21262679382290 · 2399# + 19427

At this site we maintain a list of the 5000 Largest Known Primes which is updated hourly.  This list is the most important PrimePages database: a collection of research, records and results all about prime numbers. This page summarizes our information about one of these primes.

This prime's information:

Description:21262679382290 · 2399# + 19427
Verification status (*):Proven
Official Comment (*):Quintuplet (3), ECPP
Proof-code(s): (*):c18 : Luhn, Primo
Decimal Digits:1037   (log10 is 1036.3449024003)
Rank (*):130094 (digit rank is 67)
Entrance Rank (*):93907
Currently on list? (*):no
Submitted:9/30/2011 09:14:52 UTC
Last modified:2/4/2026 11:10:42 UTC
Database id:102258
Status Flags:none
Score (*):25.3837 (normalized score 0)

Archival tags:

There are certain forms classed as archivable: these prime may (at times) remain on this list even if they do not make the Top 5000 proper.  Such primes are tracked with archival tags.
Elliptic Curve Primality Proof (archivable *)
Prime on list: no, rank 1207
Subcategory: "ECPP"
(archival tag id 213509, tag last modified 2026-01-31 06:37:12)
Quintuplet (archivable class *)
Prime on list: no, rank 20
Subcategory: "Quintuplet (3)"
(archival tag id 213510, tag last modified 2026-02-15 09:37:13)

Verification data:

The Top 5000 Primes is a list for proven primes only. In order to maintain the integrity of this list, we seek to verify the primality of all submissions.  We are currently unable to check all proofs (ECPP, KP, ...), but we will at least trial divide and PRP check every entry before it is included in the list.
fieldvalue
prime_id102258
person_id9
machineUsing: Digital Ocean Droplet
whatprime
notesCommand: /var/www/clientpool/1/pfgw64 -V -f -tc -hhelper_1100000002650805153.txt -q"21262679382290*2399#+19427" >command_output 2>&1
PFGW Version 4.0.4.64BIT.20221214.x86_Dev [GWNUM 30.11]
Primality testing 21262679382290*2399#+19427 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Reading factors from helper file helper_1100000002650805153.txt
trial


Running N-1 test using base 5
Generic modular reduction using generic reduction FMA3 FFT length 320 on A 3443-bit number
Running N-1 test using base 7
Generic modular reduction using generic reduction FMA3 FFT length 320 on A 3443-bit number
Running N+1 test using discriminant 13, base 1+sqrt(13)
Generic modular reduction using generic reduction FMA3 FFT length 320 on A 3443-bit number
Detected in MAXERR>0.45 (round off check) in Exponentiator::Iterate
Iteration: 111/3497 ERROR: ROUND OFF 0.5>0.45
(Test aborted, try again using the -a1 switch)
Running N+1 test using discriminant 13, base 1+sqrt(13)
Generic modular reduction using generic reduction FMA3 FFT length 384 on A 3443-bit number
Calling N-1 BLS with factored part 100.00% and helper 1.13% (301.19% proof)


21262679382290*2399#+19427 is prime! (0.0751s+0.0002s)
[Elapsed time: 5.00 seconds]


Helper File:
2
11
883
4763207
104095978443929
22971301852371315854353887864468810...(1012 digits)...19490205765850195669020148997843017
3
1619
290611
modified2026-02-04 11:10:42
created2026-02-04 11:10:37
id187724

fieldvalue
prime_id102258
person_id9
machineRedHat P4 P4
whatprp
notesCommand: /home/caldwell/client/pfgw -tc -q"21262679382290*2399#+19427" 2>&1 PFGW Version 3.4.5.32BIT.20110215.x86_Dev [GWNUM 26.5] Primality testing 21262679382290*2399#+19427 [N-1/N+1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 5 Running N+1 test using discriminant 11, base 3+sqrt(11) Calling N+1 BLS with factored part 0.61% and helper 0.41% (2.24% proof) 21262679382290*2399#+19427 is Fermat and Lucas PRP! (0.3743s+0.0003s) [Elapsed time: 1.00 seconds]
modified2020-07-07 22:30:30
created2011-09-30 09:23:02
id134108

fieldvalue
prime_id102258
person_id9
machineRedHat P4 P4
whattrial_divided
notesCommand: /home/caldwell/client/TrialDiv/TrialDiv -q 21262679382290 2399 # 19427 2>&1 [Elapsed time: 145.210 seconds]
modified2020-07-07 22:30:30
created2011-09-30 09:25:19
id134111

Query times: 0.0002 seconds to select prime, 0.0004 seconds to seek comments.
Printed from the PrimePages <t5k.org> © Reginald McLean.