888 · 1074601 + 1

At this site we maintain a list of the 5000 Largest Known Primes which is updated hourly.  This list is the most important PrimePages database: a collection of research, records and results all about prime numbers. This page summarizes our information about one of these primes.

This prime's information:

Description:888 · 1074601 + 1
Verification status (*):Proven
Official Comment (*):[none]
Proof-code(s): (*):p181 : Earls, NewPGen, OpenPFGW
Decimal Digits:74604   (log10 is 74603.948412966)
Rank (*):55142 (digit rank is 1)
Entrance Rank (*):2972
Currently on list? (*):no
Submitted:11/1/2005 12:19:16 UTC
Last modified:3/11/2023 15:54:10 UTC
Removed (*):10/11/2006 05:47:20 UTC
Database id:76069
Status Flags:none
Score (*):38.6513 (normalized score 0.0014)

Verification data:

The Top 5000 Primes is a list for proven primes only. In order to maintain the integrity of this list, we seek to verify the primality of all submissions.  We are currently unable to check all proofs (ECPP, KP, ...), but we will at least trial divide and PRP check every entry before it is included in the list.
fieldvalue
prime_id76069
person_id9
machineLinux P4 2.8GHz
whatprime
notesCommand: /home/caldwell/client/pfgw -f -t -q"888*10^74601+1" 2>&1 PFGW Version 20031027.x86_Dev (Beta 'caveat utilitor') [FFT v22.13 w/P4] Primality testing 888*10^74601+1 [N-1, Brillhart-Lehmer-Selfridge] trial factoring to 24922789 Running N-1 test using base 17 Using SSE2 FFT Adjusting authentication level by 1 for PRIMALITY PROOF Reduced from FFT(32768,20) to FFT(32768,19) Reduced from FFT(32768,19) to FFT(32768,18) Reduced from FFT(32768,18) to FFT(32768,17) Reduced from FFT(32768,17) to FFT(32768,16) 495666 bit request FFT size=(32768,16) Calling Brillhart-Lehmer-Selfridge with factored part 69.89% 888*10^74601+1 is prime! (1899.9754s+0.0072s) [Elapsed time: 1900 seconds]
modified2020-07-07 22:30:43
created2005-11-01 12:23:01
id81272

Query times: 0.0002 seconds to select prime, 0.0003 seconds to seek comments.
Printed from the PrimePages <t5k.org> © Reginald McLean.