primU(10377)
At this site we maintain a list of the 5000 Largest Known Primes which is updated hourly. This list is the most important PrimePages database: a collection of research, records and results all about prime numbers. This page summarizes our information about one of these primes.
This prime's information:
| Description: | primU(10377) |
|---|---|
| Verification status (*): | Proven |
| Official Comment (*): | Fibonacci primitive part |
| Proof-code(s): (*): | DK : Dubner, Keller, Cruncher |
| Decimal Digits: | 1445 (log10 is 1444.546046328) |
| Rank (*): | 113577 (digit rank is 3) |
| Entrance Rank (*): | 5420 |
| Currently on list? (*): | no |
| Submitted: | 7/1995 |
| Last modified: | 2/4/2026 10:30:07 UTC |
| Database id: | 39780 |
| Status Flags: | none |
| Score (*): | 26.4217 (normalized score 0) |
Archival tags:
There are certain forms classed as archivable: these prime may (at times) remain on this list even if they do not make the Top 5000 proper. Such primes are tracked with archival tags.
- Fibonacci Primitive Part (archivable *)
- Prime on list: no, rank 75
Subcategory: "Fibonacci Primitive Part"
(archival tag id 176733, tag last modified 2024-10-14 00:37:17)
Verification data:
The Top 5000 Primes is a list for proven primes only. In order to maintain the integrity of this list, we seek to verify the primality of all submissions. We are currently unable to check all proofs (ECPP, KP, ...), but we will at least trial divide and PRP check every entry before it is included in the list.
field value prime_id 39780 person_id 9 machine Using: Digital Ocean Droplet what prime notes PFGW Version 4.0.4.64BIT.20221214.x86_Dev [GWNUM 30.11]
Primality testing 3515979449...9842657281 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Reading factors from helper file helper_1100000000305623929.txt
trial
Running N-1 test using base 13
Generic modular reduction using generic reduction FMA3 FFT length 512 on A 4799-bit number
Running N-1 test using base 17
Generic modular reduction using generic reduction FMA3 FFT length 512 on A 4799-bit number
Running N-1 test using base 41
Generic modular reduction using generic reduction FMA3 FFT length 512 on A 4799-bit number
Running N+1 test using discriminant 59, base 4+sqrt(59)
Generic modular reduction using generic reduction FMA3 FFT length 512 on A 4799-bit number
Calling N-1 BLS with factored part 100.00% and helper 0.02% (300.06% proof)
3515979449...9842657281 is prime! (1.3712s+0.0005s)
[Elapsed time: 5.00 seconds]
Helper File:
2
3
5
7
19
23
47
53
107
109
127
383
769
863
1087
1103
1153
2207
2309
3023
3167
4481
5779
6263
19009
19583
31159
103681
270143
492757
1698689
5662847
6803327
8982143
11128427
447901921
1240154177
10749957121
16093237249
19073614849
177962167367
186812208641
11862575248703
25033626656641
48265838239823
303039789569567
28863099561561983
1145496371382309889
1519227252105497929
73842573103586899487
76884955798273110143
115561578124838522881
742078633406435412481
1974737795746080149567
79914045929576045795423
940270022749284224303161
14249372124630228695443493839
80514358886996930180113470454398576769
4103838822572119088945154809160147448703
1985848125630403202878453557046838544871227168001
21399851009055772101827490829617726159610154826458641
25823418113437986743666287549187401816205178399841371456864109441
19047985864783162888011732303378080831086186789525050194631351695461
62360246686115310307765470050127424...(93 digits)...67841774743365709581415501808824921
12367585260759018019252191894253690...(117 digits)...80412518265505158198686183208746119
90034576586055104689464742850117757...(127 digits)...41517633183624147068366750607766571
26628225786384293012386130857533544...(155 digits)...01681114097670875635975132400705663
36901456896408291435677755351580943...(165 digits)...69767933025783847471487782874236921modified 2026-02-04 10:30:07 created 2026-02-04 10:29:57 id 187695
field value prime_id 39780 person_id 9 machine Linux PII 200 what prp notes PFGW Version 20020311.x86_Dev (Alpha software, 'caveat utilitor') Reading factors from helper file helper Error opening file helper Running N-1 test using base 13 Primality testing primU(10377) [N-1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 17 Calling Brillhart-Lehmer-Selfridge with factored part 5.90% primU(10377) is PRP! (9.040000 seconds) modified 2003-03-25 17:22:48 created 2003-01-07 05:02:12 id 63854
Query times: 0.0003 seconds to select prime, 0.0004 seconds to seek comments.
Printed from the PrimePages <t5k.org> © Reginald McLean.