Home
Search Site
Largest
Finding
How Many?
Mersenne
Glossary
Prime Curios!
e-mail list
FAQ
Prime Lists
Titans
Submit primes
|
This is the Prime Pages'
interface to our BibTeX database. Rather than being an exhaustive database,
it just lists the references we cite on these pages. Please let me know of any errors you notice.References: [ Home | Author index | Key index | Search ] All items with keys beginning with the letter(s): xyz
- Xie1989
- Xie, Sheng Gang, "The prime 4-tuplet problem," Sichuan Daxue Xuebao, 26:Special Issue (1989) 168--171. MR 91f:11066
- Yan1995
- Yan, S. Y., "Primality testing of large numbers in Maple," Comput. Math. Appl., 29:12 (1995) 1--8. MR1329593 (Abstract available)
- Yates1980
- S. Yates, "Periods of unique primes," Math. Mag., 53:5 (1980) 314.
- Yates1987
- Yates, Samuel, Sophie Germain primes. In "The mathematical heritage of C. F. Gauss," World Sci. Publ., River Edge, NJ, 1991. pp. 882--886, MR 1146271
- Yates1991
- S. Yates, "Welcome back, Dr. Matrix," J. Recreational Math., 23:1 (1991) 11--12.
- Yates82
- S. Yates, Repunits and repetends, Star Publishing Co., Inc., 1982. Boynton Beach, Florida, pp. vi+215, MR 83k:10014
- Yates84
- S. Yates, "Titanic primes," J. Recreational Math., 16:4 (1983-84) 250-262. [Here Yates defines titanic primes to be those with at least 1,000 digits.]
- Yates85
- S. Yates, "Sinkers of the titanics," J. Recreational Math., 17:4 (1984-85) 268-274.
- Yates91
- S. Yates, Sophie Germain primes. In "The Mathematical Heritage of C. F. Gauss," G. M. Rassias editor, World Scientific, 1991. pp. 882--886, MR 93a:11007
- Yates92a
- S. Yates, "Prime party--an anthropomorphic anecdote," J. Recreational Math., 24:2 (1992) 81--85.
- Yates92b
- S. Yates, "Collecting gigantic and titanic primes," J. Recreational Math., 24:3 (1992) 193--201. (Annotation available)
- YB88
- J. Young and D. A. Buell, "The twentieth Fermat number is composite," Math. Comp., 50 (1988) 261--263. MR 89b:11012
- Young98
- J. Young, "Large primes and Fermat factors," Math. Comp., 67:244 (1998) 1735--1738. MR 99a:11010
Abstract:
A systematic search for large primes has yielded the largest Fermat factors known.
- YP89
- J. Young and A. Potler, "First occurrence prime gaps," Math. Comp., 53:185 (1989) 221--224. MR 89f:11019 [Lists gaps between primes up to the 777 composites following 42842283925351.]
- Zhang1994
- Zhang, Gui Wen, "On twins, triplets and n-tuplets of prime numbers," Gongcheng Shuxue Xuebao, 11:3 (1994) 41--47. MR 97e:11015
- Zhang2000
- Z. Zhang, "Finding strong pseudoprimes to several bases," Math. Comp., 70:234 (2001) 863--872. MR 2001g:11009 (Abstract available)
- Zhang2001b
- Z. Zhang, "Using Lucas sequences to factor large integers near group orders," Fibonacci Quart., 39:3 (2001) 228--237. MR 2002c:11173
- Zhang2001c
- Z. Zhang, "Finding strong pseudoprimes to several bases," Math. Comp., 70:234 (2001) 863--872. MR 2001g:11009
- Zhang2002a
- Z. Zhang, "A one-parameter quadratic-base version of the Baillie-PSW probable prime test," Math. Comp., 71:240 (2002) 1699--1734 (electronic). MR 1 933 051
- Zhang2005a
- Z. Zhang, "Finding C3-strong pseudoprimes," Math. Comp., 74:250 (2005) 1009--1024 (electronic). MR 2114662
- Zhang2007
- Zhang, Zhenxiang, "Two kinds of strong pseudoprimes up to 1036," Math. Comp., 76:260 (2007) 2095--2107 (electronic). MR2336285
- ZT2003
- Z. Zhang and M. Tang, "Finding strong pseudoprimes to several bases. II," Math. Comp., 72:244 (2003) 2085--2097 (electronic). http://www.ams.org/journal-getitem?pii=S0025-5718-03-01545-X. MR 2004c:11008 (Abstract available)
|