28824 - 15
At this site we maintain a list of the 5000 Largest Known Primes which is updated hourly. This list is the most important PrimePages database: a collection of research, records and results all about prime numbers. This page summarizes our information about one of these primes.
This prime's information:
| Description: | 28824 - 15 |
|---|---|
| Verification status (*): | Proven |
| Official Comment (*): | [none] |
| Proof-code(s): (*): | F : Forbes |
| Decimal Digits: | 2657 (log10 is 2656.288681739) |
| Rank (*): | 100641 (digit rank is 4) |
| Entrance Rank (*): | 3267 |
| Currently on list? (*): | no |
| Submitted: | 5/1996 |
| Last modified: | 2/4/2026 08:57:29 UTC |
| Removed (*): | 8/1997 |
| Database id: | 30202 |
| Status Flags: | none |
| Score (*): | 28.3216 (normalized score 0) |
Verification data:
The Top 5000 Primes is a list for proven primes only. In order to maintain the integrity of this list, we seek to verify the primality of all submissions. We are currently unable to check all proofs (ECPP, KP, ...), but we will at least trial divide and PRP check every entry before it is included in the list.
field value prime_id 30202 person_id 9 machine Using: Digital Ocean Droplet what prime notes Command: /var/www/clientpool/1/pfgw64 -V -f -tc -hhelper.php?id=1100000000294468897 -q"2^8824-15" >command_output 2>&1
PFGW Version 4.0.4.64BIT.20221214.x86_Dev [GWNUM 30.11]
Primality testing 2^8824-15 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Reading factors from helper file helper.php?id=1100000000294468897
trial
Running N-1 test using base 17
Special modular reduction using FMA3 FFT length 512 on 2^8824-15
Running N-1 test using base 47
Special modular reduction using FMA3 FFT length 512 on 2^8824-15
Running N-1 test using base 53
Special modular reduction using FMA3 FFT length 512 on 2^8824-15
Running N-1 test using base 67
Special modular reduction using FMA3 FFT length 512 on 2^8824-15
Running N+1 test using discriminant 79, base 19+sqrt(79)
Special modular reduction using FMA3 FFT length 512 on 2^8824-15
Calling N-1 BLS with factored part 67.87% and helper 0.17% (203.81% proof)
2^8824-15 is prime! (0.2310s+0.0001s)
[Elapsed time: 5.00 seconds]
Helper File:
2
3
5
7
11
13
19
29
31
37
41
43
61
71
73
109
113
127
151
181
197
211
281
331
337
421
491
631
883
1321
1429
1471
2521
3529
5419
5881
8821
14449
22051
23311
29191
41161
54001
86171
92737
106681
122921
126127
152041
309583
311347
540961
649657
664441
748819
870031
983431
1467061
1484701
1564921
1711081
1765891
3298681
4163041
4692241
5828257
7416361
15562891
18837001
29247661
47392381
85225897
430839361
720636337
7439220181
19707683773
20147473081
40388473189
77158673929
118750098349
146919792181
951157214281
2340389488711
4363953127297
4432676798593
4981857697937
6793177127101
10137296444101
306178659371201
1041815865690181
1372226516822701
27653710336343911
1889104745285845921
15162868758218274451
25407715103318927611
26032885845392093851
40544859693521152369
83468535680255056381
520015769408683617721
744298254317046214381
1008787906424294727221
2741672362528725535068727
4487533753346305838985313
17059410504738323992180849
1003163780973710788611449341
1996187656530838599012839257
17369459529909057773233442461
50647282035796125885000330641
29728307155963706810228435378401
169462032913464877812492288268723
7086423574853972147970086088434689
11247702599676505481447137991664348691
15169173997557864184867895400813639018421
44399394252774652151567131602624448846381
252359902034571016856214298851708529738525821631
631430922992211190033830999202698905758039480236241
10032718675660700331163223888781708908159501730496624539621810378577
84998535361121926317825290336868414402467054590903922313327679343257
1221939910890712567431451795717057972889510554125188184247355820831901
23618256244840618857212522155851714...(98 digits)...48710460515038403366198473773770441
66208443996629422774756624304074494...(293 digits)...93815374317437667296586219200606221
22543modified 2026-02-04 08:57:29 created 2026-02-04 08:57:24 id 187667
field value prime_id 30202 person_id 9 machine Linux PII 200 what prp notes PFGW Version 20020311.x86_Dev (Alpha software, 'caveat utilitor') Running N-1 test using base 17 Running N-1 test using base 47 Running N+1 test using discriminant 67, base 4+sqrt(67) Primality testing 2^8824-15 [N-1/N+1, Brillhart-Lehmer-Selfridge] Calling N-1 BLS with factored part 6.40% and helper 0.17% (19.40% proof) 2^8824-15 is Fermat and Lucas PRP! (55.070000 seconds) modified 2003-03-25 17:22:58 created 2003-01-04 20:33:04 id 61790
Query times: 0.0004 seconds to select prime, 0.0004 seconds to seek comments.
Printed from the PrimePages <t5k.org> © Reginald McLean.