 |
L5969 |
Sep 2025 |
|
141066 | 1093 · 23715306 + 1 |
1118422 |
L5226 |
Sep 2025 |
|
141062 | 779 · 23713283 + 1 |
1117813 |
L5980 |
Sep 2025 |
|
141061 | 1005 · 23712712 + 1 |
1117641 |
L5226 |
Sep 2025 |
|
141060 | 861 · 23708816 + 1 |
1116468 |
L5226 |
Sep 2025 |
|
141059 | 1163 · 23707397 + 1 |
1116041 |
L5161 |
Sep 2025 |
|
141054 | 889 · 23699050 + 1 |
1113528 |
L5161 |
Sep 2025 |
|
141053 | 1169 · 23698399 + 1 |
1113333 |
L5226 |
Sep 2025 |
|
141052 | 1189 · 23697618 + 1 |
1113098 |
L5517 |
Sep 2025 |
|
141051 | 879 · 23688853 + 1 |
1110459 |
L5161 |
Sep 2025 |
|
141050 | 965 · 23685969 + 1 |
1109591 |
L5161 |
Sep 2025 |
|
141048 | 877 · 23684190 + 1 |
1109055 |
L6013 |
Sep 2025 |
|
141125 | 57 · 23681002 - 1 |
1108094 |
A78 |
Oct 2025 |
|
141049 | 765 · 23680091 + 1 |
1107821 |
L6280 |
Sep 2025 |
|
141046 | 947 · 23673183 + 1 |
1105742 |
L5614 |
Sep 2025 |
|
141116 | 111 · 23663234 - 1 |
1102746 |
A76 |
Sep 2025 |
|
141041 | 1175 · 23653893 + 1 |
1099935 |
L6243 |
Sep 2025 |
|
141039 | 869 · 23650049 + 1 |
1098778 |
L5161 |
Sep 2025 |
|
141058 | 65 · 23612630 - 1 |
1087512 |
L2017 |
Sep 2025 |
|
141079 | 243 · 23441659 - 1 |
1036045 |
A76 |
Sep 2025 |
|
141056 | 104 · 468378388 - 1 |
1010392 |
A11 |
Sep 2025 |
|
141073 | 243 · 23352138 - 1 |
1009097 |
A76 |
Sep 2025 |
|
141072 | 224331639195 · 23322000 - 1 |
1000033 |
A75 |
Sep 2025 |
|
141044 | 13 · 422365511 - 1 |
959582 |
A11 |
Sep 2025 |
|
141111 | 118 · 493355898 + 1 |
958381 |
A68 |
Sep 2025 |
|
141138 | 6 · 71109897 + 1 |
937973 |
A2 |
Oct 2025 |
|
141127 | 88 · 71104001 + 1 |
932992 |
A11 |
Oct 2025 |
|
141092 | 293 · 23075434 - 1 |
925801 |
A77 |
Sep 2025 |
|
141115 | 100 · 647329222 + 1 |
925414 |
A11 |
Sep 2025 |
Generalized Fermat |
141057 | 53 · 308363703 + 1 |
905096 |
A71 |
Sep 2025 |
|
139845 | 2 · 647304931 + 1 |
857133 |
L550 |
Feb 2025 |
Divides Phi(647^304931,2) |
141040 | 13 · 2022257457 + 1 |
851098 |
L6279 |
Sep 2025 |
|
141045 | 25489 · 58480810 + 1 |
847879 |
A11 |
Sep 2025 |
|
141152 | 981 · 22469725 - 1 |
743465 |
A78 |
Oct 2025 |
|
141153 | 673 · 22469295 - 1 |
743335 |
L2017 |
Oct 2025 |
|
141147 | 629 · 22468228 - 1 |
743014 |
A58 |
Oct 2025 |
|
141146 | 873 · 22467786 - 1 |
742881 |
L2017 |
Oct 2025 |
|
141124 | 763 · 22453263 - 1 |
738509 |
A27 |
Oct 2025 |
|
141114 | 631 · 22452763 - 1 |
738359 |
L6286 |
Sep 2025 |
|
141123 | 969 · 22450213 - 1 |
737591 |
A27 |
Oct 2025 |
|
141103 | 703 · 22449579 - 1 |
737400 |
A74 |
Sep 2025 |
|
141104 | 905 · 22449540 - 1 |
737388 |
A58 |
Sep 2025 |
|
141082 | 909 · 22442764 - 1 |
735349 |
A27 |
Sep 2025 |
|
141065 | 783 · 22436523 - 1 |
733470 |
A58 |
Sep 2025 |
|
141042 | 915 · 22434220 - 1 |
732777 |
A58 |
Sep 2025 |
|
141069 | 5321 · 22308643 + 1 |
694975 |
L5517 |
Sep 2025 |
Divides GF(2308641,5) |
141099 | U(65181, 1, 20770) + U(65181, 1, 20769) |
99985 |
CH15 |
Sep 2025 |
Lehmer number (**) |
141132 | U(48099, 1, 21000) - U(48099, 1, 20999) |
98321 |
p452 |
Oct 2025 |
Lehmer number (**) |
141126 | U(54381, 1, 19426) + U(54381, 1, 19425) |
91987 |
CH15 |
Oct 2025 |
Lehmer number (**) |
141067 | (5842518757 - 1)/58424 |
89403 |
p441 |
Sep 2025 |
Generalized repunit (**) |
141077 | (V(6489, 1, 18903) - 1)/(V(6489, 1, 3) - 1) |
72051 |
CH15 |
Sep 2025 |
Lehmer primitive part (**) |
141088 | U(8478, 1, 17710) + U(8478, 1, 17709) |
69567 |
p452 |
Sep 2025 |
Lehmer number (**) |
141122 | U(1731, 1, 21000) - U(1731, 1, 20999) |
68001 |
p452 |
Oct 2025 |
Lehmer number (**) |
141043 | (2151013 - 1)/61157791169561859593299975690769 |
45428 |
E5 |
Sep 2025 |
Mersenne cofactor, ECPP |
| |
| | | |
We at the PrimePages attempt to keep a list
of the 5000 largest known primes plus a few each of certain selected
archivable forms.
To make the top 5000
today a prime must have 730193 digits or meet
the
size requirements for it's
archivable form. (Query time: 0.00247 seconds.)
Printed from the PrimePages <t5k.org> © Reginald McLean.