33333...33333 (289-digits)
This number is a prime.
333333333
3333333331 1111111111 1111331333 3333333333 1331311111 1111113133 1313333333
3313133131 3111111131 3133131313 3333131313 3131313111 3131313313 1313131313
1313313131 3111313131 3313131333 3313131331 3131111111 3131331313 3333333313
1331311111 1111113133 1333333333 3333133111 1111111111 1133333333 3333333333
Single Curio View: (Seek other curios for this number)
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 1 3 1 1 1 1 1 1 1 1 1 1 1 3 1 3 3 1 3 1 3 3 3 3 3 3 3 3 3 1 3 1 3 3 1 3 1 3 1 1 1 1 1 1 1 3 1 3 1 3 3 1 3 1 3 1 3 3 3 3 3 1 3 1 3 1 3 3 1 3 1 3 1 3 1 1 1 3 1 3 1 3 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 3 1 3 1 3 1 3 1 1 1 3 1 3 1 3 1 3 3 1 3 1 3 1 3 3 3 3 3 1 3 1 3 1 3 3 1 3 1 3 1 1 1 1 1 1 1 3 1 3 1 3 3 1 3 1 3 3 3 3 3 3 3 3 3 1 3 1 3 3 1 3 1 1 1 1 1 1 1 1 1 1 1 3 1 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
A square-congruent prime of order 17 that contains only two digits, and for which adjacent bands contain different digits. Is this the largest possible? [Hartley]
Submitted: 2003-02-04 07:08:50; Last Modified: 2008-01-30 17:28:00.
Printed from the PrimePages <t5k.org> © G. L. Honaker and Chris K. Caldwell