Home
Search Site
Largest
Finding
How Many?
Mersenne
Glossary
Prime Curios!
e-mail list
FAQ
Prime Lists
Titans
Submit primes
|
This is the Prime Pages'
interface to our BibTeX database. Rather than being an exhaustive database,
it just lists the references we cite on these pages. Please let me know of any errors you notice.References: [ Home | Author index | Key index | Search ] All items with author Lenstra (sorted by date)
- Lenstra79
- Lenstra, Jr., H. W., "Miller's primality test," Inform. Process. Lett., 8 (1979) 86-88. MR 80c:10008
- Lenstra1981
- Lenstra, Jr., H. W., Primality testing algorithms (after Adleman, Rumely and Williams). In "Bourbaki Seminar, Vol. 1980/81," Lecture Notes in Math. Vol, 901, Springer, Berlin, 1981. pp. 243--257, MR647500
- Lenstra82
- Lenstra, Jr., H. W., Primality testing. In "Computational Methods in Number Theory, part I," Lenstra, Jr., H. W. and R. Tijdemann editors, Vol, 154, Math. Centre Tract, 1982. Amsterdam, pp. 55--77, MR 85g:11117 [Introduces Lenstra's Galois theory test]
- CL84
- H. Cohen and Lenstra, Jr., H. W., "Primality testing and Jacobi sums," Math. Comp., 42 (1984) 297--330. MR 86g:11078 [APRT-CL test introduced.]
- Lenstra86
- Lenstra, Jr., H. W., Primality testing. In "Mathematics and Computer Science: Proceedings of the CWI Symposium," Bakker, J. W. de, M. Hazewinkel and J. K. Lenstra editors, North-Holland, Amsterdam, 1986. pp. 269-287, MR 88b:11087
- CL87
- H. Cohen and A. K. Lenstra, "Implementation of a new primality test," Math. Comp., 48 (1987) 103--121. MR 88c:11080 [APRT-CL test implemented.]
- Lenstra87
- Lenstra, Jr., H. W., "Factoring integers with elliptic curves," Ann. Math., 126 (1987) 649-673. MR 89g:11125
- LL90
- Lenstra, Jr., A. K. and Lenstra, Jr., H. W., Algorithms in number theory. In "Handbook of Theoretical Computer Science, Vol A: Algorithms and Complexity," The MIT Press, Amsterdam and New York, 1990. pp. 673-715, MR 1 127 178
- LLMP93
- A. K. Lenstra, Lenstra, Jr., H. W., M. S. Manasse and J. M. Pollard, "The factorization of the ninth Fermat number," Math. Comp., 61 (1993) 319-349. Addendum, Math. Comp. 64 (1995), 1357. MR 1 303 085
|