Home
Search Site
Largest
Finding
How Many?
Mersenne
Glossary
Prime Curios!
email list
FAQ
Prime Lists
Titans
Submit primes

This is the Prime Pages'
interface to our BibTeX database. Rather than being an exhaustive database,
it just lists the references we cite on these pages. Please let me know of any errors you notice.References: [ Home  Author index  Key index  Search ] All items with author Selfridge (sorted by date)
 Selfridge53
 J. L. Selfridge, "Factors of Fermat numbers," Math. Tables Aids Comput., 7 (1953) 274275.
 HS61
 A. Hurwitz and J. L. Selfridge, "Fermat numbers and perfect numbers," Notices Amer. Math. Soc., 8 (1961) 601. Abstract 587104.
 SH64
 J. L. Selfridge and A. Hurwitz, "Fermat numbers and Mersenne numbers," Math. Comp., 18 (1964) 146148. MR 28:2991
 BLS75
 J. Brillhart, D. H. Lehmer and J. L. Selfridge, "New primality criteria and factorizations of 2^{m} ± 1," Math. Comp., 29 (1975) 620647. MR 52:5546 [The article for the classical (n^{2} 1) primality tests. Table errata in [Brillhart1982]]
 CS1975
 F. Cohen and J. L. Selfridge, "Not every number is the sum or difference of two prime powers," Math. Comp., 29 (1975) 7981. Collection of articles dedicated to Derrick Henry Lehmer on the occasion of his seventieth birthday. MR0376583 (Abstract available)
 PSW80
 C. Pomerance, J. L. Selfridge and Wagstaff, Jr., S. S., "The pseudoprimes to 25 · 10^{9}," Math. Comp., 35:151 (1980) 10031026. MR 82g:10030
 GLS87
 R. K. Guy, C. B. Lacampagne and J. L. Selfridge, "Primes at a glance," Math. Comp., 48 (1987) 183202. MR 87m:11008
 BLSTW88
 J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman and S. S. Wagstaff, Jr., Factorizations of b^{n} ± 1, b=2,3,5,6,7,10,12 up to high powers, Amer. Math. Soc., 1988. Providence RI, pp. xcvi+236, ISBN 0821850784. MR 90d:11009 (Annotation available)
 BSW89
 P. T. Bateman, J. L. Selfridge and Wagstaff, Jr., S. S., "The new Mersenne conjecture," Amer. Math. Monthly, 96 (1989) 125128. MR 90c:11009
 ELS1993
 P. Erdös, C. B. Lacampagne and J. L. Selfridge, "Estimates of the least prime factor of a binomial coefficient," Math. Comp., 61:203 (1993) 215224. MR1199990
