Prime Verification Status
Before primes are added to the List of Largest Known Primes, they must be first be verified, comments must be checked and they must meet the size requirements. Below we show the status of these primes (if any) that are awaiting verificiation (of any age) as well as those modified (for any reason) in the last 72 hours. Click on the prime's id for more detailed information. The color code is at the bottom of the page.
id | prime | digits | who | when | comment |
---|---|---|---|---|---|
139038 | 45007104262144 + 1 | 2006262 | L5639 | Jan 2025 | |
139055 | 183 · 25814122 + 1 | 1750228 | L5612 | Jan 2025 | |
139061 | 264860372131072 + 1 | 1104022 | L5639 | Jan 2025 | |
138996 | 264541844131072 + 1 | 1103954 | L5332 | Jan 2025 | Generalized Fermat |
139024 | 264360218131072 + 1 | 1103915 | L4875 | Jan 2025 | Generalized Fermat |
138978 | 297 · 22937584 - 1 | 884304 | L1817 | Jan 2025 | |
139021 | 9702 · 871256606 + 1 | 754431 | A44 | Jan 2025 | |
139020 | 962 · 333289821 + 1 | 731061 | A52 | Jan 2025 | |
139031 | 710672 | x46 | Jan 2025 | ||
139035 | 411522!3 - 1 | 710578 | x46 | Jan 2025 | Multifactorial |
139073 | 4769 · 22110753 + 1 | 635404 | L6121 | Jan 2025 | |
139072 | 4911 · 22110569 + 1 | 635349 | L5233 | Jan 2025 | |
139070 | 4455 · 22110314 + 1 | 635272 | L5501 | Jan 2025 | |
139069 | 9747 · 22110074 + 1 | 635200 | L5237 | Jan 2025 | |
139071 | 1827 · 22109868 + 1 | 635137 | L6009 | Jan 2025 | |
139068 | 5937 · 22109751 + 1 | 635103 | L6098 | Jan 2025 | |
139067 | 3329 · 22109119 + 1 | 634912 | L5350 | Jan 2025 | |
139066 | 6125 · 22109033 + 1 | 634886 | L5161 | Jan 2025 | |
139060 | 9791 · 22107809 + 1 | 634518 | L5471 | Jan 2025 | |
139059 | 9165 · 22107796 + 1 | 634514 | L5910 | Jan 2025 | |
139063 | 4869 · 22107621 + 1 | 634461 | L6120 | Jan 2025 | |
139065 | 2571 · 22107555 + 1 | 634441 | L5231 | Jan 2025 | |
139064 | 2247 · 22106978 + 1 | 634267 | L5919 | Jan 2025 | |
139062 | 4371 · 22106111 + 1 | 634007 | L5575 | Jan 2025 | |
139058 | 5143 · 22105658 + 1 | 633870 | L5192 | Jan 2025 | |
139057 | 5643 · 22105237 + 1 | 633744 | L6117 | Jan 2025 | |
139056 | 4149 · 22104810 + 1 | 633615 | L5501 | Jan 2025 | |
139054 | 8139 · 22104738 + 1 | 633594 | L5237 | Jan 2025 | |
139053 | 1725 · 22104580 + 1 | 633545 | L5161 | Jan 2025 | |
139052 | 8723 · 22104505 + 1 | 633524 | L5651 | Jan 2025 | |
139051 | 9387 · 22104502 + 1 | 633523 | L5990 | Jan 2025 | |
139050 | 6577 · 22103842 + 1 | 633324 | L5536 | Jan 2025 | |
139049 | 9873 · 22103548 + 1 | 633236 | L5899 | Jan 2025 | |
139048 | 8705 · 22103461 + 1 | 633209 | L5214 | Jan 2025 | |
139046 | 9161 · 22103225 + 1 | 633138 | L5501 | Jan 2025 | |
139045 | 8135 · 22103225 + 1 | 633138 | L5575 | Jan 2025 | |
139043 | 6171 · 22103183 + 1 | 633125 | L5476 | Jan 2025 | |
139044 | 7987 · 22103160 + 1 | 633119 | L5829 | Jan 2025 | |
139047 | 8683 · 22103068 + 1 | 633091 | L5226 | Jan 2025 | |
139042 | 2001 · 22102861 + 1 | 633028 | L5571 | Jan 2025 | |
139041 | 7413 · 22102766 + 1 | 633000 | L5899 | Jan 2025 | |
139040 | 4659 · 22102657 + 1 | 632967 | L5571 | Jan 2025 | |
139037 | 1583 · 22102553 + 1 | 632935 | L5951 | Jan 2025 | |
139036 | 8437 · 22102520 + 1 | 632926 | L6107 | Jan 2025 | |
139039 | 1661 · 22102437 + 1 | 632900 | L6119 | Jan 2025 | |
139033 | 8621 · 22102183 + 1 | 632825 | L5571 | Jan 2025 | |
139032 | 1665 · 22102165 + 1 | 632818 | L6103 | Jan 2025 | |
139030 | 6393 · 22102050 + 1 | 632784 | L5507 | Jan 2025 | |
139028 | 5583 · 22101698 + 1 | 632678 | L5804 | Jan 2025 | |
139029 | 2079 · 22101574 + 1 | 632641 | L6118 | Jan 2025 | |
139027 | 6251 · 22101553 + 1 | 632635 | L5888 | Jan 2025 | |
139026 | 2075 · 22101553 + 1 | 632634 | L6059 | Jan 2025 | |
139018 | 4581 · 22101080 + 1 | 632492 | L6099 | Jan 2025 | |
139017 | 8925 · 22100647 + 1 | 632362 | L5952 | Jan 2025 | |
139025 | 5097 · 22100308 + 1 | 632260 | L5573 | Jan 2025 | |
139016 | 1311 · 22100296 + 1 | 632256 | L5796 | Jan 2025 | |
139015 | 9851 · 22100125 + 1 | 632205 | L5985 | Jan 2025 | |
139009 | 4941 · 22099489 + 1 | 632013 | L5239 | Jan 2025 | |
139010 | 8979 · 22099382 + 1 | 631981 | L6104 | Jan 2025 | |
139034 | 6171 · 22099348 + 1 | 631971 | L5575 | Jan 2025 | |
139014 | 4467 · 22099323 + 1 | 631963 | L5536 | Jan 2025 | |
139007 | 2725 · 22099150 + 1 | 631911 | L6099 | Jan 2025 | |
139006 | 7615 · 22098972 + 1 | 631858 | L5264 | Jan 2025 | |
139005 | 4659 · 22098694 + 1 | 631774 | L5264 | Jan 2025 | |
139004 | 5501 · 22098571 + 1 | 631737 | L5571 | Jan 2025 | |
139003 | 3103 · 22098536 + 1 | 631726 | L5796 | Jan 2025 | |
139002 | 4383 · 22098185 + 1 | 631621 | L5226 | Jan 2025 | |
139001 | 5139 · 22098066 + 1 | 631585 | L5571 | Jan 2025 | |
139000 | 7693 · 22097826 + 1 | 631513 | L6115 | Jan 2025 | |
138999 | 5115 · 22097594 + 1 | 631443 | L6114 | Jan 2025 | |
138998 | 7425 · 22097580 + 1 | 631439 | L5571 | Jan 2025 | |
139008 | 4721 · 22097579 + 1 | 631438 | L6116 | Jan 2025 | |
138997 | 3669 · 22097309 + 1 | 631357 | L5969 | Jan 2025 | |
138995 | 9813 · 22097272 + 1 | 631346 | L5188 | Jan 2025 | |
138992 | 4467 · 22097200 + 1 | 631324 | L5952 | Jan 2025 | |
138991 | 7993 · 22097056 + 1 | 631281 | L6112 | Jan 2025 | |
138993 | 3111 · 22097035 + 1 | 631274 | L5899 | Jan 2025 | |
138994 | 4221 · 22096751 + 1 | 631189 | L6113 | Jan 2025 | |
138990 | 9671 · 22096737 + 1 | 631185 | L5571 | Jan 2025 | |
138989 | 3075 · 22096597 + 1 | 631143 | L5888 | Jan 2025 | |
138988 | 8673 · 22096592 + 1 | 631142 | L6059 | Jan 2025 | |
138987 | 9471 · 22096288 + 1 | 631050 | L5969 | Jan 2025 | |
138986 | 7671 · 22096257 + 1 | 631041 | L5899 | Jan 2025 | |
138985 | 7677 · 22096056 + 1 | 630980 | L5189 | Jan 2025 | |
138982 | 2237 · 22095727 + 1 | 630881 | L6103 | Jan 2025 | |
138980 | 4403 · 22095613 + 1 | 630847 | L5214 | Jan 2025 | |
138984 | 7215 · 22095591 + 1 | 630840 | L5887 | Jan 2025 | |
138977 | 9459 · 22095194 + 1 | 630721 | L5571 | Jan 2025 | |
138976 | 2697 · 22094900 + 1 | 630632 | L5353 | Jan 2025 | |
138975 | 2575 · 22094712 + 1 | 630575 | L6103 | Jan 2025 | |
138981 | 1467 · 22094046 + 1 | 630374 | L5852 | Jan 2025 | |
138983 | 3205 · 22093354 + 1 | 630166 | L6111 | Jan 2025 | |
138974 | 9879 · 22092586 + 1 | 629936 | L5575 | Jan 2025 | |
138979 | 8981 · 22090263 + 1 | 629236 | L5571 | Jan 2025 | |
139012 | (57 · 1162668 - 7)/10 | 65263 | c102 | Jan 2025 | ECPP |
139013 | (679987 - 1)/5 | 62242 | c102 | Jan 2025 | ECPP generalized repunit |
139022 | (94017581 - 1)/939 | 52268 | c102 | Jan 2025 | ECPP generalized repunit |
Legend
Prime Description Color Codes Composite Proven composite Remove Scheduled for deletion because it is too small or proven composite UnTested Not yet tested InProcess Currently being tested Probable-prime Shown to be a PRP, awaiting further testing (see note). Proven Proven prime External Proven prime, externally verified Note: Only proven primes are accepted on this list. These colors refer the status of this list's re-verification process only.
Rank/Id Color Codes yes On the list no Not on the current list (unknown) Not yet re-ranked Note: This list is (re)ranked every 30 minutes.
Description Notation \ back-quote (23\ 45 = 2345, used to allow long integers to line wrap) # primorial (9# = 7*5*3*2) !, !n factorial, multifactorial Phi(n,x) nth cyclotomic polynomial evaluated at x
Modify this display:
We at the PrimePages attempt to keep a list
of the 5000 largest known primes plus a few each of certain selected
archivable forms.
To make the top 5000 today a prime must have 631585 digits or meet
the size requirements for it's
archivable form. (Query time: 0.001999 seconds.)
Printed from the PrimePages <t5k.org> © Reginald McLean.