Home
Search Site
Largest
Finding
How Many?
Mersenne
Glossary
Prime Curios!
e-mail list
FAQ
Prime Lists
Titans
Submit primes
|
This is the Prime Pages'
interface to our BibTeX database. Rather than being an exhaustive database,
it just lists the references we cite on these pages. Please let me know of any errors you notice.References: [ Home | Author index | Key index | Search ] All items with keys beginning with the letter(s): k
- Kahan93
- S. Kahan, "2--4--6--8 ldots prime gaps that appreciate," J. Recreational Math., 25 (1993) 44-46.
- Kanigel1992
- R. Kanigel, The man who knew infinity, Pocket Books, 1992. New York, NY, ISBN 0671750615. MR 92e:01063
- Karst1961
- E. Karst, "New factors of Mersenne numbers," Math. Comp., 15 (1961) 51. MR0116481
- Karst1962
- E. Karst, "Search limits on divisors of Mersenne Numbers," Nordisk Tidskr. Informations-Behandling, 2 (1962) 224--227. MR0166144
- Karst73
- E. Karst, Prime factors of Cullen numbers n· 2n± 1. In "Number Theory Tables," A. Brousseau editor, Fibonacci Assoc., San Jose, CA, 1973. pp. 153--163,
- Keller83
- W. Keller, "Factors of Fermat numbers and large primes of the form k· 2n +1," Math. Comp., 41 (1983) 661-673. MR 85b:11117
- Keller88
- W. Keller, "The least prime of the form k· 2n + 1 for certain values of k," Abstracts Amer. Math. Soc., 9 (1988) 417--418.
- Keller91
- W. Keller, "Woher kommen die größten derzeit bekannten Primzahlen?," Mitt. Math. Ges. Hamburg, 12:2 (1991) 211-229. MR 92j:11006
- Keller92
- W. Keller, "Factors of Fermat numbers and large primes of the form k· 2n + 1 ii," Hamburg, (September 1992) Manuscript.
- Keller95
- W. Keller, "New Cullen primes," Math. Comp., 64 (1995) 1733-1741. Supplement S39-S46. MR 95m:11015
- Keller98
- W. Keller, "Prime solutions p of ap-1≡ (mod p2) for prime bases a," Abstracts Amer. Math. Soc., 19 (1998) 394.
- KLS2001
- M. Krízek, F. Luca and L. Somer, 17 lectures on Fermat numbers: from number theory to geometry, CMS Books in Mathematics Vol, 9, Springer-Verlag, New York, NY, 2001. pp. xvii + 257, ISBN 0-387-95332-9. MR 2002i:11001
- Knuth75
- D. E. Knuth, The art of computer programming. Volume 1: fundamental algorithms, Addison-Wesley, 1975. Reading, Mass., pp. xxii+634, 2nd edition, 2nd printing. MR 51:14624
- Knuth81
- D. E. Knuth, Seminumerical algorithms, 2nd edition, The Art of Computer Programming Vol, 2, Addison-Wesley, Reading MA, 1981. MR 83i:68003 [This book is an excellent reference for anyone interested in the basic aspects of programming the algorithms mentioned in these pages. New edition: [Knuth97]]
- Knuth97
- D. E. Knuth, Seminumerical algorithms, 3rd edition, The Art of Computer Programming Vol, 2, Addison-Wesley, 1997. Reading MA, [This book is an excellent reference for anyone interested in the basic aspects of programming the algorithms mentioned in these pages.]
- Koblitz87
- N. Koblitz, A course in number theory and cryptology, Springer-Verlag, 1987. New York, NY,
- Kolata94
- G. Kolata, "The assault on 114,381,625,757,888,867,669,235,779,976,146,612,010,218, 296,721,242,362,562,561,842,935,706,935,245,733,897,830,597,123,563,958,705,058, 989,075,147,599,290,026,879,543,541," New York Times, March 22 1994, p.~B5.
- Kolata94a
- G. Kolata, "100 quadrillion calculations and, Eureka! problem solved," New York Times, April 27 1994, p.~A11.
- Kolberg1959
- O. Kolberg, "Note on the parity of the partition function," Math. Scand., 7 (1959) 377--378. MR0117213
- Konyagin1999
- S. V. Konyagin, "Estimates of the least prime factor of a binomial coefficient," Mathematika, 46:1 (1999) 41--55. MR1750402
- KP89
- S. H. Kim and C. Pomerance, "The probability that a random probable prime is composite," Math. Comp., 53 (1989) 721-741. MR 90e:11190
- KP96
- S. Konyagin and C. Pomerance, On primes recognizable in deterministic polynomial time. In "The Mathematics of Paul Erd{\"o}s," Algorithms Combin. Vol, 13, Springer-Verlag, 1996. Berlin, pp. 176--198, MR 98a:11184
- KR98
- W. Keller and J. Richstein, "Prime solutions p of ap-1≡ 1 (mod p2) for prime bases a, II," Abstracts Amer. Math. Soc., (1998) submitted.
- KR98a
- R. Kumanduri and C. Romero, Number theory with computer applications, Prentice Hall, Upper Saddle River, New Jersey, 1998.
- Kra2005
- B. Kra, "The Green-Tao theorem on arithmetic progressions in the primes: an ergodic point of view," Bull. Amer. Math. Soc., 43:1 (2006) 3--23 (electronic). (http://dx.doi.org/10.1090/S0273-0979-05-01086-4) MR 2188173 (Abstract available)
- Kraitchik1924
- M. Kraitchik, Recherches sur la th'eorie des nombres, W. W. Norton \& Co., Vol, 1, Gauthier-Vilars, 1924.
- Kraitchik52
- M. Kraitchik, Introduction à la théorie des nombres, Gauthier-Villars, 1952. Paris, pp. 2, 8.
- Kravitz1961
- S. Kravitz, "Divisors of Mersenne numbers 10,000<p<15,000," Math. Comp., 15 (1961) 292--293. MR0123508
- Krizek2008
- M. Křížek and L. Somer, "Euclidean primes have the minimum number of primitive roots," JP J. Algebra Number Theory Appl., 12:1 (2008) 121--127. MR2494078
- KS2002
- N. Kayal and N. Saxena, "Towards adeterministic polynomial-time test," (2002) Available from http://www.cse.iitk.ac.in/research/btp2002/primality.html.
|