Generalized Repunit
The Prime Pages keeps a list of the 5000 largest known primes, plus a few each of certain selected archivable forms and classes. These forms are defined in this collection's home page.
This page is about one of those forms.
Definitions and Notes
A repunit is a number whose expansion (in radix 10) is a string of ones (for example: 11 and 11111111). A generalized repunit (radix b) is one whose expansion base b is all ones. For example, the Mersenne primes are the generalized repunits in base two (binary). Here is a formula for the n "digit" generalized repunit (base b):(bn - 1)/(b - 1).Clearly a generalized repunit prime is a generalized repunit that is prime.
In the special case that b is prime, the generalized repunit is the value of the sum of divisors function: σ (bn-1).
Note that every odd prime p is a generalized repunit in base p-1, in fact in that base it is "11". So we do not archive all generalized repunit primes, just those for which the number of digits is at least one fifth of the base (and the base must be positive!) This anthropocentric limit was choosen so that 11 (in base 10) is still considered a generalized repunit (as well as an ordinary repunit).
Below we list the record repunit primes with b > 2. The Mersennes (b=2) have their own pages.
Record Primes of this Type
rank prime digits who when comment 1 (12475027751 - 1)/124749 141416 p441 Sep 2024 Generalized repunit 2 (9236524691 - 1)/92364 122599 CH14 Feb 2024 Generalized repunit 3 (10293621961 - 1)/102935 110076 CH14 Nov 2023 Generalized repunit 4 (717624691 - 1)/7175 95202 CH2 Jun 2017 Generalized repunit 5 (7496817107 - 1)/74967 83390 p441 Jul 2024 Generalized repunit 6 (4073416111 - 1)/40733 74267 CH2 Mar 2015 Generalized repunit 7 (6475815373 - 1)/64757 73960 p170 Jan 2018 Generalized repunit 8 (5872915091 - 1)/58728 71962 CH2 Feb 2017 Generalized repunit 9 (2798715313 - 1)/27986 68092 CH12 Aug 2020 Generalized repunit 10 (2334015439 - 1)/23339 67435 p170 Mar 2020 Generalized repunit 11 (2474115073 - 1)/24740 66218 p170 Jul 2020 Generalized repunit 12 (6384713339 - 1)/63846 64091 p170 May 2013 Generalized repunit 13 (2850713831 - 1)/28506 61612 CH12 Aug 2020 Generalized repunit 14 (2637113681 - 1)/26370 60482 p170 Feb 2012 Generalized repunit 15 (452916381 - 1)/4528 59886 CH2 Dec 2012 Generalized repunit 16 (908215091 - 1)/9081 59729 CH2 Oct 2014 Generalized repunit 17 (4332612041 - 1)/43325 55827 p170 Nov 2017 Generalized repunit 18 (3828411491 - 1)/38283 52659 CH2 Feb 2013 Generalized repunit 19 (94017581 - 1)/939 52268 E2 Jan 2025 ECPP generalized repunit 20 (3412011311 - 1)/34119 51269 CH2 Sep 2011 Generalized repunit
References
- AG1974
- I. O. Angell and H. J. Godwin, "Some factorizations of 10n± 1," Math. Comp., 28 (1974) 307--308. MR 48:8366
- Beiler1964
- A. Beiler, Recreations in the theory of numbers, Dover Pub., New York, NY, 1964.
- BLSTW88
- J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman and S. S. Wagstaff, Jr., Factorizations of bn ± 1, b=2,3,5,6,7,10,12 up to high powers, Amer. Math. Soc., 1988. Providence RI, pp. xcvi+236, ISBN 0-8218-5078-4. MR 90d:11009 (Annotation available)
- Dubner2002
- Dubner, Harvey, "Repunit R49081 is a probable prime," Math. Comp., 71:238 (2002) 833--835 (electronic). (http://dx.doi.org/10.1090/S0025-5718-01-01319-9) MR 1885632 (Abstract available)
- Dubner93
- H. Dubner, "Generalized repunit primes," Math. Comp., 61 (1993) 927--930. MR 94a:11009
- Jaroma2009
- Jaroma, John H., On primes and pseudoprimes in the generalized repunits. Congr. Numer., In "Proceedings of the Fortieth Southeastern International Conference on Combinatorics, Graph Theory and Computing," Vol, 195, 2009. pp. 105--114, MR 2584289
- Oblath1956
- R. Obláth, "Une propriété des puissances parfaites," Mathesis, 65 (1956) 356--364.
- Rotkiewicz1987
- A. Rotkiewicz, "Note on the diophantine equation 1 + x + x2 + ... + xn = ym," Elem. Math., 42:3 (1987) 76. MR 88c:11020
- Salas2011
- Salas, Christian, "Base-3 repunit primes and the Cantor set," Gen. Math., 19:2 (2011) 103--107. MR 2818401
- WD86
- H. C. Williams and H. Dubner, "The primality of R1031," Math. Comp., 47:176 (1986) 703--711. MR 87k:11141
- Yates82
- S. Yates, Repunits and repetends, Star Publishing Co., Inc., Boynton Beach, Florida, 1982. pp. vi+215, MR 83k:10014