Partitions
The Prime Pages keeps a list of the 5000 largest known primes, plus a few each of certain selected archivable forms and classes. These forms are defined in this collection's home page.
This page is about one of those forms.
Definitions and Notes
The number of (unrestrict) partiton of n, denoted p(n), s the number of ways of writing the integer n as a sum of positive integers. For example,so p(5) = 7. The value of p(n) for n = 1, 2, ..., is 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, ...5 = 5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1
How often is p(n) prime? Weisstein states that Leibniz noticed that p(n) is prime for n = 2, 3, 4, 5, 6, but not 7. p(n) is prime for 2, 3, 4, 5, 6, 13, 36, 77, 132, 157, 168, 186, ...
Kolberg [Kolberg1959] proved that there are infinitely many even and odd values of p(n), so it is composite infintely often, and congruence properties of p(n) have been very repeatedly studied (e.g., [Ramanujan1919], [Ramanujan1921], [Ono2000] and [Ahlgren2001]).
Record Primes of this Type
rank prime digits who when comment 1 p(1289844341) 40000 c84 Feb 2020 Partitions, ECPP 2 p(1000007396) 35219 E4 Aug 2022 Partitions, ECPP 3 p(398256632) 22223 E1 Aug 2022 Partitions, ECPP 4 p(355646102) 21000 E1 Jul 2022 Partitions, ECPP 5 p(350199893) 20838 E7 Jul 2022 Partitions, ECPP 6 p(322610098) 20000 E1 Jun 2022 Partitions, ECPP 7 p(221444161) 16569 c77 Apr 2017 Partitions, ECPP 8 p(158375386) 14011 E1 Jul 2022 Partitions, ECPP 9 p(158295265) 14007 E1 Jul 2022 Partitions, ECPP 10 p(158221457) 14004 E1 Jul 2022 Partitions, ECPP 11 p(141528106) 13244 E6 Jul 2022 Partitions, ECPP 12 p(141513546) 13244 E6 Jul 2022 Partitions, ECPP 13 p(141512238) 13244 E6 Jul 2022 Partitions, ECPP 14 p(141255053) 13232 E6 Jul 2022 Partitions, ECPP 15 p(141150528) 13227 E6 Jul 2022 Partitions, ECPP 16 p(141112026) 13225 E6 Jul 2022 Partitions, ECPP 17 p(141111278) 13225 E6 Jul 2022 Partitions, ECPP 18 p(140859260) 13213 E6 Jul 2022 Partitions, ECPP 19 p(140807155) 13211 E6 Jul 2022 Partitions, ECPP 20 p(140791396) 13210 E6 Jul 2022 Partitions, ECPP
Related Pages
- MathWorld's Partition Function P Congruences
- Sloane's Sequence A046063 prime partition indices
- Sloane's Sequence A049575 prime partition indices
References
- AB2003
- S. Ahlgren and M. Boylan, "Arithmetic properties of the partition function," Invent. Math., 153:3 (2003) 487--502. MR2000466
- Ahlgren2000
- S. Ahlgren, "Distribution of the partition function modulo composite integers M," Math. Ann., 318:4 (2000) 795--803. MR1802511
- HW79
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford University Press, 1979. ISBN 0198531702. MR 81i:10002 (Annotation available)
- Kolberg1959
- O. Kolberg, "Note on the parity of the partition function," Math. Scand., 7 (1959) 377--378. MR0117213
- Ono2000
- K. Ono, "Distribution of the partition function modulo m," Ann. of Math. (2), 151:1 (2000) 293--307. MR1745012
- Ramanujan1919
- S. Ramanujan, "Congruence properties of partitions," Proc. London Math. Soc., 19 (1919) 207--210.
- Ramanujan1921
- S. Ramanujan, "Congruence properties of partitions," Math. Z., 9 (1921) 147--153.
Printed from the PrimePages <t5k.org> © Reginald McLean.