Reference Database
(references for the Prime Pages)
The Prime Pages

Home
Search Site

Largest
Finding
How Many?
Mersenne

Glossary

Prime Curios!
e-mail list

FAQ
Prime Lists
Titans

Submit primes
This is the Prime Pages' interface to our BibTeX database.  Rather than being an exhaustive database, it just lists the references we cite on these pages.  Please let me know of any errors you notice.
References: [ Home | Author index | Key index | Search ]

All items with author Cohen (sorted by date)

Cohen70
H. Cohen, "On amicable and sociable numbers," Math. Comp.,:24 (1970) 423-429.
CS1975
F. Cohen and J. L. Selfridge, "Not every number is the sum or difference of two prime powers," Math. Comp., 29 (1975) 79--81.  Collection of articles dedicated to Derrick Henry Lehmer on the occasion of his seventieth birthday.  MR0376583 (Abstract available)
Cohen1976
D. Cohen, "An explanation of the first digit phenomenon," J. Combin. Theory, Ser. A, 20 (1976) 367--370.  MR 53:10698
CL84
H. Cohen and Lenstra, Jr., H. W., "Primality testing and Jacobi sums," Math. Comp., 42 (1984) 297--330.  MR 86g:11078 [APRT-CL test introduced.]
CK1984
D. Cohen and K. Talbot, "Prime numbers and the first digit phenomenon," J. Number Theory, 18 (December 1984) 261--268.  MR 85j:11014
CL87
H. Cohen and A. K. Lenstra, "Implementation of a new primality test," Math. Comp., 48 (1987) 103--121.  MR 88c:11080 [APRT-CL test implemented.]
Cohen87
G. L. Cohen, "On the largest component of an odd perfect number," J. Austral. Math. Soc. Ser. A, 42 (1987) 280--286.  MR 87m:11005
BCR91
R. P. Brent, G. L. Cohen and H. J. J. te Riele, "Improved techniques for lower bounds for odd perfect numbers," Math. Comp., 57:196 (1991) 857--868.  MR 92c:11004
Cohen93
H. Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics Vol, 138, Springer-Verlag, New York, NY, 1993.  MR 94i:11105
CGH95
G. Cohen, S. Gretton and P. Hagis, Jr., "Multiamicable numbers," Math. Comp., 64 (1995) 1743--1753.  MR 95m:11012
HC98
P. Hagis, Jr. and G. L. Cohen, "Every odd perfect number has a prime factor which exceeds 106," Math. Comp., 67 (1998) 1323--1330.  MR 98k:11002
Abstract: It is proved here that every odd perfect number is divisible by a prime greater than 106
Prime Pages' Home
Another prime page by Reginald McLean