Primorial

The Prime Pages keeps a list of the 5000 largest known primes, plus a few each of certain selected archivable forms and classes. These forms are defined in this collection's home page.

This page is about one of those forms.

(up) Definitions and Notes

(Note that factorial and multifactorial primes now have their own pages.)

Let p# (p-primorial) be the product of the primes less than or equal to p so

Primorial primes come in two flavors: primorial plus one: p#+1, and primorial minus one: p#-1. p#+1 is prime for the primes p=2, 3, 5, 7, 11, 31, 379, 1019, 1021, 2657, 3229, 4547, 4787, 11549, 13649, 18523, 23801, 24029 and 42209 (18241 digits). (See [Borning72], [Templer80], [BCP82], and [Caldwell95].) p#-1 is prime for primes p=3, 5, 11, 13, 41, 89, 317, 337, 991, 1873, 2053, 2377, 4093, 4297, 4583, 6569, 13033 and 15877 (6845 digits). Both forms have been tested for all primes p < 100000 [CG00]. There is more information of primorial and factorial primes in [Dubner87] and [Dubner89a].

(up) Record Primes of this Type

rankprime digitswhowhencomment
15256037# + 1 2281955 p444 Aug 2024 Primorial
24778027# - 1 2073926 p442 Aug 2024 Primorial
34328927# + 1 1878843 p442 Jul 2024 Primorial
43267113# - 1 1418398 p301 Sep 2021 Primorial
51098133# - 1 476311 p346 Mar 2012 Primorial
6843301# - 1 365851 p302 Dec 2010 Primorial
7392113# + 1 169966 p16 Sep 2001 Primorial
8366439# + 1 158936 p16 Aug 2001 Primorial
9145823# + 1 63142 p21 May 2000 Primorial
1042209# + 1 18241 p8 May 1999 Primorial
1124029# + 1 10387 C Dec 1993 Primorial
1223801# + 1 10273 C Dec 1993 Primorial
1318523# + 1 8002 D Jan 1990 Primorial
1415877# - 1 6845 CD Dec 1992 Primorial
1513649# + 1 5862 D Jan 1988 Primorial
1613033# - 1 5610 CD Dec 1992 Primorial
1711549# + 1 4951 D Jan 1987 Primorial
186569# - 1 2811 D Dec 1992 Primorial
194787# + 1 2038 D Jan 1985 Primorial
204583# - 1 1953 D Dec 1992 Primorial

(up) References

BCP82
J. P. Buhler, R. E. Crandall and M. A. Penk, "Primes of the form n! ± 1 and 2 · 3 · 5 ... p ± 1," Math. Comp., 38:158 (1982) 639--643.  Corrigendum in Math. Comp. 40 (1983), 727.  MR 83c:10006
Borning72
A. Borning, "Some results for k! ± 1 and 2 · 3 · 5 ... p ± 1," Math. Comp., 26 (1972) 567--570.  MR 46:7133
Caldwell95
C. Caldwell, "On the primality of n! ± 1 and 2 · 3 · 5 ... p ± 1," Math. Comp., 64:2 (1995) 889--890.  MR 95g:11003
CD93
C. Caldwell and H. Dubner, "Primorial, factorial and multifactorial primes," Math. Spectrum, 26:1 (1993/4) 1--7.
CG2000
C. Caldwell and Y. Gallot, "On the primality of n! ± 1 and 2 × 3 × 5 × ... × p ± 1," Math. Comp., 71:237 (2002) 441--448.  MR 2002g:11011 (Abstract available) (Annotation available)
Dubner87
H. Dubner, "Factorial and primorial primes," J. Recreational Math., 19:3 (1987) 197--203.
Dubner89a
H. Dubner, "A new primorial prime," J. Recreational Math., 21:4 (1989) 276.
Krizek2008
M. Křížek and L. Somer, "Euclidean primes have the minimum number of primitive roots," JP J. Algebra Number Theory Appl., 12:1 (2008) 121--127.  MR2494078
Templer80
M. Templer, "On the primality of k! + 1 and 2 * 3 * 5 * ... * p + 1," Math. Comp., 34 (1980) 303-304.  MR 80j:10010
Printed from the PrimePages <t5k.org> © Reginald McLean.