Top person sorted by score
The Prover-Account Top 20 | |||
---|---|---|---|
Persons by: | number | score | normalized score |
Programs by: | number | score | normalized score |
Projects by: | number | score | normalized score |
At this site we keep several lists of primes, most notably the list of the 5,000 largest known primes. Who found the most of these record primes? We keep separate counts for persons, projects and programs. To see these lists click on 'number' to the right.
Clearly one 100,000,000 digit prime is much harder to discover than quite a few 100,000 digit primes. Based on the usual estimates we score the top persons, provers and projects by adding (log n)3 log log n for each of their primes n. Click on 'score' to see these lists.
Finally, to make sense of the score values, we normalize them by dividing by the current score of the 5000th prime. See these by clicking on 'normalized score' in the table on the right.
rank person primes score 261 Shaun Stewart 1 48.6757 262 Jonathan Champ 8 48.6738 263 James Elmore 1 48.6722 264 David Bestor 6 48.6712 265 Shihan Zhao 1 48.6692 266 Dieter Börgerding 1 48.6667 267 Michael Becker 5 48.6591 268 Vladimir Volynsky 1 48.6527 269 Lucas Brown 7 48.6511 270 Daniel Rix 4 48.6450 271 Barry Jablonski 6 48.6396 272 Yuki Mizusawa 6 48.6166 273 Giles Averay-Jones 6 48.6117 274 Dennis R. Gesker 1 48.6097 275 Rene Schick 6 48.6073 276 William de Thomas 4 48.6019 277 HansJürgen Bergelt 6 48.6000 278 Karsten Freihube 2 48.5803 279 Arnaud Jacques 6 48.5774 280 Michael Kwok 10.3334 48.5355
move up list ↑move down list ↓
Notes:
- Score for Primes
To find the score for a person, program or project's primes, we give each prime n the score (log n)3 log log n; and then find the sum of the scores of their primes. For persons (and for projects), if three go together to find the prime, each gets one-third of the score. Finally we take the log of the resulting sum to narrow the range of the resulting scores. (Throughout this page log is the natural logarithm.)
How did we settle on (log n)3 log log n? For most of the primes on the list the primality testing algorithms take roughly O(log(n)) steps where the steps each take a set number of multiplications. FFT multiplications take about
O( log n . log log n . log log log n )
operations. However, for practical purposes the O(log log log n) is a constant for this range number (it is the precision of numbers used during the FFT, 64 bits suffices for numbers under about 2,000,000 digits).
Next, by the prime number theorem, the number of integers we must test before finding a prime the size of n is O(log n) (only the constant is effected by prescreening using trial division). So to get a rough estimate of the amount of time to find a prime the size of n, we just multiply these together and we get
O( (log n)3 log log n ).
Finally, for convenience when we add these scores, we take the log of the result. This is because log n is roughly 2.3 times the number of digits in the prime n, so (log n)3 is quite large for many of the primes on the list. (The number of decimal digits in n is floor((log n)/(log 10)+1)).