THE LARGEST KNOWN PRIMES (Primes with 800,000 or more digits) (selected smaller primes which have comments are included) Originally Compiled by Samuel Yates -- Continued by Chris Caldwell and now maintained by Reginald McLean (Wed Sep 18 00:38:29 UTC 2024) So that I can maintain this database of the 5,000 largest known primes (plus selected smaller primes with 1,000 or more digits), please send any new primes (that are large enough) to: https://t5k.org/bios/submission.php This list in a searchable form (plus information such as how to find large primes and how to prove primality) is available at the interactive web site: https://t5k.org/primes/ See the last pages for information about the provers. The letters after the rank refer to when the prime was submitted. 'a' is this month, 'b' last month... ----- ------------------------------- -------- ----- ---- -------------- rank description digits who year comment ----- ------------------------------- -------- ----- ---- -------------- 1 2^82589933-1 24862048 G16 2018 Mersenne 51?? 2 2^77232917-1 23249425 G15 2018 Mersenne 50?? 3 2^74207281-1 22338618 G14 2016 Mersenne 49?? 4 2^57885161-1 17425170 G13 2013 Mersenne 48 5 2^43112609-1 12978189 G10 2008 Mersenne 47 6 2^42643801-1 12837064 G12 2009 Mersenne 46 7 516693^2097152-516693^1048576+1 11981518 L4561 2023 Generalized unique 8 465859^2097152-465859^1048576+1 11887192 L4561 2023 Generalized unique 9 2^37156667-1 11185272 G11 2008 Mersenne 45 10 2^32582657-1 9808358 G9 2006 Mersenne 44 11 10223*2^31172165+1 9383761 SB12 2016 12 2^30402457-1 9152052 G9 2005 Mersenne 43 13 2^25964951-1 7816230 G8 2005 Mersenne 42 14b 69*2^24612729-1 7409172 A2 2024 15 2^24036583-1 7235733 G7 2004 Mersenne 41 16b 107347*2^23427517-1 7052391 A2 2024 17 1963736^1048576+1 6598776 L4245 2022 Generalized Fermat 18 1951734^1048576+1 6595985 L5583 2022 Generalized Fermat 19 202705*2^21320516+1 6418121 L5181 2021 20 2^20996011-1 6320430 G6 2003 Mersenne 40 21 1059094^1048576+1 6317602 L4720 2018 Generalized Fermat 22 3*2^20928756-1 6300184 L5799 2023 23 919444^1048576+1 6253210 L4286 2017 Generalized Fermat 24 81*2^20498148+1 6170560 L4965 2023 Generalized Fermat 25 7*2^20267500+1 6101127 L4965 2022 Divides GF(20267499,12) [GG] 26 4*5^8431178+1 5893142 A2 2024 Generalized Fermat 27 168451*2^19375200+1 5832522 L4676 2017 28 69*2^19374980-1 5832452 L4965 2022 29 3*2^18924988-1 5696990 L5530 2022 30 69*2^18831865-1 5668959 L4965 2021 31d 2*3^11879700+1 5668058 A2 2024 32 97139*2^18397548-1 5538219 L4965 2023 33 7*2^18233956+1 5488969 L4965 2020 Divides Fermat F(18233954) 34 3*2^18196595-1 5477722 L5461 2022 35 3*2^17748034-1 5342692 L5404 2021 36 123447^1048576-123447^524288+1 5338805 L4561 2017 Generalized unique 37 3622*5^7558139-1 5282917 L4965 2022 38 7*6^6772401+1 5269954 L4965 2019 39 2*3^10852677+1 5178044 L4965 2023 Divides phi 40 8508301*2^17016603-1 5122515 L4784 2018 Woodall 41 8*10^5112847-1 5112848 A19 2024 Near-repdigit 42 13*2^16828072+1 5065756 A2 2023 43 3*2^16819291-1 5063112 L5230 2021 44 3*2^16408818+1 4939547 L5171 2020 Divides GF(16408814,3), GF(16408817,5) 45 2329989*2^16309923-1 4909783 A20 2024 Generalized Woodall 46 69*2^15866556-1 4776312 L4965 2021 47 2036*3^10009192+1 4775602 A2 2024 48 2525532*73^2525532+1 4705888 L5402 2021 Generalized Cullen 49 1419499*2^15614489-1 4700436 A20 2024 Generalized Woodall 50 11*2^15502315+1 4666663 L4965 2023 Divides GF(15502313,10) [GG] 51 (10^2332974+1)^2-2 4665949 p405 2024 52 37*2^15474010+1 4658143 L4965 2022 53 93839*2^15337656-1 4617100 L4965 2022 54 2^15317227+2^7658614+1 4610945 L5123 2020 Gaussian Mersenne norm 41?, generalized unique 55 13*2^15294536+1 4604116 A2 2023 56 6*5^6546983+1 4576146 L4965 2020 57 4788920*3^9577840-1 4569798 A20 2024 Generalized Woodall 58 69*2^14977631-1 4508719 L4965 2021 59 192971*2^14773498-1 4447272 L4965 2021 60a 4*3^9214845+1 4396600 A2 2024 61 9145334*3^9145334+1 4363441 A6 2023 Generalized Cullen 62 4*5^6181673-1 4320805 L4965 2022 63 396101*2^14259638-1 4292585 A20 2024 Generalized Woodall 64 6962*31^2863120-1 4269952 L5410 2020 65 37*2^14166940+1 4264676 L4965 2022 66 99739*2^14019102+1 4220176 L5008 2019 67 69*2^13832885-1 4164116 L4965 2022 68 404849*2^13764867+1 4143644 L4976 2021 Generalized Cullen 69 25*2^13719266+1 4129912 L4965 2022 Generalized Fermat 70 81*2^13708272+1 4126603 L4965 2022 Generalized Fermat 71 2740879*2^13704395-1 4125441 L4976 2019 Generalized Woodall 72 479216*3^8625889-1 4115601 L4976 2019 Generalized Woodall 73 143332^786432-143332^393216+1 4055114 L4506 2017 Generalized unique 74 81*2^13470584+1 4055052 L4965 2022 Generalized Fermat 75 2^13466917-1 4053946 G5 2001 Mersenne 39 76b 5778486*5^5778486+1 4038996 A6 2024 Generalized Cullen 77 9*2^13334487+1 4014082 L4965 2020 Divides GF(13334485,3) 78 206039*2^13104952-1 3944989 L4965 2021 79 2805222*5^5610444+1 3921539 L4972 2019 Generalized Cullen 80 19249*2^13018586+1 3918990 SB10 2007 81 2293*2^12918431-1 3888839 L4965 2021 82 81*2^12804541+1 3854553 L4965 2022 83 4*5^5380542+1 3760839 L4965 2023 Generalized Fermat 84 9*2^12406887+1 3734847 L4965 2020 Divides GF(12406885,3) 85 7*2^12286041-1 3698468 L4965 2023 86d 10913140^524288+1 3689913 L6043 2024 Generalized Fermat 87 69*2^12231580-1 3682075 L4965 2021 88 27*2^12184319+1 3667847 L4965 2021 89d 9332124^524288+1 3654278 L5025 2024 Generalized Fermat 90f 8630170^524288+1 3636472 L5543 2024 Generalized Fermat 91a 4*3^7578378+1 3615806 A2 2024 Generalized Fermat 92b 11*2^11993994-1 3610554 A2 2024 93 3761*2^11978874-1 3606004 L4965 2022 94e 95*2^11954552-1 3598681 A29 2024 95 3*2^11895718-1 3580969 L4159 2015 96 37*2^11855148+1 3568757 L4965 2022 97 6339004^524288+1 3566218 L1372 2023 Generalized Fermat 98 763795*6^4582771+1 3566095 A6 2023 Generalized Cullen 99 5897794^524288+1 3549792 x50 2022 Generalized Fermat 100 3*2^11731850-1 3531640 L4103 2015 101 69*2^11718455-1 3527609 L4965 2020 102 41*2^11676439+1 3514960 L4965 2022 103 4896418^524288+1 3507424 L4245 2022 Generalized Fermat 104 81*2^11616017+1 3496772 L4965 2022 105 69*2^11604348-1 3493259 L4965 2020 106 4450871*6^4450871+1 3463458 L5765 2023 Generalized Cullen 107 9*2^11500843+1 3462100 L4965 2020 Divides GF(11500840,12) 108 3*2^11484018-1 3457035 L3993 2014 109 193997*2^11452891+1 3447670 L4398 2018 110 3638450^524288+1 3439810 L4591 2020 Generalized Fermat 111 9221*2^11392194-1 3429397 L5267 2021 112 9*2^11366286+1 3421594 L4965 2020 Generalized Fermat 113 5*2^11355764-1 3418427 L4965 2021 114 732050*6^4392301+1 3417881 L5765 2023 Generalized Cullen 115 3214654^524288+1 3411613 L4309 2019 Generalized Fermat 116 146561*2^11280802-1 3395865 L5181 2020 117d 51208*5^4857576+1 3395305 A30 2024 118 2985036^524288+1 3394739 L4752 2019 Generalized Fermat 119 6929*2^11255424-1 3388225 L4965 2022 120 2877652^524288+1 3386397 L4250 2019 Generalized Fermat 121 2788032^524288+1 3379193 L4584 2019 Generalized Fermat 122 2733014^524288+1 3374655 L4929 2019 Generalized Fermat 123 9*2^11158963+1 3359184 L4965 2020 Divides GF(11158962,5) 124 9271*2^11134335-1 3351773 L4965 2021 125 136804*5^4777253-1 3339162 A23 2024 126 2312092^524288+1 3336572 L4720 2018 Generalized Fermat 127 2061748^524288+1 3310478 L4783 2018 Generalized Fermat 128 1880370^524288+1 3289511 L4201 2018 Generalized Fermat 129 27*2^10902757-1 3282059 L4965 2022 130 3*2^10829346+1 3259959 L3770 2014 Divides GF(10829343,3), GF(10829345,5) 131 11*2^10803449+1 3252164 L4965 2022 Divides GF(10803448,6) 132 11*2^10797109+1 3250255 L4965 2022 133 7*2^10612737-1 3194754 L4965 2022 134 37*2^10599476+1 3190762 L4965 2022 Divides GF(10599475,10) 135 5*2^10495620-1 3159498 L4965 2021 136 3^6608603-3^3304302+1 3153105 L5123 2023 Generalized unique 137 5*2^10349000-1 3115361 L4965 2021 138 844833^524288-844833^262144+1 3107335 L4506 2017 Generalized unique 139 52922*5^4399812-1 3075342 A1 2023 140 712012^524288-712012^262144+1 3068389 L4506 2017 Generalized unique 141 177742*5^4386703-1 3066180 L5807 2023 142a 4*3^6402015+1 3054539 A2 2024 143 874208*54^1748416-1 3028951 L4976 2019 Generalized Woodall 144 475856^524288+1 2976633 L3230 2012 Generalized Fermat 145 2*3^6236772+1 2975697 L4965 2022 146 15*2^9830108+1 2959159 A2 2023 147 9*2^9778263+1 2943552 L4965 2020 148b 198*558^1061348+1 2915138 A28 2024 149 1806676*41^1806676+1 2913785 L4668 2018 Generalized Cullen 150 356926^524288+1 2911151 L3209 2012 Generalized Fermat 151 341112^524288+1 2900832 L3184 2012 Generalized Fermat 152 213988*5^4138363-1 2892597 L5621 2022 153 43*2^9596983-1 2888982 L4965 2022 154 121*2^9584444+1 2885208 L5183 2020 Generalized Fermat 155b 15*2^9482269-1 2854449 A2 2024 156 11*2^9381365+1 2824074 L4965 2020 Divides GF(9381364,6) 157 15*2^9312889+1 2803461 L4965 2023 158 49*2^9187790+1 2765803 L4965 2022 Generalized Fermat 159b 6369619#+1 2765105 p445 2024 Primorial 160 27653*2^9167433+1 2759677 SB8 2005 161 90527*2^9162167+1 2758093 L1460 2010 162 6795*2^9144320-1 2752719 L4965 2021 163b 31*2^9088085-1 2735788 A2 2024 164 75*2^9079482+1 2733199 L4965 2023 165 1323365*116^1323365+1 2732038 L4718 2018 Generalized Cullen 166 57*2^9075622-1 2732037 L4965 2022 167b 10^2718281-5*10^1631138-5*10^1087142-1 2718281 p423 2024 Palindrome 168 63838*5^3887851-1 2717497 L5558 2022 169 13*2^8989858+1 2706219 L4965 2020 170 4159*2^8938471-1 2690752 L4965 2022 171 273809*2^8932416-1 2688931 L1056 2017 172 93*2^8898285+1 2678653 A2 2024 173 2*3^5570081+1 2657605 L4965 2020 Divides Phi(3^5570081,2) [g427] 174 25*2^8788628+1 2645643 L5161 2021 Generalized Fermat 175 2038*366^1028507-1 2636562 L2054 2016 176 64598*5^3769854-1 2635020 L5427 2022 177e 63*2^8741225+1 2631373 A2 2024 178 8*785^900325+1 2606325 L4786 2022 179 17*2^8636199+1 2599757 L5161 2021 Divides GF(8636198,10) 180 75898^524288+1 2558647 p334 2011 Generalized Fermat 181 25*2^8456828+1 2545761 L5237 2021 Divides GF(8456827,12), generalized Fermat 182 39*2^8413422+1 2532694 L5232 2021 183 31*2^8348000+1 2513000 L5229 2021 184 27*2^8342438-1 2511326 L3483 2021 185 3687*2^8261084-1 2486838 L4965 2021 186 101*2^8152967+1 2454290 A2 2023 Divides GF(8152966,12) 187 273662*5^3493296-1 2441715 L5444 2021 188 81*2^8109236+1 2441126 L4965 2022 Generalized Fermat 189 11*2^8103463+1 2439387 L4965 2020 Divides GF(8103462,12) 190 102818*5^3440382-1 2404729 L5427 2021 191 11*2^7971110-1 2399545 L2484 2019 192 27*2^7963247+1 2397178 L5161 2021 Divides Fermat F(7963245) 193 3177*2^7954621-1 2394584 L4965 2021 194 39*2^7946769+1 2392218 L5226 2021 Divides GF(7946767,12) 195 7*6^3072198+1 2390636 L4965 2019 196 3765*2^7904593-1 2379524 L4965 2021 197 29*2^7899985+1 2378134 L5161 2021 Divides GF(7899984,6) 198 5113*2^7895471-1 2376778 L4965 2022 199 861*2^7895451-1 2376771 L4965 2021 200 75*2^7886683+1 2374131 A2 2023 201f 99*2^7830910+1 2357341 A2 2024 202 28433*2^7830457+1 2357207 SB7 2004 203 2589*2^7803339-1 2349043 L4965 2022 204f 59*2^7792307+1 2345720 A2 2024 205f 101*2^7784453+1 2343356 A2 2024 206f 95*2^7778585+1 2341590 A2 2024 207 8401*2^7767655-1 2338302 L4965 2023 208 9693*2^7767343-1 2338208 A2 2023 209 5*2^7755002-1 2334489 L4965 2021 210 2945*2^7753232-1 2333959 L4965 2022 211a 2*836^798431+1 2333181 L4294 2024 212f 63*2^7743186+1 2330934 A2 2024 213 2545*2^7732265-1 2327648 L4965 2021 214 5539*2^7730709-1 2327180 L4965 2021 215 4817*2^7719584-1 2323831 L4965 2021 216b 183*558^842752+1 2314734 A28 2024 217 1341174*53^1341174+1 2312561 L4668 2017 Generalized Cullen 218 9467*2^7680034-1 2311925 L4965 2022 219 45*2^7661004+1 2306194 L5200 2020 220 15*2^7619838+1 2293801 L5192 2020 221 3597*2^7580693-1 2282020 L4965 2021 222b 5256037#+1 2281955 p444 2024 Primorial 223 3129*2^7545557-1 2271443 L4965 2023 224 7401*2^7523295-1 2264742 L4965 2021 225 45*2^7513661+1 2261839 L5179 2020 226 558640^393216-558640^196608+1 2259865 L4506 2017 Generalized unique 227 9*2^7479919-1 2251681 L3345 2023 228 1875*2^7474308-1 2249995 L4965 2022 229 69*2^7452023+1 2243285 L4965 2023 Divides GF(7452020,3) [GG] 230 1281979*2^7447178+1 2241831 A8 2023 231 4*5^3189669-1 2229484 L4965 2022 232 29*2^7374577+1 2219971 L5169 2020 Divides GF(7374576,3) 233a 21555*2^7364128-1 2216828 A11 2024 234 3197*2^7359542-1 2215447 L4965 2022 235 109838*5^3168862-1 2214945 L5129 2020 236 95*2^7354869+1 2214039 A2 2023 237 101*2^7345194-1 2211126 L1884 2019 238 85*2^7333444+1 2207589 A2 2023 239 15*2^7300254+1 2197597 L5167 2020 240 422429!+1 2193027 p425 2022 Factorial 241 1759*2^7284439-1 2192838 L4965 2021 242 1909683*14^1909683+1 2188748 L5765 2023 Generalized Cullen 243 737*2^7269322-1 2188287 L4665 2017 244 93*2^7241494+1 2179909 A2 2023 245 118568*5^3112069+1 2175248 L690 2020 246a 40*257^901632+1 2172875 A11 2024 247 580633*2^7208783-1 2170066 A11 2024 248 6039*2^7207973-1 2169820 L4965 2021 249 502573*2^7181987-1 2162000 L3964 2014 250 402539*2^7173024-1 2159301 L3961 2014 251 3343*2^7166019-1 2157191 L1884 2016 252 161041*2^7107964+1 2139716 L4034 2015 253 294*213^918952-1 2139672 L5811 2023 254 27*2^7046834+1 2121310 L3483 2018 255 1759*2^7046791-1 2121299 L4965 2021 256 327*2^7044001-1 2120459 L4965 2021 257 5*2^7037188-1 2118406 L4965 2021 258 3*2^7033641+1 2117338 L2233 2011 Divides GF(7033639,3) 259 625783*2^7031319-1 2116644 A11 2024 260 33661*2^7031232+1 2116617 SB11 2007 261 237804^393216-237804^196608+1 2114016 L4506 2017 Generalized unique 262 207494*5^3017502-1 2109149 L5083 2020 263 15*2^6993631-1 2105294 L4965 2021 264 8943501*2^6972593-1 2098967 L466 2022 265 6020095*2^6972593-1 2098967 L466 2022 266 2^6972593-1 2098960 G4 1999 Mersenne 38 267 273*2^6963847-1 2096330 L4965 2022 268 6219*2^6958945-1 2094855 L4965 2021 269 51*2^6945567+1 2090826 L4965 2020 Divides GF(6945564,12) [p286] 270 238694*5^2979422-1 2082532 L5081 2020 271 4*72^1119849-1 2079933 L4444 2016 272 33*2^6894190-1 2075360 L4965 2021 273b 4778027#-1 2073926 p442 2024 Primorial 274 2345*2^6882320-1 2071789 L4965 2022 275 57*2^6857990+1 2064463 A2 2023 276 146264*5^2953282-1 2064261 L1056 2020 277 69*2^6838971-1 2058738 L5037 2020 278 35816*5^2945294-1 2058677 L5076 2020 279 127*2^6836153-1 2057890 L1862 2018 280 19*2^6833086+1 2056966 L5166 2020 281 65*2^6810465+1 2050157 A2 2023 282 40597*2^6808509-1 2049571 L3749 2013 283 283*2^6804731-1 2048431 L2484 2020 284 1861709*2^6789999+1 2044000 L5191 2020 285 5781*2^6789459-1 2043835 L4965 2021 286 8435*2^6786180-1 2042848 L4965 2021 287 51*2^6753404+1 2032979 L4965 2020 288 93*2^6750726+1 2032173 A2 2023 289 69*2^6745775+1 2030683 L4965 2023 290 9995*2^6711008-1 2020219 L4965 2021 291 39*2^6684941+1 2012370 L5162 2020 292 6679881*2^6679881+1 2010852 L917 2009 Cullen 293 37*2^6660841-1 2005115 L3933 2014 294 39*2^6648997+1 2001550 L5161 2020 295 10^2000007-10^1127194-10^872812-1 2000007 p423 2024 Palindrome 296 10^2000005-10^1051046-10^948958-1 2000005 p423 2024 Palindrome 297 304207*2^6643565-1 1999918 L3547 2013 298 69*2^6639971-1 1998833 L5037 2020 299 6471*2^6631137-1 1996175 L4965 2021 300c 40460760^262144+1 1994139 L5460 2024 Generalized Fermat 301d 39896728^262144+1 1992541 L6047 2024 Generalized Fermat 302e 39164812^262144+1 1990433 L6038 2024 Generalized Fermat 303e 38786786^262144+1 1989328 L6035 2024 Generalized Fermat 304e 38786700^262144+1 1989328 L4245 2024 Generalized Fermat 305e 38738332^262144+1 1989186 L6033 2024 Generalized Fermat 306 9935*2^6603610-1 1987889 L4965 2023 307e 38214850^262144+1 1987637 L5412 2024 Generalized Fermat 308f 38108804^262144+1 1987321 L4764 2024 Generalized Fermat 309e 37986650^262144+1 1986955 L6027 2024 Generalized Fermat 310f 37787006^262144+1 1986355 L4622 2024 Generalized Fermat 311e 37700936^262144+1 1986096 L5416 2024 Generalized Fermat 312e 37689944^262144+1 1986063 L5416 2024 Generalized Fermat 313f 37349040^262144+1 1985028 L5543 2024 Generalized Fermat 314 37047448^262144+1 1984105 L5746 2024 Generalized Fermat 315 36778106^262144+1 1983274 L5998 2024 Generalized Fermat 316 36748386^262144+1 1983182 L5998 2024 Generalized Fermat 317 36717890^262144+1 1983088 L4760 2024 Generalized Fermat 318 36210400^262144+1 1981503 L6006 2024 Generalized Fermat 319 35196086^262144+1 1978269 L5543 2024 Generalized Fermat 320 34443124^262144+1 1975807 L5639 2024 Generalized Fermat 321 33798406^262144+1 1973655 L4656 2024 Generalized Fermat 322 33491530^262144+1 1972617 L5030 2024 Generalized Fermat 323 33061466^262144+1 1971146 L5275 2024 Generalized Fermat 324 32497152^262144+1 1969186 L5586 2024 Generalized Fermat 325 32171198^262144+1 1968038 L4892 2024 Generalized Fermat 326 32067848^262144+1 1967672 L4684 2024 Generalized Fermat 327 31371484^262144+1 1965172 L5847 2024 Generalized Fermat 328 30941436^262144+1 1963601 L4362 2024 Generalized Fermat 329 554051*2^6517658-1 1962017 L5811 2023 330 29645358^262144+1 1958729 L5024 2023 Generalized Fermat 331 29614286^262144+1 1958610 L5870 2023 Generalized Fermat 332 1319*2^6506224-1 1958572 L4965 2021 333 3163*2^6504943-1 1958187 L4965 2023 334 29445800^262144+1 1957960 L4726 2023 Generalized Fermat 335 322498*5^2800819-1 1957694 L4954 2019 336 29353924^262144+1 1957604 L4387 2023 Generalized Fermat 337 99*2^6502814+1 1957545 A2 2023 338 29333122^262144+1 1957524 L5869 2023 Generalized Fermat 339 88444*5^2799269-1 1956611 L3523 2019 340 29097000^262144+1 1956604 L5375 2023 Generalized Fermat 341 28342134^262144+1 1953611 L5864 2023 Generalized Fermat 342 28259150^262144+1 1953277 L4898 2023 Generalized Fermat 343 28004468^262144+1 1952246 L5586 2023 Generalized Fermat 344 27789002^262144+1 1951367 L5860 2023 Generalized Fermat 345 13*2^6481780+1 1951212 L4965 2020 346 27615064^262144+1 1950652 L4201 2023 Generalized Fermat 347 21*2^6468257-1 1947141 L4965 2021 348 26640150^262144+1 1946560 L5839 2023 Generalized Fermat 349 26128000^262144+1 1944350 L5821 2023 Generalized Fermat 350 25875054^262144+1 1943243 L5070 2023 Generalized Fermat 351 25690360^262144+1 1942427 L5809 2023 Generalized Fermat 352 25635940^262144+1 1942186 L4307 2023 Generalized Fermat 353 25461468^262144+1 1941408 L4210 2023 Generalized Fermat 354 25333402^262144+1 1940834 L5802 2023 Generalized Fermat 355 24678636^262144+1 1937853 L5586 2023 Generalized Fermat 356 138514*5^2771922+1 1937496 L4937 2019 357 24429706^262144+1 1936699 L4670 2023 Generalized Fermat 358 33*2^6432160-1 1936275 L4965 2022 359 15*2^6429089-1 1935350 L4965 2021 360 23591460^262144+1 1932724 L5720 2023 Generalized Fermat 361 23479122^262144+1 1932181 L5773 2023 Generalized Fermat 362 398023*2^6418059-1 1932034 L3659 2013 363 22984886^262144+1 1929758 L4928 2023 Generalized Fermat 364 3^4043119+3^2021560+1 1929059 L5123 2023 Generalized unique 365 22790808^262144+1 1928793 L5047 2023 Generalized Fermat 366 22480000^262144+1 1927230 L4307 2023 Generalized Fermat 367 22479752^262144+1 1927229 L5159 2023 Generalized Fermat 368 22470828^262144+1 1927183 L4201 2023 Generalized Fermat 369 55*2^6395254+1 1925166 A2 2023 370 20866766^262144+1 1918752 L4245 2023 Generalized Fermat 371a 4*3^4020126+1 1918089 A2 2024 Generalized Fermat 372 20710506^262144+1 1917896 L5676 2023 Generalized Fermat 373 20543682^262144+1 1916975 L5663 2023 Generalized Fermat 374 20105956^262144+1 1914523 L5005 2023 Generalized Fermat 375 631*2^6359347-1 1914357 L4965 2021 376 4965*2^6356707-1 1913564 L4965 2022 377 19859450^262144+1 1913119 L5025 2023 Generalized Fermat 378 19527922^262144+1 1911202 L4745 2023 Generalized Fermat 379 19322744^262144+1 1910000 L4775 2023 Generalized Fermat 380 1995*2^6333396-1 1906546 L4965 2021 381 1582137*2^6328550+1 1905090 L801 2009 Cullen 382 18395930^262144+1 1904404 x50 2022 Generalized Fermat 383 17191822^262144+1 1896697 x50 2022 Generalized Fermat 384 87*2^6293522+1 1894541 A2 2023 385 16769618^262144+1 1893866 L4677 2022 Generalized Fermat 386 16048460^262144+1 1888862 L5127 2022 Generalized Fermat 387 10^1888529-10^944264-1 1888529 p423 2021 Near-repdigit, palindrome 388 15913772^262144+1 1887902 L4387 2022 Generalized Fermat 389 15859176^262144+1 1887511 L5544 2022 Generalized Fermat 390 3303*2^6264946-1 1885941 L4965 2021 391 15417192^262144+1 1884293 L5051 2022 Generalized Fermat 392 14741470^262144+1 1879190 L4204 2022 Generalized Fermat 393c 4328927#+1 1878843 p442 2024 Primorial 394 14399216^262144+1 1876516 L4745 2021 Generalized Fermat 395 1344935*2^6231985+1 1876021 L161 2023 396 14103144^262144+1 1874151 L5254 2021 Generalized Fermat 397 13911580^262144+1 1872594 L5068 2021 Generalized Fermat 398 13640376^262144+1 1870352 L4307 2021 Generalized Fermat 399 13553882^262144+1 1869628 L4307 2021 Generalized Fermat 400 8825*2^6199424-1 1866217 A2 2023 401 13039868^262144+1 1865227 L5273 2021 Generalized Fermat 402 7*6^2396573+1 1864898 L4965 2019 403 12959788^262144+1 1864525 L4591 2021 Generalized Fermat 404 69*2^6186659+1 1862372 L4965 2023 405 12582496^262144+1 1861162 L5202 2021 Generalized Fermat 406 12529818^262144+1 1860684 L4871 2020 Generalized Fermat 407 12304152^262144+1 1858615 L4591 2020 Generalized Fermat 408 12189878^262144+1 1857553 L4905 2020 Generalized Fermat 409 39*2^6164630+1 1855741 L4087 2020 Divides GF(6164629,5) 410 11081688^262144+1 1846702 L5051 2020 Generalized Fermat 411 10979776^262144+1 1845650 L5088 2020 Generalized Fermat 412 10829576^262144+1 1844082 L4677 2020 Generalized Fermat 413 194368*5^2638045-1 1843920 L690 2018 414 10793312^262144+1 1843700 L4905 2020 Generalized Fermat 415 10627360^262144+1 1841936 L4956 2020 Generalized Fermat 416 10578478^262144+1 1841411 L4307 2020 Generalized Fermat 417 66916*5^2628609-1 1837324 L690 2018 418 521921*2^6101122-1 1836627 L5811 2023 419 3*2^6090515-1 1833429 L1353 2010 420 9812766^262144+1 1832857 L4245 2020 Generalized Fermat 421 9750938^262144+1 1832137 L4309 2020 Generalized Fermat 422 8349*2^6082397-1 1830988 L4965 2021 423 9450844^262144+1 1828578 L5020 2020 Generalized Fermat 424 71*2^6070943+1 1827538 L4965 2023 425 32*470^683151+1 1825448 L4064 2021 426 9125820^262144+1 1824594 L5002 2019 Generalized Fermat 427 8883864^262144+1 1821535 L4715 2019 Generalized Fermat 428 21*2^6048861+1 1820890 L5106 2020 Divides GF(6048860,5) 429 9999*2^6037057-1 1817340 L4965 2021 430 8521794^262144+1 1816798 L4289 2019 Generalized Fermat 431 33*2^6019138-1 1811943 L4965 2022 432 67*2^6018626+1 1811789 L4965 2023 433e 122*123^865890+1 1809631 L4294 2024 434 1583*2^5989282-1 1802957 L4036 2015 435 101806*15^1527091-1 1796004 L5765 2023 Generalized Woodall 436 6291332^262144+1 1782250 L4864 2018 Generalized Fermat 437 6287774^262144+1 1782186 L4726 2018 Generalized Fermat 438 327926*5^2542838-1 1777374 L4807 2018 439 81556*5^2539960+1 1775361 L4809 2018 440 5828034^262144+1 1773542 L4720 2018 Generalized Fermat 441 993*10^1768283-1 1768286 L4879 2019 Near-repdigit 442 9*10^1762063-1 1762064 L4879 2020 Near-repdigit 443 93606^354294+93606^177147+1 1761304 p437 2023 Generalized unique 444 5205422^262144+1 1760679 L4201 2018 Generalized Fermat 445 5152128^262144+1 1759508 L4720 2018 Generalized Fermat 446 4489246^262144+1 1743828 L4591 2018 Generalized Fermat 447 2240501*6^2240501+1 1743456 L5765 2023 Generalized Cullen 448 2*3^3648969+1 1741001 L5043 2020 Divides Phi(3^3648964,2) [g427] 449 7*2^5775996+1 1738749 L3325 2012 450 4246258^262144+1 1737493 L4720 2018 Generalized Fermat 451 3933508^262144+1 1728783 L4309 2018 Generalized Fermat 452 3853792^262144+1 1726452 L4715 2018 Generalized Fermat 453 3673932^262144+1 1721010 L4649 2017 Generalized Fermat 454 (10^859669-1)^2-2 1719338 p405 2022 Near-repdigit 455 3596074^262144+1 1718572 L4689 2017 Generalized Fermat 456 3547726^262144+1 1717031 L4201 2017 Generalized Fermat 457 8*10^1715905-1 1715906 L4879 2020 Near-repdigit 458 1243*2^5686715-1 1711875 L1828 2016 459 25*2^5658915-1 1703505 L1884 2021 460 1486287*14^1486287+1 1703482 L5765 2023 Generalized Cullen 461 41*2^5651731+1 1701343 L1204 2020 462 3060772^262144+1 1700222 L4649 2017 Generalized Fermat 463 9*2^5642513+1 1698567 L3432 2013 464 10*3^3550446+1 1693995 L4965 2020 465 2622*11^1621920-1 1689060 L2054 2015 466 81*2^5600028+1 1685779 L4965 2022 Generalized Fermat 467 2676404^262144+1 1684945 L4591 2017 Generalized Fermat 468 301562*5^2408646-1 1683577 L4675 2017 469 2611294^262144+1 1682141 L4250 2017 Generalized Fermat 470 55599^354294+55599^177147+1 1681149 p437 2023 Generalized unique 471 171362*5^2400996-1 1678230 L4669 2017 472 2514168^262144+1 1677825 L4564 2017 Generalized Fermat 473 31*2^5560820+1 1673976 L1204 2020 Divides GF(5560819,6) 474 13*2^5523860+1 1662849 L1204 2020 Divides Fermat F(5523858) 475 252191*2^5497878-1 1655032 L3183 2012 476 2042774^262144+1 1654187 L4499 2016 Generalized Fermat 477 1828858^262144+1 1641593 L4200 2016 Generalized Fermat 478 258317*2^5450519+1 1640776 g414 2008 479 7*6^2104746+1 1637812 L4965 2019 480 5*2^5429494-1 1634442 L3345 2017 481c 77*2^5422903+1 1632459 A2 2024 Divides GF(5422902,12) 482 43*2^5408183-1 1628027 L1884 2018 483 8*815^559138-1 1627740 A26 2024 484 1615588^262144+1 1627477 L4200 2016 Generalized Fermat 485 2*296598^296598-1 1623035 L4965 2022 486 1349*2^5385004-1 1621051 L1828 2017 487 1488256^262144+1 1618131 L4249 2016 Generalized Fermat 488a 153*2^5369765+1 1616463 L5969 2024 489 1415198^262144+1 1612400 L4308 2016 Generalized Fermat 490 84*730^560037+1 1603569 A12 2024 491a 93*2^5323466+1 1602525 L5537 2024 492a 237*2^5315983+1 1600273 L6064 2024 493 45*2^5308037+1 1597881 L4761 2019 494 5468*70^864479-1 1595053 L5410 2022 495b 131*2^5298475+1 1595003 L5517 2024 496b 237*2^5291999+1 1593053 L5532 2024 497b 221*2^5284643+1 1590839 L5517 2024 498 92*10^1585996-1 1585998 L4789 2023 Near-repdigit 499 1082083^262144-1082083^131072+1 1581846 L4506 2017 Generalized unique 500b 247*2^5254234+1 1581685 L5923 2024 501b 273*2^5242597+1 1578182 L5192 2024 502 7*2^5229669-1 1574289 L4965 2021 503 180062*5^2249192-1 1572123 L4435 2016 504 124125*6^2018254+1 1570512 L4001 2019 505 27*2^5213635+1 1569462 L3760 2015 506c 227*2^5213195+1 1569331 L5517 2024 507 9992*10^1567410-1 1567414 L4879 2020 Near-repdigit 508f 27*252^652196+1 1566186 A21 2024 509c 149*2^5196375+1 1564267 L5174 2024 510c 277*2^5185268+1 1560924 L5888 2024 511 308084!+1 1557176 p425 2022 Factorial 512 843575^262144-843575^131072+1 1553498 L4506 2017 Generalized unique 513 25*2^5152151-1 1550954 L1884 2020 514d 125*2^5149981+1 1550301 L6042 2024 515d 147*2^5146964+1 1549393 L5559 2024 516 53546*5^2216664-1 1549387 L4398 2016 517 773620^262144+1 1543643 L3118 2012 Generalized Fermat 518 39*2^5119458+1 1541113 L1204 2019 519 607*26^1089034+1 1540957 L5410 2021 520 81*2^5115131+1 1539810 L4965 2022 Divides GF(5115128,12) [GG] 521 223*2^5105835-1 1537012 L2484 2019 522 99*10^1536527-1 1536529 L4879 2019 Near-repdigit 523 81*2^5100331+1 1535355 L4965 2022 Divides GF(5100327,6) [GG] 524 992*10^1533933-1 1533936 L4879 2019 Near-repdigit 525 51*2^5085142-1 1530782 L760 2014 526 3*2^5082306+1 1529928 L780 2009 Divides GF(5082303,3), GF(5082305,5) 527 676754^262144+1 1528413 L2975 2012 Generalized Fermat 528 296024*5^2185270-1 1527444 L671 2016 529e 181*2^5057960+1 1522600 L5178 2024 530 5359*2^5054502+1 1521561 SB6 2003 531e 175*2^5049344+1 1520007 L5178 2024 532e 183*2^5042357+1 1517903 L5178 2024 533 1405486*12^1405486-1 1516781 L5765 2023 Generalized Woodall 534 53*2^5019181+1 1510926 L4965 2023 535e 131*2^5013361+1 1509175 L5178 2024 536 13*2^4998362+1 1504659 L3917 2014 537 525094^262144+1 1499526 p338 2012 Generalized Fermat 538 92158*5^2145024+1 1499313 L4348 2016 539 499238*10^1497714-1 1497720 L4976 2019 Generalized Woodall 540f 357*2^4972628+1 1496913 L5783 2024 541 77072*5^2139921+1 1495746 L4340 2016 542f 175*2^4965756+1 1494844 L5888 2024 543f 221*2^4960867+1 1493373 L5178 2024 544f 375*2^4950021+1 1490108 L5178 2024 545 2*3^3123036+1 1490068 L5043 2020 546f 75*2^4940218+1 1487156 L5517 2024 Divides GF(4940214,12) 547f 95*2^4929067+1 1483799 L5172 2024 548f 161*2^4928111+1 1483512 L5961 2024 549 51*2^4923905+1 1482245 L4965 2023 550f 289*2^4911870+1 1478623 L5178 2024 Generalized Fermat 551 519397*2^4908893-1 1477730 L5410 2022 552 306398*5^2112410-1 1476517 L4274 2016 553 183*2^4894125+1 1473281 L5961 2024 Divides GF(4894123,3), GF(4894124,5) 554 39*684^519468-1 1472723 L5410 2023 555 195*2^4887935+1 1471418 L5261 2024 556 281*2^4886723+1 1471053 L5971 2024 557 281*2^4879761+1 1468957 L5961 2024 558 96*789^506568+1 1467569 A14 2024 559 243*2^4872108+1 1466654 L5178 2024 560 213*2^4865126+1 1464552 L5803 2024 561 265711*2^4858008+1 1462412 g414 2008 562 154222*5^2091432+1 1461854 L3523 2015 563 1271*2^4850526-1 1460157 L1828 2012 564 333*2^4846958-1 1459083 L5546 2022 565 357*2^4843507+1 1458044 L5178 2024 566 156*532^534754-1 1457695 L5410 2023 567 362978^262144-362978^131072+1 1457490 p379 2015 Generalized unique 568 361658^262144+1 1457075 p332 2011 Generalized Fermat 569 231*2^4836124+1 1455821 L5517 2024 570 7*10^1454508+1 1454509 p439 2024 571 303*2^4829593+1 1453855 L5706 2024 572 100186*5^2079747-1 1453686 L4197 2015 573 375*2^4824253+1 1452248 L5625 2024 574 288465!+1 1449771 p3 2022 Factorial 575 15*2^4800315+1 1445040 L1754 2019 Divides GF(4800313,3), GF(4800310,5) 576 235*2^4799708+1 1444859 L5971 2024 577 347*2^4798851+1 1444601 L5554 2024 578 239*2^4795541+1 1443605 L5995 2024 579 2^4792057-2^2396029+1 1442553 L3839 2014 Gaussian Mersenne norm 40, generalized unique 580 92*10^1439761-1 1439763 L4789 2020 Near-repdigit 581 269*2^4777025+1 1438031 L5683 2024 582 653*10^1435026-1 1435029 p355 2014 583 197*2^4765318-1 1434506 L5175 2021 584 1401*2^4759435-1 1432736 L4965 2023 585 2169*2^4754343-1 1431204 L4965 2023 586 188*468^535963+1 1431156 L4832 2019 587 1809*2^4752792-1 1430737 L4965 2022 588 61*2^4749928+1 1429873 L5285 2024 589 2427*2^4749044-1 1429609 L4965 2022 590 303*2^4748019-1 1429299 L5545 2023 591 2259*2^4746735-1 1428913 L4965 2022 592 309*2^4745713-1 1428605 L5545 2023 593 183*2^4740056+1 1426902 L5945 2024 594 2223*2^4729304-1 1423666 L4965 2022 595 1851*2^4727663-1 1423172 L4965 2022 596 1725*2^4727375-1 1423085 L4965 2022 597 1611*2^4724014-1 1422074 L4965 2022 598 1383*2^4719270-1 1420645 L4965 2022 599 1749*2^4717431-1 1420092 L4965 2022 600 321*2^4715725+1 1419578 L5178 2024 601 371*2^4715211+1 1419423 L5527 2024 602 2325*2^4713991-1 1419057 L4965 2022 603 3267113#-1 1418398 p301 2021 Primorial 604 291*2^4708553+1 1417419 L5308 2024 605 100*406^543228+1 1417027 L5410 2020 Generalized Fermat 606 2337*2^4705660-1 1416549 L4965 2022 607 1229*2^4703492-1 1415896 L1828 2018 608 303*2^4694937+1 1413320 L5977 2024 609 3719*30^956044-1 1412197 L5410 2023 610 6*894^478421-1 1411983 L4294 2023 611 263*2^4688269+1 1411313 L5904 2024 612 155*2^4687127+1 1410969 L5969 2024 613 144052*5^2018290+1 1410730 L4146 2015 614 195*2^4685711-1 1410542 L5175 2021 615 9*2^4683555-1 1409892 L1828 2012 616 31*2^4673544+1 1406879 L4990 2019 617 34*993^469245+1 1406305 L4806 2018 618 197*2^4666979+1 1404903 L5233 2024 619 79*2^4658115-1 1402235 L1884 2018 620 39*2^4657951+1 1402185 L1823 2019 621 4*650^498101-1 1401116 L4294 2021 622 11*2^4643238-1 1397755 L2484 2014 623 884411*38^884411+1 1397184 L5765 2023 Generalized Cullen 624 68*995^465908-1 1396712 L4001 2017 625 7*6^1793775+1 1395830 L4965 2019 626 269*2^4636583+1 1395753 L5509 2024 627 117*2^4632990+1 1394672 L5960 2024 628 213*2^4625484+1 1392412 L5956 2024 629 192098^262144-192098^131072+1 1385044 p379 2015 Generalized unique 630 339*2^4592225+1 1382401 L5302 2024 631 6*10^1380098+1 1380099 L5009 2023 632 27*2^4583717-1 1379838 L2992 2014 633 221*2^4578577+1 1378292 L5710 2024 634 359*2^4578161+1 1378167 L5894 2024 635 3^2888387-3^1444194+1 1378111 L5123 2023 Generalized unique 636 1198433*14^1198433+1 1373564 L5765 2023 Generalized Cullen 637 67*2^4561350+1 1373105 L5614 2024 638 121*2^4553899-1 1370863 L3023 2012 639 231*2^4552115+1 1370326 L5302 2024 640 223*2^4549924+1 1369666 L5904 2024 641 9473*2^4543680-1 1367788 L5037 2022 642 27*2^4542344-1 1367384 L1204 2014 643 29*2^4532463+1 1364409 L4988 2019 644 4*797^468702+1 1359920 L4548 2017 Generalized Fermat 645 145310^262144+1 1353265 p314 2011 Generalized Fermat 646b 2*3^2834778-1 1352534 A2 2024 647 479*2^4492481+1 1352375 L5882 2024 648 373*2^4487274+1 1350807 L5320 2024 649 527*2^4486247+1 1350498 L5178 2024 650 25*2^4481024+1 1348925 L4364 2019 Generalized Fermat 651 83*2^4479409+1 1348439 L5178 2024 652 417*2^4473466+1 1346651 L5178 2024 653 81*536^493229+1 1346106 p431 2023 654 303*2^4471002-1 1345909 L5545 2022 655 1425*2^4469783+1 1345542 L1134 2023 656 2*1283^432757+1 1345108 L4879 2019 Divides Phi(1283^432757,2) 657 447*2^4457132+1 1341734 L5875 2024 658 36772*6^1723287-1 1340983 L1301 2014 659 583854*14^1167708-1 1338349 L4976 2019 Generalized Woodall 660 20*634^476756-1 1335915 L4975 2023 661 297*2^4432947+1 1334453 L5178 2023 662 85*2^4432870+1 1334429 L4965 2023 663 151*2^4424321-1 1331856 L1884 2016 664 231*2^4422227+1 1331226 L5192 2023 665 131*2^4421071+1 1330878 L5178 2023 666 225*2^4419349+1 1330359 L5866 2023 667e 1485*2^4416137+1 1329393 L1134 2024 668 469*2^4414802+1 1328991 L5830 2023 669 549*2^4411029+1 1327855 L5862 2023 670 445*2^4410256+1 1327622 L5537 2023 671 259*2^4395550+1 1323195 L5858 2023 672 219*2^4394846+1 1322983 L5517 2023 673 165*2^4379097+1 1318242 L5852 2023 674 183*2^4379002+1 1318214 L5476 2023 675 1455*2^4376470+1 1317452 L1134 2023 676 165*2^4375458+1 1317147 L5851 2023 677 195*2^4373994-1 1316706 L5175 2020 678 381*2^4373129+1 1316446 L5421 2023 679 (10^657559-1)^2-2 1315118 p405 2022 Near-repdigit 680 49*2^4365175-1 1314051 L1959 2017 681 49*2^4360869-1 1312755 L1959 2017 682 253*2^4358512+1 1312046 L875 2023 683 219*2^4354805+1 1310930 L5848 2023 684 249*2^4351621+1 1309971 L5260 2023 685 159*2^4348734+1 1309102 L5421 2023 686 115*2^4347620+1 1308767 L5178 2023 687 533*2^4338237+1 1305943 L5260 2023 688 141*2^4337804+1 1305812 L5178 2023 689 363*2^4334518+1 1304823 L5261 2023 690 299*2^4333939+1 1304649 L5517 2023 691 13*2^4333087-1 1304391 L1862 2018 692 353159*2^4331116-1 1303802 L2408 2011 693 195*2^4330189+1 1303520 L5178 2023 694 145*2^4327756+1 1302787 L5517 2023 695 9959*2^4308760-1 1297071 L5037 2022 696 195*2^4304861+1 1295895 L5178 2023 697 23*2^4300741+1 1294654 L4147 2019 698 682156*79^682156+1 1294484 L4472 2016 Generalized Cullen 699 141941*2^4299438-1 1294265 L689 2011 700 87*2^4297718+1 1293744 L4965 2023 701c 22*905^437285-1 1292900 L5342 2024 702 435*2^4292968+1 1292315 L5783 2023 703 993149*20^993149+1 1292123 L5765 2023 Generalized Cullen 704 415*2^4280864+1 1288672 L5818 2023 705 79*2^4279006+1 1288112 L4965 2023 706 205*2^4270310+1 1285494 L5517 2023 707 483*2^4270112+1 1285435 L5178 2023 708 123*2^4266441+1 1284329 L5178 2023 709 612749*2^4254500-1 1280738 L5410 2022 710 223*2^4252660+1 1280181 L5178 2023 711 1644731*6^1644731+1 1279856 L5765 2023 Generalized Cullen 712 38*380^495986-1 1279539 L5410 2023 713 2*1151^417747+1 1278756 L4879 2019 Divides Phi(1151^417747,2) 714 15*2^4246384+1 1278291 L3432 2013 Divides GF(4246381,6) 715 3*2^4235414-1 1274988 L606 2008 716 2*1259^411259+1 1274914 L4879 2020 Divides Phi(1259^411259,2) 717 93*2^4232892+1 1274230 L4965 2023 718 131*2^4227493+1 1272605 L5226 2023 719 45*436^481613+1 1271213 L5410 2020 720 109208*5^1816285+1 1269534 L3523 2014 721 435*2^4216447+1 1269280 L5178 2023 722 1091*2^4215518-1 1269001 L1828 2018 723 191*2^4203426-1 1265360 L2484 2012 724 269*2^4198809+1 1263970 L5226 2023 725 545*2^4198333+1 1263827 L5804 2023 726 53*2^4197093+1 1263453 L5563 2023 727 1259*2^4196028-1 1263134 L1828 2016 728 329*2^4193199+1 1262282 L5226 2023 729 141*2^4192911+1 1262195 L5226 2023 Divides Fermat F(4192909) 730 325918*5^1803339-1 1260486 L3567 2014 731 345*2^4173969+1 1256493 L5226 2023 732 161*2^4164267+1 1253572 L5178 2023 733 135*2^4162529+1 1253049 L5178 2023 Divides GF(4162525,10) 734 177*2^4162494+1 1253038 L5796 2023 735 237*2^4153348+1 1250285 L5178 2023 736 69*2^4151165+1 1249628 L4965 2023 737 133778*5^1785689+1 1248149 L3903 2014 738 201*2^4146003+1 1248074 L5161 2023 739 329*2^4136019+1 1245069 L5178 2023 740 81*2^4131975+1 1243851 L4965 2022 741 459*2^4129577+1 1243130 L5226 2023 742 551*2^4126303+1 1242144 L5226 2023 743 363*2^4119017+1 1239951 L5226 2023 744 105*2^4113039+1 1238151 L5178 2023 745 204*532^454080-1 1237785 L5410 2023 746 41*684^436354+1 1237090 L4444 2023 747 17*2^4107544-1 1236496 L4113 2015 748 261*2^4106385+1 1236148 L5178 2023 749 24032*5^1768249+1 1235958 L3925 2014 750 172*159^561319-1 1235689 L4001 2017 751 10^1234567-20342924302*10^617278-1 1234567 p423 2021 Palindrome 752 10^1234567-1927633367291*10^617277-1 1234567 p423 2023 Palindrome 753 10^1234567-3626840486263*10^617277-1 1234567 p423 2021 Palindrome 754 10^1234567-4708229228074*10^617277-1 1234567 p423 2021 Palindrome 755 67*2^4100746+1 1234450 L5178 2023 756 191*2^4099097+1 1233954 L5563 2023 757 325*2^4097700+1 1233534 L5226 2023 758 519*2^4095491+1 1232869 L5226 2023 759 111*2^4091044+1 1231530 L5783 2023 Divides GF(4091041,3) 760 1182072*11^1182072-1 1231008 L5765 2023 Generalized Woodall 761 64*425^467857-1 1229712 p268 2021 762c 8*558^447047+1 1227876 A28 2024 763 163*778^424575+1 1227440 A11 2024 764 381*2^4069617+1 1225080 L5226 2023 765 97*2^4066717-1 1224206 L2484 2019 766 95*2^4063895+1 1223357 L5226 2023 767 79*2^4062818+1 1223032 L5178 2023 768 1031*2^4054974-1 1220672 L1828 2017 769 309*2^4054114+1 1220413 L5178 2023 770 2022202116^131072+1 1219734 L4704 2022 Generalized Fermat 771 37*2^4046360+1 1218078 L2086 2019 772 141*2^4043116+1 1217102 L5517 2023 773 39653*430^460397-1 1212446 L4187 2016 774 1777034894^131072+1 1212377 L4704 2022 Generalized Fermat 775 141*2^4024411+1 1211471 L5226 2023 776 515*2^4021165+1 1210494 L5174 2023 777 73*2^4016912+1 1209213 L5226 2023 778 40734^262144+1 1208473 p309 2011 Generalized Fermat 779 235*2^4013398+1 1208156 L5178 2023 780 9*2^4005979-1 1205921 L1828 2012 781 417*2^4003224+1 1205094 L5764 2023 782 12*68^656921+1 1203815 L4001 2016 783 67*688^423893+1 1202836 L4001 2017 784 221*2^3992723+1 1201932 L5178 2023 785 213*2^3990702+1 1201324 L5216 2023 786 1993191*2^3986382-1 1200027 L3532 2015 Generalized Woodall 787 163*2^3984604+1 1199488 L5756 2023 788 725*2^3983355+1 1199113 L5706 2023 789 (146^276995+1)^2-2 1199030 p405 2022 790 455*2^3981067+1 1198424 L5724 2023 791 138172*5^1714207-1 1198185 L3904 2014 792 50*383^463313+1 1196832 L2012 2021 793 339*2^3974295+1 1196385 L5178 2023 794 699*2^3974045+1 1196310 L5750 2023 795 1202113^196608-1202113^98304+1 1195366 L4506 2016 Generalized unique 796 29*2^3964697+1 1193495 L1204 2019 797 599*2^3963655+1 1193182 L5226 2023 798 683*2^3962937+1 1192966 L5226 2023 799 39*2^3961129+1 1192421 L1486 2019 800 165*2^3960664+1 1192281 L5178 2023 801 79*2^3957238+1 1191250 L5745 2023 802 687*2^3955918+1 1190853 L5554 2023 Divides GF(3955915,6) 803 163*2^3954818+1 1190522 L5178 2023 804 431*2^3953647+1 1190169 L5554 2023 805 1110815^196608-1110815^98304+1 1188622 L4506 2016 Generalized unique 806 341*2^3938565+1 1185629 L5554 2023 807 503*2^3936845+1 1185112 L5706 2023 808 717*2^3934760+1 1184484 L5285 2023 809 493*2^3929192+1 1182808 L5161 2023 810 273*2^3929128+1 1182788 L5554 2023 811 609*2^3928682+1 1182654 L5178 2023 812 609*2^3928441+1 1182582 L5527 2023 813 281*2^3926467+1 1181987 L5174 2023 814 153*2^3922478+1 1180786 L5554 2023 815 69*2^3920863+1 1180300 L5554 2023 816 273*2^3919321+1 1179836 L5706 2023 817 531*2^3918985+1 1179735 L5706 2023 818 1000032472^131072+1 1179650 L4704 2022 Generalized Fermat 819 555*2^3916875+1 1179100 L5302 2023 820 571*2^3910616+1 1177216 L5178 2023 821 421*2^3905144+1 1175569 L5600 2023 822 P1174253 1174253 p414 2022 823 567*2^3897588+1 1173294 L5600 2023 824 417*2^3895404+1 1172637 L5600 2023 825 539*2^3894953+1 1172501 L5285 2023 826 645*2^3893849+1 1172169 L5600 2023 827 818764*3^2456293-1 1171956 L4965 2023 Generalized Woodall 828 22478*5^1675150-1 1170884 L3903 2014 829 1199*2^3889576-1 1170883 L1828 2018 830 298989*2^3886857+1 1170067 L2777 2014 Generalized Cullen 831 93*10^1170023-1 1170025 L4789 2022 Near-repdigit 832 711*2^3886480+1 1169950 L5320 2023 833 375*2^3884634+1 1169394 L5600 2023 834 94*872^397354+1 1168428 L5410 2019 835 269*2^3877485+1 1167242 L5649 2023 836 163*2^3874556+1 1166360 L5646 2023 Divides GF(3874552,5) 837 1365*2^3872811+1 1165836 L1134 2023 838 313*2^3869536+1 1164849 L5600 2023 839 159*2^3860863+1 1162238 L5226 2023 840 445*2^3860780+1 1162214 L5640 2023 841 397*2^3859450+1 1161813 L5226 2023 842 685*2^3856790+1 1161013 L5226 2023 843 27*2^3855094-1 1160501 L3033 2012 844 537*2^3853860+1 1160131 L5636 2022 845 164*978^387920-1 1160015 L4700 2018 846 175*2^3850344+1 1159072 L5226 2022 847 685*2^3847268+1 1158146 L5226 2022 848 655*2^3846352+1 1157871 L5282 2022 849 583*2^3846196+1 1157824 L5226 2022 850 615*2^3844151+1 1157208 L5226 2022 851 14772*241^485468-1 1156398 L5410 2022 852 525*2^3840963+1 1156248 L5613 2022 853 313*2^3837304+1 1155147 L5298 2022 854 49*2^3837090+1 1155081 L4979 2019 Generalized Fermat 855 431*2^3835247+1 1154528 L5161 2022 856 97*2^3833722+1 1154068 L5226 2022 857 2*839^394257+1 1152714 L4879 2019 Divides Phi(839^394257,2) 858 125*392^444161+1 1151839 L4832 2022 859 255*2^3824348+1 1151246 L5226 2022 860 30*514^424652-1 1151218 L4001 2017 861 569*2^3823191+1 1150898 L5226 2022 862 24518^262144+1 1150678 g413 2008 Generalized Fermat 863 563*2^3819237+1 1149708 L5178 2022 864 345*2^3817949+1 1149320 L5373 2022 865 700219^196608-700219^98304+1 1149220 L4506 2016 Generalized unique 866 241*2^3815727-1 1148651 L2484 2019 867 351*2^3815467+1 1148573 L5226 2022 868 109*980^383669-1 1147643 L4001 2018 869 427*2^3811610+1 1147412 L5614 2022 870 569*2^3810475+1 1147071 L5610 2022 871 213*2^3807864+1 1146284 L5609 2022 872 87*2^3806438+1 1145854 L5607 2022 873 369*2^3805321+1 1145519 L5541 2022 874 123547*2^3804809-1 1145367 L2371 2011 875 2564*75^610753+1 1145203 L3610 2014 876 539*2^3801705+1 1144430 L5161 2022 877 159*2^3801463+1 1144357 L5197 2022 878 235*2^3801284+1 1144303 L5608 2022 879 660955^196608-660955^98304+1 1144293 L4506 2016 Generalized unique 880 519*2^3800625+1 1144105 L5315 2022 881 281*2^3798465+1 1143455 L5178 2022 882 166*443^432000+1 1143249 L5410 2020 883 85*2^3797698+1 1143223 L5161 2022 884 326834*5^1634978-1 1142807 L3523 2014 885 459*2^3795969+1 1142704 L5161 2022 886 105*298^461505-1 1141866 L5841 2023 887 447*2^3780151+1 1137942 L5596 2022 888 345*2^3779921+1 1137873 L5557 2022 889 477*2^3779871+1 1137858 L5197 2022 890 251*2^3774587+1 1136267 L5592 2022 891 439*2^3773958+1 1136078 L5557 2022 892 43*182^502611-1 1135939 L4064 2020 893 415267*2^3771929-1 1135470 L2373 2011 894 11*2^3771821+1 1135433 p286 2013 895 427*2^3768104+1 1134315 L5192 2022 896 1455*2^3768024-1 1134292 L1134 2022 897 711*2^3767492+1 1134131 L5161 2022 898 265*2^3765189-1 1133438 L2484 2018 899 297*2^3765140+1 1133423 L5197 2022 900 381*2^3764189+1 1133137 L5589 2022 901 115*2^3763650+1 1132974 L5554 2022 902 411*2^3759067+1 1131595 L5589 2022 903 405*2^3757192+1 1131031 L5590 2022 904 938237*2^3752950-1 1129757 L521 2007 Woodall 905 399866798^131072+1 1127471 L4964 2019 Generalized Fermat 906 701*2^3744713+1 1127274 L5554 2022 907 207394*5^1612573-1 1127146 L3869 2014 908 684*10^1127118+1 1127121 L4036 2017 909 535386^196608-535386^98304+1 1126302 L4506 2016 Generalized unique 910 104944*5^1610735-1 1125861 L3849 2014 911 23451*2^3739388+1 1125673 L591 2015 912 78*622^402915-1 1125662 L5645 2023 913 615*2^3738023+1 1125260 L5161 2022 914 347*2^3737875+1 1125216 L5178 2022 915 163*2^3735726+1 1124568 L5477 2022 Divides GF(3735725,6) 916 375*2^3733510+1 1123902 L5584 2022 917 25*2^3733144+1 1123790 L2125 2019 Generalized Fermat 918 629*2^3731479+1 1123290 L5283 2022 919 113*2^3728113+1 1122276 L5161 2022 920 303*2^3725438+1 1121472 L5161 2022 921 187*2^3723972+1 1121030 L5178 2022 922 2*1103^368361+1 1120767 L4879 2019 Divides Phi(1103^368361,2) 923 105*2^3720512+1 1119988 L5493 2022 924 447*2^3719024+1 1119541 L5493 2022 925 177*2^3717746+1 1119156 L5279 2022 926 2*131^528469+1 1118913 L4879 2019 Divides Phi(131^528469,2) 927 123*2^3716758+1 1118858 L5563 2022 928 313*2^3716716+1 1118846 L5237 2022 929 367*2^3712952+1 1117713 L5264 2022 930 53*2^3709297+1 1116612 L5197 2022 931 2^3704053+2^1852027+1 1115032 L3839 2014 Gaussian Mersenne norm 39, generalized unique 932 395*2^3701693+1 1114324 L5536 2022 933 589*2^3699954+1 1113800 L5576 2022 934 314187728^131072+1 1113744 L4704 2019 Generalized Fermat 935 119*2^3698412-1 1113336 L2484 2018 936 391*2^3693728+1 1111926 L5493 2022 937 485*2^3688111+1 1110235 L5237 2022 938 341*2^3686613+1 1109784 L5573 2022 939 87*2^3686558+1 1109767 L5573 2022 940 675*2^3682616+1 1108581 L5231 2022 941 569*2^3682167+1 1108446 L5488 2022 942 330286*5^1584399-1 1107453 L3523 2014 943 34*951^371834-1 1107391 L5410 2019 944 45*2^3677787+1 1107126 L1204 2019 945 625*2^3676300+1 1106680 L5302 2022 Generalized Fermat 946 13*2^3675223-1 1106354 L1862 2016 947 271643232^131072+1 1105462 L4704 2019 Generalized Fermat 948 463*2^3671262+1 1105163 L5524 2022 949 735*2^3670991+1 1105082 L5575 2022 950 475*2^3670046+1 1104797 L5524 2022 951 15*2^3668194-1 1104238 L3665 2013 952 273*2^3665736+1 1103499 L5192 2022 953 13*2^3664703-1 1103187 L1862 2016 954f 1486*165^497431+1 1103049 A11 2024 955 406515^196608-406515^98304+1 1102790 L4506 2016 Generalized unique 956 609*2^3662931+1 1102655 L5573 2022 957 118*892^373012+1 1100524 L5071 2020 958 33300*430^417849-1 1100397 L4393 2016 959 655*2^3653008+1 1099668 L5574 2022 960 291*268^452750-1 1099341 L5410 2022 961a 242295536^131072+1 1098953 L5205 2024 Generalized Fermat 962a 242161196^131072+1 1098922 L6070 2024 Generalized Fermat 963a 241765100^131072+1 1098829 L6067 2024 Generalized Fermat 964a 241550882^131072+1 1098778 L6065 2024 Generalized Fermat 965a 241438172^131072+1 1098752 L4591 2024 Generalized Fermat 966a 241338084^131072+1 1098728 L4591 2024 Generalized Fermat 967a 241249426^131072+1 1098707 L5526 2024 Generalized Fermat 968 33*2^3649810+1 1098704 L4958 2019 969a 241151312^131072+1 1098684 L4387 2024 Generalized Fermat 970a 241000970^131072+1 1098648 L5707 2024 Generalized Fermat 971a 240966866^131072+1 1098640 L4559 2024 Generalized Fermat 972a 240965802^131072+1 1098640 L6058 2024 Generalized Fermat 973a 240910640^131072+1 1098627 L5101 2024 Generalized Fermat 974a 240856112^131072+1 1098614 L4875 2024 Generalized Fermat 975b 240307734^131072+1 1098484 L4249 2024 Generalized Fermat 976b 240190808^131072+1 1098457 L5056 2024 Generalized Fermat 977b 239927858^131072+1 1098394 L4477 2024 Generalized Fermat 978b 239545562^131072+1 1098304 L4591 2024 Generalized Fermat 979b 239520486^131072+1 1098298 L5634 2024 Generalized Fermat 980b 238968056^131072+1 1098166 L4477 2024 Generalized Fermat 981b 238871106^131072+1 1098143 L6058 2024 Generalized Fermat 982b 238852190^131072+1 1098139 L5526 2024 Generalized Fermat 983b 238698190^131072+1 1098102 L5077 2024 Generalized Fermat 984b 238653710^131072+1 1098091 L6057 2024 Generalized Fermat 985b 238627390^131072+1 1098085 L5871 2024 Generalized Fermat 986b 238438430^131072+1 1098040 L5707 2024 Generalized Fermat 987b 238381768^131072+1 1098026 L5707 2024 Generalized Fermat 988b 238193230^131072+1 1097981 L4201 2024 Generalized Fermat 989b 238168282^131072+1 1097975 L4201 2024 Generalized Fermat 990b 238109742^131072+1 1097961 L4559 2024 Generalized Fermat 991c 237601644^131072+1 1097840 L5782 2024 Generalized Fermat 992c 237260908^131072+1 1097758 L4201 2024 Generalized Fermat 993c 237185928^131072+1 1097740 L5755 2024 Generalized Fermat 994c 237108488^131072+1 1097722 L5639 2024 Generalized Fermat 995c 236924362^131072+1 1097677 L5639 2024 Generalized Fermat 996c 236602468^131072+1 1097600 L6038 2024 Generalized Fermat 997c 236500052^131072+1 1097575 L5198 2024 Generalized Fermat 998c 236417078^131072+1 1097555 L5588 2024 Generalized Fermat 999b 236278180^131072+1 1097522 L5416 2024 Generalized Fermat 1000c 236240868^131072+1 1097513 L6038 2024 Generalized Fermat 1001c 235947986^131072+1 1097442 L4201 2024 Generalized Fermat 1002c 235577802^131072+1 1097353 L5077 2024 Generalized Fermat 1003c 235566676^131072+1 1097350 L5416 2024 Generalized Fermat 1004c 235108160^131072+1 1097239 L4898 2024 Generalized Fermat 1005c 234962380^131072+1 1097204 L4201 2024 Generalized Fermat 1006d 234806100^131072+1 1097166 L5088 2024 Generalized Fermat 1007c 234661134^131072+1 1097131 L5416 2024 Generalized Fermat 1008d 234566344^131072+1 1097108 L5974 2024 Generalized Fermat 1009d 234523400^131072+1 1097098 L4201 2024 Generalized Fermat 1010d 234385314^131072+1 1097064 L4285 2024 Generalized Fermat 1011d 234307964^131072+1 1097045 L4559 2024 Generalized Fermat 1012d 234291722^131072+1 1097041 L4999 2024 Generalized Fermat 1013d 233937376^131072+1 1096955 L6044 2024 Generalized Fermat 1014d 233903532^131072+1 1096947 L4559 2024 Generalized Fermat 1015c 233559012^131072+1 1096863 L5416 2024 Generalized Fermat 1016d 233447012^131072+1 1096836 L4477 2024 Generalized Fermat 1017d 233349574^131072+1 1096812 L5432 2024 Generalized Fermat 1018d 233034976^131072+1 1096735 L5101 2024 Generalized Fermat 1019d 232796676^131072+1 1096677 L6040 2024 Generalized Fermat 1020d 232485778^131072+1 1096601 L4477 2024 Generalized Fermat 1021d 232050760^131072+1 1096494 L5782 2024 Generalized Fermat 1022 295*2^3642206+1 1096416 L5161 2022 1023e 231583998^131072+1 1096380 L4477 2024 Generalized Fermat 1024e 231295516^131072+1 1096309 L5634 2024 Generalized Fermat 1025e 230663736^131072+1 1096153 L4774 2024 Generalized Fermat 1026e 230655072^131072+1 1096151 L5526 2024 Generalized Fermat 1027e 230396424^131072+1 1096087 L4928 2024 Generalized Fermat 1028e 230275166^131072+1 1096057 L6011 2024 Generalized Fermat 1029e 230267830^131072+1 1096055 L6036 2024 Generalized Fermat 1030 989*2^3640585+1 1095929 L5115 2020 1031 567*2^3639287+1 1095538 L4959 2019 1032e 227669832^131072+1 1095409 L5707 2024 Generalized Fermat 1033e 227406222^131072+1 1095343 L4371 2024 Generalized Fermat 1034f 227239620^131072+1 1095302 L4559 2024 Generalized Fermat 1035f 227135580^131072+1 1095276 L5974 2024 Generalized Fermat 1036f 227009830^131072+1 1095244 L4359 2024 Generalized Fermat 1037f 226881840^131072+1 1095212 L5784 2024 Generalized Fermat 1038f 226782570^131072+1 1095187 L6026 2024 Generalized Fermat 1039f 226710488^131072+1 1095169 L5588 2024 Generalized Fermat 1040f 226639300^131072+1 1095151 L5634 2024 Generalized Fermat 1041f 226453444^131072+1 1095104 L4559 2024 Generalized Fermat 1042f 226341130^131072+1 1095076 L4341 2024 Generalized Fermat 1043f 226249042^131072+1 1095053 L5370 2024 Generalized Fermat 1044f 226100602^131072+1 1095016 L4429 2024 Generalized Fermat 1045f 225580118^131072+1 1094884 L5056 2024 Generalized Fermat 1046f 225124888^131072+1 1094769 L4591 2024 Generalized Fermat 1047f 224635814^131072+1 1094646 L4875 2024 Generalized Fermat 1048f 224347630^131072+1 1094572 L5512 2024 Generalized Fermat 1049f 224330804^131072+1 1094568 L6019 2024 Generalized Fermat 1050f 224249932^131072+1 1094548 L4371 2024 Generalized Fermat 1051f 224072278^131072+1 1094503 L5974 2024 Generalized Fermat 1052 639*2^3635707+1 1094460 L1823 2019 1053f 223490796^131072+1 1094355 L5332 2024 Generalized Fermat 1054f 223074802^131072+1 1094249 L5416 2024 Generalized Fermat 1055f 223010262^131072+1 1094232 L6015 2024 Generalized Fermat 1056f 222996490^131072+1 1094229 L5731 2024 Generalized Fermat 1057f 222888506^131072+1 1094201 L5974 2024 Generalized Fermat 1058 222593516^131072+1 1094126 L6011 2024 Generalized Fermat 1059 222486400^131072+1 1094098 L5332 2024 Generalized Fermat 1060 221636362^131072+1 1093880 L4904 2024 Generalized Fermat 1061 221528336^131072+1 1093853 L5721 2024 Generalized Fermat 1062 221330854^131072+1 1093802 L6010 2024 Generalized Fermat 1063 221325712^131072+1 1093801 L4201 2024 Generalized Fermat 1064 221174400^131072+1 1093762 L4201 2024 Generalized Fermat 1065 221008432^131072+1 1093719 L5974 2024 Generalized Fermat 1066 220956326^131072+1 1093705 L5731 2024 Generalized Fermat 1067 220838206^131072+1 1093675 L5974 2024 Generalized Fermat 1068 220325976^131072+1 1093543 L5690 2024 Generalized Fermat 1069 220317996^131072+1 1093541 L5989 2024 Generalized Fermat 1070 220288248^131072+1 1093533 L5721 2024 Generalized Fermat 1071 219984494^131072+1 1093455 L6005 2024 Generalized Fermat 1072 219556482^131072+1 1093344 L5721 2024 Generalized Fermat 1073 219525472^131072+1 1093336 L4898 2024 Generalized Fermat 1074 219447698^131072+1 1093315 L4933 2024 Generalized Fermat 1075 219430370^131072+1 1093311 L4774 2024 Generalized Fermat 1076 219331584^131072+1 1093285 L5746 2024 Generalized Fermat 1077 753*2^3631472+1 1093185 L1823 2019 1078 2*205731^205731-1 1093111 L4965 2022 1079 218012734^131072+1 1092942 L4928 2024 Generalized Fermat 1080 217820568^131072+1 1092892 L5690 2024 Generalized Fermat 1081 217559364^131072+1 1092823 L4898 2024 Generalized Fermat 1082 217458668^131072+1 1092797 L5989 2024 Generalized Fermat 1083 217423702^131072+1 1092788 L5998 2024 Generalized Fermat 1084 217176690^131072+1 1092723 L5637 2024 Generalized Fermat 1085 217170570^131072+1 1092722 L4371 2024 Generalized Fermat 1086 65531*2^3629342-1 1092546 L2269 2011 1087 1121*2^3629201+1 1092502 L4761 2019 1088 216307766^131072+1 1092495 L4387 2024 Generalized Fermat 1089 216084296^131072+1 1092436 L4201 2024 Generalized Fermat 1090 215*2^3628962-1 1092429 L2484 2018 1091 216039994^131072+1 1092425 L5880 2024 Generalized Fermat 1092 216027436^131072+1 1092421 L5277 2024 Generalized Fermat 1093 216018002^131072+1 1092419 L5586 2024 Generalized Fermat 1094 215949788^131072+1 1092401 L4537 2024 Generalized Fermat 1095 215945398^131072+1 1092400 L4245 2024 Generalized Fermat 1096 215783788^131072+1 1092357 L5711 2024 Generalized Fermat 1097 215717854^131072+1 1092340 L4245 2024 Generalized Fermat 1098 215462154^131072+1 1092272 L4387 2024 Generalized Fermat 1099 215237318^131072+1 1092213 L5693 2024 Generalized Fermat 1100 215004526^131072+1 1092151 L4928 2024 Generalized Fermat 1101 113*2^3628034-1 1092150 L2484 2014 1102 214992758^131072+1 1092148 L5974 2024 Generalized Fermat 1103 214814516^131072+1 1092101 L5746 2024 Generalized Fermat 1104 1175*2^3627541+1 1092002 L4840 2019 1105 214403112^131072+1 1091992 L4905 2024 Generalized Fermat 1106 214321816^131072+1 1091970 L5989 2024 Generalized Fermat 1107 214134178^131072+1 1091920 L5297 2024 Generalized Fermat 1108 214059556^131072+1 1091900 L4362 2024 Generalized Fermat 1109 2*431^414457+1 1091878 L4879 2019 Divides Phi(431^414457,2) 1110 213879170^131072+1 1091852 L5986 2024 Generalized Fermat 1111 213736552^131072+1 1091814 L4289 2024 Generalized Fermat 1112 213656000^131072+1 1091793 L4892 2024 Generalized Fermat 1113 213580840^131072+1 1091773 L4201 2024 Generalized Fermat 1114 213425082^131072+1 1091731 L4892 2024 Generalized Fermat 1115 213162592^131072+1 1091661 L4549 2024 Generalized Fermat 1116 213151104^131072+1 1091658 L4763 2024 Generalized Fermat 1117 212912634^131072+1 1091595 L5639 2024 Generalized Fermat 1118 212894100^131072+1 1091590 L5470 2024 Generalized Fermat 1119 212865234^131072+1 1091582 L5782 2024 Generalized Fermat 1120 212862096^131072+1 1091581 L4870 2024 Generalized Fermat 1121 212838152^131072+1 1091575 L5718 2024 Generalized Fermat 1122 212497738^131072+1 1091483 L5051 2024 Generalized Fermat 1123 212121206^131072+1 1091383 L4774 2024 Generalized Fermat 1124 211719438^131072+1 1091275 L4775 2024 Generalized Fermat 1125 211448294^131072+1 1091202 L5929 2024 Generalized Fermat 1126 211407740^131072+1 1091191 L4341 2024 Generalized Fermat 1127 211326826^131072+1 1091169 L5143 2024 Generalized Fermat 1128 210908700^131072+1 1091056 L5639 2024 Generalized Fermat 1129 210564358^131072+1 1090963 L5639 2024 Generalized Fermat 1130 210434680^131072+1 1090928 L4380 2024 Generalized Fermat 1131 210397166^131072+1 1090918 L4870 2024 Generalized Fermat 1132 210160342^131072+1 1090854 L5974 2024 Generalized Fermat 1133 210088618^131072+1 1090834 L5041 2024 Generalized Fermat 1134 209917216^131072+1 1090788 L5755 2024 Generalized Fermat 1135 209839940^131072+1 1090767 L5639 2024 Generalized Fermat 1136 209637998^131072+1 1090712 L4544 2024 Generalized Fermat 1137 951*2^3623185+1 1090691 L1823 2019 1138 209494470^131072+1 1090673 L5869 2024 Generalized Fermat 1139 209385420^131072+1 1090644 L5720 2024 Generalized Fermat 1140 209108558^131072+1 1090568 L5460 2024 Generalized Fermat 1141 209101202^131072+1 1090566 L5011 2024 Generalized Fermat 1142 208565926^131072+1 1090420 L5016 2024 Generalized Fermat 1143 208497360^131072+1 1090402 L5234 2024 Generalized Fermat 1144 208392300^131072+1 1090373 L5030 2024 Generalized Fermat 1145 208374066^131072+1 1090368 L5869 2024 Generalized Fermat 1146 208352366^131072+1 1090362 L5044 2024 Generalized Fermat 1147 208236434^131072+1 1090330 L5984 2024 Generalized Fermat 1148 208003690^131072+1 1090267 L5639 2024 Generalized Fermat 1149 207985150^131072+1 1090262 L5791 2024 Generalized Fermat 1150 207753480^131072+1 1090198 L5974 2024 Generalized Fermat 1151 207514736^131072+1 1090133 L4477 2024 Generalized Fermat 1152 207445740^131072+1 1090114 L5273 2024 Generalized Fermat 1153 29*920^367810-1 1090113 L4064 2015 1154 207296788^131072+1 1090073 L5234 2024 Generalized Fermat 1155 207264358^131072+1 1090064 L5758 2024 Generalized Fermat 1156 207213640^131072+1 1090050 L5077 2024 Generalized Fermat 1157 206709064^131072+1 1089911 L5639 2024 Generalized Fermat 1158 206640054^131072+1 1089892 L5288 2024 Generalized Fermat 1159 206594738^131072+1 1089880 L5707 2024 Generalized Fermat 1160 206585726^131072+1 1089877 L5667 2024 Generalized Fermat 1161 206473754^131072+1 1089846 L5855 2024 Generalized Fermat 1162 206230080^131072+1 1089779 L5143 2024 Generalized Fermat 1163 206021166^131072+1 1089722 L5639 2024 Generalized Fermat 1164 205990406^131072+1 1089713 L4755 2024 Generalized Fermat 1165 205963322^131072+1 1089706 L5844 2024 Generalized Fermat 1166 205339678^131072+1 1089533 L4905 2024 Generalized Fermat 1167 205160722^131072+1 1089483 L5639 2024 Generalized Fermat 1168 205150506^131072+1 1089480 L5543 2024 Generalized Fermat 1169 205010004^131072+1 1089441 L5025 2024 Generalized Fermat 1170 14641*2^3618876+1 1089395 L181 2018 Generalized Fermat 1171 204695540^131072+1 1089354 L4905 2024 Generalized Fermat 1172 485*2^3618563+1 1089299 L3924 2019 1173 204382086^131072+1 1089267 L4477 2024 Generalized Fermat 1174 204079052^131072+1 1089182 L4763 2024 Generalized Fermat 1175 204016062^131072+1 1089165 L5712 2024 Generalized Fermat 1176 203275588^131072+1 1088958 L5041 2024 Generalized Fermat 1177 203250558^131072+1 1088951 L4210 2024 Generalized Fermat 1178 203238918^131072+1 1088948 L5586 2024 Generalized Fermat 1179 202515696^131072+1 1088745 L4549 2024 Generalized Fermat 1180 202391964^131072+1 1088710 L4835 2024 Generalized Fermat 1181 202251688^131072+1 1088670 L5288 2024 Generalized Fermat 1182 202114688^131072+1 1088632 L5711 2024 Generalized Fermat 1183 202045732^131072+1 1088612 L4537 2024 Generalized Fermat 1184 201593074^131072+1 1088485 L5027 2024 Generalized Fermat 1185 201536524^131072+1 1088469 L5769 2024 Generalized Fermat 1186 201389466^131072+1 1088427 L4537 2024 Generalized Fermat 1187 201249512^131072+1 1088388 L5234 2024 Generalized Fermat 1188 201239624^131072+1 1088385 L5732 2024 Generalized Fermat 1189 200519642^131072+1 1088181 L5712 2024 Generalized Fermat 1190 200459670^131072+1 1088164 L5948 2024 Generalized Fermat 1191 200433382^131072+1 1088156 L5948 2024 Generalized Fermat 1192 200280100^131072+1 1088113 L4892 2024 Generalized Fermat 1193 200053318^131072+1 1088048 L5586 2024 Generalized Fermat 1194 199971120^131072+1 1088025 L5030 2024 Generalized Fermat 1195 95*2^3614033+1 1087935 L1474 2019 1196 199502780^131072+1 1087891 L5878 2024 Generalized Fermat 1197 198402358^131072+1 1087577 L5606 2024 Generalized Fermat 1198 198320982^131072+1 1087553 L5938 2024 Generalized Fermat 1199 198319118^131072+1 1087553 L4737 2024 Generalized Fermat 1200 1005*2^3612300+1 1087414 L1823 2019 1201 197752702^131072+1 1087390 L5355 2024 Generalized Fermat 1202 197607368^131072+1 1087348 L5041 2024 Generalized Fermat 1203 197352408^131072+1 1087275 L4861 2024 Generalized Fermat 1204 861*2^3611815+1 1087268 L1745 2019 1205 197230100^131072+1 1087239 L4753 2024 Generalized Fermat 1206 197212998^131072+1 1087234 L5469 2024 Generalized Fermat 1207 197197506^131072+1 1087230 L4753 2024 Generalized Fermat 1208 197018872^131072+1 1087178 L4884 2024 Generalized Fermat 1209 1087*2^3611476+1 1087166 L4834 2019 1210 196722548^131072+1 1087093 L5782 2024 Generalized Fermat 1211 196703802^131072+1 1087087 L4742 2024 Generalized Fermat 1212 196687752^131072+1 1087082 L5051 2024 Generalized Fermat 1213 195950620^131072+1 1086869 L5929 2024 Generalized Fermat 1214 195834796^131072+1 1086835 L5070 2024 Generalized Fermat 1215 195048992^131072+1 1086606 L5143 2024 Generalized Fermat 1216 194911702^131072+1 1086566 L5948 2024 Generalized Fermat 1217 194819864^131072+1 1086539 L5690 2024 Generalized Fermat 1218 485767*2^3609357-1 1086531 L622 2008 1219 194730404^131072+1 1086513 L5782 2024 Generalized Fermat 1220 194644872^131072+1 1086488 L4720 2024 Generalized Fermat 1221 194584114^131072+1 1086470 L4201 2024 Generalized Fermat 1222 194263106^131072+1 1086376 L4892 2024 Generalized Fermat 1223 194202254^131072+1 1086359 L4835 2024 Generalized Fermat 1224 194159546^131072+1 1086346 L4387 2024 Generalized Fermat 1225 193935716^131072+1 1086280 L4835 2024 Generalized Fermat 1226 193247784^131072+1 1086078 L5234 2024 Generalized Fermat 1227 192866222^131072+1 1085966 L5913 2024 Generalized Fermat 1228 192651588^131072+1 1085902 L5880 2024 Generalized Fermat 1229 192606308^131072+1 1085889 L4476 2024 Generalized Fermat 1230 675*2^3606447+1 1085652 L3278 2019 1231 191678526^131072+1 1085614 L5234 2024 Generalized Fermat 1232 669*2^3606266+1 1085598 L1675 2019 1233 191567332^131072+1 1085581 L4309 2024 Generalized Fermat 1234 65077*2^3605944+1 1085503 L4685 2020 1235 191194450^131072+1 1085470 L4245 2024 Generalized Fermat 1236 1365*2^3605491+1 1085365 L1134 2022 1237 190810274^131072+1 1085356 L5460 2024 Generalized Fermat 1238 190309640^131072+1 1085206 L5880 2024 Generalized Fermat 1239 190187176^131072+1 1085169 L5470 2024 Generalized Fermat 1240 190144032^131072+1 1085156 L4341 2024 Generalized Fermat 1241 851*2^3604395+1 1085034 L2125 2019 1242 189411830^131072+1 1084937 L5578 2024 Generalized Fermat 1243 189240324^131072+1 1084885 L4892 2024 Generalized Fermat 1244 188766416^131072+1 1084743 L5639 2024 Generalized Fermat 1245 188655374^131072+1 1084709 L5842 2024 Generalized Fermat 1246 188646712^131072+1 1084706 L4905 2024 Generalized Fermat 1247 187961358^131072+1 1084499 L5881 2024 Generalized Fermat 1248 1143*2^3602429+1 1084443 L4754 2019 1249 187731580^131072+1 1084430 L5847 2024 Generalized Fermat 1250 187643362^131072+1 1084403 L5707 2024 Generalized Fermat 1251 187584550^131072+1 1084385 L5526 2024 Generalized Fermat 1252 187330820^131072+1 1084308 L5879 2024 Generalized Fermat 1253 1183*2^3601898+1 1084283 L1823 2019 1254 187231212^131072+1 1084278 L4550 2024 Generalized Fermat 1255 187184006^131072+1 1084263 L5051 2024 Generalized Fermat 1256 187007398^131072+1 1084210 L5604 2024 Generalized Fermat 1257 185411044^131072+1 1083722 L5044 2023 Generalized Fermat 1258 185248324^131072+1 1083672 L4371 2023 Generalized Fermat 1259 185110536^131072+1 1083629 L4559 2023 Generalized Fermat 1260 185015722^131072+1 1083600 L5723 2023 Generalized Fermat 1261 184855564^131072+1 1083551 L5748 2023 Generalized Fermat 1262 184835362^131072+1 1083545 L5416 2024 Generalized Fermat 1263 184814078^131072+1 1083538 L4559 2023 Generalized Fermat 1264 184653266^131072+1 1083488 L5606 2023 Generalized Fermat 1265 184523024^131072+1 1083448 L4550 2023 Generalized Fermat 1266 184317182^131072+1 1083385 L5863 2023 Generalized Fermat 1267 184310672^131072+1 1083383 L5863 2023 Generalized Fermat 1268 184119204^131072+1 1083324 L5863 2023 Generalized Fermat 1269 183839694^131072+1 1083237 L5865 2023 Generalized Fermat 1270 183591732^131072+1 1083160 L5586 2023 Generalized Fermat 1271 183392536^131072+1 1083098 L5044 2023 Generalized Fermat 1272 183383118^131072+1 1083096 L4371 2023 Generalized Fermat 1273 183157240^131072+1 1083025 L5853 2023 Generalized Fermat 1274 182252536^131072+1 1082744 L5854 2023 Generalized Fermat 1275 182166824^131072+1 1082717 L5854 2023 Generalized Fermat 1276 181969816^131072+1 1082655 L4591 2023 Generalized Fermat 1277 181913260^131072+1 1082637 L5853 2023 Generalized Fermat 1278 189*2^3596375+1 1082620 L3760 2016 1279 181302244^131072+1 1082446 L4550 2023 Generalized Fermat 1280 180680920^131072+1 1082251 L5639 2023 Generalized Fermat 1281 180455838^131072+1 1082180 L5847 2023 Generalized Fermat 1282 180111908^131072+1 1082071 L5844 2023 Generalized Fermat 1283 180084608^131072+1 1082062 L5056 2023 Generalized Fermat 1284 180045220^131072+1 1082050 L4550 2023 Generalized Fermat 1285 180002474^131072+1 1082036 L5361 2023 Generalized Fermat 1286 179913814^131072+1 1082008 L4875 2023 Generalized Fermat 1287 1089*2^3593267+1 1081685 L3035 2019 1288 178743858^131072+1 1081637 L5051 2023 Generalized Fermat 1289 178437884^131072+1 1081539 L4591 2023 Generalized Fermat 1290 178435022^131072+1 1081538 L5639 2023 Generalized Fermat 1291 178311240^131072+1 1081499 L5369 2023 Generalized Fermat 1292 178086108^131072+1 1081427 L4939 2023 Generalized Fermat 1293 178045832^131072+1 1081414 L5836 2023 Generalized Fermat 1294 177796222^131072+1 1081334 L5834 2023 Generalized Fermat 1295 177775606^131072+1 1081328 L5794 2023 Generalized Fermat 1296 177648552^131072+1 1081287 L5782 2023 Generalized Fermat 1297 177398652^131072+1 1081207 L4559 2023 Generalized Fermat 1298 177319028^131072+1 1081181 L5526 2023 Generalized Fermat 1299 177296064^131072+1 1081174 L5831 2023 Generalized Fermat 1300 177129922^131072+1 1081121 L4559 2023 Generalized Fermat 1301 176799404^131072+1 1081014 L4775 2023 Generalized Fermat 1302 176207346^131072+1 1080823 L5805 2023 Generalized Fermat 1303 176085282^131072+1 1080784 L5805 2023 Generalized Fermat 1304 175482140^131072+1 1080589 L5639 2023 Generalized Fermat 1305 175271418^131072+1 1080520 L5051 2023 Generalized Fermat 1306 19581121*2^3589357-1 1080512 p49 2022 1307 175200596^131072+1 1080497 L5817 2023 Generalized Fermat 1308 1101*2^3589103+1 1080431 L1823 2019 1309 174728608^131072+1 1080344 L5416 2023 Generalized Fermat 1310 174697724^131072+1 1080334 L4747 2023 Generalized Fermat 1311 174534362^131072+1 1080280 L5814 2023 Generalized Fermat 1312 174142738^131072+1 1080152 L4249 2023 Generalized Fermat 1313 174103532^131072+1 1080140 L4249 2023 Generalized Fermat 1314 173962482^131072+1 1080093 L4249 2023 Generalized Fermat 1315 35*2^3587843+1 1080050 L1979 2014 Divides GF(3587841,5) 1316 173717408^131072+1 1080013 L5634 2023 Generalized Fermat 1317 173561300^131072+1 1079962 L4249 2023 Generalized Fermat 1318 173343810^131072+1 1079891 L4249 2023 Generalized Fermat 1319 172026454^131072+1 1079456 L4737 2023 Generalized Fermat 1320 172004036^131072+1 1079449 L5512 2023 Generalized Fermat 1321 275*2^3585539+1 1079358 L3803 2016 1322 171677924^131072+1 1079341 L5512 2023 Generalized Fermat 1323 171610156^131072+1 1079319 L4249 2023 Generalized Fermat 1324 171518672^131072+1 1079288 L5586 2023 Generalized Fermat 1325 171128300^131072+1 1079158 L4249 2023 Generalized Fermat 1326 170982934^131072+1 1079110 L4201 2023 Generalized Fermat 1327 170626040^131072+1 1078991 L5748 2023 Generalized Fermat 1328 169929578^131072+1 1078758 L5748 2023 Generalized Fermat 1329 169369502^131072+1 1078570 L4410 2023 Generalized Fermat 1330 169299904^131072+1 1078547 L4559 2023 Generalized Fermat 1331 169059224^131072+1 1078466 L5746 2023 Generalized Fermat 1332 168885632^131072+1 1078408 L5793 2023 Generalized Fermat 1333 168602250^131072+1 1078312 L5782 2023 Generalized Fermat 1334 168576546^131072+1 1078303 L5639 2023 Generalized Fermat 1335 167845698^131072+1 1078056 L5735 2023 Generalized Fermat 1336 167604930^131072+1 1077974 L4859 2023 Generalized Fermat 1337 2*59^608685+1 1077892 g427 2014 Divides Phi(59^608685,2) 1338 167206862^131072+1 1077839 L5641 2023 Generalized Fermat 1339 166964502^131072+1 1077756 L5627 2023 Generalized Fermat 1340 651*2^3579843+1 1077643 L3035 2018 1341 166609122^131072+1 1077635 L5782 2023 Generalized Fermat 1342 166397330^131072+1 1077563 L5578 2023 Generalized Fermat 1343 166393356^131072+1 1077561 L5782 2023 Generalized Fermat 1344 166288612^131072+1 1077525 L4672 2023 Generalized Fermat 1345 166277052^131072+1 1077521 L5755 2023 Generalized Fermat 1346 166052226^131072+1 1077444 L4670 2023 Generalized Fermat 1347 165430644^131072+1 1077231 L4672 2023 Generalized Fermat 1348 165427494^131072+1 1077230 L4249 2023 Generalized Fermat 1349 583*2^3578402+1 1077210 L3035 2018 1350 165361824^131072+1 1077207 L5586 2023 Generalized Fermat 1351 165258594^131072+1 1077172 L4884 2023 Generalized Fermat 1352 165036358^131072+1 1077095 L5156 2023 Generalized Fermat 1353 164922680^131072+1 1077056 L4249 2023 Generalized Fermat 1354 164800594^131072+1 1077014 L5775 2023 Generalized Fermat 1355 164660428^131072+1 1076965 L4249 2023 Generalized Fermat 1356 309*2^3577339+1 1076889 L4406 2016 1357 164440734^131072+1 1076889 L5485 2023 Generalized Fermat 1358 163871194^131072+1 1076692 L5772 2023 Generalized Fermat 1359 163838506^131072+1 1076680 L5758 2023 Generalized Fermat 1360 163821336^131072+1 1076674 L5544 2023 Generalized Fermat 1361 163820256^131072+1 1076674 L5452 2023 Generalized Fermat 1362 163666380^131072+1 1076621 L5030 2023 Generalized Fermat 1363 163585288^131072+1 1076592 L4928 2023 Generalized Fermat 1364 163359994^131072+1 1076514 L5769 2023 Generalized Fermat 1365 163214942^131072+1 1076463 L4933 2023 Generalized Fermat 1366 163193584^131072+1 1076456 L5595 2023 Generalized Fermat 1367 163152818^131072+1 1076442 L5639 2023 Generalized Fermat 1368 163044252^131072+1 1076404 L5775 2023 Generalized Fermat 1369 162950466^131072+1 1076371 L5694 2023 Generalized Fermat 1370 162874590^131072+1 1076345 L5586 2023 Generalized Fermat 1371 162850104^131072+1 1076336 L5769 2023 Generalized Fermat 1372 162817576^131072+1 1076325 L5772 2023 Generalized Fermat 1373 1185*2^3574583+1 1076060 L4851 2018 1374 251*2^3574535+1 1076045 L3035 2016 1375 1485*2^3574333+1 1075985 L1134 2022 1376 161706626^131072+1 1075935 L4870 2023 Generalized Fermat 1377 161619620^131072+1 1075904 L5586 2023 Generalized Fermat 1378 161588716^131072+1 1075893 L4928 2023 Generalized Fermat 1379 161571504^131072+1 1075887 L5030 2023 Generalized Fermat 1380 161569668^131072+1 1075887 L5639 2023 Generalized Fermat 1381 160998114^131072+1 1075685 L5586 2023 Generalized Fermat 1382 160607310^131072+1 1075547 L5763 2023 Generalized Fermat 1383 160325616^131072+1 1075447 L5586 2023 Generalized Fermat 1384 160228242^131072+1 1075412 L5632 2023 Generalized Fermat 1385 160146172^131072+1 1075383 L4773 2023 Generalized Fermat 1386 159800918^131072+1 1075260 L5586 2023 Generalized Fermat 1387 159794566^131072+1 1075258 L4249 2023 Generalized Fermat 1388 159784836^131072+1 1075254 L5639 2023 Generalized Fermat 1389 159784822^131072+1 1075254 L5637 2023 Generalized Fermat 1390 1019*2^3571635+1 1075173 L1823 2018 1391 159509138^131072+1 1075156 L5637 2023 Generalized Fermat 1392 119*2^3571416-1 1075106 L2484 2018 1393 159214418^131072+1 1075051 L5755 2023 Generalized Fermat 1394 158831096^131072+1 1074914 L5022 2023 Generalized Fermat 1395 35*2^3570777+1 1074913 L2891 2014 1396 158696888^131072+1 1074865 L5030 2023 Generalized Fermat 1397 158472238^131072+1 1074785 L5586 2023 Generalized Fermat 1398 33*2^3570132+1 1074719 L2552 2014 1399 157923226^131072+1 1074587 L4249 2023 Generalized Fermat 1400 157541220^131072+1 1074449 L5416 2023 Generalized Fermat 1401 5*2^3569154-1 1074424 L503 2009 1402 157374268^131072+1 1074389 L5578 2023 Generalized Fermat 1403 81*492^399095-1 1074352 L4001 2015 1404 156978838^131072+1 1074246 L5332 2023 Generalized Fermat 1405 156789840^131072+1 1074177 L4747 2023 Generalized Fermat 1406 156756400^131072+1 1074165 L4249 2023 Generalized Fermat 1407 22934*5^1536762-1 1074155 L3789 2014 1408 156625064^131072+1 1074117 L5694 2023 Generalized Fermat 1409 156519708^131072+1 1074079 L5746 2023 Generalized Fermat 1410 156468140^131072+1 1074060 L4249 2023 Generalized Fermat 1411 156203340^131072+1 1073964 L5578 2023 Generalized Fermat 1412 156171526^131072+1 1073952 L5698 2023 Generalized Fermat 1413 155778562^131072+1 1073809 L4309 2023 Generalized Fermat 1414 155650426^131072+1 1073762 L5668 2023 Generalized Fermat 1415 155536474^131072+1 1073720 L4249 2023 Generalized Fermat 1416 155339878^131072+1 1073648 L5206 2023 Generalized Fermat 1417 155305266^131072+1 1073636 L5549 2023 Generalized Fermat 1418 155006218^131072+1 1073526 L4742 2023 Generalized Fermat 1419 154553092^131072+1 1073359 L4920 2023 Generalized Fermat 1420 154492166^131072+1 1073337 L4326 2023 Generalized Fermat 1421 154478286^131072+1 1073332 L4544 2023 Generalized Fermat 1422 154368914^131072+1 1073291 L5738 2023 Generalized Fermat 1423 153966766^131072+1 1073143 L5732 2023 Generalized Fermat 1424 265*2^3564373-1 1072986 L2484 2018 1425 153485148^131072+1 1072965 L5736 2023 Generalized Fermat 1426 153432848^131072+1 1072945 L5030 2023 Generalized Fermat 1427 153413432^131072+1 1072938 L4835 2023 Generalized Fermat 1428 771*2^3564109+1 1072907 L2125 2018 1429 381*2^3563676+1 1072776 L4190 2016 1430 152966530^131072+1 1072772 L5070 2023 Generalized Fermat 1431 555*2^3563328+1 1072672 L4850 2018 1432 152542626^131072+1 1072614 L5460 2023 Generalized Fermat 1433 151999396^131072+1 1072411 L5586 2023 Generalized Fermat 1434 151609814^131072+1 1072265 L5663 2023 Generalized Fermat 1435 151218242^131072+1 1072118 L5588 2023 Generalized Fermat 1436 151108236^131072+1 1072076 L4672 2023 Generalized Fermat 1437 151044622^131072+1 1072052 L5544 2023 Generalized Fermat 1438 151030068^131072+1 1072047 L4774 2023 Generalized Fermat 1439 150908454^131072+1 1072001 L4758 2023 Generalized Fermat 1440 150863054^131072+1 1071984 L5720 2023 Generalized Fermat 1441 1183*2^3560584+1 1071846 L1823 2018 1442 150014492^131072+1 1071663 L4476 2023 Generalized Fermat 1443 149972788^131072+1 1071647 L4559 2023 Generalized Fermat 1444 415*2^3559614+1 1071554 L3035 2016 1445 149665588^131072+1 1071530 L4892 2023 Generalized Fermat 1446 149142686^131072+1 1071331 L4684 2023 Generalized Fermat 1447 149057554^131072+1 1071298 L4933 2023 Generalized Fermat 1448 148598024^131072+1 1071123 L4476 2023 Generalized Fermat 1449 1103*2^3558177-503*2^1092022-1 1071122 p423 2022 Arithmetic progression (3,d=1103*2^3558176-503*2^1092022) 1450 1103*2^3558176-1 1071121 L1828 2018 1451 148592576^131072+1 1071121 L4476 2023 Generalized Fermat 1452 148425726^131072+1 1071057 L4289 2023 Generalized Fermat 1453 148154288^131072+1 1070952 L5714 2023 Generalized Fermat 1454 148093952^131072+1 1070929 L4720 2023 Generalized Fermat 1455 148070542^131072+1 1070920 L5155 2023 Generalized Fermat 1456 147988292^131072+1 1070889 L5155 2023 Generalized Fermat 1457 147816036^131072+1 1070822 L5634 2023 Generalized Fermat 1458 1379*2^3557072-1 1070789 L1828 2018 1459 147539992^131072+1 1070716 L4917 2023 Generalized Fermat 1460 147433824^131072+1 1070675 L4753 2023 Generalized Fermat 1461 147310498^131072+1 1070627 L5403 2023 Generalized Fermat 1462 147265916^131072+1 1070610 L5543 2023 Generalized Fermat 1463 146994540^131072+1 1070505 L5634 2023 Generalized Fermat 1464 146520528^131072+1 1070321 L5469 2023 Generalized Fermat 1465 146465338^131072+1 1070300 L5704 2023 Generalized Fermat 1466 146031082^131072+1 1070131 L4697 2023 Generalized Fermat 1467 145949782^131072+1 1070099 L5029 2023 Generalized Fermat 1468 145728478^131072+1 1070013 L5543 2023 Generalized Fermat 1469 145245346^131072+1 1069824 L5586 2023 Generalized Fermat 1470 145137270^131072+1 1069781 L4742 2023 Generalized Fermat 1471 145132288^131072+1 1069779 L4774 2023 Generalized Fermat 1472 144926960^131072+1 1069699 L5036 2023 Generalized Fermat 1473 144810806^131072+1 1069653 L5543 2023 Generalized Fermat 1474 681*2^3553141+1 1069605 L3035 2018 1475 144602744^131072+1 1069571 L5543 2023 Generalized Fermat 1476 143844356^131072+1 1069272 L5693 2023 Generalized Fermat 1477 599*2^3551793+1 1069200 L3824 2018 1478 143421820^131072+1 1069104 L4904 2023 Generalized Fermat 1479 621*2^3551472+1 1069103 L4687 2018 1480 143416574^131072+1 1069102 L4591 2023 Generalized Fermat 1481 143126384^131072+1 1068987 L5288 2023 Generalized Fermat 1482 142589776^131072+1 1068773 L4201 2023 Generalized Fermat 1483 773*2^3550373+1 1068772 L1808 2018 1484 142527792^131072+1 1068748 L4387 2023 Generalized Fermat 1485 142207386^131072+1 1068620 L5694 2023 Generalized Fermat 1486 142195844^131072+1 1068616 L5548 2023 Generalized Fermat 1487 141636602^131072+1 1068391 L5639 2023 Generalized Fermat 1488 141554190^131072+1 1068358 L4956 2023 Generalized Fermat 1489 1199*2^3548380-1 1068172 L1828 2018 1490 140928044^131072+1 1068106 L4870 2023 Generalized Fermat 1491 191*2^3548117+1 1068092 L4203 2015 1492 140859866^131072+1 1068078 L5011 2023 Generalized Fermat 1493 140824516^131072+1 1068064 L4760 2023 Generalized Fermat 1494 140649396^131072+1 1067993 L5578 2023 Generalized Fermat 1495 867*2^3547711+1 1067971 L4155 2018 1496 140473436^131072+1 1067922 L4210 2023 Generalized Fermat 1497 140237690^131072+1 1067826 L5051 2023 Generalized Fermat 1498 139941370^131072+1 1067706 L5671 2023 Generalized Fermat 1499 3^2237561+3^1118781+1 1067588 L3839 2014 Generalized unique 1500 139352402^131072+1 1067466 L5663 2023 Generalized Fermat 1501 351*2^3545752+1 1067381 L4082 2016 1502 138896860^131072+1 1067279 L4745 2023 Generalized Fermat 1503 138894074^131072+1 1067278 L5041 2023 Generalized Fermat 1504 138830036^131072+1 1067252 L5662 2023 Generalized Fermat 1505 138626864^131072+1 1067169 L5663 2023 Generalized Fermat 1506 138527284^131072+1 1067128 L5663 2023 Generalized Fermat 1507 93*2^3544744+1 1067077 L1728 2014 1508 138000006^131072+1 1066911 L5051 2023 Generalized Fermat 1509 137900696^131072+1 1066870 L4249 2023 Generalized Fermat 1510 137878102^131072+1 1066860 L5051 2023 Generalized Fermat 1511 1159*2^3543702+1 1066764 L1823 2018 1512 137521726^131072+1 1066713 L4672 2023 Generalized Fermat 1513 137486564^131072+1 1066699 L5586 2023 Generalized Fermat 1514 136227118^131072+1 1066175 L5416 2023 Generalized Fermat 1515 136192168^131072+1 1066160 L5556 2023 Generalized Fermat 1516 136124076^131072+1 1066132 L5041 2023 Generalized Fermat 1517 136122686^131072+1 1066131 L5375 2023 Generalized Fermat 1518 2*3^2234430-1 1066095 A2 2023 1519 178658*5^1525224-1 1066092 L3789 2014 1520 135744154^131072+1 1065973 L5068 2023 Generalized Fermat 1521 135695350^131072+1 1065952 L4249 2023 Generalized Fermat 1522 135623220^131072+1 1065922 L5657 2023 Generalized Fermat 1523 135513092^131072+1 1065876 L5656 2023 Generalized Fermat 1524 135497678^131072+1 1065869 L4387 2023 Generalized Fermat 1525 135458028^131072+1 1065852 L5051 2023 Generalized Fermat 1526 135332960^131072+1 1065800 L5655 2023 Generalized Fermat 1527 135135930^131072+1 1065717 L4387 2023 Generalized Fermat 1528 1085*2^3539671+1 1065551 L3035 2018 1529 134706086^131072+1 1065536 L5378 2023 Generalized Fermat 1530 134459616^131072+1 1065431 L5658 2023 Generalized Fermat 1531 134447516^131072+1 1065426 L4387 2023 Generalized Fermat 1532 134322272^131072+1 1065373 L4387 2023 Generalized Fermat 1533 134206304^131072+1 1065324 L4684 2023 Generalized Fermat 1534 134176868^131072+1 1065311 L5375 2023 Generalized Fermat 1535 133954018^131072+1 1065217 L5088 2023 Generalized Fermat 1536 133676500^131072+1 1065099 L4387 2023 Generalized Fermat 1537 133569020^131072+1 1065053 L5277 2023 Generalized Fermat 1538 133345154^131072+1 1064958 L4210 2023 Generalized Fermat 1539 133180238^131072+1 1064887 L5586 2023 Generalized Fermat 1540 133096042^131072+1 1064851 L4755 2023 Generalized Fermat 1541 465*2^3536871+1 1064707 L4459 2016 1542 1019*2^3536312-1 1064539 L1828 2012 1543 131820886^131072+1 1064303 L5069 2023 Generalized Fermat 1544 131412078^131072+1 1064126 L5653 2023 Generalized Fermat 1545 131370186^131072+1 1064108 L5036 2023 Generalized Fermat 1546 131309874^131072+1 1064082 L5069 2023 Generalized Fermat 1547 131112524^131072+1 1063996 L4245 2023 Generalized Fermat 1548 1179*2^3534450+1 1063979 L3035 2018 1549 130907540^131072+1 1063907 L4526 2023 Generalized Fermat 1550 130593462^131072+1 1063771 L4559 2023 Generalized Fermat 1551 447*2^3533656+1 1063740 L4457 2016 1552 130518578^131072+1 1063738 L5029 2023 Generalized Fermat 1553 1059*2^3533550+1 1063708 L1823 2018 1554 130198372^131072+1 1063598 L5416 2023 Generalized Fermat 1555 130148002^131072+1 1063576 L4387 2023 Generalized Fermat 1556 130128232^131072+1 1063567 L5029 2023 Generalized Fermat 1557 130051980^131072+1 1063534 L5416 2023 Generalized Fermat 1558 130048816^131072+1 1063533 L4245 2023 Generalized Fermat 1559 345*2^3532957+1 1063529 L4314 2016 1560 553*2^3532758+1 1063469 L1823 2018 1561 129292212^131072+1 1063201 L4285 2023 Generalized Fermat 1562 129159632^131072+1 1063142 L5051 2023 Generalized Fermat 1563 128558886^131072+1 1062877 L5518 2023 Generalized Fermat 1564 128520182^131072+1 1062860 L4745 2023 Generalized Fermat 1565 543131*2^3529754-1 1062568 L4925 2022 1566 127720948^131072+1 1062504 L5378 2023 Generalized Fermat 1567 141*2^3529287+1 1062424 L4185 2015 1568 127093036^131072+1 1062224 L4591 2023 Generalized Fermat 1569f 24950*745^369781-1 1062074 L4189 2024 1570 126611934^131072+1 1062008 L4776 2023 Generalized Fermat 1571 126423276^131072+1 1061923 L4201 2023 Generalized Fermat 1572 126334514^131072+1 1061883 L4249 2023 Generalized Fermat 1573 13*2^3527315-1 1061829 L1862 2016 1574 126199098^131072+1 1061822 L4591 2023 Generalized Fermat 1575 126189358^131072+1 1061818 L4704 2023 Generalized Fermat 1576 125966884^131072+1 1061717 L4747 2023 Generalized Fermat 1577 125714084^131072+1 1061603 L4745 2023 Generalized Fermat 1578 125141096^131072+1 1061343 L4559 2023 Generalized Fermat 1579 1393*2^3525571-1 1061306 L1828 2017 1580 125006494^131072+1 1061282 L5639 2023 Generalized Fermat 1581 124877454^131072+1 1061223 L4245 2023 Generalized Fermat 1582 124875502^131072+1 1061222 L4591 2023 Generalized Fermat 1583 124749274^131072+1 1061164 L4591 2023 Generalized Fermat 1584 124586054^131072+1 1061090 L4249 2023 Generalized Fermat 1585 124582356^131072+1 1061088 L5606 2023 Generalized Fermat 1586 124543852^131072+1 1061071 L4249 2023 Generalized Fermat 1587 124393514^131072+1 1061002 L4774 2023 Generalized Fermat 1588 124219534^131072+1 1060922 L4249 2023 Generalized Fermat 1589 124133348^131072+1 1060883 L5088 2023 Generalized Fermat 1590 124080788^131072+1 1060859 L5639 2023 Generalized Fermat 1591 1071*2^3523944+1 1060816 L1675 2018 1592 123910270^131072+1 1060780 L4249 2023 Generalized Fermat 1593 123856592^131072+1 1060756 L4201 2023 Generalized Fermat 1594 123338660^131072+1 1060517 L4905 2022 Generalized Fermat 1595 123306230^131072+1 1060502 L5638 2023 Generalized Fermat 1596 123195196^131072+1 1060451 L5029 2022 Generalized Fermat 1597 122941512^131072+1 1060333 L4559 2022 Generalized Fermat 1598 122869094^131072+1 1060300 L4939 2022 Generalized Fermat 1599 122481106^131072+1 1060120 L4704 2022 Generalized Fermat 1600 122414564^131072+1 1060089 L5627 2022 Generalized Fermat 1601 122372192^131072+1 1060069 L5099 2022 Generalized Fermat 1602 121854624^131072+1 1059828 L5051 2022 Generalized Fermat 1603 121462664^131072+1 1059645 L5632 2022 Generalized Fermat 1604 121158848^131072+1 1059502 L4774 2022 Generalized Fermat 1605 2220172*3^2220172+1 1059298 p137 2023 Generalized Cullen 1606 329*2^3518451+1 1059162 L1823 2016 1607 135*2^3518338+1 1059128 L4045 2015 1608 120106930^131072+1 1059006 L4249 2022 Generalized Fermat 1609 2*10^1059002-1 1059003 L3432 2013 Near-repdigit 1610 119744014^131072+1 1058833 L4249 2022 Generalized Fermat 1611 64*10^1058794+1 1058796 L4036 2017 Generalized Fermat 1612 119604848^131072+1 1058767 L4201 2022 Generalized Fermat 1613 119541900^131072+1 1058737 L4747 2022 Generalized Fermat 1614 119510296^131072+1 1058722 L4201 2022 Generalized Fermat 1615 119246256^131072+1 1058596 L4249 2022 Generalized Fermat 1616 119137704^131072+1 1058544 L4201 2022 Generalized Fermat 1617 118888350^131072+1 1058425 L4999 2022 Generalized Fermat 1618 599*2^3515959+1 1058412 L1823 2018 1619 118583824^131072+1 1058279 L4210 2022 Generalized Fermat 1620 118109876^131072+1 1058051 L4550 2022 Generalized Fermat 1621 117906758^131072+1 1057953 L4249 2022 Generalized Fermat 1622 117687318^131072+1 1057847 L4245 2022 Generalized Fermat 1623 117375862^131072+1 1057696 L4774 2022 Generalized Fermat 1624 117345018^131072+1 1057681 L4848 2022 Generalized Fermat 1625 117196584^131072+1 1057609 L4559 2022 Generalized Fermat 1626 117153716^131072+1 1057588 L4774 2022 Generalized Fermat 1627 117088740^131072+1 1057557 L4559 2022 Generalized Fermat 1628 116936156^131072+1 1057483 L5332 2022 Generalized Fermat 1629 116402336^131072+1 1057222 L4760 2022 Generalized Fermat 1630 7*2^3511774+1 1057151 p236 2008 Divides GF(3511773,6) 1631 116036228^131072+1 1057043 L4773 2022 Generalized Fermat 1632 116017862^131072+1 1057034 L4559 2022 Generalized Fermat 1633 115992582^131072+1 1057021 L4835 2022 Generalized Fermat 1634 115873312^131072+1 1056963 L4677 2022 Generalized Fermat 1635 1135*2^3510890+1 1056887 L1823 2018 1636 115704568^131072+1 1056880 L4559 2022 Generalized Fermat 1637 115479166^131072+1 1056769 L4774 2022 Generalized Fermat 1638 115409608^131072+1 1056735 L4774 2022 Generalized Fermat 1639 115256562^131072+1 1056659 L4559 2022 Generalized Fermat 1640 114687250^131072+1 1056377 L5007 2022 Generalized Fermat 1641 114643510^131072+1 1056356 L4659 2022 Generalized Fermat 1642 114340846^131072+1 1056205 L4559 2022 Generalized Fermat 1643 114159720^131072+1 1056115 L4787 2022 Generalized Fermat 1644 114055498^131072+1 1056063 L4387 2022 Generalized Fermat 1645 114009952^131072+1 1056040 L4387 2022 Generalized Fermat 1646 113904214^131072+1 1055987 L4559 2022 Generalized Fermat 1647 113807058^131072+1 1055939 L5157 2022 Generalized Fermat 1648 113550956^131072+1 1055810 L5578 2022 Generalized Fermat 1649 113521888^131072+1 1055796 L4387 2022 Generalized Fermat 1650 113431922^131072+1 1055751 L4559 2022 Generalized Fermat 1651 113328940^131072+1 1055699 L4787 2022 Generalized Fermat 1652 113327472^131072+1 1055698 L5467 2022 Generalized Fermat 1653 113325850^131072+1 1055698 L4559 2022 Generalized Fermat 1654 113313172^131072+1 1055691 L5005 2022 Generalized Fermat 1655 113191714^131072+1 1055630 L5056 2022 Generalized Fermat 1656 113170004^131072+1 1055619 L4584 2022 Generalized Fermat 1657 428639*2^3506452-1 1055553 L2046 2011 1658 112996304^131072+1 1055532 L5544 2022 Generalized Fermat 1659 112958834^131072+1 1055513 L5512 2022 Generalized Fermat 1660 112852910^131072+1 1055459 L5157 2022 Generalized Fermat 1661 112719374^131072+1 1055392 L4793 2022 Generalized Fermat 1662 112580428^131072+1 1055322 L5512 2022 Generalized Fermat 1663 112248096^131072+1 1055154 L5359 2022 Generalized Fermat 1664 112053266^131072+1 1055055 L5359 2022 Generalized Fermat 1665 112023072^131072+1 1055039 L5156 2022 Generalized Fermat 1666 111673524^131072+1 1054861 L5548 2022 Generalized Fermat 1667 111181588^131072+1 1054610 L4550 2022 Generalized Fermat 1668 104*383^408249+1 1054591 L2012 2021 1669 110866802^131072+1 1054449 L5547 2022 Generalized Fermat 1670 555*2^3502765+1 1054441 L1823 2018 1671 110824714^131072+1 1054427 L4201 2022 Generalized Fermat 1672 8300*171^472170+1 1054358 L5780 2023 1673 110428380^131072+1 1054223 L5543 2022 Generalized Fermat 1674 110406480^131072+1 1054212 L5051 2022 Generalized Fermat 1675 643*2^3501974+1 1054203 L1823 2018 1676 2*23^774109+1 1054127 g427 2014 Divides Phi(23^774109,2) 1677 1159*2^3501490+1 1054057 L2125 2018 1678 109678642^131072+1 1053835 L4559 2022 Generalized Fermat 1679 109654098^131072+1 1053823 L5143 2022 Generalized Fermat 1680 109142690^131072+1 1053557 L4201 2022 Generalized Fermat 1681 109082020^131072+1 1053525 L4773 2022 Generalized Fermat 1682 1189*2^3499042+1 1053320 L4724 2018 1683 108584736^131072+1 1053265 L5057 2022 Generalized Fermat 1684 108581414^131072+1 1053263 L5088 2022 Generalized Fermat 1685 108195632^131072+1 1053060 L5025 2022 Generalized Fermat 1686 108161744^131072+1 1053043 L4945 2022 Generalized Fermat 1687 108080390^131072+1 1053000 L4945 2022 Generalized Fermat 1688 107979316^131072+1 1052947 L4559 2022 Generalized Fermat 1689 107922308^131072+1 1052916 L5025 2022 Generalized Fermat 1690 609*2^3497474+1 1052848 L1823 2018 1691 9*2^3497442+1 1052836 L1780 2012 Generalized Fermat, divides GF(3497441,10) 1692 107732730^131072+1 1052816 L5518 2022 Generalized Fermat 1693 107627678^131072+1 1052761 L5025 2022 Generalized Fermat 1694 107492880^131072+1 1052689 L4550 2022 Generalized Fermat 1695 107420312^131072+1 1052651 L4550 2022 Generalized Fermat 1696 107404768^131072+1 1052643 L4267 2022 Generalized Fermat 1697 107222132^131072+1 1052546 L5019 2022 Generalized Fermat 1698 107126228^131072+1 1052495 L5025 2022 Generalized Fermat 1699 87*2^3496188+1 1052460 L1576 2014 1700 106901434^131072+1 1052375 L4760 2022 Generalized Fermat 1701 106508704^131072+1 1052166 L5505 2022 Generalized Fermat 1702 106440698^131072+1 1052130 L4245 2022 Generalized Fermat 1703 106019242^131072+1 1051904 L5025 2022 Generalized Fermat 1704 105937832^131072+1 1051860 L4745 2022 Generalized Fermat 1705 783*2^3494129+1 1051841 L3824 2018 1706 105861526^131072+1 1051819 L5500 2022 Generalized Fermat 1707 105850338^131072+1 1051813 L5504 2022 Generalized Fermat 1708 105534478^131072+1 1051643 L5025 2022 Generalized Fermat 1709 105058710^131072+1 1051386 L5499 2022 Generalized Fermat 1710 104907548^131072+1 1051304 L4245 2022 Generalized Fermat 1711 104808996^131072+1 1051250 L4591 2022 Generalized Fermat 1712 104641854^131072+1 1051159 L4245 2022 Generalized Fermat 1713 51*2^3490971+1 1050889 L1823 2014 1714 1485*2^3490746+1 1050823 L1134 2021 1715 103828182^131072+1 1050715 L5072 2022 Generalized Fermat 1716 103605376^131072+1 1050593 L5056 2022 Generalized Fermat 1717 103289324^131072+1 1050419 L5044 2022 Generalized Fermat 1718 103280694^131072+1 1050414 L4745 2022 Generalized Fermat 1719 103209792^131072+1 1050375 L5025 2022 Generalized Fermat 1720 103094212^131072+1 1050311 L4245 2022 Generalized Fermat 1721 103013294^131072+1 1050266 L4745 2022 Generalized Fermat 1722 753*2^3488818+1 1050242 L1823 2018 1723 102507732^131072+1 1049986 L4245 2022 Generalized Fermat 1724 102469684^131072+1 1049965 L4245 2022 Generalized Fermat 1725 102397132^131072+1 1049925 L4720 2022 Generalized Fermat 1726 102257714^131072+1 1049847 L4245 2022 Generalized Fermat 1727 699*2^3487253+1 1049771 L1204 2018 1728 102050324^131072+1 1049732 L5036 2022 Generalized Fermat 1729 102021074^131072+1 1049716 L4245 2022 Generalized Fermat 1730 101915106^131072+1 1049656 L5469 2022 Generalized Fermat 1731 101856256^131072+1 1049623 L4774 2022 Generalized Fermat 1732b 1001*2^3486566-1 1049564 L4518 2024 1733 249*2^3486411+1 1049517 L4045 2015 1734 195*2^3486379+1 1049507 L4108 2015 1735 101607438^131072+1 1049484 L4591 2022 Generalized Fermat 1736 4687*2^3485926+1 1049372 L5302 2023 1737 2691*2^3485924+1 1049372 L5302 2023 1738 6083*2^3485877+1 1049358 L5837 2023 1739 101328382^131072+1 1049328 L4591 2022 Generalized Fermat 1740 101270816^131072+1 1049295 L4245 2022 Generalized Fermat 1741 9757*2^3485666+1 1049295 L5284 2023 1742 8859*2^3484982+1 1049089 L5833 2023 1743 100865034^131072+1 1049067 L4387 2022 Generalized Fermat 1744 59912*5^1500861+1 1049062 L3772 2014 1745 495*2^3484656+1 1048989 L3035 2016 1746 100719472^131072+1 1048985 L5270 2022 Generalized Fermat 1747 100534258^131072+1 1048880 L4245 2022 Generalized Fermat 1748 100520930^131072+1 1048872 L4201 2022 Generalized Fermat 1749 4467*2^3484204+1 1048854 L5189 2023 1750 4873*2^3484142+1 1048835 L5710 2023 1751 100441116^131072+1 1048827 L4309 2022 Generalized Fermat 1752 (3*2^1742059)^2-3*2^1742059+1 1048825 A3 2023 Generalized unique 1753 3891*2^3484099+1 1048822 L5260 2023 1754 7833*2^3484060+1 1048811 L5830 2023 1755 100382228^131072+1 1048794 L4308 2022 Generalized Fermat 1756 100369508^131072+1 1048786 L5157 2022 Generalized Fermat 1757 100324226^131072+1 1048761 L4201 2022 Generalized Fermat 1758 3097*2^3483800+1 1048732 L5829 2023 1759 5873*2^3483573+1 1048664 L5710 2023 1760 2895*2^3483455+1 1048628 L5480 2023 1761 9029*2^3483337+1 1048593 L5393 2023 1762 100010426^131072+1 1048582 L5375 2022 Generalized Fermat 1763 5531*2^3483263+1 1048571 L5825 2023 1764 323*2^3482789+1 1048427 L1204 2016 1765 3801*2^3482723+1 1048408 L5517 2023 1766 99665972^131072+1 1048386 L4201 2022 Generalized Fermat 1767 99650934^131072+1 1048377 L5375 2022 Generalized Fermat 1768 99557826^131072+1 1048324 L5466 2022 Generalized Fermat 1769 8235*2^3482277+1 1048274 L5820 2023 1770 9155*2^3482129+1 1048230 L5226 2023 1771 99351950^131072+1 1048206 L5143 2022 Generalized Fermat 1772 4325*2^3481969+1 1048181 L5434 2023 1773 99189780^131072+1 1048113 L4201 2022 Generalized Fermat 1774 1149*2^3481694+1 1048098 L1823 2018 1775 98978354^131072+1 1047992 L5465 2022 Generalized Fermat 1776 6127*2^3481244+1 1047963 L5226 2023 1777 98922946^131072+1 1047960 L5453 2022 Generalized Fermat 1778 8903*2^3481217+1 1047955 L5226 2023 1779 3595*2^3481178+1 1047943 L5214 2023 1780 3799*2^3480810+1 1047832 L5226 2023 1781 6101*2^3480801+1 1047830 L5226 2023 1782 98652282^131072+1 1047804 L4201 2022 Generalized Fermat 1783 1740349*2^3480698+1 1047801 L5765 2023 Generalized Cullen 1784 98557818^131072+1 1047750 L5464 2022 Generalized Fermat 1785 98518362^131072+1 1047727 L5460 2022 Generalized Fermat 1786 5397*2^3480379+1 1047703 L5226 2023 1787 5845*2^3479972+1 1047580 L5517 2023 1788 98240694^131072+1 1047566 L4720 2022 Generalized Fermat 1789 98200338^131072+1 1047543 L4559 2022 Generalized Fermat 1790 701*2^3479779+1 1047521 L2125 2018 1791 98137862^131072+1 1047507 L4525 2022 Generalized Fermat 1792 813*2^3479728+1 1047506 L4724 2018 1793 7125*2^3479509+1 1047441 L5812 2023 1794 1971*2^3479061+1 1047306 L5226 2023 1795 1215*2^3478543+1 1047149 L5226 2023 1796 97512766^131072+1 1047143 L5460 2022 Generalized Fermat 1797 5985*2^3478217+1 1047052 L5387 2023 1798 3093*2^3478148+1 1047031 L5261 2023 1799 2145*2^3478095+1 1047015 L5387 2023 1800 6685*2^3478086+1 1047013 L5237 2023 1801 9603*2^3478084+1 1047012 L5178 2023 1802 1315*2^3477718+1 1046901 L5316 2023 1803 97046574^131072+1 1046870 L4956 2022 Generalized Fermat 1804 197*2^3477399+1 1046804 L2125 2015 1805 8303*2^3477201+1 1046746 L5387 2023 1806 96821302^131072+1 1046738 L5453 2022 Generalized Fermat 1807 5925*2^3477009+1 1046688 L5810 2023 1808 96734274^131072+1 1046686 L5297 2022 Generalized Fermat 1809 7825*2^3476524+1 1046542 L5174 2023 1810 96475576^131072+1 1046534 L4424 2022 Generalized Fermat 1811 8197*2^3476332+1 1046485 L5174 2023 1812 8529*2^3476111+1 1046418 L5387 2023 1813 8411*2^3476055+1 1046401 L5783 2023 1814 4319*2^3475955+1 1046371 L5803 2023 1815 96111850^131072+1 1046319 L4245 2022 Generalized Fermat 1816 95940796^131072+1 1046218 L4591 2022 Generalized Fermat 1817 6423*2^3475393+1 1046202 L5174 2023 1818 2281*2^3475340+1 1046185 L5302 2023 1819 7379*2^3474983+1 1046078 L5798 2023 1820 4*5^1496566+1 1046056 L4965 2023 Generalized Fermat 1821 95635202^131072+1 1046036 L5452 2021 Generalized Fermat 1822 95596816^131072+1 1046013 L4591 2021 Generalized Fermat 1823 4737*2^3474562+1 1045952 L5302 2023 1824 2407*2^3474406+1 1045904 L5557 2023 1825 95308284^131072+1 1045841 L4584 2021 Generalized Fermat 1826 491*2^3473837+1 1045732 L4343 2016 1827 2693*2^3473721+1 1045698 L5174 2023 1828 94978760^131072+1 1045644 L4201 2021 Generalized Fermat 1829 3375*2^3473210+1 1045544 L5294 2023 1830 8835*2^3472666+1 1045381 L5178 2023 1831 5615*2^3472377+1 1045294 L5174 2023 1832 1785*2^3472229+1 1045249 L875 2023 1833 8997*2^3472036+1 1045191 L5302 2023 1834 9473*2^3471885+1 1045146 L5294 2023 1835 7897*2^3471568+1 1045050 L5294 2023 1836 93950924^131072+1 1045025 L5425 2021 Generalized Fermat 1837 93886318^131072+1 1044985 L5433 2021 Generalized Fermat 1838 1061*2^3471354-1 1044985 L1828 2017 1839 1913*2^3471177+1 1044932 L5189 2023 1840 93773904^131072+1 1044917 L4939 2021 Generalized Fermat 1841 7723*2^3471074+1 1044902 L5189 2023 1842 4195*2^3470952+1 1044865 L5294 2023 1843 93514592^131072+1 1044760 L4591 2021 Generalized Fermat 1844 5593*2^3470520+1 1044735 L5387 2023 1845 3665*2^3469955+1 1044565 L5189 2023 1846 3301*2^3469708+1 1044490 L5261 2023 1847 6387*2^3469634+1 1044468 L5192 2023 1848 93035888^131072+1 1044467 L4245 2021 Generalized Fermat 1849 8605*2^3469570+1 1044449 L5387 2023 1850 1359*2^3468725+1 1044194 L5197 2023 1851 92460588^131072+1 1044114 L5254 2021 Generalized Fermat 1852 7585*2^3468338+1 1044078 L5197 2023 1853 1781*2^3468335+1 1044077 L5387 2023 1854 6885*2^3468181+1 1044031 L5197 2023 1855 4372*30^706773-1 1043994 L4955 2023 1856 7287*2^3467938+1 1043958 L5776 2023 1857 92198216^131072+1 1043953 L4738 2021 Generalized Fermat 1858 3163*2^3467710+1 1043889 L5517 2023 1859 6099*2^3467689+1 1043883 L5197 2023 1860 6665*2^3467627+1 1043864 L5174 2023 1861 4099*2^3467462+1 1043814 L5774 2023 1862 5285*2^3467445+1 1043809 L5189 2023 1863b 1001*2^3467258-1 1043752 L4518 2024 1864 91767880^131072+1 1043686 L5051 2021 Generalized Fermat 1865 91707732^131072+1 1043649 L4591 2021 Generalized Fermat 1866 5935*2^3466880+1 1043639 L5197 2023 1867 91689894^131072+1 1043638 L4591 2021 Generalized Fermat 1868 91685784^131072+1 1043635 L4591 2021 Generalized Fermat 1869 8937*2^3466822+1 1043622 L5174 2023 1870 91655310^131072+1 1043616 L4659 2021 Generalized Fermat 1871 8347*2^3466736+1 1043596 L5770 2023 1872 8863*2^3465780+1 1043308 L5766 2023 1873 3895*2^3465744+1 1043297 L5640 2023 1874 91069366^131072+1 1043251 L5277 2021 Generalized Fermat 1875 91049202^131072+1 1043239 L4591 2021 Generalized Fermat 1876 91033554^131072+1 1043229 L4591 2021 Generalized Fermat 1877 8561*2^3465371+1 1043185 L5197 2023 1878 90942952^131072+1 1043172 L4387 2021 Generalized Fermat 1879 90938686^131072+1 1043170 L4387 2021 Generalized Fermat 1880 9971*2^3465233+1 1043144 L5488 2023 1881 90857490^131072+1 1043119 L4591 2021 Generalized Fermat 1882 3801*2^3464980+1 1043067 L5197 2023 1883 3099*2^3464739+1 1042994 L5284 2023 1884 90382348^131072+1 1042820 L4267 2021 Generalized Fermat 1885 641*2^3464061+1 1042790 L1444 2018 1886 6717*2^3463735+1 1042692 L5754 2023 1887 6015*2^3463561+1 1042640 L5387 2023 1888 90006846^131072+1 1042583 L4773 2021 Generalized Fermat 1889 1667*2^3463355+1 1042577 L5226 2023 1890 2871*2^3463313+1 1042565 L5189 2023 1891 89977312^131072+1 1042565 L5070 2021 Generalized Fermat 1892 6007*2^3463048+1 1042486 L5226 2023 1893 89790434^131072+1 1042446 L5007 2021 Generalized Fermat 1894 9777*2^3462742+1 1042394 L5197 2023 1895 5215*2^3462740+1 1042393 L5174 2023 1896 8365*2^3462722+1 1042388 L5320 2023 1897 3597*2^3462056+1 1042187 L5174 2023 1898 2413*2^3461890+1 1042137 L5197 2023 1899 89285798^131072+1 1042125 L5157 2021 Generalized Fermat 1900 453*2^3461688+1 1042075 L3035 2016 1901 89113896^131072+1 1042016 L5338 2021 Generalized Fermat 1902 4401*2^3461476+1 1042012 L5197 2023 1903 9471*2^3461305+1 1041961 L5594 2023 1904 7245*2^3461070+1 1041890 L5449 2023 1905 3969*2^3460942+1 1041851 L5471 2023 Generalized Fermat 1906 4365*2^3460914+1 1041843 L5197 2023 1907 4613*2^3460861+1 1041827 L5614 2023 1908 88760062^131072+1 1041789 L4903 2021 Generalized Fermat 1909 5169*2^3460553+1 1041734 L5742 2023 1910 8395*2^3460530+1 1041728 L5284 2023 1911 5835*2^3460515+1 1041723 L5740 2023 1912 8059*2^3460246+1 1041642 L5350 2023 1913 571*2^3460216+1 1041632 L3035 2018 1914 6065*2^3460205+1 1041630 L5683 2023 1915 88243020^131072+1 1041457 L4774 2021 Generalized Fermat 1916 88166868^131072+1 1041408 L5277 2021 Generalized Fermat 1917 6237*2^3459386+1 1041383 L5509 2023 1918 88068088^131072+1 1041344 L4933 2021 Generalized Fermat 1919 4029*2^3459062+1 1041286 L5727 2023 1920 87920992^131072+1 1041249 L4249 2021 Generalized Fermat 1921 7055*2^3458909+1 1041240 L5509 2023 1922 7297*2^3458768+1 1041197 L5726 2023 1923 2421*2^3458432+1 1041096 L5725 2023 1924 7907*2^3458207+1 1041028 L5509 2023 1925 87547832^131072+1 1041006 L4591 2021 Generalized Fermat 1926 87454694^131072+1 1040946 L4672 2021 Generalized Fermat 1927 7839*2^3457846+1 1040920 L5231 2023 1928 87370574^131072+1 1040891 L5297 2021 Generalized Fermat 1929 87352356^131072+1 1040879 L4387 2021 Generalized Fermat 1930 87268788^131072+1 1040825 L4917 2021 Generalized Fermat 1931 87192538^131072+1 1040775 L4861 2021 Generalized Fermat 1932 5327*2^3457363+1 1040774 L5715 2023 1933 87116452^131072+1 1040725 L5297 2021 Generalized Fermat 1934 87039658^131072+1 1040675 L5297 2021 Generalized Fermat 1935 6059*2^3457001+1 1040665 L5197 2023 1936 8953*2^3456938+1 1040646 L5724 2023 1937 8669*2^3456759+1 1040593 L5710 2023 1938 86829162^131072+1 1040537 L5265 2021 Generalized Fermat 1939 4745*2^3456167+1 1040414 L5705 2023 1940 8213*2^3456141+1 1040407 L5703 2023 1941 86413544^131072+1 1040264 L4914 2021 Generalized Fermat 1942 86347638^131072+1 1040221 L4848 2021 Generalized Fermat 1943 86295564^131072+1 1040186 L5030 2021 Generalized Fermat 1944 1155*2^3455254+1 1040139 L4711 2017 1945 37292*5^1487989+1 1040065 L3553 2013 1946 86060696^131072+1 1040031 L5057 2021 Generalized Fermat 1947 5525*2^3454069+1 1039783 L5651 2023 1948 4235*2^3453573+1 1039633 L5650 2023 1949 6441*2^3453227+1 1039529 L5683 2023 1950 4407*2^3453195+1 1039519 L5650 2023 1951 9867*2^3453039+1 1039473 L5686 2023 1952 85115888^131072+1 1039403 L4909 2021 Generalized Fermat 1953 4857*2^3452675+1 1039363 L5600 2023 1954 8339*2^3452667+1 1039361 L5651 2023 1955 84924212^131072+1 1039275 L4309 2021 Generalized Fermat 1956 7079*2^3452367+1 1039270 L5650 2023 1957 5527*2^3452342+1 1039263 L5679 2023 1958 84817722^131072+1 1039203 L4726 2021 Generalized Fermat 1959 84765338^131072+1 1039168 L4245 2021 Generalized Fermat 1960 84757790^131072+1 1039163 L5051 2021 Generalized Fermat 1961 84723284^131072+1 1039140 L5051 2021 Generalized Fermat 1962 84715930^131072+1 1039135 L4963 2021 Generalized Fermat 1963 84679936^131072+1 1039111 L4864 2021 Generalized Fermat 1964 3719*2^3451667+1 1039059 L5294 2023 1965 6725*2^3451455+1 1038996 L5685 2023 1966 8407*2^3451334+1 1038959 L5524 2023 1967 84445014^131072+1 1038952 L4909 2021 Generalized Fermat 1968 84384358^131072+1 1038912 L4622 2021 Generalized Fermat 1969 4*10^1038890+1 1038891 L4789 2024 Generalized Fermat 1970 1623*2^3451109+1 1038891 L5308 2023 1971 8895*2^3450982+1 1038854 L5666 2023 1972 84149050^131072+1 1038753 L5033 2021 Generalized Fermat 1973 2899*2^3450542+1 1038721 L5600 2023 1974 6337*2^3449506+1 1038409 L5197 2023 1975 4381*2^3449456+1 1038394 L5392 2023 1976 2727*2^3449326+1 1038355 L5421 2023 1977 2877*2^3449311+1 1038350 L5517 2023 1978 7507*2^3448920+1 1038233 L5284 2023 1979 3629*2^3448919+1 1038232 L5192 2023 1980 83364886^131072+1 1038220 L4591 2021 Generalized Fermat 1981 83328182^131072+1 1038195 L5051 2021 Generalized Fermat 1982 1273*2^3448551-1 1038121 L1828 2012 1983 1461*2^3448423+1 1038082 L4944 2023 1984 3235*2^3448352+1 1038061 L5571 2023 1985 4755*2^3448344+1 1038059 L5524 2023 1986 5655*2^3448288+1 1038042 L5651 2023 1987 4873*2^3448176+1 1038009 L5524 2023 1988 83003850^131072+1 1037973 L4963 2021 Generalized Fermat 1989 8139*2^3447967+1 1037946 L5652 2023 1990 1065*2^3447906+1 1037927 L4664 2017 1991 1717*2^3446756+1 1037581 L5517 2023 1992 6357*2^3446434+1 1037484 L5284 2023 1993 1155*2^3446253+1 1037429 L3035 2017 1994 9075*2^3446090+1 1037381 L5648 2023 1995 82008736^131072+1 1037286 L4963 2021 Generalized Fermat 1996 82003030^131072+1 1037282 L4410 2021 Generalized Fermat 1997 1483*2^3445724+1 1037270 L5650 2023 1998 81976506^131072+1 1037264 L4249 2021 Generalized Fermat 1999 2223*2^3445682+1 1037257 L5647 2023 2000 8517*2^3445488+1 1037200 L5302 2023 2001 2391*2^3445281+1 1037137 L5596 2023 2002 6883*2^3444784+1 1036988 L5264 2023 2003 81477176^131072+1 1036916 L4245 2020 Generalized Fermat 2004 81444036^131072+1 1036893 L4245 2020 Generalized Fermat 2005 8037*2^3443920+1 1036728 L5626 2023 2006 1375*2^3443850+1 1036706 L5192 2023 2007 81096098^131072+1 1036649 L4249 2020 Generalized Fermat 2008 27288429267119080686...(1036580 other digits)...83679577406643267931 1036620 p384 2015 2009 943*2^3442990+1 1036447 L4687 2017 2010 7743*2^3442814+1 1036395 L5514 2023 2011 5511*2^3442468+1 1036290 L5514 2022 2012 80284312^131072+1 1036076 L5051 2020 Generalized Fermat 2013 6329*2^3441717+1 1036064 L5631 2022 2014 3957*2^3441568+1 1036019 L5476 2022 2015 80146408^131072+1 1035978 L5051 2020 Generalized Fermat 2016 4191*2^3441427+1 1035977 L5189 2022 2017 2459*2^3441331+1 1035948 L5514 2022 2018 4335*2^3441306+1 1035940 L5178 2022 2019 2331*2^3441249+1 1035923 L5626 2022 2020 79912550^131072+1 1035812 L5186 2020 Generalized Fermat 2021 79801426^131072+1 1035733 L4245 2020 Generalized Fermat 2022 79789806^131072+1 1035725 L4658 2020 Generalized Fermat 2023 2363*2^3440385+1 1035663 L5625 2022 2024 5265*2^3440332+1 1035647 L5421 2022 2025 6023*2^3440241+1 1035620 L5517 2022 2026 943*2^3440196+1 1035606 L1448 2017 2027 6663*2^3439901+1 1035518 L5624 2022 2028 79485098^131072+1 1035507 L5130 2020 Generalized Fermat 2029 79428414^131072+1 1035466 L4793 2020 Generalized Fermat 2030 79383608^131072+1 1035434 L4387 2020 Generalized Fermat 2031 5745*2^3439450+1 1035382 L5178 2022 2032 79201682^131072+1 1035303 L5051 2020 Generalized Fermat 2033 5109*2^3439090+1 1035273 L5594 2022 2034 543*2^3438810+1 1035188 L3035 2017 2035 625*2^3438572+1 1035117 L1355 2017 Generalized Fermat 2036 3325*2^3438506+1 1035097 L5619 2022 2037 78910032^131072+1 1035093 L5051 2020 Generalized Fermat 2038 78880690^131072+1 1035072 L5159 2020 Generalized Fermat 2039 78851276^131072+1 1035051 L4928 2020 Generalized Fermat 2040 4775*2^3438217+1 1035011 L5618 2022 2041 78714954^131072+1 1034953 L5130 2020 Generalized Fermat 2042 6963*2^3437988+1 1034942 L5616 2022 2043 74*941^348034-1 1034913 L5410 2020 2044 7423*2^3437856+1 1034902 L5192 2022 2045 6701*2^3437801+1 1034886 L5615 2022 2046 5741*2^3437773+1 1034877 L5517 2022 2047e 488639*2^3437688-1 1034853 L5327 2024 2048 78439440^131072+1 1034753 L5051 2020 Generalized Fermat 2049 5601*2^3437259+1 1034722 L5612 2022 2050 7737*2^3437192+1 1034702 L5611 2022 2051 113*2^3437145+1 1034686 L4045 2015 2052 78240016^131072+1 1034608 L4245 2020 Generalized Fermat 2053 6387*2^3436719+1 1034560 L5613 2022 2054 78089172^131072+1 1034498 L4245 2020 Generalized Fermat 2055 2921*2^3436299+1 1034433 L5231 2022 2056 9739*2^3436242+1 1034416 L5178 2022 2057 77924964^131072+1 1034378 L5051 2020 Generalized Fermat 2058 77918854^131072+1 1034374 L4760 2020 Generalized Fermat 2059 1147*2^3435970+1 1034334 L3035 2017 2060 4589*2^3435707+1 1034255 L5174 2022 2061 7479*2^3435683+1 1034248 L5421 2022 2062 2863*2^3435616+1 1034227 L5197 2022 2063 77469882^131072+1 1034045 L4591 2020 Generalized Fermat 2064 9863*2^3434697+1 1033951 L5189 2022 2065 4065*2^3434623+1 1033929 L5197 2022 2066 77281404^131072+1 1033906 L4963 2020 Generalized Fermat 2067 9187*2^3434126+1 1033779 L5600 2022 2068 9531*2^3434103+1 1033772 L5601 2022 2069 1757*2^3433547+1 1033604 L5594 2022 2070 1421*2^3433099+1 1033469 L5237 2022 2071 3969*2^3433007+1 1033442 L5189 2022 2072 6557*2^3433003+1 1033441 L5261 2022 2073 7335*2^3432982+1 1033435 L5231 2022 2074 7125*2^3432836+1 1033391 L5594 2022 2075 2517*2^3432734+1 1033360 L5231 2022 2076 911*2^3432643+1 1033332 L1355 2017 2077 5413*2^3432626+1 1033328 L5231 2022 2078 76416048^131072+1 1033265 L4672 2020 Generalized Fermat 2079 3753*2^3432413+1 1033263 L5261 2022 2080 2691*2^3432191+1 1033196 L5585 2022 2081 3933*2^3432125+1 1033177 L5387 2022 2082 76026988^131072+1 1032975 L5094 2020 Generalized Fermat 2083 76018874^131072+1 1032969 L4774 2020 Generalized Fermat 2084 1435*2^3431284+1 1032923 L5587 2022 2085 75861530^131072+1 1032851 L5053 2020 Generalized Fermat 2086 6783*2^3430781+1 1032772 L5261 2022 2087 8079*2^3430683+1 1032743 L5585 2022 2088 75647276^131072+1 1032690 L4677 2020 Generalized Fermat 2089 75521414^131072+1 1032595 L4584 2020 Generalized Fermat 2090 6605*2^3430187+1 1032593 L5463 2022 2091 3761*2^3430057+1 1032554 L5582 2022 2092 6873*2^3429937+1 1032518 L5294 2022 2093 8067*2^3429891+1 1032504 L5581 2022 2094 3965*2^3429719+1 1032452 L5579 2022 2095 3577*2^3428812+1 1032179 L5401 2022 2096 8747*2^3428755+1 1032163 L5493 2022 2097 9147*2^3428638+1 1032127 L5493 2022 2098 3899*2^3428535+1 1032096 L5174 2022 2099 74833516^131072+1 1032074 L5102 2020 Generalized Fermat 2100 74817490^131072+1 1032062 L4591 2020 Generalized Fermat 2101 8891*2^3428303+1 1032026 L5532 2022 2102 793181*20^793181+1 1031959 L5765 2023 Generalized Cullen 2103 2147*2^3427371+1 1031745 L5189 2022 2104 74396818^131072+1 1031741 L4791 2020 Generalized Fermat 2105 74381296^131072+1 1031729 L4550 2020 Generalized Fermat 2106 74363146^131072+1 1031715 L4898 2020 Generalized Fermat 2107 1127*2^3427219+1 1031699 L3035 2017 2108 74325990^131072+1 1031687 L5024 2020 Generalized Fermat 2109 3021*2^3427059+1 1031652 L5554 2022 2110 3255*2^3426983+1 1031629 L5231 2022 2111 1733*2^3426753+1 1031559 L5565 2022 2112 2339*2^3426599+1 1031513 L5237 2022 2113 4729*2^3426558+1 1031501 L5493 2022 2114 73839292^131072+1 1031313 L4550 2020 Generalized Fermat 2115 5445*2^3425839+1 1031285 L5237 2022 2116 159*2^3425766+1 1031261 L4045 2015 2117 73690464^131072+1 1031198 L4884 2020 Generalized Fermat 2118 3405*2^3425045+1 1031045 L5261 2022 2119 73404316^131072+1 1030976 L5011 2020 Generalized Fermat 2120 1695*2^3424517+1 1030886 L5387 2022 2121 4715*2^3424433+1 1030861 L5557 2022 2122 5525*2^3424423+1 1030858 L5387 2022 2123 8615*2^3424231+1 1030801 L5261 2022 2124 5805*2^3424200+1 1030791 L5237 2022 2125 73160610^131072+1 1030787 L4550 2020 Generalized Fermat 2126 73132228^131072+1 1030765 L4905 2020 Generalized Fermat 2127 73099962^131072+1 1030740 L5068 2020 Generalized Fermat 2128 2109*2^3423798-3027*2^988658+1 1030670 CH13 2023 Arithmetic progression (3,d=2109*2^3423797-3027*2^988658) 2129 2109*2^3423797+1 1030669 L5197 2022 2130 4929*2^3423494+1 1030579 L5554 2022 2131 2987*2^3422911+1 1030403 L5226 2022 2132 72602370^131072+1 1030351 L4201 2020 Generalized Fermat 2133 4843*2^3422644+1 1030323 L5553 2022 2134 5559*2^3422566+1 1030299 L5555 2022 2135 7583*2^3422501+1 1030280 L5421 2022 2136 1119*2^3422189+1 1030185 L1355 2017 2137 2895*2^3422031-143157*2^2144728+1 1030138 p423 2023 Arithmetic progression (3,d=2895*2^3422030-143157*2^2144728) 2138 2895*2^3422030+1 1030138 L5237 2022 2139 2835*2^3421697+1 1030037 L5387 2022 2140 3363*2^3421353+1 1029934 L5226 2022 2141 72070092^131072+1 1029932 L4201 2020 Generalized Fermat 2142 9147*2^3421264+1 1029908 L5237 2022 2143 9705*2^3420915+1 1029803 L5540 2022 2144 1005*2^3420846+1 1029781 L2714 2017 Divides GF(3420844,10) 2145 8919*2^3420758+1 1029755 L5226 2022 2146 71732900^131072+1 1029665 L5053 2020 Generalized Fermat 2147 71679108^131072+1 1029623 L5072 2020 Generalized Fermat 2148 5489*2^3420137+1 1029568 L5174 2022 2149 9957*2^3420098+1 1029557 L5237 2022 2150 93*10^1029523-1 1029525 L4789 2019 Near-repdigit 2151 71450224^131072+1 1029440 L5029 2020 Generalized Fermat 2152 7213*2^3419370+1 1029337 L5421 2022 2153 7293*2^3419264+1 1029305 L5192 2022 2154 975*2^3419230+1 1029294 L3545 2017 2155 4191*2^3419227+1 1029294 L5421 2022 2156e 28080*745^358350-1 1029242 L4189 2024 2157 2393*2^3418921+1 1029202 L5197 2022 2158 999*2^3418885+1 1029190 L3035 2017 2159 2925*2^3418543+1 1029088 L5174 2022 2160 70960658^131072+1 1029049 L5039 2020 Generalized Fermat 2161 70948704^131072+1 1029039 L4660 2020 Generalized Fermat 2162 70934282^131072+1 1029028 L5067 2020 Generalized Fermat 2163 7383*2^3418297+1 1029014 L5189 2022 2164 70893680^131072+1 1028995 L5063 2020 Generalized Fermat 2165 907*2^3417890+1 1028891 L3035 2017 2166 5071*2^3417884+1 1028890 L5237 2022 2167 3473*2^3417741+1 1028847 L5541 2022 2168 191249*2^3417696-1 1028835 L1949 2010 2169 70658696^131072+1 1028806 L5051 2020 Generalized Fermat 2170 3299*2^3417329+1 1028723 L5421 2022 2171 6947*2^3416979+1 1028618 L5540 2022 2172 70421038^131072+1 1028615 L4984 2020 Generalized Fermat 2173 8727*2^3416652+1 1028519 L5226 2022 2174 8789*2^3416543+1 1028486 L5197 2022 2175 70050828^131072+1 1028315 L5021 2020 Generalized Fermat 2176 7917*2^3415947+1 1028307 L5537 2022 2177 70022042^131072+1 1028291 L4201 2020 Generalized Fermat 2178 2055*2^3415873+1 1028284 L5535 2022 2179 4731*2^3415712+1 1028236 L5192 2022 2180 2219*2^3415687+1 1028228 L5178 2022 2181 69915032^131072+1 1028204 L4591 2020 Generalized Fermat 2182 5877*2^3415419+1 1028148 L5532 2022 2183 3551*2^3415275+1 1028104 L5231 2022 2184 69742382^131072+1 1028063 L5053 2020 Generalized Fermat 2185 2313*2^3415046+1 1028035 L5226 2022 2186 69689592^131072+1 1028020 L4387 2020 Generalized Fermat 2187 7637*2^3414875+1 1027984 L5507 2022 2188 2141*2^3414821+1 1027967 L5226 2022 2189 69622572^131072+1 1027965 L4909 2020 Generalized Fermat 2190 3667*2^3414686+1 1027927 L5226 2022 2191 69565722^131072+1 1027919 L4387 2020 Generalized Fermat 2192 6159*2^3414623+1 1027908 L5226 2022 2193 69534788^131072+1 1027894 L5029 2020 Generalized Fermat 2194 4577*2^3413539+1 1027582 L5387 2022 2195 5137*2^3413524+1 1027577 L5261 2022 2196 8937*2^3413364+1 1027529 L5527 2022 2197 8829*2^3413339+1 1027522 L5531 2022 2198 7617*2^3413315+1 1027515 L5197 2022 2199 68999820^131072+1 1027454 L5044 2020 Generalized Fermat 2200 3141*2^3413112+1 1027453 L5463 2022 2201 8831*2^3412931+1 1027399 L5310 2022 2202 68924112^131072+1 1027391 L4745 2020 Generalized Fermat 2203 68918852^131072+1 1027387 L5021 2020 Generalized Fermat 2204 5421*2^3412877+1 1027383 L5310 2022 2205 9187*2^3412700+1 1027330 L5337 2022 2206 68811158^131072+1 1027298 L4245 2020 Generalized Fermat 2207 8243*2^3412577+1 1027292 L5524 2022 2208 1751*2^3412565+1 1027288 L5523 2022 2209 9585*2^3412318+1 1027215 L5197 2022 2210 9647*2^3412247+1 1027193 L5178 2022 2211 3207*2^3412108+1 1027151 L5189 2022 2212 479*2^3411975+1 1027110 L2873 2016 2213 245*2^3411973+1 1027109 L1935 2015 2214 177*2^3411847+1 1027071 L4031 2015 2215 68536972^131072+1 1027071 L5027 2020 Generalized Fermat 2216 9963*2^3411566+1 1026988 L5237 2022 2217 68372810^131072+1 1026934 L4956 2020 Generalized Fermat 2218 9785*2^3411223+1 1026885 L5189 2022 2219 5401*2^3411136+1 1026858 L5261 2022 2220 68275006^131072+1 1026853 L4963 2020 Generalized Fermat 2221 9431*2^3411105+1 1026849 L5237 2022 2222 8227*2^3410878+1 1026781 L5316 2022 2223 4735*2^3410724+1 1026734 L5226 2022 2224 9515*2^3410707+1 1026730 L5237 2022 2225 6783*2^3410690+1 1026724 L5434 2022 2226 8773*2^3410558+1 1026685 L5261 2022 2227 4629*2^3410321+1 1026613 L5517 2022 2228 67894288^131072+1 1026535 L5025 2020 Generalized Fermat 2229 113*2^3409934-1 1026495 L2484 2014 2230 5721*2^3409839+1 1026468 L5226 2022 2231 67725850^131072+1 1026393 L5029 2020 Generalized Fermat 2232 6069*2^3409493+1 1026364 L5237 2022 2233 1981*910^346850+1 1026347 L1141 2021 2234 5317*2^3409236+1 1026287 L5471 2022 2235 7511*2^3408985+1 1026211 L5514 2022 2236 7851*2^3408909+1 1026188 L5176 2022 2237 67371416^131072+1 1026094 L4550 2020 Generalized Fermat 2238 6027*2^3408444+1 1026048 L5239 2022 2239 59*2^3408416-1 1026038 L426 2010 2240 2153*2^3408333+1 1026014 L5237 2022 2241 9831*2^3408056+1 1025932 L5233 2022 2242 3615*2^3408035+1 1025925 L5217 2022 2243 6343*2^3407950+1 1025899 L5226 2022 2244 8611*2^3407516+1 1025769 L5509 2022 2245 66982940^131072+1 1025765 L4249 2020 Generalized Fermat 2246 7111*2^3407452+1 1025750 L5508 2022 2247 66901180^131072+1 1025696 L5018 2020 Generalized Fermat 2248 6945*2^3407256+1 1025691 L5507 2022 2249 6465*2^3407229+1 1025682 L5301 2022 2250 1873*2^3407156+1 1025660 L5440 2022 2251 7133*2^3406377+1 1025426 L5279 2022 2252 7063*2^3406122+1 1025349 L5178 2022 2253 3105*2^3405800+1 1025252 L5502 2022 2254 953*2^3405729+1 1025230 L3035 2017 2255 66272848^131072+1 1025159 L5013 2020 Generalized Fermat 2256 66131722^131072+1 1025037 L4530 2020 Generalized Fermat 2257 373*2^3404702+1 1024921 L3924 2016 2258 7221*2^3404507+1 1024863 L5231 2022 2259 6641*2^3404259+1 1024788 L5501 2022 2260 9225*2^3404209+1 1024773 L5250 2022 2261 65791182^131072+1 1024743 L4623 2019 Generalized Fermat 2262 833*2^3403765+1 1024639 L3035 2017 2263 65569854^131072+1 1024552 L4210 2019 Generalized Fermat 2264 2601*2^3403459+1 1024547 L5350 2022 2265 8835*2^3403266+1 1024490 L5161 2022 2266 7755*2^3403010+1 1024412 L5161 2022 2267 3123*2^3402834+1 1024359 L5260 2022 2268 65305572^131072+1 1024322 L5001 2019 Generalized Fermat 2269 65200798^131072+1 1024230 L4999 2019 Generalized Fermat 2270 1417*2^3402246+1 1024182 L5497 2022 2271 5279*2^3402241+1 1024181 L5250 2022 2272 6651*2^3402137+1 1024150 L5476 2022 2273 1779*2^3401715+1 1024022 L5493 2022 2274 64911056^131072+1 1023977 L4870 2019 Generalized Fermat 2275 8397*2^3401502+1 1023959 L5476 2022 2276 4057*2^3401472+1 1023949 L5492 2022 2277 64791668^131072+1 1023872 L4905 2019 Generalized Fermat 2278 4095*2^3401174+1 1023860 L5418 2022 2279 5149*2^3400970+1 1023798 L5176 2022 2280 4665*2^3400922+1 1023784 L5308 2022 2281 24*414^391179+1 1023717 L4273 2016 2282 64568930^131072+1 1023676 L4977 2019 Generalized Fermat 2283 64506894^131072+1 1023621 L4977 2019 Generalized Fermat 2284 1725*2^3400371+1 1023617 L5197 2022 2285 64476916^131072+1 1023595 L4997 2019 Generalized Fermat 2286 9399*2^3400243+1 1023580 L5488 2022 2287 1241*2^3400127+1 1023544 L5279 2022 2288 1263*2^3399876+1 1023468 L5174 2022 2289 1167*2^3399748+1 1023430 L3545 2017 2290 64024604^131072+1 1023194 L4591 2019 Generalized Fermat 2291 7679*2^3398569+1 1023076 L5295 2022 2292 6447*2^3398499+1 1023054 L5302 2022 2293 63823568^131072+1 1023015 L4585 2019 Generalized Fermat 2294 2785*2^3398332+1 1023004 L5250 2022 2295 611*2^3398273+1 1022985 L3035 2017 2296 2145*2^3398034+1 1022914 L5302 2022 2297 3385*2^3397254+1 1022679 L5161 2022 2298 4*3^2143374+1 1022650 L4965 2020 Generalized Fermat 2299 4463*2^3396657+1 1022500 L5476 2022 2300 2889*2^3396450+1 1022437 L5178 2022 2301 8523*2^3396448+1 1022437 L5231 2022 2302 63168480^131072+1 1022428 L4861 2019 Generalized Fermat 2303 63165756^131072+1 1022425 L4987 2019 Generalized Fermat 2304 3349*2^3396326+1 1022400 L5480 2022 2305 63112418^131072+1 1022377 L4201 2019 Generalized Fermat 2306 4477*2^3395786+1 1022238 L5161 2022 2307 3853*2^3395762+1 1022230 L5302 2022 2308 2693*2^3395725+1 1022219 L5284 2022 2309 8201*2^3395673+1 1022204 L5178 2022 2310 255*2^3395661+1 1022199 L3898 2014 2311 1049*2^3395647+1 1022195 L3035 2017 2312 9027*2^3395623+1 1022189 L5263 2022 2313 2523*2^3395549+1 1022166 L5472 2022 2314 3199*2^3395402+1 1022122 L5264 2022 2315 342924651*2^3394939-1 1021988 L4166 2017 2316 3825*2^3394947+1 1021985 L5471 2022 2317 1895*2^3394731+1 1021920 L5174 2022 2318 62276102^131072+1 1021618 L4715 2019 Generalized Fermat 2319 555*2^3393389+1 1021515 L2549 2017 2320 1865*2^3393387+1 1021515 L5237 2022 2321 4911*2^3393373+1 1021511 L5231 2022 2322 62146946^131072+1 1021500 L4720 2019 Generalized Fermat 2323 5229*2^3392587+1 1021275 L5463 2022 2324 61837354^131072+1 1021215 L4656 2019 Generalized Fermat 2325 609*2^3392301+1 1021188 L3035 2017 2326 9787*2^3392236+1 1021169 L5350 2022 2327 303*2^3391977+1 1021090 L2602 2016 2328 805*2^3391818+1 1021042 L4609 2017 2329 6475*2^3391496+1 1020946 L5174 2022 2330 67*2^3391385-1 1020911 L1959 2014 2331 61267078^131072+1 1020688 L4923 2019 Generalized Fermat 2332 4639*2^3390634+1 1020687 L5189 2022 2333 5265*2^3390581+1 1020671 L5456 2022 2334 663*2^3390469+1 1020636 L4316 2017 2335 6945*2^3390340+1 1020598 L5174 2022 2336 5871*2^3390268+1 1020577 L5231 2022 2337 7443*2^3390141+1 1020539 L5226 2022 2338 5383*2^3389924+1 1020473 L5350 2021 2339 61030988^131072+1 1020468 L4898 2019 Generalized Fermat 2340 9627*2^3389331+1 1020295 L5231 2021 2341 60642326^131072+1 1020104 L4591 2019 Generalized Fermat 2342 8253*2^3388624+1 1020082 L5226 2021 2343 3329*2^3388472-1 1020036 L4841 2020 2344 4695*2^3388393+1 1020012 L5237 2021 2345 60540024^131072+1 1020008 L4591 2019 Generalized Fermat 2346 7177*2^3388144+1 1019937 L5174 2021 2347 60455792^131072+1 1019929 L4760 2019 Generalized Fermat 2348 9611*2^3388059+1 1019912 L5435 2021 2349 1833*2^3387760+1 1019821 L5226 2021 2350 9003*2^3387528+1 1019752 L5189 2021 2351 3161*2^3387141+1 1019635 L5226 2021 2352 7585*2^3387110+1 1019626 L5189 2021 2353 60133106^131072+1 1019624 L4942 2019 Generalized Fermat 2354 453*2^3387048+1 1019606 L2602 2016 2355 5177*2^3386919+1 1019568 L5226 2021 2356 8739*2^3386813+1 1019537 L5226 2021 2357 2875*2^3386638+1 1019484 L5226 2021 2358 7197*2^3386526+1 1019450 L5178 2021 2359 1605*2^3386229+1 1019360 L5226 2021 2360 8615*2^3386181+1 1019346 L5442 2021 2361 3765*2^3386141+1 1019334 L5174 2021 2362 5379*2^3385806+1 1019233 L5237 2021 2363 59720358^131072+1 1019232 L4656 2019 Generalized Fermat 2364 59692546^131072+1 1019206 L4747 2019 Generalized Fermat 2365 59515830^131072+1 1019037 L4737 2019 Generalized Fermat 2366 173198*5^1457792-1 1018959 L3720 2013 2367 59405420^131072+1 1018931 L4645 2019 Generalized Fermat 2368 2109*2^3384733+1 1018910 L5261 2021 2369 7067*2^3384667+1 1018891 L5439 2021 2370 59362002^131072+1 1018890 L4249 2019 Generalized Fermat 2371 59305348^131072+1 1018835 L4932 2019 Generalized Fermat 2372 2077*2^3384472+1 1018831 L5237 2021 2373 59210784^131072+1 1018745 L4926 2019 Generalized Fermat 2374 59161754^131072+1 1018697 L4928 2019 Generalized Fermat 2375 9165*2^3383917+1 1018665 L5435 2021 2376 5579*2^3383209+1 1018452 L5434 2021 2377 8241*2^3383131+1 1018428 L5387 2021 2378 7409*2^3382869+1 1018349 L5161 2021 2379 4883*2^3382813+1 1018332 L5161 2021 2380 9783*2^3382792+1 1018326 L5189 2021 2381 58589880^131072+1 1018145 L4923 2019 Generalized Fermat 2382 58523466^131072+1 1018080 L4802 2019 Generalized Fermat 2383 8877*2^3381936+1 1018069 L5429 2021 2384 58447816^131072+1 1018006 L4591 2019 Generalized Fermat 2385 58447642^131072+1 1018006 L4591 2019 Generalized Fermat 2386 6675*2^3381688+1 1017994 L5197 2021 2387 2445*2^3381129+1 1017825 L5231 2021 2388 58247118^131072+1 1017811 L4309 2019 Generalized Fermat 2389 3381*2^3380585+1 1017662 L5237 2021 2390 7899*2^3380459+1 1017624 L5421 2021 2391 5945*2^3379933+1 1017465 L5418 2021 2392 1425*2^3379921+1 1017461 L1134 2020 2393 4975*2^3379420+1 1017311 L5161 2021 2394 57704312^131072+1 1017278 L4591 2019 Generalized Fermat 2395 57694224^131072+1 1017268 L4656 2019 Generalized Fermat 2396 57594734^131072+1 1017169 L4656 2019 Generalized Fermat 2397 9065*2^3378851+1 1017140 L5414 2021 2398 2369*2^3378761+1 1017112 L5197 2021 2399 57438404^131072+1 1017015 L4745 2019 Generalized Fermat 2400 621*2^3378148+1 1016927 L3035 2017 2401 7035*2^3378141+1 1016926 L5408 2021 2402 2067*2^3378115+1 1016918 L5405 2021 2403 1093*2^3378000+1 1016883 L4583 2017 2404 9577*2^3377612+1 1016767 L5406 2021 2405 861*2^3377601+1 1016763 L4582 2017 2406 5811*2^3377016+1 1016587 L5261 2021 2407 2285*2^3376911+1 1016555 L5261 2021 2408 4199*2^3376903+1 1016553 L5174 2021 2409 6405*2^3376890+1 1016549 L5269 2021 2410 1783*2^3376810+1 1016525 L5261 2021 2411 5401*2^3376768+1 1016513 L5174 2021 2412 56917336^131072+1 1016496 L4729 2019 Generalized Fermat 2413 2941*2^3376536+1 1016443 L5174 2021 2414 1841*2^3376379+1 1016395 L5401 2021 2415 6731*2^3376133+1 1016322 L5261 2021 2416 56735576^131072+1 1016314 L4760 2019 Generalized Fermat 2417 8121*2^3375933+1 1016262 L5356 2021 2418 5505*2^3375777+1 1016214 L5174 2021 2419 56584816^131072+1 1016162 L4289 2019 Generalized Fermat 2420 3207*2^3375314+1 1016075 L5237 2021 2421 56459558^131072+1 1016036 L4892 2019 Generalized Fermat 2422 5307*2^3374939+1 1015962 L5392 2021 2423 56383242^131072+1 1015959 L4889 2019 Generalized Fermat 2424 56307420^131072+1 1015883 L4843 2019 Generalized Fermat 2425 208003!-1 1015843 p394 2016 Factorial 2426 6219*2^3374198+1 1015739 L5393 2021 2427 3777*2^3374072+1 1015701 L5261 2021 2428 9347*2^3374055+1 1015696 L5387 2021 2429 1461*2^3373383+1 1015493 L5384 2021 2430 6395*2^3373135+1 1015419 L5382 2021 2431 7869*2^3373021+1 1015385 L5381 2021 2432 55645700^131072+1 1015210 L4745 2019 Generalized Fermat 2433 4905*2^3372216+1 1015142 L5261 2021 2434 55579418^131072+1 1015142 L4745 2019 Generalized Fermat 2435 2839*2^3372034+1 1015087 L5174 2021 2436 7347*2^3371803+1 1015018 L5217 2021 2437 9799*2^3371378+1 1014890 L5261 2021 2438 4329*2^3371201+1 1014837 L5197 2021 2439 3657*2^3371183+1 1014831 L5360 2021 2440 55268442^131072+1 1014822 L4525 2019 Generalized Fermat 2441 179*2^3371145+1 1014819 L3763 2014 2442 5155*2^3371016+1 1014781 L5237 2021 2443 7575*2^3371010+1 1014780 L5237 2021 2444 55184170^131072+1 1014736 L4871 2018 Generalized Fermat 2445 9195*2^3370798+1 1014716 L5178 2021 2446 1749*2^3370786+1 1014711 L5362 2021 2447 8421*2^3370599+1 1014656 L5174 2021 2448 55015050^131072+1 1014561 L4205 2018 Generalized Fermat 2449 4357*2^3369572+1 1014346 L5231 2021 2450 6073*2^3369544+1 1014338 L5358 2021 2451 839*2^3369383+1 1014289 L2891 2017 2452 65*2^3369359+1 1014280 L5236 2021 2453 8023*2^3369228+1 1014243 L5356 2021 2454 677*2^3369115+1 1014208 L2103 2017 2455 1437*2^3369083+1 1014199 L5282 2021 2456 9509*2^3368705+1 1014086 L5237 2021 2457 54548788^131072+1 1014076 L4726 2018 Generalized Fermat 2458 4851*2^3368668+1 1014074 L5307 2021 2459 7221*2^3368448+1 1014008 L5353 2021 2460 5549*2^3368437+1 1014005 L5217 2021 2461 715*2^3368210+1 1013936 L4527 2017 2462 617*2^3368119+1 1013908 L4552 2017 2463 54361742^131072+1 1013881 L4210 2018 Generalized Fermat 2464 1847*2^3367999+1 1013872 L5352 2021 2465 54334044^131072+1 1013852 L4745 2018 Generalized Fermat 2466 6497*2^3367743+1 1013796 L5285 2021 2467 2533*2^3367666+1 1013772 L5326 2021 2468 6001*2^3367552+1 1013738 L5350 2021 2469 54212352^131072+1 1013724 L4307 2018 Generalized Fermat 2470 54206254^131072+1 1013718 L4249 2018 Generalized Fermat 2471 777*2^3367372+1 1013683 L4408 2017 2472 9609*2^3367351+1 1013678 L5285 2021 2473 54161106^131072+1 1013670 L4307 2018 Generalized Fermat 2474 2529*2^3367317+1 1013667 L5237 2021 2475 5941*2^3366960+1 1013560 L5189 2021 2476 5845*2^3366956+1 1013559 L5197 2021 2477 54032538^131072+1 1013535 L4591 2018 Generalized Fermat 2478 9853*2^3366608+1 1013454 L5178 2021 2479 61*2^3366033-1 1013279 L4405 2017 2480 7665*2^3365896+1 1013240 L5345 2021 2481 8557*2^3365648+1 1013165 L5346 2021 2482 369*2^3365614+1 1013154 L4364 2016 2483 53659976^131072+1 1013141 L4823 2018 Generalized Fermat 2484 8201*2^3365283+1 1013056 L5345 2021 2485 9885*2^3365151+1 1013016 L5344 2021 2486 5173*2^3365096+1 1012999 L5285 2021 2487 8523*2^3364918+1 1012946 L5237 2021 2488 3985*2^3364776+1 1012903 L5178 2021 2489 9711*2^3364452+1 1012805 L5192 2021 2490 7003*2^3364172+1 1012721 L5217 2021 2491 6703*2^3364088+1 1012696 L5337 2021 2492 7187*2^3364011+1 1012673 L5217 2021 2493 53161266^131072+1 1012610 L4307 2018 Generalized Fermat 2494 53078434^131072+1 1012521 L4835 2018 Generalized Fermat 2495 2345*2^3363157+1 1012415 L5336 2021 2496 6527*2^3363135+1 1012409 L5167 2021 2497 9387*2^3363088+1 1012395 L5161 2021 2498 8989*2^3362986+1 1012364 L5161 2021 2499 533*2^3362857+1 1012324 L3171 2017 2500 619*2^3362814+1 1012311 L4527 2017 2501 2289*2^3362723+1 1012284 L5161 2021 2502 7529*2^3362565+1 1012237 L5161 2021 2503 7377*2^3362366+1 1012177 L5161 2021 2504 4509*2^3362311+1 1012161 L5324 2021 2505 7021*2^3362208+1 1012130 L5178 2021 2506 52712138^131072+1 1012127 L4819 2018 Generalized Fermat 2507 104*873^344135-1 1012108 L4700 2018 2508 4953*2^3362054+1 1012083 L5323 2021 2509 8575*2^3361798+1 1012006 L5237 2021 2510 2139*2^3361706+1 1011978 L5174 2021 2511 6939*2^3361203+1 1011827 L5217 2021 2512 52412612^131072+1 1011802 L4289 2018 Generalized Fermat 2513 3^2120580-3^623816-1 1011774 CH9 2019 2514 8185*2^3360896+1 1011735 L5189 2021 2515 2389*2^3360882+1 1011730 L5317 2021 2516 2787*2^3360631+1 1011655 L5197 2021 2517 6619*2^3360606+1 1011648 L5316 2021 2518 2755*2^3360526+1 1011623 L5174 2021 2519 1445*2^3360099+1 1011494 L5261 2021 2520 2846*67^553905-1 1011476 L4955 2023 2521 8757*2^3359788+1 1011401 L5197 2021 2522 52043532^131072+1 1011400 L4810 2018 Generalized Fermat 2523 5085*2^3359696+1 1011373 L5261 2021 2524 51954384^131072+1 1011303 L4720 2018 Generalized Fermat 2525 6459*2^3359457+1 1011302 L5310 2021 2526 51872628^131072+1 1011213 L4591 2018 Generalized Fermat 2527 6115*2^3358998+1 1011163 L5309 2021 2528 7605*2^3358929+1 1011143 L5308 2021 2529 2315*2^3358899+1 1011133 L5197 2021 2530 6603*2^3358525+1 1011021 L5307 2021 2531 51580416^131072+1 1010891 L4765 2018 Generalized Fermat 2532 51570250^131072+1 1010880 L4591 2018 Generalized Fermat 2533 51567684^131072+1 1010877 L4800 2018 Generalized Fermat 2534 5893*2^3357490+1 1010709 L5285 2021 2535 6947*2^3357075+1 1010585 L5302 2021 2536 4621*2^3357068+1 1010582 L5301 2021 2537 51269192^131072+1 1010547 L4795 2018 Generalized Fermat 2538 1479*2^3356275+1 1010343 L5178 2021 2539 3645*2^3356232+1 1010331 L5296 2021 2540 1259*2^3356215+1 1010325 L5298 2021 2541 2075*2^3356057+1 1010278 L5174 2021 2542 4281*2^3356051+1 1010276 L5295 2021 2543 1275*2^3356045+1 1010274 L5294 2021 2544 50963598^131072+1 1010206 L4726 2018 Generalized Fermat 2545 4365*2^3355770+1 1010192 L5261 2021 2546 50844724^131072+1 1010074 L4656 2018 Generalized Fermat 2547 2183*2^3355297+1 1010049 L5266 2021 2548 3087*2^3355000+1 1009960 L5226 2021 2549 8673*2^3354760+1 1009888 L5233 2021 2550 50495632^131072+1 1009681 L4591 2018 Generalized Fermat 2551 3015*2^3353943+1 1009641 L5290 2021 2552 6819*2^3353877+1 1009622 L5174 2021 2553 9*10^1009567-1 1009568 L3735 2016 Near-repdigit 2554 6393*2^3353366+1 1009468 L5287 2021 2555 3573*2^3353273+1 1009440 L5161 2021 2556 4047*2^3353222+1 1009425 L5286 2021 2557 1473*2^3353114+1 1009392 L5161 2021 2558 1183*2^3353058+1 1009375 L3824 2017 2559 50217306^131072+1 1009367 L4720 2018 Generalized Fermat 2560 81*2^3352924+1 1009333 L1728 2012 Generalized Fermat 2561 50110436^131072+1 1009245 L4591 2018 Generalized Fermat 2562 50055102^131072+1 1009183 L4309 2018 Generalized Fermat 2563 7123*2^3352180+1 1009111 L5161 2021 2564 2757*2^3352180+1 1009111 L5285 2021 2565 9307*2^3352014+1 1009061 L5284 2021 2566 2217*2^3351732+1 1008976 L5283 2021 2567 543*2^3351686+1 1008961 L4198 2017 2568 4419*2^3351666+1 1008956 L5279 2021 2569 49817700^131072+1 1008912 L4760 2018 Generalized Fermat 2570 3059*2^3351379+1 1008870 L5278 2021 2571 7789*2^3351046+1 1008770 L5276 2021 2572 9501*2^3350668+1 1008656 L5272 2021 2573 49530004^131072+1 1008582 L4591 2018 Generalized Fermat 2574 9691*2^3349952+1 1008441 L5242 2021 2575 49397682^131072+1 1008430 L4764 2018 Generalized Fermat 2576 3209*2^3349719+1 1008370 L5269 2021 2577 49331672^131072+1 1008354 L4763 2018 Generalized Fermat 2578 393*2^3349525+1 1008311 L3101 2016 2579 49243622^131072+1 1008252 L4741 2018 Generalized Fermat 2580 5487*2^3349303+1 1008245 L5266 2021 2581 49225986^131072+1 1008232 L4757 2018 Generalized Fermat 2582 2511*2^3349104+1 1008185 L5264 2021 2583 1005*2^3349046-1 1008167 L4518 2021 2584 7659*2^3348894+1 1008122 L5263 2021 2585 9703*2^3348872+1 1008115 L5262 2021 2586 49090656^131072+1 1008075 L4752 2018 Generalized Fermat 2587 7935*2^3348578+1 1008027 L5161 2021 2588 49038514^131072+1 1008015 L4743 2018 Generalized Fermat 2589 7821*2^3348400+1 1007973 L5260 2021 2590 7911*2^3347532+1 1007712 L5250 2021 2591 8295*2^3347031+1 1007561 L5249 2021 2592 48643706^131072+1 1007554 L4691 2018 Generalized Fermat 2593 4029*2^3346729+1 1007470 L5239 2021 2594 9007*2^3346716+1 1007466 L5161 2021 2595 8865*2^3346499+1 1007401 L5238 2021 2596 6171*2^3346480+1 1007395 L5174 2021 2597 6815*2^3346045+1 1007264 L5235 2021 2598 5*326^400785+1 1007261 L4786 2019 2599 5951*2^3345977+1 1007244 L5233 2021 2600 48370248^131072+1 1007234 L4701 2018 Generalized Fermat 2601 1257*2^3345843+1 1007203 L5192 2021 2602 4701*2^3345815+1 1007195 L5192 2021 2603 48273828^131072+1 1007120 L4456 2018 Generalized Fermat 2604 7545*2^3345355+1 1007057 L5231 2021 2605 5559*2^3344826+1 1006897 L5223 2021 2606 6823*2^3344692+1 1006857 L5223 2021 2607 4839*2^3344453+1 1006785 L5188 2021 2608 7527*2^3344332+1 1006749 L5220 2021 2609 7555*2^3344240+1 1006721 L5188 2021 2610 6265*2^3344080+1 1006673 L5197 2021 2611 1299*2^3343943+1 1006631 L5217 2021 2612 2815*2^3343754+1 1006574 L5216 2021 2613 5349*2^3343734+1 1006568 L5174 2021 2614 2863*2^3342920+1 1006323 L5179 2020 2615 7387*2^3342848+1 1006302 L5208 2020 2616 9731*2^3342447+1 1006181 L5203 2020 2617 7725*2^3341708+1 1005959 L5195 2020 2618 7703*2^3341625+1 1005934 L5178 2020 2619 7047*2^3341482+1 1005891 L5194 2020 2620 4839*2^3341309+1 1005838 L5192 2020 2621 47179704^131072+1 1005815 L4673 2017 Generalized Fermat 2622 47090246^131072+1 1005707 L4654 2017 Generalized Fermat 2623 8989*2^3340866+1 1005705 L5189 2020 2624 6631*2^3340808+1 1005688 L5188 2020 2625 1341*2^3340681+1 1005649 L5188 2020 2626 733*2^3340464+1 1005583 L3035 2016 2627 2636*138^469911+1 1005557 L5410 2021 2628 3679815*2^3340001+1 1005448 L4922 2019 2629 57*2^3339932-1 1005422 L3519 2015 2630 46776558^131072+1 1005326 L4659 2017 Generalized Fermat 2631 46736070^131072+1 1005277 L4245 2017 Generalized Fermat 2632 46730280^131072+1 1005270 L4656 2017 Generalized Fermat 2633 3651*2^3339341+1 1005246 L5177 2020 2634 3853*2^3339296+1 1005232 L5178 2020 2635 8015*2^3339267+1 1005224 L5176 2020 2636 3027*2^3339182+1 1005198 L5174 2020 2637 9517*2^3339002+1 1005144 L5172 2020 2638 4003*2^3338588+1 1005019 L3035 2020 2639 6841*2^3338336+1 1004944 L1474 2020 2640 2189*2^3338209+1 1004905 L5031 2020 2641 46413358^131072+1 1004883 L4626 2017 Generalized Fermat 2642 46385310^131072+1 1004848 L4622 2017 Generalized Fermat 2643 46371508^131072+1 1004831 L4620 2017 Generalized Fermat 2644 2957*2^3337667+1 1004742 L5144 2020 2645 1515*2^3337389+1 1004658 L1474 2020 2646 7933*2^3337270+1 1004623 L4666 2020 2647 1251*2^3337116+1 1004576 L4893 2020 2648 651*2^3337101+1 1004571 L3260 2016 2649 46077492^131072+1 1004469 L4595 2017 Generalized Fermat 2650 8397*2^3336654+1 1004437 L5125 2020 2651 8145*2^3336474+1 1004383 L5110 2020 2652 1087*2^3336385-1 1004355 L1828 2012 2653 5325*2^3336120+1 1004276 L2125 2020 2654 849*2^3335669+1 1004140 L3035 2016 2655 8913*2^3335216+1 1004005 L5079 2020 2656 7725*2^3335213+1 1004004 L3035 2020 2657 611*2^3334875+1 1003901 L3813 2016 2658 45570624^131072+1 1003840 L4295 2017 Generalized Fermat 2659 403*2^3334410+1 1003761 L4293 2016 2660 5491*2^3334392+1 1003756 L4815 2020 2661 6035*2^3334341+1 1003741 L2125 2020 2662 1725*2^3334341+1 1003740 L2125 2020 2663 4001*2^3334031+1 1003647 L1203 2020 2664 2315*2^3333969+1 1003629 L2125 2020 2665 6219*2^3333810+1 1003581 L4582 2020 2666 8063*2^3333721+1 1003554 L1823 2020 2667 9051*2^3333677+1 1003541 L3924 2020 2668 45315256^131072+1 1003520 L4562 2017 Generalized Fermat 2669 4091*2^3333153+1 1003383 L1474 2020 2670 9949*2^3332750+1 1003262 L5090 2020 2671 3509*2^3332649+1 1003231 L5085 2020 2672 3781*2^3332436+1 1003167 L1823 2020 2673 4425*2^3332394+1 1003155 L3431 2020 2674 6459*2^3332086+1 1003062 L2629 2020 2675 44919410^131072+1 1003020 L4295 2017 Generalized Fermat 2676 5257*2^3331758+1 1002963 L1188 2020 2677 2939*2^3331393+1 1002853 L1823 2020 2678 6959*2^3331365+1 1002845 L1675 2020 2679 8815*2^3330748+1 1002660 L3329 2020 2680 4303*2^3330652+1 1002630 L4730 2020 2681 8595*2^3330649+1 1002630 L4723 2020 2682 673*2^3330436+1 1002564 L3035 2016 2683 8163*2^3330042+1 1002447 L3278 2020 2684 44438760^131072+1 1002408 L4505 2016 Generalized Fermat 2685 193*2^3329782+1 1002367 L3460 2014 Divides Fermat F(3329780) 2686 44330870^131072+1 1002270 L4501 2016 Generalized Fermat 2687 2829*2^3329061+1 1002151 L4343 2020 2688 5775*2^3329034+1 1002143 L1188 2020 2689 7101*2^3328905+1 1002105 L4568 2020 2690 7667*2^3328807+1 1002075 L4087 2020 2691 129*2^3328805+1 1002073 L3859 2014 2692 7261*2^3328740+1 1002055 L2914 2020 2693 4395*2^3328588+1 1002009 L3924 2020 2694 44085096^131072+1 1001953 L4482 2016 Generalized Fermat 2695 143183*2^3328297+1 1001923 L4504 2017 2696 44049878^131072+1 1001908 L4466 2016 Generalized Fermat 2697 9681*2^3327987+1 1001828 L1204 2020 2698 2945*2^3327987+1 1001828 L2158 2020 2699 5085*2^3327789+1 1001769 L1823 2020 2700 8319*2^3327650+1 1001727 L1204 2020 2701 4581*2^3327644+1 1001725 L2142 2020 2702 655*2^3327518+1 1001686 L4490 2016 2703 8863*2^3327406+1 1001653 L1675 2020 2704 659*2^3327371+1 1001642 L3502 2016 2705 3411*2^3327343+1 1001634 L1675 2020 2706 4987*2^3327294+1 1001619 L3924 2020 2707 821*2^3327003+1 1001531 L3035 2016 2708 2435*2^3326969+1 1001521 L3035 2020 2709 1931*2^3326850-1 1001485 L4113 2022 2710 2277*2^3326794+1 1001469 L5014 2020 2711 6779*2^3326639+1 1001422 L3924 2020 2712 6195*2^3325993+1 1001228 L1474 2019 2713 555*2^3325925+1 1001206 L4414 2016 2714 9041*2^3325643+1 1001123 L3924 2019 2715 1965*2^3325639-1 1001121 L4113 2022 2716 1993*2^3325302+1 1001019 L3662 2019 2717 6179*2^3325027+1 1000937 L3048 2019 2718 4485*2^3324900+1 1000899 L1355 2019 2719 3559*2^3324650+1 1000823 L3035 2019 2720d 12512*13^898392-1 1000762 L2425 2024 2721 43165206^131072+1 1000753 L4309 2016 Generalized Fermat 2722 43163894^131072+1 1000751 L4334 2016 Generalized Fermat 2723 6927*2^3324387+1 1000745 L3091 2019 2724 9575*2^3324287+1 1000715 L3824 2019 2725 1797*2^3324259+1 1000705 L3895 2019 2726 4483*2^3324048+1 1000642 L3035 2019 2727 791*2^3323995+1 1000626 L3035 2016 2728 6987*2^3323926+1 1000606 L4973 2019 2729 3937*2^3323886+1 1000593 L3035 2019 2730 2121*2^3323852+1 1000583 L1823 2019 2731 1571*2^3323493+1 1000475 L3035 2019 2732 2319*2^3323402+1 1000448 L4699 2019 2733 2829*2^3323341+1 1000429 L4754 2019 2734 4335*2^3323323+1 1000424 L1823 2019 2735 8485*2^3322938+1 1000308 L4858 2019 2736 6505*2^3322916+1 1000302 L4858 2019 2737 597*2^3322871+1 1000287 L3035 2016 2738 9485*2^3322811+1 1000270 L2603 2019 2739 8619*2^3322774+1 1000259 L3035 2019 2740 387*2^3322763+1 1000254 L1455 2016 2741 1965*2^3322579-1 1000200 L4113 2022 2742 42654182^131072+1 1000075 L4208 2015 Generalized Fermat 2743 6366*745^348190-1 1000060 L4189 2022 2744 13841792445*2^3322000-1 1000032 L5827 2023 2745 5553507*2^3322000+1 1000029 p391 2016 2746 5029159647*2^3321910-1 1000005 L4960 2021 2747 5009522505*2^3321910-1 1000005 L4960 2021 2748 4766298357*2^3321910-1 1000005 L4960 2021 2749 4759383915*2^3321910-1 1000005 L4960 2021 2750 4635733263*2^3321910-1 1000005 L4960 2021 2751 4603393047*2^3321910-1 1000005 L4960 2021 2752 4550053935*2^3321910-1 1000005 L4960 2021 2753 4288198767*2^3321910-1 1000005 L4960 2021 2754 4229494557*2^3321910-1 1000005 L4960 2021 2755 4110178197*2^3321910-1 1000005 L4960 2021 2756 4022490843*2^3321910-1 1000005 L4960 2021 2757 3936623697*2^3321910-1 1000005 L4960 2021 2758 3751145343*2^3321910-1 1000005 L4960 2021 2759 3715773735*2^3321910-1 1000005 L4960 2021 2760 3698976057*2^3321910-1 1000005 L4960 2021 2761 3659465685*2^3321910-1 1000005 L4960 2020 2762 3652932033*2^3321910-1 1000005 L4960 2020 2763 3603204333*2^3321910-1 1000005 L4960 2020 2764 3543733545*2^3321910-1 1000005 L4960 2020 2765 3191900133*2^3321910-1 1000005 L4960 2020 2766 3174957723*2^3321910-1 1000005 L4960 2020 2767 2973510903*2^3321910-1 1000005 L4960 2019 2768 2848144257*2^3321910-1 1000005 L4960 2019 2769 2820058827*2^3321910-1 1000005 L4960 2019 2770 2611553775*2^3321910-1 1000004 L4960 2020 2771 2601087525*2^3321910-1 1000004 L4960 2019 2772 2386538565*2^3321910-1 1000004 L4960 2019 2773 2272291887*2^3321910-1 1000004 L4960 2019 2774 2167709265*2^3321910-1 1000004 L4960 2019 2775 2087077797*2^3321910-1 1000004 L4960 2019 2776 1848133623*2^3321910-1 1000004 L4960 2019 2777 1825072257*2^3321910-1 1000004 L4960 2019 2778 1633473837*2^3321910-1 1000004 L4960 2019 2779 1228267623*2^3321910-1 1000004 L4808 2019 2780 1148781333*2^3321910-1 1000004 L4808 2019 2781 1065440787*2^3321910-1 1000004 L4808 2019 2782 1055109357*2^3321910-1 1000004 L4960 2019 2783 992309607*2^3321910-1 1000004 L4808 2019 2784 926102325*2^3321910-1 1000004 L4808 2019 2785 892610007*2^3321910-1 1000004 L4960 2019 2786 763076757*2^3321910-1 1000004 L4960 2019 2787 607766997*2^3321910-1 1000004 L4808 2019 2788 539679177*2^3321910-1 1000004 L4808 2019 2789 425521077*2^3321910-1 1000004 L4808 2019 2790 132940575*2^3321910-1 1000003 L4808 2019 2791 239378138685*2^3321891+1 1000001 L5104 2020 2792 464253*2^3321908-1 1000000 L466 2013 2793 3^2095902+3^647322-1 1000000 x44 2018 2794 191273*2^3321908-1 1000000 L466 2013 2795 1814570322984178^65536+1 1000000 L5080 2020 Generalized Fermat 2796 1814570322977518^65536+1 1000000 L5080 2020 Generalized Fermat 2797 3292665455999520712131952624640^32768+1 1000000 L5749 2023 Generalized Fermat 2798 3292665455999520712131951642528^32768+1 1000000 L5120 2020 Generalized Fermat 2799 3292665455999520712131951625894^32768+1 1000000 L5122 2020 Generalized Fermat 2800 10841645805132531666786792405311319418846637043199917731999190^16384+1 1000000 L5749 2023 Generalized Fermat 2801 10841645805132531666786792405311319418846637043199917731311876^16384+1 1000000 L5207 2020 Generalized Fermat 2802 10841645805132531666786792405311319418846637043199917731150000^16384+1 1000000 L5122 2020 Generalized Fermat 2803 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729599864^8192+1 1000000 L5749 2023 Generalized Fermat 2804 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729375350^8192+1 1000000 p417 2021 Generalized Fermat 2805 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729240092^8192+1 1000000 p419 2021 Generalized Fermat 2806 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729154678^8192+1 1000000 p418 2021 Generalized Fermat 2807 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729122666^8192+1 1000000 p417 2021 Generalized Fermat 2808 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729023786^8192+1 1000000 p416 2021 Generalized Fermat 2809 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097875144^4096+1 1000000 p421 2021 Generalized Fermat 2810 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097840702^4096+1 1000000 p417 2021 Generalized Fermat 2811 ((sqrtnint(10^999999,2048)+2)+364176)^2048+1 1000000 p417 2022 Generalized Fermat 2812 10^999999+10^840885+10^333333+1 1000000 p436 2023 2813 10^999999+308267*10^292000+1 1000000 CH10 2021 2814 10^999999-1022306*10^287000-1 999999 CH13 2021 2815 10^999999-1087604*10^287000-1 999999 CH13 2021 2816 531631540026641*6^1285077+1 999999 L3494 2021 2817 3139*2^3321905-1 999997 L185 2008 2818e 702*507^369680+1 999991 A28 2024 2819 42550702^131072+1 999937 L4309 2022 Generalized Fermat 2820 42414020^131072+1 999753 L5030 2022 Generalized Fermat 2821 4847*2^3321063+1 999744 SB9 2005 2822 42254832^131072+1 999539 L5375 2022 Generalized Fermat 2823 42243204^131072+1 999524 L4898 2022 Generalized Fermat 2824 42230406^131072+1 999506 L5453 2022 Generalized Fermat 2825 42168978^131072+1 999424 L5462 2022 Generalized Fermat 2826 439*2^3318318+1 998916 L5573 2022 2827 41688706^131072+1 998772 L5270 2022 Generalized Fermat 2828 41364744^131072+1 998327 L5453 2022 Generalized Fermat 2829 41237116^131072+1 998152 L5459 2022 Generalized Fermat 2830 47714*17^811139+1 998070 L5765 2023 Generalized Cullen 2831 41102236^131072+1 997965 L4245 2022 Generalized Fermat 2832 41007562^131072+1 997834 L4210 2022 Generalized Fermat 2833 41001148^131072+1 997825 L4210 2022 Generalized Fermat 2834 975*2^3312951+1 997301 L5231 2022 2835 40550398^131072+1 997196 L4245 2022 Generalized Fermat 2836 11796*46^599707+1 997172 L5670 2023 2837 40463598^131072+1 997074 L4591 2022 Generalized Fermat 2838 689*2^3311423+1 996841 L5226 2022 2839 40151896^131072+1 996633 L4245 2022 Generalized Fermat 2840 593*2^3309333+1 996212 L5572 2022 2841 383*2^3309321+1 996208 L5570 2022 2842 49*2^3309087-1 996137 L1959 2013 2843 39746366^131072+1 996056 L4201 2022 Generalized Fermat 2844 139413*6^1279992+1 996033 L4001 2015 2845 1274*67^545368-1 995886 L5410 2023 2846 51*2^3308171+1 995861 L2840 2015 2847 719*2^3308127+1 995849 L5192 2022 2848 39597790^131072+1 995842 L4737 2022 Generalized Fermat 2849 39502358^131072+1 995705 L5453 2022 Generalized Fermat 2850 39324372^131072+1 995448 L5202 2022 Generalized Fermat 2851 245114*5^1424104-1 995412 L3686 2013 2852 39100746^131072+1 995123 L5441 2022 Generalized Fermat 2853 38824296^131072+1 994719 L4245 2022 Generalized Fermat 2854 38734748^131072+1 994588 L4249 2021 Generalized Fermat 2855 175124*5^1422646-1 994393 L3686 2013 2856 453*2^3303073+1 994327 L5568 2022 2857c 856*75^530221-1 994200 A11 2024 2858 38310998^131072+1 993962 L4737 2021 Generalized Fermat 2859 531*2^3301693+1 993912 L5226 2022 2860 38196496^131072+1 993791 L4861 2021 Generalized Fermat 2861 38152876^131072+1 993726 L4245 2021 Generalized Fermat 2862 195*2^3301018+1 993708 L5569 2022 2863 341*2^3300789+1 993640 L5192 2022 2864 37909914^131072+1 993363 L4249 2021 Generalized Fermat 2865 849*2^3296427+1 992327 L5571 2022 2866 1611*22^738988+1 992038 L4139 2015 2867 36531196^131072+1 991254 L4249 2021 Generalized Fermat 2868 2017*2^3292325-1 991092 L3345 2017 2869 36422846^131072+1 991085 L4245 2021 Generalized Fermat 2870 36416848^131072+1 991076 L5202 2021 Generalized Fermat 2871 885*2^3290927+1 990671 L5161 2022 2872 36038176^131072+1 990481 L4245 2021 Generalized Fermat 2873 35997532^131072+1 990416 L4245 2021 Generalized Fermat 2874 35957420^131072+1 990353 L4245 2021 Generalized Fermat 2875 107970^196608-107970^98304+1 989588 L4506 2016 Generalized unique 2876 35391288^131072+1 989449 L5070 2021 Generalized Fermat 2877 35372304^131072+1 989419 L5443 2021 Generalized Fermat 2878 219*2^3286614+1 989372 L5567 2022 2879 61*2^3286535-1 989348 L4405 2016 2880 35327718^131072+1 989347 L4591 2021 Generalized Fermat 2881 35282096^131072+1 989274 L4245 2021 Generalized Fermat 2882 35141602^131072+1 989046 L4729 2021 Generalized Fermat 2883 35139782^131072+1 989043 L4245 2021 Generalized Fermat 2884 35047222^131072+1 988893 L4249 2021 Generalized Fermat 2885 531*2^3284944+1 988870 L5536 2022 2886 34957136^131072+1 988747 L5321 2021 Generalized Fermat 2887 301*2^3284232+1 988655 L5564 2022 2888 34871942^131072+1 988608 L4245 2021 Generalized Fermat 2889 34763644^131072+1 988431 L4737 2021 Generalized Fermat 2890 34585314^131072+1 988138 L4201 2021 Generalized Fermat 2891 311*2^3282455+1 988120 L5568 2022 2892 34530386^131072+1 988048 L5070 2021 Generalized Fermat 2893 833*2^3282181+1 988038 L5564 2022 2894 561*2^3281889+1 987950 L5477 2022 2895 34087952^131072+1 987314 L4764 2021 Generalized Fermat 2896 87*2^3279368+1 987191 L3458 2015 2897 965*2^3279151+1 987126 L5564 2022 2898 33732746^131072+1 986717 L4359 2021 Generalized Fermat 2899 33474284^131072+1 986279 L5051 2021 Generalized Fermat 2900 33395198^131072+1 986145 L4658 2021 Generalized Fermat 2901 427*2^3275606+1 986059 L5566 2022 2902 33191418^131072+1 985796 L4201 2021 Generalized Fermat 2903 337*2^3274106+1 985607 L5564 2022 2904 357*2^3273543+1 985438 L5237 2022 Divides GF(3273542,10) 2905 1045*2^3273488+1 985422 L5192 2022 2906 32869172^131072+1 985241 L4285 2021 Generalized Fermat 2907 32792696^131072+1 985108 L5198 2021 Generalized Fermat 2908 1047*2^3272351+1 985079 L5563 2022 2909 32704348^131072+1 984955 L5312 2021 Generalized Fermat 2910 32608738^131072+1 984788 L5395 2021 Generalized Fermat 2911a 75*2^3271125-1 984709 A38 2024 2912 933*2^3270993+1 984670 L5562 2022 2913 311*2^3270759+1 984600 L5560 2022 2914 32430486^131072+1 984476 L4245 2021 Generalized Fermat 2915 32417420^131072+1 984453 L4245 2021 Generalized Fermat 2916 65*2^3270127+1 984409 L3924 2015 2917 32348894^131072+1 984333 L4245 2021 Generalized Fermat 2918 579*2^3269850+1 984326 L5226 2022 2919 32286660^131072+1 984223 L5400 2021 Generalized Fermat 2920 32200644^131072+1 984071 L4387 2021 Generalized Fermat 2921 32137342^131072+1 983959 L4559 2021 Generalized Fermat 2922 32096608^131072+1 983887 L4559 2021 Generalized Fermat 2923 32055422^131072+1 983814 L4559 2021 Generalized Fermat 2924 31821360^131072+1 983397 L4861 2021 Generalized Fermat 2925 31768014^131072+1 983301 L4252 2021 Generalized Fermat 2926 335*2^3266237+1 983238 L5559 2022 2927 1031*2^3265915+1 983142 L5364 2022 2928 31469984^131072+1 982765 L5078 2021 Generalized Fermat 2929 5*2^3264650-1 982759 L384 2013 2930 223*2^3264459-1 982703 L1884 2012 2931 1101*2^3264400+1 982686 L5231 2022 2932 483*2^3264181+1 982620 L5174 2022 2933 525*2^3263227+1 982332 L5231 2022 2934 31145080^131072+1 982174 L4201 2021 Generalized Fermat 2935 622*48^584089+1 981998 L5629 2023 2936 31044982^131072+1 981991 L5041 2021 Generalized Fermat 2937 683*2^3262037+1 981974 L5192 2022 2938 923*2^3261401+1 981783 L5477 2022 2939 30844300^131072+1 981622 L5102 2021 Generalized Fermat 2940 30819256^131072+1 981575 L4201 2021 Generalized Fermat 2941 9*2^3259381-1 981173 L1828 2011 2942e 31*2^3259185-1 981114 L1862 2024 2943 1059*2^3258751+1 980985 L5231 2022 2944 6*5^1403337+1 980892 L4965 2020 2945 30318724^131072+1 980643 L4309 2021 Generalized Fermat 2946 30315072^131072+1 980636 L5375 2021 Generalized Fermat 2947 30300414^131072+1 980609 L4755 2021 Generalized Fermat 2948 30225714^131072+1 980468 L4201 2021 Generalized Fermat 2949 875*2^3256589+1 980334 L5550 2022 2950 30059800^131072+1 980155 L4928 2021 Generalized Fermat 2951 30022816^131072+1 980085 L5273 2021 Generalized Fermat 2952 29959190^131072+1 979964 L4905 2021 Generalized Fermat 2953c 968*75^522276-1 979303 A11 2024 2954 29607314^131072+1 979292 L5378 2021 Generalized Fermat 2955 779*2^3253063+1 979273 L5192 2022 2956 29505368^131072+1 979095 L5378 2021 Generalized Fermat 2957 163*2^3250978+1 978645 L5161 2022 Divides GF(3250977,6) 2958 29169314^131072+1 978443 L5380 2021 Generalized Fermat 2959 417*2^3248255+1 977825 L5178 2022 2960 28497098^131072+1 977116 L4308 2021 Generalized Fermat 2961 28398204^131072+1 976918 L5379 2021 Generalized Fermat 2962 28294666^131072+1 976710 L5375 2021 Generalized Fermat 2963 28175634^131072+1 976470 L5378 2021 Generalized Fermat 2964 33*2^3242126-1 975979 L3345 2014 2965 27822108^131072+1 975752 L4760 2021 Generalized Fermat 2966 39*2^3240990+1 975637 L3432 2014 2967 27758510^131072+1 975621 L4289 2021 Generalized Fermat 2968e 3706*103^484644+1 975514 A11 2024 2969 27557876^131072+1 975208 L4245 2021 Generalized Fermat 2970 27544748^131072+1 975181 L4387 2021 Generalized Fermat 2971 27408050^131072+1 974898 L4210 2021 Generalized Fermat 2972c 14275*60^548133-1 974668 x51 2024 2973 225*2^3236967+1 974427 L5529 2022 2974 27022768^131072+1 974092 L4309 2021 Generalized Fermat 2975 26896670^131072+1 973826 L5376 2021 Generalized Fermat 2976 1075*2^3234606+1 973717 L5192 2022 2977 26757382^131072+1 973530 L5375 2021 Generalized Fermat 2978 26599558^131072+1 973194 L4245 2021 Generalized Fermat 2979 6*5^1392287+1 973168 L4965 2020 2980 26500832^131072+1 972982 L4956 2021 Generalized Fermat 2981 325*2^3231474+1 972774 L5536 2022 2982 933*2^3231438+1 972763 L5197 2022 2983 123*2^3230548+1 972494 L5178 2022 Divides GF(3230546,12) 2984 26172278^131072+1 972272 L4245 2021 Generalized Fermat 2985 697*2^3229518+1 972185 L5534 2022 2986 22598*745^338354-1 971810 L4189 2022 2987 385*2^3226814+1 971371 L5178 2022 2988 211195*2^3224974+1 970820 L2121 2013 2989 1173*2^3223546+1 970388 L5178 2022 2990 7*6^1246814+1 970211 L4965 2019 2991 25128150^131072+1 969954 L4738 2021 Generalized Fermat 2992 25124378^131072+1 969946 L5102 2021 Generalized Fermat 2993 1089*2^3221691+1 969829 L5178 2022 2994 35*832^332073-1 969696 L4001 2019 2995 600921*2^3219922-1 969299 g337 2018 2996 939*2^3219319+1 969115 L5178 2022 2997 24734116^131072+1 969055 L5070 2021 Generalized Fermat 2998 24644826^131072+1 968849 L5070 2021 Generalized Fermat 2999 24642712^131072+1 968844 L5070 2021 Generalized Fermat 3000 24641166^131072+1 968840 L5070 2021 Generalized Fermat 3001 129*2^3218214+1 968782 L5529 2022 3002 24522386^131072+1 968565 L5070 2021 Generalized Fermat 3003 24486806^131072+1 968483 L4737 2021 Generalized Fermat 3004 811*2^3216944+1 968400 L5233 2022 3005 24297936^131072+1 968042 L4201 2021 Generalized Fermat 3006 1023*2^3214745+1 967738 L5178 2022 3007 187*2^3212152+1 966957 L5178 2022 3008 301*2^3211281-1 966695 L5545 2022 3009 6*409^369832+1 965900 L4001 2015 3010 23363426^131072+1 965809 L5033 2021 Generalized Fermat 3011 1165*2^3207702+1 965618 L5178 2022 3012 94373*2^3206717+1 965323 L2785 2013 3013 2751*2^3206569-1 965277 L4036 2015 3014 761*2^3206341+1 965208 L5178 2022 3015 23045178^131072+1 965029 L5023 2021 Generalized Fermat 3016 23011666^131072+1 964946 L5273 2021 Generalized Fermat 3017 911*2^3205225+1 964872 L5364 2022 3018 22980158^131072+1 964868 L4201 2021 Generalized Fermat 3019 22901508^131072+1 964673 L4743 2021 Generalized Fermat 3020 22808110^131072+1 964440 L5248 2021 Generalized Fermat 3021 22718284^131072+1 964215 L5254 2021 Generalized Fermat 3022 22705306^131072+1 964183 L5248 2021 Generalized Fermat 3023 113983*2^3201175-1 963655 L613 2008 3024 34*888^326732-1 963343 L4001 2017 3025 899*2^3198219+1 962763 L5503 2022 3026 22007146^131072+1 962405 L4245 2020 Generalized Fermat 3027 4*3^2016951+1 962331 L4965 2020 3028 21917442^131072+1 962173 L4622 2020 Generalized Fermat 3029 987*2^3195883+1 962060 L5282 2022 3030 21869554^131072+1 962048 L5061 2020 Generalized Fermat 3031 21757066^131072+1 961754 L4773 2020 Generalized Fermat 3032 21582550^131072+1 961296 L5068 2020 Generalized Fermat 3033 21517658^131072+1 961125 L5126 2020 Generalized Fermat 3034 20968936^131072+1 959654 L4245 2020 Generalized Fermat 3035 671*2^3185411+1 958908 L5315 2022 3036 20674450^131072+1 958849 L4245 2020 Generalized Fermat 3037 1027*2^3184540+1 958646 L5174 2022 3038 789*2^3183463+1 958321 L5482 2022 3039 855*2^3183158+1 958229 L5161 2022 3040 20234282^131072+1 957624 L4942 2020 Generalized Fermat 3041 20227142^131072+1 957604 L4677 2020 Generalized Fermat 3042 625*2^3180780+1 957513 L5178 2022 Generalized Fermat 3043 20185276^131072+1 957486 L4201 2020 Generalized Fermat 3044 935*2^3180599+1 957459 L5477 2022 3045 573*2^3179293+1 957066 L5226 2022 3046 33*2^3176269+1 956154 L3432 2013 3047 81*2^3174353-1 955578 L3887 2022 3048 19464034^131072+1 955415 L4956 2020 Generalized Fermat 3049 600921*2^3173683-1 955380 g337 2018 3050 587*2^3173567+1 955342 L5301 2022 3051 19216648^131072+1 954687 L5024 2020 Generalized Fermat 3052 1414*95^482691-1 954633 L4877 2019 3053 305*2^3171039+1 954581 L5301 2022 3054 755*2^3170701+1 954479 L5302 2022 3055 775*2^3170580+1 954443 L5449 2022 3056 78*236^402022-1 953965 L5410 2020 3057 18968126^131072+1 953946 L5011 2020 Generalized Fermat 3058 18813106^131072+1 953479 L4201 2020 Generalized Fermat 3059 18608780^131072+1 952857 L4488 2020 Generalized Fermat 3060 1087*2^3164677-1 952666 L1828 2012 3061 18509226^131072+1 952552 L4884 2020 Generalized Fermat 3062 18501600^131072+1 952528 L4875 2020 Generalized Fermat 3063 459*2^3163175+1 952214 L5178 2022 3064 15*2^3162659+1 952057 p286 2012 3065 18309468^131072+1 951934 L4928 2020 Generalized Fermat 3066 18298534^131072+1 951900 L4201 2020 Generalized Fermat 3067 849*2^3161727+1 951778 L5178 2022 3068 67*2^3161450+1 951694 L3223 2015 3069 119*2^3161195+1 951617 L5320 2022 3070 1759*2^3160863-1 951518 L4965 2021 3071 58*117^460033+1 951436 L5410 2020 3072 417*2^3160443+1 951391 L5302 2022 3073 9231*70^515544+1 951234 L5410 2021 3074 671*2^3159523+1 951115 L5188 2022 3075 17958952^131072+1 950834 L4201 2020 Generalized Fermat 3076 1001*2^3158422-1 950783 L4518 2023 3077 17814792^131072+1 950375 L4752 2020 Generalized Fermat 3078 17643330^131072+1 949824 L4201 2020 Generalized Fermat 3079 19*2^3155009-1 949754 L1828 2012 3080 281*2^3151457+1 948686 L5316 2022 3081 179*2^3150265+1 948327 L5302 2022 3082 17141888^131072+1 948183 L4963 2019 Generalized Fermat 3083 17138628^131072+1 948172 L4963 2019 Generalized Fermat 3084 17119936^131072+1 948110 L4963 2019 Generalized Fermat 3085 17052490^131072+1 947885 L4715 2019 Generalized Fermat 3086 17025822^131072+1 947796 L4870 2019 Generalized Fermat 3087 16985784^131072+1 947662 L4295 2019 Generalized Fermat 3088 865*2^3147482+1 947490 L5178 2021 3089 963*2^3145753+1 946969 L5451 2021 3090 16741226^131072+1 946837 L4201 2019 Generalized Fermat 3091 387*2^3144483+1 946587 L5450 2021 3092 1035*2^3144236+1 946513 L5449 2021 3093 1065*2^3143667+1 946342 L4944 2021 3094 193*2^3142150+1 945884 L5178 2021 3095 915*2^3141942+1 945822 L5448 2021 3096 939*2^3141397+1 945658 L5320 2021 3097 1063*2^3141350+1 945644 L5178 2021 3098 16329572^131072+1 945420 L4201 2019 Generalized Fermat 3099 69*2^3140225-1 945304 L3764 2014 3100 3*2^3136255-1 944108 L256 2007 3101 417*2^3136187+1 944089 L5178 2021 3102 15731520^131072+1 943296 L4245 2019 Generalized Fermat 3103 62721^196608-62721^98304+1 943210 L4506 2016 Generalized unique 3104 15667716^131072+1 943064 L4387 2019 Generalized Fermat 3105 15567144^131072+1 942698 L4918 2019 Generalized Fermat 3106 299*2^3130621+1 942414 L5178 2021 3107 15342502^131072+1 941870 L4245 2019 Generalized Fermat 3108 15237960^131072+1 941481 L4898 2019 Generalized Fermat 3109 571*2^3127388+1 941441 L5440 2021 3110 15147290^131072+1 941141 L4861 2019 Generalized Fermat 3111 197*2^3126343+1 941126 L5178 2021 3112 15091270^131072+1 940930 L4760 2019 Generalized Fermat 3113 1097*2^3124455+1 940558 L5178 2021 3114 3125*2^3124079+1 940445 L1160 2019 3115 495*2^3123624+1 940308 L5438 2021 3116 14790404^131072+1 939784 L4871 2019 Generalized Fermat 3117 1041*2^3120649+1 939412 L5437 2021 3118 14613898^131072+1 939101 L4926 2019 Generalized Fermat 3119 3317*2^3117162-1 938363 L5399 2021 3120 763*2^3115684+1 937918 L4944 2021 3121 581*2^3114611+1 937595 L5178 2021 3122 14217182^131072+1 937534 L4387 2019 Generalized Fermat 3123 134*864^319246-1 937473 L5410 2020 3124 700057*2^3113753-1 937339 L5410 2022 3125 5*6^1204077-1 936955 A2 2023 3126 1197*2^3111838+1 936760 L5178 2021 3127 14020004^131072+1 936739 L4249 2019 Generalized Fermat 3128 27777*2^3111027+1 936517 L2777 2014 Generalized Cullen 3129 755*2^3110759+1 936435 L5320 2021 3130 13800346^131072+1 935840 L4880 2019 Generalized Fermat 3131 866981*12^866981-1 935636 L5765 2023 Generalized Woodall 3132 13613070^131072+1 935062 L4245 2019 Generalized Fermat 3133 628*80^491322+1 935033 L5410 2021 3134 761*2^3105087+1 934728 L5197 2021 3135 13433028^131072+1 934305 L4868 2018 Generalized Fermat 3136 1019*2^3103680-1 934304 L1828 2012 3137 12*978^312346+1 934022 L4294 2023 3138 579*2^3102639+1 933991 L5315 2021 3139 99*2^3102401-1 933918 L1862 2017 3140 256612*5^1335485-1 933470 L1056 2013 3141 13083418^131072+1 932803 L4747 2018 Generalized Fermat 3142 882*1017^310074+1 932495 A10 2024 3143 69*2^3097340-1 932395 L3764 2014 3144 153*2^3097277+1 932376 L4944 2021 3145 12978952^131072+1 932347 L4849 2018 Generalized Fermat 3146 12961862^131072+1 932272 L4245 2018 Generalized Fermat 3147 207*2^3095391+1 931808 L5178 2021 3148 12851074^131072+1 931783 L4670 2018 Generalized Fermat 3149 45*2^3094632-1 931579 L1862 2018 3150 259*2^3094582+1 931565 L5214 2021 3151 553*2^3094072+1 931412 L4944 2021 3152 57*2^3093440-1 931220 L2484 2020 3153 12687374^131072+1 931054 L4289 2018 Generalized Fermat 3154 513*2^3092705+1 931000 L4329 2016 3155 12661786^131072+1 930939 L4819 2018 Generalized Fermat 3156 933*2^3091825+1 930736 L5178 2021 3157 38*875^316292-1 930536 L4001 2019 3158 5*2^3090860-1 930443 L1862 2012 3159 12512992^131072+1 930266 L4814 2018 Generalized Fermat 3160 4*5^1330541-1 930009 L4965 2022 3161 12357518^131072+1 929554 L4295 2018 Generalized Fermat 3162 12343130^131072+1 929488 L4720 2018 Generalized Fermat 3163 297*2^3087543+1 929446 L5326 2021 3164 1149*2^3087514+1 929438 L5407 2021 3165 745*2^3087428+1 929412 L5178 2021 3166 373*520^342177+1 929357 L3610 2014 3167 19401*2^3086450-1 929119 L541 2015 3168 75*2^3086355+1 929088 L3760 2015 3169 65*2^3080952-1 927461 L2484 2020 3170 11876066^131072+1 927292 L4737 2018 Generalized Fermat 3171 1139*2^3079783+1 927111 L5174 2021 3172 271*2^3079189-1 926931 L2484 2018 3173 766*33^610412+1 926923 L4001 2016 3174 11778792^131072+1 926824 L4672 2018 Generalized Fermat 3175 555*2^3078792+1 926812 L5226 2021 3176 31*332^367560+1 926672 L4294 2018 3177 167*2^3077568-1 926443 L1862 2020 3178 10001*2^3075602-1 925853 L4405 2019 3179 116*107^455562-1 924513 L4064 2021 3180 11292782^131072+1 924425 L4672 2018 Generalized Fermat 3181 14844*430^350980-1 924299 L4001 2016 3182 11267296^131072+1 924297 L4654 2017 Generalized Fermat 3183 4*3^1936890+1 924132 L4965 2020 Generalized Fermat 3184 1105*2^3069884+1 924131 L5314 2021 3185 319*2^3069362+1 923973 L5377 2021 3186 11195602^131072+1 923933 L4706 2017 Generalized Fermat 3187 973*2^3069092+1 923892 L5214 2021 3188 765*2^3068511+1 923717 L5174 2021 3189 60849*2^3067914+1 923539 L591 2014 3190 674*249^385359+1 923400 L5410 2019 3191 499*2^3066970+1 923253 L5373 2021 3192 553*2^3066838+1 923213 L5368 2021 3193 629*2^3066827+1 923210 L5226 2021 3194 11036888^131072+1 923120 L4660 2017 Generalized Fermat 3195 261*2^3066009+1 922964 L5197 2021 3196 10994460^131072+1 922901 L4704 2017 Generalized Fermat 3197 214916*3^1934246-1 922876 L4965 2023 Generalized Woodall 3198 21*2^3065701+1 922870 p286 2012 3199 10962066^131072+1 922733 L4702 2017 Generalized Fermat 3200 10921162^131072+1 922520 L4559 2017 Generalized Fermat 3201 875*2^3063847+1 922313 L5364 2021 3202 43*2^3063674+1 922260 L3432 2013 3203 677*2^3063403+1 922180 L5346 2021 3204 8460*241^387047-1 921957 L5410 2019 3205 10765720^131072+1 921704 L4695 2017 Generalized Fermat 3206 111*2^3060238-1 921226 L2484 2020 3207 1165*2^3060228+1 921224 L5360 2021 3208 5*2^3059698-1 921062 L503 2008 3209 10453790^131072+1 920031 L4694 2017 Generalized Fermat 3210 453*2^3056181+1 920005 L5320 2021 3211 791*2^3055695+1 919859 L5177 2021 3212 10368632^131072+1 919565 L4692 2017 Generalized Fermat 3213 582971*2^3053414-1 919175 L5410 2022 3214 123*2^3049038+1 917854 L4119 2015 3215 10037266^131072+1 917716 L4691 2017 Generalized Fermat 3216 400*95^463883-1 917435 L4001 2019 3217 9907326^131072+1 916975 L4690 2017 Generalized Fermat 3218 454*383^354814+1 916558 L2012 2020 3219 9785844^131072+1 916272 L4326 2017 Generalized Fermat 3220 435*2^3041954+1 915723 L5320 2021 3221 639*2^3040438+1 915266 L5320 2021 3222f 13822*115^443832+1 914608 A11 2024 3223 1045*2^3037988+1 914529 L5178 2021 3224 291*2^3037904+1 914503 L3545 2015 3225 311*2^3037565+1 914401 L5178 2021 3226 373*2^3036746+1 914155 L5178 2021 3227 9419976^131072+1 914103 L4591 2017 Generalized Fermat 3228 341*2^3036506-1 914082 p435 2023 3229 801*2^3036045+1 913944 L5348 2021 3230 915*2^3033775+1 913261 L5178 2021 3231 38804*3^1913975+1 913203 L5410 2021 3232 9240606^131072+1 913009 L4591 2017 Generalized Fermat 3233 869*2^3030655+1 912322 L5260 2021 3234 643*2^3030650+1 912320 L5320 2021 3235 99*2^3029959-1 912111 L1862 2020 3236 417*2^3029342+1 911926 L5178 2021 3237 345*2^3027769+1 911452 L5343 2021 3238 26*3^1910099+1 911351 L4799 2020 3239 355*2^3027372+1 911333 L5174 2021 3240 99*2^3026660-1 911118 L1862 2020 3241 417*2^3026492+1 911068 L5197 2021 3242 1065*2^3025527+1 910778 L5208 2021 3243 34202*3^1908800+1 910734 L5410 2021 3244 8343*42^560662+1 910099 L4444 2020 3245 699*2^3023263+1 910096 L5335 2021 3246 8770526^131072+1 910037 L4245 2017 Generalized Fermat 3247 8704114^131072+1 909604 L4670 2017 Generalized Fermat 3248 383731*2^3021377-1 909531 L466 2011 3249 46821*2^3021380-374567 909531 p363 2013 3250 2^3021377-1 909526 G3 1998 Mersenne 37 3251 615*2^3019445+1 908947 L5260 2021 3252 389*2^3019025+1 908820 L5178 2021 3253 875*2^3018175+1 908565 L5334 2021 3254 375*2^3016803-1 908151 L2235 2023 3255 555*2^3016352+1 908016 L5178 2021 3256 7*2^3015762+1 907836 g279 2008 3257 759*2^3015314+1 907703 L5178 2021 3258 32582*3^1901790+1 907389 L5372 2021 3259 75*2^3012342+1 906808 L3941 2015 3260 459*2^3011814+1 906650 L5178 2021 3261 991*2^3010036+1 906115 L5326 2021 3262 583*2^3009698+1 906013 L5325 2021 3263 8150484^131072+1 905863 L4249 2017 Generalized Fermat 3264 593*2^3006969+1 905191 L5178 2021 3265 327*2^3006540-1 905062 L2257 2023 3266b 75*2^3006235-1 904969 A38 2024 3267 367*2^3004536+1 904459 L5178 2021 3268 7926326^131072+1 904276 L4249 2017 Generalized Fermat 3269 1003*2^3003756+1 904224 L5320 2021 3270 626*1017^300576+1 903932 A9 2024 3271 573*2^3002662+1 903895 L5319 2021 3272 7858180^131072+1 903784 L4201 2017 Generalized Fermat 3273 329*2^3002295+1 903784 L5318 2021 3274 4*5^1292915-1 903710 L4965 2022 3275 7832704^131072+1 903599 L4249 2017 Generalized Fermat 3276 268514*5^1292240-1 903243 L3562 2013 3277 7*10^902708+1 902709 p342 2013 3278 435*2^2997453+1 902326 L5167 2021 3279 583*2^2996526+1 902047 L5174 2021 3280 1037*2^2995695+1 901798 L5178 2021 3281 717*2^2995326+1 901686 L5178 2021 3282 885*2^2995274+1 901671 L5178 2021 3283 43*2^2994958+1 901574 L3222 2013 3284 1065*2^2994154+1 901334 L5315 2021 3285 561*2^2994132+1 901327 L5314 2021 3286 1095*2^2992587-1 900862 L1828 2011 3287 519*2^2991849+1 900640 L5311 2021 3288 7379442^131072+1 900206 L4201 2017 Generalized Fermat 3289 459*2^2990134+1 900123 L5197 2021 3290 15*2^2988834+1 899730 p286 2012 3291 29*564^326765+1 899024 L4001 2017 3292 971*2^2982525+1 897833 L5197 2021 3293 1033*2^2980962+1 897362 L5305 2021 3294 357*2^2980540-1 897235 L2257 2023 3295 367*2^2979033-1 896781 L2257 2023 3296 39*2^2978894+1 896739 L2719 2013 3297 38*977^299737+1 896184 L5410 2021 3298 4348099*2^2976221-1 895939 L466 2008 3299 205833*2^2976222-411665 895938 L4667 2017 3300 593*2^2976226-18975 895937 p373 2014 3301 2^2976221-1 895932 G2 1997 Mersenne 36 3302 1024*3^1877301+1 895704 p378 2014 3303 1065*2^2975442+1 895701 L5300 2021 Divides GF(2975440,3) 3304 24704*3^1877135+1 895626 L5410 2021 3305 591*2^2975069+1 895588 L5299 2021 3306 249*2^2975002+1 895568 L2322 2015 3307 195*2^2972947+1 894949 L3234 2015 3308 6705932^131072+1 894758 L4201 2017 Generalized Fermat 3309 391*2^2971600+1 894544 L5242 2021 3310 46425*2^2971203+1 894426 L2777 2014 Generalized Cullen 3311 625*2^2970336+1 894164 L5233 2021 Generalized Fermat 3312 369*2^2968175-1 893513 L2257 2023 3313 493*72^480933+1 893256 L3610 2014 3314 561*2^2964753+1 892483 L5161 2021 3315 1185*2^2964350+1 892362 L5161 2021 3316 6403134^131072+1 892128 L4510 2016 Generalized Fermat 3317 6391936^131072+1 892028 L4511 2016 Generalized Fermat 3318 395*2^2961370-1 891464 L2257 2023 3319 21*2^2959789-1 890987 L5313 2021 3320 627*2^2959098+1 890781 L5197 2021 3321 45*2^2958002-1 890449 L1862 2017 3322 729*2^2955389+1 889664 L5282 2021 3323 706*1017^295508+1 888691 p433 2023 3324 198677*2^2950515+1 888199 L2121 2012 3325 88*985^296644+1 887987 L5410 2020 3326 303*2^2949403-1 887862 L1817 2022 3327 5877582^131072+1 887253 L4245 2016 Generalized Fermat 3328 321*2^2946654-1 887034 L1817 2022 3329 17*2^2946584-1 887012 L3519 2013 3330 489*2^2944673+1 886438 L5167 2021 3331 141*2^2943065+1 885953 L3719 2015 3332 757*2^2942742+1 885857 L5261 2021 3333 5734100^131072+1 885846 L4477 2016 Generalized Fermat 3334 33*2^2939064-5606879602425*2^1290000-1 884748 p423 2021 Arithmetic progression (3,d=33*2^2939063-5606879602425*2^1290000) 3335 33*2^2939063-1 884748 L3345 2013 3336 5903*2^2938744-1 884654 L4036 2015 3337 717*2^2937963+1 884418 L5256 2021 3338 5586416^131072+1 884361 L4454 2016 Generalized Fermat 3339 243*2^2937316+1 884223 L4114 2015 3340 973*2^2937046+1 884142 L5253 2021 3341 61*2^2936967-1 884117 L2484 2017 3342 903*2^2934602+1 883407 L5246 2021 3343 5471814^131072+1 883181 L4362 2016 Generalized Fermat 3344 188*228^374503+1 883056 L4786 2020 3345 53*248^368775+1 883016 L5196 2020 3346 5400728^131072+1 882436 L4201 2016 Generalized Fermat 3347 17*326^350899+1 881887 L4786 2019 3348 855*2^2929550+1 881886 L5200 2021 3349 5326454^131072+1 881648 L4201 2016 Generalized Fermat 3350 839*2^2928551+1 881585 L5242 2021 3351 7019*10^881309-1 881313 L3564 2013 3352 25*2^2927222+1 881184 L1935 2013 Generalized Fermat 3353 391*2^2925759-1 880744 L2257 2023 3354 577*2^2925602+1 880697 L5201 2021 3355 97366*5^1259955-1 880676 L3567 2013 3356b 19861029*2^2924096-1 880248 A31 2024 3357 973*2^2923062+1 879933 L5228 2021 3358 1126*177^391360+1 879770 L4955 2020 3359 243944*5^1258576-1 879713 L3566 2013 3360 693*2^2921528+1 879471 L5201 2021 3361 6*10^879313+1 879314 L5009 2019 3362 269*2^2918105+1 878440 L2715 2015 3363 331*2^2917844+1 878362 L5210 2021 3364 169*2^2917805-1 878350 L2484 2018 3365 1085*2^2916967+1 878098 L5174 2020 3366 389*2^2916499+1 877957 L5215 2020 3367 431*2^2916429+1 877936 L5214 2020 3368 1189*2^2916406+1 877929 L5174 2020 3369 1011*2^2916119-1 877843 L4518 2023 3370 7*2^2915954+1 877791 g279 2008 Divides GF(2915953,12) [g322] 3371 4974408^131072+1 877756 L4380 2016 Generalized Fermat 3372 465*2^2914079+1 877228 L5210 2020 3373 427194*113^427194+1 877069 p310 2012 Generalized Cullen 3374 4893072^131072+1 876817 L4303 2016 Generalized Fermat 3375 493*2^2912552+1 876769 L5192 2021 3376 379*2^2911423-1 876429 L2257 2023 3377 143157*2^2911403+1 876425 L4504 2017 3378 567*2^2910402+1 876122 L5201 2020 3379 683*2^2909217+1 875765 L5199 2020 3380 674*249^365445+1 875682 L5410 2019 3381 475*2^2908802+1 875640 L5192 2021 3382 371*2^2907377+1 875211 L5197 2020 3383 207*2^2903535+1 874054 L3173 2015 3384 851*2^2902731+1 873813 L5177 2020 3385 777*2^2901907+1 873564 L5192 2020 3386 717*2^2900775+1 873224 L5185 2020 3387 99*2^2899303-1 872780 L1862 2017 3388 63*2^2898957+1 872675 L3262 2013 3389 11*2^2897409+1 872209 L2973 2013 Divides GF(2897408,3) 3390 747*2^2895307+1 871578 L5178 2020 3391 403*2^2894566+1 871354 L5180 2020 3392 629*2^2892961+1 870871 L5173 2020 3393 627*2^2891514+1 870436 L5168 2020 3394 325*2^2890955-1 870267 L5545 2022 3395 363*2^2890208+1 870042 L3261 2020 3396 471*2^2890148+1 870024 L5158 2020 3397 4329134^131072+1 869847 L4395 2016 Generalized Fermat 3398 583*2^2889248+1 869754 L5139 2020 3399 353*2^2888332-1 869478 L2257 2023 3400 955*2^2887934+1 869358 L4958 2020 3401 8300*171^389286+1 869279 L5410 2023 3402 303*2^2887603-1 869258 L5184 2022 3403 937*2^2887130+1 869116 L5134 2020 3404 885*2^2886389+1 868893 L3924 2020 3405 763*2^2885928+1 868754 L2125 2020 3406 1071*2^2884844+1 868428 L3593 2020 3407 1181*2^2883981+1 868168 L3593 2020 3408 327*2^2881349-1 867375 L5545 2022 3409 51*2^2881227+1 867338 L3512 2013 3410 933*2^2879973+1 866962 L4951 2020 3411 261*2^2879941+1 866952 L4119 2015 3412 4085818^131072+1 866554 L4201 2016 Generalized Fermat 3413 65*2^2876718-1 865981 L2484 2016 3414 21*948^290747-1 865500 L4985 2019 3415 4013*2^2873250-1 864939 L1959 2014 3416 41*2^2872058-1 864578 L2484 2013 3417 359*2^2870935+1 864241 L1300 2020 3418 165*2^2870868+1 864220 L4119 2015 3419 961*2^2870596+1 864139 L1300 2020 Generalized Fermat 3420 665*2^2869847+1 863913 L2885 2020 3421 283*2^2868750+1 863583 L3877 2015 3422 663703*20^663703-1 863504 L5765 2023 Generalized Woodall 3423 845*2^2868291+1 863445 L5100 2020 3424 3125*2^2867399+1 863177 L1754 2019 3425 701*2^2867141+1 863099 L1422 2020 3426f 9*10^862868+1 862869 L4789 2024 Generalized Fermat 3427 3814944^131072+1 862649 L4201 2016 Generalized Fermat 3428c 81030*91^440109-1 862197 A11 2024 3429 119*954^289255+1 861852 L5410 2022 3430 307*2^2862962+1 861840 L4740 2020 3431 147*2^2862651+1 861746 L1741 2015 3432 1207*2^2861901-1 861522 L1828 2011 3433 231*2^2860725+1 861167 L2873 2015 3434 193*2^2858812+1 860591 L2997 2015 3435 629*2^2857891+1 860314 L3035 2020 3436 493*2^2857856+1 860304 L5087 2020 3437 241*2^2857313-1 860140 L2484 2018 3438 707*2^2856331+1 859845 L5084 2020 3439 3615210^131072+1 859588 L4201 2016 Generalized Fermat 3440 949*2^2854946+1 859428 L2366 2020 3441 222361*2^2854840+1 859398 g403 2006 3442 725*2^2854661+1 859342 L5031 2020 3443 399*2^2851994+1 858539 L4099 2020 3444 225*2^2851959+1 858528 L3941 2015 3445 247*2^2851602+1 858421 L3865 2015 3446 183*2^2850321+1 858035 L2117 2015 3447 1191*2^2849315+1 857733 L1188 2020 3448 717*2^2848598+1 857517 L1204 2020 3449 795*2^2848360+1 857445 L4099 2020 3450 4242104*15^728840-1 857189 L5410 2023 3451 3450080^131072+1 856927 L4201 2016 Generalized Fermat 3452 705*2^2846638+1 856927 L1808 2020 3453 369*2^2846547+1 856899 L4099 2020 3454 233*2^2846392-1 856852 L2484 2021 3455c 223952*91^437353-1 856798 A11 2024 3456 955*2^2844974+1 856426 L1188 2020 3457 753*2^2844700+1 856343 L1204 2020 3458 11138*745^297992-1 855884 L4189 2019 3459 111*2^2841992+1 855527 L1792 2015 3460 44*744^297912-1 855478 L5410 2021 3461 649*2^2841318+1 855325 L4732 2020 3462 228*912^288954-1 855305 L5410 2022 3463 305*2^2840155+1 854975 L4907 2020 3464 914*871^290787-1 854923 L5787 2023 3465 1149*2^2839622+1 854815 L2042 2020 3466 95*2^2837909+1 854298 L3539 2013 3467 199*2^2835667-1 853624 L2484 2019 3468 595*2^2833406+1 852943 L4343 2020 3469 1101*2^2832061+1 852539 L4930 2020 3470 813*2^2831757+1 852447 L4951 2020 3471 435*2^2831709+1 852432 L4951 2020 3472 38*500^315752-1 852207 A21 2024 3473 393*2^2828738-1 851538 L2257 2023 3474 543*2^2828217+1 851381 L4746 2019 3475 68*1010^283267+1 851027 L5778 2023 3476 704*249^354745+1 850043 L5410 2019 3477 1001*2^2822037+1 849521 L1209 2019 3478 84466*5^1215373-1 849515 L3562 2013 3479 97*2^2820650+1 849103 L2163 2013 3480 381*2^2820157-1 848955 L2257 2023 3481c 43814*91^433332-1 848920 A32 2024 3482 107*2^2819922-1 848884 L2484 2013 3483 84256*3^1778899+1 848756 L4789 2018 3484 45472*3^1778899-1 848756 L4789 2018 3485 495*2^2819449-1 848742 L3994 2024 3486 14804*3^1778530+1 848579 L4064 2021 3487 497*2^2818787+1 848543 L4842 2019 3488 97*2^2818306+1 848397 L3262 2013 3489 313*2^2817751-1 848231 L802 2021 3490 177*2^2816050+1 847718 L129 2012 3491 585*2^2816000-1 847704 L5819 2024 3492 553*2^2815596+1 847582 L4980 2019 3493 1071*2^2814469+1 847243 L3035 2019 3494 105*2^2813000+1 846800 L3200 2015 3495 1115*2^2812911+1 846774 L1125 2019 3496 96*10^846519-1 846521 L2425 2011 Near-repdigit 3497 763*2^2811726+1 846417 L3919 2019 3498 1125*2^2811598+1 846379 L4981 2019 3499 891*2^2810100+1 845928 L4981 2019 3500 441*2^2809881+1 845862 L4980 2019 3501 499*2^2809261-1 845675 L5516 2024 3502 711*2^2808473+1 845438 L1502 2019 3503 1089*2^2808231+1 845365 L4687 2019 3504 63*2^2807130+1 845033 L3262 2013 3505 1083*2^2806536+1 844855 L3035 2019 3506 675*2^2805669+1 844594 L1932 2019 3507 819*2^2805389+1 844510 L3372 2019 3508 1027*2^2805222+1 844459 L3035 2019 3509 437*2^2803775+1 844024 L3168 2019 3510 381*2^2801281-1 843273 L2257 2023 3511 4431*372^327835-1 842718 L5410 2019 3512 150344*5^1205508-1 842620 L3547 2013 3513 311*2^2798459+1 842423 L4970 2019 3514 81*2^2797443-1 842117 L3887 2021 3515 400254*127^400254+1 842062 g407 2013 Generalized Cullen 3516 2639850^131072+1 841690 L4249 2016 Generalized Fermat 3517 43*2^2795582+1 841556 L2842 2013 3518 1001*2^2794357+1 841189 L1675 2019 3519 117*2^2794014+1 841085 L1741 2015 3520 1057*2^2792700+1 840690 L1675 2019 3521 345*2^2792269+1 840560 L1754 2019 3522 711*2^2792072+1 840501 L4256 2019 3523 315*2^2791414-1 840302 L2235 2021 3524 973*2^2789516+1 839731 L3372 2019 3525 27602*3^1759590+1 839543 L4064 2021 3526 2187*2^2786802+1 838915 L1745 2019 3527 15*2^2785940+1 838653 p286 2012 3528 333*2^2785626-1 838560 L802 2021 3529 1337*2^2785444-1 838506 L4518 2017 3530 711*2^2784213+1 838135 L4687 2019 3531 58582*91^427818+1 838118 L5410 2020 3532 923*2^2783153+1 837816 L1675 2019 3533 1103*2^2783149+1 837815 L3784 2019 3534 485*2^2778151+1 836310 L1745 2019 3535 600921*2^2776014-1 835670 g337 2017 3536 1129*2^2774934+1 835342 L1774 2019 3537 750*1017^277556-1 834703 L4955 2021 3538 8700*241^350384-1 834625 L5410 2019 3539 1023*2^2772512+1 834613 L4724 2019 3540 656*249^348030+1 833953 L5410 2019 3541 92*10^833852-1 833854 L4789 2018 Near-repdigit 3542 437*2^2769299+1 833645 L3760 2019 3543 967*2^2768408+1 833377 L3760 2019 3544 2280466^131072+1 833359 L4201 2016 Generalized Fermat 3545 1171*2^2768112+1 833288 L2676 2019 3546 57*2^2765963+1 832640 L3262 2013 3547 1323*2^2764024+1 832058 L1115 2019 3548 471*2^2762718-1 831664 L5516 2023 3549 77*2^2762047+1 831461 L3430 2013 3550 745*2^2761514+1 831302 L1204 2019 3551 2194180^131072+1 831164 L4276 2016 Generalized Fermat 3552 543*2^2760224-1 830913 L5516 2023 3553 7*10^830865+1 830866 p342 2014 3554 893*2^2758841+1 830497 L4826 2019 3555 593*2^2757554-1 830110 L5516 2023 3556 557*2^2757276-1 830026 L5516 2023 3557 537*2^2755164+1 829390 L3035 2019 3558 225*370^322863-1 829180 A14 2024 3559 579*2^2754370+1 829151 L1823 2019 3560 441*2^2754188+1 829096 L2564 2019 Generalized Fermat 3561 455*2^2754132-1 829080 L5516 2023 3562 677*792^285769-1 828369 L541 2023 3563 215*2^2751022-1 828143 L2484 2018 3564 337*2^2750860+1 828094 L4854 2019 3565 701*2^2750267+1 827916 L3784 2019 3566 467*2^2749195+1 827593 L1745 2019 3567 245*2^2748663+1 827433 L3173 2015 3568 591*2^2748315+1 827329 L3029 2019 3569 57*2^2747499+1 827082 L3514 2013 Divides Fermat F(2747497) 3570 1007*2^2747268-1 827014 L4518 2022 3571 1089*2^2746155+1 826679 L2583 2019 3572 707*2^2745815+1 826576 L3760 2019 3573 525*2^2743252-1 825804 L5516 2023 3574 459*2^2742310+1 825521 L4582 2019 3575 777*2^2742196+1 825487 L3919 2019 3576 609*2^2741078+1 825150 L3091 2019 3577 684*157^375674+1 824946 L5112 2022 3578 639*2^2740186+1 824881 L4958 2019 3579 905*2^2739805+1 824767 L4958 2019 3580 119*954^276761+1 824625 L5410 2022 3581 1955556^131072+1 824610 L4250 2015 Generalized Fermat 3582 777*2^2737282+1 824007 L1823 2019 3583 765*2^2735232+1 823390 L1823 2019 3584 609*2^2735031+1 823330 L1823 2019 3585f 9*10^823037+1 823038 L4789 2024 3586 305*2^2733989+1 823016 L1823 2019 3587 165*2^2732983+1 822713 L1741 2015 3588 1133*2^2731993+1 822415 L4687 2019 3589 251*2^2730917+1 822091 L3924 2015 3590 1185*2^2730620+1 822002 L4948 2019 3591 (10^410997+1)^2-2 821995 p405 2022 3592 173*2^2729905+1 821786 L3895 2015 3593 1981*2^2728877-1 821478 L1134 2018 3594 693*2^2728537+1 821375 L3035 2019 3595 501*2^2728224+1 821280 L3035 2019 3596 763*2^2727928+1 821192 L3924 2019 3597 553*2^2727583-1 821088 L5516 2023 3598 465*2^2726085-1 820637 L5516 2023 3599 10*743^285478+1 819606 L4955 2019 3600 17*2^2721830-1 819354 p279 2010 3601 1006*639^291952+1 819075 L4444 2021 3602 1101*2^2720091+1 818833 L4935 2019 3603 1766192^131072+1 818812 L4231 2015 Generalized Fermat 3604 555*2^2719105-1 818535 L5516 2023 3605 165*2^2717378-1 818015 L2055 2012 3606 495*2^2717011-1 817905 L5516 2023 3607 68633*2^2715609+1 817485 L5105 2020 3608 1722230^131072+1 817377 L4210 2015 Generalized Fermat 3609 9574*5^1169232+1 817263 L5410 2021 3610 1717162^131072+1 817210 L4226 2015 Generalized Fermat 3611 133*2^2713410+1 816820 L3223 2015 3612 9022*96^411931-1 816563 L5410 2023 3613 45*2^2711732+1 816315 L1349 2012 3614 569*2^2711451+1 816231 L4568 2019 3615 567*2^2710898-1 816065 L5516 2023 3616 12830*3^1709456+1 815622 L5410 2021 3617 335*2^2708958-1 815481 L2235 2020 3618 93*2^2708718-1 815408 L1862 2016 3619 1660830^131072+1 815311 L4207 2015 Generalized Fermat 3620 837*2^2708160+1 815241 L4314 2019 3621 1005*2^2707268+1 814972 L4687 2019 3622 13*458^306196+1 814748 L3610 2015 3623 253*2^2705844+1 814543 L4083 2015 3624 657*2^2705620+1 814476 L4907 2019 3625 39*2^2705367+1 814399 L1576 2013 Divides GF(2705360,3) 3626 405*2^2704471-1 814130 L5516 2023 3627 303*2^2703864+1 813947 L1204 2019 3628 141*2^2702160+1 813434 L1741 2015 3629 753*2^2701925+1 813364 L4314 2019 3630 133*2^2701452+1 813221 L3173 2015 3631b 58434*5^1162930+1 812858 A11 2024 3632 521*2^2700095+1 812813 L4854 2019 3633 393*2^2698956+1 812470 L1823 2019 3634 417*2^2698652+1 812378 L3035 2019 3635 525*2^2698118+1 812218 L1823 2019 3636 3125*2^2697651+1 812078 L3924 2019 3637 153*2^2697173+1 811933 L3865 2015 3638 1560730^131072+1 811772 L4201 2015 Generalized Fermat 3639 26*3^1700041+1 811128 L4799 2020 3640 1538654^131072-1538654^65536+1 810961 L4561 2017 Generalized unique 3641 11*2^2691961+1 810363 p286 2013 Divides GF(2691960,12) 3642 555*2^2691334-1 810176 L5516 2023 3643 58*536^296735-1 809841 L5410 2021 3644 33016*3^1696980+1 809670 L5366 2021 3645 7335*2^2689080-1 809498 L4036 2015 3646 1049*2^2688749+1 809398 L4869 2018 3647 120*957^271487-1 809281 L541 2023 3648 329*2^2688221+1 809238 L3035 2018 3649b 1578*37^515979-1 809163 p443 2024 3650 865*2^2687434+1 809002 L4844 2018 3651 989*2^2686591+1 808748 L2805 2018 3652 136*904^273532+1 808609 L5410 2020 3653 243*2^2685873+1 808531 L3865 2015 3654 909*2^2685019+1 808275 L3431 2018 3655 1455*2^2683954-6325241166627*2^1290000-1 807954 p423 2021 Arithmetic progression (3,d=1455*2^2683953-6325241166627*2^1290000) 3656 1455*2^2683953-1 807954 L1134 2020 3657 11210*241^339153-1 807873 L5410 2019 3658 1456746^131072-1456746^65536+1 807848 L4561 2017 Generalized unique 3659 975*2^2681840+1 807318 L4155 2018 3660 999*2^2681353-1 807171 L4518 2022 3661 295*2^2680932+1 807044 L1741 2015 3662 1427604^131072-1427604^65536+1 806697 L4561 2017 Generalized unique 3663 575*2^2679711+1 806677 L2125 2018 3664 2386*52^469972+1 806477 L4955 2019 3665 2778*991^269162+1 806433 p433 2023 3666 10*80^423715-1 806369 p247 2023 3667 219*2^2676229+1 805628 L1792 2015 3668 637*2^2675976+1 805552 L3035 2018 3669 1395583^131072-1395583^65536+1 805406 L4561 2017 Generalized unique 3670 951*2^2674564+1 805127 L1885 2018 3671 531*2^2673250-1 804732 L5516 2023 3672 1372930^131072+1 804474 g236 2003 Generalized Fermat 3673 662*1009^267747-1 804286 L5410 2020 3674 261*2^2671677+1 804258 L3035 2015 3675 895*2^2671520+1 804211 L3035 2018 3676 1361244^131072+1 803988 g236 2004 Generalized Fermat 3677 789*2^2670409+1 803877 L3035 2018 3678 256*11^771408+1 803342 L3802 2014 Generalized Fermat 3679 503*2^2668529+1 803310 L4844 2018 3680 255*2^2668448+1 803286 L1129 2015 3681 4189*2^2666639-1 802742 L1959 2017 3682 539*2^2664603+1 802129 L4717 2018 3683 3^1681130+3^445781+1 802103 CH9 2022 3684 26036*745^279261-1 802086 L4189 2020 3685 1396*5^1146713-1 801522 L3547 2013 3686 676*687^282491-1 801418 L5426 2023 3687 267*2^2662090+1 801372 L3234 2015 Divides Fermat F(2662088) 3688 51*892^271541+1 801147 L5410 2019 3689 297*2^2660048+1 800757 L3865 2015 3690a 133*2^2658587-1 800317 L1817 2024 3691 99*2^2658496-1 800290 L1862 2021 3692 (10^393063-1)^2-2 786126 p405 2022 Near-repdigit 3693 334310*211^334310-1 777037 p350 2012 Generalized Woodall 3694 169*2^2545526+1 766282 L2125 2015 Divides GF(2545525,10), generalized Fermat 3695 9*2^2543551+1 765687 L1204 2011 Divides Fermat F(2543548), GF(2543549,3), GF(2543549,6), GF(2543549,12) 3696 215206*5^1076031-1 752119 L20 2023 Generalized Woodall 3697 3*2^2478785+1 746190 g245 2003 Divides Fermat F(2478782), GF(2478782,3), GF(2478776,6), GF(2478782,12) 3698 41676*7^875197-1 739632 L2777 2012 Generalized Woodall 3699 1183953*2^2367907-1 712818 L447 2007 Woodall 3700 150209!+1 712355 p3 2011 Factorial 3701 147855!-1 700177 p362 2013 Factorial 3702 3*2^2291610+1 689844 L753 2008 Divides GF(2291607,3), GF(2291609,5) 3703 2*11171^168429+1 681817 g427 2014 Divides Phi(11171^168429,2) 3704 11*2^2230369+1 671410 L2561 2011 Divides GF(2230368,3) 3705 (10^334568-1)^2-2 669136 p405 2022 Near-repdigit 3706 2*179^294739+1 664004 g424 2011 Divides Phi(179^294739,2) 3707 2*10271^164621+1 660397 g427 2014 Divides Phi(10271^164621,2) 3708 2*659^233973+1 659544 g424 2015 Divides Phi(659^233973,2) 3709 2*191^287901+1 656713 g424 2015 Divides Phi(191^287901,2) 3710 7*2^2167800+1 652574 g279 2007 Divides Fermat F(2167797), GF(2167799,5), GF(2167799,10) 3711 1179*2^2158475+1 649769 L3035 2014 Divides GF(2158470,6) 3712 3*2^2145353+1 645817 g245 2003 Divides Fermat F(2145351), GF(2145351,3), GF(2145352,5), GF(2145348,6), GF(2145352,10), GF(2145351,12) 3713 753*2^2143388+1 645227 L2583 2014 Divides GF(2143383,3) 3714 25*2^2141884+1 644773 L1741 2011 Divides Fermat F(2141872), GF(2141871,5), GF(2141872,10); generalized Fermat 3715 7*2^2139912+1 644179 g279 2007 Divides GF(2139911,12) 3716 189*2^2115473+1 636824 L3784 2014 Divides GF(2115468,6) 3717 107*2^2081775+1 626679 L3432 2013 Divides GF(2081774,6) 3718 45*2^2014557+1 606444 L1349 2012 Divides GF(2014552,10) 3719 251749*2^2013995-1 606279 L436 2007 Woodall 3720 657*2^1998854+1 601718 L2520 2013 Divides GF(1998852,10) 3721 101*2^1988279+1 598534 L3141 2013 Divides GF(1988278,12) 3722 175*2^1962288+1 590710 L2137 2013 Divides GF(1962284,10) 3723 225*2^1960083+1 590047 L3548 2013 Divides GF(1960078,6) 3724 2*47^346759+1 579816 g424 2011 Divides Phi(47^346759,2) 3725 4401*2^1925824+1 579735 L5309 2024 Divides GF(1925823,5) 3726 71*2^1873569+1 564003 L1223 2011 Divides GF(1873568,5) 3727 13*2^1861732+1 560439 g267 2005 Divides GF(1861731,6) 3728 3*2^1832496+1 551637 p189 2007 Divides GF(1832490,3), GF(1832494,5) 3729 39*2^1824871+1 549343 L2664 2011 Divides GF(1824867,6) 3730 45*2^1779971+1 535827 L1223 2011 Divides GF(1779969,5) 3731 5*2^1777515+1 535087 p148 2005 Divides GF(1777511,5), GF(1777514,6) 3732 129*2^1774709+1 534243 L2526 2013 Divides GF(1774705,12) 3733 2*191^232149+1 529540 g424 2011 Divides Phi(191^232149,2) 3734 183*2^1747660+1 526101 L2163 2013 Divides Fermat F(1747656) 3735 63*2^1686050+1 507554 L2085 2011 Divides GF(1686047,12) 3736 110059!+1 507082 p312 2011 Factorial 3737 2^1667321-2^833661+1 501914 L137 2011 Gaussian Mersenne norm 38, generalized unique 3738 2*359^192871+1 492804 g424 2014 Divides Phi(359^192871,2) 3739 10^490000+3*(10^7383-1)/9*10^241309+1 490001 p413 2021 Palindrome 3740 1098133#-1 476311 p346 2012 Primorial 3741 10^474500+999*10^237249+1 474501 p363 2014 Palindrome 3742 103040!-1 471794 p301 2010 Factorial 3743 3803*2^1553013+1 467508 L1957 2020 Divides GF(1553012,5) 3744 135*2^1515894+1 456332 L1129 2013 Divides GF(1515890,10) 3745 2*839^155785+1 455479 g424 2014 Divides Phi(839^155785,2) 3746 131*2^1494099+1 449771 L2959 2012 Divides Fermat F(1494096) 3747 1467763*2^1467763-1 441847 L381 2007 Woodall 3748 4125*2^1445205-1 435054 L1959 2014 Arithmetic progression (2,d=4125*2^1445205-2723880039837*2^1290000) [p199] 3749 94550!-1 429390 p290 2010 Factorial 3750 2415*2^1413627-1 425548 L1959 2014 Arithmetic progression (2,d=2415*2^1413627-1489088842587*2^1290000) [p199] 3751 2985*2^1404274-1 422733 L1959 2014 Arithmetic progression (2,d=2985*2^1404274-770527213395*2^1290000) [p199] 3752 2^1398269-1 420921 G1 1996 Mersenne 35 3753 17*2^1388355+1 417938 g267 2005 Divides GF(1388354,10) 3754 338707*2^1354830+1 407850 L124 2005 Cullen 3755 107*2^1337019+1 402485 L2659 2012 Divides GF(1337018,10) 3756 1389*2^1335434+1 402009 L1209 2015 Divides GF(1335433,10) 3757 10^400000+4*(10^102381-1)/9*10^148810+1 400001 p413 2021 Palindrome 3758 10^390636+999*10^195317+1 390637 p363 2014 Palindrome 3759 6325241166627*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=1455*2^2683953-6325241166627*2^1290000) 3760 5606879602425*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=33*2^2939063-5606879602425*2^1290000) 3761 2618163402417*2^1290001-1 388342 L927 2016 Sophie Germain (2p+1) 3762 4966510140375*2^1290000-1 388342 L3573 2020 Arithmetic progression (2,d=2227792035315*2^1290001) 3763 2996863034895*2^1290000+1 388342 L2035 2016 Twin (p+2) 3764 2996863034895*2^1290000-1 388342 L2035 2016 Twin (p) 3765 2723880039837*2^1290000-1 388342 L3829 2016 Arithmetic progression (1,d=4125*2^1445205-2723880039837*2^1290000) [p199] 3766 2618163402417*2^1290000-1 388342 L927 2016 Sophie Germain (p) 3767 2060323099527*2^1290000-1 388342 L3606 2015 Arithmetic progression (2,d=69718264533*2^1290002) [p199] 3768 1938662032575*2^1290000-1 388341 L927 2015 Arithmetic progression (1,d=10032831585*2^1290001) [p199] 3769 1781450041395*2^1290000-1 388341 L3203 2015 Arithmetic progression (1,d=69718264533*2^1290002) [p199] 3770 15*2^1276177+1 384169 g279 2006 Divides GF(1276174,3), GF(1276174,10) 3771 1268979*2^1268979-1 382007 L201 2007 Woodall 3772 2^1257787-1 378632 SG 1996 Mersenne 34 3773 329*2^1246017+1 375092 L2085 2012 Divides Fermat F(1246013) 3774 843301#-1 365851 p302 2010 Primorial 3775 10^362600+666*10^181299+1 362601 p363 2014 Palindrome 3776 2^1203793-2^601897+1 362378 L192 2006 Gaussian Mersenne norm 37, generalized unique 3777 1195203*2^1195203-1 359799 L124 2005 Woodall 3778 29*2^1152765+1 347019 g300 2005 Divides GF(1152760,10) 3779 2145*2^1099064+1 330855 L1792 2013 Divides Fermat F(1099061) 3780 10^320236+10^160118+1+(137*10^160119+731*10^159275)*(10^843-1)/999 320237 p44 2014 Palindrome 3781 10^320096+10^160048+1+(137*10^160049+731*10^157453)*(10^2595-1)/999 320097 p44 2014 Palindrome 3782 10^314727-8*10^157363-1 314727 p235 2013 Near-repdigit, palindrome 3783 10^300000+5*(10^48153-1)/9*10^125924+1 300001 p413 2021 Palindrome 3784 2^991961-2^495981+1 298611 x28 2005 Gaussian Mersenne norm 36, generalized unique 3785 10^290253-2*10^145126-1 290253 p235 2012 Near-repdigit, Palindrome 3786 11*2^960901+1 289262 g277 2005 Divides Fermat F(960897) 3787 10^283355-737*10^141676-1 283355 p399 2020 Palindrome 3788 10^275494+10^137747+1+(137*10^137748+731*10^129293)*(10^8454-1)/999 275495 p44 2012 Palindrome 3789 1705*2^906110+1 272770 L3174 2012 Divides Fermat F(906108) 3790 2^859433-1 258716 SG 1994 Mersenne 33 3791 2^756839-1 227832 SG 1992 Mersenne 32 3792 13243*2^699764+1 210655 L5808 2023 Divides Fermat F(699760) 3793 27*2^672007+1 202296 g279 2005 Divides Fermat F(672005) 3794 667071*2^667071-1 200815 g55 2000 Woodall 3795 18543637900515*2^666668-1 200701 L2429 2012 Sophie Germain (2p+1) 3796 18543637900515*2^666667-1 200701 L2429 2012 Sophie Germain (p) 3797 3756801695685*2^666669+1 200700 L1921 2011 Twin (p+2) 3798 3756801695685*2^666669-1 200700 L1921 2011 Twin (p) 3799 392113#+1 169966 p16 2001 Primorial 3800 213778324725*2^561418+1 169015 p430 2023 Cunningham chain 2nd kind (2p-1) 3801 213778324725*2^561417+1 169015 p430 2023 Cunningham chain 2nd kind (p) 3802 366439#+1 158936 p16 2001 Primorial 3803 2*893962950^16384+1 146659 p428 2023 Cunningham chain 2nd kind (2p-1) 3804 893962950^16384+1 146659 p427 2023 Cunningham chain 2nd kind (p), generalized Fermat 3805 481899*2^481899+1 145072 gm 1998 Cullen 3806f 669821552^16384-669821552^8192+1 144605 A18 2024 Twin (p+2), generalized unique 3807f 669821552^16384-669821552^8192-1 144605 A18 2024 Twin (p) 3808 34790!-1 142891 p85 2002 Factorial 3809 222710306^16384-222710306^8192+1 136770 A13 2024 Twin (p+2), generalized unique 3810 222710306^16384-222710306^8192-1 136770 A13 2024 Twin (p) 3811 (92365^24691-1)/92364 122599 CH14 2024 Generalized repunit 3812 (102936^21961-1)/102935 110076 CH14 2023 Generalized repunit 3813 2^364289-2^182145+1 109662 p58 2001 Gaussian Mersenne norm 35, generalized unique 3814 361275*2^361275+1 108761 DS 1998 Cullen 3815 26951!+1 107707 p65 2002 Factorial 3816e 21480284945595*2^333444-1 100390 L6029 2024 Sophie Germain (2p+1) 3817e 21480284945595*2^333443-1 100390 L6029 2024 Sophie Germain (p) 3818 65516468355*2^333333+1 100355 L923 2009 Twin (p+2) 3819 65516468355*2^333333-1 100355 L923 2009 Twin (p) 3820 (7176^24691-1)/7175 95202 CH2 2017 Generalized repunit 3821 R(86453) 86453 E3 2023 Repunit, ECPP, unique 3822 21480!-1 83727 p65 2001 Factorial 3823c (74968^17107-1)/74967 83390 p441 2024 Generalized repunit 3824e 201926367*2^266668+1 80284 A25 2024 Twin (p+2) 3825e 201926367*2^266668-1 80284 A25 2024 Twin (p) 3826 107928275961*2^265876+1 80048 p364 2023 Cunningham chain 2nd kind (2p-1) 3827 107928275961*2^265875+1 80048 p364 2023 Cunningham chain 2nd kind (p) 3828 22942396995*2^265777-1 80018 L3494 2023 Sophie Germain (2p+1) 3829 22942396995*2^265776-1 80017 L3494 2023 Sophie Germain (p) 3830 183027*2^265441-1 79911 L983 2010 Sophie Germain (2p+1) 3831 183027*2^265440-1 79911 L983 2010 Sophie Germain (p) 3832 262419*2^262419+1 79002 DS 1998 Cullen 3833 160204065*2^262148+1 78923 L5115 2021 Twin (p+2) 3834 160204065*2^262148-1 78923 L5115 2021 Twin (p) 3835 3622179275715*2^256003+1 77078 x47 2020 Cunningham chain 2nd kind (2p-1) 3836 3622179275715*2^256002+1 77077 x47 2020 Cunningham chain 2nd kind (p) 3837 648621027630345*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 3838 620366307356565*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 3839 648621027630345*2^253824-1 76424 x24 2009 Sophie Germain (p) 3840 620366307356565*2^253824-1 76424 x24 2009 Sophie Germain (p) 3841 2570606397*2^252763+1 76099 p364 2020 Cunningham chain 2nd kind (2p-1) 3842 2570606397*2^252762+1 76099 p364 2020 Cunningham chain 2nd kind (p) 3843 1893611985^8192-1893611985^4096+1 76000 A13 2024 Twin (p+2), generalized unique 3844 1893611985^8192-1893611985^4096-1 76000 A13 2024 Twin (p) 3845 1589173270^8192-1589173270^4096+1 75376 A22 2024 Twin (p+2), generalized unique 3846 1589173270^8192-1589173270^4096-1 75376 A22 2024 Twin (p) 3847 (40734^16111-1)/40733 74267 CH2 2015 Generalized repunit 3848 (64758^15373-1)/64757 73960 p170 2018 Generalized repunit 3849 996094234^8192-996094234^4096+1 73715 A18 2024 Twin (p+2), generalized unique 3850 996094234^8192-996094234^4096-1 73715 A18 2024 Twin (p) 3851 895721531^8192-895721531^4096+1 73337 A7 2024 Twin (p+2), generalized unique 3852 895721531^8192-895721531^4096-1 73337 A7 2024 Twin (p) 3853 5^104824+104824^5 73269 E4 2023 ECPP 3854 795507696^8192-795507696^4096+1 72915 A5 2024 Twin (p+2), generalized unique 3855 795507696^8192-795507696^4096-1 72915 A5 2024 Twin (p) 3856 primV(111534,1,27000) 72683 x25 2013 Generalized Lucas primitive part 3857 691595760^8192-691595760^4096+1 72417 A13 2024 Twin (p+2), generalized unique 3858 691595760^8192-691595760^4096-1 72417 A13 2024 Twin (p) 3859 647020826^8192-647020826^4096+1 72180 A5 2024 Twin (p+2), generalized unique 3860 647020826^8192-647020826^4096-1 72180 A5 2024 Twin (p) 3861 629813654^8192-629813654^4096+1 72084 A5 2024 Twin (p+2), generalized unique 3862 629813654^8192-629813654^4096-1 72084 A5 2024 Twin (p) 3863 (58729^15091-1)/58728 71962 CH2 2017 Generalized repunit 3864 504983334^8192-504983334^4096+1 71298 A7 2024 Twin (p+2), generalized unique 3865 504983334^8192-504983334^4096-1 71298 A7 2024 Twin (p) 3866 314305725^8192-314305725^4096+1 69611 A7 2023 Twin (p+2), generalized unique 3867 314305725^8192-314305725^4096-1 69611 A7 2023 Twin (p) 3868 (27987^15313-1)/27986 68092 CH12 2020 Generalized repunit 3869 184534086^8192-184534086^4096+1 67716 A5 2023 Twin (p+2), generalized unique 3870 184534086^8192-184534086^4096-1 67716 A5 2023 Twin (p) 3871 (23340^15439-1)/23339 67435 p170 2020 Generalized repunit 3872 10957126745325*2^222334-1 66943 L5843 2023 Sophie Germain (2p+1) 3873 20690306380455*2^222333-1 66943 L5843 2023 Sophie Germain (2p+1) 3874 10030004436315*2^222334-1 66943 L5843 2023 Sophie Germain (2p+1) 3875 8964472847055*2^222334-1 66943 L5843 2023 Sophie Germain (2p+1) 3876 14279340881715*2^222333+1 66943 L5843 2023 Twin (p+2) 3877 14279340881715*2^222333-1 66943 L5843 2023 Twin (p) 3878 10957126745325*2^222333-1 66942 L5843 2023 Sophie Germain (p) 3879 20690306380455*2^222332-1 66942 L5843 2023 Sophie Germain (p) 3880 10030004436315*2^222333-1 66942 L5843 2023 Sophie Germain (p) 3881 8964472847055*2^222333-1 66942 L5843 2023 Sophie Germain (p) 3882 12770275971*2^222225+1 66907 L527 2017 Twin (p+2) 3883 12770275971*2^222225-1 66907 L527 2017 Twin (p) 3884 (2^221509-1)/292391881 66673 E12 2023 Mersenne cofactor, ECPP 3885 (24741^15073-1)/24740 66218 p170 2020 Generalized repunit 3886 (63847^13339-1)/63846 64091 p170 2013 Generalized repunit 3887 1068669447*2^211089-1 63554 L4166 2020 Sophie Germain (2p+1) 3888 1068669447*2^211088-1 63553 L4166 2020 Sophie Germain (p) 3889 145823#+1 63142 p21 2000 Primorial 3890 U(15694,1,14700)+U(15694,1,14699) 61674 x45 2019 Lehmer number 3891 (28507^13831-1)/28506 61612 CH12 2020 Generalized repunit 3892 2^203789+2^101895+1 61347 O 2000 Gaussian Mersenne norm 34, generalized unique 3893 (26371^13681-1)/26370 60482 p170 2012 Generalized repunit 3894 U(24,-25,43201) 60391 CH12 2020 Generalized Lucas number 3895 99064503957*2^200009-1 60220 L95 2016 Sophie Germain (2p+1) 3896 99064503957*2^200008-1 60220 L95 2016 Sophie Germain (p) 3897 (4529^16381-1)/4528 59886 CH2 2012 Generalized repunit 3898 3^125330+1968634623437000 59798 E4 2022 ECPP 3899 (9082^15091-1)/9081 59729 CH2 2014 Generalized repunit 3900 primV(27655,1,19926) 57566 x25 2013 Generalized Lucas primitive part 3901 Ramanujan tau function at 199^4518 57125 E3 2022 ECPP 3902 (43326^12041-1)/43325 55827 p170 2017 Generalized repunit 3903 12443794755*2^184517-1 55556 L3494 2021 Sophie Germain (2p+1) 3904 21749869755*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 3905 14901867165*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 3906 12443794755*2^184516-1 55555 L3494 2021 Sophie Germain (p) 3907 21749869755*2^184515-1 55555 L3494 2021 Sophie Germain (p) 3908 14901867165*2^184515-1 55555 L3494 2021 Sophie Germain (p) 3909 607095*2^176312-1 53081 L983 2009 Sophie Germain (2p+1) 3910 607095*2^176311-1 53081 L983 2009 Sophie Germain (p) 3911 (38284^11491-1)/38283 52659 CH2 2013 Generalized repunit 3912 (2^174533-1)/193594572654550537/91917886778031629891960890057 52494 E5 2022 Mersenne cofactor, ECPP 3913 29055814795*(2^172486-2^86243)+2^86245+1 51934 p408 2022 Consecutive primes arithmetic progression (2,d=4) 3914 11922002779*(2^172486-2^86243)+2^86245+1 51934 p408 2022 Consecutive primes arithmetic progression (2,d=6) 3915 48047305725*2^172404-1 51910 L99 2007 Sophie Germain (2p+1) 3916 48047305725*2^172403-1 51910 L99 2007 Sophie Germain (p) 3917 137211941292195*2^171961-1 51780 x24 2006 Sophie Germain (2p+1) 3918 137211941292195*2^171960-1 51780 x24 2006 Sophie Germain (p) 3919 (34120^11311-1)/34119 51269 CH2 2011 Generalized repunit 3920 U(809,1,17325)-U(809,1,17324) 50378 x45 2019 Lehmer number 3921 10^50000+65859 50001 E3 2022 ECPP 3922 R(49081) 49081 c70 2022 Repunit, unique, ECPP 3923 (50091^10357-1)/50090 48671 p170 2016 Generalized repunit 3924 2^160423-2^80212+1 48293 O 2000 Gaussian Mersenne norm 33, generalized unique 3925 U(67,-1,26161) 47773 x45 2019 Generalized Lucas number 3926 primV(40395,-1,15588) 47759 x23 2007 Generalized Lucas primitive part 3927 primV(53394,-1,15264) 47200 CH4 2007 Generalized Lucas primitive part 3928 (44497^10093-1)/44496 46911 p170 2016 Generalized repunit 3929 4931286045*2^152850-1 46023 L5389 2021 Sophie Germain (2p+1) 3930 4931286045*2^152849-1 46022 L5389 2021 Sophie Germain (p) 3931 151023*2^151023-1 45468 g25 1998 Woodall 3932 U(52245,1,9241)+U(52245,1,9240) 43595 x45 2019 Lehmer number 3933 71509*2^143019-1 43058 g23 1998 Woodall, arithmetic progression (2,d=(143018*2^83969-80047)*2^59049) [x12] 3934 U(2449,-1,12671) 42939 x45 2018 Generalized Lucas number, cyclotomy 3935 V(202667) 42355 E4 2023 Lucas number, ECPP 3936 U(201107) 42029 E11 2023 Fibonacci number, ECPP 3937 (2^138937+1)/3 41824 E12 2023 Wagstaff, ECPP, generalized Lucas number 3938 E(11848)/7910215 40792 E8 2022 Euler irregular, ECPP 3939 V(193201) 40377 E4 2023 Lucas number, ECPP 3940 10^40000+14253 40001 E3 2022 ECPP 3941 p(1289844341) 40000 c84 2020 Partitions, ECPP 3942 primV(4836,1,16704) 39616 x25 2013 Generalized Lucas primitive part 3943 (2^130439-1)/260879 39261 E9 2023 Mersenne cofactor, ECPP 3944 U(21041,-1,9059) 39159 x45 2018 Generalized Lucas number, cyclotomy 3945 tau(47^4176) 38404 E3 2022 ECPP 3946 V(183089) 38264 E4 2023 Lucas number, ECPP 3947 (2^127031+1)/3 38240 E5 2023 Wagstaff, ECPP, generalized Lucas number 3948 3^78296+479975120078336 37357 E4 2022 ECPP 3949 U(5617,-1,9539) 35763 x45 2019 Generalized Lucas number, cyclotomy 3950 (2^117239+1)/3 35292 E2 2022 Wagstaff, ECPP, generalized Lucas number 3951 p(1000007396) 35219 E4 2022 Partitions, ECPP 3952 (V(60145,1,7317)-1)/(V(60145,1,27)-1) 34841 x45 2019 Lehmer primitive part 3953 primV(38513,-1,11502) 34668 x23 2006 Generalized Lucas primitive part 3954 E(10168)/1097239206089665 34323 E10 2023 Euler irregular, ECPP 3955 primV(9008,1,16200) 34168 x23 2005 Generalized Lucas primitive part 3956 (V(28138,1,7587)-1)/(V(28138,1,27)-1) 33637 x45 2019 Lehmer primitive part 3957 V(159521) 33338 E4 2023 Lucas number, ECPP 3958 U(35896,1,7260)+U(35896,1,7259) 33066 x45 2019 Lehmer number 3959 primV(6586,1,16200) 32993 x25 2013 Generalized Lucas primitive part 3960 U(1624,-1,10169) 32646 x45 2018 Generalized Lucas number, cyclotomy 3961 (V(48395,1,6921)-1)/(V(48395,1,9)-1) 32382 x45 2019 Lehmer primitive part 3962 2^106693+2^53347+1 32118 O 2000 Gaussian Mersenne norm 32, generalized unique 3963 primV(28875,1,13500) 32116 x25 2016 Generalized Lucas primitive part 3964 (2^106391-1)/286105171290931103 32010 c95 2022 Mersenne cofactor, ECPP 3965 (V(77786,1,6453)+1)/(V(77786,1,27)+1) 31429 x25 2012 Lehmer primitive part 3966 primV(10987,1,14400) 31034 x25 2005 Generalized Lucas primitive part 3967 V(148091) 30950 c81 2015 Lucas number, ECPP 3968 U(148091) 30949 x49 2021 Fibonacci number, ECPP 3969 -E(9266)/2129452307358569777 30900 E10 2023 Euler irregular, ECPP 3970 Phi(11589,-10000) 30897 E1 2022 Unique,ECPP 3971 (V(73570,1,6309)-1)/(V(73570,1,9)-1) 30661 x25 2016 Lehmer primitive part 3972 V(145703)/179214691 30442 E4 2023 Lucas cofactor, ECPP 3973 V(145193)/38621339 30336 E4 2023 Lucas cofactor, ECPP 3974 1524633857*2^99902-1 30083 p364 2022 Arithmetic progression (4,d=928724769*2^99901) 3975 Phi(36547,-10) 29832 E1 2022 Unique, ECPP 3976 49363*2^98727-1 29725 Y 1997 Woodall 3977 U(2341,-1,8819) 29712 x25 2008 Generalized Lucas number 3978 primV(24127,-1,6718) 29433 CH3 2005 Generalized Lucas primitive part 3979 primV(12215,-1,13500) 29426 x25 2016 Generalized Lucas primitive part 3980 V(140057) 29271 c76 2014 Lucas number,ECPP 3981 U(1404,-1,9209) 28981 CH10 2018 Generalized Lucas number, cyclotomy 3982 U(23396,1,6615)+U(23396,1,6614) 28898 x45 2019 Lehmer number 3983 (2^95369+1)/3 28709 x49 2021 Generalized Lucas number, Wagstaff, ECPP 3984 primV(45922,1,11520) 28644 x25 2011 Generalized Lucas primitive part 3985 primV(205011) 28552 x39 2009 Lucas primitive part 3986 -30*Bern(10264)/262578313564364605963 28506 c94 2021 Irregular, ECPP 3987 U(16531,1,6721)-U(16531,1,6720) 28347 x36 2007 Lehmer number 3988 (V(28286,1,6309)+1)/(V(28286,1,9)+1) 28045 x25 2016 Lehmer primitive part 3989 U(5092,1,7561)+U(5092,1,7560) 28025 x25 2014 Lehmer number 3990c U(132409)/2882138154561602271737 27651 E16 2024 Fibonacci cofactor, ECPP 3991 90825*2^90825+1 27347 Y 1997 Cullen 3992 U(5239,1,7350)-U(5239,1,7349) 27333 CH10 2017 Lehmer number 3993 U(130021) 27173 x48 2021 Fibonacci number, ECPP 3994 primV(5673,1,13500) 27028 CH3 2005 Generalized Lucas primitive part 3995 primV(44368,1,9504) 26768 CH3 2005 Generalized Lucas primitive part 3996 546351925018076058*Bern(9702)/129255048976106804786904258880518941 26709 c77 2021 Irregular, ECPP 3997 22359307*60919#+1 26383 p364 2022 Arithmetic progression (4,d=5210718*60919#) 3998 17029817*60919#+1 26383 p364 2022 Arithmetic progression (4,d=1809778*60919#) 3999 (2^87691-1)/806957040167570408395443233 26371 E1 2022 Mersenne cofactor, ECPP 4000 primV(10986,-1,9756) 26185 x23 2005 Generalized Lucas primitive part 4001 1043945909*60013#+1 25992 p155 2019 Arithmetic progression (4,d=7399459*60013#) 4002 1041073153*60013#+1 25992 p155 2019 Arithmetic progression (4,d=10142823*60013#) 4003 (2^86371-1)/41681512921035887 25984 E2 2022 Mersenne cofactor, ECPP 4004 (2^86137-1)/2584111/7747937967916174363624460881 25896 c84 2022 Mersenne cofactor, ECPP 4005 primV(11076,-1,12000) 25885 x25 2005 Generalized Lucas primitive part 4006 -E(7894)/19 25790 E10 2023 Euler irregular, ECPP 4007 2^85237+2^42619+1 25659 x16 2000 Gaussian Mersenne norm 31, generalized unique 4008f V(122869)/40546771/1243743094029841 25656 E1 2024 Lucas cofactor, ECPP 4009 primV(17505,1,11250) 25459 x25 2011 Generalized Lucas primitive part 4010 U(2325,-1,7561) 25451 x20 2013 Generalized Lucas number 4011 U(13084,-13085,6151) 25319 x45 2018 Generalized Lucas number, cyclotomy 4012 (2^84211-1)/1347377/31358793176711980763958121/33146416760423478241695\ 91561 25291 c95 2020 Mersenne cofactor, ECPP 4013f U(120937)/241873/13689853218820385381 25250 E1 2024 Fibonacci cofactor, ECPP 4014 primV(42,-1,23376) 25249 x23 2007 Generalized Lucas primitive part 4015 U(1064,-1065,8311) 25158 CH10 2018 Generalized Lucas number, cyclotomy 4016 primV(7577,-1,10692) 25140 x33 2007 Generalized Lucas primitive part 4017 (2^83339+1)/3 25088 c54 2014 ECPP, generalized Lucas number, Wagstaff 4018 (2^82939-1)/883323903012540278033571819073 24938 c84 2021 Mersenne cofactor, ECPP 4019 -E(7634)/1559 24828 E10 2023 Euler irregular, ECPP 4020 U(1766,1,7561)-U(1766,1,7560) 24548 x25 2013 Lehmer number 4021f U(117167)/17658707237 24476 E1 2024 Fibonacci cofactor, ECPP 4022 V(116593)/120790349 24359 E4 2023 Lucas cofactor, ECPP 4023 U(1383,1,7561)+U(1383,1,7560) 23745 x25 2013 Lehmer number 4024 798*Bern(8766)/14670751334144820770719 23743 c94 2021 Irregular, ECPP 4025 Phi(11867,-100) 23732 c47 2021 Unique, ECPP 4026 (2^78737-1)/1590296767505866614563328548192658003295567890593 23654 E2 2022 Mersenne cofactor, ECPP 4027 Phi(35421,-10) 23613 c77 2021 Unique, ECPP 4028 6917!-1 23560 g1 1998 Factorial 4029 2^77291+2^38646+1 23267 O 2000 Gaussian Mersenne norm 30, generalized unique 4030 (V(59936,1,4863)+1)/(V(59936,1,3)+1) 23220 x25 2013 Lehmer primitive part 4031 U(1118,1,7561)-U(1118,1,7560) 23047 x25 2013 Lehmer number 4032 primA(275285) 23012 E1 2024 Lucas Aurifeuillian primitive part, ECPP 4033 (V(45366,1,4857)+1)/(V(45366,1,3)+1) 22604 x25 2013 Lehmer primitive part 4034 U(106663)/35892566541651557 22275 E1 2024 Fibonacci cofactor, ECPP 4035 348054*Bern(8286)/1570865077944473903275073668721 22234 E1 2022 Irregular, ECPP 4036 p(398256632) 22223 E1 2022 Partitions, ECPP 4037 U(105509)/144118801533126010445795676378394340544227572822879081 21997 E1 2022 Fibonacci cofactor, ECPP 4038 U(104911) 21925 c82 2015 Fibonacci number, ECPP 4039 primB(282035) 21758 E1 2023 Lucas Aurifeuillian primitive part, ECPP 4040 primA(276335) 21736 E1 2024 Lucas Aurifeuillian primitive part, ECPP 4041 Phi(1203,10^27) 21600 c47 2021 Unique, ECPP 4042 U(19258,-1,5039) 21586 x23 2007 Generalized Lucas number 4043 6380!+1 21507 g1 1998 Factorial 4044 primV(154281) 21495 E4 2023 Lucas primitive part, ECPP 4045 U(43100,1,4620)+U(43100,1,4619) 21407 x25 2016 Lehmer number 4046 -E(6658)/85079 21257 c77 2020 Euler irregular, ECPP 4047 Phi(39855,-10) 21248 c95 2020 Unique, ECPP 4048 (V(23354,1,4869)-1)/(V(23354,1,9)-1) 21231 x25 2013 Lehmer primitive part 4049 primA(296695) 21137 E1 2023 Lucas Aurifeuillian primitive part, ECPP 4050 U(15631,1,5040)-U(15631,1,5039) 21134 x25 2003 Lehmer number 4051 primA(413205) 21127 E1 2023 Lucas Aurifeuillian primitive part, ECPP 4052 U(35759,1,4620)+U(35759,1,4619) 21033 x25 2016 Lehmer number 4053 p(355646102) 21000 E1 2022 Partitions, ECPP 4054f V(100417)/713042903779101607511808799053206435494854433884796747437071\ 9436805470448849 20911 E1 2024 Lucas cofactor, ECPP 4055 p(350199893) 20838 E7 2022 Partitions, ECPP 4056 U(31321,1,4620)-U(31321,1,4619) 20767 x25 2016 Lehmer number 4057 primU(105821) 20598 E1 2022 Fibonacci primitive part, ECPP 4058 primU(172179) 20540 E1 2022 Fibonacci primitive part, ECPP 4059f V(98081)/31189759/611955609270431/6902594225498651/641303018340927841 20442 E1 2024 Lucas cofactor, ECPP 4060 U(11200,-1,5039) 20400 x25 2004 Generalized Lucas number, cyclotomy 4061c 4404139952163*2^67002+1 20183 p408 2024 Triplet (3) 4062c 4404139952163*2^67002-1 20183 p408 2024 Triplet (2) 4063c 4404139952163*2^67002-5 20183 E15 2024 Triplet (1), ECPP 4064 Phi(23749,-10) 20160 c47 2014 Unique, ECPP 4065 U(22098,1,4620)+U(22098,1,4619) 20067 x25 2016 Lehmer number 4066 primV(112028) 20063 E1 2022 Lucas primitive part, ECPP 4067 1128330746865*2^66441-1 20013 p158 2020 Cunningham chain (4p+3) 4068 1128330746865*2^66440-1 20013 p158 2020 Cunningham chain (2p+1) 4069 1128330746865*2^66439-1 20013 p158 2020 Cunningham chain (p) 4070 4111286921397*2^66420+5 20008 c88 2019 Triplet (3) 4071 4111286921397*2^66420+1 20008 L4808 2019 Triplet (2) 4072 4111286921397*2^66420-1 20008 L4808 2019 Triplet (1) 4073 U(21412,1,4620)-U(21412,1,4619) 20004 x25 2016 Lehmer number 4074 p(322610098) 20000 E1 2022 Partitions, ECPP 4075 primV(151521) 19863 E1 2022 Lucas primitive part, ECPP 4076 V(94823) 19817 c73 2014 Lucas number, ECPP 4077 U(19361,1,4620)+U(19361,1,4619) 19802 x25 2016 Lehmer number 4078 U(8454,-1,5039) 19785 x25 2013 Generalized Lucas number 4079f (2^64381-1)/1825231878561264571177401910928543898820492254252817499611\ 8699181907547497 19308 E13 2024 Mersenne cofactor, ECPP 4080 U(6584,-1,5039) 19238 x23 2007 Generalized Lucas number 4081 V(91943)/551659/2390519/9687119153094919 19187 E1 2022 Lucas cofactor, ECPP 4082 (V(428,1,8019)-1)/(V(428,1,729)-1) 19184 E1 2022 Lehmer primitive part, ECPP 4083 V(91873)/3674921/193484539/167745030829 19175 E1 2022 Lucas cofactor, ECPP 4084 (2^63703-1)/42808417 19169 c59 2014 Mersenne cofactor, ECPP 4085 primU(137439) 19148 E1 2022 Fibonacci primitive part, ECPP 4086 primU(107779) 18980 E1 2022 Fibonacci primitive part, ECPP 4087 (U(162,1,8581)+U(162,1,8580))/(U(162,1,66)+U(162,1,65)) 18814 E1 2022 Lehmer primitive part, ECPP 4088 V(89849) 18778 c70 2014 Lucas number, ECPP 4089 primV(145353) 18689 c69 2013 ECPP, Lucas primitive part 4090 Phi(14943,-100) 18688 c47 2014 Unique, ECPP 4091 (U(859,1,6385)-U(859,1,6384))/(U(859,1,57)-U(859,1,56)) 18567 E1 2022 Lehmer primitive part, ECPP 4092 Phi(18827,10) 18480 c47 2014 Unique, ECPP 4093 primB(220895) 18465 E1 2022 Lucas Aurifeuillian primitive part, ECPP 4094 primV(153279) 18283 E1 2022 Lucas primitive part, ECPP 4095 42209#+1 18241 p8 1999 Primorial 4096 (V(46662,1,3879)-1)/(V(46662,1,9)-1) 18069 x25 2012 Lehmer primitive part 4097 V(86477)/1042112515940998434071039 18049 c77 2020 Lucas cofactor, ECPP 4098 7457*2^59659+1 17964 Y 1997 Cullen 4099 primB(235015) 17856 E1 2022 Lucas Aurifeuillian primitive part, ECPP 4100 primV(148197) 17696 E1 2022 Lucas primitive part, ECPP 4101 (V(447,1,6723)+1)/(V(447,1,81)+1) 17604 E1 2022 Lehmer primitive part, ECPP 4102 (2^58199-1)/237604901713907577052391 17497 c59 2015 Mersenne cofactor, ECPP 4103 Phi(26031,-10) 17353 c47 2014 Unique, ECPP 4104 primV(169830) 17335 E1 2022 Lucas primitive part, ECPP 4105 (V(561,1,6309)+1)/(V(561,1,9)+1) 17319 x25 2016 Lehmer primitive part 4106 U(9657,1,4321)-U(9657,1,4320) 17215 x23 2005 Lehmer number 4107 (2^57131-1)/61481396117165983261035042726614288722959856631 17152 c59 2015 Mersenne cofactor, ECPP 4108 U(81839) 17103 p54 2001 Fibonacci number 4109 (V(1578,1,5589)+1)/(V(1578,1,243)+1) 17098 E1 2022 Lehmer primitive part, ECPP 4110 V(81671) 17069 c66 2013 Lucas number, ECPP 4111 primV(101510) 16970 E1 2022 Lucas primitive part, ECPP 4112 primV(86756) 16920 c74 2015 Lucas primitive part, ECPP 4113 V(80761)/570100885555095451 16861 c77 2020 Lucas cofactor, ECPP 4114 6521953289619*2^55555+1 16737 p296 2013 Triplet (3) 4115 6521953289619*2^55555-1 16737 p296 2013 Triplet (2) 4116 6521953289619*2^55555-5 16737 c58 2013 Triplet (1), ECPP 4117 primV(122754) 16653 c77 2021 Lucas primitive part, ECPP 4118 U(15823,1,3960)-U(15823,1,3959) 16625 x25 2002 Lehmer number, cyclotomy 4119 p(221444161) 16569 c77 2017 Partitions, ECPP 4120 (V(1240,1,5589)-1)/(V(1240,1,243)-1) 16538 E1 2022 Lehmer primitive part, ECPP 4121 primA(201485) 16535 E1 2022 Lucas Aurifeuillian primitive part, ECPP 4122 U(78919)/15574900936381642440917 16471 c77 2020 Fibonacci cofactor, ECPP 4123 (U(800,1,5725)-U(800,1,5724))/(U(800,1,54)-U(800,1,53)) 16464 E1 2022 Lehmer primitive part, ECPP 4124d 17484430616589*2^54201+5 16330 E14 2024 Consecutive primes arithmetic progression (3,d=6), ECPP 4125d 17484430616589*2^54201-1 16330 p440 2024 Consecutive primes arithmetic progression (2,d=6) 4126d 17484430616589*2^54201-7 16330 E14 2024 Consecutive primes arithmetic progression (1,d=6), ECPP 4127 (V(21151,1,3777)-1)/(V(21151,1,3)-1) 16324 x25 2011 Lehmer primitive part 4128 primV(123573) 16198 c77 2019 Lucas primitive part, ECPP 4129 primB(225785) 16176 E1 2022 Lucas Aurifeuillian primitive part, ECPP 4130 V(77417)/313991497376559420151 16159 c77 2020 Lucas cofactor, ECPP 4131 (2^53381-1)/15588960193/38922536168186976769/1559912715971690629450336\ 68006103 16008 c84 2017 Mersenne cofactor, ECPP 4132 -E(5186)/295970922359784619239409649676896529941379763 15954 c63 2018 Euler irregular, ECPP 4133 primV(121227) 15890 c77 2019 Lucas primitive part, ECPP 4134 Phi(2949,-100000000) 15713 c47 2013 Unique, ECPP 4135 primU(131481) 15695 c77 2019 Fibonacci primitive part, ECPP 4136 primV(120258) 15649 c77 2019 Lucas primitive part, ECPP 4137 (U(9275,1,3961)+U(9275,1,3960))/(U(9275,1,45)+U(9275,1,44)) 15537 x38 2009 Lehmer primitive part 4138 (2^51487-1)/57410994232247/17292148963401772464767849635553 15455 c77 2018 Mersenne cofactor, ECPP 4139 primB(183835) 15368 c77 2019 Lucas Aurifeuillian primitive part, ECPP 4140 primU(77387) 15319 c77 2019 Fibonacci primitive part, ECPP 4141 primB(181705) 15189 c77 2019 Lucas Aurifeuillian primitive part, ECPP 4142 primV(76568) 15034 c74 2015 Lucas primitive part, ECPP 4143 U(71983)/5614673/363946049 15028 c77 2018 Fibonacci cofactor, ECPP 4144 2494779036241*2^49800+13 15004 c93 2022 Consecutive primes arithmetic progression (3,d=6) 4145 2494779036241*2^49800+7 15004 c93 2022 Consecutive primes arithmetic progression (2,d=6) 4146 2494779036241*2^49800+1 15004 p408 2022 Consecutive primes arithmetic progression (1,d=6) 4147 primB(268665) 14972 c77 2019 Lucas Aurifeuillian primitive part, ECPP 4148 primV(75316) 14897 c74 2015 Lucas primitive part, ECPP 4149 Phi(5015,-10000) 14848 c47 2013 Unique, ECPP 4150 primV(91322) 14847 c74 2016 Lucas primitive part, ECPP 4151 2^49207-2^24604+1 14813 x16 2000 Gaussian Mersenne norm 29, generalized unique 4152 primV(110676) 14713 c74 2016 Lucas primitive part, ECPP 4153 primA(284895) 14626 c77 2019 Lucas Aurifeuillian primitive part, ECPP 4154 U(69239)/1384781 14464 c77 2018 Fibonacci cofactor, ECPP 4155 primV(112914) 14446 c74 2016 Lucas primitive part, ECPP 4156 primA(170575) 14258 c77 2018 Lucas Aurifeuillian primitive part, ECPP 4157 V(68213)/7290202116115634431 14237 c77 2018 Lucas cofactor, ECPP 4158 p(158375386) 14011 E1 2022 Partitions, ECPP 4159 p(158295265) 14007 E1 2022 Partitions, ECPP 4160 p(158221457) 14004 E1 2022 Partitions, ECPP 4161 primU(67703) 13954 c77 2018 Fibonacci primitive part, ECPP 4162 U(66947)/12485272838388758877279873712131648167413 13951 c77 2017 Fibonacci cofactor, ECPP 4163 V(66533)/2128184670585621839884209100279 13875 c77 2018 Lucas cofactor, ECPP 4164 6*Bern(5534)/226840561549600012633271691723599339 13862 c71 2014 Irregular, ECPP 4165 4410546*Bern(5526)/9712202742835546740714595866405369616019 13840 c63 2018 Irregular,ECPP 4166 primV(82630) 13814 c74 2014 Lucas primitive part, ECPP 4167 primB(163595) 13675 c77 2018 Lucas Aurifeuillian primitive part, ECPP 4168 6*Bern(5462)/23238026668982614152809832227 13657 c64 2013 Irregular, ECPP 4169 56667641271*2^44441+5 13389 c99 2022 Triplet (3), ECPP 4170 56667641271*2^44441+1 13389 p426 2022 Triplet (2) 4171 56667641271*2^44441-1 13389 p426 2022 Triplet (1) 4172b V(64063)/464426465381142115542697818362662865912299 13347 E1 2024 Lucas cofactor, ECPP 4173 512792361*30941#+1 13338 p364 2022 Arithmetic progression (5,d=18195056*30941#) 4174 1815615642825*2^44046-1 13272 p395 2016 Cunningham chain (4p+3) 4175 1815615642825*2^44045-1 13272 p395 2016 Cunningham chain (2p+1) 4176 1815615642825*2^44044-1 13271 p395 2016 Cunningham chain (p) 4177 p(141528106) 13244 E6 2022 Partitions, ECPP 4178 p(141513546) 13244 E6 2022 Partitions, ECPP 4179 p(141512238) 13244 E6 2022 Partitions, ECPP 4180 p(141255053) 13232 E6 2022 Partitions, ECPP 4181 p(141150528) 13227 E6 2022 Partitions, ECPP 4182 p(141112026) 13225 E6 2022 Partitions, ECPP 4183 p(141111278) 13225 E6 2022 Partitions, ECPP 4184 p(140859260) 13213 E6 2022 Partitions, ECPP 4185 p(140807155) 13211 E6 2022 Partitions, ECPP 4186 p(140791396) 13210 E6 2022 Partitions, ECPP 4187 primU(94551) 13174 c77 2018 Fibonacci primitive part, ECPP 4188 primB(242295) 13014 c77 2018 Lucas Aurifeuillian primitive part, ECPP 4189 U(61813)/594517433/3761274442997 12897 c77 2018 Fibonacci cofactor, ECPP 4190 (2^42737+1)/3 12865 M 2007 ECPP, generalized Lucas number, Wagstaff 4191 primU(62771) 12791 c77 2018 Fibonacci primitive part, ECPP 4192 primA(154415) 12728 c77 2018 Lucas Aurifeuillian primitive part, ECPP 4193 primA(263865) 12570 c77 2018 Lucas Aurifeuillian primitive part, ECPP 4194 6*Bern(5078)/643283455240626084534218914061 12533 c63 2013 Irregular, ECPP 4195 (2^41681-1)/1052945423/16647332713153/2853686272534246492102086015457 12495 c77 2015 Mersenne cofactor, ECPP 4196 (2^41521-1)/41602235382028197528613357724450752065089 12459 c54 2012 Mersenne cofactor, ECPP 4197 (2^41263-1)/1379707143199991617049286121 12395 c59 2012 Mersenne cofactor, ECPP 4198 U(59369)/2442423669148466039458303756169988568809269383644075940757020\ 9763004757 12337 c79 2015 Fibonacci cofactor, ECPP 4199 742478255901*2^40069+1 12074 p395 2016 Cunningham chain 2nd kind (4p-3) 4200 996824343*2^40074+1 12073 p395 2016 Cunningham chain 2nd kind (4p-3) 4201 664342014133*2^39840+1 12005 p408 2020 Consecutive primes arithmetic progression (3,d=30) 4202 664342014133*2^39840-29 12005 c93 2020 Consecutive primes arithmetic progression (2,d=30), ECPP 4203 664342014133*2^39840-59 12005 c93 2020 Consecutive primes arithmetic progression (1,d=30), ECPP 4204 V(56003) 11704 p193 2006 Lucas number 4205 primA(143705) 11703 c77 2017 Lucas Aurifeuillian primitive part, ECPP 4206 4207993863*2^38624+5 11637 L5354 2021 Triplet (3), ECPP 4207 4207993863*2^38624+1 11637 L5354 2021 Triplet (2) 4208 4207993863*2^38624-1 11637 L5354 2021 Triplet (1) 4209 primU(73025) 11587 c77 2015 Fibonacci primitive part, ECPP 4210 primU(67781) 11587 c77 2015 Fibonacci primitive part, ECPP 4211 primB(219165) 11557 c77 2015 Lucas Aurifeuillian primitive part, ECPP 4212 198429723072*11^11005+1 11472 L3323 2016 Cunningham chain 2nd kind (4p-3) 4213 U(54799)/4661437953906084533621577211561 11422 c8 2015 Fibonacci cofactor, ECPP 4214 U(54521)/6403194135342743624071073 11370 c8 2015 Fibonacci cofactor, ECPP 4215 primU(67825) 11336 x23 2007 Fibonacci primitive part 4216 3610!-1 11277 C 1993 Factorial 4217 U(53189)/69431662887136064191105625570683133711989 11075 c8 2014 Fibonacci cofactor, ECPP 4218 primU(61733) 11058 c77 2015 Fibonacci primitive part, ECPP 4219 778965587811*2^36627-1 11038 p395 2016 Cunningham chain (4p+3) 4220 778965587811*2^36626-1 11038 p395 2016 Cunningham chain (2p+1) 4221 778965587811*2^36625-1 11038 p395 2016 Cunningham chain (p) 4222 272879344275*2^36622-1 11036 p395 2016 Cunningham chain (4p+3) 4223 272879344275*2^36621-1 11036 p395 2016 Cunningham chain (2p+1) 4224 272879344275*2^36620-1 11036 p395 2016 Cunningham chain (p) 4225 V(52859)/1124137922466041911 11029 c8 2014 Lucas cofactor, ECPP 4226 3507!-1 10912 C 1992 Factorial 4227 V(52201)/70585804042896975505694709575919458733851279868446609 10857 c8 2015 Lucas cofactor, ECPP 4228 V(52009)/39772636393178951550299332730909 10838 c8 2015 Lucas cofactor, ECPP 4229 V(51941)/2808052157610902114547210696868337380250300924116591143641642\ 866931 10789 c8 2015 Lucas cofactor, ECPP 4230 1258566*Bern(4462)/6610083971965402783802518108033 10763 c64 2013 Irregular, ECPP 4231 3428602715439*2^35678+13 10753 c93 2020 Consecutive primes arithmetic progression (3,d=6), ECPP 4232 3428602715439*2^35678+1 10753 p408 2020 Consecutive primes arithmetic progression (1,d=6) 4233 333645655005*2^35549-1 10713 p364 2015 Cunningham chain (4p+3) 4234 333645655005*2^35548-1 10713 p364 2015 Cunningham chain (2p+1) 4235 333645655005*2^35547-1 10713 p364 2015 Cunningham chain (p) 4236 V(51349)/224417260052884218046541 10708 c8 2014 Lucas cofactor, ECPP 4237 V(51169) 10694 p54 2001 Lucas number 4238 U(51031)/95846689435051369 10648 c8 2014 Fibonacci cofactor, ECPP 4239 V(50989)/69818796119453411 10640 c8 2014 Lucas cofactor, ECPP 4240 Phi(13285,-10) 10625 c47 2012 Unique, ECPP 4241 U(50833) 10624 CH4 2005 Fibonacci number 4242 2683143625525*2^35176+13 10602 c92 2019 Consecutive primes arithmetic progression (3,d=6),ECPP 4243 2683143625525*2^35176+1 10602 p407 2019 Consecutive primes arithmetic progression (1,d=6) 4244 3020616601*24499#+1 10593 p422 2021 Arithmetic progression (6,d=56497325*24499#) 4245 2964119276*24499#+1 10593 p422 2021 Arithmetic progression (5,d=56497325*24499#) 4246 (2^35339-1)/4909884303849890402839544048623503366767426783548098123390\ 4512709297747031041 10562 c77 2015 Mersenne cofactor, ECPP 4247 primU(55297) 10483 c8 2014 Fibonacci primitive part, ECPP 4248 24029#+1 10387 C 1993 Primorial 4249 400791048*24001#+1 10378 p155 2018 Arithmetic progression (5,d=59874860*24001#) 4250 393142614*24001#+1 10378 p155 2018 Arithmetic progression (5,d=54840724*24001#) 4251 221488788*24001#+1 10377 p155 2018 Arithmetic progression (5,d=22703701*24001#) 4252 6*Bern(4306)/2153 10342 FE8 2009 Irregular, ECPP 4253 23801#+1 10273 C 1993 Primorial 4254 667674063382677*2^33608+7 10132 c88 2019 Quadruplet (4), ECPP 4255 667674063382677*2^33608+5 10132 c88 2019 Quadruplet (3), ECPP 4256 667674063382677*2^33608+1 10132 L4808 2019 Quadruplet (2) 4257 667674063382677*2^33608-1 10132 L4808 2019 Quadruplet (1) 4258 Phi(427,-10^28) 10081 FE9 2009 Unique, ECPP 4259 9649755890145*2^33335+1 10048 p364 2015 Cunningham chain 2nd kind (4p-3) 4260 15162914750865*2^33219+1 10014 p364 2015 Cunningham chain 2nd kind (4p-3) 4261 32469*2^32469+1 9779 MM 1997 Cullen 4262 8073*2^32294+1 9726 MM 1997 Cullen 4263 E(3308)/39308792292493140803643373186476368389461245 9516 c8 2014 Euler irregular, ECPP 4264 Phi(5161,-100) 9505 c47 2012 Unique, ECPP 4265 V(44507) 9302 CH3 2005 Lucas number 4266 U(43399)/470400609575881344601538056264109423291827366228494341196421 9010 c8 2013 Fibonacci cofactor, ECPP 4267 primU(44113) 8916 c8 2014 Fibonacci primitive part, ECPP 4268 U(42829)/107130175995197969243646842778153077 8916 c8 2014 Fibonacci cofactor, ECPP 4269 U(42043)/1681721 8780 c56 2012 Fibonacci cofactor, ECPP 4270 Phi(6105,-1000) 8641 c47 2010 Unique, ECPP 4271 Phi(4667,-100) 8593 c47 2009 Unique, ECPP 4272 U(40763)/643247084652261620737 8498 c8 2013 Fibonacci cofactor, ECPP 4273 primU(46711) 8367 c8 2013 Fibonacci primitive part, ECPP 4274 2^27529-2^13765+1 8288 O 2000 Gaussian Mersenne norm 28, generalized unique 4275 primU(62373) 8173 c8 2013 Fibonacci primitive part, ECPP 4276 18523#+1 8002 D 1990 Primorial 4277 primU(43121) 7975 c8 2013 Fibonacci primitive part, ECPP 4278 6*Bern(3458)/28329084584758278770932715893606309 7945 c8 2013 Irregular, ECPP 4279 U(37987)/1832721858208455887947958246414213 7906 c39 2012 Fibonacci cofactor, ECPP 4280 U(37511) 7839 x13 2005 Fibonacci number 4281 -E(2762)/2670541 7760 c11 2004 Euler irregular, ECPP 4282 V(36779) 7687 CH3 2005 Lucas number 4283 U(35999) 7523 p54 2001 Fibonacci number, cyclotomy 4284 Phi(4029,-1000) 7488 c47 2009 Unique, ECPP 4285 V(35449) 7409 p12 2001 Lucas number 4286 -30*Bern(3176)/6689693100056872989386833739813089720559189736259127537\ 0617658634396391181 7138 c63 2016 Irregular, ECPP 4287 2154675239*16301#+1 7036 p155 2018 Arithmetic progression (6,d=141836149*16301#) 4288 primU(48965) 7012 c8 2013 Fibonacci primitive part, ECPP 4289 -10365630*Bern(3100)/1670366116112864481699585217650438278080436881373\ 643007997602585219667 6943 c63 2016 Irregular ECPP 4290 23005*2^23005-1 6930 Y 1997 Woodall 4291 22971*2^22971-1 6920 Y 1997 Woodall 4292 15877#-1 6845 CD 1992 Primorial 4293 primU(58773) 6822 c8 2013 Fibonacci primitive part, ECPP 4294 6*Bern(2974)/19622040971147542470479091157507 6637 c8 2013 Irregular, ECPP 4295 U(30757) 6428 p54 2001 Fibonacci number, cyclotomy 4296 E(2220)/392431891068600713525 6011 c8 2013 Euler irregular, ECPP 4297 -E(2202)/53781055550934778283104432814129020709 5938 c8 2013 Euler irregular, ECPP 4298 13649#+1 5862 D 1988 Primorial 4299 274386*Bern(2622)/8518594882415401157891061256276973722693 5701 c8 2013 Irregular, ECPP 4300 18885*2^18885-1 5690 K 1988 Woodall 4301 1963!-1 5614 CD 1992 Factorial 4302 13033#-1 5610 CD 1992 Primorial 4303 289*2^18502+1 5573 K 1985 Cullen, generalized Fermat 4304 E(2028)/11246153954845684745 5412 c55 2011 Euler irregular, ECPP 4305 -30*Bern(2504)/1248230090315232335602406373438221652417581490266755814\ 38903418303340323897 5354 c63 2013 Irregular ECPP 4306 U(25561) 5342 p54 2001 Fibonacci number 4307 -E(1990)/8338208577950624722417016286765473477033741642105671913 5258 c8 2013 Euler irregular, ECPP 4308 33957462*Bern(2370)/40685 5083 c11 2003 Irregular, ECPP 4309 4122429552750669*2^16567+7 5003 c83 2016 Quadruplet (4), ECPP 4310 4122429552750669*2^16567+5 5003 c83 2016 Quadruplet (3), ECPP 4311 4122429552750669*2^16567+1 5003 L4342 2016 Quadruplet (2) 4312 4122429552750669*2^16567-1 5003 L4342 2016 Quadruplet (1) 4313d 35734184537*11677#/3+9 5002 c98 2024 Consecutive primes arithmetic progression (4,d=6), ECPP 4314 11549#+1 4951 D 1987 Primorial 4315 E(1840)/31237282053878368942060412182384934425 4812 c4 2011 Euler irregular, ECPP 4316 7911*2^15823-1 4768 K 1988 Woodall 4317 E(1736)/13510337079405137518589526468536905 4498 c4 2004 Euler irregular, ECPP 4318 2^14699+2^7350+1 4425 O 2000 Gaussian Mersenne norm 27, generalized unique 4319 (2^14479+1)/3 4359 c4 2004 Generalized Lucas number, Wagstaff, ECPP 4320 62399583639*9923#-3399421517 4285 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 4321 49325406476*9811#*8+1 4234 p382 2019 Cunningham chain 2nd kind (8p-7) 4322 276474*Bern(2030)/469951697500688159155 4200 c8 2003 Irregular, ECPP 4323 V(19469) 4069 x25 2002 Lucas number, cyclotomy, APR-CL assisted 4324 1477!+1 4042 D 1985 Factorial 4325 -2730*Bern(1884)/100983617849 3844 c8 2003 Irregular, ECPP 4326 2840178*Bern(1870)/85 3821 c8 2003 Irregular, ECPP 4327 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+9 3753 c101 2023 Quadruplet (4),ECPP 4328 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+7 3753 c101 2023 Quadruplet (3),ECPP 4329 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+3 3753 c101 2023 Quadruplet (2),ECPP 4330 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+1 3753 c101 2023 Quadruplet (1),ECPP 4331 12379*2^12379-1 3731 K 1985 Woodall 4332 (2^12391+1)/3 3730 M 1996 Generalized Lucas number, Wagstaff 4333 -E(1466)/167900532276654417372106952612534399239 3682 c8 2013 Euler irregular, ECPP 4334 E(1468)/12330876589623053882799895025030461658552339028064108285 3671 c4 2003 Euler irregular, ECPP 4335 1268118079424*8501#-1 3640 p434 2023 Cunningham chain (8p+7) 4336 101406820312263*2^12042+7 3640 c67 2018 Quadruplet (4) 4337 101406820312263*2^12042+5 3640 c67 2018 Quadruplet (3) 4338 101406820312263*2^12042+1 3640 p364 2018 Quadruplet (2) 4339 101406820312263*2^12042-1 3640 p364 2018 Quadruplet (1) 4340 2673092556681*15^3048+4 3598 c67 2015 Quadruplet (4) 4341 2673092556681*15^3048+2 3598 c67 2015 Quadruplet (3) 4342 2673092556681*15^3048-2 3598 c67 2015 Quadruplet (2) 4343 2673092556681*15^3048-4 3598 c67 2015 Quadruplet (1) 4344 6016459977*7927#-1 3407 p364 2022 Arithmetic progression (7,d=577051223*7927#) 4345 5439408754*7927#-1 3407 p364 2022 Arithmetic progression (6,d=577051223*7927#) 4346 62753735335*7919#+3399421667 3404 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 4347 (2^11279+1)/3 3395 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 4348 109766820328*7877#-1 3385 p395 2016 Cunningham chain (8p+7) 4349 585150568069684836*7757#/85085+17 3344 c88 2022 Quintuplet (5), ECPP 4350 585150568069684836*7757#/85085+13 3344 c88 2022 Quintuplet (4), ECPP 4351 585150568069684836*7757#/85085+11 3344 c88 2022 Quintuplet (3), ECPP 4352 585150568069684836*7757#/85085+7 3344 c88 2022 Quintuplet (2), ECPP 4353 585150568069684836*7757#/85085+5 3344 c88 2022 Quintuplet (1), ECPP 4354 104052837*7759#-1 3343 p398 2017 Arithmetic progression (6,d=12009836*7759#) 4355 2072453060816*7699#+1 3316 p364 2019 Cunningham chain 2nd kind (8p-7) 4356 (2^10691+1)/3 3218 c4 2004 Generalized Lucas number, Wagstaff, ECPP 4357 231692481512*7517#-1 3218 p395 2016 Cunningham chain (8p+7) 4358 (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+19 3207 c100 2023 Consecutive primes arithmetic progression (4,d=6),ECPP 4359 (2^10501+1)/3 3161 M 1996 Generalized Lucas number, Wagstaff 4360 2^10141+2^5071+1 3053 O 2000 Gaussian Mersenne norm 26, generalized unique 4361 121152729080*7019#/1729+19 3025 c92 2019 Consecutive primes arithmetic progression (4,d=6), ECPP 4362 V(14449) 3020 DK 1995 Lucas number 4363 3124777373*7001#+1 3019 p155 2012 Arithmetic progression (7,d=481789017*7001#) 4364 2996180304*7001#+1 3019 p155 2012 Arithmetic progression (6,d=46793757*7001#) 4365 U(14431) 3016 p54 2001 Fibonacci number 4366 138281163736*6977#+1 3006 p395 2016 Cunningham chain 2nd kind (8p-7) 4367 375967981369*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 4368 354362289656*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 4369 V(13963) 2919 c11 2002 Lucas number, ECPP 4370 284787490256*6701#+1 2879 p364 2015 Cunningham chain 2nd kind (8p-7) 4371 9531*2^9531-1 2874 K 1985 Woodall 4372 -E(1174)/50550511342697072710795058639332351763 2829 c8 2013 Euler irregular, ECPP 4373 6569#-1 2811 D 1992 Primorial 4374 -E(1142)/6233437695283865492412648122953349079446935570718422828539863\ 59013986902240869 2697 c77 2015 Euler irregular, ECPP 4375 -E(1078)/361898544439043 2578 c4 2002 Euler irregular, ECPP 4376 V(12251) 2561 p54 2001 Lucas number 4377 974!-1 2490 CD 1992 Factorial 4378 7755*2^7755-1 2339 K 1985 Woodall 4379 772463767240*5303#+1 2272 p308 2019 Cunningham chain 2nd kind (8p-7) 4380 116814018316*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10892863626*5303#) 4381 116746086504*5303#+1 2271 p406 2019 Arithmetic progression (7,d=9726011684*5303#) 4382 116242725347*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10388428124*5303#) 4383 69285767989*5303#+1 2271 p406 2019 Arithmetic progression (8,d=3026809034*5303#) 4384 V(10691) 2235 DK 1996 Lucas number 4385 872!+1 2188 D 1984 Factorial 4386 4787#+1 2038 D 1985 Primorial 4387 566761969187*4733#/2+4 2034 c67 2020 Quintuplet (5) 4388 566761969187*4733#/2+2 2034 c67 2020 Quintuplet (4) 4389 566761969187*4733#/2-2 2034 c67 2020 Quintuplet (3) 4390 566761969187*4733#/2-4 2034 c67 2020 Quintuplet (2) 4391 566761969187*4733#/2-8 2034 c67 2020 Quintuplet (1) 4392 U(9677) 2023 c2 2000 Fibonacci number, ECPP 4393 7610828704751636272*4679#-1 2020 p151 2024 Cunningham chain (16p+15) 4394 126831252923413*4657#/273+13 2002 c88 2020 Quintuplet (5) 4395 126831252923413*4657#/273+9 2002 c88 2020 Quintuplet (4) 4396 126831252923413*4657#/273+7 2002 c88 2020 Quintuplet (3) 4397 126831252923413*4657#/273+3 2002 c88 2020 Quintuplet (2) 4398 126831252923413*4657#/273+1 2002 c88 2020 Quintuplet (1) 4399 6611*2^6611+1 1994 K 1985 Cullen 4400 U(9311) 1946 DK 1995 Fibonacci number 4401 2738129459017*4211#+3399421637 1805 c98 2022 Consecutive primes arithmetic progression (5,d=30) 4402 V(8467) 1770 c2 2000 Lucas number, ECPP 4403 5795*2^5795+1 1749 K 1985 Cullen 4404 (2^5807+1)/3 1748 PM 1999 Cyclotomy, generalized Lucas number, Wagstaff 4405 54201838768*3917#-1 1681 p395 2016 Cunningham chain (16p+15) 4406 102619722624*3797#+1 1631 p395 2016 Cunningham chain 2nd kind (16p-15) 4407 394254311495*3733#/2+4 1606 c67 2017 Quintuplet (5) 4408 394254311495*3733#/2+2 1606 c67 2017 Quintuplet (4) 4409 394254311495*3733#/2-2 1606 c67 2017 Quintuplet (3) 4410 394254311495*3733#/2-4 1606 c67 2017 Quintuplet (2) 4411 394254311495*3733#/2-8 1606 c67 2017 Quintuplet (1) 4412 83*2^5318-1 1603 K 1985 Woodall 4413 2316765173284*3593#+16073 1543 c18 2016 Quintuplet (5), ECPP 4414 2316765173284*3593#+16069 1543 c18 2016 Quintuplet (4), ECPP 4415 2316765173284*3593#+16067 1543 c18 2016 Quintuplet (3), ECPP 4416 2316765173284*3593#+16063 1543 c18 2016 Quintuplet (2), ECPP 4417 2316765173284*3593#+16061 1543 c18 2016 Quintuplet (1), ECPP 4418 652229318541*3527#+3399421637 1504 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 4419 3199190962192*3499#-1 1494 p382 2016 Cunningham chain (16p+15) 4420 4713*2^4713+1 1423 K 1985 Cullen 4421 449209457832*3307#+1633050403 1408 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 4422 5780736564512*3023#-1 1301 p364 2015 Cunningham chain (16p+15) 4423 2746496109133*3001#+27011 1290 c97 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 4424 898966996992*3001#+1 1289 p364 2015 Cunningham chain 2nd kind (16p-15) 4425 42530119784448*2969#+1 1281 p382 2017 Cunningham chain 2nd kind (16p-15) 4426 22623218234368*2969#+1 1280 p382 2017 Cunningham chain 2nd kind (16p-15) 4427 1542946580224*2851#-1 1231 p364 2023 Cunningham chain (16p+15) 4428 406463527990*2801#+1633050403 1209 x38 2013 Consecutive primes arithmetic progression (5,d=30) 4429 1290733709840*2677#+1 1141 p295 2011 Cunningham chain 2nd kind (16p-15) 4430 U(5387) 1126 WM 1991 Fibonacci number 4431 1176100079*2591#+1 1101 p252 2019 Arithmetic progression (8,d=60355670*2591#) 4432 (2^3539+1)/3 1065 M 1990 First titanic by ECPP, generalized Lucas number, Wagstaff 4433 2968802755*2459#+1 1057 p155 2009 Arithmetic progression (8,d=359463429*2459#) 4434 28993093368077*2399#+19433 1037 c18 2016 Sextuplet (6), ECPP 4435 28993093368077*2399#+19429 1037 c18 2016 Sextuplet (5), ECPP 4436 28993093368077*2399#+19427 1037 c18 2016 Sextuplet (4), ECPP 4437 28993093368077*2399#+19423 1037 c18 2016 Sextuplet (3), ECPP 4438 28993093368077*2399#+19421 1037 c18 2016 Sextuplet (2), ECPP 4439 6179783529*2411#+1 1037 p102 2003 Arithmetic progression (8,d=176836494*2411#) 4440 R(1031) 1031 WD 1986 Repunit 4441 89595955370432*2371#-1 1017 p364 2015 Cunningham chain (32p+31) 4442 116040452086*2371#+1 1014 p308 2012 Arithmetic progression (9,d=6317280828*2371#) 4443 115248484057*2371#+1 1014 p308 2013 Arithmetic progression (8,d=7327002535*2371#) 4444 97336164242*2371#+1 1014 p308 2013 Arithmetic progression (9,d=6350457699*2371#) 4445 93537753980*2371#+1 1014 p308 2013 Arithmetic progression (9,d=3388165411*2371#) 4446 92836168856*2371#+1 1014 p308 2013 Arithmetic progression (9,d=127155673*2371#) 4447 69318339141*2371#+1 1014 p308 2011 Arithmetic progression (9,d=1298717501*2371#) 4448 533098369554*2357#+3399421667 1012 c98 2021 Consecutive primes arithmetic progression (6,d=30), ECPP 4449 113225039190926127209*2339#/57057+21 1002 c88 2021 Septuplet (7) 4450 113225039190926127209*2339#/57057+19 1002 c88 2021 Septuplet (6) 4451 113225039190926127209*2339#/57057+13 1002 c88 2021 Septuplet (5) 4452 113225039190926127209*2339#/57057+9 1002 c88 2021 Septuplet (4) 4453 113225039190926127209*2339#/57057+7 1002 c88 2021 Septuplet (3) ----- ------------------------------- -------- ----- ---- -------------- KEY TO PROOF-CODES (primality provers): A1 Propper, Srsieve, PrimeGrid, PRST A2 Propper, Srsieve, PRST A3 Atnashev, PRST A5 Gahan, Cyclo, PRST A6 Propper, Gcwsieve, PRST A7 Baur, Cyclo, PRST A8 Baur1, Srsieve, PRST A9 Wright1, Srsieve, CRUS, PRST A10 Grosvenor, Srsieve, CRUS, PRST A11 Anonymous, Srsieve, CRUS, PRST A12 Kruse, Srsieve, CRUS, PRST A13 Marler, Cyclo, PRST A14 Thompson5, Srsieve, CRUS, PRST A18 Trunov, Cyclo, PRST A19 Propper, Batalov, Srsieve, PRST A20 Propper, Batalov, Gcwsieve, PRST A21 Piesker, Srsieve, CRUS, PRST A22 Doornink, Cyclo, PRST A23 Brown1, Srsieve, PrimeGrid, PRST A25 Schmidt2, NewPGen, PRST A26 VISCAPI, Srsieve, CRUS, PRST A28 Gingrich1, Srsieve, CRUS, PRST A29 Kelava1, Srsieve, Prime95, PRST A30 Silva2, Srsieve, PrimeGrid, PRST A31 Dinkel, MultiSieve, PRST A32 Cedric, Srsieve, CRUS, PRST A38 Batalov, PSieve, Srsieve, PRST C Caldwell, Cruncher c2 Water, Primo c4 Broadhurst, Primo c8 Broadhurst, Water, Primo c11 Oakes, Primo c18 Luhn, Primo c39 Minovic, OpenPFGW, Primo c47 Chandler, Primo c54 Wu_T, Primo c55 Gramolin, Primo c56 Soule, Minovic, OpenPFGW, Primo c58 Kaiser1, NewPGen, OpenPFGW, Primo c59 Metcalfe, OpenPFGW, Primo c63 Ritschel, TOPS, Primo c64 Metcalfe, Minovic, Ritschel, TOPS, Primo c66 Steine, Primo c67 Batalov, NewPGen, OpenPFGW, Primo c69 Jacobsen, Primo c70 Underwood, Dubner, Primo c71 Metcalfe, Ritschel, Andersen, TOPS, Primo c73 Underwood, Lifchitz, Primo c74 Lasher, Dubner, Primo c76 Kaiser1, Water, Underwood, Primo c77 Batalov, Primo c79 Batalov, Broadhurst, Water, Primo c81 Water, Underwood, Primo c82 Steine, Water, Primo c83 Kaiser1, PolySieve, NewPGen, Primo c84 Underwood, Primo c88 Kaiser1, PolySieve, Primo c92 Lamprecht, Luhn, Primo c93 Batalov, PolySieve, Primo c94 Gelhar, Ritschel, TOPS, Primo c95 Gelhar, Primo c97 Lamprecht, Luhn, APSieve, OpenPFGW, Primo c98 Batalov, EMsieve, Primo c99 Kruse, Schoeler, Primo c100 DavisK, APTreeSieve, NewPGen, OpenPFGW, Primo c101 DavisK, APTreeSieve, OpenPFGW, Primo CD Caldwell, Dubner, Cruncher CH10 Batalov, OpenPFGW, Primo, CHG CH12 Propper, Batalov, OpenPFGW, Primo, CHG CH13 Propper, Batalov, EMsieve, OpenPFGW, CHG CH14 Wu_T, CM, OpenPFGW, CHG CH2 Wu_T, OpenPFGW, Primo, CHG CH3 Broadhurst, Water, OpenPFGW, Primo, CHG CH4 Irvine, Broadhurst, Water, OpenPFGW, Primo, CHG CH9 Zhou, OpenPFGW, CHG D Dubner, Cruncher DK Dubner, Keller, Cruncher DS Smith_Darren, Proth.exe E1 Batalov, CM E2 Propper, CM E3 Enge, CM E4 Childers, CM E5 Underwood, CM E6 Lasher, Broadhurst, Underwood, CM E7 Lasher, CM E8 Broadhurst, Underwood, CM E9 Mock, CM E10 Doornink, CM E11 Karpovich, CM E12 Enge, Underwood, CM E13 Batalov, Masser, CM E14 Batalov, EMsieve, CM E15 Batalov, PolySieve, CM E16 Propper, Batalov, CM FE8 Oakes, Broadhurst, Water, Morain, FastECPP FE9 Broadhurst, Water, Morain, FastECPP G1 Armengaud, GIMPS, Prime95 g1 Caldwell, Proth.exe G2 Spence, GIMPS, Prime95 G3 Clarkson, Kurowski, GIMPS, Prime95 G4 Hajratwala, Kurowski, GIMPS, Prime95 G5 Cameron, Kurowski, GIMPS, Prime95 G6 Shafer, GIMPS, Prime95 G7 Findley_J, GIMPS, Prime95 G8 Nowak, GIMPS, Prime95 G9 Boone, Cooper, GIMPS, Prime95 G10 Smith_E, GIMPS, Prime95 G11 Elvenich, GIMPS, Prime95 G12 Strindmo, GIMPS, Prime95 G13 Cooper, GIMPS, Prime95 G14 Cooper, GIMPS, Prime95 G15 Pace, GIMPS, Prime95 G16 Laroche, GIMPS, Prime95 g23 Ballinger, Proth.exe g25 OHare, Proth.exe g55 Toplic, Proth.exe g236 Heuer, GFN17Sieve, GFNSearch, Proth.exe g245 Cosgrave, NewPGen, PRP, Proth.exe g267 Grobstich, NewPGen, PRP, Proth.exe g277 Eaton, NewPGen, PRP, Proth.exe g279 Cooper, NewPGen, PRP, Proth.exe g300 Zilmer, Proth.exe g337 Hsieh, NewPGen, PRP, Proth.exe g403 Yoshimura, ProthSieve, PrimeSierpinski, LLR, Proth.exe g407 HermleGC, MultiSieve, PRP, Proth.exe g413 Scott, AthGFNSieve, Proth.exe g414 Gilvey, Srsieve, PrimeGrid, PrimeSierpinski, LLR, Proth.exe g424 Broadhurst, NewPGen, OpenPFGW, Proth.exe g427 Batalov, Srsieve, LLR, Proth.exe gm Morii, Proth.exe K Keller L20 Kapek, LLR L95 Urushi, LLR L99 Underbakke, TwinGen, LLR L124 Rodenkirch, MultiSieve, LLR L129 Snyder, LLR L137 Jaworski, Rieselprime, LLR L161 Schafer, NewPGen, LLR L181 Siegert, LLR L185 Hassler, NewPGen, LLR L192 Jaworski, LLR L201 Siemelink, LLR L256 Underwood, Srsieve, NewPGen, 321search, LLR L381 Mate, Siemelink, Rodenkirch, MultiSieve, LLR L384 Pinho, Srsieve, Rieselprime, LLR L426 Jaworski, Srsieve, Rieselprime, LLR L436 Andersen2, Gcwsieve, MultiSieve, PrimeGrid, LLR L447 Kohlman, Gcwsieve, MultiSieve, PrimeGrid, LLR L466 Zhou, NewPGen, LLR L503 Benson, Srsieve, LLR L521 Thompson1, Gcwsieve, MultiSieve, PrimeGrid, LLR L527 Tornberg, TwinGen, LLR L541 Barnes, Srsieve, CRUS, LLR L591 Penne, Srsieve, CRUS, LLR L606 Bennett, Srsieve, NewPGen, PrimeGrid, 321search, LLR L613 Keogh, Srsieve, ProthSieve, RieselSieve, LLR L622 Cardall, Srsieve, ProthSieve, RieselSieve, LLR L671 Wong, Srsieve, PrimeGrid, LLR L689 Brown1, Srsieve, PrimeGrid, LLR L690 Cholt, Srsieve, PrimeGrid, LLR L753 Wolfram, Srsieve, PrimeGrid, LLR L760 Riesen, Srsieve, Rieselprime, LLR L780 Brady, Srsieve, PrimeGrid, LLR L801 Gesker, Gcwsieve, MultiSieve, PrimeGrid, LLR L802 Zachariassen, Srsieve, NPLB, LLR L875 Hatland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L917 Bergman1, Gcwsieve, MultiSieve, PrimeGrid, LLR L923 Kaiser1, Klahn, NewPGen, PrimeGrid, TPS, SunGard, LLR L927 Brown1, TwinGen, PrimeGrid, LLR L983 Wu_T, LLR L1056 Schwieger, Srsieve, PrimeGrid, LLR L1115 Splain, PSieve, Srsieve, PrimeGrid, LLR L1125 Laluk, PSieve, Srsieve, PrimeGrid, LLR L1129 Slomma, PSieve, Srsieve, PrimeGrid, LLR L1134 Ogawa, Srsieve, NewPGen, LLR L1141 Ogawa, NewPGen, LLR L1160 Sunderland, PSieve, Srsieve, PrimeGrid, LLR L1188 Faith, PSieve, Srsieve, PrimeGrid, LLR L1203 Mauno, PSieve, Srsieve, PrimeGrid, LLR L1204 Brown1, PSieve, Srsieve, PrimeGrid, LLR L1209 Wong, PSieve, Srsieve, PrimeGrid, LLR L1223 Courty, PSieve, Srsieve, PrimeGrid, LLR L1300 Yama, PSieve, Srsieve, PrimeGrid, LLR L1301 Sorbera, Srsieve, CRUS, LLR L1349 Wallace, Srsieve, NewPGen, PrimeGrid, LLR L1353 Mumper, Srsieve, PrimeGrid, LLR L1355 Beck, PSieve, Srsieve, PrimeGrid, LLR L1372 Glennie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L1422 Steichen, PSieve, Srsieve, PrimeGrid, LLR L1444 Davies, PSieve, Srsieve, PrimeGrid, LLR L1448 Hron, PSieve, Srsieve, PrimeGrid, LLR L1455 Heikkila, PSieve, Srsieve, PrimeGrid, LLR L1460 Salah, Srsieve, PrimeGrid, PrimeSierpinski, LLR L1474 Brown6, PSieve, Srsieve, PrimeGrid, LLR L1486 Dinkel, PSieve, Srsieve, PrimeGrid, LLR L1502 Champ, PSieve, Srsieve, PrimeGrid, LLR L1576 Craig, PSieve, Srsieve, PrimeGrid, LLR L1675 Schwieger, PSieve, Srsieve, PrimeGrid, LLR L1728 Gasewicz, PSieve, Srsieve, PrimeGrid, LLR L1741 Granowski, PSieve, Srsieve, PrimeGrid, LLR L1745 Cholt, PSieve, Srsieve, PrimeGrid, LLR L1754 Hubbard, PSieve, Srsieve, PrimeGrid, LLR L1774 Schoefer, PSieve, Srsieve, PrimeGrid, LLR L1780 Ming, PSieve, Srsieve, PrimeGrid, LLR L1792 Tang, PSieve, Srsieve, PrimeGrid, LLR L1808 Reynolds1, PSieve, Srsieve, PrimeGrid, LLR L1817 Barnes, PSieve, Srsieve, NPLB, LLR L1823 Larsson, PSieve, Srsieve, PrimeGrid, LLR L1828 Benson, PSieve, Srsieve, Rieselprime, LLR L1862 Curtis, PSieve, Srsieve, Rieselprime, LLR L1884 Jaworski, PSieve, Srsieve, Rieselprime, LLR L1885 Ostaszewski, PSieve, Srsieve, PrimeGrid, LLR L1921 Winslow, TwinGen, PrimeGrid, LLR L1932 Dragnev, PSieve, Srsieve, PrimeGrid, LLR L1935 Channing, PSieve, Srsieve, PrimeGrid, LLR L1949 Pritchard, Srsieve, PrimeGrid, RieselSieve, LLR L1957 Hemsley, PSieve, Srsieve, PrimeGrid, LLR L1959 Metcalfe, PSieve, Srsieve, Rieselprime, LLR L1979 Tibbott, PSieve, Srsieve, PrimeGrid, LLR L2012 Pedersen_K, Srsieve, CRUS, OpenPFGW, LLR L2035 Greer, TwinGen, PrimeGrid, LLR L2042 Lachance, PSieve, Srsieve, PrimeGrid, LLR L2046 Melvold, Srsieve, PrimeGrid, LLR L2054 Kaiser1, Srsieve, CRUS, LLR L2055 Soule, PSieve, Srsieve, Rieselprime, LLR L2085 Dodson1, PSieve, Srsieve, PrimeGrid, LLR L2086 Sveen, PSieve, Srsieve, PrimeGrid, LLR L2103 Schmidt1, PSieve, Srsieve, PrimeGrid, LLR L2117 Karlsteen, PSieve, Srsieve, PrimeGrid, LLR L2121 VanRangelrooij, PSieve, Srsieve, PrimeGrid, LLR L2125 Greer, PSieve, Srsieve, PrimeGrid, LLR L2137 Hayashi1, PSieve, Srsieve, PrimeGrid, LLR L2142 Hajek, PSieve, Srsieve, PrimeGrid, LLR L2158 Krauss, PSieve, Srsieve, PrimeGrid, LLR L2163 VanRooijen1, PSieve, Srsieve, PrimeGrid, LLR L2233 Herder, Srsieve, PrimeGrid, LLR L2235 Mullage, PSieve, Srsieve, NPLB, LLR L2257 Dettweiler, PSieve, Srsieve, NPLB, LLR L2269 Schori, Srsieve, PrimeGrid, LLR L2322 Szafranski, PSieve, Srsieve, PrimeGrid, LLR L2366 Satoh, PSieve, Srsieve, PrimeGrid, LLR L2371 Luszczek, Srsieve, PrimeGrid, LLR L2373 Tarasov1, Srsieve, PrimeGrid, LLR L2408 Reinman, Srsieve, PrimeGrid, LLR L2425 DallOsto, LLR L2429 Bliedung, TwinGen, PrimeGrid, LLR L2484 Ritschel, PSieve, Srsieve, Rieselprime, LLR L2520 Mamanakis, PSieve, Srsieve, PrimeGrid, LLR L2526 Martinik, PSieve, Srsieve, PrimeGrid, LLR L2549 McKay, PSieve, Srsieve, PrimeGrid, LLR L2552 Foulher, PSieve, Srsieve, PrimeGrid, LLR L2561 Vinklat, PSieve, Srsieve, PrimeGrid, LLR L2564 Bravin, PSieve, Srsieve, PrimeGrid, LLR L2583 Nakamura, PSieve, Srsieve, PrimeGrid, LLR L2602 Mueller4, PSieve, Srsieve, PrimeGrid, LLR L2603 Hoffman, PSieve, Srsieve, PrimeGrid, LLR L2629 Becker2, PSieve, Srsieve, PrimeGrid, LLR L2659 Reber, PSieve, Srsieve, PrimeGrid, LLR L2664 Koluvere, PSieve, Srsieve, PrimeGrid, LLR L2676 Cox2, PSieve, Srsieve, PrimeGrid, LLR L2714 Piotrowski, PSieve, Srsieve, PrimeGrid, LLR L2715 Donovan, PSieve, Srsieve, PrimeGrid, LLR L2719 Yost, PSieve, Srsieve, PrimeGrid, LLR L2777 Ritschel, Gcwsieve, TOPS, LLR L2785 Meili, PSieve, Srsieve, PrimeGrid, LLR L2805 Barr, PSieve, Srsieve, PrimeGrid, LLR L2840 Santana, PSieve, Srsieve, PrimeGrid, LLR L2842 English1, PSieve, Srsieve, PrimeGrid, LLR L2873 Jurach, PSieve, Srsieve, PrimeGrid, LLR L2885 Busacker, PSieve, Srsieve, PrimeGrid, LLR L2891 Lacroix, PSieve, Srsieve, PrimeGrid, LLR L2914 Merrylees, PSieve, Srsieve, PrimeGrid, LLR L2959 Derrera, PSieve, Srsieve, PrimeGrid, LLR L2973 Kurtovic, Srsieve, PrimeGrid, LLR L2975 Loureiro, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L2992 Boehm, PSieve, Srsieve, PrimeGrid, LLR L2997 Williams2, PSieve, Srsieve, PrimeGrid, LLR L3023 Winslow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3029 Walsh, PSieve, Srsieve, PrimeGrid, LLR L3033 Snow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3035 Scalise, PSieve, Srsieve, PrimeGrid, LLR L3048 Breslin, PSieve, Srsieve, PrimeGrid, LLR L3091 Ridgway, PSieve, Srsieve, PrimeGrid, LLR L3101 Reichard, PSieve, Srsieve, PrimeGrid, LLR L3118 Yama, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3141 Kus, PSieve, Srsieve, PrimeGrid, LLR L3168 Schwegler, PSieve, Srsieve, PrimeGrid, LLR L3171 Bergelt, PSieve, Srsieve, PrimeGrid, LLR L3173 Zhou2, PSieve, Srsieve, PrimeGrid, LLR L3174 Boniecki, PSieve, Srsieve, PrimeGrid, LLR L3183 Haller, Srsieve, PrimeGrid, LLR L3184 Hayslette, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3200 Athanas, PSieve, Srsieve, PrimeGrid, LLR L3203 Scalise, TwinGen, PrimeGrid, LLR L3209 McArdle, GenefX64, AthGFNSieve, PrimeGrid, LLR L3222 Yamamoto, PSieve, Srsieve, PrimeGrid, LLR L3223 Yurgandzhiev, PSieve, Srsieve, PrimeGrid, LLR L3230 Kumagai, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3234 Parangalan, PSieve, Srsieve, PrimeGrid, LLR L3260 Stanko, PSieve, Srsieve, PrimeGrid, LLR L3261 Batalov, PSieve, Srsieve, PrimeGrid, LLR L3262 Molder, PSieve, Srsieve, PrimeGrid, LLR L3278 Fischer1, PSieve, Srsieve, PrimeGrid, LLR L3323 Ritschel, NewPGen, TOPS, LLR L3325 Elvy, PSieve, Srsieve, PrimeGrid, LLR L3329 Tatearka, PSieve, Srsieve, PrimeGrid, LLR L3345 Domanov1, PSieve, Rieselprime, LLR L3372 Ryan, PSieve, Srsieve, PrimeGrid, LLR L3430 Durstewitz, PSieve, Srsieve, PrimeGrid, LLR L3431 Gahan, PSieve, Srsieve, PrimeGrid, LLR L3432 Batalov, Srsieve, LLR L3458 Jia, PSieve, Srsieve, PrimeGrid, LLR L3460 Ottusch, PSieve, Srsieve, PrimeGrid, LLR L3483 Farrow, PSieve, Srsieve, PrimeGrid, LLR L3494 Batalov, NewPGen, LLR L3502 Ristic, PSieve, Srsieve, PrimeGrid, LLR L3512 Tsuji, PSieve, Srsieve, PrimeGrid, LLR L3514 Bishop1, PSieve, Srsieve, PrimeGrid, OpenPFGW, LLR L3519 Kurtovic, PSieve, Srsieve, Rieselprime, LLR L3523 Brown1, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3532 Batalov, Gcwsieve, LLR L3539 Jacobs, PSieve, Srsieve, PrimeGrid, LLR L3545 Eskam1, PSieve, Srsieve, PrimeGrid, LLR L3547 Ready, Srsieve, PrimeGrid, LLR L3548 Ready, PSieve, Srsieve, PrimeGrid, LLR L3553 Cilliers, Srsieve, PrimeGrid, LLR L3562 Schouten, Srsieve, PrimeGrid, LLR L3564 Jaworski, Srsieve, CRUS, LLR L3566 Slakans, Srsieve, PrimeGrid, LLR L3567 Meili, Srsieve, PrimeGrid, LLR L3573 Batalov, TwinGen, PrimeGrid, LLR L3593 Veit, PSieve, Srsieve, PrimeGrid, LLR L3606 Sander, TwinGen, PrimeGrid, LLR L3610 Batalov, Srsieve, CRUS, LLR L3659 Volynsky, Srsieve, PrimeGrid, LLR L3662 Schawe, PSieve, Srsieve, PrimeGrid, LLR L3665 Kelava1, PSieve, Srsieve, Rieselprime, LLR L3686 Yost, Srsieve, PrimeGrid, LLR L3719 Skinner, PSieve, Srsieve, PrimeGrid, LLR L3720 Ohno, Srsieve, PrimeGrid, LLR L3735 Kurtovic, Srsieve, LLR L3749 Meador, Srsieve, PrimeGrid, LLR L3760 Okazaki, PSieve, Srsieve, PrimeGrid, LLR L3763 Martin4, PSieve, Srsieve, PrimeGrid, LLR L3764 Diepeveen, PSieve, Srsieve, Rieselprime, LLR L3770 Tang, Srsieve, PrimeGrid, LLR L3772 Ottusch, Srsieve, PrimeGrid, LLR L3784 Cavnaugh, PSieve, Srsieve, PrimeGrid, LLR L3789 Toda, Srsieve, PrimeGrid, LLR L3802 Aggarwal, Srsieve, LLR L3803 Bredl, PSieve, Srsieve, PrimeGrid, LLR L3813 Chambers2, PSieve, Srsieve, PrimeGrid, LLR L3824 Mazzucato, PSieve, Srsieve, PrimeGrid, LLR L3829 Abrahmi, TwinGen, PrimeGrid, LLR L3839 Batalov, EMsieve, LLR L3849 Smith10, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3859 Clifton, PSieve, Srsieve, PrimeGrid, LLR L3865 Silva, PSieve, Srsieve, PrimeGrid, LLR L3869 Cholt, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3877 Jarne, PSieve, Srsieve, PrimeGrid, LLR L3887 Byerly, PSieve, Rieselprime, LLR L3895 Englehard, PSieve, Srsieve, PrimeGrid, LLR L3898 Christy, PSieve, Srsieve, PrimeGrid, LLR L3903 Miao, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3904 Darimont, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3917 Rodenkirch, PSieve, Srsieve, LLR L3919 Pickering, PSieve, Srsieve, PrimeGrid, LLR L3924 Kim5, PSieve, Srsieve, PrimeGrid, LLR L3925 Okazaki, Srsieve, PrimeGrid, LLR L3933 Batalov, PSieve, Srsieve, CRUS, Rieselprime, LLR L3941 Lee8, PSieve, Srsieve, PrimeGrid, LLR L3961 Darimont, Srsieve, PrimeGrid, LLR L3964 Iakovlev, Srsieve, PrimeGrid, LLR L3993 Gushchak, Srsieve, PrimeGrid, LLR L3994 Domanov1, PSieve, Srsieve, NPLB, LLR L4001 Willig, Srsieve, CRUS, LLR L4031 Darney, PSieve, Srsieve, PrimeGrid, LLR L4034 Vanc, Srsieve, PrimeGrid, LLR L4036 Domanov1, PSieve, Srsieve, CRUS, LLR L4045 Chew, PSieve, Srsieve, PrimeGrid, LLR L4064 Davies, Srsieve, CRUS, LLR L4082 Zimmerman, PSieve, Srsieve, PrimeGrid, LLR L4083 Charrondiere, PSieve, Srsieve, PrimeGrid, LLR L4087 Kecic, PSieve, Srsieve, PrimeGrid, LLR L4099 Nietering, PSieve, Srsieve, PrimeGrid, LLR L4103 Klopffleisch, Srsieve, PrimeGrid, LLR L4108 Yoshioka, PSieve, Srsieve, PrimeGrid, LLR L4113 Batalov, PSieve, Srsieve, LLR L4114 Bubloski, PSieve, Srsieve, PrimeGrid, LLR L4119 Nelson3, PSieve, Srsieve, PrimeGrid, LLR L4139 Hawker, Srsieve, CRUS, LLR L4146 Schmidt1, Srsieve, PrimeGrid, LLR L4147 Mohacsy, PSieve, Srsieve, PrimeGrid, LLR L4155 Jones4, PSieve, Srsieve, PrimeGrid, LLR L4159 Schulz5, Srsieve, PrimeGrid, LLR L4166 Kwok, PSieve, LLR L4185 Hoefliger, PSieve, Srsieve, PrimeGrid, LLR L4187 Schmidt2, Srsieve, CRUS, LLR L4189 Lawrence, Powell, Srsieve, CRUS, LLR L4190 Fnasek, PSieve, Srsieve, PrimeGrid, LLR L4197 Kumagai1, Srsieve, PrimeGrid, LLR L4198 Rawles, PSieve, Srsieve, PrimeGrid, LLR L4200 Harste, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4201 Brown1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4203 Azarenko, PSieve, Srsieve, PrimeGrid, LLR L4204 Winslow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4205 Bischof, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4207 Jaamann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4208 Farrow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4210 Cholt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4226 Heath, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4231 Schneider1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4245 Greer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4249 Larsson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4250 Vogt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4252 Nietering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4256 Gniesmer, PSieve, Srsieve, PrimeGrid, LLR L4267 Batalov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4273 Rangelrooij, Srsieve, CRUS, LLR L4274 AhlforsDahl, Srsieve, PrimeGrid, LLR L4276 Borbely, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4285 Bravin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4286 Zimmerman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4289 Ito2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4293 Trunov, PSieve, Srsieve, PrimeGrid, LLR L4294 Kurtovic, Srsieve, CRUS, Prime95, LLR L4295 Splain, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4303 Thorson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4307 Keller1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4308 Matillek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4309 Kecic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4314 DeThomas, PSieve, Srsieve, PrimeGrid, LLR L4316 Nilsson1, PSieve, Srsieve, PrimeGrid, LLR L4326 Steel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4329 Okon, Srsieve, LLR L4334 Miller5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4340 Becker4, Srsieve, PrimeGrid, LLR L4341 Goetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4342 Kaiser1, PolySieve, NewPGen, LLR L4343 Norton, PSieve, Srsieve, PrimeGrid, LLR L4348 Burridge, Srsieve, PrimeGrid, LLR L4359 Andou, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4362 Mochizuki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4364 Steinbach, PSieve, Srsieve, PrimeGrid, LLR L4371 Schmidt2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4380 Rix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4387 Davies, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4393 Veit1, Srsieve, CRUS, LLR L4395 Nilsson1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4398 Greer, Srsieve, PrimeGrid, LLR L4405 Eckhard, Srsieve, LLR L4406 Mathers, PSieve, Srsieve, PrimeGrid, LLR L4408 Fricke, PSieve, Srsieve, PrimeGrid, LLR L4410 Andresson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4414 Falk, PSieve, Srsieve, PrimeGrid, LLR L4424 Miyauchi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4429 Lacroix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4435 Larsson, Srsieve, PrimeGrid, LLR L4444 Terber, Srsieve, CRUS, LLR L4454 Clark5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4456 Chambers2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4457 Geiger, PSieve, Srsieve, PrimeGrid, LLR L4459 Biscop, PSieve, Srsieve, PrimeGrid, LLR L4466 Falk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4472 Harvanek, Gcwsieve, MultiSieve, PrimeGrid, LLR L4476 Shane, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4477 Tennant, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4482 Mena, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4488 Vrontakis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4490 Mazumdar, PSieve, Srsieve, PrimeGrid, LLR L4499 Ohsugi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4501 Eskam1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4504 Sesok, NewPGen, LLR L4505 Lind, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4506 Propper, Batalov, CycloSv, EMsieve, PIES, Prime95, LLR L4510 Ming, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4511 Donovan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4518 Primecrunch.com, Hedges, Srsieve, LLR L4525 Kong1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4526 Schoefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4527 Fruzynski, PSieve, Srsieve, PrimeGrid, LLR L4530 Reynolds1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4537 Mayer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4544 Krauss, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4548 Sydekum, Srsieve, CRUS, Prime95, LLR L4549 Schick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4550 Terry, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4552 Koski, PSieve, Srsieve, PrimeGrid, LLR L4559 Okazaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4561 Propper, Batalov, CycloSv, Cyclo, EMsieve, PIES, LLR L4562 Donovan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4564 DeThomas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4568 Vrontakis, PSieve, Srsieve, PrimeGrid, LLR L4582 Kinney, PSieve, Srsieve, PrimeGrid, LLR L4583 Rohmann, PSieve, Srsieve, PrimeGrid, LLR L4584 Goforth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4585 Schawe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4591 Schwieger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4595 Mangio, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4609 Elgetz, PSieve, Srsieve, PrimeGrid, LLR L4620 Kinney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4622 Jurach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4623 Dugger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4626 Iltus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4645 McKibbon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4649 Humphries, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4654 Voskoboynikov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4656 Beck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4658 Maguin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4659 AverayJones, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4660 Snow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4664 Toledo, PSieve, Srsieve, PrimeGrid, LLR L4665 Szeluga, Kupidura, Banka, LLR L4666 Slade, PSieve, Srsieve, PrimeGrid, LLR L4667 Morelli, LLR L4668 Okazaki, Gcwsieve, MultiSieve, PrimeGrid, LLR L4669 Schwegler, Srsieve, PrimeGrid, LLR L4670 Drumm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4672 Slade, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4673 Okhrimouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4675 Lind, Srsieve, PrimeGrid, LLR L4676 Maloney, Srsieve, PrimeGrid, PrimeSierpinski, LLR L4677 Provencher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4684 Sveen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4685 Masser, Srsieve, CRUS, LLR L4687 Campbell1, PSieve, Srsieve, PrimeGrid, LLR L4689 Gordon2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4690 Brandt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4691 Fruzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4692 Hajek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4694 Schapendonk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4695 Goudie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4697 Sellsted, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4699 Parsonnet, PSieve, Srsieve, PrimeGrid, LLR L4700 Liu4, Srsieve, CRUS, LLR L4701 Kalus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4702 Charette, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4704 Kurtovic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4706 Kraemer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4711 Closs, PSieve, Srsieve, PrimeGrid, LLR L4715 Skinner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4717 Wypych, PSieve, Srsieve, PrimeGrid, LLR L4718 Brown1, Gcwsieve, MultiSieve, PrimeGrid, LLR L4720 Gahan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4723 Lexut, PSieve, Srsieve, PrimeGrid, LLR L4724 Thonon, PSieve, Srsieve, PrimeGrid, LLR L4726 Miller7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4729 Wimmer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4730 Bowe, PSieve, Srsieve, PrimeGrid, LLR L4732 Miller7, PSieve, Srsieve, PrimeGrid, LLR L4737 Reinhardt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4738 Gelhar, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4740 Silva1, PSieve, Srsieve, PrimeGrid, LLR L4741 Wong, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4742 Schlereth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4743 Plsak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4745 Cavnaugh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4746 Brech, PSieve, Srsieve, PrimeGrid, LLR L4747 Brech, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4752 Harvey2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4753 Riemann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4754 Calvin, PSieve, Srsieve, PrimeGrid, LLR L4755 Glatte, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4757 Johnson9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4758 Walling, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4760 Sipes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4761 Romaidis, PSieve, Srsieve, PrimeGrid, LLR L4763 Guilleminot, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4764 McLean2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4765 Kumsta, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4773 Tohmola, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4774 Boehm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4775 Steinbach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4776 Lee7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4783 Marini, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4784 Bertolotti, Gcwsieve, MultiSieve, PrimeGrid, LLR L4786 Sydekum, Srsieve, CRUS, LLR L4787 Sunderland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4789 Kurtovic, Srsieve, Prime95, LLR L4791 Vaisanen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4793 Koski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4795 Lawson2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4799 Vanderveen1, LLR L4800 Doenges, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4802 Jones5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4806 Rajala, Srsieve, CRUS, LLR L4807 Tsuji, Srsieve, PrimeGrid, LLR L4808 Kaiser1, PolySieve, LLR L4809 Bocan, Srsieve, PrimeGrid, LLR L4810 Dhuyvetters, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4814 Telesz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4815 Kozisek, PSieve, Srsieve, PrimeGrid, LLR L4819 Inci, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4823 Helm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4826 Soraku, PSieve, Srsieve, PrimeGrid, LLR L4832 Meekins, Srsieve, CRUS, LLR L4834 Helm, PSieve, Srsieve, PrimeGrid, LLR L4835 Katzur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4840 Ylijoki, PSieve, Srsieve, PrimeGrid, LLR L4841 Baur, PSieve, Srsieve, PrimeGrid, LLR L4842 Smith11, PSieve, Srsieve, PrimeGrid, LLR L4843 Hutchins, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4844 Valentino, PSieve, Srsieve, PrimeGrid, LLR L4848 Adamec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4849 Burt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4850 Jones5, PSieve, Srsieve, PrimeGrid, LLR L4851 Schioler, PSieve, Srsieve, PrimeGrid, LLR L4854 Gory, PSieve, Srsieve, PrimeGrid, LLR L4858 Koriabine, PSieve, Srsieve, PrimeGrid, LLR L4859 Wang4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4861 Thonon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4864 Freihube, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4868 Bergmann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4869 Ogata, PSieve, Srsieve, PrimeGrid, LLR L4870 Wharton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4871 Gory, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4875 Parsonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4877 Cherenkov, Srsieve, CRUS, LLR L4879 Propper, Batalov, Srsieve, LLR L4880 Goossens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4884 Somer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4889 Hundhausen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4892 Hewitt1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4893 Little, PSieve, Srsieve, PrimeGrid, LLR L4898 Kozisek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4903 Laurent1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4904 Dunchouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4905 Niegocki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4907 Reinhardt, PSieve, Srsieve, PrimeGrid, LLR L4909 Hall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4914 Bishop_D, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4917 Corlatti, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4918 Weiss1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4920 Walsh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4922 Bulba, Sesok, LLR L4923 Koriabine, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4925 Korolev, Srsieve, CRUS, LLR L4926 Shenton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4928 Doornink, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4929 Givoni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4930 Shintani, PSieve, Srsieve, PrimeGrid, LLR L4932 Schroeder2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4933 Jacques, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4935 Simard, PSieve, Srsieve, PrimeGrid, LLR L4937 Ito2, Srsieve, PrimeGrid, LLR L4939 Coscia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4942 Matheis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4944 Schori, LLR2, PSieve, Srsieve, PrimeGrid, LLR L4945 Meili, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4948 SchwartzLowe, PSieve, Srsieve, PrimeGrid, LLR L4951 Niegocki, PSieve, Srsieve, PrimeGrid, LLR L4954 Romaidis, Srsieve, PrimeGrid, LLR L4955 Grosvenor, Srsieve, CRUS, LLR L4956 Merrylees, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4958 Shenton, PSieve, Srsieve, PrimeGrid, LLR L4959 Deakin, PSieve, Srsieve, PrimeGrid, LLR L4960 Kaiser1, NewPGen, TPS, LLR L4963 Mortimore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4964 Doescher, GFNSvCUDA, GeneFer, LLR L4965 Propper, LLR L4970 Michael, PSieve, Srsieve, PrimeGrid, LLR L4972 Greer, Gcwsieve, MultiSieve, PrimeGrid, LLR L4973 Landrum, PSieve, Srsieve, PrimeGrid, LLR L4975 Thompson5, Srsieve, CRUS, LLR L4976 Propper, Batalov, Gcwsieve, LLR L4977 Miller8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4979 Matheis, PSieve, Srsieve, PrimeGrid, LLR L4980 Poon1, PSieve, Srsieve, PrimeGrid, LLR L4981 MartinezCucalon, PSieve, Srsieve, PrimeGrid, LLR L4984 Hemsley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4985 Veit, Srsieve, CRUS, LLR L4987 Canossi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4988 Harris3, PSieve, Srsieve, PrimeGrid, LLR L4990 Heindl, PSieve, Srsieve, PrimeGrid, LLR L4997 Gardner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4999 Andrews1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5001 Mamonov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5002 Kato, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5005 Hass, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5007 Faith, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5008 Niegocki, Srsieve, PrimeGrid, LLR L5009 Jungmann, Srsieve, LLR L5011 Strajt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5013 Wypych, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5014 Strokov, PSieve, Srsieve, PrimeGrid, LLR L5016 NebredaJunghans, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5018 Nielsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5019 Ayiomamitis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5020 Eikelenboom, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5021 Svantner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5022 Manz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5023 Schulz6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5024 Schumacher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5025 Lexut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5027 Moudy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5029 Krompolc, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5030 Calvin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5031 Schumacher, PSieve, Srsieve, PrimeGrid, LLR L5033 Ni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5036 Jung2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5037 Diepeveen, Underwood, PSieve, Srsieve, Rieselprime, LLR L5039 Gilliland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5041 Wallbaum, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5043 Vanderveen1, Propper, LLR L5044 Bergelt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5047 Little, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5051 Veit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5053 Yoshigoe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5056 Chu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5057 Hauhia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5061 Cooper5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5063 Wendelboe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5067 Tirkkonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5068 Silva1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5069 Friedrichsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5070 Millerick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5071 McLean2, Srsieve, CRUS, LLR L5072 Romaidis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5076 Atnashev, Srsieve, PrimeGrid, LLR L5077 Martinelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5078 McDonald4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5079 Meditz, PSieve, Srsieve, PrimeGrid, LLR L5080 Gahan, GFNSvCUDA, PrivGfnServer, LLR L5081 Howell, Srsieve, PrimeGrid, LLR L5083 Pickering, Srsieve, PrimeGrid, LLR L5084 Yagi, PSieve, Srsieve, PrimeGrid, LLR L5085 Strajt, PSieve, Srsieve, PrimeGrid, LLR L5087 Coscia, PSieve, Srsieve, PrimeGrid, LLR L5088 Hall1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5090 Jourdan, PSieve, Srsieve, PrimeGrid, LLR L5094 Th�mmler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5099 Lobring, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5100 Stephens, PSieve, Srsieve, PrimeGrid, LLR L5101 Candido, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5102 Liu6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5104 Gahan, LLR2, NewPGen, LLR L5105 Helm, LLR2, Srsieve, PrivGfnServer, LLR L5106 Glennie, PSieve, Srsieve, PrimeGrid, LLR L5110 Provencher, PSieve, Srsieve, PrimeGrid, LLR L5112 Vanderveen1, Srsieve, CRUS, LLR L5115 Doescher, LLR L5120 Greer, LLR2, PrivGfnServer, LLR L5122 Tennant, LLR2, PrivGfnServer, LLR L5123 Propper, Batalov, EMsieve, LLR L5125 Tirkkonen, PSieve, Srsieve, PrimeGrid, LLR L5126 Warach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5127 Kemenes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5129 Veit, Srsieve, PrimeGrid, LLR L5130 Jourdan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5134 Cooper5, PSieve, Srsieve, PrimeGrid, LLR L5139 Belozersky, PSieve, Srsieve, PrimeGrid, LLR L5143 Dickinson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5144 McNary, PSieve, Srsieve, PrimeGrid, LLR L5155 Harju, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5156 Dinkel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5157 Asano, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5158 Zuschlag, PSieve, Srsieve, PrimeGrid, LLR L5159 Huetter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5161 Greer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5162 Th�mmler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5166 Jaros1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5167 Gelhar, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5168 Hawkinson, PSieve, Srsieve, PrimeGrid, LLR L5169 Atnashev, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5171 Brown1, LLR2, Srsieve, PrimeGrid, LLR L5172 McNary, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5173 Bishop_D, PSieve, Srsieve, PrimeGrid, LLR L5174 Scalise, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5175 Liiv, PSieve, Srsieve, Rieselprime, LLR L5176 Early, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5177 Tapper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5178 Larsson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5179 Okazaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5180 Laluk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5181 Atnashev, LLR2, Srsieve, PrimeGrid, LLR L5183 Winskill1, PSieve, Srsieve, PrimeGrid, 12121search, LLR L5184 Byerly, PSieve, Srsieve, NPLB, LLR L5185 Elgetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5186 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, United, PrimeGrid, LLR L5188 Wong, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5189 Jackson1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5191 Kaiser1, NewPGen, LLR L5192 Anonymous, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5194 Jonas, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5195 Ridgway, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5196 Sielemann, Srsieve, CRUS, LLR L5197 Propper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5198 Elgetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5199 Romaidis, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5200 Terry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5201 Ford, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5202 Molne, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5203 Topham, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5205 Zuschlag, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5206 Wiseler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5207 Atnashev, LLR2, PrivGfnServer, LLR L5208 Schnur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5210 Brech, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5214 Dinkel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5215 Hawkinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5216 Brazier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5217 Wiseler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5220 Jones4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5223 Vera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5226 Brown1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5228 Jacques, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5229 Karpenko, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5230 Tapper, LLR2, Srsieve, PrimeGrid, LLR L5231 Veit, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5232 Bliedung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5233 Sipes, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5234 Greeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5235 Karpinski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5236 Shenton, LLR2, PSieve, Srsieve, PrivGfnServer, PrimeGrid, LLR L5237 Schwieger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5238 Jourdan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5239 Strajt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5242 Krompolc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5246 Vaisanen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5248 Delgado, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5249 Racanelli, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5250 Nakamura, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5253 Burt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5254 Gerstenberger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5256 Snow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5260 Ostaszewski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5261 Kim5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5262 Clark5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5263 Ito2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5264 Cholt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5265 Fleischman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5266 Sheridan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5267 Schnur, LLR2, Srsieve, PrimeGrid, LLR L5269 Clemence, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5270 Hennebert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5272 Conner, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5273 McGonegal, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5275 Templin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5276 Schawe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5277 McDevitt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5278 Nose, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5279 Schick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5282 Somer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5283 Hua, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5284 Fischer1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5285 Merrylees, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5286 Reynolds1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5287 Thonon, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5288 Heindl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5290 Cooper5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5294 Hewitt1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5295 Gilliland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5296 Piaive, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5297 Nakamura, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5298 Kaczmarek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5299 Corlatti, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5300 Hajek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5301 Harju, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5302 Davies, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5305 Thanry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5307 Bauer2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5308 Krauss, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5309 Bishop_D, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5310 Hubbard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5311 Reich, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5312 Tyndall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5313 Barnes, PSieve, Srsieve, Rieselprime, LLR L5314 Satoh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5315 Dec, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5316 Walsh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5317 Freeze, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5318 Ruber, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5319 Abbey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5320 Niegocki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5321 Dark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5323 Chan1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5324 Boehm, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5325 Drager, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5326 Deakin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5327 Shenton, LLR2, Srsieve, LLR L5332 Mizusawa, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5334 Jones6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5335 Harvey1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5336 Leblanc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5337 Kawamura1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5338 Deakin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5342 Rodenkirch, Srsieve, CRUS, LLR L5343 Tajika, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5344 Lowe1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5345 Johnson8, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5346 Polansky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5348 Adam, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5350 McDevitt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5352 Eklof, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5353 Belolipetskiy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5354 Doornink, NewPGen, OpenPFGW, LLR L5355 Henriksson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5356 Hsu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5358 Gmirkin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5359 Ridgway, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5360 Leitch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5361 Schneider6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5362 Domanov1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5364 Blyth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5366 Michael, Srsieve, CRUS, LLR L5368 Valentino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5369 Schnur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5370 Piotrowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5372 Vitiello, Srsieve, CRUS, LLR L5373 Baranchikov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5375 Blanchard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5376 Ranch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5377 Yasuhisa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5378 Seeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5379 Smith4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5380 Campulka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5381 Meppiel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5382 Bulanov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5384 Riemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5387 Johns, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5389 Doornink, TwinGen, LLR L5392 McDonald4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5393 Lu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5395 Early, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5399 Kolesov, LLR L5400 Hefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5401 Champ, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5402 Greer, LLR2, Gcwsieve, MultiSieve, PrimeGrid, LLR L5403 Slade1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5404 Wiseler, LLR2, Srsieve, PrimeGrid, LLR L5405 Gerstenberger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5406 Jaros, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5407 Mahnken, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5408 Kreth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5410 Anonymous, Srsieve, CRUS, LLR L5412 Poon1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5414 Mollerus, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5416 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5418 Pollak, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5421 Iwasaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5425 Lichtenwimmer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5426 Gilliland, Srsieve, CRUS, LLR L5427 Hewitt1, LLR2, Srsieve, PrimeGrid, LLR L5429 Meditz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5432 Tatsianenka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5433 Hatanaka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5434 Parsonnet, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5435 Murphy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5437 Rijfers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5438 Tang, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5439 Batalov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5440 McGonegal, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5441 Cherenkov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5442 Moreira, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5443 Venjakob, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5444 Platz, LLR2, Srsieve, PrimeGrid, LLR L5448 Rubin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5449 Reinhardt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5450 Mizusawa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5451 Wilkins, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5452 Morera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5453 Slaets, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5456 Gundermann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5459 Sekanina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5460 Headrick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5461 Anonymous, LLR2, Srsieve, PrimeGrid, LLR L5462 Raimist, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5463 Goforth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5464 Pickering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5465 Hubbard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5466 Furushima, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5467 Tamai1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5469 Bishopp, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5470 Latge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5471 Dunchouk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5472 Ready, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5476 Steinbach, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5477 Meador, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5480 Boddener, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5482 Raimist, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5485 Mahnken, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5488 Kecic, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5492 Slaets, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5493 Liu6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5497 Goetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5499 Osada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5500 Racanelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5501 Seeley, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5502 Floyd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5503 Soule, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5504 Cerny, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5505 Chovanec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5507 Brandt2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5508 Gauch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5509 Nietering, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5512 Akesson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5514 Cavnaugh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5516 Piesker, PSieve, Srsieve, NPLB, LLR L5517 Cavecchia, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5518 Eisler1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5523 Sekanina, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5524 Matillek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5526 Kickler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5527 Doornink, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5529 Baur1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5530 Matillek, LLR2, Srsieve, PrimeGrid, LLR L5531 Koci, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5532 Morera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5534 Cervelle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5535 Skahill, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5536 Bennett1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5537 Schafer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5540 Brown6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5541 Parker, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5543 Lucendo, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5544 Byerly, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5545 Kruse, PSieve, Srsieve, NPLB, LLR L5546 Steinwedel, PSieve, Srsieve, NPLB, LLR L5547 Hoonoki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5548 Steinberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5549 Zhang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5550 Provencher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5553 DAmico, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5554 Lucendo, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5555 Parangalan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5556 Javens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5557 Drake, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5558 Lee7, LLR2, Srsieve, PrimeGrid, LLR L5559 Roberts, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5560 Amberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5562 Cheung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5563 Akesson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5564 Lee7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5565 Bailey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5566 Latge, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5567 Marshall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5568 Schioler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5569 Michael, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5570 Arnold, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5571 Williams7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5572 Sveen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5573 Friedrichsen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5574 Laboisne, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5575 Blanchard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5576 Amorim, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5578 Jablonski1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5579 Cox2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5581 Pickles, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5582 Einvik, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5583 Tanaka3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5584 Barr, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5585 Faith, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5586 Vultur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5587 AverayJones, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5588 Shi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5589 Kupka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5590 Schumacher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5592 Shintani, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5594 Brown7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5595 Hyvonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5596 Kozisek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5600 Steinberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5601 Sato1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5604 Takahashi2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5606 Clark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5607 Rodermond, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5608 Pieritz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5609 Sielemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5610 Katzur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5611 Smith13, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5612 Lugowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5613 Delisle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5614 Becker2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5615 Dodd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5616 Miller7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5618 Wilson4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5619 Piotrowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5621 Millerick, LLR2, Srsieve, PrimeGrid, LLR L5624 Farrow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5625 Sellsted, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5626 Clark, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5627 Bulanov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5629 Dickinson, Srsieve, CRUS, LLR L5631 Mittelstadt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5632 Marler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5634 Gao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5636 Santosa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5637 Bestor, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5638 Piskun, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5639 Cavecchia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5640 Xu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5641 Kwok, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5645 Orpen1, SRBase, LLR L5646 Dickey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5647 Soraku, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5648 York, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5649 Dietsch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5650 Ketamino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5651 Lexut, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5652 Wilson5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5653 Beck1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5655 Hoffman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5656 McAdams, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5657 Alden, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5658 Sloan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5662 OMalley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5663 Li5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5666 Wendelboe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5667 Totty, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5668 Finn, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5670 Heindl1, Srsieve, CRUS, LLR L5671 Rauh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5676 Fnasek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5679 Shane, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5683 Glatte, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5685 Bestor, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5686 Pistorius, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5690 Eldred, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5693 Huan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5694 Petersen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5698 Stenschke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5703 Koudelka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5704 Hampicke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5705 Wharton, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5706 Wallbaum, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5707 Johns, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5710 Hass, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5711 Gingrich1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5712 Stahl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5714 Loucks, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5715 Calvin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5718 Ketamino, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5720 Trigueiro, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5721 Fischer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5723 Fergusson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5724 Pilz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5725 Gingrich1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5726 Noxe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5727 Headrick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5731 Michael, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5732 Monroe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5735 Kobrzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5736 Riva, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5738 Schaeffer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5740 Chu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5742 Steinmetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5745 Saladin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5746 Meister1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5748 Norbert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5749 Gahan, LLR2, LLR L5750 Shi, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5754 Abad, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5755 Kwiatkowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5756 Wei, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5758 Bishop1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5763 Williams7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5764 Tirkkonen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5765 Propper, Gcwsieve, LLR L5766 Takahashi2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5769 Welsh1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5770 Silva1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5772 Tarson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5773 Lugowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5774 Chambers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5775 Garambois, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5776 Anonymous, LLR2, PSieve, Srsieve, United, PrimeGrid, LLR L5778 Sarok, Srsieve, CRUS, LLR L5780 Blanchard, Srsieve, CRUS, LLR L5782 Kang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5783 Bishop1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5784 Coplin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5787 Johnson10, Srsieve, CRUS, LLR L5791 Rindahl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5793 Wang5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5794 Morgan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5796 Hall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5798 Schoeberl, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5799 Lehmann1, LLR2, Srsieve, PrimeGrid, LLR L5802 Borgerding, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5803 Kwok, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5804 Bowe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5805 Belozersky, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5807 Krauss, Srsieve, PrimeGrid, PRST, LLR L5808 Propper, Batalov, PSieve, Srsieve, LLR L5809 Zhao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5810 Meister1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5811 Dettweiler, LLR2, Srsieve, CRUS, LLR L5812 Song, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5814 Chodzinski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5817 Kilstromer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5818 Belozersky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5819 Schmidt2, LLR2, PSieve, Srsieve, NPLB, LLR L5820 Hoonoki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5821 Elmore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5825 Norton, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5827 Yasuhisa, TwinGen, NewPGen, TPS, LLR L5829 Dickinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5830 McLean2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5831 Chapman2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5833 Russell2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5834 Roberts, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5836 Becker2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5837 Lin1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5839 Stewart1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5841 Yarham, Srsieve, CRUS, LLR L5842 Steenerson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5843 Vink, Kruse, Kwok, TwinGen, NewPGen, TPS, LLR L5844 Kadowaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5847 Eldredge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5848 Bressani, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5851 Liskay, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5852 Kwiatkowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5853 Simard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5854 Lehmann1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5855 Williams9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5858 GervaisLavoie, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5860 Joseph, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5862 Oppliger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5863 Duvinage, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5864 Amberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5865 Mendrik1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5866 Kim3, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5869 Arnold, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5870 Bodlina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5871 Yakubchak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5875 Monroe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5878 Klinkenberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5879 Sanner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5880 Gehrke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5881 Medcalf, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5882 Basil, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5888 Presler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5894 Tamai1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5904 Rix, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5913 Burtner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5923 Ryabchikov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5929 Bauer2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5938 Philip, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5945 Bush, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5948 Meuler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5956 Garnier1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5960 Jayaputera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5961 Carlier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5969 Kang, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5971 Da_Mota, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5974 Presler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5977 Brockerhoff, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5984 Desbonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5986 Wolfe1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5989 Williams10, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5995 Lee10, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5998 Da_Mota, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6005 Overstreet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6006 Propper, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6010 Chaney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6011 Mehner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6015 Uehara1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6019 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, Rechenkraft, PrimeGrid, LLR L6026 Bruner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6027 Johnson10, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6029 Schmidt2, Kwok, LLR2, TwinGen, NewPGen, TPS, LLR L6033 Tang3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6035 Garrison1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6036 Hogan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6038 Schafer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6040 Garland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6042 Fink, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6043 Podsada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6044 Chesnut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6047 Wheeler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6057 Kim7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6058 StGeorge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6064 Adrian, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6065 Yakubchak1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6067 O’Hara, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6070 Mumper, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR M Morain MM Morii O Oakes p3 Dohmen, OpenPFGW p8 Caldwell, OpenPFGW p12 Water, OpenPFGW p16 Heuer, OpenPFGW p21 Anderson, Robinson, OpenPFGW p44 Broadhurst, OpenPFGW p49 Berg, OpenPFGW p54 Broadhurst, Water, OpenPFGW p58 Glover, Oakes, OpenPFGW p65 DavisK, Kuosa, OpenPFGW p85 Marchal, Carmody, Kuosa, OpenPFGW p102 Frind, Underwood, OpenPFGW p137 Rodenkirch, MultiSieve, OpenPFGW p148 Yama, Noda, Nohara, NewPGen, MatGFN, PRP, OpenPFGW p151 Kubota, NewPGen, OpenPFGW p155 DavisK, NewPGen, OpenPFGW p158 Paridon, NewPGen, OpenPFGW p170 Wu_T, Primo, OpenPFGW p189 Bohanon, LLR, OpenPFGW p193 Irvine, Broadhurst, Primo, OpenPFGW p235 Bedwell, OpenPFGW p236 Cooper, NewPGen, PRP, OpenPFGW p247 Bonath, Srsieve, CRUS, LLR, OpenPFGW p252 Oakes, NewPGen, OpenPFGW p268 Rodenkirch, Srsieve, CRUS, OpenPFGW p279 Domanov1, Srsieve, Rieselprime, Prime95, OpenPFGW p286 Batalov, Srsieve, OpenPFGW p290 Domanov1, Fpsieve, PrimeGrid, OpenPFGW p295 Angel, NewPGen, OpenPFGW p296 Kaiser1, Srsieve, LLR, OpenPFGW p301 Winskill1, Fpsieve, PrimeGrid, OpenPFGW p302 Gasewicz, Fpsieve, PrimeGrid, OpenPFGW p308 DavisK, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p309 Yama, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p310 Hubbard, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p312 Doggart, Fpsieve, PrimeGrid, OpenPFGW p314 Hubbard, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p332 Johnson6, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p334 Goetz, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p338 Tomecko, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p342 Trice, OpenPFGW p346 Burt, Fpsieve, PrimeGrid, OpenPFGW p350 Koen, Gcwsieve, GenWoodall, OpenPFGW p355 Domanov1, Srsieve, CRUS, OpenPFGW p362 Snow, Fpsieve, PrimeGrid, OpenPFGW p363 Batalov, OpenPFGW p364 Batalov, NewPGen, OpenPFGW p373 Morelli, OpenPFGW p378 Batalov, Srsieve, CRUS, LLR, OpenPFGW p379 Batalov, CycloSv, Cyclo, EMsieve, PIES, OpenPFGW p382 Oestlin, NewPGen, OpenPFGW p384 Booker, OpenPFGW p391 Keiser, NewPGen, OpenPFGW p394 Fukui, MultiSieve, OpenPFGW p395 Angel, Augustin, NewPGen, OpenPFGW p398 Stocker, OpenPFGW p399 Kebbaj, OpenPFGW p405 Propper, Cksieve, OpenPFGW p406 DavisK, Luhn, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p407 Lamprecht, Luhn, OpenPFGW p408 Batalov, PolySieve, OpenPFGW p413 Morimoto, OpenPFGW p414 Naimi, OpenPFGW p416 Monnin, LLR2, PrivGfnServer, OpenPFGW p417 Tennant, LLR2, PrivGfnServer, OpenPFGW p418 Sielemann, LLR2, PrivGfnServer, OpenPFGW p419 Bird1, LLR2, PrivGfnServer, OpenPFGW p421 Gahan, LLR2, PrivGfnServer, OpenPFGW p422 Kaiser1, PolySieve, OpenPFGW p423 Propper, Batalov, EMsieve, OpenPFGW p425 Propper, MultiSieve, OpenPFGW p426 Schoeler, NewPGen, OpenPFGW p427 Niegocki, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p428 Trunov, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p430 Propper, Batalov, NewPGen, OpenPFGW p431 Piesker, Srsieve, CRUS, OpenPFGW p433 Dettweiler, LLR2, Srsieve, CRUS, OpenPFGW p434 Doornink, MultiSieve, OpenPFGW p435 Dettweiler, LLR2, PSieve, Srsieve, NPLB, OpenPFGW p436 Schwieger, OpenPFGW p437 Propper, Batalov, EMsieve, PIES, OpenPFGW p439 Trice, MultiSieve, OpenPFGW p440 Batalov, EMsieve, OpenPFGW p441 Wu_T, CM, OpenPFGW p442 Presler, MultiSieve, PrimeGrid, PRST, OpenPFGW p443 Brochtrup, Srsieve, CRUS, OpenPFGW p444 Kadowaki, MultiSieve, PrimeGrid, PRST, OpenPFGW p445 Merrylees, MultiSieve, PrimeGrid, PRST, OpenPFGW PM Mihailescu SB10 Agafonov, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB11 Sunde, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB12 Szabolcs, Srsieve, SoBSieve, ProthSieve, Ksieve, PrimeGrid, LLR, SB SB6 Sundquist, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB7 Team_Prime_Rib, SoBSieve, ProthSieve, Ksieve, PRP, SB SB8 Gordon, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB9 Hassler, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SG Slowinski, Gage WD Williams, Dubner, Cruncher WM Morain, Williams x13 Renze x16 Doumen, Beelen, Unknown x20 Irvine, Broadhurst, Water x23 Broadhurst, Water, Renze, OpenPFGW, Primo x24 Jarai_Z, Farkas, Csajbok, Kasza, Jarai, Unknown x25 Broadhurst, Water, OpenPFGW, Primo x28 Iskra x33 Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x36 Irvine, Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x38 Broadhurst, OpenPFGW, Primo x39 Broadhurst, Dubner, Keller, OpenPFGW, Primo x44 Zhou, Unknown x45 Batalov, OpenPFGW, Primo, Unknown x47 Szekeres, Magyar, Gevay, Farkas, Jarai, Unknown x48 Asuncion, Allombert, Unknown x49 Facq, Asuncion, Allombert, Unknown x50 Propper, GFNSvCUDA, GeneFer, Unknown x51 Lexut1, Srsieve, CRUS, Unknown Y Young