5111111191
This number is a prime.
The number of consecutive composite numbers in the gap
following the prime number 5111111191 is equal to the
product of its digits. The sequence begins 11, 13, 151,
11113, 119131, 1111151, 11173111, 111111313, 111111571,
1311111313, 1311913111, 3111111511, 5111111191, ... . Can
you find a larger term?
Copy/paste the following program to the left screen under
"BASIC Program" at Quite BASIC and click
on the triangular arrow above "Line:" at upper left to RUN:
05 REM "Length of Prime Gap" by Chuck Gaydos 10 INPUT "Enter an integer less than 10^12";N 20 IF INT(N)<>N THEN 10 30 GOSUB 220 40 IF F=0 THEN 70 50 PRINT N;" is a prime number!" 60 END 70 LET A=N 80 LET C=1 90 LET N=N+1 100 GOSUB 220 110 IF F=1 THEN 140 120 LET C=C+1 130 GOTO 90 140 LET N=A 150 LET N=N-1 160 GOSUB 220 170 IF F=1 THEN 200 180 LET C=C+1 190 GOTO 150 200 PRINT A;" is in a prime gap of length ";C;"." 210 END 220 LET F=0 230 IF N<2 THEN RETURN 240 LET F=1 250 IF N<4 THEN RETURN 260 LET F=0 270 IF N/2=INT(N/2) THEN RETURN 280 LET M=INT(SQR(N)) 290 FOR O=3 TO M STEP 2 300 IF N/O<>INT(N/O) THEN 320 310 RETURN 320 NEXT O 330 LET F=1 340 RETURN
Printed from the PrimePages <t5k.org> © G. L. Honaker and Chris K. Caldwell