1271 · 24850526 - 1
At this site we maintain a list of the 5000 Largest Known Primes which is updated hourly. This list is the most important PrimePages database: a collection of research, records and results all about prime numbers. This page summarizes our information about one of these primes.
This prime's information:
Description: | 1271 · 24850526 - 1 |
---|---|
Verification status (*): | Proven |
Official Comment (*): | [none] |
Proof-code(s): (*): | L1828 : Benson, PSieve, Srsieve, Rieselprime, LLR |
Decimal Digits: | 1460157 (log10 is 1460156.9248936) |
Rank (*): | 598 (digit rank is 1) |
Entrance Rank (*): | 32 |
Currently on list? (*): | yes |
Submitted: | 10/22/2012 20:20:15 UTC |
Last modified: | 3/11/2023 15:54:10 UTC |
Database id: | 109915 |
Status Flags: | none |
Score (*): | 47.7941 (normalized score 14.3863) |
Verification data:
The Top 5000 Primes is a list for proven primes only. In order to maintain the integrity of this list, we seek to verify the primality of all submissions. We are currently unable to check all proofs (ECPP, KP, ...), but we will at least trial divide and PRP check every entry before it is included in the list.
field value prime_id 109915 person_id 9 machine RedHat Virtual STEM Server what prime notes Command: /home/caldwell/client/llr.pl 1271*2^4850526-1 2>&1 Starting Lucas Lehmer Riesel prime test of 1271*2^4850526-1 Using Irrational Base DWT : Mersenne fftlen = 262144, Used fftlen = 393216 V1 = 4 ; Computing U0... V1 = 4 ; Computing U0...done.Starting Lucas-Lehmer loop... 1271*2^4850526-1 is prime! Time : 27427.452 sec. [Elapsed time: 7.62 hours] modified 2020-07-07 22:30:23 created 2012-10-22 20:22:49 id 149621
field value prime_id 109915 person_id 9 machine Ditto P4 P4 what trial_divided notes Command: /home/ditto/client/TrialDiv/TrialDiv -q 1271 2 4850526 -1 2>&1 [Elapsed time: 11.202 seconds] modified 2020-07-07 22:30:23 created 2012-10-22 20:35:02 id 149622
Query times: 0.0002 seconds to select prime, 0.0003 seconds to seek comments.
Printed from the PrimePages <t5k.org> © Reginald McLean.