Primes just less than a power of two

8 to 100 bits (page 1 of 4)

Here is a frequently asked question at the Prime Pages:

I am working on an algorithm and need a few of the largest primes with 64 bits.  Where can I find them?
To which we answer "here!"  Below, for each consecutive value of n we give the ten least positive integers k such that 2n-k is a prime.  In each case these are proven primes (proven using UBASIC's  APRT-CL). Note that 2n-k will be an n bit number (for these k's).

Pages: 8-100 bits, 101-200 bits, 201-300 bits, 301-400 bits
n ten least k's for which 2n-k is prime.
5, 15, 17, 23, 27, 29, 33, 45, 57, 59 
3, 9 13, 21, 25, 33, 45, 49, 51, 55 
10  3, 5 11, 15, 27, 33, 41, 47, 53, 57 
11  9, 19, 21, 31, 37, 45, 49, 51, 55, 61 
12  3, 5 17, 23, 39, 45, 47, 69, 75, 77 
13  1, 13, 21, 25, 31, 45, 69, 75, 81, 91 
14  3, 15, 21, 23, 35, 45, 51, 65, 83, 111 
15  19, 49, 51, 55, 61, 75, 81, 115, 121, 135 
16  15, 17, 39, 57, 87, 89, 99, 113, 117, 123 
17  1, 9 13, 31, 49, 61, 63, 85, 91, 99 
18  5, 11, 17, 23, 33, 35, 41, 65, 75, 93 
19  1, 19, 27, 31, 45, 57, 67, 69, 85, 87 
20  3, 5 17, 27, 59, 69, 129, 143, 153, 185 
21  9, 19, 21, 55, 61, 69, 105, 111, 121, 129 
22  3, 17, 27, 33, 57, 87, 105, 113, 117, 123 
23  15, 21, 27, 37, 61, 69, 135, 147, 157, 159 
24  3, 17, 33, 63, 75, 77, 89, 95, 117, 167 
25  39, 49, 61, 85, 91, 115, 141, 159, 165, 183 
26  5, 27, 45, 87, 101, 107, 111, 117, 125, 135 
27  39, 79, 111, 115, 135, 187, 199, 219, 231, 235 
28  57, 89, 95, 119, 125, 143, 165, 183, 213, 273 
29  3, 33, 43, 63, 73, 75, 93, 99, 121, 133 
30  35, 41, 83, 101, 105, 107, 135, 153, 161, 173 
31  1, 19, 61, 69, 85, 99, 105, 151, 159, 171 
32  5, 17, 65, 99, 107, 135, 153, 185, 209, 267 
33  9, 25, 49, 79, 105, 285, 301, 303, 321, 355 
34  41, 77, 113, 131, 143, 165, 185, 207, 227, 281 
35  31, 49, 61, 69, 79, 121, 141, 247, 309, 325 
36  5, 17, 23, 65, 117, 137, 159, 173, 189, 233 
37  25, 31, 45, 69, 123, 141, 199, 201, 351, 375 
38  45, 87, 107, 131, 153, 185, 191, 227, 231, 257 
39  7, 19, 67, 91, 135, 165, 219, 231, 241, 301 
40  87, 167, 195, 203, 213, 285, 293, 299, 389, 437 
41  21, 31, 55, 63, 73, 75, 91, 111, 133, 139 
42  11, 17, 33, 53, 65, 143, 161, 165, 215, 227 
43  57, 67, 117, 175, 255, 267, 291, 309, 319, 369 
44  17, 117, 119, 129, 143, 149, 287, 327, 359, 377 
45  55, 69, 81, 93, 121, 133, 139, 159, 193, 229 
46  21, 57, 63, 77, 167, 197, 237, 287, 305, 311 
47  115, 127, 147, 279, 297, 339, 435, 541, 619, 649 
48  59, 65, 89, 93, 147, 165, 189, 233, 243, 257 
49  81, 111, 123, 139, 181, 201, 213, 265, 283, 339 
50  27, 35, 51, 71, 113, 117, 131, 161, 195, 233 
51  129, 139, 165, 231, 237, 247, 355, 391, 397, 439 
52  47, 143, 173, 183, 197, 209, 269, 285, 335, 395 
53  111, 145, 231, 265, 315, 339, 343, 369, 379, 421 
54  33, 53, 131, 165, 195, 245, 255, 257, 315, 327 
55  55, 67, 99, 127, 147, 169, 171, 199, 207, 267 
56  5, 27, 47, 57, 89, 93, 147, 177, 189, 195 
57  13, 25, 49, 61, 69, 111, 195, 273, 363, 423 
58  27, 57, 63, 137, 141, 147, 161, 203, 213, 251 
59  55, 99, 225, 427, 517, 607, 649, 687, 861, 871 
60  93, 107, 173, 179, 257, 279, 369, 395, 399, 453 
61  1, 31, 45, 229, 259, 283, 339, 391, 403, 465 
62  57, 87, 117, 143, 153, 167, 171, 195, 203, 273 
63  25, 165, 259, 301, 375, 387, 391, 409, 457, 471 
64  59, 83, 95, 179, 189, 257, 279, 323, 353, 363 
65  49, 79, 115, 141, 163, 229, 301, 345, 453, 493 
66  5, 45, 173, 203, 275, 297, 387, 401, 443, 495 
67  19, 31, 49, 57, 61, 75, 81, 165, 181, 237 
68  23, 83, 125, 147, 149, 167, 285, 315, 345, 357 
69  19, 91, 93, 103, 129, 153, 165, 201, 255, 385 
70  35, 71, 167, 215, 263, 267, 273, 447, 473, 585 
71  231, 325, 411, 435, 441, 465, 559, 577, 601, 721 
72  93, 107, 129, 167, 249, 269, 329, 347, 429, 473 
73  69, 181, 199, 273, 319, 433, 475, 501, 523, 645 
74  35, 45, 57, 135, 153, 237, 257, 275, 461, 465 
75  97, 207, 231, 271, 279, 289, 325, 381, 409, 427 
76  15, 63, 117, 123, 143, 189, 215, 267, 285, 347 
77  33, 43, 145, 163, 195, 261, 295, 379, 433, 451 
78  11, 95, 111, 123, 147, 153, 191, 263, 303, 507 
79  67, 199, 249, 277, 355, 367, 405, 447, 477, 511 
80  65, 93, 117, 143, 285, 317, 549, 645, 765, 933 
81  51, 63, 163, 205, 333, 349, 429, 433, 481, 553 
82  57, 113, 185, 315, 363, 365, 375, 453, 623, 635 
83  55, 97, 117, 121, 139, 285, 307, 405, 429, 561 
84  35, 69, 213, 215, 333, 399, 525, 563, 587, 597 
85  19, 61, 181, 295, 411, 433, 469, 519, 531, 823 
86  35, 41, 65, 71, 113, 255, 261, 293, 357, 461 
87  67, 129, 181, 195, 201, 217, 261, 277, 289, 339 
88  299, 455, 483, 563, 605, 719, 735, 743, 753, 797 
89  1, 21, 31, 49, 69, 99, 103, 265, 321, 441 
90  33, 41, 53, 75, 227, 263, 273, 291, 297, 317 
91  45, 81, 111, 201, 315, 339, 567, 619, 655, 771 
92  83, 149, 197, 317, 363, 419, 485, 497, 519, 537 
93  25, 51, 79, 105, 273, 405, 489, 553, 571, 579 
94  3, 11, 105, 173, 273, 297, 321, 395, 407, 431 
95  15, 37, 211, 339, 387, 415, 441, 447, 555, 561 
96  17, 87, 93, 147, 165, 189, 237, 243, 315, 347 
97  141, 165, 349, 399, 453, 595, 729, 741, 859, 885 
98  51, 65, 107, 117, 141, 227, 273, 363, 471, 525 
99  115, 145, 247, 319, 381, 427, 675, 717, 1207, 1231 
100  15, 99, 153, 183, 267, 285, 357, 479, 603, 833 
Printed from the PrimePages <t5k.org> © Reginald McLean.