673 · 23330436 + 1

At this site we maintain a list of the 5000 Largest Known Primes which is updated hourly.  This list is the most important PrimePages database: a collection of research, records and results all about prime numbers. This page summarizes our information about one of these primes.

This prime's information:

Description:673 · 23330436 + 1
Verification status (*):Proven
Official Comment (*):[none]
Unofficial Comments:This prime has 1 user comment below.
Proof-code(s): (*):L3035 : Scalise, PSieve, Srsieve, PrimeGrid, LLR
Decimal Digits:1002564   (log10 is 1002563.9626542)
Rank (*):2767 (digit rank is 1)
Entrance Rank (*):193
Currently on list? (*):yes
Submitted:11/13/2016 01:22:49 UTC
Last modified:5/20/2023 20:59:19 UTC
Database id:122491
Status Flags:none
Score (*):46.6408 (normalized score 4.5293)

User comments about this prime (disclaimer):

User comments are allowed to convey mathematical information about this number, how it was proven prime.... See our guidelines and restrictions.

PrimeGrid writes (27 Nov 2016):  (report abuse)
For more details, see the Official Announcement.

Verification data:

The Top 5000 Primes is a list for proven primes only. In order to maintain the integrity of this list, we seek to verify the primality of all submissions.  We are currently unable to check all proofs (ECPP, KP, ...), but we will at least trial divide and PRP check every entry before it is included in the list.
fieldvalue
prime_id122491
person_id9
machineUsing: Xeon (pool) 4c+4c 3.5GHz
whatprime
notesCommand: /home/caldwell/clientpool/1/pfgw64 -t -q"673*2^3330436+1" 2>&1 PFGW Version 3.7.7.64BIT.20130722.x86_Dev [GWNUM 27.11] Primality testing 673*2^3330436+1 [N-1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 3 Calling Brillhart-Lehmer-Selfridge with factored part 100.00% 673*2^3330436+1 is prime! (5039.3085s+0.0013s) [Elapsed time: 83.98 minutes]
modified2020-07-07 22:30:16
created2016-11-13 01:23:01
id168131

Query times: 0.0003 seconds to select prime, 0.0004 seconds to seek comments.
Printed from the PrimePages <t5k.org> © Reginald McLean.