Top person sorted by score

The Prover-Account Top 20
Persons by: number score normalized score
Programs by: number score normalized score
Projects by: number score normalized score

At this site we keep several lists of primes, most notably the list of the 5,000 largest known primes. Who found the most of these record primes? We keep separate counts for persons, projects and programs. To see these lists click on 'number' to the right.

Clearly one 100,000,000 digit prime is much harder to discover than quite a few 100,000 digit primes. Based on the usual estimates we score the top persons, provers and projects by adding ‎(log n)3 log log n‎ for each of their primes n. Click on 'score' to see these lists.

Finally, to make sense of the score values, we normalize them by dividing by the current score of the 5000th prime. See these by clicking on 'normalized score' in the table on the right.

rankpersonprimesscore
341 Kenneth Egtved Pedersen 4 48.0384
342 Szymon Banka 1.3333 48.0294
343 Reiner Elgetz 4 48.0222
344 Andri Martinelli 3 48.0106
345 Rick Reynolds 4 48.0085
346 Paweł Dec 4 48.0013
347 Stephen P. Norton 4 48.0002
348 Stephen Eldred 3 47.9989
349 Wolfgang Schmidt 2 47.9986
350 Phill Mayer 3 47.9955
351 NitaMinttu Tirkkonen 3 47.9883
352 Daniel Frużyński 4 47.9872
353 Stefan Fink 1 47.9779
354 Maxime Duvinage 3 47.9773
355 Jack Welsh 3 47.9691
356 Simita Norbert 3 47.9690
357 Sven Jungmann 3 47.9648
358 Raphaël Gervais Lavoie 2 47.9615
359 Josef Schlereth 3 47.9588
360 Travis Petersen 3 47.9480

move up list ↑
move down list ↓

Notes:


Score for Primes

To find the score for a person, program or project's primes, we give each prime n the score (log n)3 log log n; and then find the sum of the scores of their primes. For persons (and for projects), if three go together to find the prime, each gets one-third of the score. Finally we take the log of the resulting sum to narrow the range of the resulting scores. (Throughout this page log is the natural logarithm.)

How did we settle on (log n)3 log log n? For most of the primes on the list the primality testing algorithms take roughly O(log(n)) steps where the steps each take a set number of multiplications. FFT multiplications take about

O( log n . log log n . log log log n )

operations. However, for practical purposes the O(log log log n) is a constant for this range number (it is the precision of numbers used during the FFT, 64 bits suffices for numbers under about 2,000,000 digits).

Next, by the prime number theorem, the number of integers we must test before finding a prime the size of n is O(log n) (only the constant is effected by prescreening using trial division).  So to get a rough estimate of the amount of time to find a prime the size of n, we just multiply these together and we get

O( (log n)3 log log n ).

Finally, for convenience when we add these scores, we take the log of the result.  This is because log n is roughly 2.3 times the number of digits in the prime n, so (log n)3 is quite large for many of the primes on the list. (The number of decimal digits in n is floor((log n)/(log 10)+1)).

Printed from the PrimePages <t5k.org> © Reginald McLean.