Primes just less than a power of two

8 to 100 bits (page 2 of 4)

Here is a frequently asked question at the Prime Pages:

I am working on an algorithm and need a few of the largest primes with 64 bits.  Where can I find them?
To which we answer "here!"  Below, for each consecutive value of n we give the ten least positive integers k such that 2n-k is a prime.  In each case these are proven primes (proven using UBASIC's  APRT-CL). Note that 2n-k will be an n bit number (for these k's).

Pages: 8-100 bits, 101-200 bits, 201-300 bits, 301-400 bits
n ten least k's for which 2n-k is prime.
101  69, 99, 213, 259, 363, 483, 493, 573, 619, 703 
102  33, 63, 417, 447, 473, 483, 671, 681, 707, 801 
103  97, 127, 237, 339, 441, 571, 619, 631, 697, 727 
104  17, 29, 309, 369, 395, 587, 639, 657, 717, 857 
105  13, 139, 151, 163, 231, 279, 313, 385, 469, 541 
106  117, 407, 431, 593, 623, 717, 791, 813, 941, 965 
107  1, 171, 321, 369, 441, 489, 721, 745, 919, 1077 
108  59, 137, 227, 233, 269, 383, 467, 483, 545, 633 
109  31, 91, 165, 399, 493, 735, 811, 943, 945, 1215 
110  21, 135, 143, 195, 215, 443, 467, 531, 533, 623 
111  37, 69, 175, 261, 429, 471, 487, 565, 765, 831 
112  75, 189, 269, 297, 327, 519, 537, 623, 699, 875 
113  133, 211, 463, 765, 831, 979, 1023, 1069, 1261, 1351 
114  11, 35, 53, 75, 153, 161, 195, 227, 237, 257 
115  67, 85, 97, 129, 277, 369, 379, 711, 865, 985 
116  3, 69, 83, 89, 117, 197, 303, 353, 359, 429 
117  279, 319, 373, 391, 451, 495, 541, 555, 685, 793 
118  5, 111, 273, 375, 447, 497, 563, 593, 735, 741 
119  69, 169, 231, 565, 745, 799, 801, 867, 871, 981 
120  119, 395, 515, 555, 615, 765, 873, 899, 1049, 1143 
121  73, 165, 225, 229, 433, 531, 565, 655, 685, 741 
122  3, 113, 167, 203, 341, 825, 843, 951, 1011, 1085 
123  67, 79, 135, 241, 471, 735, 847, 891, 1029, 1069 
124  59, 99, 155, 165, 327, 389, 503, 563, 615, 719 
125  9, 135, 385, 405, 415, 579, 633, 685, 853, 985 
126  137, 203, 237, 261, 335, 341, 465, 663, 671, 783 
127  1, 25, 39, 295, 309, 507, 511, 577, 697, 735 
128  159, 173, 233, 237, 275, 357, 675, 713, 797, 1193 
129  25, 315, 403, 613, 735, 741, 805, 1113, 1185, 1365 
130  5, 27, 113, 173, 315, 417, 425, 447, 455, 585 
131  69, 181, 271, 315, 385, 421, 427, 615, 625, 681 
132  347, 363, 405, 465, 527, 585, 725, 735, 915, 923 
133  99, 103, 183, 259, 453, 475, 631, 973, 1011, 1039 
134  45, 117, 185, 197, 345, 495, 603, 695, 957, 1115 
135  45, 55, 105, 205, 301, 409, 705, 795, 819, 915 
136  113, 243, 257, 297, 299, 335, 365, 369, 377, 423 
137  13, 33, 111, 231, 265, 303, 339, 421, 553, 555 
138  105, 203, 237, 261, 297, 423, 513, 765, 983, 1071 
139  187, 301, 397, 447, 517, 619, 837, 951, 997, 1245 
140  27, 57, 77, 129, 147, 357, 623, 759, 773, 843 
141  9, 103, 111, 165, 171, 193, 349, 523, 595, 625 
142  111, 351, 365, 375, 453, 585, 885, 887, 1215, 1383 
143  69, 127, 229, 351, 355, 381, 391, 465, 469, 471 
144  83, 167, 279, 369, 377, 387, 395, 413, 425, 473 
145  151, 295, 355, 453, 481, 501, 543, 783, 831, 973 
146  153, 335, 573, 695, 1013, 1037, 1301, 1371, 1643, 1701 
147  145, 325, 387, 427, 507, 615, 657, 915, 955, 1137 
148  167, 197, 207, 347, 375, 585, 669, 675, 935, 1029 
149  31, 33, 99, 199, 313, 381, 405, 433, 631, 679 
150  3, 5 185, 713, 803, 905, 1173, 1175, 1193, 1293 
151  195, 295, 309, 319, 445, 465, 517, 735, 775, 829 
152  17, 23, 209, 233, 303, 539, 623, 707, 989, 1199 
153  69, 145, 171, 399, 451, 553, 555, 639, 735, 885 
154  243, 371, 393, 437, 675, 773, 795, 897, 1023, 1077 
155  31, 49, 289, 381, 405, 441, 499, 511, 825, 867 
156  143, 167, 173, 195, 587, 597, 609, 767, 1017, 1343 
157  19, 133, 181, 213, 259, 333, 435, 451, 753, 861 
158  15, 155, 213, 255, 321, 527, 621, 665, 731, 755 
159  91, 241, 301, 441, 459, 475, 535, 651, 657, 777 
160  47, 57, 75, 189, 285, 383, 465, 543, 659, 843 
161  159, 399, 493, 685, 709, 765, 973, 1011, 1099, 1263 
162  101, 317, 447, 627, 767, 861, 1077, 1095, 1113, 1197 
163  55, 69, 577, 589, 621, 645, 759, 867, 915, 1111 
164  63, 155, 485, 735, 779, 957, 1037, 1085, 1175, 1253 
165  25, 61, 115, 271, 313, 361, 391, 501, 511, 699 
166  5, 237, 633, 705, 753, 935, 1133, 1341, 1343, 1665 
167  135, 471, 577, 591, 729, 771, 801, 1015, 1221, 1231 
168  257, 585, 609, 633, 909, 1143, 1253, 1385, 1467, 1649 
169  643, 675, 841, 973, 1011, 1131, 1201, 1203, 1251, 1275 
170  143, 153, 195, 255, 357, 525, 605, 761, 825, 897 
171  19, 187, 231, 649, 661, 669, 691, 831, 861, 1015 
172  95, 155, 227, 525, 537, 629, 825, 855, 879, 927 
173  55, 103, 303, 313, 343, 421, 441, 511, 531, 609 
174  3, 17, 143, 153, 161, 215, 275, 411, 431, 465 
175  229, 267, 727, 837, 847, 1039, 1069, 1089, 1107, 1299 
176  233, 327, 359, 455, 495, 533, 563, 657, 743, 825 
177  339, 609, 619, 819, 859, 873, 919, 1029, 1281, 1299 
178  41, 305, 405, 557, 563, 827, 951, 1277, 1295, 1331 
179  49, 159, 205, 381, 469, 471, 507, 639, 679, 687 
180  47, 107, 189, 447, 569, 887, 929, 1287, 1547, 1823 
181  165, 199, 271, 283, 399, 511, 675, 813, 825, 969 
182  161, 233, 267, 281, 413, 605, 681, 755, 995, 1211 
183  147, 319, 357, 609, 805, 945, 985, 1125, 1159, 1225 
184  33, 59, 287, 309, 323, 963, 1145, 1187, 1203, 1233 
185  303, 321, 339, 429, 651, 723, 789, 819, 915, 1029 
186  371, 485, 677, 723, 773, 923, 1371, 1445, 1497, 1577 
187  85, 105, 391, 477, 511, 589, 805, 861, 957, 1057 
188  125, 143, 167, 173, 363, 705, 765, 855, 873, 1017 
189  25, 301, 469, 583, 591, 711, 819, 921, 951, 973 
190  11, 33, 95, 273, 651, 717, 851, 1083, 1163, 1251 
191  19, 51, 69, 139, 201, 237, 325, 769, 771, 945 
192  237, 333, 399, 489, 527, 663, 915, 945, 1059, 1143 
193  31, 123, 423, 909, 1195, 1245, 1261, 1365, 1369, 1435 
194  33, 75, 317, 393, 411, 705, 801, 987, 1185, 1191 
195  135, 915, 975, 979, 1005, 1081, 1201, 1225, 1227, 1299 
196  15, 47, 215, 459, 507, 533, 585, 663, 699, 885 
197  75, 111, 169, 439, 775, 853, 1051, 1155, 1431, 1779 
198  17, 45, 417, 485, 615, 627, 801, 1263, 1265, 1295 
199  49, 189, 445, 459, 735, 909, 1021, 1065, 1707, 2047 
200  75, 117, 285, 383, 387, 635, 827, 1275, 1307, 1317 
Printed from the PrimePages <t5k.org> © Reginald McLean.