Before primes are added to the List of Largest Known Primes, they
must be first be verified, comments must be checked and they must meet the
size requirements. Below we show the
status of these primes (if any) that are awaiting verificiation (of any age) as well as those
modified (for any reason) in the last 72 hours. Click on the prime's id for more detailed information.
The color code is at the bottom of the page.
id | prime |
digits | who | when | comment |
138667 | 632760! - 1 |
3395992 |
A43 |
Oct 2024 |
Factorial (**) |
138455 | 6533299# - 1 |
2835864 |
p447 |
Aug 2024 |
|
138727 | 42781592262144 + 1 |
2000489 |
L5460 |
Nov 2024 |
Generalized Fermat |
138728 | 252545864131072 + 1 |
1101312 |
L5467 |
Nov 2024 |
|
138726 | 252369374131072 + 1 |
1101272 |
L5452 |
Nov 2024 |
Generalized Fermat |
55086 | 8954571083387140525 · (23423 - 21141) - 3 · 21142 - 1 |
1050 |
F |
Feb 2000 |
Quadruplet (3) |
55087 | 8954571083387140525 · (23423 - 21141) - 3 · 21142 - 5 |
1050 |
F |
Feb 2000 |
Quadruplet (2) |
55088 | 8954571083387140525 · (23423 - 21141) - 3 · 21142 - 7 |
1050 |
F |
Feb 2000 |
Quadruplet (1) |
121421 | 28993093368077 · 2399# + 19433 |
1037 |
c18 |
Mar 2016 |
Sextuplet (6), ECPP |
121425 | 28993093368077 · 2399# + 19421 |
1037 |
c18 |
Mar 2016 |
Sextuplet (2), ECPP |
121422 | 28993093368077 · 2399# + 19429 |
1037 |
c18 |
Mar 2016 |
Sextuplet (5), ECPP |
121426 | 28993093368077 · 2399# + 19417 |
1037 |
c18 |
Mar 2016 |
Sextuplet (1), ECPP |
121423 | 28993093368077 · 2399# + 19427 |
1037 |
c18 |
Mar 2016 |
Sextuplet (4), ECPP |
121424 | 28993093368077 · 2399# + 19423 |
1037 |
c18 |
Mar 2016 |
Sextuplet (3), ECPP |
101219 | 17057625321027 · 2399# + 19417 |
1037 |
c18 |
Aug 2011 |
Quintuplet (1), ECPP |
55851 | 24947432928741915235 · (23363 - 21121) - 3 · 21122 - 7 |
1032 |
F |
Jun 1999 |
Quadruplet (1) |
55859 | 17293378403589618790 · (23363 - 21121) - 3 · 21122 - 7 |
1032 |
F |
Feb 2000 |
Quadruplet (1) |
55857 | 17293378403589618790 · (23363 - 21121) - 3 · 21122 - 1 |
1032 |
F |
Feb 2000 |
Quadruplet (3) |
55858 | 17293378403589618790 · (23363 - 21121) - 3 · 21122 - 5 |
1032 |
F |
Feb 2000 |
Quadruplet (2) |
55867 | 11984747204231082960 · (23363 - 21121) - 3 · 21122 - 5 |
1032 |
F |
Jun 1999 |
Quadruplet (2) |
55868 | 11984747204231082960 · (23363 - 21121) - 3 · 21122 - 7 |
1032 |
F |
Jun 1999 |
Quadruplet (1) |
55865 | 11984747204231082960 · (23363 - 21121) - 3 · 21122 + 1 |
1032 |
F |
Jun 1999 |
Quadruplet (4) |
55866 | 11984747204231082960 · (23363 - 21121) - 3 · 21122 - 1 |
1032 |
F |
Jun 1999 |
Quadruplet (3) |
55883 | 3510160221387831655 · (23363 - 21121) - 3 · 21122 - 7 |
1031 |
F |
Feb 2000 |
Quadruplet (1) |
55882 | 3510160221387831655 · (23363 - 21121) - 3 · 21122 - 5 |
1031 |
F |
Feb 2000 |
Quadruplet (2) |
55899 | 1223892413387684460 · (23363 - 21121) - 3 · 21122 - 1 |
1031 |
F |
Dec 1998 |
Consecutive primes arithmetic progression (2,d=6) |
55912 | 1130012325289848420 · (23363 - 21121) - 3 · 21122 - 1 |
1031 |
F |
Dec 1998 |
Triplet (1) |
55911 | 1130012325289848420 · (23363 - 21121) - 3 · 21122 + 1 |
1031 |
F |
Dec 1998 |
Triplet (2) |
55917 | 1120135282898792580 · (23363 - 21121) - 3 · 21122 + 1 |
1031 |
F |
Dec 1998 |
Triplet (2) |
55918 | 1120135282898792580 · (23363 - 21121) - 3 · 21122 - 1 |
1031 |
F |
Dec 1998 |
Triplet (1) |
55934 | 785984303204820935 · (23363 - 21121) - 3 · 21122 - 1 |
1031 |
F |
Dec 1998 |
Triplet (1) |
55933 | 785984303204820935 · (23363 - 21121) - 3 · 21122 + 1 |
1031 |
F |
Dec 1998 |
Triplet (2) |
55938 | 689295685804075565 · (23363 - 21121) - 3 · 21122 - 1 |
1031 |
F |
Dec 1998 |
Triplet (3) |
55955 | 552522756371196030 · (23363 - 21121) - 3 · 21122 - 1 |
1031 |
F |
Dec 1998 |
Triplet (1) |
55954 | 552522756371196030 · (23363 - 21121) - 3 · 21122 + 1 |
1031 |
F |
Dec 1998 |
Triplet (2) |
55981 | 331426625784936325 · (23363 - 21121) - 3 · 21122 - 5 |
1030 |
F |
Dec 1998 |
Quadruplet (2) |
55982 | 331426625784936325 · (23363 - 21121) - 3 · 21122 - 7 |
1030 |
F |
Dec 1998 |
Quadruplet (1) |
58124 | 1248 · (1057 · 23318 + 1) + 1 |
1005 |
SU |
Dec 1989 |
|
58455 | 1768 · (1869 · 23314 + 1) + 1 |
1005 |
SU |
Dec 1989 |
|
58682 | (21666 + 2834 - 1)2 + 12769 · 21668 |
1004 |
SU |
Dec 1989 |
|
66311 | 23322 + 845219106973 |
1001 |
c30 |
Sep 2003 |
Consecutive primes arithmetic progression (1,d=600) |
66312 | 23322 + 845219107573 |
1001 |
c30 |
Sep 2003 |
Consecutive primes arithmetic progression (2,d=600) |
| |
| | | |
We at the PrimePages attempt to keep a list
of the 5000 largest known primes plus a few each of certain selected
archivable forms.
To make the top 5000
today a prime must have 612280 digits or meet
the
size requirements for it's
archivable form. (Query time: 0.008397 seconds.)
Printed from the PrimePages <t5k.org> © Reginald McLean.