primV(28844)

At this site we maintain a list of the 5000 Largest Known Primes which is updated hourly.  This list is the most important PrimePages database: a collection of research, records and results all about prime numbers. This page summarizes our information about one of these primes.

This prime's information:

Description:primV(28844)
Verification status (*):Proven
Official Comment (*):Lucas primitive part
Proof-code(s): (*):p12 : Water, OpenPFGW
Decimal Digits:6028   (log10 is 6027.1943973304)
Rank (*):92655 (digit rank is 32)
Entrance Rank (*):17674
Currently on list? (*):no
Submitted:4/26/2001 09:15:13 UTC
Last modified:2/4/2026 11:55:28 UTC
Database id:22800
Status Flags:none
Score (*):30.8694 (normalized score 0)

Archival tags:

There are certain forms classed as archivable: these prime may (at times) remain on this list even if they do not make the Top 5000 proper.  Such primes are tracked with archival tags.
Lucas primitive part (archivable *)
Prime on list: no, rank 74
Subcategory: "Lucas primitive part"
(archival tag id 195662, tag last modified 2024-10-11 22:37:11)

Verification data:

The Top 5000 Primes is a list for proven primes only. In order to maintain the integrity of this list, we seek to verify the primality of all submissions.  We are currently unable to check all proofs (ECPP, KP, ...), but we will at least trial divide and PRP check every entry before it is included in the list.
fieldvalue
prime_id22800
person_id9
machineUsing: Digital Ocean Droplet
whatprime
notesPFGW Version 4.0.4.64BIT.20221214.x86_Dev [GWNUM 30.11]
Primality testing 1564578400...3551832801 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Reading factors from helper file helper_1100000000212230545.txt
trial


Running N-1 test using base 7
Generic modular reduction using generic reduction FMA3 FFT length 2K on A 20022-bit number
Running N+1 test using discriminant 17, base 8+sqrt(17)
Generic modular reduction using generic reduction FMA3 FFT length 2K on A 20022-bit number
Calling N-1 BLS with factored part 48.15% and helper 1.11% (145.57% proof)


1564578400...3551832801 is prime! (3.6328s+0.0009s)
[Elapsed time: 5.00 seconds]


Helper File:
2
3
5
11
13
23
29
41
71
281
619
911
1031
6011
7211
12979
14423
16829
40867
81163
141961
144241
245209
302903
306511
461441
461569
519121
531481
1603711
5644193
39666001
90323089
117667201
219868951
408563921
498643601
512119709
3377769047
3444245657
8188339321
12317523121
30048040741
54923315347
135026313241
2514506318101
9838425675437
28278965692309
60185559515621
84388938382141
5257480026438961
22549039789436761
173040421686336917
269351012534200351
293504775565791623
26062085844315556271
194370916721445668453
2677653391177377967009
6896857005553544477281
29263782395690410184761
79617419673335788969009
142698186735199477821277
6171862229631367315648090187
594781729148710899627586567069
30333118567387350187141881568843481
2217915655501541455404733927062827911
20586773895804438521105669315637009361
46235392144586222367191440726672730987
22184089034585002142816098402955722591241
78657654716135875361660163401655338968507
83528090516389200313469247907509704577649
26315372138382470904009809410251331242219701
84989226122714110273481971983088190996280049
389192962225654291671474159761046390844386713
1229680433571371934446100555501462065703889249624959001
134996839154735278211026279707694064081503306300937471161
56416861085073434292452983032377201016319982560035658161631
300367026458796424297447559250634818495937628065437243817852436228914621
150091893275938965565142165169464683420682759092285062166834604838859194179
4444800806221399924146044851414722754410744391107567264854379487047745230259380469087769
14528975679077735815788297787995211...(93 digits)...95141053472799910927451680306318401
97903429242000349002888933691465744...(96 digits)...92481134336750695323180049770154871
79242603382498978143878749618315218...(109 digits)...31093891098279396811260320046888441
22360525253034883018624489654276404...(120 digits)...50502532827604799013828233565326309
36645269041465497098749680120289063...(140 digits)...46035698985849240337576788325219929
96684402340837456536477545595621479...(230 digits)...72492375027064006703661258386234161
18946106173750770208887541226510144...(231 digits)...02168985880917359688401265536665961
26874309597529326445373566603154578...(479 digits)...91520340053032783853442153773682423
7
47
823
1103
2161
14503
294167
509647
1785220721
41246755009
118021448662479038881
modified2026-02-04 11:55:28
created2026-02-04 11:55:18
id187734

fieldvalue
prime_id22800
person_id9
machineLinux PII 200
whatprp
notesPFGW Version 20020311.x86_Dev (Alpha software, 'caveat utilitor') Primality testing Reading factors from helper file helper Running N-1 test using base 7 9651022500...3551832801 [N-1/N+1, Brillhart-Lehmer-Selfridge] Running N+1 test using discriminant 17, base 8+sqrt(17) Calling N-1 BLS with factored part 1.81% and helper 0.45% (5.89% proof) primV(28844) is Fermat and Lucas PRP! (552.070000 seconds)
modified2003-03-25 17:22:45
created2003-01-08 01:51:44
id64307

Query times: 0.0002 seconds to select prime, 0.0004 seconds to seek comments.
Printed from the PrimePages <t5k.org> © Reginald McLean.