Prime Verification Status

Before primes are added to the List of Largest Known Primes, they must be first be verified, comments must be checked and they must meet the size requirements.  Below we show the status of these primes (if any) that are awaiting verificiation (of any age) as well as those modified (for any reason) in the last 72 hours.  Click on the prime's id for more detailed information.  The color code is at the bottom of the page.

idprime digitswhowhencomment
13903845007104262144 + 1 2006262 L5639 Jan 2025  
139055183 · 25814122 + 1 1750228 L5612 Jan 2025  
139061264860372131072 + 1 1104022 L5639 Jan 2025  
138996264541844131072 + 1 1103954 L5332 Jan 2025 Generalized Fermat
139024264360218131072 + 1 1103915 L4875 Jan 2025 Generalized Fermat
138978297 · 22937584 - 1 884304 L1817 Jan 2025  
1390219702 · 871256606 + 1 754431 A44 Jan 2025  
139020962 · 333289821 + 1 731061 A52 Jan 2025  
139031411572!3 - 1 710672 x46 Jan 2025  
139035411522!3 - 1 710578 x46 Jan 2025 Multifactorial
1390734769 · 22110753 + 1 635404 L6121 Jan 2025  
1390724911 · 22110569 + 1 635349 L5233 Jan 2025  
1390704455 · 22110314 + 1 635272 L5501 Jan 2025  
1390699747 · 22110074 + 1 635200 L5237 Jan 2025  
1390711827 · 22109868 + 1 635137 L6009 Jan 2025  
1390685937 · 22109751 + 1 635103 L6098 Jan 2025  
1390673329 · 22109119 + 1 634912 L5350 Jan 2025  
1390666125 · 22109033 + 1 634886 L5161 Jan 2025  
1390609791 · 22107809 + 1 634518 L5471 Jan 2025  
1390599165 · 22107796 + 1 634514 L5910 Jan 2025  
1390634869 · 22107621 + 1 634461 L6120 Jan 2025  
1390652571 · 22107555 + 1 634441 L5231 Jan 2025  
1390642247 · 22106978 + 1 634267 L5919 Jan 2025  
1390624371 · 22106111 + 1 634007 L5575 Jan 2025  
1390585143 · 22105658 + 1 633870 L5192 Jan 2025  
1390575643 · 22105237 + 1 633744 L6117 Jan 2025  
1390564149 · 22104810 + 1 633615 L5501 Jan 2025  
1390548139 · 22104738 + 1 633594 L5237 Jan 2025  
1390531725 · 22104580 + 1 633545 L5161 Jan 2025  
1390528723 · 22104505 + 1 633524 L5651 Jan 2025  
1390519387 · 22104502 + 1 633523 L5990 Jan 2025  
1390506577 · 22103842 + 1 633324 L5536 Jan 2025  
1390499873 · 22103548 + 1 633236 L5899 Jan 2025  
1390488705 · 22103461 + 1 633209 L5214 Jan 2025  
1390469161 · 22103225 + 1 633138 L5501 Jan 2025  
1390458135 · 22103225 + 1 633138 L5575 Jan 2025  
1390436171 · 22103183 + 1 633125 L5476 Jan 2025  
1390447987 · 22103160 + 1 633119 L5829 Jan 2025  
1390478683 · 22103068 + 1 633091 L5226 Jan 2025  
1390422001 · 22102861 + 1 633028 L5571 Jan 2025  
1390417413 · 22102766 + 1 633000 L5899 Jan 2025  
1390404659 · 22102657 + 1 632967 L5571 Jan 2025  
1390371583 · 22102553 + 1 632935 L5951 Jan 2025  
1390368437 · 22102520 + 1 632926 L6107 Jan 2025  
1390391661 · 22102437 + 1 632900 L6119 Jan 2025  
1390338621 · 22102183 + 1 632825 L5571 Jan 2025  
1390321665 · 22102165 + 1 632818 L6103 Jan 2025  
1390306393 · 22102050 + 1 632784 L5507 Jan 2025  
1390285583 · 22101698 + 1 632678 L5804 Jan 2025  
1390292079 · 22101574 + 1 632641 L6118 Jan 2025  
1390276251 · 22101553 + 1 632635 L5888 Jan 2025  
1390262075 · 22101553 + 1 632634 L6059 Jan 2025  
1390184581 · 22101080 + 1 632492 L6099 Jan 2025  
1390178925 · 22100647 + 1 632362 L5952 Jan 2025  
1390255097 · 22100308 + 1 632260 L5573 Jan 2025  
1390161311 · 22100296 + 1 632256 L5796 Jan 2025  
1390159851 · 22100125 + 1 632205 L5985 Jan 2025  
1390094941 · 22099489 + 1 632013 L5239 Jan 2025  
1390108979 · 22099382 + 1 631981 L6104 Jan 2025  
1390346171 · 22099348 + 1 631971 L5575 Jan 2025  
1390144467 · 22099323 + 1 631963 L5536 Jan 2025  
1390072725 · 22099150 + 1 631911 L6099 Jan 2025  
1390067615 · 22098972 + 1 631858 L5264 Jan 2025  
1390054659 · 22098694 + 1 631774 L5264 Jan 2025  
1390045501 · 22098571 + 1 631737 L5571 Jan 2025  
1390033103 · 22098536 + 1 631726 L5796 Jan 2025  
1390024383 · 22098185 + 1 631621 L5226 Jan 2025  
1390015139 · 22098066 + 1 631585 L5571 Jan 2025  
1390007693 · 22097826 + 1 631513 L6115 Jan 2025  
1389995115 · 22097594 + 1 631443 L6114 Jan 2025  
1389987425 · 22097580 + 1 631439 L5571 Jan 2025  
1390084721 · 22097579 + 1 631438 L6116 Jan 2025  
1389973669 · 22097309 + 1 631357 L5969 Jan 2025  
1389959813 · 22097272 + 1 631346 L5188 Jan 2025  
1389924467 · 22097200 + 1 631324 L5952 Jan 2025  
1389917993 · 22097056 + 1 631281 L6112 Jan 2025  
1389933111 · 22097035 + 1 631274 L5899 Jan 2025  
1389944221 · 22096751 + 1 631189 L6113 Jan 2025  
1389909671 · 22096737 + 1 631185 L5571 Jan 2025  
1389893075 · 22096597 + 1 631143 L5888 Jan 2025  
1389888673 · 22096592 + 1 631142 L6059 Jan 2025  
1389879471 · 22096288 + 1 631050 L5969 Jan 2025  
1389867671 · 22096257 + 1 631041 L5899 Jan 2025  
1389857677 · 22096056 + 1 630980 L5189 Jan 2025  
1389822237 · 22095727 + 1 630881 L6103 Jan 2025  
1389804403 · 22095613 + 1 630847 L5214 Jan 2025  
1389847215 · 22095591 + 1 630840 L5887 Jan 2025  
1389779459 · 22095194 + 1 630721 L5571 Jan 2025  
1389762697 · 22094900 + 1 630632 L5353 Jan 2025  
1389752575 · 22094712 + 1 630575 L6103 Jan 2025  
1389811467 · 22094046 + 1 630374 L5852 Jan 2025  
1389833205 · 22093354 + 1 630166 L6111 Jan 2025  
1389749879 · 22092586 + 1 629936 L5575 Jan 2025  
1389798981 · 22090263 + 1 629236 L5571 Jan 2025  
139012(57 · 1162668 - 7)/10 65263 c102 Jan 2025 ECPP
139013(679987 - 1)/5 62242 c102 Jan 2025 ECPP generalized repunit
139022(94017581 - 1)/939 52268 c102 Jan 2025 ECPP generalized repunit
       

Legend

Prime Description Color Codes
CompositeProven composite
RemoveScheduled for deletion because it is too small or proven composite
UnTestedNot yet tested
InProcessCurrently being tested
Probable-primeShown to be a PRP, awaiting further testing (see note).
ProvenProven prime
ExternalProven prime, externally verified
Note:  Only proven primes are accepted on this list.  These colors refer the status of this list's re-verification process only.
Rank/Id Color Codes
yesOn the list
noNot on the current list
(unknown)Not yet re-ranked
Note:  This list is (re)ranked every 30 minutes.
Description Notation
\ back-quote (23\ 45 = 2345, used to allow long integers to line wrap)
# primorial (9# = 7*5*3*2)
!, !n factorial, multifactorial
Phi(n,x) nth cyclotomic polynomial evaluated at x

Modify this display:

Include those modified (for any reason) in the last hours. (Use 0 to just see those in process or awaiting verification.)
We at the PrimePages attempt to keep a list of the 5000 largest known primes plus a few each of certain selected archivable forms.  To make the top 5000 today a prime must have 631585 digits or meet the size requirements for it's archivable form.  (Query time: 0.001999 seconds.)
Printed from the PrimePages <t5k.org> © Reginald McLean.