Proth
The Prime Pages keeps a list of the 5000 largest known primes, plus a few each of certain selected archivable forms and classes. These forms are defined in this collection's home page.
This page though is not about an archivable form, but rather about a form which is tolerated on the current list, and the primes with this comment only appear on the list if the prime there for some other reason.
Definitions and Notes
[To be written soon, for now:] In 1878 Francois Proth (a self-taught farmer) published a short note stating four theorems related to primes, including the on now known as Proth's theorem [Proth1878]:Proth's Theorem : Let n = h.2k+1 with 2k > h. If there is an integer a such that a(n-1)/2 = -1 (mod n), then n is prime.The Proth primes are those that meet the criteria of Proth's theorem.
Though Proth did not publish a proof, he did state in a letter that he had one (and Williams believes him [Williams98]). The earliest proof I have seen is by Robinson in the 1950's; but I find it hard to believe that this is the first published proof since the proof is about two sentences long [Robinson57b]. Robinson [Robinson1958] listed the earlier tables: [Seelhoff1886, Cunningham1927, Kraitchik1924]; other early articles were [MW1977], [Shippee1978], and [Baillie1979].
Record Primes of this Type
rank prime digits who when comment 1 10223 · 231172165 + 1 9383761 SB12 Nov 2016 2 202705 · 221320516 + 1 6418121 L5181 Dec 2021 3 81 · 220498148 + 1 6170560 L4965 Jun 2023 Generalized Fermat 4 7 · 220267500 + 1 6101127 L4965 Jul 2022 Divides GF(20267499, 12) [GG] 5 168451 · 219375200 + 1 5832522 L4676 Sep 2017 6 7 · 218233956 + 1 5488969 L4965 Oct 2020 Divides Fermat F(18233954) 7 13 · 216828072 + 1 5065756 A2 Oct 2023 8 3 · 216408818 + 1 4939547 L5171 Oct 2020 Divides GF(16408814, 3), GF(16408817, 5) 9 11 · 215502315 + 1 4666663 L4965 Jan 2023 Divides GF(15502313, 10) [GG] 10 37 · 215474010 + 1 4658143 L4965 Nov 2022 11 215317227 + 27658614 + 1 4610945 L5123 Jul 2020 Gaussian Mersenne norm 41?, generalized unique 12 13 · 215294536 + 1 4604116 A2 Sep 2023 13 37 · 214166940 + 1 4264676 L4965 Jun 2022 14 99739 · 214019102 + 1 4220176 L5008 Dec 2019 15 404849 · 213764867 + 1 4143644 L4976 Mar 2021 Generalized Cullen 16 25 · 213719266 + 1 4129912 L4965 Sep 2022 Generalized Fermat 17 81 · 213708272 + 1 4126603 L4965 Oct 2022 Generalized Fermat 18 81 · 213470584 + 1 4055052 L4965 Oct 2022 Generalized Fermat 19 9 · 213334487 + 1 4014082 L4965 Mar 2020 Divides GF(13334485, 3) 20 19249 · 213018586 + 1 3918990 SB10 May 2007
Related Pages
- Finding Primes and Proving Primality's n-1 tests
References
- Baillie1979
- R. Baillie, "New primes of the form k · 2n + 1," Math. Comp., 33:148 (October 1979) 1333--1336. MR 80h:10009 (Abstract available)
- BCW81
- Baillie, R., Cormack, G. and Williams, H.C., "The problem of Sierpinski concerning k · 2n + 1," Math. Comp., 37:155 (1981) 229--231. MR 83a:10006a [Corrigenda: [BCW1982]]
- Chen2003
- Chen, Yong-Gao, "On integers of the forms kr-2n and kr2n+1," J. Number Theory, 98:2 (2003) 310--319. MR1955419
- Cunningham1927 (pp. 56-73)
- A. J. C. Cunningham, Quadratic and linear tables, F. Hodgson, 1927.
- HB1975
- J. C. Hallyburton, Jr. and J. Brillhart, "Two new factors of Fermat numbers," Math. Comp., 29 (1975) 109--112. Collection of articles dedicated to Derrick Henry Lehmer on the occasion of his seventieth birthday. MR 51:5460
- Kraitchik1924 (pp. 12-13)
- M. Kraitchik, Recherches sur la th'eorie des nombres, W. W. Norton \& Co., Vol, 1, Gauthier-Vilars, 1924.
- MW1977
- G. Matthew and H. C. Williams, "Some new primes of the form k· 2n+1," Math. Comp., 31 (1977) 797--798. MR 55:12605
- Proth1878
- F. Proth, "Théorèmes sur les nombres premiers," C. R. Acad. Sci. Paris, 85 (1877) 329-331.
- Robinson57b
- R. M. Robinson, "The converse of Fermat's theorem," Amer. Math. Monthly, 64 (1957) 703--710. MR 20:4520
- Robinson58
- R. M. Robinson, "A report on primes of the form k· 2n + 1 and on factors of Fermat numbers," Proc. Amer. Math. Soc., 9 (1958) 673--681. MR 20:3097
- Seelhoff1886
- P. Seelhoff, "Die Zahlen von der Form k· 2n+1," Zeitschrift fur Mathematik und Physik, 31 (1886) 380.
- Shippee1978
- D. E. Shippee, "Four new factors of Fermat numbers," Math. Comp., 32:143 (1978) 941. (Abstract available)
- Williams98 (pp. 121-140)
- H. C. Williams, Édouard Lucas and primality testing, Canadian Math. Soc. Series of Monographs and Adv. Texts Vol, 22, John Wiley \& Sons, New York, NY, 1998. pp. x+525, ISBN 0-471-14852-0. MR 2000b:11139 (Annotation available)