Generalized Fermat

The Prime Pages keeps a list of the 5000 largest known primes, plus a few each of certain selected archivable forms and classes. These forms are defined in this collection's home page.

This page is about one of those forms.

(up) Definitions and Notes

Any generalized Fermat number Fb,n = b^2^n+1 (with b an integer greater than one and n greater than zero) which is prime is called a generalized Fermat prime (because they are Fermat primes in the special case b=2).

Why is the exponent a power of two? Because if m is an odd divisor of n, then bn/m+1 divides bn+1, so for the latter to be prime, m must be one. Because the exponent is a power of two, it seems reasonable to conjecture that the number of Generalized Fermat primes is finite for every fixed b.

(up) Record Primes of this Type

rankprime digitswhowhencomment
14 · 511786358 + 1 8238312 A2 Oct 2024 Generalized Fermat
219637361048576 + 1 6598776 L4245 Sep 2022 Generalized Fermat
319517341048576 + 1 6595985 L5583 Aug 2022 Generalized Fermat
410590941048576 + 1 6317602 L4720 Nov 2018 Generalized Fermat
59194441048576 + 1 6253210 L4286 Sep 2017 Generalized Fermat
681 · 220498148 + 1 6170560 L4965 Jun 2023 Generalized Fermat
74 · 58431178 + 1 5893142 A2 Jan 2024 Generalized Fermat
84 · 311279466 + 1 5381674 A2 Sep 2024 Generalized Fermat
925 · 213719266 + 1 4129912 L4965 Sep 2022 Generalized Fermat
1081 · 213708272 + 1 4126603 L4965 Oct 2022 Generalized Fermat
1181 · 213470584 + 1 4055052 L4965 Oct 2022 Generalized Fermat
124 · 55380542 + 1 3760839 L4965 Feb 2023 Generalized Fermat
1311937916524288 + 1 3710349 L6080 Oct 2024 Generalized Fermat
1410913140524288 + 1 3689913 L6043 Jun 2024 Generalized Fermat
159332124524288 + 1 3654278 L5025 Jun 2024 Generalized Fermat
168630170524288 + 1 3636472 L5543 Apr 2024 Generalized Fermat
174 · 37578378 + 1 3615806 A2 Sep 2024 Generalized Fermat
186339004524288 + 1 3566218 L1372 Jun 2023 Generalized Fermat
195897794524288 + 1 3549792 x50 Dec 2022 Generalized Fermat
204896418524288 + 1 3507424 L4245 May 2022 Generalized Fermat

(up) References

BR98
A. Björn and H. Riesel, "Factors of generalized Fermat numbers," Math. Comp., 67 (1998) 441--446.  MR 98e:11008 (Abstract available)
DG2000
H. Dubner and Y. Gallot, "Distribution of generalized Fermat prime numbers," Math. Comp., 71 (2002) 825--832.  MR 2002j:11156 (Abstract available)
DK95
H. Dubner and W. Keller, "Factors of generalized Fermat numbers," Math. Comp., 64 (1995) 397--405.  MR 95c:11010
Dubner86
H. Dubner, "Generalized Fermat primes," J. Recreational Math., 18 (1985-86) 279--280.  MR 2002j:11156
Morimoto86
M. Morimoto, "On prime numbers of Fermat types," Sûgaku, 38:4 (1986) 350--354.  Japanese.  MR 88h:11007
Pi1998
Pi, Xin Ming, "Searching for generalized Fermat primes," J. Math. (Wuhan), 18:3 (1998) 276--280.  MR 1656292
Pi2002
Pi, Xin Ming, "Generalized Fermat primes for b < 2000, m< 10," J. Math. (Wuhan), 22:1 (2002) 91--93.  MR 1897106
RB94
H. Riesel and A. Börn, Generalized Fermat numbers.  In "Mathematics of Computation 1943-1993: A Half-Century of Computational Mathematics," W. Gautschi editor, Proc. Symp. Appl. Math. Vol, 48, Amer. Math. Soc., Providence, RI, 1994.  pp. 583-587, MR 95j:11006
Riesel69
H. Riesel, "Some factors of the numbers Gn = 62n + 1 and Hn = 102n + 1," Math. Comp., 23:106 (1969) 413--415.  MR 39:6813
Riesel69b
H. Riesel, "Common prime factors of the numbers An =a2n+1," BIT, 9 (1969) 264-269.  MR 41:3381
Printed from the PrimePages <t5k.org> © Reginald McLean.