2389335 + 297837 + 1
At this site we maintain a list of the 5000 Largest Known Primes which is updated hourly. This list is the most important PrimePages database: a collection of research, records and results all about prime numbers. This page summarizes our information about one of these primes.
This prime's information:
Description: | 2389335 + 297837 + 1 |
---|---|
Verification status (*): | PRP |
Official Comment (*): | [none] |
Unofficial Comments: | This prime has 1 user comment below. |
Proof-code(s): (*): | x32 : Broadhurst, Renze, OpenPFGW |
Decimal Digits: | 117202 (log10 is 117201.51336184) |
Rank (*): | 46387 (digit rank is 1) |
Entrance Rank (*): | 976 |
Currently on list? (*): | no |
Submitted: | 3/6/2006 01:19:59 UTC |
Last modified: | 3/11/2023 15:54:10 UTC |
Removed (*): | 4/28/2009 20:26:39 UTC |
Database id: | 77228 |
Status Flags: | Verify |
Score (*): | 40.0432 (normalized score 0.0061) |
User comments about this prime (disclaimer):
User comments are allowed to convey mathematical information about this number, how it was proven prime.... See our guidelines and restrictions.
Verification data:
The Top 5000 Primes is a list for proven primes only. In order to maintain the integrity of this list, we seek to verify the primality of all submissions. We are currently unable to check all proofs (ECPP, KP, ...), but we will at least trial divide and PRP check every entry before it is included in the list.
field value prime_id 77228 person_id 9 machine Linux P4 2.8GHz what trial_divided notes Command: /home/caldwell/client/pfgw -o -f -q"2^389335+2^97837+1" 2>&1 PFGW Version 20031027.x86_Dev (Beta 'caveat utilitor') [FFT v22.13 w/P4] trial factoring to 40384465 2^389335+2^97837+1 has no small factor. [Elapsed time: 395.039 seconds] modified 2020-07-07 22:30:42 created 2006-03-06 01:22:01 id 83446
field value prime_id 77228 person_id 9 machine Linux P4 2.8GHz what prp notes Command: /home/caldwell/client/pfgw -t -q"2^389335+2^97837+1" 2>&1 PFGW Version 20031027.x86_Dev (Beta 'caveat utilitor') [FFT v22.13 w/P4] Primality testing 2^389335+2^97837+1 [N-1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 3 Using SSE2 FFT Adjusting authentication level by 1 for PRIMALITY PROOF Reduced from FFT(49152,20) to FFT(49152,19) Reduced from FFT(49152,19) to FFT(49152,18) Reduced from FFT(49152,18) to FFT(49152,17) Reduced from FFT(49152,17) to FFT(49152,16) 778680 bit request FFT size=(49152,16) Calling Brillhart-Lehmer-Selfridge with factored part 25.16% 2^389335+2^97837+1 is PRP! (-1884.3273s+0.0000s) [Elapsed time: 5401 seconds] modified 2020-07-07 22:30:42 created 2006-03-06 01:23:01 id 83447
Query times: 0.0002 seconds to select prime, 0.0006 seconds to seek comments.
Printed from the PrimePages <t5k.org> © Reginald McLean.