Prime Verification Status

Before primes are added to the List of Largest Known Primes, they must be first be verified, comments must be checked, and they must meet the size requirements.  Below we show the status of these primes (if any) that are awaiting verification (of any age) as well as those modified (for any reason) in the last 1000 hours.  Click on the prime's id for more detailed information.  The color code is at the bottom of the page.

idprime digitswhowhencomment
124104277232917 - 1 23249425 G15 Jan 2018 Mersenne 50 (**)
1347622 · 310852677 + 1 5178044 L4965 Jan 2023 Divides Phi(3^10852674,2) (**)
14103718099898524288 + 1 3805113 x50 Sep 2025 Generalized Fermat
14113517177670524288 + 1 3793205 L5186 Oct 2025 Generalized Fermat
141148271357 · 28943013 - 1 2692121 A33 Oct 2025 (**)
14113438118498221 · 27552807 + 1 2273633 L5327 Oct 2025  
1411051871 · 27207954 - 1 2169814 L6283 Sep 2025  
14115171380700262144 + 1 2058770 L6015 Oct 2025  
14114471107798262144 + 1 2058333 L5370 Oct 2025  
14111870520422262144 + 1 2057389 L5057 Sep 2025 Generalized Fermat
14110870349734262144 + 1 2057113 L4400 Sep 2025 Generalized Fermat
14109869844790262144 + 1 2056293 L4387 Sep 2025 Generalized Fermat
14109769810332262144 + 1 2056237 L4387 Sep 2025 Generalized Fermat
14109169290228262144 + 1 2055386 L4387 Sep 2025 Generalized Fermat
14107069170386262144 + 1 2055189 L5700 Sep 2025 Generalized Fermat
1410761243041 · 25371459 - 1 1616977 L5327 Sep 2025  
1411396 · 71786775 - 1 1510001 A2 Oct 2025  
141130136 · 859512270 + 1 1502999 A11 Oct 2025  
141131111 · 23875095 - 1 1166522 A76 Oct 2025  
141142963 · 23786073 + 1 1139725 L5302 Oct 2025  
1411361145 · 23778331 + 1 1137395 L5614 Oct 2025 (**)
1411331017 · 23774168 + 1 1136141 L6246 Oct 2025  
141129765 · 23767432 + 1 1134113 L5178 Oct 2025  
1411211115 · 23758721 + 1 1131491 L5302 Sep 2025 Divides GF(3758718,5)
1389371981 · 23754984 + 1 1130367 A24 Jan 2025 Divides GF(3754983,12) [GG] (**)
141110817 · 23753850 + 1 1130025 L6013 Sep 2025  
141090907 · 23738564 + 1 1125423 L6018 Sep 2025 Divides GF(3738563,3)
141150364868948131072 + 1 1122257 L5457 Oct 2025  
141145364593526131072 + 1 1122214 L4672 Oct 2025  
141143364500114131072 + 1 1122199 L5755 Oct 2025  
141141364246694131072 + 1 1122160 L6129 Oct 2025  
141137363776570131072 + 1 1122086 L5457 Oct 2025 Generalized Fermat
141149363423146131072 + 1 1122031 L5416 Oct 2025  
141128363276136131072 + 1 1122008 L5101 Oct 2025 Generalized Fermat
141075939 · 23727057 + 1 1121959 L6246 Sep 2025  
141120362256066131072 + 1 1121848 L6272 Sep 2025 Generalized Fermat
141119362246504131072 + 1 1121846 L6129 Sep 2025 Generalized Fermat
141109361913206131072 + 1 1121794 L5816 Sep 2025 Generalized Fermat
141112361776104131072 + 1 1121772 L6285 Sep 2025 Generalized Fermat
141107361544758131072 + 1 1121736 L5639 Sep 2025 Generalized Fermat
141106361467126131072 + 1 1121724 L6284 Sep 2025 Generalized Fermat
141117361402590131072 + 1 1121714 L5850 Sep 2025 Generalized Fermat
141102361129912131072 + 1 1121671 L5755 Sep 2025 Generalized Fermat
141101360976084131072 + 1 1121646 L5639 Sep 2025 Generalized Fermat
141100360926726131072 + 1 1121639 L5755 Sep 2025 Generalized Fermat
141096360333892131072 + 1 1121545 L5755 Sep 2025 Generalized Fermat
141095360331718131072 + 1 1121545 L4726 Sep 2025 Generalized Fermat
141094360194030131072 + 1 1121523 L5639 Sep 2025 Generalized Fermat
141140360172726131072 + 1 1121519 L6287 Oct 2025  
141093360078180131072 + 1 1121505 L5755 Sep 2025 Generalized Fermat
141089359903130131072 + 1 1121477 L5755 Sep 2025 Generalized Fermat
141087359693996131072 + 1 1121444 L5755 Sep 2025 Generalized Fermat
141086359533444131072 + 1 1121418 L4726 Sep 2025 Generalized Fermat
141085359529844131072 + 1 1121418 L4984 Sep 2025 Generalized Fermat
141084359511110131072 + 1 1121415 L6282 Sep 2025 Generalized Fermat
141083359465736131072 + 1 1121408 L4559 Sep 2025 Generalized Fermat
141081359012068131072 + 1 1121336 L5639 Sep 2025 Generalized Fermat
141080358863220131072 + 1 1121312 L4559 Sep 2025 Generalized Fermat
141078358747772131072 + 1 1121294 L5755 Sep 2025 Generalized Fermat
141074358465776131072 + 1 1121249 L5755 Sep 2025 Generalized Fermat
141064357751492131072 + 1 1121136 L6281 Sep 2025 Generalized Fermat
141063357702788131072 + 1 1121128 L6092 Sep 2025 Generalized Fermat
141055357575604131072 + 1 1121108 L6281 Sep 2025 Generalized Fermat
141047357070956131072 + 1 1121027 L4387 Sep 2025 Generalized Fermat
141038356295678131072 + 1 1120903 L6090 Sep 2025 Generalized Fermat
141068915 · 23719305 + 1 1119626 L5783 Sep 2025  
1410711183 · 23718480 + 1 1119378 L5969 Sep 2025  
1410661093 · 23715306 + 1 1118422 L5226 Sep 2025  
141062779 · 23713283 + 1 1117813 L5980 Sep 2025  
1410611005 · 23712712 + 1 1117641 L5226 Sep 2025  
141060861 · 23708816 + 1 1116468 L5226 Sep 2025  
1410591163 · 23707397 + 1 1116041 L5161 Sep 2025  
141054889 · 23699050 + 1 1113528 L5161 Sep 2025  
1410531169 · 23698399 + 1 1113333 L5226 Sep 2025  
1410521189 · 23697618 + 1 1113098 L5517 Sep 2025  
141051879 · 23688853 + 1 1110459 L5161 Sep 2025  
141050965 · 23685969 + 1 1109591 L5161 Sep 2025  
141048877 · 23684190 + 1 1109055 L6013 Sep 2025  
14112557 · 23681002 - 1 1108094 A78 Oct 2025  
141049765 · 23680091 + 1 1107821 L6280 Sep 2025  
141046947 · 23673183 + 1 1105742 L5614 Sep 2025  
141116111 · 23663234 - 1 1102746 A76 Sep 2025  
1410411175 · 23653893 + 1 1099935 L6243 Sep 2025  
141039869 · 23650049 + 1 1098778 L5161 Sep 2025  
14105865 · 23612630 - 1 1087512 L2017 Sep 2025  
141079243 · 23441659 - 1 1036045 A76 Sep 2025  
141056104 · 468378388 - 1 1010392 A11 Sep 2025  
141073243 · 23352138 - 1 1009097 A76 Sep 2025  
141072224331639195 · 23322000 - 1 1000033 A75 Sep 2025  
14104413 · 422365511 - 1 959582 A11 Sep 2025  
141111118 · 493355898 + 1 958381 A68 Sep 2025  
1411386 · 71109897 + 1 937973 A2 Oct 2025  
14112788 · 71104001 + 1 932992 A11 Oct 2025  
141092293 · 23075434 - 1 925801 A77 Sep 2025  
141115100 · 647329222 + 1 925414 A11 Sep 2025 Generalized Fermat
14105753 · 308363703 + 1 905096 A71 Sep 2025  
1398452 · 647304931 + 1 857133 L550 Feb 2025 Divides Phi(647^304931,2)
14104013 · 2022257457 + 1 851098 L6279 Sep 2025  
14104525489 · 58480810 + 1 847879 A11 Sep 2025  
141152981 · 22469725 - 1 743465 A78 Oct 2025  
141153673 · 22469295 - 1 743335 L2017 Oct 2025  
141147629 · 22468228 - 1 743014 A58 Oct 2025  
141146873 · 22467786 - 1 742881 L2017 Oct 2025  
141124763 · 22453263 - 1 738509 A27 Oct 2025  
141114631 · 22452763 - 1 738359 L6286 Sep 2025  
141123969 · 22450213 - 1 737591 A27 Oct 2025  
141103703 · 22449579 - 1 737400 A74 Sep 2025  
141104905 · 22449540 - 1 737388 A58 Sep 2025  
141082909 · 22442764 - 1 735349 A27 Sep 2025  
141065783 · 22436523 - 1 733470 A58 Sep 2025  
141042915 · 22434220 - 1 732777 A58 Sep 2025  
1410695321 · 22308643 + 1 694975 L5517 Sep 2025 Divides GF(2308641,5)
141099U(65181, 1, 20770) + U(65181, 1, 20769) 99985 CH15 Sep 2025 Lehmer number (**)
141132U(48099, 1, 21000) - U(48099, 1, 20999) 98321 p452 Oct 2025 Lehmer number (**)
141126U(54381, 1, 19426) + U(54381, 1, 19425) 91987 CH15 Oct 2025 Lehmer number (**)
141067(5842518757 - 1)/58424 89403 p441 Sep 2025 Generalized repunit (**)
141077(V(6489, 1, 18903) - 1)/(V(6489, 1, 3) - 1) 72051 CH15 Sep 2025 Lehmer primitive part (**)
141088U(8478, 1, 17710) + U(8478, 1, 17709) 69567 p452 Sep 2025 Lehmer number (**)
141122U(1731, 1, 21000) - U(1731, 1, 20999) 68001 p452 Oct 2025 Lehmer number (**)
141043(2151013 - 1)/61157791169561859593299975690769 45428 E5 Sep 2025 Mersenne cofactor, ECPP
       

Legend

Prime Description Color Codes
CompositeProven composite
RemoveScheduled for deletion because it is too small or proven composite
UnTestedNot yet tested
InProcessCurrently being tested
Probable-primeShown to be a PRP, awaiting further testing (see note).
ProvenProven prime
ExternalProven prime, externally verified
Note:  Only proven primes are accepted on this list.  These colors refer the status of this list's re-verification process only.
Rank/Id Color Codes
yesOn the list
noNot on the current list
(unknown)Not yet re-ranked
Note:  This list is (re)ranked every 30 minutes.
Description Notation
\ back-quote (23\ 45 = 2345, used to allow long integers to line wrap)
# primorial (9# = 7*5*3*2)
!, !n factorial, multifactorial
Phi(n,x) nth cyclotomic polynomial evaluated at x

Modify this display:

Include those modified (for any reason) in the last hours. (Use 0 to just see those in process or awaiting verification.)
We at the PrimePages attempt to keep a list of the 5000 largest known primes plus a few each of certain selected archivable forms.  To make the top 5000 today a prime must have 730193 digits or meet the size requirements for it's archivable form.  (Query time: 0.00247 seconds.)
Printed from the PrimePages <t5k.org> © Reginald McLean.