Lehmer number
The Prime Pages keeps a list of the 5000 largest known primes, plus a few each of certain selected archivable forms and classes. These forms are defined in this collection's home page.
This page is about one of those forms.
Definitions and Notes
Lucas generalized the sequence of Fibonacci numbers as follows: let a and b be the zeros of the polynomial x2-Px+Q (where P, Q and D = P2-4Q are non-zero integers), then setUn(P,Q) = (an - bn)/(a - b), and Vn(P,Q) = an + bn.Lehmer noted that we can loosen the restriction that P be an integer and still get a sequence of integers by replacing P with the squareroot of R and slightly modifying these definitions. To make sure the sequences are not zero infinitely often we require that a/b not be a root of unity:
These share many properties with the generalized Lucas numbers.
For integers P, the two numbers Uk+1(P,1) ± Uk(P,1) are Lehmer numbers whose product is equal to U2k+1(P,1). This follows from the fact that when Q=1 we may write (P ± sqrt(P2-4Q))/2 as the square of (sqrt(P+2) ± sqrt(P-2))/2, and hence obtain Lehmer's sqrt(R) as sqrt(P+2).
Note that the Lehmer numbers Uk+1(P,1) ± Uk(P,1) cannot be prime if 2k+1 is composite.
Record Primes of this Type
rank prime digits who when comment 1 U(15694, 1, 14700) + U(15694, 1, 14699) 61674 x45 Aug 2019 Lehmer number 2 U(809, 1, 17325) - U(809, 1, 17324) 50378 x45 Jul 2019 Lehmer number 3 U(52245, 1, 9241) + U(52245, 1, 9240) 43595 x45 Jul 2019 Lehmer number 4 U(35896, 1, 7260) + U(35896, 1, 7259) 33066 x45 Jul 2019 Lehmer number 5 U(23396, 1, 6615) + U(23396, 1, 6614) 28898 x45 Jul 2019 Lehmer number 6 U(16531, 1, 6721) - U(16531, 1, 6720) 28347 x36 May 2007 Lehmer number 7 U(5092, 1, 7561) + U(5092, 1, 7560) 28025 x25 Oct 2014 Lehmer number 8 U(5239, 1, 7350) - U(5239, 1, 7349) 27333 CH10 Jun 2017 Lehmer number 9 U(1766, 1, 7561) - U(1766, 1, 7560) 24548 x25 Nov 2013 Lehmer number 10 U(1383, 1, 7561) + U(1383, 1, 7560) 23745 x25 Nov 2013 Lehmer number 11 U(1118, 1, 7561) - U(1118, 1, 7560) 23047 x25 Oct 2013 Lehmer number 12 U(43100, 1, 4620) + U(43100, 1, 4619) 21407 x25 Jun 2016 Lehmer number 13 U(15631, 1, 5040) - U(15631, 1, 5039) 21134 x25 Apr 2003 Lehmer number 14 U(35759, 1, 4620) + U(35759, 1, 4619) 21033 x25 May 2016 Lehmer number 15 U(31321, 1, 4620) - U(31321, 1, 4619) 20767 x25 Jun 2016 Lehmer number 16 U(22098, 1, 4620) + U(22098, 1, 4619) 20067 x25 Jun 2016 Lehmer number 17 U(21412, 1, 4620) - U(21412, 1, 4619) 20004 x25 Jun 2016 Lehmer number 18 U(19361, 1, 4620) + U(19361, 1, 4619) 19802 x25 May 2016 Lehmer number 19 U(9657, 1, 4321) - U(9657, 1, 4320) 17215 x23 Dec 2005 Lehmer number 20 U(15823, 1, 3960) - U(15823, 1, 3959) 16625 x25 Nov 2002 Lehmer number, cyclotomy
References
- Gyory1982
- Györy, K., "On some arithmetical properties of Lucas and Lehmer numbers," Acta Arith., 40:4 (1981/82) 369--373. MR667047
- Gyory2003
- Györy, K., "On some arithmetical properties of Lucas and Lehmer numbers. II," Acta Acad. Paedagog. Agriensis Sect. Mat. (N.S.), 30 (2003) 67--73. Dedicated to the memory of Professor Dr. P\'eter Kiss. MR2054716
- LP2003
- Luca, F. and Porubský, S., "The multiplicative group generated by the Lehmer numbers," Fibonacci Quart., 41:2 (2003) 122--132. MR1990520
- McDaniel1993
- McDaniel, W., "Square Lehmer numbers," Colloq. Math., 66:1 (1993) 85--93. MR1242648
- Ribenboim95
- P. Ribenboim, The new book of prime number records, 3rd edition, Springer-Verlag, New York, NY, 1995. pp. xxiv+541, ISBN 0-387-94457-5. MR 96k:11112 [An excellent resource for those with some college mathematics. Basically a Guinness Book of World Records for primes with much of the relevant mathematics. The extensive bibliography is seventy-five pages.]
- RW1980
- Rotkiewicz, A. and Wasén, R., "Lehmer's numbers," Acta Arith., 36:3 (1980) 203--217. MR581371
- Schinzel1962
- Schinzel, A., "On primitive prime factors of Lehmer numbers. I," Acta. Arith., 8 (1962/1963) 213--223. MR 27:1408
- Schinzel1962b
- Schinzel, A., "The intrinsic divisors of Lehmer numbers in the case of negative discriminant," Ark. Mat., 4 (1962) 413--416 (1962). MR0139567
- Schinzel1963
- Schinzel, A., "On primitive prime factors of Lehmer numbers. II," Acta. Arith., 8 (1962/1963) 251--257. MR 27:1409
- Schinzel1968
- Schinzel, A., "On primitive prime factors of Lehmer numbers. III," Acta Arith., 15 (1968) 49--70. MR0232744
- SS1981
- Shorey, T. N. and Stewart, C. L., "On divisors of Fermat, Fibonacci, Lucas and Lehmer numbers. II," J. London Math. Soc. (2), 23:1 (1981) 17--23. MR 82m:10025
- Stewart1976
- Stewart, C. L., Primitive divisors of Lucas and Lehmer numbers. In "Transcendence theory: advances and applications (Proc. Conf., Univ. Cambridge, Cambridge, 1976)," Academic Press, 1977. London, pp. 79--92, MR0476628
- Stewart1977
- C. L. Stewart, "On divisors of Fermat, Fibonacci, Lucas and Lehmer numbers," Proc. Lond. Math. Soc., 35:3 (1977) 425--447. MR 58:10694
- Stewart1983
- Stewart, C. L., "On divisors of Fermat, Fibonacci, Lucas and Lehmer numbers. III," J. London Math. Soc. (2), 28:2 (1983) 211--217. MR 85g:11021
- Ward1955
- Ward, M., "The intrinsic divisors of Lehmer numbers," Ann. of Math. (2), 62 (1955) 230--236. MR0071446
Printed from the PrimePages <t5k.org> © Reginald McLean.