3276742755 · 2340049 - 1

At this site we maintain a list of the 5000 Largest Known Primes which is updated hourly.  This list is the most important PrimePages database: a collection of research, records and results all about prime numbers. This page summarizes our information about one of these primes.

This prime's information:

Description:3276742755 · 2340049 - 1
Verification status (*):Proven
Official Comment (*):[none]
Proof-code(s): (*):L145 : Minovic, Ksieve, NewPGen, Rieselprime, LLR
Decimal Digits:102375   (log10 is 102374.46443789)
Rank (*):50537 (digit rank is 1)
Entrance Rank (*):1609
Currently on list? (*):no
Submitted:3/28/2006 19:40:26 UTC
Last modified:3/11/2023 15:54:10 UTC
Removed (*):8/25/2008 20:45:55 UTC
Database id:77387
Status Flags:none
Score (*):39.6265 (normalized score 0.0027)

Verification data:

The Top 5000 Primes is a list for proven primes only. In order to maintain the integrity of this list, we seek to verify the primality of all submissions.  We are currently unable to check all proofs (ECPP, KP, ...), but we will at least trial divide and PRP check every entry before it is included in the list.
fieldvalue
prime_id77387
person_id9
machineWinXP P4 2.2GHz By K
whatprime
notesCommand: pfgw.exe -n -f -tp -q"3276742755*2^340049-1" 2>&1 PFGW Version 1.2.0 for Windows [FFT v23.8] Primality testing 3276742755*2^340049-1 [N+1, Brillhart-Lehmer-Selfridge] trial factoring to 34953412 Running N+1 test using discriminant 7, base 1+sqrt(7) Calling Brillhart-Lehmer-Selfridge with factored part 99.99% 3276742755*2^340049-1 is prime! (11112.1703s+0.0664s) [Elapsed time: 11112 seconds]
modified2020-07-07 22:30:42
created2006-03-28 20:14:47
id83783

fieldvalue
prime_id77387
person_id9
machineLinux P4 2.8GHz
whattrial_divided
notesCommand: /home/caldwell/client/TrialDiv/TrialDiv -q 3276742755 2 340049 -1 2>&1 [Elapsed time: 23.993 seconds]
modified2020-07-07 22:30:42
created2006-03-29 00:47:52
id83793

Query times: 0.0009 seconds to select prime, 0.0003 seconds to seek comments.
Printed from the PrimePages <t5k.org> © Reginald McLean.