Mersenne

The Prime Pages keeps a list of the 5000 largest known primes, plus a few each of certain selected archivable forms and classes. These forms are defined in this collection's home page.

This page is about one of those forms.

(up) Definitions and Notes

Mersenne primes are primes of the form 2p-1. The first few are 3, 7, 31, 127, 8191, 131071 and 524287 (with exponents p=2, 3, 5, 7, 13, 17, and 19). The Mersennes are also prime for p=31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377 and 6972593. See our page on Mersenne numbers for more information, history and theorems. Luke's web page on Marin Mersenne is also and excellent starting place.

(up) Record Primes of this Type

rankprime digitswhowhencomment
12136279841 - 1 41024320 MP1 Oct 2024 Mersenne 52??
2282589933 - 1 24862048 G16 Dec 2018 Mersenne 51??
3277232917 - 1 23249425 G15 Jan 2018 Mersenne 50??
4274207281 - 1 22338618 G14 Jan 2016 Mersenne 49??
5257885161 - 1 17425170 G13 Feb 2013 Mersenne 48
6243112609 - 1 12978189 G10 Aug 2008 Mersenne 47
7242643801 - 1 12837064 G12 Jun 2009 Mersenne 46
8237156667 - 1 11185272 G11 Sep 2008 Mersenne 45
9232582657 - 1 9808358 G9 Sep 2006 Mersenne 44
10230402457 - 1 9152052 G9 Dec 2005 Mersenne 43
11225964951 - 1 7816230 G8 Feb 2005 Mersenne 42
12224036583 - 1 7235733 G7 May 2004 Mersenne 41
13220996011 - 1 6320430 G6 Nov 2003 Mersenne 40
14213466917 - 1 4053946 G5 Dec 2001 Mersenne 39
1526972593 - 1 2098960 G4 Jun 1999 Mersenne 38
1623021377 - 1 909526 G3 Jan 1998 Mersenne 37
1722976221 - 1 895932 G2 Aug 1997 Mersenne 36
1821398269 - 1 420921 G1 Nov 1996 Mersenne 35
1921257787 - 1 378632 SG Sep 1996 Mersenne 34
202859433 - 1 258716 SG Jan 1994 Mersenne 33

(up) References

BSW89
P. T. Bateman, J. L. Selfridge and Wagstaff, Jr., S. S., "The new Mersenne conjecture," Amer. Math. Monthly, 96 (1989) 125-128.  MR 90c:11009
CW91
W. N. Colquitt and Welsh, Jr., L., "A new Mersenne prime," Math. Comp., 56 (1991) 867--870.  MR 91h:11006 [The discovery of the 29th Mersenne prime.]
Gillies64
D. B. Gillies, "Three new Mersenne primes and a statistical theory," Math. Comp., 18 (1964) 93--95.  Corrigendum in Math. Comp. 31 (1977), 1051.  MR 28:2990 [The primes are 211213-1, 29941-1 and 29689-1.]
NN80
C. Noll and L. Nickel, "The 25th and 26th Mersenne primes," Math. Comp., 35 (1980) 1387-1390.  MR 81k:10010
Peterson92
I. Peterson, "Striking paydirt in prime-number terrain," Science News, 141:14 (1992) 213. [Discusses the discovery of the Mersenne prime 2756839 -1]
Robinson54
R. M. Robinson, "Mersenne and Fermat numbers," Proc. Amer. Math. Soc., 5 (1954) 842-846. [Announces the discovery of the 13th through 17th Mersenne primes--the first Mersenne primes found by electronic computer.]
Slowinski79
D. Slowinski, "Searching for the 27th Mersenne prime," J. Recreational Math., 11 (1978-9) 258--261.
Tuckerman71
B. Tuckerman, "The 24th Mersenne prime," Proc. Nat. Acad. Sci. U. S. A., 68 (1971) 2319-2320.  MR 45:166
Printed from the PrimePages <t5k.org> © Reginald McLean.