48643706131072 + 1

At this site we maintain a list of the 5000 Largest Known Primes which is updated hourly.  This list is the most important PrimePages database: a collection of research, records and results all about prime numbers. This page summarizes our information about one of these primes.

This prime's information:

Description:48643706131072 + 1
Verification status (*):Proven
Official Comment (*):Generalized Fermat
Proof-code(s): (*):L4691 : Fruzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
Decimal Digits:1007554   (log10 is 1007553.9577186)
Rank (*):2675 (digit rank is 1)
Entrance Rank (*):278
Currently on list? (*):yes
Submitted:2/2/2018 11:21:34 UTC
Last modified:5/20/2023 20:59:19 UTC
Database id:124220
Status Flags:none
Score (*):46.6561 (normalized score 4.6128)

Archival tags:

There are certain forms classed as archivable: these prime may (at times) remain on this list even if they do not make the Top 5000 proper.  Such primes are tracked with archival tags.
Generalized Fermat (archivable *)
Prime on list: no, rank 1143
Subcategory: "Generalized Fermat"
(archival tag id 218995, tag last modified 2024-11-21 13:37:10)

Verification data:

The Top 5000 Primes is a list for proven primes only. In order to maintain the integrity of this list, we seek to verify the primality of all submissions.  We are currently unable to check all proofs (ECPP, KP, ...), but we will at least trial divide and PRP check every entry before it is included in the list.
fieldvalue
prime_id124220
person_id9
machineUsing: Xeon (pool) 4c+4c 3.5GHz
whatprime
notesCommand: /home/caldwell/clientpool/1/pfgw64 -t -q"48643706^131072+1" 2>&1 PFGW Version 3.7.7.64BIT.20130722.x86_Dev [GWNUM 27.11] Primality testing 48643706^131072+1 [N-1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 3 Calling Brillhart-Lehmer-Selfridge with factored part 34.68% 48643706^131072+1 is prime! (23051.5012s+0.0329s) [Elapsed time: 6.40 hours]
modified2020-07-07 22:30:15
created2018-02-02 11:23:01
id169884

Query times: 0.0002 seconds to select prime, 0.0003 seconds to seek comments.
Printed from the PrimePages <t5k.org> © Reginald McLean.