Pierpont prime
Gauss' proved that you can subdivide a circle into n parts using a ruler (an unmarked straightedge) and a compass (which draws circles) if and only if n is a power of two times a product of distinct Fermat primes. Later Pierpont [Pierpont1895] showed that you can divide a circle into n parts using origami (paper folding) if and only if n is a product of a power of two times a power of three times a distinct product of primes of the form 2n3m+1. These primes are now called Pierpont primes.Simple heuristics suggest that there should be finitely many Fermat primes, but infinitely many Pierpont primes. In the following table we give a count of the numbers smaller Pierpont primes.
Circles can be divided into the same numbers of parts using a straight edge, compass and an "angle trisector."
N Pierpont primes
below N10 4 100 10 10,000 25 100,000,000 57 1016 125 1032 250 1064 505 10128 1020 10256 2075 10512 4227
See Also: FermatNumber
Related pages (outside of this work)
- A005109 Sloane Integer Sequence
- Pierpont Prime from Eric Weisstein's World of Mathematics
References:
- CS2005
- D. A. Cox and J. Shurman, "Geometry and number theory on clovers," Amer. Math. Monthly, 112:8 (2005) 682--704. MR2167769
- Gleason1988
- A. M. Gleason, "Angle trisection, the heptagon, and the triskaidecagon," Amer. Math. Monthly, 95:3 (1988) 185--194. MR935432
- Guy94
- R. K. Guy, Unsolved problems in number theory, Springer-Verlag, 1994. New York, NY, ISBN 0-387-94289-0. MR 96e:11002 [An excellent resource! Guy briefly describes many open questions, then provides numerous references. See his newer editions of this text.]
- Martin1998
- G. E. Martin, Geometric constructions, Undergraduate Texts in Mathematics Springer-Verlag, New York, 1998. pp. xii+203, ISBN 0-387-98276-0. MR1483895
- Pierpont1895
- J. Pierpont, "On an undemonstrated theorem of the Disquisitiones Aritmeticae," American Mathematical Society Bulletin,:2 (1895-1896) 77 - 83.
Printed from the PrimePages <t5k.org> © Reginald McLean.