Filip Saidak's Proof
By Chris Caldwell
Euclid may have been the first to give a proofthat there are infintely many primes. Below we give another proof by Filip Saidak [Saidak2005], similar to Goldbach's argument, but in a way even simpler.
- Theorem.
- There are infinitely many primes.
- Proof.
Let n > 1 be a positive integer. Since n and n+1 are consecutive integers, they must be coprime, and hence the number
N2 = n(n + 1)
must have at least two different prime factors. Similarly, since the integers n(n+1) and n(n+1)+1 are consecutive, and therefore coprime, the number
N3 = n(n + 1)[n(n + 1) + 1]
must have at least 3 different prime factors. This can be continued indefinitely.∎
Printed from the PrimePages <t5k.org> © Reginald McLean.