THE LARGEST KNOWN PRIMES (The 5,000 largest known primes) (selected smaller primes which have comments are included) Originally Compiled by Samuel Yates -- Continued by Chris Caldwell and now maintained by Reginald McLean (Tue Sep 16 08:37:35 UTC 2025) So that I can maintain this database of the 5,000 largest known primes (plus selected smaller primes with 1,000 or more digits), please send any new primes (that are large enough) to: https://t5k.org/bios/submission.php This list in a searchable form (plus information such as how to find large primes and how to prove primality) is available at the interactive web site: https://t5k.org/primes/ See the last pages for information about the provers. The letters after the rank refer to when the prime was submitted. 'a' is this month, 'b' last month... ----- ------------------------------- -------- ----- ---- -------------- rank description digits who year comment ----- ------------------------------- -------- ----- ---- -------------- 1 2^136279841-1 41024320 MP1 2024 Mersenne 52? 2 2^82589933-1 24862048 G16 2018 Mersenne 51? 3 2^77232917-1 23249425 G15 2018 Mersenne 50 4 2^74207281-1 22338618 G14 2016 Mersenne 49 5 2^57885161-1 17425170 G13 2013 Mersenne 48 6 2^43112609-1 12978189 G10 2008 Mersenne 47 7 2^42643801-1 12837064 G12 2009 Mersenne 46 8 516693^2097152-516693^1048576+1 11981518 L4561 2023 Generalized unique 9 465859^2097152-465859^1048576+1 11887192 L4561 2023 Generalized unique 10 2^37156667-1 11185272 G11 2008 Mersenne 45 11 2^32582657-1 9808358 G9 2006 Mersenne 44 12 10223*2^31172165+1 9383761 SB12 2016 13 2^30402457-1 9152052 G9 2005 Mersenne 43 14 4*5^11786358+1 8238312 A2 2024 Generalized Fermat 15 2^25964951-1 7816230 G8 2005 Mersenne 42 16f 4052186*69^4052186+1 7451366 A61 2025 Generalized Cullen 17 69*2^24612729-1 7409172 A2 2024 18 2^24036583-1 7235733 G7 2004 Mersenne 41 19 107347*2^23427517-1 7052391 A2 2024 20d 3*2^23157875-1 6971216 L5171 2025 21 3843236^1048576+1 6904556 L6094 2024 Generalized Fermat 22 3*2^22103376-1 6653780 L6075 2024 23 1963736^1048576+1 6598776 L4245 2022 Generalized Fermat 24 1951734^1048576+1 6595985 L5583 2022 Generalized Fermat 25 202705*2^21320516+1 6418121 L5181 2021 26 2^20996011-1 6320430 G6 2003 Mersenne 40 27 1059094^1048576+1 6317602 L4720 2018 Generalized Fermat 28 3*2^20928756-1 6300184 L5799 2023 29 919444^1048576+1 6253210 L4286 2017 Generalized Fermat 30 81*2^20498148+1 6170560 L4965 2023 Generalized Fermat 31 7*2^20267500+1 6101127 L4965 2022 Divides GF(20267499,12) [GG] 32 4*5^8431178+1 5893142 A2 2024 Generalized Fermat 33 168451*2^19375200+1 5832522 L4676 2017 34 69*2^19374980-1 5832452 L4965 2022 35 3*2^18924988-1 5696990 L5530 2022 36 69*2^18831865-1 5668959 L4965 2021 37 2*3^11879700+1 5668058 A2 2024 38 97139*2^18397548-1 5538219 L4965 2023 39 7*2^18233956+1 5488969 L4965 2020 Divides Fermat F(18233954) 40 3*2^18196595-1 5477722 L5461 2022 41 4*3^11279466+1 5381674 A2 2024 Generalized Fermat 42 3*2^17748034-1 5342692 L5404 2021 43 123447^1048576-123447^524288+1 5338805 L4561 2017 Generalized unique 44 3622*5^7558139-1 5282917 L4965 2022 45 7*6^6772401+1 5269954 L4965 2019 46 2*3^10852677+1 5178044 L4965 2023 Divides phi 47 8508301*2^17016603-1 5122515 L4784 2018 Woodall 48 8*10^5112847-1 5112848 A19 2024 Near-repdigit 49 13*2^16828072+1 5065756 A2 2023 50 3*2^16819291-1 5063112 L5230 2021 51 5287180*3^10574360-1 5045259 A20 2024 Generalized Woodall 52 3*2^16408818+1 4939547 L5171 2020 Divides GF(16408814,3), GF(16408817,5) 53 2329989*2^16309923-1 4909783 A20 2024 Generalized Woodall 54 69*2^15866556-1 4776312 L4965 2021 55 2036*3^10009192+1 4775602 A2 2024 56 2525532*73^2525532+1 4705888 L5402 2021 Generalized Cullen 57 1419499*2^15614489-1 4700436 A20 2024 Generalized Woodall 58 11*2^15502315+1 4666663 L4965 2023 Divides GF(15502313,10) [GG] 59 (10^2332974+1)^2-2 4665949 p405 2024 60 37*2^15474010+1 4658143 L4965 2022 61 93839*2^15337656-1 4617100 L4965 2022 62 2^15317227+2^7658614+1 4610945 L5123 2020 Gaussian Mersenne norm 41?, generalized unique 63 13*2^15294536+1 4604116 A2 2023 64 6*5^6546983+1 4576146 L4965 2020 65 4788920*3^9577840-1 4569798 A20 2024 Generalized Woodall 66 31*2^15145093-1 4559129 A2 2025 67 69*2^14977631-1 4508719 L4965 2021 68 192971*2^14773498-1 4447272 L4965 2021 69 4*3^9214845+1 4396600 A2 2024 70 9145334*3^9145334+1 4363441 A6 2023 Generalized Cullen 71 4*5^6181673-1 4320805 L4965 2022 72 396101*2^14259638-1 4292585 A20 2024 Generalized Woodall 73 6962*31^2863120-1 4269952 L5410 2020 74 37*2^14166940+1 4264676 L4965 2022 75 99739*2^14019102+1 4220176 L5008 2019 76 69*2^13832885-1 4164116 L4965 2022 77d 9562633#+1 4151498 p451 2025 Primorial 78 404849*2^13764867+1 4143644 L4976 2021 Generalized Cullen 79 25*2^13719266+1 4129912 L4965 2022 Generalized Fermat 80 81*2^13708272+1 4126603 L4965 2022 Generalized Fermat 81 2740879*2^13704395-1 4125441 L4976 2019 Generalized Woodall 82 479216*3^8625889-1 4115601 L4976 2019 Generalized Woodall 83e 13*2^13584543-1 4089357 A2 2025 84 31*2^13514933-1 4068402 A2 2025 85 143332^786432-143332^393216+1 4055114 L4506 2017 Generalized unique 86 81*2^13470584+1 4055052 L4965 2022 Generalized Fermat 87 2^13466917-1 4053946 G5 2001 Mersenne 39 88 5778486*5^5778486+1 4038996 A6 2024 Generalized Cullen 89 9*2^13334487+1 4014082 L4965 2020 Divides GF(13334485,3) 90 206039*2^13104952-1 3944989 L4965 2021 91 2805222*5^5610444+1 3921539 L4972 2019 Generalized Cullen 92 5128*22^2919993+1 3919869 L5811 2024 93 19249*2^13018586+1 3918990 SB10 2007 94 2293*2^12918431-1 3888839 L4965 2021 95 81*2^12804541+1 3854553 L4965 2022 96f 67612*5^5501582+1 3845446 A60 2025 97a 18099898^524288+1 3805113 x50 2025 Generalized Fermat 98b 16211276^524288+1 3780021 L6006 2025 Generalized Fermat 99c 15958750^524288+1 3776446 L5639 2025 Generalized Fermat 100c 15852200^524288+1 3774921 L5526 2025 Generalized Fermat 101 4*5^5380542+1 3760839 L4965 2023 Generalized Fermat 102 13520762^524288+1 3738699 L6221 2025 Generalized Fermat 103 13427472^524288+1 3737122 L5775 2025 Generalized Fermat 104 9*2^12406887+1 3734847 L4965 2020 Divides GF(12406885,3) 105 12900356^524288+1 3728004 L5639 2025 Generalized Fermat 106 12693488^524288+1 3724323 L6096 2025 Generalized Fermat 107 11937916^524288+1 3710349 L6080 2024 Generalized Fermat 108 7*2^12286041-1 3698468 L4965 2023 109 10913140^524288+1 3689913 L6043 2024 Generalized Fermat 110 69*2^12231580-1 3682075 L4965 2021 111 27*2^12184319+1 3667847 L4965 2021 112 9332124^524288+1 3654278 L5025 2024 Generalized Fermat 113 8630170^524288+1 3636472 L5543 2024 Generalized Fermat 114 863282*5^5179692-1 3620456 A20 2024 Generalized Woodall 115 670490*12^3352450-1 3617907 A20 2024 Generalized Woodall 116 4*3^7578378+1 3615806 A2 2024 Generalized Fermat 117 11*2^11993994-1 3610554 A2 2024 118 3761*2^11978874-1 3606004 L4965 2022 119 95*2^11954552-1 3598681 A29 2024 120 259072*5^5136295-1 3590122 A45 2024 121 3*2^11895718-1 3580969 L4159 2015 122 37*2^11855148+1 3568757 L4965 2022 123 6339004^524288+1 3566218 L1372 2023 Generalized Fermat 124 763795*6^4582771+1 3566095 A6 2023 Generalized Cullen 125 5897794^524288+1 3549792 x50 2022 Generalized Fermat 126 3*2^11731850-1 3531640 L4103 2015 127 69*2^11718455-1 3527609 L4965 2020 128 8629*2^11708579-1 3524638 A2 2024 129 41*2^11676439+1 3514960 L4965 2022 130 4896418^524288+1 3507424 L4245 2022 Generalized Fermat 131 81*2^11616017+1 3496772 L4965 2022 132 69*2^11604348-1 3493259 L4965 2020 133 4450871*6^4450871+1 3463458 L5765 2023 Generalized Cullen 134 9*2^11500843+1 3462100 L4965 2020 Divides GF(11500840,12) 135 3*2^11484018-1 3457035 L3993 2014 136 193997*2^11452891+1 3447670 L4398 2018 137 29914*5^4930904+1 3446559 A41 2024 138 3638450^524288+1 3439810 L4591 2020 Generalized Fermat 139 9221*2^11392194-1 3429397 L5267 2021 140 9*2^11366286+1 3421594 L4965 2020 Generalized Fermat 141 5*2^11355764-1 3418427 L4965 2021 142 732050*6^4392301+1 3417881 L5765 2023 Generalized Cullen 143 3214654^524288+1 3411613 L4309 2019 Generalized Fermat 144 632760!-1 3395992 A43 2024 Factorial 145 146561*2^11280802-1 3395865 L5181 2020 146 51208*5^4857576+1 3395305 A30 2024 147 2985036^524288+1 3394739 L4752 2019 Generalized Fermat 148 4591*2^11270837-1 3392864 A2 2025 149 6929*2^11255424-1 3388225 L4965 2022 150 2877652^524288+1 3386397 L4250 2019 Generalized Fermat 151 2788032^524288+1 3379193 L4584 2019 Generalized Fermat 152 2733014^524288+1 3374655 L4929 2019 Generalized Fermat 153 9*2^11158963+1 3359184 L4965 2020 Divides GF(11158962,5) 154 9271*2^11134335-1 3351773 L4965 2021 155 136804*5^4777253-1 3339162 A23 2024 156 2312092^524288+1 3336572 L4720 2018 Generalized Fermat 157 987324*48^1974648-1 3319866 A20 2024 Generalized Woodall 158 2061748^524288+1 3310478 L4783 2018 Generalized Fermat 159 1880370^524288+1 3289511 L4201 2018 Generalized Fermat 160 27*2^10902757-1 3282059 L4965 2022 161 3*2^10829346+1 3259959 L3770 2014 Divides GF(10829343,3), GF(10829345,5) 162 11*2^10803449+1 3252164 L4965 2022 Divides GF(10803448,6) 163 11*2^10797109+1 3250255 L4965 2022 164 7*2^10612737-1 3194754 L4965 2022 165 7351117#+1 3191401 p448 2024 Primorial 166 37*2^10599476+1 3190762 L4965 2022 Divides GF(10599475,10) 167 5*2^10495620-1 3159498 L4965 2021 168 3^6608603-3^3304302+1 3153105 L5123 2023 Generalized unique 169 5*2^10349000-1 3115361 L4965 2021 170 844833^524288-844833^262144+1 3107335 L4506 2017 Generalized unique 171b 17*2^10248660-1 3085156 A2 2025 172 52922*5^4399812-1 3075342 A1 2023 173 712012^524288-712012^262144+1 3068389 L4506 2017 Generalized unique 174 177742*5^4386703-1 3066180 L5807 2023 175 4*3^6402015+1 3054539 A2 2024 176 874208*54^1748416-1 3028951 L4976 2019 Generalized Woodall 177 475856^524288+1 2976633 L3230 2012 Generalized Fermat 178 2*3^6236772+1 2975697 L4965 2022 179 15*2^9830108+1 2959159 A2 2023 180 9*2^9778263+1 2943552 L4965 2020 181 198*558^1061348+1 2915138 A28 2024 182 1806676*41^1806676+1 2913785 L4668 2018 Generalized Cullen 183 356926^524288+1 2911151 L3209 2012 Generalized Fermat 184 341112^524288+1 2900832 L3184 2012 Generalized Fermat 185 213988*5^4138363-1 2892597 L5621 2022 186 43*2^9596983-1 2888982 L4965 2022 187 121*2^9584444+1 2885208 L5183 2020 Generalized Fermat 188 15*2^9482269-1 2854449 A2 2024 189 6533299#-1 2835864 p447 2024 Primorial 190 11*2^9381365+1 2824074 L4965 2020 Divides GF(9381364,6) 191 15*2^9312889+1 2803461 L4965 2023 192e 97*2^9305542+1 2801250 A2 2025 193e 93*2^9235048+1 2780029 A2 2025 194 49*2^9187790+1 2765803 L4965 2022 Generalized Fermat 195 6369619#+1 2765105 p445 2024 Primorial 196 27653*2^9167433+1 2759677 SB8 2005 197 6354977#-1 2758832 p446 2024 Primorial 198 90527*2^9162167+1 2758093 L1460 2010 199 6795*2^9144320-1 2752719 L4965 2021 200 31*2^9088085-1 2735788 A2 2024 201 75*2^9079482+1 2733199 L4965 2023 202 1323365*116^1323365+1 2732038 L4718 2018 Generalized Cullen 203 57*2^9075622-1 2732037 L4965 2022 204 10^2718281-5*10^1631138-5*10^1087142-1 2718281 p423 2024 Palindrome 205 63838*5^3887851-1 2717497 L5558 2022 206 13*2^8989858+1 2706219 L4965 2020 207 4159*2^8938471-1 2690752 L4965 2022 208 273809*2^8932416-1 2688931 L1056 2017 209 93*2^8898285+1 2678653 A2 2024 210 2*3^5570081+1 2657605 L4965 2020 Divides Phi(3^5570081,2) [g427] 211 25*2^8788628+1 2645643 L5161 2021 Generalized Fermat 212 2038*366^1028507-1 2636562 L2054 2016 213 64598*5^3769854-1 2635020 L5427 2022 214 63*2^8741225+1 2631373 A2 2024 215 8*785^900325+1 2606325 L4786 2022 216 17*2^8636199+1 2599757 L5161 2021 Divides GF(8636198,10) 217 75898^524288+1 2558647 p334 2011 Generalized Fermat 218 25*2^8456828+1 2545761 L5237 2021 Divides GF(8456827,12), generalized Fermat 219 39*2^8413422+1 2532694 L5232 2021 220 31*2^8348000+1 2513000 L5229 2021 221 27*2^8342438-1 2511326 L3483 2021 222c 17*2^8330892-1 2507850 A2 2025 223 3687*2^8261084-1 2486838 L4965 2021 224 101*2^8152967+1 2454290 A2 2023 Divides GF(8152966,12) 225c 9*2^8128075-1 2446796 L3345 2025 226 273662*5^3493296-1 2441715 L5444 2021 227 81*2^8109236+1 2441126 L4965 2022 Generalized Fermat 228 11*2^8103463+1 2439387 L4965 2020 Divides GF(8103462,12) 229 102818*5^3440382-1 2404729 L5427 2021 230c 9*2^7979119-1 2401956 L3345 2025 231 11*2^7971110-1 2399545 L2484 2019 232 27*2^7963247+1 2397178 L5161 2021 Divides Fermat F(7963245) 233 3177*2^7954621-1 2394584 L4965 2021 234 39*2^7946769+1 2392218 L5226 2021 Divides GF(7946767,12) 235 7*6^3072198+1 2390636 L4965 2019 236 3765*2^7904593-1 2379524 L4965 2021 237 29*2^7899985+1 2378134 L5161 2021 Divides GF(7899984,6) 238 5113*2^7895471-1 2376778 L4965 2022 239 861*2^7895451-1 2376771 L4965 2021 240 75*2^7886683+1 2374131 A2 2023 241 2661*2^7861390-1 2366518 A2 2024 242b 21*2^7838882-1 2359740 A2 2025 243b 30397*2^7838120+1 2359514 A71 2025 244 99*2^7830910+1 2357341 A2 2024 245 28433*2^7830457+1 2357207 SB7 2004 246 2589*2^7803339-1 2349043 L4965 2022 247 59*2^7792307+1 2345720 A2 2024 248 101*2^7784453+1 2343356 A2 2024 249 95*2^7778585+1 2341590 A2 2024 250 8401*2^7767655-1 2338302 L4965 2023 251 9693*2^7767343-1 2338208 A2 2023 252 5*2^7755002-1 2334489 L4965 2021 253 2945*2^7753232-1 2333959 L4965 2022 254 2*836^798431+1 2333181 L4294 2024 255 63*2^7743186+1 2330934 A2 2024 256 2545*2^7732265-1 2327648 L4965 2021 257 5539*2^7730709-1 2327180 L4965 2021 258 4817*2^7719584-1 2323831 L4965 2021 259 183*558^842752+1 2314734 A28 2024 260 1341174*53^1341174+1 2312561 L4668 2017 Generalized Cullen 261 9467*2^7680034-1 2311925 L4965 2022 262 45*2^7661004+1 2306194 L5200 2020 263 15*2^7619838+1 2293801 L5192 2020 264b 3645*2^7610003-1 2290843 A2 2025 265 3597*2^7580693-1 2282020 L4965 2021 266 5256037#+1 2281955 p444 2024 Primorial 267 3129*2^7545557-1 2271443 L4965 2023 268 7401*2^7523295-1 2264742 L4965 2021 269 45*2^7513661+1 2261839 L5179 2020 270 558640^393216-558640^196608+1 2259865 L4506 2017 Generalized unique 271e 2739*2^7483537-1 2252773 A2 2025 272 9*2^7479919-1 2251681 L3345 2023 273 1875*2^7474308-1 2249995 L4965 2022 274 69*2^7452023+1 2243285 L4965 2023 Divides GF(7452020,3) [GG] 275 1281979*2^7447178+1 2241831 A8 2023 276e 9107*2^7417464-1 2232884 A2 2025 277 4*5^3189669-1 2229484 L4965 2022 278c 19*2^7383785-1 2222743 A2 2025 279 29*2^7374577+1 2219971 L5169 2020 Divides GF(7374576,3) 280 2653*2^7368343-1 2218096 A2 2024 281 21555*2^7364128-1 2216828 A11 2024 282 3197*2^7359542-1 2215447 L4965 2022 283 109838*5^3168862-1 2214945 L5129 2020 284 95*2^7354869+1 2214039 A2 2023 285 101*2^7345194-1 2211126 L1884 2019 286 85*2^7333444+1 2207589 A2 2023 287 15*2^7300254+1 2197597 L5167 2020 288 422429!+1 2193027 p425 2022 Factorial 289 1759*2^7284439-1 2192838 L4965 2021 290 1909683*14^1909683+1 2188748 L5765 2023 Generalized Cullen 291 737*2^7269322-1 2188287 L4665 2017 292 6909*2^7258896-1 2185150 A2 2024 293 93*2^7241494+1 2179909 A2 2023 294 118568*5^3112069+1 2175248 L690 2020 295 4215*2^7221386-1 2173858 A2 2024 296 40*257^901632+1 2172875 A11 2024 297f 1685*2^7213108-1 2171366 A2 2025 298 580633*2^7208783-1 2170066 A11 2024 299 6039*2^7207973-1 2169820 L4965 2021 300 502573*2^7181987-1 2162000 L3964 2014 301 402539*2^7173024-1 2159301 L3961 2014 302 3343*2^7166019-1 2157191 L1884 2016 303f 4137*2^7132569-1 2147121 A2 2025 304 161041*2^7107964+1 2139716 L4034 2015 305 294*213^918952-1 2139672 L5811 2023 306c 17*2^7101254-1 2137692 A2 2025 307 27*2^7046834+1 2121310 L3483 2018 308 1759*2^7046791-1 2121299 L4965 2021 309 327*2^7044001-1 2120459 L4965 2021 310 5*2^7037188-1 2118406 L4965 2021 311 3*2^7033641+1 2117338 L2233 2011 Divides GF(7033639,3) 312 625783*2^7031319-1 2116644 A11 2024 313 33661*2^7031232+1 2116617 SB11 2007 314 237804^393216-237804^196608+1 2114016 L4506 2017 Generalized unique 315 207494*5^3017502-1 2109149 L5083 2020 316 15*2^6993631-1 2105294 L4965 2021 317 8943501*2^6972593-1 2098967 L466 2022 318 6020095*2^6972593-1 2098967 L466 2022 319 2^6972593-1 2098960 G4 1999 Mersenne 38 320 273*2^6963847-1 2096330 L4965 2022 321 6219*2^6958945-1 2094855 L4965 2021 322 51*2^6945567+1 2090826 L4965 2020 Divides GF(6945564,12) [p286] 323d 8*10^2084563-1 2084564 A2 2025 Near-repdigit 324 3323*2^6921196-1 2083492 A2 2024 325 238694*5^2979422-1 2082532 L5081 2020 326 4*72^1119849-1 2079933 L4444 2016 327d 129*2^6900230+1 2077179 L5517 2025 328 33*2^6894190-1 2075360 L4965 2021 329 4778027#-1 2073926 p442 2024 Primorial 330d 105*2^6884697+1 2072503 L5178 2025 331 2345*2^6882320-1 2071789 L4965 2022 332 57*2^6857990+1 2064463 A2 2023 333 146264*5^2953282-1 2064261 L1056 2020 334 69*2^6838971-1 2058738 L5037 2020 335 35816*5^2945294-1 2058677 L5076 2020 336 127*2^6836153-1 2057890 L1862 2018 337e 105*2^6835099+1 2057572 L5517 2025 338 19*2^6833086+1 2056966 L5166 2020 339a 69170386^262144+1 2055189 L5700 2025 Generalized Fermat 340b 68717884^262144+1 2054441 L6278 2025 Generalized Fermat 341b 68000464^262144+1 2053246 L4670 2025 Generalized Fermat 342b 67886950^262144+1 2053056 L6266 2025 Generalized Fermat 343b 67673558^262144+1 2052698 L5755 2025 Generalized Fermat 344b 67535128^262144+1 2052465 L5755 2025 Generalized Fermat 345b 67433562^262144+1 2052293 L5697 2025 Generalized Fermat 346b 67167678^262144+1 2051844 L5416 2025 Generalized Fermat 347c 67141518^262144+1 2051799 L4477 2025 Generalized Fermat 348c 67062340^262144+1 2051665 L5057 2025 Generalized Fermat 349c 66498472^262144+1 2050704 L6085 2025 Generalized Fermat 350c 66342922^262144+1 2050437 L5639 2025 Generalized Fermat 351c 66266188^262144+1 2050305 L5127 2025 Generalized Fermat 352 65*2^6810465+1 2050157 A2 2023 353 40597*2^6808509-1 2049571 L3749 2013 354 283*2^6804731-1 2048431 L2484 2020 355d 65136498^262144+1 2048348 L5639 2025 Generalized Fermat 356d 64989720^262144+1 2048091 L4477 2025 Generalized Fermat 357e 64074894^262144+1 2046477 L5696 2025 Generalized Fermat 358e 64010198^262144+1 2046362 L5361 2025 Generalized Fermat 359e 63833640^262144+1 2046047 L6006 2025 Generalized Fermat 360e 8*10^2045966-1 2045967 A2 2025 Near-repdigit 361e 63784742^262144+1 2045960 L4387 2025 Generalized Fermat 362e 63558122^262144+1 2045555 L6255 2025 Generalized Fermat 363e 63448958^262144+1 2045359 L5019 2025 Generalized Fermat 364e 63286690^262144+1 2045068 L4387 2025 Generalized Fermat 365e 62767176^262144+1 2044129 L5639 2025 Generalized Fermat 366e 62747994^262144+1 2044095 L5639 2025 Generalized Fermat 367 1861709*2^6789999+1 2044000 L5191 2020 368 5781*2^6789459-1 2043835 L4965 2021 369e 62311952^262144+1 2043301 L5156 2025 Generalized Fermat 370e 62199610^262144+1 2043095 L5697 2025 Generalized Fermat 371e 62152830^262144+1 2043010 L5639 2025 Generalized Fermat 372e 62136706^262144+1 2042980 L5639 2025 Generalized Fermat 373 8435*2^6786180-1 2042848 L4965 2021 374f 61238184^262144+1 2041322 L5526 2025 Generalized Fermat 375e 119*2^6777781+1 2040318 L5517 2025 376 59145944^262144+1 2037364 L4591 2025 Generalized Fermat 377 58936230^262144+1 2036960 L5465 2025 Generalized Fermat 378 58870004^262144+1 2036832 L6238 2025 Generalized Fermat 379 58846688^262144+1 2036787 L4591 2025 Generalized Fermat 380 58333324^262144+1 2035789 L4591 2025 Generalized Fermat 381 58288282^262144+1 2035701 L4526 2025 Generalized Fermat 382 57643582^262144+1 2034435 L4772 2025 Generalized Fermat 383 57594478^262144+1 2034338 L5464 2025 Generalized Fermat 384 57478518^262144+1 2034108 L6085 2025 Generalized Fermat 385 57429230^262144+1 2034011 L5639 2025 Generalized Fermat 386 51*2^6753404+1 2032979 L4965 2020 387 93*2^6750726+1 2032173 A2 2023 388 56303352^262144+1 2031757 L4920 2025 Generalized Fermat 389 56295176^262144+1 2031740 L5378 2025 Generalized Fermat 390 55952434^262144+1 2031045 L5586 2025 Generalized Fermat 391 55892864^262144+1 2030923 L5948 2025 Generalized Fermat 392 69*2^6745775+1 2030683 L4965 2023 393 55702322^262144+1 2030535 L4772 2025 Generalized Fermat 394 55695224^262144+1 2030520 L4387 2025 Generalized Fermat 395 55169618^262144+1 2029441 L6236 2025 Generalized Fermat 396 55007338^262144+1 2029105 L4201 2025 Generalized Fermat 397 54852328^262144+1 2028784 L5375 2025 Generalized Fermat 398 54528918^262144+1 2028111 L5375 2025 Generalized Fermat 399 54044092^262144+1 2027094 L5069 2025 Generalized Fermat 400 53903472^262144+1 2026797 L5543 2025 Generalized Fermat 401 53750036^262144+1 2026473 L4309 2025 Generalized Fermat 402 53616962^262144+1 2026191 L4889 2025 Generalized Fermat 403 53311612^262144+1 2025540 L6235 2025 Generalized Fermat 404b 4681*2^6728157-1 2025381 A2 2025 405 53008094^262144+1 2024890 L6036 2025 Generalized Fermat 406 52648144^262144+1 2024115 L5088 2025 Generalized Fermat 407 52599274^262144+1 2024009 L4776 2025 Generalized Fermat 408 52592976^262144+1 2023995 L5543 2025 Generalized Fermat 409e 117*2^6719464+1 2022763 L5995 2025 410 51992174^262144+1 2022687 L5639 2025 Generalized Fermat 411 51852794^262144+1 2022382 L4387 2025 Generalized Fermat 412 51714136^262144+1 2022077 L4591 2025 Generalized Fermat 413 51283286^262144+1 2021124 L4884 2025 Generalized Fermat 414 51125138^262144+1 2020773 L5543 2025 Generalized Fermat 415 9995*2^6711008-1 2020219 L4965 2021 416 50454356^262144+1 2019269 L5543 2025 Generalized Fermat 417 50449664^262144+1 2019259 L5586 2025 Generalized Fermat 418 50366208^262144+1 2019070 L5275 2025 Generalized Fermat 419 50121532^262144+1 2018516 L4904 2025 Generalized Fermat 420 49536902^262144+1 2017180 L5639 2025 Generalized Fermat 421 49235348^262144+1 2016485 L5543 2025 Generalized Fermat 422 49209090^262144+1 2016424 L5275 2025 Generalized Fermat 423 48055302^262144+1 2013723 L5069 2025 Generalized Fermat 424 47707672^262144+1 2012896 L4939 2025 Generalized Fermat 425 39*2^6684941+1 2012370 L5162 2020 426 47351862^262144+1 2012044 L6204 2025 Generalized Fermat 427 47281922^262144+1 2011876 L5974 2025 Generalized Fermat 428 47255958^262144+1 2011813 L5948 2025 Generalized Fermat 429 6679881*2^6679881+1 2010852 L917 2009 Cullen 430 46831458^262144+1 2010786 L4456 2025 Generalized Fermat 431 46378776^262144+1 2009680 L6178 2025 Generalized Fermat 432 45073202^262144+1 2006429 L6129 2025 Generalized Fermat 433 45007104^262144+1 2006262 L5639 2025 Generalized Fermat 434 44819108^262144+1 2005786 L5632 2025 Generalized Fermat 435 44666524^262144+1 2005397 L5775 2025 Generalized Fermat 436 37*2^6660841-1 2005115 L3933 2014 437 44144624^262144+1 2004059 L5974 2024 Generalized Fermat 438 44030166^262144+1 2003764 L5974 2024 Generalized Fermat 439 43330794^262144+1 2001941 L5588 2024 Generalized Fermat 440 39*2^6648997+1 2001550 L5161 2020 441 42781592^262144+1 2000489 L5460 2024 Generalized Fermat 442 10^2000007-10^1127194-10^872812-1 2000007 p423 2024 Palindrome 443 10^2000005-10^1051046-10^948958-1 2000005 p423 2024 Palindrome 444 304207*2^6643565-1 1999918 L3547 2013 445 42474318^262144+1 1999668 L5416 2024 Generalized Fermat 446 69*2^6639971-1 1998833 L5037 2020 447 42006214^262144+1 1998406 L5512 2024 Generalized Fermat 448 6471*2^6631137-1 1996175 L4965 2021 449 40460760^262144+1 1994139 L5460 2024 Generalized Fermat 450 39896728^262144+1 1992541 L6047 2024 Generalized Fermat 451 39164812^262144+1 1990433 L6038 2024 Generalized Fermat 452e 8*10^1990324-1 1990325 A2 2025 Near-repdigit 453 38786786^262144+1 1989328 L6035 2024 Generalized Fermat 454 38786700^262144+1 1989328 L4245 2024 Generalized Fermat 455 38738332^262144+1 1989186 L6033 2024 Generalized Fermat 456 9935*2^6603610-1 1987889 L4965 2023 457 38214850^262144+1 1987637 L5412 2024 Generalized Fermat 458 38108804^262144+1 1987321 L4764 2024 Generalized Fermat 459 37986650^262144+1 1986955 L6027 2024 Generalized Fermat 460 37787006^262144+1 1986355 L4622 2024 Generalized Fermat 461 37700936^262144+1 1986096 L5416 2024 Generalized Fermat 462 37689944^262144+1 1986063 L5416 2024 Generalized Fermat 463 37349040^262144+1 1985028 L5543 2024 Generalized Fermat 464 37047448^262144+1 1984105 L5746 2024 Generalized Fermat 465 36778106^262144+1 1983274 L5998 2024 Generalized Fermat 466 36748386^262144+1 1983182 L5998 2024 Generalized Fermat 467 36717890^262144+1 1983088 L4760 2024 Generalized Fermat 468 36210400^262144+1 1981503 L6006 2024 Generalized Fermat 469 35196086^262144+1 1978269 L5543 2024 Generalized Fermat 470 34443124^262144+1 1975807 L5639 2024 Generalized Fermat 471 33798406^262144+1 1973655 L4656 2024 Generalized Fermat 472 33491530^262144+1 1972617 L5030 2024 Generalized Fermat 473 33061466^262144+1 1971146 L5275 2024 Generalized Fermat 474 32497152^262144+1 1969186 L5586 2024 Generalized Fermat 475 32171198^262144+1 1968038 L4892 2024 Generalized Fermat 476 32067848^262144+1 1967672 L4684 2024 Generalized Fermat 477 31371484^262144+1 1965172 L5847 2024 Generalized Fermat 478 30941436^262144+1 1963601 L4362 2024 Generalized Fermat 479 554051*2^6517658-1 1962017 L5811 2023 480f 115*2^6515714+1 1961428 L5161 2025 481 29645358^262144+1 1958729 L5024 2023 Generalized Fermat 482 29614286^262144+1 1958610 L5870 2023 Generalized Fermat 483 1319*2^6506224-1 1958572 L4965 2021 484 3163*2^6504943-1 1958187 L4965 2023 485 29445800^262144+1 1957960 L4726 2023 Generalized Fermat 486 322498*5^2800819-1 1957694 L4954 2019 487 29353924^262144+1 1957604 L4387 2023 Generalized Fermat 488 99*2^6502814+1 1957545 A2 2023 489 29333122^262144+1 1957524 L5869 2023 Generalized Fermat 490 88444*5^2799269-1 1956611 L3523 2019 491 29097000^262144+1 1956604 L5375 2023 Generalized Fermat 492 28342134^262144+1 1953611 L5864 2023 Generalized Fermat 493 28259150^262144+1 1953277 L4898 2023 Generalized Fermat 494b 68311*2^6487924+1 1953065 L5327 2025 495 28004468^262144+1 1952246 L5586 2023 Generalized Fermat 496 27789002^262144+1 1951367 L5860 2023 Generalized Fermat 497 13*2^6481780+1 1951212 L4965 2020 498 27615064^262144+1 1950652 L4201 2023 Generalized Fermat 499 21*2^6468257-1 1947141 L4965 2021 500 26640150^262144+1 1946560 L5839 2023 Generalized Fermat 501 26128000^262144+1 1944350 L5821 2023 Generalized Fermat 502 25875054^262144+1 1943243 L5070 2023 Generalized Fermat 503 25690360^262144+1 1942427 L5809 2023 Generalized Fermat 504 25635940^262144+1 1942186 L4307 2023 Generalized Fermat 505 25461468^262144+1 1941408 L4210 2023 Generalized Fermat 506 25333402^262144+1 1940834 L5802 2023 Generalized Fermat 507 24678636^262144+1 1937853 L5586 2023 Generalized Fermat 508 138514*5^2771922+1 1937496 L4937 2019 509 24429706^262144+1 1936699 L4670 2023 Generalized Fermat 510 33*2^6432160-1 1936275 L4965 2022 511 15*2^6429089-1 1935350 L4965 2021 512 23591460^262144+1 1932724 L5720 2023 Generalized Fermat 513 23479122^262144+1 1932181 L5773 2023 Generalized Fermat 514 398023*2^6418059-1 1932034 L3659 2013 515 22984886^262144+1 1929758 L4928 2023 Generalized Fermat 516 3^4043119+3^2021560+1 1929059 L5123 2023 Generalized unique 517 22790808^262144+1 1928793 L5047 2023 Generalized Fermat 518f 141*2^6406088+1 1928427 L5783 2025 Divides GF(6406084,6) 519 22480000^262144+1 1927230 L4307 2023 Generalized Fermat 520 22479752^262144+1 1927229 L5159 2023 Generalized Fermat 521 22470828^262144+1 1927183 L4201 2023 Generalized Fermat 522 55*2^6395254+1 1925166 A2 2023 523 20866766^262144+1 1918752 L4245 2023 Generalized Fermat 524 4*3^4020126+1 1918089 A2 2024 Generalized Fermat 525 20710506^262144+1 1917896 L5676 2023 Generalized Fermat 526 20543682^262144+1 1916975 L5663 2023 Generalized Fermat 527 20105956^262144+1 1914523 L5005 2023 Generalized Fermat 528 631*2^6359347-1 1914357 L4965 2021 529 4965*2^6356707-1 1913564 L4965 2022 530 19859450^262144+1 1913119 L5025 2023 Generalized Fermat 531 19527922^262144+1 1911202 L4745 2023 Generalized Fermat 532 19322744^262144+1 1910000 L4775 2023 Generalized Fermat 533 1995*2^6333396-1 1906546 L4965 2021 534 1582137*2^6328550+1 1905090 L801 2009 Cullen 535 18395930^262144+1 1904404 x50 2022 Generalized Fermat 536 17191822^262144+1 1896697 x50 2022 Generalized Fermat 537 87*2^6293522+1 1894541 A2 2023 538 16769618^262144+1 1893866 L4677 2022 Generalized Fermat 539 141*2^6286573+1 1892450 L5178 2025 540 16048460^262144+1 1888862 L5127 2022 Generalized Fermat 541 10^1888529-10^944264-1 1888529 p423 2021 Near-repdigit, palindrome 542 15913772^262144+1 1887902 L4387 2022 Generalized Fermat 543 15859176^262144+1 1887511 L5544 2022 Generalized Fermat 544 3303*2^6264946-1 1885941 L4965 2021 545 15417192^262144+1 1884293 L5051 2022 Generalized Fermat 546 14741470^262144+1 1879190 L4204 2022 Generalized Fermat 547 4328927#+1 1878843 p442 2024 Primorial 548 165*2^6237224+1 1877594 L5178 2025 549 14399216^262144+1 1876516 L4745 2021 Generalized Fermat 550 1344935*2^6231985+1 1876021 L161 2023 551 14103144^262144+1 1874151 L5254 2021 Generalized Fermat 552 13911580^262144+1 1872594 L5068 2021 Generalized Fermat 553 165*2^6213489+1 1870449 L5517 2025 554 13640376^262144+1 1870352 L4307 2021 Generalized Fermat 555 13553882^262144+1 1869628 L4307 2021 Generalized Fermat 556 8825*2^6199424-1 1866217 A2 2023 557 13039868^262144+1 1865227 L5273 2021 Generalized Fermat 558 7*6^2396573+1 1864898 L4965 2019 559 12959788^262144+1 1864525 L4591 2021 Generalized Fermat 560 69*2^6186659+1 1862372 L4965 2023 561 12582496^262144+1 1861162 L5202 2021 Generalized Fermat 562 12529818^262144+1 1860684 L4871 2020 Generalized Fermat 563 141*2^6175704+1 1859075 L5969 2025 564 12304152^262144+1 1858615 L4591 2020 Generalized Fermat 565 12189878^262144+1 1857553 L4905 2020 Generalized Fermat 566 39*2^6164630+1 1855741 L4087 2020 Divides GF(6164629,5) 567 119*2^6150335+1 1851438 L5178 2025 568 11081688^262144+1 1846702 L5051 2020 Generalized Fermat 569 10979776^262144+1 1845650 L5088 2020 Generalized Fermat 570 10829576^262144+1 1844082 L4677 2020 Generalized Fermat 571 194368*5^2638045-1 1843920 L690 2018 572 10793312^262144+1 1843700 L4905 2020 Generalized Fermat 573 10627360^262144+1 1841936 L4956 2020 Generalized Fermat 574 10578478^262144+1 1841411 L4307 2020 Generalized Fermat 575 66916*5^2628609-1 1837324 L690 2018 576 521921*2^6101122-1 1836627 L5811 2023 577 3*2^6090515-1 1833429 L1353 2010 578 9812766^262144+1 1832857 L4245 2020 Generalized Fermat 579 9750938^262144+1 1832137 L4309 2020 Generalized Fermat 580 8349*2^6082397-1 1830988 L4965 2021 581 9450844^262144+1 1828578 L5020 2020 Generalized Fermat 582 71*2^6070943+1 1827538 L4965 2023 583 32*470^683151+1 1825448 L4064 2021 584 9125820^262144+1 1824594 L5002 2019 Generalized Fermat 585 8883864^262144+1 1821535 L4715 2019 Generalized Fermat 586 21*2^6048861+1 1820890 L5106 2020 Divides GF(6048860,5) 587 9999*2^6037057-1 1817340 L4965 2021 588 8521794^262144+1 1816798 L4289 2019 Generalized Fermat 589 6285*2^6027986-1 1814609 A2 2024 590 33*2^6019138-1 1811943 L4965 2022 591 67*2^6018626+1 1811789 L4965 2023 592 122*123^865890+1 1809631 L4294 2024 593e 6*10^1807300-1 1807301 A2 2025 Near-repdigit 594 1583*2^5989282-1 1802957 L4036 2015 595 55*2^5982526+1 1800922 L5554 2025 Divides GF(5982524,10) 596 101806*15^1527091-1 1796004 L5765 2023 Generalized Woodall 597 91*2^5960816+1 1794387 L5969 2025 598 163*2^5945098+1 1789656 L5554 2025 599 189*2^5932506+1 1785865 L5995 2025 600 6291332^262144+1 1782250 L4864 2018 Generalized Fermat 601 6287774^262144+1 1782186 L4726 2018 Generalized Fermat 602 32*402^683113-1 1778983 A11 2025 603 327926*5^2542838-1 1777374 L4807 2018 604 81556*5^2539960+1 1775361 L4809 2018 605 179*2^5894939+1 1774556 L5261 2025 606 5828034^262144+1 1773542 L4720 2018 Generalized Fermat 607 993*10^1768283-1 1768286 L4879 2019 Near-repdigit 608 135*2^5854694+1 1762441 L5997 2025 609 9*10^1762063-1 1762064 L4879 2020 Near-repdigit 610 93606^354294+93606^177147+1 1761304 p437 2023 Generalized unique 611 5205422^262144+1 1760679 L4201 2018 Generalized Fermat 612 5152128^262144+1 1759508 L4720 2018 Generalized Fermat 613 195*2^5841059+1 1758337 L5178 2025 614 183*2^5814122+1 1750228 L5612 2025 615 205*2^5805562+1 1747651 L5261 2025 616 99*2^5798449+1 1745510 L5517 2025 Divides Fermat F(5798447) 617 4489246^262144+1 1743828 L4591 2018 Generalized Fermat 618 2240501*6^2240501+1 1743456 L5765 2023 Generalized Cullen 619 57*2^5785428+1 1741590 L5302 2025 620 2*3^3648969+1 1741001 L5043 2020 Divides Phi(3^3648964,2) [g427] 621 7*2^5775996+1 1738749 L3325 2012 622 101*2^5774879+1 1738414 L5537 2025 623 4246258^262144+1 1737493 L4720 2018 Generalized Fermat 624e 13*2^5769387-1 1736760 L1862 2025 625 57*2^5759943+1 1733918 L5517 2025 626 3933508^262144+1 1728783 L4309 2018 Generalized Fermat 627 3853792^262144+1 1726452 L4715 2018 Generalized Fermat 628 3673932^262144+1 1721010 L4649 2017 Generalized Fermat 629 (10^859669-1)^2-2 1719338 p405 2022 Near-repdigit 630 3596074^262144+1 1718572 L4689 2017 Generalized Fermat 631 3547726^262144+1 1717031 L4201 2017 Generalized Fermat 632 8*10^1715905-1 1715906 L4879 2020 Near-repdigit 633 1243*2^5686715-1 1711875 L1828 2016 634 65*2^5671355+1 1707250 L5294 2024 635 25*2^5658915-1 1703505 L1884 2021 636 1486287*14^1486287+1 1703482 L5765 2023 Generalized Cullen 637 41*2^5651731+1 1701343 L1204 2020 638 3060772^262144+1 1700222 L4649 2017 Generalized Fermat 639 9*2^5642513+1 1698567 L3432 2013 640 165*2^5633373+1 1695817 L5178 2024 641 10*3^3550446+1 1693995 L4965 2020 642 2622*11^1621920-1 1689060 L2054 2015 643 141*2^5600116+1 1685806 L6089 2024 644 81*2^5600028+1 1685779 L4965 2022 Generalized Fermat 645 2676404^262144+1 1684945 L4591 2017 Generalized Fermat 646 301562*5^2408646-1 1683577 L4675 2017 647 2611294^262144+1 1682141 L4250 2017 Generalized Fermat 648 55599^354294+55599^177147+1 1681149 p437 2023 Generalized unique 649 171362*5^2400996-1 1678230 L4669 2017 650 2514168^262144+1 1677825 L4564 2017 Generalized Fermat 651 31*2^5560820+1 1673976 L1204 2020 Divides GF(5560819,6) 652 163*2^5550632+1 1670909 L5517 2024 653 205*2^5532904+1 1665573 L5517 2024 654 191*2^5531015+1 1665004 L5517 2024 655 13*2^5523860+1 1662849 L1204 2020 Divides Fermat F(5523858) 656 89*2^5519481+1 1661532 L5178 2024 657 252191*2^5497878-1 1655032 L3183 2012 658 2042774^262144+1 1654187 L4499 2016 Generalized Fermat 659e 8*10^1652593-1 1652594 A2 2025 Near-repdigit 660 247*2^5477512+1 1648898 L5373 2024 661 129*2^5453363+1 1641628 L6083 2024 662 1828858^262144+1 1641593 L4200 2016 Generalized Fermat 663 258317*2^5450519+1 1640776 g414 2008 664 7*6^2104746+1 1637812 L4965 2019 665 91*2^5435752+1 1636327 L5214 2024 666 159*2^5432226+1 1635266 L6082 2024 667 193*2^5431414+1 1635021 L5214 2024 668 5*2^5429494-1 1634442 L3345 2017 669 77*2^5422903+1 1632459 A2 2024 Divides GF(5422902,12) 670 165*2^5416628+1 1630570 L5537 2024 671 147*2^5410159+1 1628623 L5517 2024 672 285*2^5408709+1 1628187 L5178 2024 673 43*2^5408183-1 1628027 L1884 2018 674 8*815^559138-1 1627740 A26 2024 675 1615588^262144+1 1627477 L4200 2016 Generalized Fermat 676 245*2^5404089+1 1626796 L5282 2024 677 2*296598^296598-1 1623035 L4965 2022 678 127*2^5391378+1 1622969 L5178 2024 679 1349*2^5385004-1 1621051 L1828 2017 680 1488256^262144+1 1618131 L4249 2016 Generalized Fermat 681 153*2^5369765+1 1616463 L5969 2024 682 1415198^262144+1 1612400 L4308 2016 Generalized Fermat 683 84*730^560037+1 1603569 A12 2024 684 93*2^5323466+1 1602525 L5537 2024 685 237*2^5315983+1 1600273 L6064 2024 686 45*2^5308037+1 1597881 L4761 2019 687 5468*70^864479-1 1595053 L5410 2022 688 131*2^5298475+1 1595003 L5517 2024 689 237*2^5291999+1 1593053 L5532 2024 690 221*2^5284643+1 1590839 L5517 2024 691 92*10^1585996-1 1585998 L4789 2023 Near-repdigit 692e 9*10^1585829-1 1585830 A2 2025 Near-repdigit 693 1082083^262144-1082083^131072+1 1581846 L4506 2017 Generalized unique 694 247*2^5254234+1 1581685 L5923 2024 695 273*2^5242597+1 1578182 L5192 2024 696 7*2^5229669-1 1574289 L4965 2021 697 180062*5^2249192-1 1572123 L4435 2016 698 124125*6^2018254+1 1570512 L4001 2019 699 27*2^5213635+1 1569462 L3760 2015 700 227*2^5213195+1 1569331 L5517 2024 701 9992*10^1567410-1 1567414 L4879 2020 Near-repdigit 702 27*252^652196+1 1566186 A21 2024 703 149*2^5196375+1 1564267 L5174 2024 704 277*2^5185268+1 1560924 L5888 2024 705 308084!+1 1557176 p425 2022 Factorial 706 843575^262144-843575^131072+1 1553498 L4506 2017 Generalized unique 707 25*2^5152151-1 1550954 L1884 2020 708 125*2^5149981+1 1550301 L6042 2024 709 147*2^5146964+1 1549393 L5559 2024 710 53546*5^2216664-1 1549387 L4398 2016 711 773620^262144+1 1543643 L3118 2012 Generalized Fermat 712 39*2^5119458+1 1541113 L1204 2019 713 607*26^1089034+1 1540957 L5410 2021 714 81*2^5115131+1 1539810 L4965 2022 Divides GF(5115128,12) [GG] 715 223*2^5105835-1 1537012 L2484 2019 716 99*10^1536527-1 1536529 L4879 2019 Near-repdigit 717 81*2^5100331+1 1535355 L4965 2022 Divides GF(5100327,6) [GG] 718 992*10^1533933-1 1533936 L4879 2019 Near-repdigit 719 51*2^5085142-1 1530782 L760 2014 720 3*2^5082306+1 1529928 L780 2009 Divides GF(5082303,3), GF(5082305,5) 721 676754^262144+1 1528413 L2975 2012 Generalized Fermat 722 296024*5^2185270-1 1527444 L671 2016 723 181*2^5057960+1 1522600 L5178 2024 724 5359*2^5054502+1 1521561 SB6 2003 725 175*2^5049344+1 1520007 L5178 2024 726 183*2^5042357+1 1517903 L5178 2024 727 1405486*12^1405486-1 1516781 L5765 2023 Generalized Woodall 728 53*2^5019181+1 1510926 L4965 2023 729 131*2^5013361+1 1509175 L5178 2024 730 13*2^4998362+1 1504659 L3917 2014 731 525094^262144+1 1499526 p338 2012 Generalized Fermat 732 92158*5^2145024+1 1499313 L4348 2016 733 499238*10^1497714-1 1497720 L4976 2019 Generalized Woodall 734 357*2^4972628+1 1496913 L5783 2024 735d 2127231*2^4972165-1 1496778 L5327 2025 736 77072*5^2139921+1 1495746 L4340 2016 737 175*2^4965756+1 1494844 L5888 2024 738 221*2^4960867+1 1493373 L5178 2024 739 375*2^4950021+1 1490108 L5178 2024 740 2*3^3123036+1 1490068 L5043 2020 741 75*2^4940218+1 1487156 L5517 2024 Divides GF(4940214,12) 742 95*2^4929067+1 1483799 L5172 2024 743 161*2^4928111+1 1483512 L5961 2024 744 51*2^4923905+1 1482245 L4965 2023 745 289*2^4911870+1 1478623 L5178 2024 Generalized Fermat 746 519397*2^4908893-1 1477730 L5410 2022 747 306398*5^2112410-1 1476517 L4274 2016 748 183*2^4894125+1 1473281 L5961 2024 Divides GF(4894123,3), GF(4894124,5) 749 39*684^519468-1 1472723 L5410 2023 750 195*2^4887935+1 1471418 L5261 2024 751 281*2^4886723+1 1471053 L5971 2024 752 281*2^4879761+1 1468957 L5961 2024 753 96*789^506568+1 1467569 A14 2024 754 243*2^4872108+1 1466654 L5178 2024 755 213*2^4865126+1 1464552 L5803 2024 756 265711*2^4858008+1 1462412 g414 2008 757 154222*5^2091432+1 1461854 L3523 2015 758 1271*2^4850526-1 1460157 L1828 2012 759 333*2^4846958-1 1459083 L5546 2022 760 357*2^4843507+1 1458044 L5178 2024 761 156*532^534754-1 1457695 L5410 2023 762 362978^262144-362978^131072+1 1457490 p379 2015 Generalized unique 763 361658^262144+1 1457075 p332 2011 Generalized Fermat 764 231*2^4836124+1 1455821 L5517 2024 765 7*10^1454508+1 1454509 p439 2024 766 303*2^4829593+1 1453855 L5706 2024 767 100186*5^2079747-1 1453686 L4197 2015 768 375*2^4824253+1 1452248 L5625 2024 769 288465!+1 1449771 p3 2022 Factorial 770 15*2^4800315+1 1445040 L1754 2019 Divides GF(4800313,3), GF(4800310,5) 771 235*2^4799708+1 1444859 L5971 2024 772 347*2^4798851+1 1444601 L5554 2024 773 239*2^4795541+1 1443605 L5995 2024 774 2^4792057-2^2396029+1 1442553 L3839 2014 Gaussian Mersenne norm 40, generalized unique 775 92*10^1439761-1 1439763 L4789 2020 Near-repdigit 776 269*2^4777025+1 1438031 L5683 2024 777c 1365*2^4768348+1 1435419 L6264 2025 778 653*10^1435026-1 1435029 p355 2014 779 197*2^4765318-1 1434506 L5175 2021 780 1401*2^4759435-1 1432736 L4965 2023 781 2169*2^4754343-1 1431204 L4965 2023 782 188*468^535963+1 1431156 L4832 2019 783 1809*2^4752792-1 1430737 L4965 2022 784 61*2^4749928+1 1429873 L5285 2024 785 2427*2^4749044-1 1429609 L4965 2022 786 303*2^4748019-1 1429299 L5545 2023 787 2259*2^4746735-1 1428913 L4965 2022 788 309*2^4745713-1 1428605 L5545 2023 789d 44035*2^4743708+1 1428004 A68 2025 790 183*2^4740056+1 1426902 L5945 2024 791 2223*2^4729304-1 1423666 L4965 2022 792 1851*2^4727663-1 1423172 L4965 2022 793 1725*2^4727375-1 1423085 L4965 2022 794 1611*2^4724014-1 1422074 L4965 2022 795 1383*2^4719270-1 1420645 L4965 2022 796 1749*2^4717431-1 1420092 L4965 2022 797 321*2^4715725+1 1419578 L5178 2024 798 371*2^4715211+1 1419423 L5527 2024 799 2325*2^4713991-1 1419057 L4965 2022 800 3267113#-1 1418398 p301 2021 Primorial 801 291*2^4708553+1 1417419 L5308 2024 802 100*406^543228+1 1417027 L5410 2020 Generalized Fermat 803 2337*2^4705660-1 1416549 L4965 2022 804 1229*2^4703492-1 1415896 L1828 2018 805d 1425*2^4700603+1 1415026 L6264 2025 806 303*2^4694937+1 1413320 L5977 2024 807 3719*30^956044-1 1412197 L5410 2023 808 6*894^478421-1 1411983 L4294 2023 809 263*2^4688269+1 1411313 L5904 2024 810 155*2^4687127+1 1410969 L5969 2024 811 144052*5^2018290+1 1410730 L4146 2015 812 195*2^4685711-1 1410542 L5175 2021 813 9*2^4683555-1 1409892 L1828 2012 814 31*2^4673544+1 1406879 L4990 2019 815 34*993^469245+1 1406305 L4806 2018 816 197*2^4666979+1 1404903 L5233 2024 817 79*2^4658115-1 1402235 L1884 2018 818 39*2^4657951+1 1402185 L1823 2019 819 4*650^498101-1 1401116 L4294 2021 820 11*2^4643238-1 1397755 L2484 2014 821 884411*38^884411+1 1397184 L5765 2023 Generalized Cullen 822 68*995^465908-1 1396712 L4001 2017 823 7*6^1793775+1 1395830 L4965 2019 824 269*2^4636583+1 1395753 L5509 2024 825 117*2^4632990+1 1394672 L5960 2024 826 213*2^4625484+1 1392412 L5956 2024 827 2*914^469757+1 1390926 A11 2025 828 1425*2^4618342+1 1390263 L1134 2024 829 4*7^1640811+1 1386647 A2 2024 830 192098^262144-192098^131072+1 1385044 p379 2015 Generalized unique 831 339*2^4592225+1 1382401 L5302 2024 832 6*10^1380098+1 1380099 L5009 2023 833 27*2^4583717-1 1379838 L2992 2014 834 221*2^4578577+1 1378292 L5710 2024 835 359*2^4578161+1 1378167 L5894 2024 836 3^2888387-3^1444194+1 1378111 L5123 2023 Generalized unique 837 1198433*14^1198433+1 1373564 L5765 2023 Generalized Cullen 838 67*2^4561350+1 1373105 L5614 2024 839 121*2^4553899-1 1370863 L3023 2012 840 231*2^4552115+1 1370326 L5302 2024 841 223*2^4549924+1 1369666 L5904 2024 842d 46278*5^1957771+1 1368428 A69 2025 843 9473*2^4543680-1 1367788 L5037 2022 844 27*2^4542344-1 1367384 L1204 2014 845 29*2^4532463+1 1364409 L4988 2019 846 4*797^468702+1 1359920 L4548 2017 Generalized Fermat 847 145310^262144+1 1353265 p314 2011 Generalized Fermat 848 2*3^2834778-1 1352534 A2 2024 849 479*2^4492481+1 1352375 L5882 2024 850 373*2^4487274+1 1350807 L5320 2024 851 527*2^4486247+1 1350498 L5178 2024 852 25*2^4481024+1 1348925 L4364 2019 Generalized Fermat 853 83*2^4479409+1 1348439 L5178 2024 854 417*2^4473466+1 1346651 L5178 2024 855 81*536^493229+1 1346106 p431 2023 856 303*2^4471002-1 1345909 L5545 2022 857 1425*2^4469783+1 1345542 L1134 2023 858 2*1283^432757+1 1345108 L4879 2019 Divides Phi(1283^432757,2) 859 1-V(-2,-2,3074821)-2^3074821 1342125 p437 2024 860 447*2^4457132+1 1341734 L5875 2024 861 36772*6^1723287-1 1340983 L1301 2014 862 583854*14^1167708-1 1338349 L4976 2019 Generalized Woodall 863 20*634^476756-1 1335915 L4975 2023 864 297*2^4432947+1 1334453 L5178 2023 865 85*2^4432870+1 1334429 L4965 2023 866 151*2^4424321-1 1331856 L1884 2016 867 231*2^4422227+1 1331226 L5192 2023 868 131*2^4421071+1 1330878 L5178 2023 869 225*2^4419349+1 1330359 L5866 2023 870 1485*2^4416137+1 1329393 L1134 2024 871 469*2^4414802+1 1328991 L5830 2023 872 549*2^4411029+1 1327855 L5862 2023 873 445*2^4410256+1 1327622 L5537 2023 874 259*2^4395550+1 1323195 L5858 2023 875 219*2^4394846+1 1322983 L5517 2023 876 165*2^4379097+1 1318242 L5852 2023 877 183*2^4379002+1 1318214 L5476 2023 878 1455*2^4376470+1 1317452 L1134 2023 879 165*2^4375458+1 1317147 L5851 2023 880 195*2^4373994-1 1316706 L5175 2020 881 381*2^4373129+1 1316446 L5421 2023 882 2008551*2^4371904+1 1316081 g431 2025 883 (10^657559-1)^2-2 1315118 p405 2022 Near-repdigit 884 49*2^4365175-1 1314051 L1959 2017 885 49*2^4360869-1 1312755 L1959 2017 886 253*2^4358512+1 1312046 L875 2023 887 219*2^4354805+1 1310930 L5848 2023 888 249*2^4351621+1 1309971 L5260 2023 889 159*2^4348734+1 1309102 L5421 2023 890 115*2^4347620+1 1308767 L5178 2023 891 533*2^4338237+1 1305943 L5260 2023 892 141*2^4337804+1 1305812 L5178 2023 893 363*2^4334518+1 1304823 L5261 2023 894 299*2^4333939+1 1304649 L5517 2023 895 13*2^4333087-1 1304391 L1862 2018 896 353159*2^4331116-1 1303802 L2408 2011 897 195*2^4330189+1 1303520 L5178 2023 898 145*2^4327756+1 1302787 L5517 2023 899f 31*980^433853-1 1297754 A11 2025 900 9959*2^4308760-1 1297071 L5037 2022 901 195*2^4304861+1 1295895 L5178 2023 902 23*2^4300741+1 1294654 L4147 2019 903 682156*79^682156+1 1294484 L4472 2016 Generalized Cullen 904 141941*2^4299438-1 1294265 L689 2011 905 87*2^4297718+1 1293744 L4965 2023 906 22*905^437285-1 1292900 L5342 2024 907 435*2^4292968+1 1292315 L5783 2023 908 993149*20^993149+1 1292123 L5765 2023 Generalized Cullen 909 415*2^4280864+1 1288672 L5818 2023 910 79*2^4279006+1 1288112 L4965 2023 911 205*2^4270310+1 1285494 L5517 2023 912 483*2^4270112+1 1285435 L5178 2023 913 123*2^4266441+1 1284329 L5178 2023 914 612749*2^4254500-1 1280738 L5410 2022 915f 3883403*2^4254462-1 1280728 L5327 2025 916 223*2^4252660+1 1280181 L5178 2023 917 1644731*6^1644731+1 1279856 L5765 2023 Generalized Cullen 918 38*380^495986-1 1279539 L5410 2023 919 2*1151^417747+1 1278756 L4879 2019 Divides Phi(1151^417747,2) 920 15*2^4246384+1 1278291 L3432 2013 Divides GF(4246381,6) 921 3*2^4235414-1 1274988 L606 2008 922 2*1259^411259+1 1274914 L4879 2020 Divides Phi(1259^411259,2) 923 93*2^4232892+1 1274230 L4965 2023 924 131*2^4227493+1 1272605 L5226 2023 925 45*436^481613+1 1271213 L5410 2020 926 109208*5^1816285+1 1269534 L3523 2014 927 435*2^4216447+1 1269280 L5178 2023 928 1091*2^4215518-1 1269001 L1828 2018 929 191*2^4203426-1 1265360 L2484 2012 930 269*2^4198809+1 1263970 L5226 2023 931 545*2^4198333+1 1263827 L5804 2023 932 53*2^4197093+1 1263453 L5563 2023 933 1259*2^4196028-1 1263134 L1828 2016 934 329*2^4193199+1 1262282 L5226 2023 935 141*2^4192911+1 1262195 L5226 2023 Divides Fermat F(4192909) 936c 20219*24^914407+1 1262080 A70 2025 937 325918*5^1803339-1 1260486 L3567 2014 938 1160*745^438053-1 1258160 L4189 2025 939 16723*820^431579+1 1257546 A11 2025 940 345*2^4173969+1 1256493 L5226 2023 941 161*2^4164267+1 1253572 L5178 2023 942 135*2^4162529+1 1253049 L5178 2023 Divides GF(4162525,10) 943 177*2^4162494+1 1253038 L5796 2023 944 237*2^4153348+1 1250285 L5178 2023 945 69*2^4151165+1 1249628 L4965 2023 946 133778*5^1785689+1 1248149 L3903 2014 947 201*2^4146003+1 1248074 L5161 2023 948b 15921*24^903076+1 1246440 A68 2025 949 329*2^4136019+1 1245069 L5178 2023 950 81*2^4131975+1 1243851 L4965 2022 951 459*2^4129577+1 1243130 L5226 2023 952 551*2^4126303+1 1242144 L5226 2023 953 363*2^4119017+1 1239951 L5226 2023 954c 20731*24^897326+1 1238504 A11 2025 955 105*2^4113039+1 1238151 L5178 2023 956 204*532^454080-1 1237785 L5410 2023 957 41*684^436354+1 1237090 L4444 2023 958 17*2^4107544-1 1236496 L4113 2015 959 261*2^4106385+1 1236148 L5178 2023 960 24032*5^1768249+1 1235958 L3925 2014 961 172*159^561319-1 1235689 L4001 2017 962 10^1234567-20342924302*10^617278-1 1234567 p423 2021 Palindrome 963 10^1234567-1927633367291*10^617277-1 1234567 p423 2023 Palindrome 964 10^1234567-3626840486263*10^617277-1 1234567 p423 2021 Palindrome 965 10^1234567-4708229228074*10^617277-1 1234567 p423 2021 Palindrome 966 67*2^4100746+1 1234450 L5178 2023 967 191*2^4099097+1 1233954 L5563 2023 968 325*2^4097700+1 1233534 L5226 2023 969 519*2^4095491+1 1232869 L5226 2023 970 111*2^4091044+1 1231530 L5783 2023 Divides GF(4091041,3) 971 1182072*11^1182072-1 1231008 L5765 2023 Generalized Woodall 972 64*425^467857-1 1229712 p268 2021 973b 1007*2^4084946-1 1229695 A46 2025 974b 9721*24^890258+1 1228749 A68 2025 975 8*558^447047+1 1227876 A28 2024 976 163*778^424575+1 1227440 A11 2024 977 381*2^4069617+1 1225080 L5226 2023 978e 9*10^1224889-1 1224890 A2 2025 Near-repdigit 979 97*2^4066717-1 1224206 L2484 2019 980 95*2^4063895+1 1223357 L5226 2023 981 79*2^4062818+1 1223032 L5178 2023 982 1031*2^4054974-1 1220672 L1828 2017 983 309*2^4054114+1 1220413 L5178 2023 984 2022202116^131072+1 1219734 L4704 2022 Generalized Fermat 985 37*2^4046360+1 1218078 L2086 2019 986 141*2^4043116+1 1217102 L5517 2023 987d 21744*5^1740189+1 1216345 A57 2025 988 172*360^474814+1 1213771 A28 2025 989 39653*430^460397-1 1212446 L4187 2016 990 1777034894^131072+1 1212377 L4704 2022 Generalized Fermat 991 141*2^4024411+1 1211471 L5226 2023 992 515*2^4021165+1 1210494 L5174 2023 993 73*2^4016912+1 1209213 L5226 2023 994 40734^262144+1 1208473 p309 2011 Generalized Fermat 995 235*2^4013398+1 1208156 L5178 2023 996 9*2^4005979-1 1205921 L1828 2012 997 417*2^4003224+1 1205094 L5764 2023 998d 18576*5^1723294+1 1204536 A68 2025 999 12*68^656921+1 1203815 L4001 2016 1000 67*688^423893+1 1202836 L4001 2017 1001 221*2^3992723+1 1201932 L5178 2023 1002 213*2^3990702+1 1201324 L5216 2023 1003 1993191*2^3986382-1 1200027 L3532 2015 Generalized Woodall 1004e 1429787556^131072+1 1200000 x54 2025 Generalized Fermat 1005 163*2^3984604+1 1199488 L5756 2023 1006 725*2^3983355+1 1199113 L5706 2023 1007 (146^276995+1)^2-2 1199030 p405 2022 1008 455*2^3981067+1 1198424 L5724 2023 1009 138172*5^1714207-1 1198185 L3904 2014 1010 50*383^463313+1 1196832 L2012 2021 1011 339*2^3974295+1 1196385 L5178 2023 1012 699*2^3974045+1 1196310 L5750 2023 1013 1202113^196608-1202113^98304+1 1195366 L4506 2016 Generalized unique 1014 29*2^3964697+1 1193495 L1204 2019 1015 599*2^3963655+1 1193182 L5226 2023 1016 683*2^3962937+1 1192966 L5226 2023 1017 39*2^3961129+1 1192421 L1486 2019 1018 165*2^3960664+1 1192281 L5178 2023 1019 79*2^3957238+1 1191250 L5745 2023 1020 687*2^3955918+1 1190853 L5554 2023 Divides GF(3955915,6) 1021 163*2^3954818+1 1190522 L5178 2023 1022 431*2^3953647+1 1190169 L5554 2023 1023f 466542*355^466542-1 1189795 L6249 2025 Generalized Woodall 1024 1110815^196608-1110815^98304+1 1188622 L4506 2016 Generalized unique 1025d 127162!^2+1 1187715 p450 2025 1026 341*2^3938565+1 1185629 L5554 2023 1027 503*2^3936845+1 1185112 L5706 2023 1028 717*2^3934760+1 1184484 L5285 2023 1029 493*2^3929192+1 1182808 L5161 2023 1030 273*2^3929128+1 1182788 L5554 2023 1031 609*2^3928682+1 1182654 L5178 2023 1032 609*2^3928441+1 1182582 L5527 2023 1033c 1334*7^1398969-1 1182270 A68 2025 1034 281*2^3926467+1 1181987 L5174 2023 1035 153*2^3922478+1 1180786 L5554 2023 1036 69*2^3920863+1 1180300 L5554 2023 1037 273*2^3919321+1 1179836 L5706 2023 1038 531*2^3918985+1 1179735 L5706 2023 1039 1000032472^131072+1 1179650 L4704 2022 Generalized Fermat 1040 555*2^3916875+1 1179100 L5302 2023 1041 571*2^3910616+1 1177216 L5178 2023 1042 421*2^3905144+1 1175569 L5600 2023 1043 P1174253 1174253 p414 2022 1044 567*2^3897588+1 1173294 L5600 2023 1045 417*2^3895404+1 1172637 L5600 2023 1046 539*2^3894953+1 1172501 L5285 2023 1047 645*2^3893849+1 1172169 L5600 2023 1048 818764*3^2456293-1 1171956 L4965 2023 Generalized Woodall 1049 22478*5^1675150-1 1170884 L3903 2014 1050 1199*2^3889576-1 1170883 L1828 2018 1051 298989*2^3886857+1 1170067 L2777 2014 Generalized Cullen 1052 93*10^1170023-1 1170025 L4789 2022 Near-repdigit 1053 711*2^3886480+1 1169950 L5320 2023 1054 375*2^3884634+1 1169394 L5600 2023 1055 445583*2^3883406-1 1169028 L5327 2025 1056 94*872^397354+1 1168428 L5410 2019 1057d 571140*111^571140+1 1168172 A67 2025 Generalized Cullen 1058 269*2^3877485+1 1167242 L5649 2023 1059 163*2^3874556+1 1166360 L5646 2023 Divides GF(3874552,5) 1060 1365*2^3872811+1 1165836 L1134 2023 1061 313*2^3869536+1 1164849 L5600 2023 1062 159*2^3860863+1 1162238 L5226 2023 1063 445*2^3860780+1 1162214 L5640 2023 1064 397*2^3859450+1 1161813 L5226 2023 1065 685*2^3856790+1 1161013 L5226 2023 1066 27*2^3855094-1 1160501 L3033 2012 1067 537*2^3853860+1 1160131 L5636 2022 1068 164*978^387920-1 1160015 L4700 2018 1069 175*2^3850344+1 1159072 L5226 2022 1070 685*2^3847268+1 1158146 L5226 2022 1071 655*2^3846352+1 1157871 L5282 2022 1072 583*2^3846196+1 1157824 L5226 2022 1073 615*2^3844151+1 1157208 L5226 2022 1074 14772*241^485468-1 1156398 L5410 2022 1075 525*2^3840963+1 1156248 L5613 2022 1076 313*2^3837304+1 1155147 L5298 2022 1077 49*2^3837090+1 1155081 L4979 2019 Generalized Fermat 1078 431*2^3835247+1 1154528 L5161 2022 1079 97*2^3833722+1 1154068 L5226 2022 1080 2*839^394257+1 1152714 L4879 2019 Divides Phi(839^394257,2) 1081 125*392^444161+1 1151839 L4832 2022 1082c 12969*24^834325+1 1151549 A62 2025 1083 255*2^3824348+1 1151246 L5226 2022 1084 30*514^424652-1 1151218 L4001 2017 1085 569*2^3823191+1 1150898 L5226 2022 1086 24518^262144+1 1150678 g413 2008 Generalized Fermat 1087 563*2^3819237+1 1149708 L5178 2022 1088 345*2^3817949+1 1149320 L5373 2022 1089 700219^196608-700219^98304+1 1149220 L4506 2016 Generalized unique 1090 241*2^3815727-1 1148651 L2484 2019 1091 351*2^3815467+1 1148573 L5226 2022 1092e 9*10^1148275-1 1148276 A2 2025 Near-repdigit 1093 109*980^383669-1 1147643 L4001 2018 1094 427*2^3811610+1 1147412 L5614 2022 1095 569*2^3810475+1 1147071 L5610 2022 1096 213*2^3807864+1 1146284 L5609 2022 1097 87*2^3806438+1 1145854 L5607 2022 1098 369*2^3805321+1 1145519 L5541 2022 1099 123547*2^3804809-1 1145367 L2371 2011 1100 2564*75^610753+1 1145203 L3610 2014 1101 539*2^3801705+1 1144430 L5161 2022 1102 159*2^3801463+1 1144357 L5197 2022 1103 235*2^3801284+1 1144303 L5608 2022 1104 660955^196608-660955^98304+1 1144293 L4506 2016 Generalized unique 1105 519*2^3800625+1 1144105 L5315 2022 1106 281*2^3798465+1 1143455 L5178 2022 1107 166*443^432000+1 1143249 L5410 2020 1108 85*2^3797698+1 1143223 L5161 2022 1109 326834*5^1634978-1 1142807 L3523 2014 1110 459*2^3795969+1 1142704 L5161 2022 1111 105*298^461505-1 1141866 L5841 2023 1112 447*2^3780151+1 1137942 L5596 2022 1113 345*2^3779921+1 1137873 L5557 2022 1114 477*2^3779871+1 1137858 L5197 2022 1115 251*2^3774587+1 1136267 L5592 2022 1116 439*2^3773958+1 1136078 L5557 2022 1117 43*182^502611-1 1135939 L4064 2020 1118 415267*2^3771929-1 1135470 L2373 2011 1119 11*2^3771821+1 1135433 p286 2013 1120 427*2^3768104+1 1134315 L5192 2022 1121 1455*2^3768024-1 1134292 L1134 2022 1122 711*2^3767492+1 1134131 L5161 2022 1123c 250224!/250199#+1 1133656 p450 2025 Compositorial 1124 265*2^3765189-1 1133438 L2484 2018 1125 297*2^3765140+1 1133423 L5197 2022 1126 381*2^3764189+1 1133137 L5589 2022 1127 115*2^3763650+1 1132974 L5554 2022 1128 411*2^3759067+1 1131595 L5589 2022 1129 405*2^3757192+1 1131031 L5590 2022 1130 1981*2^3754984+1 1130367 A24 2025 Divides GF(3754983,12) [GG] 1131 938237*2^3752950-1 1129757 L521 2007 Woodall 1132e 21*2^3745951-1 1127645 L4881 2025 1133 399866798^131072+1 1127471 L4964 2019 Generalized Fermat 1134 701*2^3744713+1 1127274 L5554 2022 1135 207394*5^1612573-1 1127146 L3869 2014 1136 684*10^1127118+1 1127121 L4036 2017 1137 535386^196608-535386^98304+1 1126302 L4506 2016 Generalized unique 1138 104944*5^1610735-1 1125861 L3849 2014 1139 23451*2^3739388+1 1125673 L591 2015 1140 78*622^402915-1 1125662 L5645 2023 1141 615*2^3738023+1 1125260 L5161 2022 1142 347*2^3737875+1 1125216 L5178 2022 1143 163*2^3735726+1 1124568 L5477 2022 Divides GF(3735725,6) 1144 375*2^3733510+1 1123902 L5584 2022 1145 25*2^3733144+1 1123790 L2125 2019 Generalized Fermat 1146d 18576*5^1607646+1 1123701 A62 2025 1147 629*2^3731479+1 1123290 L5283 2022 1148 113*2^3728113+1 1122276 L5161 2022 1149a 939*2^3727057+1 1121959 L6246 2025 1150 303*2^3725438+1 1121472 L5161 2022 1151a 358465776^131072+1 1121249 L5755 2025 Generalized Fermat 1152a 357751492^131072+1 1121136 L6281 2025 Generalized Fermat 1153a 357702788^131072+1 1121128 L6092 2025 Generalized Fermat 1154a 357575604^131072+1 1121108 L6281 2025 Generalized Fermat 1155 187*2^3723972+1 1121030 L5178 2022 1156a 357070956^131072+1 1121027 L4387 2025 Generalized Fermat 1157a 356295678^131072+1 1120903 L6090 2025 Generalized Fermat 1158b 355982986^131072+1 1120853 L4753 2025 Generalized Fermat 1159b 355489216^131072+1 1120774 L4898 2025 Generalized Fermat 1160 2*1103^368361+1 1120767 L4879 2019 Divides Phi(1103^368361,2) 1161b 355369712^131072+1 1120755 L6259 2025 Generalized Fermat 1162b 355196086^131072+1 1120727 L5396 2025 Generalized Fermat 1163b 354983678^131072+1 1120693 L5056 2025 Generalized Fermat 1164b 354747846^131072+1 1120656 L6273 2025 Generalized Fermat 1165b 354666958^131072+1 1120643 L6036 2025 Generalized Fermat 1166b 354569968^131072+1 1120627 L6277 2025 Generalized Fermat 1167b 353899590^131072+1 1120519 L6276 2025 Generalized Fermat 1168b 353637166^131072+1 1120477 L6275 2025 Generalized Fermat 1169b 353457578^131072+1 1120448 L4387 2025 Generalized Fermat 1170b 353261310^131072+1 1120417 L4387 2025 Generalized Fermat 1171b 353226578^131072+1 1120411 L4387 2025 Generalized Fermat 1172b 353120152^131072+1 1120394 L6274 2025 Generalized Fermat 1173b 352906026^131072+1 1120359 L4387 2025 Generalized Fermat 1174b 352766996^131072+1 1120337 L4387 2025 Generalized Fermat 1175b 352444404^131072+1 1120285 L5628 2025 Generalized Fermat 1176b 352035688^131072+1 1120219 L4984 2025 Generalized Fermat 1177b 351867654^131072+1 1120192 L4898 2025 Generalized Fermat 1178c 351352524^131072+1 1120108 L4559 2025 Generalized Fermat 1179c 350812044^131072+1 1120021 L6273 2025 Generalized Fermat 1180 105*2^3720512+1 1119988 L5493 2022 1181c 350518526^131072+1 1119973 L5465 2025 Generalized Fermat 1182c 349848992^131072+1 1119864 L6090 2025 Generalized Fermat 1183c 349655888^131072+1 1119833 L4875 2025 Generalized Fermat 1184c 349569992^131072+1 1119819 L5602 2025 Generalized Fermat 1185c 348958392^131072+1 1119719 L5974 2025 Generalized Fermat 1186c 348716246^131072+1 1119679 L5606 2025 Generalized Fermat 1187c 348550920^131072+1 1119652 L6073 2025 Generalized Fermat 1188a 915*2^3719305+1 1119626 L5783 2025 1189c 348331024^131072+1 1119616 L6272 2025 Generalized Fermat 1190c 348138302^131072+1 1119585 L6271 2025 Generalized Fermat 1191c 347869428^131072+1 1119541 L5974 2025 Generalized Fermat 1192 447*2^3719024+1 1119541 L5493 2022 1193c 347654842^131072+1 1119506 L5974 2025 Generalized Fermat 1194c 347652016^131072+1 1119505 L6270 2025 Generalized Fermat 1195c 347642266^131072+1 1119504 L5634 2025 Generalized Fermat 1196c 347533108^131072+1 1119486 L5974 2025 Generalized Fermat 1197c 347218234^131072+1 1119434 L5974 2025 Generalized Fermat 1198c 347205260^131072+1 1119432 L4898 2025 Generalized Fermat 1199c 346910756^131072+1 1119384 L5974 2025 Generalized Fermat 1200a 1183*2^3718480+1 1119378 L5969 2025 1201c 346785118^131072+1 1119363 L6269 2025 Generalized Fermat 1202c 346590566^131072+1 1119331 L5782 2025 Generalized Fermat 1203c 345832974^131072+1 1119207 L4984 2025 Generalized Fermat 1204c 345735266^131072+1 1119191 L6036 2025 Generalized Fermat 1205c 345526904^131072+1 1119156 L6268 2025 Generalized Fermat 1206 177*2^3717746+1 1119156 L5279 2022 1207d 345277562^131072+1 1119115 L5205 2025 Generalized Fermat 1208d 345222826^131072+1 1119106 L4659 2025 Generalized Fermat 1209d 344953718^131072+1 1119062 L4899 2025 Generalized Fermat 1210d 344920764^131072+1 1119056 L5974 2025 Generalized Fermat 1211d 344891620^131072+1 1119052 L5755 2025 Generalized Fermat 1212d 344632060^131072+1 1119009 L5755 2025 Generalized Fermat 1213d 344487298^131072+1 1118985 L5755 2025 Generalized Fermat 1214d 344261660^131072+1 1118948 L4387 2025 Generalized Fermat 1215d 344203526^131072+1 1118938 L5697 2025 Generalized Fermat 1216 2*131^528469+1 1118913 L4879 2019 Divides Phi(131^528469,2) 1217 123*2^3716758+1 1118858 L5563 2022 1218 313*2^3716716+1 1118846 L5237 2022 1219d 342944058^131072+1 1118729 L4387 2025 Generalized Fermat 1220d 342928514^131072+1 1118727 L5396 2025 Generalized Fermat 1221d 342390794^131072+1 1118637 L4387 2025 Generalized Fermat 1222d 342324252^131072+1 1118626 L6266 2025 Generalized Fermat 1223d 342321746^131072+1 1118626 L4387 2025 Generalized Fermat 1224d 342261232^131072+1 1118616 L4387 2025 Generalized Fermat 1225d 342195906^131072+1 1118605 L4387 2025 Generalized Fermat 1226d 342100874^131072+1 1118589 L4984 2025 Generalized Fermat 1227d 341948210^131072+1 1118564 L6265 2025 Generalized Fermat 1228d 341497492^131072+1 1118489 L4201 2025 Generalized Fermat 1229a 1093*2^3715306+1 1118422 L5226 2025 1230d 340623306^131072+1 1118343 L6263 2025 Generalized Fermat 1231d 340569992^131072+1 1118334 L4387 2025 Generalized Fermat 1232d 340505972^131072+1 1118323 L6262 2025 Generalized Fermat 1233d 340054480^131072+1 1118248 L6261 2025 Generalized Fermat 1234d 339945476^131072+1 1118229 L4387 2025 Generalized Fermat 1235d 339584204^131072+1 1118169 L4387 2025 Generalized Fermat 1236d 339503122^131072+1 1118155 L4387 2025 Generalized Fermat 1237d 339477102^131072+1 1118151 L4387 2025 Generalized Fermat 1238d 339175788^131072+1 1118100 L4387 2025 Generalized Fermat 1239d 339137184^131072+1 1118094 L5697 2025 Generalized Fermat 1240d 338934862^131072+1 1118060 L4201 2025 Generalized Fermat 1241d 338918848^131072+1 1118057 L5974 2025 Generalized Fermat 1242d 338800734^131072+1 1118037 L6073 2025 Generalized Fermat 1243d 338188646^131072+1 1117934 L4387 2025 Generalized Fermat 1244d 337982668^131072+1 1117900 L4387 2025 Generalized Fermat 1245d 337667556^131072+1 1117847 L6260 2025 Generalized Fermat 1246a 779*2^3713283+1 1117813 L5980 2025 1247e 337377976^131072+1 1117798 L6259 2025 Generalized Fermat 1248e 337239448^131072+1 1117774 L4387 2025 Generalized Fermat 1249e 336909928^131072+1 1117719 L6256 2025 Generalized Fermat 1250 367*2^3712952+1 1117713 L5264 2022 1251e 336776604^131072+1 1117696 L6080 2025 Generalized Fermat 1252e 336659214^131072+1 1117676 L5467 2025 Generalized Fermat 1253e 336511772^131072+1 1117651 L4387 2025 Generalized Fermat 1254a 1005*2^3712712+1 1117641 L5226 2025 1255e 336225072^131072+1 1117603 L4387 2025 Generalized Fermat 1256e 336163680^131072+1 1117593 L4387 2025 Generalized Fermat 1257e 336061324^131072+1 1117575 L4387 2025 Generalized Fermat 1258e 335827642^131072+1 1117536 L4201 2025 Generalized Fermat 1259e 335774748^131072+1 1117527 L5697 2025 Generalized Fermat 1260e 335651494^131072+1 1117506 L4387 2025 Generalized Fermat 1261e 335493020^131072+1 1117479 L4387 2025 Generalized Fermat 1262e 335369868^131072+1 1117458 L4387 2025 Generalized Fermat 1263e 334704486^131072+1 1117345 L4387 2025 Generalized Fermat 1264e 333992848^131072+1 1117224 L5639 2025 Generalized Fermat 1265e 333867048^131072+1 1117202 L4387 2025 Generalized Fermat 1266e 333848570^131072+1 1117199 L4387 2025 Generalized Fermat 1267e 333782588^131072+1 1117188 L4387 2025 Generalized Fermat 1268e 333605722^131072+1 1117158 L6237 2025 Generalized Fermat 1269e 333589186^131072+1 1117155 L4387 2025 Generalized Fermat 1270e 333291568^131072+1 1117104 L5697 2025 Generalized Fermat 1271e 332896652^131072+1 1117037 L4387 2025 Generalized Fermat 1272e 332642368^131072+1 1116993 L5639 2025 Generalized Fermat 1273e 332518718^131072+1 1116972 L5639 2025 Generalized Fermat 1274e 332328704^131072+1 1116939 L5767 2025 Generalized Fermat 1275e 332234952^131072+1 1116923 L4387 2025 Generalized Fermat 1276e 331873856^131072+1 1116861 L5639 2025 Generalized Fermat 1277e 331689568^131072+1 1116830 L4201 2025 Generalized Fermat 1278e 331213936^131072+1 1116748 L5416 2025 Generalized Fermat 1279e 331012838^131072+1 1116714 L4899 2025 Generalized Fermat 1280e 330733978^131072+1 1116666 L6036 2025 Generalized Fermat 1281e 330629260^131072+1 1116648 L5606 2025 Generalized Fermat 1282 53*2^3709297+1 1116612 L5197 2022 1283e 329898286^131072+1 1116522 L6252 2025 Generalized Fermat 1284a 861*2^3708816+1 1116468 L5226 2025 1285e 329482500^131072+1 1116450 L4387 2025 Generalized Fermat 1286f 329433542^131072+1 1116441 L4201 2025 Generalized Fermat 1287f 329320574^131072+1 1116422 L5696 2025 Generalized Fermat 1288f 329310030^131072+1 1116420 L4201 2025 Generalized Fermat 1289f 329136932^131072+1 1116390 L4892 2025 Generalized Fermat 1290f 328941060^131072+1 1116356 L5974 2025 Generalized Fermat 1291f 328110906^131072+1 1116212 L4387 2025 Generalized Fermat 1292f 328048726^131072+1 1116202 L6250 2025 Generalized Fermat 1293f 328036906^131072+1 1116200 L4201 2025 Generalized Fermat 1294f 327703514^131072+1 1116142 L5974 2025 Generalized Fermat 1295f 327549800^131072+1 1116115 L6129 2025 Generalized Fermat 1296f 327476480^131072+1 1116102 L4201 2025 Generalized Fermat 1297f 327239720^131072+1 1116061 L4984 2025 Generalized Fermat 1298a 1163*2^3707397+1 1116041 L5161 2025 1299f 326302488^131072+1 1115898 L5722 2025 Generalized Fermat 1300f 326104126^131072+1 1115863 L4684 2025 Generalized Fermat 1301f 325957720^131072+1 1115838 L5186 2025 Generalized Fermat 1302f 325927678^131072+1 1115832 L6245 2025 Generalized Fermat 1303f 325913944^131072+1 1115830 L4387 2025 Generalized Fermat 1304f 325084378^131072+1 1115685 L4201 2025 Generalized Fermat 1305f 325043708^131072+1 1115678 L4201 2025 Generalized Fermat 1306f 324844530^131072+1 1115643 L4939 2025 Generalized Fermat 1307f 324830528^131072+1 1115640 L4599 2025 Generalized Fermat 1308f 324563740^131072+1 1115594 L5639 2025 Generalized Fermat 1309f 324342882^131072+1 1115555 L4201 2025 Generalized Fermat 1310f 323718292^131072+1 1115445 L4201 2025 Generalized Fermat 1311f 323626506^131072+1 1115429 L4201 2025 Generalized Fermat 1312 323033558^131072+1 1115325 L6073 2025 Generalized Fermat 1313 322955442^131072+1 1115311 L5767 2025 Generalized Fermat 1314 322525546^131072+1 1115235 L4201 2025 Generalized Fermat 1315 322451080^131072+1 1115222 L5452 2025 Generalized Fermat 1316 322434876^131072+1 1115219 L4201 2025 Generalized Fermat 1317 322396080^131072+1 1115212 L6237 2025 Generalized Fermat 1318 322011364^131072+1 1115144 L4201 2025 Generalized Fermat 1319 321847328^131072+1 1115115 L4387 2025 Generalized Fermat 1320 321745654^131072+1 1115097 L4201 2025 Generalized Fermat 1321 321738090^131072+1 1115096 L4760 2025 Generalized Fermat 1322 321725062^131072+1 1115094 L6090 2025 Generalized Fermat 1323 321586916^131072+1 1115069 L4201 2025 Generalized Fermat 1324 2^3704053+2^1852027+1 1115032 L3839 2014 Gaussian Mersenne norm 39, generalized unique 1325 321054002^131072+1 1114975 L6092 2025 Generalized Fermat 1326 320959460^131072+1 1114958 L4774 2025 Generalized Fermat 1327 320925816^131072+1 1114952 L6229 2025 Generalized Fermat 1328 320693846^131072+1 1114911 L6230 2025 Generalized Fermat 1329 320244692^131072+1 1114831 L6227 2025 Generalized Fermat 1330 319727682^131072+1 1114739 L4477 2025 Generalized Fermat 1331 319569620^131072+1 1114711 L5156 2025 Generalized Fermat 1332 319473204^131072+1 1114694 L6085 2025 Generalized Fermat 1333 319461008^131072+1 1114692 L4760 2025 Generalized Fermat 1334 317844906^131072+1 1114403 L5069 2025 Generalized Fermat 1335 317488260^131072+1 1114339 L5069 2025 Generalized Fermat 1336 395*2^3701693+1 1114324 L5536 2022 1337 317365236^131072+1 1114317 L6036 2025 Generalized Fermat 1338 317303160^131072+1 1114306 L5707 2025 Generalized Fermat 1339 317185514^131072+1 1114285 L4201 2025 Generalized Fermat 1340 317005818^131072+1 1114252 L5069 2025 Generalized Fermat 1341 316699096^131072+1 1114197 L5234 2025 Generalized Fermat 1342 316650634^131072+1 1114189 L5698 2025 Generalized Fermat 1343 316586358^131072+1 1114177 L4747 2025 Generalized Fermat 1344 316525620^131072+1 1114166 L4835 2025 Generalized Fermat 1345 316291718^131072+1 1114124 L4835 2025 Generalized Fermat 1346 315974676^131072+1 1114067 L5069 2025 Generalized Fermat 1347 315889316^131072+1 1114052 L5234 2025 Generalized Fermat 1348 315747878^131072+1 1114026 L5989 2025 Generalized Fermat 1349 315608702^131072+1 1114001 L5577 2025 Generalized Fermat 1350 315329034^131072+1 1113950 L5378 2025 Generalized Fermat 1351 315314084^131072+1 1113948 L5718 2025 Generalized Fermat 1352 315134738^131072+1 1113915 L5697 2025 Generalized Fermat 1353 314548296^131072+1 1113809 L4774 2025 Generalized Fermat 1354 314518672^131072+1 1113804 L5720 2025 Generalized Fermat 1355 589*2^3699954+1 1113800 L5576 2022 1356 314283852^131072+1 1113761 L6220 2025 Generalized Fermat 1357 314187728^131072+1 1113744 L4704 2019 Generalized Fermat 1358 313957156^131072+1 1113702 L4201 2025 Generalized Fermat 1359 313807832^131072+1 1113675 L4309 2025 Generalized Fermat 1360 313698494^131072+1 1113655 L4791 2025 Generalized Fermat 1361 313043470^131072+1 1113536 L4870 2025 Generalized Fermat 1362a 889*2^3699050+1 1113528 L5161 2025 1363 312959344^131072+1 1113521 L5989 2025 Generalized Fermat 1364 312907040^131072+1 1113512 L4835 2025 Generalized Fermat 1365 312372774^131072+1 1113414 L5732 2025 Generalized Fermat 1366 312306760^131072+1 1113402 L5782 2025 Generalized Fermat 1367 119*2^3698412-1 1113336 L2484 2018 1368a 1169*2^3698399+1 1113333 L5226 2025 1369 311769070^131072+1 1113304 L5378 2025 Generalized Fermat 1370 311345600^131072+1 1113227 L4201 2025 Generalized Fermat 1371 311340274^131072+1 1113226 L5234 2025 Generalized Fermat 1372 311041040^131072+1 1113171 L5974 2025 Generalized Fermat 1373 310877094^131072+1 1113141 L5378 2025 Generalized Fermat 1374a 1189*2^3697618+1 1113098 L5517 2025 1375 310324620^131072+1 1113040 L5069 2025 Generalized Fermat 1376 310092052^131072+1 1112997 L4201 2025 Generalized Fermat 1377 310040910^131072+1 1112988 L5989 2025 Generalized Fermat 1378 310039364^131072+1 1112987 L5452 2025 Generalized Fermat 1379 309765652^131072+1 1112937 L5069 2025 Generalized Fermat 1380 309739652^131072+1 1112932 L4201 2025 Generalized Fermat 1381 309664690^131072+1 1112919 L4904 2025 Generalized Fermat 1382 309512820^131072+1 1112891 L4672 2025 Generalized Fermat 1383 309489574^131072+1 1112886 L4285 2025 Generalized Fermat 1384 309442124^131072+1 1112878 L4763 2025 Generalized Fermat 1385 309322056^131072+1 1112856 L5763 2025 Generalized Fermat 1386 309290162^131072+1 1112850 L4984 2025 Generalized Fermat 1387 309274552^131072+1 1112847 L4870 2025 Generalized Fermat 1388 309198216^131072+1 1112833 L6220 2025 Generalized Fermat 1389 309023380^131072+1 1112801 L5586 2025 Generalized Fermat 1390 308604278^131072+1 1112723 L5814 2025 Generalized Fermat 1391 308406372^131072+1 1112687 L5069 2025 Generalized Fermat 1392 308191838^131072+1 1112647 L4411 2025 Generalized Fermat 1393 308154186^131072+1 1112640 L4672 2025 Generalized Fermat 1394 308065536^131072+1 1112624 L5617 2025 Generalized Fermat 1395 307819786^131072+1 1112579 L4733 2025 Generalized Fermat 1396 307711366^131072+1 1112558 L5375 2025 Generalized Fermat 1397 307525070^131072+1 1112524 L5234 2025 Generalized Fermat 1398 307305996^131072+1 1112483 L5871 2025 Generalized Fermat 1399 307211976^131072+1 1112466 L5234 2025 Generalized Fermat 1400 306999614^131072+1 1112427 L6215 2025 Generalized Fermat 1401 306293130^131072+1 1112295 L4252 2025 Generalized Fermat 1402 306021044^131072+1 1112245 L5029 2025 Generalized Fermat 1403 305985812^131072+1 1112238 L4672 2025 Generalized Fermat 1404 305909498^131072+1 1112224 L5869 2025 Generalized Fermat 1405 305710338^131072+1 1112187 L5155 2025 Generalized Fermat 1406 305485026^131072+1 1112145 L6217 2025 Generalized Fermat 1407 305470708^131072+1 1112142 L4245 2025 Generalized Fermat 1408 305377046^131072+1 1112125 L4775 2025 Generalized Fermat 1409 305014830^131072+1 1112057 L5041 2025 Generalized Fermat 1410 304591806^131072+1 1111978 L5069 2025 Generalized Fermat 1411 391*2^3693728+1 1111926 L5493 2022 1412 303660042^131072+1 1111804 L5548 2025 Generalized Fermat 1413 303569754^131072+1 1111787 L5041 2025 Generalized Fermat 1414 303297636^131072+1 1111736 L5069 2025 Generalized Fermat 1415 303057534^131072+1 1111691 L5797 2025 Generalized Fermat 1416 302824086^131072+1 1111647 L4252 2025 Generalized Fermat 1417 302491876^131072+1 1111585 L5273 2025 Generalized Fermat 1418 302240442^131072+1 1111537 L5375 2025 Generalized Fermat 1419 302186970^131072+1 1111527 L5030 2025 Generalized Fermat 1420 302150100^131072+1 1111520 L5586 2025 Generalized Fermat 1421 301715144^131072+1 1111438 L5234 2025 Generalized Fermat 1422 301702734^131072+1 1111436 L6205 2025 Generalized Fermat 1423 301006780^131072+1 1111304 L5375 2025 Generalized Fermat 1424 300951448^131072+1 1111294 L6092 2025 Generalized Fermat 1425 300789064^131072+1 1111263 L5041 2025 Generalized Fermat 1426 300359914^131072+1 1111182 L6207 2025 Generalized Fermat 1427 1089049*2^3691010+1 1111111 A51 2024 1428 299617962^131072+1 1111041 L6170 2025 Generalized Fermat 1429 299465954^131072+1 1111012 L5378 2025 Generalized Fermat 1430 299453316^131072+1 1111010 L6207 2025 Generalized Fermat 1431 299319324^131072+1 1110984 L5378 2025 Generalized Fermat 1432 298464340^131072+1 1110822 L5019 2025 Generalized Fermat 1433 298459970^131072+1 1110821 L4477 2025 Generalized Fermat 1434 297844594^131072+1 1110703 L5029 2025 Generalized Fermat 1435 297797756^131072+1 1110694 L6096 2025 Generalized Fermat 1436 297561734^131072+1 1110649 L5070 2025 Generalized Fermat 1437 297347764^131072+1 1110608 L4201 2025 Generalized Fermat 1438 297200042^131072+1 1110580 L5143 2025 Generalized Fermat 1439 296855808^131072+1 1110514 L6205 2025 Generalized Fermat 1440a 879*2^3688853+1 1110459 L5161 2025 1441 296366230^131072+1 1110420 L6019 2025 Generalized Fermat 1442 296322752^131072+1 1110412 L5462 2025 Generalized Fermat 1443 296139756^131072+1 1110377 L5696 2025 Generalized Fermat 1444 296013472^131072+1 1110352 L5156 2025 Generalized Fermat 1445 295817758^131072+1 1110315 L5974 2025 Generalized Fermat 1446 485*2^3688111+1 1110235 L5237 2022 1447 295265516^131072+1 1110208 L5391 2025 Generalized Fermat 1448 295158064^131072+1 1110188 L4201 2025 Generalized Fermat 1449 295116084^131072+1 1110179 L6202 2025 Generalized Fermat 1450 295038452^131072+1 1110164 L6201 2025 Generalized Fermat 1451 294901286^131072+1 1110138 L5880 2025 Generalized Fermat 1452 294581562^131072+1 1110076 L4933 2025 Generalized Fermat 1453 294287308^131072+1 1110019 L5029 2025 Generalized Fermat 1454 294282868^131072+1 1110018 L5069 2025 Generalized Fermat 1455 293950920^131072+1 1109954 L5019 2025 Generalized Fermat 1456 293846126^131072+1 1109934 L4387 2025 Generalized Fermat 1457 293634610^131072+1 1109893 L4659 2025 Generalized Fermat 1458 293593596^131072+1 1109885 L5457 2025 Generalized Fermat 1459 293229954^131072+1 1109814 L5069 2025 Generalized Fermat 1460 341*2^3686613+1 1109784 L5573 2022 1461 87*2^3686558+1 1109767 L5573 2022 1462 292906440^131072+1 1109752 L5069 2025 Generalized Fermat 1463 292462072^131072+1 1109665 L5586 2025 Generalized Fermat 1464a 965*2^3685969+1 1109591 L5161 2025 1465 291939158^131072+1 1109563 L5586 2025 Generalized Fermat 1466 291644784^131072+1 1109506 L4201 2025 Generalized Fermat 1467 291616626^131072+1 1109500 L5676 2025 Generalized Fermat 1468 291515852^131072+1 1109481 L5697 2025 Generalized Fermat 1469 291463322^131072+1 1109470 L5025 2025 Generalized Fermat 1470 291165334^131072+1 1109412 L5637 2025 Generalized Fermat 1471 290922092^131072+1 1109365 L5069 2025 Generalized Fermat 1472 290470932^131072+1 1109276 L5069 2025 Generalized Fermat 1473 290470146^131072+1 1109276 L5069 2025 Generalized Fermat 1474 290289574^131072+1 1109241 L5586 2025 Generalized Fermat 1475 290289300^131072+1 1109241 L5491 2025 Generalized Fermat 1476 290203860^131072+1 1109224 L4835 2025 Generalized Fermat 1477 290075834^131072+1 1109199 L5234 2025 Generalized Fermat 1478 289805958^131072+1 1109146 L5234 2025 Generalized Fermat 1479 289390778^131072+1 1109064 L5639 2025 Generalized Fermat 1480a 877*2^3684190+1 1109055 L6013 2025 1481 289176522^131072+1 1109022 L5041 2025 Generalized Fermat 1482 288601570^131072+1 1108909 L6189 2025 Generalized Fermat 1483 288168976^131072+1 1108823 L6187 2025 Generalized Fermat 1484 287625360^131072+1 1108716 L4747 2025 Generalized Fermat 1485 675*2^3682616+1 1108581 L5231 2022 1486 286460772^131072+1 1108485 L5069 2025 Generalized Fermat 1487 286434328^131072+1 1108480 L4904 2025 Generalized Fermat 1488 569*2^3682167+1 1108446 L5488 2022 1489 285803202^131072+1 1108354 L5473 2025 Generalized Fermat 1490 285447574^131072+1 1108283 L5586 2025 Generalized Fermat 1491 285446536^131072+1 1108283 L5687 2025 Generalized Fermat 1492 284918308^131072+1 1108178 L4201 2025 Generalized Fermat 1493 284831742^131072+1 1108160 L6085 2025 Generalized Fermat 1494 284805838^131072+1 1108155 L5025 2025 Generalized Fermat 1495 284753240^131072+1 1108145 L6185 2025 Generalized Fermat 1496 284745724^131072+1 1108143 L5869 2025 Generalized Fermat 1497 284001924^131072+1 1107994 L5416 2025 Generalized Fermat 1498 283824490^131072+1 1107959 L5470 2025 Generalized Fermat 1499 283699626^131072+1 1107934 L5234 2025 Generalized Fermat 1500 283216606^131072+1 1107837 L5711 2025 Generalized Fermat 1501a 765*2^3680091+1 1107821 L6280 2025 1502 282839136^131072+1 1107761 L4756 2025 Generalized Fermat 1503 281755198^131072+1 1107542 L5234 2025 Generalized Fermat 1504 281635050^131072+1 1107518 L5697 2025 Generalized Fermat 1505 330286*5^1584399-1 1107453 L3523 2014 1506 281238556^131072+1 1107438 L5041 2025 Generalized Fermat 1507 281131678^131072+1 1107416 L4584 2025 Generalized Fermat 1508 34*951^371834-1 1107391 L5410 2019 1509 280984376^131072+1 1107386 L5844 2025 Generalized Fermat 1510 280877312^131072+1 1107364 L6178 2025 Generalized Fermat 1511 280515348^131072+1 1107291 L5029 2025 Generalized Fermat 1512 280391126^131072+1 1107266 L5011 2025 Generalized Fermat 1513 280207586^131072+1 1107229 L5322 2025 Generalized Fermat 1514 279991058^131072+1 1107185 L5526 2025 Generalized Fermat 1515 279987304^131072+1 1107184 L5974 2025 Generalized Fermat 1516 279919024^131072+1 1107170 L4672 2025 Generalized Fermat 1517 45*2^3677787+1 1107126 L1204 2019 1518 279594222^131072+1 1107104 L5814 2025 Generalized Fermat 1519 279533226^131072+1 1107091 L6176 2025 Generalized Fermat 1520 279393398^131072+1 1107063 L5637 2025 Generalized Fermat 1521 279257150^131072+1 1107035 L6177 2025 Generalized Fermat 1522 278715552^131072+1 1106925 L6129 2025 Generalized Fermat 1523 278620322^131072+1 1106905 L5069 2025 Generalized Fermat 1524 278619282^131072+1 1106905 L5378 2025 Generalized Fermat 1525 278524906^131072+1 1106886 L4249 2025 Generalized Fermat 1526 278507178^131072+1 1106882 L5682 2025 Generalized Fermat 1527 278237250^131072+1 1106827 L6182 2025 Generalized Fermat 1528 278204564^131072+1 1106820 L5948 2025 Generalized Fermat 1529 278190840^131072+1 1106817 L6183 2025 Generalized Fermat 1530 277919980^131072+1 1106762 L5974 2025 Generalized Fermat 1531 625*2^3676300+1 1106680 L5302 2022 Generalized Fermat 1532 277256590^131072+1 1106626 L6170 2025 Generalized Fermat 1533 277085600^131072+1 1106591 L5974 2025 Generalized Fermat 1534 276836574^131072+1 1106540 L4760 2025 Generalized Fermat 1535 276775868^131072+1 1106527 L5549 2025 Generalized Fermat 1536 276740330^131072+1 1106520 L6166 2025 Generalized Fermat 1537 276607388^131072+1 1106492 L5782 2025 Generalized Fermat 1538 276446036^131072+1 1106459 L5011 2025 Generalized Fermat 1539 276329786^131072+1 1106435 L5718 2025 Generalized Fermat 1540 13*2^3675223-1 1106354 L1862 2016 1541 275170262^131072+1 1106196 L5378 2025 Generalized Fermat 1542 274919976^131072+1 1106144 L5378 2025 Generalized Fermat 1543 274816000^131072+1 1106123 L6163 2025 Generalized Fermat 1544 274753140^131072+1 1106110 L5974 2025 Generalized Fermat 1545 274535798^131072+1 1106065 L5816 2025 Generalized Fermat 1546 274280236^131072+1 1106012 L5070 2025 Generalized Fermat 1547 273579644^131072+1 1105866 L6129 2025 Generalized Fermat 1548 273503630^131072+1 1105850 L4309 2025 Generalized Fermat 1549 273438512^131072+1 1105837 L5718 2025 Generalized Fermat 1550 273327598^131072+1 1105813 L5512 2025 Generalized Fermat 1551 273306974^131072+1 1105809 L4892 2025 Generalized Fermat 1552 273272188^131072+1 1105802 L5543 2025 Generalized Fermat 1553 273237906^131072+1 1105795 L6159 2025 Generalized Fermat 1554 273140040^131072+1 1105774 L4210 2025 Generalized Fermat 1555 273036074^131072+1 1105753 L5069 2025 Generalized Fermat 1556 272998912^131072+1 1105745 L4245 2025 Generalized Fermat 1557a 947*2^3673183+1 1105742 L5614 2025 1558 272788310^131072+1 1105701 L4720 2025 Generalized Fermat 1559 272041540^131072+1 1105545 L5069 2025 Generalized Fermat 1560 271643232^131072+1 1105462 L4704 2019 Generalized Fermat 1561 271370312^131072+1 1105404 L4591 2025 Generalized Fermat 1562 271135152^131072+1 1105355 L5718 2025 Generalized Fermat 1563 270979532^131072+1 1105322 L5639 2025 Generalized Fermat 1564 270832760^131072+1 1105292 L5027 2025 Generalized Fermat 1565 270822160^131072+1 1105289 L4726 2025 Generalized Fermat 1566 270789102^131072+1 1105282 L5051 2025 Generalized Fermat 1567 270682284^131072+1 1105260 L6129 2025 Generalized Fermat 1568 270581690^131072+1 1105239 L4870 2025 Generalized Fermat 1569 270284868^131072+1 1105176 L5027 2025 Generalized Fermat 1570 463*2^3671262+1 1105163 L5524 2022 1571 269993492^131072+1 1105115 L6129 2025 Generalized Fermat 1572 735*2^3670991+1 1105082 L5575 2022 1573 269812742^131072+1 1105077 L6129 2025 Generalized Fermat 1574 268685690^131072+1 1104838 L4898 2025 Generalized Fermat 1575 475*2^3670046+1 1104797 L5524 2022 1576 267783532^131072+1 1104647 L5974 2025 Generalized Fermat 1577 267768162^131072+1 1104644 L5974 2025 Generalized Fermat 1578 267416848^131072+1 1104569 L5707 2025 Generalized Fermat 1579 267414744^131072+1 1104569 L5771 2025 Generalized Fermat 1580 266639610^131072+1 1104403 L5069 2025 Generalized Fermat 1581 266330322^131072+1 1104337 L5707 2025 Generalized Fermat 1582 266249522^131072+1 1104320 L5069 2025 Generalized Fermat 1583 15*2^3668194-1 1104238 L3665 2013 1584 265866252^131072+1 1104238 L4591 2025 Generalized Fermat 1585 265837862^131072+1 1104232 L5069 2025 Generalized Fermat 1586 265643056^131072+1 1104190 L5069 2025 Generalized Fermat 1587 265621592^131072+1 1104186 L4201 2025 Generalized Fermat 1588 265478490^131072+1 1104155 L5069 2025 Generalized Fermat 1589 264860372^131072+1 1104022 L5639 2025 Generalized Fermat 1590 264624458^131072+1 1103971 L5416 2025 Generalized Fermat 1591 264541844^131072+1 1103954 L5332 2025 Generalized Fermat 1592 264360218^131072+1 1103915 L4875 2025 Generalized Fermat 1593 264269230^131072+1 1103895 L5526 2025 Generalized Fermat 1594 263861882^131072+1 1103807 L5639 2025 Generalized Fermat 1595 263506158^131072+1 1103730 L6102 2025 Generalized Fermat 1596 262824942^131072+1 1103583 L5586 2025 Generalized Fermat 1597 262754910^131072+1 1103568 L4774 2025 Generalized Fermat 1598 262470710^131072+1 1103506 L5974 2025 Generalized Fermat 1599 273*2^3665736+1 1103499 L5192 2022 1600 262298138^131072+1 1103469 L5864 2025 Generalized Fermat 1601 262041482^131072+1 1103413 L5457 2025 Generalized Fermat 1602 262005898^131072+1 1103405 L4774 2025 Generalized Fermat 1603 261858724^131072+1 1103373 L5639 2025 Generalized Fermat 1604 261114224^131072+1 1103211 L4939 2025 Generalized Fermat 1605 13*2^3664703-1 1103187 L1862 2016 1606 1486*165^497431+1 1103049 A11 2024 1607 260265300^131072+1 1103026 L5586 2024 Generalized Fermat 1608 260050122^131072+1 1102979 L5586 2024 Generalized Fermat 1609 259881684^131072+1 1102942 L4245 2024 Generalized Fermat 1610 259576262^131072+1 1102875 L4672 2024 Generalized Fermat 1611b 250*859^375877+1 1102823 A11 2025 1612 406515^196608-406515^98304+1 1102790 L4506 2016 Generalized unique 1613 259130312^131072+1 1102777 L5156 2024 Generalized Fermat 1614 259042144^131072+1 1102758 L5457 2024 Generalized Fermat 1615 609*2^3662931+1 1102655 L5573 2022 1616 258337266^131072+1 1102603 L5457 2024 Generalized Fermat 1617 258336436^131072+1 1102602 L5586 2024 Generalized Fermat 1618 258197916^131072+1 1102572 L5473 2024 Generalized Fermat 1619 258109576^131072+1 1102552 L4672 2024 Generalized Fermat 1620 257401382^131072+1 1102396 L5586 2024 Generalized Fermat 1621 257047620^131072+1 1102318 L4892 2024 Generalized Fermat 1622 256963326^131072+1 1102299 L6093 2024 Generalized Fermat 1623 256943534^131072+1 1102295 L4892 2024 Generalized Fermat 1624 256089378^131072+1 1102105 L4892 2024 Generalized Fermat 1625 255856074^131072+1 1102053 L4747 2024 Generalized Fermat 1626 255812078^131072+1 1102044 L6091 2024 Generalized Fermat 1627 255666546^131072+1 1102011 L6092 2024 Generalized Fermat 1628 255648100^131072+1 1102007 L4245 2024 Generalized Fermat 1629 255555468^131072+1 1101986 L5639 2024 Generalized Fermat 1630 255339392^131072+1 1101938 L5707 2024 Generalized Fermat 1631 255189240^131072+1 1101905 L5782 2024 Generalized Fermat 1632 254954350^131072+1 1101852 L5467 2024 Generalized Fermat 1633 254731916^131072+1 1101803 L6090 2024 Generalized Fermat 1634 254713668^131072+1 1101799 L5782 2024 Generalized Fermat 1635 254450722^131072+1 1101740 L5620 2024 Generalized Fermat 1636 254193678^131072+1 1101682 L5634 2024 Generalized Fermat 1637 253875014^131072+1 1101611 L5707 2024 Generalized Fermat 1638 253866454^131072+1 1101609 L5457 2024 Generalized Fermat 1639 253210808^131072+1 1101462 L4968 2024 Generalized Fermat 1640 252934920^131072+1 1101400 L6036 2024 Generalized Fermat 1641 252637312^131072+1 1101333 L5526 2024 Generalized Fermat 1642 252545864^131072+1 1101312 L5467 2024 Generalized Fermat 1643 252369374^131072+1 1101272 L5452 2024 Generalized Fermat 1644 252171992^131072+1 1101228 L5639 2024 Generalized Fermat 1645 251361006^131072+1 1101044 L5127 2024 Generalized Fermat 1646 251085988^131072+1 1100982 L4201 2024 Generalized Fermat 1647 250775680^131072+1 1100912 L6073 2024 Generalized Fermat 1648 249754922^131072+1 1100679 L4898 2024 Generalized Fermat 1649 249751100^131072+1 1100679 L6088 2024 Generalized Fermat 1650 249735514^131072+1 1100675 L4201 2024 Generalized Fermat 1651 249634320^131072+1 1100652 L6087 2024 Generalized Fermat 1652 118*892^373012+1 1100524 L5071 2020 1653 248934378^131072+1 1100492 L5974 2024 Generalized Fermat 1654 248857694^131072+1 1100475 L6086 2024 Generalized Fermat 1655 248820272^131072+1 1100466 L5768 2024 Generalized Fermat 1656 248632632^131072+1 1100423 L5416 2024 Generalized Fermat 1657 248621940^131072+1 1100421 L5051 2024 Generalized Fermat 1658 248617468^131072+1 1100420 L5416 2024 Generalized Fermat 1659 33300*430^417849-1 1100397 L4393 2016 1660 247389350^131072+1 1100138 L6085 2024 Generalized Fermat 1661 247342010^131072+1 1100127 L6073 2024 Generalized Fermat 1662 247145256^131072+1 1100082 L4939 2024 Generalized Fermat 1663 246980946^131072+1 1100044 L4249 2024 Generalized Fermat 1664 246952054^131072+1 1100037 L6084 2024 Generalized Fermat 1665 246943520^131072+1 1100035 L5746 2024 Generalized Fermat 1666 (2^2976221-1)*(10^204068-1172064)+1 1100000 p449 2024 1667 246677978^131072+1 1099974 L5512 2024 Generalized Fermat 1668 246634478^131072+1 1099964 L5117 2024 Generalized Fermat 1669a 1175*2^3653893+1 1099935 L6243 2025 1670 246394910^131072+1 1099908 L6038 2024 Generalized Fermat 1671 246207020^131072+1 1099865 L5606 2024 Generalized Fermat 1672 246012578^131072+1 1099820 L5606 2024 Generalized Fermat 1673 245507802^131072+1 1099703 L5606 2024 Generalized Fermat 1674 245461196^131072+1 1099692 L6078 2024 Generalized Fermat 1675 655*2^3653008+1 1099668 L5574 2022 1676 244873604^131072+1 1099556 L6076 2024 Generalized Fermat 1677 244660242^131072+1 1099506 L6038 2024 Generalized Fermat 1678 244342390^131072+1 1099432 L5416 2024 Generalized Fermat 1679 244202408^131072+1 1099400 L4371 2024 Generalized Fermat 1680 291*268^452750-1 1099341 L5410 2022 1681 243786926^131072+1 1099303 L6073 2024 Generalized Fermat 1682 243427990^131072+1 1099219 L4892 2024 Generalized Fermat 1683 242973858^131072+1 1099113 L6072 2024 Generalized Fermat 1684 242950108^131072+1 1099107 L4387 2024 Generalized Fermat 1685 242933064^131072+1 1099103 L5782 2024 Generalized Fermat 1686 242926826^131072+1 1099102 L5826 2024 Generalized Fermat 1687 242855212^131072+1 1099085 L4591 2024 Generalized Fermat 1688 242494358^131072+1 1099000 L5416 2024 Generalized Fermat 1689 242295536^131072+1 1098953 L5205 2024 Generalized Fermat 1690 242161196^131072+1 1098922 L6070 2024 Generalized Fermat 1691 241765100^131072+1 1098829 L6067 2024 Generalized Fermat 1692 241550882^131072+1 1098778 L6065 2024 Generalized Fermat 1693a 869*2^3650049+1 1098778 L5161 2025 1694 241438172^131072+1 1098752 L4591 2024 Generalized Fermat 1695 241338084^131072+1 1098728 L4591 2024 Generalized Fermat 1696 241249426^131072+1 1098707 L5526 2024 Generalized Fermat 1697 33*2^3649810+1 1098704 L4958 2019 1698 241151312^131072+1 1098684 L4387 2024 Generalized Fermat 1699 241000970^131072+1 1098648 L5707 2024 Generalized Fermat 1700 240966866^131072+1 1098640 L4559 2024 Generalized Fermat 1701 240965802^131072+1 1098640 L6058 2024 Generalized Fermat 1702 240910640^131072+1 1098627 L5101 2024 Generalized Fermat 1703 240856112^131072+1 1098614 L4875 2024 Generalized Fermat 1704 240307734^131072+1 1098484 L4249 2024 Generalized Fermat 1705 240190808^131072+1 1098457 L5056 2024 Generalized Fermat 1706 239927858^131072+1 1098394 L4477 2024 Generalized Fermat 1707 239545562^131072+1 1098304 L4591 2024 Generalized Fermat 1708 239520486^131072+1 1098298 L5634 2024 Generalized Fermat 1709d 262614*5^1571158-1 1098198 A11 2025 1710 238968056^131072+1 1098166 L4477 2024 Generalized Fermat 1711 238871106^131072+1 1098143 L6058 2024 Generalized Fermat 1712 238852190^131072+1 1098139 L5526 2024 Generalized Fermat 1713 238698190^131072+1 1098102 L5077 2024 Generalized Fermat 1714 238653710^131072+1 1098091 L6057 2024 Generalized Fermat 1715 238627390^131072+1 1098085 L5871 2024 Generalized Fermat 1716 238438430^131072+1 1098040 L5707 2024 Generalized Fermat 1717 238381768^131072+1 1098026 L5707 2024 Generalized Fermat 1718 238193230^131072+1 1097981 L4201 2024 Generalized Fermat 1719 238168282^131072+1 1097975 L4201 2024 Generalized Fermat 1720 238109742^131072+1 1097961 L4559 2024 Generalized Fermat 1721 237601644^131072+1 1097840 L5782 2024 Generalized Fermat 1722 237260908^131072+1 1097758 L4201 2024 Generalized Fermat 1723 237185928^131072+1 1097740 L5755 2024 Generalized Fermat 1724 237108488^131072+1 1097722 L5639 2024 Generalized Fermat 1725 236924362^131072+1 1097677 L5639 2024 Generalized Fermat 1726 236602468^131072+1 1097600 L6038 2024 Generalized Fermat 1727 236500052^131072+1 1097575 L5198 2024 Generalized Fermat 1728 236417078^131072+1 1097555 L5588 2024 Generalized Fermat 1729 236278180^131072+1 1097522 L5416 2024 Generalized Fermat 1730 236240868^131072+1 1097513 L6038 2024 Generalized Fermat 1731 235947986^131072+1 1097442 L4201 2024 Generalized Fermat 1732 235577802^131072+1 1097353 L5077 2024 Generalized Fermat 1733 235566676^131072+1 1097350 L5416 2024 Generalized Fermat 1734 235108160^131072+1 1097239 L4898 2024 Generalized Fermat 1735 234962380^131072+1 1097204 L4201 2024 Generalized Fermat 1736 234806100^131072+1 1097166 L5088 2024 Generalized Fermat 1737 234661134^131072+1 1097131 L5416 2024 Generalized Fermat 1738 234566344^131072+1 1097108 L5974 2024 Generalized Fermat 1739 234523400^131072+1 1097098 L4201 2024 Generalized Fermat 1740 234385314^131072+1 1097064 L4285 2024 Generalized Fermat 1741 234307964^131072+1 1097045 L4559 2024 Generalized Fermat 1742 234291722^131072+1 1097041 L4999 2024 Generalized Fermat 1743 233937376^131072+1 1096955 L6044 2024 Generalized Fermat 1744 233903532^131072+1 1096947 L4559 2024 Generalized Fermat 1745 233559012^131072+1 1096863 L5416 2024 Generalized Fermat 1746 233447012^131072+1 1096836 L4477 2024 Generalized Fermat 1747 233349574^131072+1 1096812 L5432 2024 Generalized Fermat 1748 233034976^131072+1 1096735 L5101 2024 Generalized Fermat 1749 232796676^131072+1 1096677 L6040 2024 Generalized Fermat 1750 232485778^131072+1 1096601 L4477 2024 Generalized Fermat 1751 232050760^131072+1 1096494 L5782 2024 Generalized Fermat 1752 295*2^3642206+1 1096416 L5161 2022 1753 231583998^131072+1 1096380 L4477 2024 Generalized Fermat 1754 231295516^131072+1 1096309 L5634 2024 Generalized Fermat 1755 230663736^131072+1 1096153 L4774 2024 Generalized Fermat 1756 230655072^131072+1 1096151 L5526 2024 Generalized Fermat 1757 230396424^131072+1 1096087 L4928 2024 Generalized Fermat 1758 230275166^131072+1 1096057 L6011 2024 Generalized Fermat 1759 230267830^131072+1 1096055 L6036 2024 Generalized Fermat 1760 989*2^3640585+1 1095929 L5115 2020 1761 567*2^3639287+1 1095538 L4959 2019 1762 227669832^131072+1 1095409 L5707 2024 Generalized Fermat 1763d 79788*5^1567080-1 1095347 A11 2025 1764 227406222^131072+1 1095343 L4371 2024 Generalized Fermat 1765 227239620^131072+1 1095302 L4559 2024 Generalized Fermat 1766 227135580^131072+1 1095276 L5974 2024 Generalized Fermat 1767 227009830^131072+1 1095244 L4359 2024 Generalized Fermat 1768 226881840^131072+1 1095212 L5784 2024 Generalized Fermat 1769 226782570^131072+1 1095187 L6026 2024 Generalized Fermat 1770 226710488^131072+1 1095169 L5588 2024 Generalized Fermat 1771 226639300^131072+1 1095151 L5634 2024 Generalized Fermat 1772 226453444^131072+1 1095104 L4559 2024 Generalized Fermat 1773 226341130^131072+1 1095076 L4341 2024 Generalized Fermat 1774 226249042^131072+1 1095053 L5370 2024 Generalized Fermat 1775 226100602^131072+1 1095016 L4429 2024 Generalized Fermat 1776 225580118^131072+1 1094884 L5056 2024 Generalized Fermat 1777 225124888^131072+1 1094769 L4591 2024 Generalized Fermat 1778 224635814^131072+1 1094646 L4875 2024 Generalized Fermat 1779 224347630^131072+1 1094572 L5512 2024 Generalized Fermat 1780 224330804^131072+1 1094568 L6019 2024 Generalized Fermat 1781 224249932^131072+1 1094548 L4371 2024 Generalized Fermat 1782 224072278^131072+1 1094503 L5974 2024 Generalized Fermat 1783 639*2^3635707+1 1094460 L1823 2019 1784 223490796^131072+1 1094355 L5332 2024 Generalized Fermat 1785 223074802^131072+1 1094249 L5416 2024 Generalized Fermat 1786 223010262^131072+1 1094232 L6015 2024 Generalized Fermat 1787 222996490^131072+1 1094229 L5731 2024 Generalized Fermat 1788 222888506^131072+1 1094201 L5974 2024 Generalized Fermat 1789 222593516^131072+1 1094126 L6011 2024 Generalized Fermat 1790 222486400^131072+1 1094098 L5332 2024 Generalized Fermat 1791 221636362^131072+1 1093880 L4904 2024 Generalized Fermat 1792 221528336^131072+1 1093853 L5721 2024 Generalized Fermat 1793 221330854^131072+1 1093802 L6010 2024 Generalized Fermat 1794 221325712^131072+1 1093801 L4201 2024 Generalized Fermat 1795 221174400^131072+1 1093762 L4201 2024 Generalized Fermat 1796 221008432^131072+1 1093719 L5974 2024 Generalized Fermat 1797 220956326^131072+1 1093705 L5731 2024 Generalized Fermat 1798 220838206^131072+1 1093675 L5974 2024 Generalized Fermat 1799 220325976^131072+1 1093543 L5690 2024 Generalized Fermat 1800 220317996^131072+1 1093541 L5989 2024 Generalized Fermat 1801 220288248^131072+1 1093533 L5721 2024 Generalized Fermat 1802 219984494^131072+1 1093455 L6005 2024 Generalized Fermat 1803 219556482^131072+1 1093344 L5721 2024 Generalized Fermat 1804 219525472^131072+1 1093336 L4898 2024 Generalized Fermat 1805 219447698^131072+1 1093315 L4933 2024 Generalized Fermat 1806 219430370^131072+1 1093311 L4774 2024 Generalized Fermat 1807 219331584^131072+1 1093285 L5746 2024 Generalized Fermat 1808 753*2^3631472+1 1093185 L1823 2019 1809 2*205731^205731-1 1093111 L4965 2022 1810 218012734^131072+1 1092942 L4928 2024 Generalized Fermat 1811 217820568^131072+1 1092892 L5690 2024 Generalized Fermat 1812 217559364^131072+1 1092823 L4898 2024 Generalized Fermat 1813 217458668^131072+1 1092797 L5989 2024 Generalized Fermat 1814 217423702^131072+1 1092788 L5998 2024 Generalized Fermat 1815 217176690^131072+1 1092723 L5637 2024 Generalized Fermat 1816 217170570^131072+1 1092722 L4371 2024 Generalized Fermat 1817 65531*2^3629342-1 1092546 L2269 2011 1818 1121*2^3629201+1 1092502 L4761 2019 1819 216307766^131072+1 1092495 L4387 2024 Generalized Fermat 1820 216084296^131072+1 1092436 L4201 2024 Generalized Fermat 1821 215*2^3628962-1 1092429 L2484 2018 1822 216039994^131072+1 1092425 L5880 2024 Generalized Fermat 1823 216027436^131072+1 1092421 L5277 2024 Generalized Fermat 1824 216018002^131072+1 1092419 L5586 2024 Generalized Fermat 1825 215949788^131072+1 1092401 L4537 2024 Generalized Fermat 1826 215945398^131072+1 1092400 L4245 2024 Generalized Fermat 1827 215783788^131072+1 1092357 L5711 2024 Generalized Fermat 1828 215717854^131072+1 1092340 L4245 2024 Generalized Fermat 1829 215462154^131072+1 1092272 L4387 2024 Generalized Fermat 1830 215237318^131072+1 1092213 L5693 2024 Generalized Fermat 1831 215004526^131072+1 1092151 L4928 2024 Generalized Fermat 1832 113*2^3628034-1 1092150 L2484 2014 1833 214992758^131072+1 1092148 L5974 2024 Generalized Fermat 1834 1009*2^3627911-1 1092114 A46 2025 1835 214814516^131072+1 1092101 L5746 2024 Generalized Fermat 1836 1175*2^3627541+1 1092002 L4840 2019 1837 214403112^131072+1 1091992 L4905 2024 Generalized Fermat 1838 214321816^131072+1 1091970 L5989 2024 Generalized Fermat 1839 214134178^131072+1 1091920 L5297 2024 Generalized Fermat 1840 214059556^131072+1 1091900 L4362 2024 Generalized Fermat 1841 2*431^414457+1 1091878 L4879 2019 Divides Phi(431^414457,2) 1842 213879170^131072+1 1091852 L5986 2024 Generalized Fermat 1843 19116*24^791057-1 1091831 A44 2024 1844 213736552^131072+1 1091814 L4289 2024 Generalized Fermat 1845 213656000^131072+1 1091793 L4892 2024 Generalized Fermat 1846 213580840^131072+1 1091773 L4201 2024 Generalized Fermat 1847 213425082^131072+1 1091731 L4892 2024 Generalized Fermat 1848 213162592^131072+1 1091661 L4549 2024 Generalized Fermat 1849 213151104^131072+1 1091658 L4763 2024 Generalized Fermat 1850 212912634^131072+1 1091595 L5639 2024 Generalized Fermat 1851 212894100^131072+1 1091590 L5470 2024 Generalized Fermat 1852 212865234^131072+1 1091582 L5782 2024 Generalized Fermat 1853 212862096^131072+1 1091581 L4870 2024 Generalized Fermat 1854 212838152^131072+1 1091575 L5718 2024 Generalized Fermat 1855 212497738^131072+1 1091483 L5051 2024 Generalized Fermat 1856 212121206^131072+1 1091383 L4774 2024 Generalized Fermat 1857 211719438^131072+1 1091275 L4775 2024 Generalized Fermat 1858 211448294^131072+1 1091202 L5929 2024 Generalized Fermat 1859 211407740^131072+1 1091191 L4341 2024 Generalized Fermat 1860 211326826^131072+1 1091169 L5143 2024 Generalized Fermat 1861 210908700^131072+1 1091056 L5639 2024 Generalized Fermat 1862 210564358^131072+1 1090963 L5639 2024 Generalized Fermat 1863 210434680^131072+1 1090928 L4380 2024 Generalized Fermat 1864 210397166^131072+1 1090918 L4870 2024 Generalized Fermat 1865 210160342^131072+1 1090854 L5974 2024 Generalized Fermat 1866 210088618^131072+1 1090834 L5041 2024 Generalized Fermat 1867 209917216^131072+1 1090788 L5755 2024 Generalized Fermat 1868 209839940^131072+1 1090767 L5639 2024 Generalized Fermat 1869 209637998^131072+1 1090712 L4544 2024 Generalized Fermat 1870 951*2^3623185+1 1090691 L1823 2019 1871 209494470^131072+1 1090673 L5869 2024 Generalized Fermat 1872 209385420^131072+1 1090644 L5720 2024 Generalized Fermat 1873 209108558^131072+1 1090568 L5460 2024 Generalized Fermat 1874 209101202^131072+1 1090566 L5011 2024 Generalized Fermat 1875 208565926^131072+1 1090420 L5016 2024 Generalized Fermat 1876 208497360^131072+1 1090402 L5234 2024 Generalized Fermat 1877 208392300^131072+1 1090373 L5030 2024 Generalized Fermat 1878 208374066^131072+1 1090368 L5869 2024 Generalized Fermat 1879 208352366^131072+1 1090362 L5044 2024 Generalized Fermat 1880 208236434^131072+1 1090330 L5984 2024 Generalized Fermat 1881 208003690^131072+1 1090267 L5639 2024 Generalized Fermat 1882 207985150^131072+1 1090262 L5791 2024 Generalized Fermat 1883 207753480^131072+1 1090198 L5974 2024 Generalized Fermat 1884 207514736^131072+1 1090133 L4477 2024 Generalized Fermat 1885 207445740^131072+1 1090114 L5273 2024 Generalized Fermat 1886 29*920^367810-1 1090113 L4064 2015 1887 207296788^131072+1 1090073 L5234 2024 Generalized Fermat 1888 207264358^131072+1 1090064 L5758 2024 Generalized Fermat 1889 207213640^131072+1 1090050 L5077 2024 Generalized Fermat 1890 206709064^131072+1 1089911 L5639 2024 Generalized Fermat 1891 206640054^131072+1 1089892 L5288 2024 Generalized Fermat 1892 206594738^131072+1 1089880 L5707 2024 Generalized Fermat 1893 206585726^131072+1 1089877 L5667 2024 Generalized Fermat 1894 206473754^131072+1 1089846 L5855 2024 Generalized Fermat 1895 206230080^131072+1 1089779 L5143 2024 Generalized Fermat 1896 206021166^131072+1 1089722 L5639 2024 Generalized Fermat 1897 205990406^131072+1 1089713 L4755 2024 Generalized Fermat 1898 205963322^131072+1 1089706 L5844 2024 Generalized Fermat 1899 205339678^131072+1 1089533 L4905 2024 Generalized Fermat 1900 205160722^131072+1 1089483 L5639 2024 Generalized Fermat 1901 205150506^131072+1 1089480 L5543 2024 Generalized Fermat 1902 205010004^131072+1 1089441 L5025 2024 Generalized Fermat 1903 14641*2^3618876+1 1089395 L181 2018 Generalized Fermat 1904 204695540^131072+1 1089354 L4905 2024 Generalized Fermat 1905 485*2^3618563+1 1089299 L3924 2019 1906 204382086^131072+1 1089267 L4477 2024 Generalized Fermat 1907 204079052^131072+1 1089182 L4763 2024 Generalized Fermat 1908 204016062^131072+1 1089165 L5712 2024 Generalized Fermat 1909 203275588^131072+1 1088958 L5041 2024 Generalized Fermat 1910 203250558^131072+1 1088951 L4210 2024 Generalized Fermat 1911 203238918^131072+1 1088948 L5586 2024 Generalized Fermat 1912 202515696^131072+1 1088745 L4549 2024 Generalized Fermat 1913 202391964^131072+1 1088710 L4835 2024 Generalized Fermat 1914 202251688^131072+1 1088670 L5288 2024 Generalized Fermat 1915 202114688^131072+1 1088632 L5711 2024 Generalized Fermat 1916 202045732^131072+1 1088612 L4537 2024 Generalized Fermat 1917 201593074^131072+1 1088485 L5027 2024 Generalized Fermat 1918 201536524^131072+1 1088469 L5769 2024 Generalized Fermat 1919 201389466^131072+1 1088427 L4537 2024 Generalized Fermat 1920 201249512^131072+1 1088388 L5234 2024 Generalized Fermat 1921 201239624^131072+1 1088385 L5732 2024 Generalized Fermat 1922 200519642^131072+1 1088181 L5712 2024 Generalized Fermat 1923 200459670^131072+1 1088164 L5948 2024 Generalized Fermat 1924 200433382^131072+1 1088156 L5948 2024 Generalized Fermat 1925 200280100^131072+1 1088113 L4892 2024 Generalized Fermat 1926 200053318^131072+1 1088048 L5586 2024 Generalized Fermat 1927 199971120^131072+1 1088025 L5030 2024 Generalized Fermat 1928 95*2^3614033+1 1087935 L1474 2019 1929 199502780^131072+1 1087891 L5878 2024 Generalized Fermat 1930 198402358^131072+1 1087577 L5606 2024 Generalized Fermat 1931 198320982^131072+1 1087553 L5938 2024 Generalized Fermat 1932 198319118^131072+1 1087553 L4737 2024 Generalized Fermat 1933a 65*2^3612630-1 1087512 L2017 2025 1934 1005*2^3612300+1 1087414 L1823 2019 1935 197752702^131072+1 1087390 L5355 2024 Generalized Fermat 1936 197607368^131072+1 1087348 L5041 2024 Generalized Fermat 1937 197352408^131072+1 1087275 L4861 2024 Generalized Fermat 1938 861*2^3611815+1 1087268 L1745 2019 1939 197230100^131072+1 1087239 L4753 2024 Generalized Fermat 1940 197212998^131072+1 1087234 L6123 2024 Generalized Fermat 1941 197197506^131072+1 1087230 L4753 2024 Generalized Fermat 1942 197018872^131072+1 1087178 L4884 2024 Generalized Fermat 1943 1087*2^3611476+1 1087166 L4834 2019 1944 196722548^131072+1 1087093 L5782 2024 Generalized Fermat 1945 196703802^131072+1 1087087 L4742 2024 Generalized Fermat 1946 196687752^131072+1 1087082 L5051 2024 Generalized Fermat 1947 195950620^131072+1 1086869 L5929 2024 Generalized Fermat 1948 195834796^131072+1 1086835 L5070 2024 Generalized Fermat 1949 195048992^131072+1 1086606 L5143 2024 Generalized Fermat 1950 194911702^131072+1 1086566 L5948 2024 Generalized Fermat 1951 194819864^131072+1 1086539 L5690 2024 Generalized Fermat 1952 485767*2^3609357-1 1086531 L622 2008 1953 194730404^131072+1 1086513 L5782 2024 Generalized Fermat 1954 194644872^131072+1 1086488 L4720 2024 Generalized Fermat 1955 194584114^131072+1 1086470 L4201 2024 Generalized Fermat 1956 194263106^131072+1 1086376 L4892 2024 Generalized Fermat 1957 194202254^131072+1 1086359 L4835 2024 Generalized Fermat 1958 194159546^131072+1 1086346 L4387 2024 Generalized Fermat 1959 193935716^131072+1 1086280 L4835 2024 Generalized Fermat 1960 193247784^131072+1 1086078 L5234 2024 Generalized Fermat 1961 192866222^131072+1 1085966 L5913 2024 Generalized Fermat 1962 192651588^131072+1 1085902 L5880 2024 Generalized Fermat 1963 192606308^131072+1 1085889 L4476 2024 Generalized Fermat 1964 675*2^3606447+1 1085652 L3278 2019 1965 191678526^131072+1 1085614 L5234 2024 Generalized Fermat 1966 669*2^3606266+1 1085598 L1675 2019 1967 191567332^131072+1 1085581 L4309 2024 Generalized Fermat 1968 65077*2^3605944+1 1085503 L4685 2020 1969 191194450^131072+1 1085470 L4245 2024 Generalized Fermat 1970 1365*2^3605491+1 1085365 L1134 2022 1971 190810274^131072+1 1085356 L5460 2024 Generalized Fermat 1972 190309640^131072+1 1085206 L5880 2024 Generalized Fermat 1973 190187176^131072+1 1085169 L5470 2024 Generalized Fermat 1974 190144032^131072+1 1085156 L4341 2024 Generalized Fermat 1975 851*2^3604395+1 1085034 L2125 2019 1976 189411830^131072+1 1084937 L5578 2024 Generalized Fermat 1977 189240324^131072+1 1084885 L4892 2024 Generalized Fermat 1978 188766416^131072+1 1084743 L5639 2024 Generalized Fermat 1979 188655374^131072+1 1084709 L5842 2024 Generalized Fermat 1980 188646712^131072+1 1084706 L4905 2024 Generalized Fermat 1981 187961358^131072+1 1084499 L5881 2024 Generalized Fermat 1982 1143*2^3602429+1 1084443 L4754 2019 1983 187731580^131072+1 1084430 L5847 2024 Generalized Fermat 1984 187643362^131072+1 1084403 L5707 2024 Generalized Fermat 1985 187584550^131072+1 1084385 L5526 2024 Generalized Fermat 1986 187330820^131072+1 1084308 L5879 2024 Generalized Fermat 1987 1183*2^3601898+1 1084283 L1823 2019 1988 187231212^131072+1 1084278 L4550 2024 Generalized Fermat 1989 187184006^131072+1 1084263 L5051 2024 Generalized Fermat 1990 187007398^131072+1 1084210 L5604 2024 Generalized Fermat 1991 185411044^131072+1 1083722 L5044 2023 Generalized Fermat 1992 185248324^131072+1 1083672 L4371 2023 Generalized Fermat 1993 185110536^131072+1 1083629 L4559 2023 Generalized Fermat 1994 185015722^131072+1 1083600 L5723 2023 Generalized Fermat 1995 184855564^131072+1 1083551 L5748 2023 Generalized Fermat 1996 184835362^131072+1 1083545 L5416 2024 Generalized Fermat 1997 184814078^131072+1 1083538 L4559 2023 Generalized Fermat 1998 184653266^131072+1 1083488 L5606 2023 Generalized Fermat 1999 184523024^131072+1 1083448 L4550 2023 Generalized Fermat 2000 184317182^131072+1 1083385 L5863 2023 Generalized Fermat 2001 184310672^131072+1 1083383 L5863 2023 Generalized Fermat 2002 184119204^131072+1 1083324 L5863 2023 Generalized Fermat 2003 183839694^131072+1 1083237 L5865 2023 Generalized Fermat 2004 183591732^131072+1 1083160 L5586 2023 Generalized Fermat 2005 183392536^131072+1 1083098 L5044 2023 Generalized Fermat 2006 183383118^131072+1 1083096 L4371 2023 Generalized Fermat 2007 183157240^131072+1 1083025 L5853 2023 Generalized Fermat 2008 182252536^131072+1 1082744 L5854 2023 Generalized Fermat 2009 182166824^131072+1 1082717 L5854 2023 Generalized Fermat 2010 181969816^131072+1 1082655 L4591 2023 Generalized Fermat 2011 181913260^131072+1 1082637 L5853 2023 Generalized Fermat 2012 189*2^3596375+1 1082620 L3760 2016 2013 181302244^131072+1 1082446 L4550 2023 Generalized Fermat 2014 180680920^131072+1 1082251 L5639 2023 Generalized Fermat 2015 180455838^131072+1 1082180 L5847 2023 Generalized Fermat 2016 180111908^131072+1 1082071 L5844 2023 Generalized Fermat 2017 180084608^131072+1 1082062 L5056 2023 Generalized Fermat 2018 180045220^131072+1 1082050 L4550 2023 Generalized Fermat 2019 180002474^131072+1 1082036 L5361 2023 Generalized Fermat 2020 179913814^131072+1 1082008 L4875 2023 Generalized Fermat 2021 1089*2^3593267+1 1081685 L3035 2019 2022 178743858^131072+1 1081637 L5051 2023 Generalized Fermat 2023 178437884^131072+1 1081539 L4591 2023 Generalized Fermat 2024 178435022^131072+1 1081538 L5639 2023 Generalized Fermat 2025 178311240^131072+1 1081499 L5369 2023 Generalized Fermat 2026 178086108^131072+1 1081427 L4939 2023 Generalized Fermat 2027 178045832^131072+1 1081414 L5836 2023 Generalized Fermat 2028 177796222^131072+1 1081334 L5834 2023 Generalized Fermat 2029 177775606^131072+1 1081328 L5794 2023 Generalized Fermat 2030 177648552^131072+1 1081287 L5782 2023 Generalized Fermat 2031 177398652^131072+1 1081207 L4559 2023 Generalized Fermat 2032 177319028^131072+1 1081181 L5526 2023 Generalized Fermat 2033 177296064^131072+1 1081174 L5831 2023 Generalized Fermat 2034 177129922^131072+1 1081121 L4559 2023 Generalized Fermat 2035 176799404^131072+1 1081014 L4775 2023 Generalized Fermat 2036 176207346^131072+1 1080823 L5805 2023 Generalized Fermat 2037 176085282^131072+1 1080784 L5805 2023 Generalized Fermat 2038 175482140^131072+1 1080589 L5639 2023 Generalized Fermat 2039 175271418^131072+1 1080520 L5051 2023 Generalized Fermat 2040 19581121*2^3589357-1 1080512 p49 2022 2041 175200596^131072+1 1080497 L5817 2023 Generalized Fermat 2042 1101*2^3589103+1 1080431 L1823 2019 2043 174728608^131072+1 1080344 L5416 2023 Generalized Fermat 2044 174697724^131072+1 1080334 L4747 2023 Generalized Fermat 2045 174534362^131072+1 1080280 L5814 2023 Generalized Fermat 2046 174142738^131072+1 1080152 L4249 2023 Generalized Fermat 2047 174103532^131072+1 1080140 L4249 2023 Generalized Fermat 2048 173962482^131072+1 1080093 L4249 2023 Generalized Fermat 2049 35*2^3587843+1 1080050 L1979 2014 Divides GF(3587841,5) 2050 173717408^131072+1 1080013 L5634 2023 Generalized Fermat 2051 173561300^131072+1 1079962 L4249 2023 Generalized Fermat 2052 173343810^131072+1 1079891 L4249 2023 Generalized Fermat 2053 172026454^131072+1 1079456 L4737 2023 Generalized Fermat 2054 172004036^131072+1 1079449 L5512 2023 Generalized Fermat 2055 275*2^3585539+1 1079358 L3803 2016 2056 171677924^131072+1 1079341 L5512 2023 Generalized Fermat 2057 171610156^131072+1 1079319 L4249 2023 Generalized Fermat 2058 171518672^131072+1 1079288 L5586 2023 Generalized Fermat 2059 171128300^131072+1 1079158 L4249 2023 Generalized Fermat 2060 170982934^131072+1 1079110 L4201 2023 Generalized Fermat 2061 170626040^131072+1 1078991 L5748 2023 Generalized Fermat 2062 169929578^131072+1 1078758 L5748 2023 Generalized Fermat 2063 169369502^131072+1 1078570 L4410 2023 Generalized Fermat 2064 169299904^131072+1 1078547 L4559 2023 Generalized Fermat 2065 169059224^131072+1 1078466 L5746 2023 Generalized Fermat 2066 168885632^131072+1 1078408 L5793 2023 Generalized Fermat 2067 168602250^131072+1 1078312 L5782 2023 Generalized Fermat 2068 168576546^131072+1 1078303 L5639 2023 Generalized Fermat 2069 167845698^131072+1 1078056 L5735 2023 Generalized Fermat 2070 167604930^131072+1 1077974 L4859 2023 Generalized Fermat 2071 2*59^608685+1 1077892 g427 2014 Divides Phi(59^608685,2) 2072 167206862^131072+1 1077839 L5641 2023 Generalized Fermat 2073 166964502^131072+1 1077756 L5627 2023 Generalized Fermat 2074 651*2^3579843+1 1077643 L3035 2018 2075 166609122^131072+1 1077635 L5782 2023 Generalized Fermat 2076 166397330^131072+1 1077563 L5578 2023 Generalized Fermat 2077 166393356^131072+1 1077561 L5782 2023 Generalized Fermat 2078 166288612^131072+1 1077525 L4672 2023 Generalized Fermat 2079 166277052^131072+1 1077521 L5755 2023 Generalized Fermat 2080 166052226^131072+1 1077444 L4670 2023 Generalized Fermat 2081 165430644^131072+1 1077231 L4672 2023 Generalized Fermat 2082 165427494^131072+1 1077230 L4249 2023 Generalized Fermat 2083 583*2^3578402+1 1077210 L3035 2018 2084 165361824^131072+1 1077207 L5586 2023 Generalized Fermat 2085 165258594^131072+1 1077172 L4884 2023 Generalized Fermat 2086 165036358^131072+1 1077095 L5156 2023 Generalized Fermat 2087 164922680^131072+1 1077056 L4249 2023 Generalized Fermat 2088 164800594^131072+1 1077014 L5775 2023 Generalized Fermat 2089 164660428^131072+1 1076965 L4249 2023 Generalized Fermat 2090 309*2^3577339+1 1076889 L4406 2016 2091 164440734^131072+1 1076889 L5485 2023 Generalized Fermat 2092 163871194^131072+1 1076692 L5772 2023 Generalized Fermat 2093 163838506^131072+1 1076680 L5758 2023 Generalized Fermat 2094 163821336^131072+1 1076674 L5544 2023 Generalized Fermat 2095 163820256^131072+1 1076674 L5452 2023 Generalized Fermat 2096 163666380^131072+1 1076621 L5030 2023 Generalized Fermat 2097 163585288^131072+1 1076592 L4928 2023 Generalized Fermat 2098 163359994^131072+1 1076514 L5769 2023 Generalized Fermat 2099 163214942^131072+1 1076463 L4933 2023 Generalized Fermat 2100 163193584^131072+1 1076456 L5595 2023 Generalized Fermat 2101 163152818^131072+1 1076442 L5639 2023 Generalized Fermat 2102 163044252^131072+1 1076404 L5775 2023 Generalized Fermat 2103 162950466^131072+1 1076371 L5694 2023 Generalized Fermat 2104 162874590^131072+1 1076345 L5586 2023 Generalized Fermat 2105 162850104^131072+1 1076336 L5769 2023 Generalized Fermat 2106 162817576^131072+1 1076325 L5772 2023 Generalized Fermat 2107 1185*2^3574583+1 1076060 L4851 2018 2108 251*2^3574535+1 1076045 L3035 2016 2109 1485*2^3574333+1 1075985 L1134 2022 2110 161706626^131072+1 1075935 L4870 2023 Generalized Fermat 2111 161619620^131072+1 1075904 L5586 2023 Generalized Fermat 2112 161588716^131072+1 1075893 L4928 2023 Generalized Fermat 2113 161571504^131072+1 1075887 L5030 2023 Generalized Fermat 2114 161569668^131072+1 1075887 L5639 2023 Generalized Fermat 2115 160998114^131072+1 1075685 L5586 2023 Generalized Fermat 2116 160607310^131072+1 1075547 L5763 2023 Generalized Fermat 2117 160325616^131072+1 1075447 L5586 2023 Generalized Fermat 2118 160228242^131072+1 1075412 L5632 2023 Generalized Fermat 2119 160146172^131072+1 1075383 L4773 2023 Generalized Fermat 2120 159800918^131072+1 1075260 L5586 2023 Generalized Fermat 2121 159794566^131072+1 1075258 L4249 2023 Generalized Fermat 2122 159784836^131072+1 1075254 L5639 2023 Generalized Fermat 2123 159784822^131072+1 1075254 L5637 2023 Generalized Fermat 2124 1019*2^3571635+1 1075173 L1823 2018 2125 159509138^131072+1 1075156 L5637 2023 Generalized Fermat 2126 119*2^3571416-1 1075106 L2484 2018 2127 159214418^131072+1 1075051 L5755 2023 Generalized Fermat 2128 158831096^131072+1 1074914 L5022 2023 Generalized Fermat 2129 35*2^3570777+1 1074913 L2891 2014 2130 158696888^131072+1 1074865 L5030 2023 Generalized Fermat 2131 158472238^131072+1 1074785 L5586 2023 Generalized Fermat 2132 33*2^3570132+1 1074719 L2552 2014 2133 157923226^131072+1 1074587 L4249 2023 Generalized Fermat 2134 157541220^131072+1 1074449 L5416 2023 Generalized Fermat 2135 5*2^3569154-1 1074424 L503 2009 2136 157374268^131072+1 1074389 L5578 2023 Generalized Fermat 2137 81*492^399095-1 1074352 L4001 2015 2138 156978838^131072+1 1074246 L5332 2023 Generalized Fermat 2139 156789840^131072+1 1074177 L4747 2023 Generalized Fermat 2140 156756400^131072+1 1074165 L4249 2023 Generalized Fermat 2141 22934*5^1536762-1 1074155 L3789 2014 2142 156625064^131072+1 1074117 L5694 2023 Generalized Fermat 2143 156519708^131072+1 1074079 L5746 2023 Generalized Fermat 2144 156468140^131072+1 1074060 L4249 2023 Generalized Fermat 2145 156203340^131072+1 1073964 L5578 2023 Generalized Fermat 2146 156171526^131072+1 1073952 L5698 2023 Generalized Fermat 2147 155778562^131072+1 1073809 L4309 2023 Generalized Fermat 2148 155650426^131072+1 1073762 L5668 2023 Generalized Fermat 2149 155536474^131072+1 1073720 L4249 2023 Generalized Fermat 2150 155339878^131072+1 1073648 L5206 2023 Generalized Fermat 2151 155305266^131072+1 1073636 L5549 2023 Generalized Fermat 2152 155006218^131072+1 1073526 L4742 2023 Generalized Fermat 2153 154553092^131072+1 1073359 L4920 2023 Generalized Fermat 2154 154492166^131072+1 1073337 L4326 2023 Generalized Fermat 2155 154478286^131072+1 1073332 L4544 2023 Generalized Fermat 2156 154368914^131072+1 1073291 L5738 2023 Generalized Fermat 2157 153966766^131072+1 1073143 L5732 2023 Generalized Fermat 2158 3437687*2^3564664-1 1073078 L5327 2024 2159 265*2^3564373-1 1072986 L2484 2018 2160 153485148^131072+1 1072965 L5736 2023 Generalized Fermat 2161 153432848^131072+1 1072945 L5030 2023 Generalized Fermat 2162 153413432^131072+1 1072938 L4835 2023 Generalized Fermat 2163 771*2^3564109+1 1072907 L2125 2018 2164 17665*820^368211+1 1072903 A11 2024 2165 381*2^3563676+1 1072776 L4190 2016 2166 152966530^131072+1 1072772 L5070 2023 Generalized Fermat 2167 555*2^3563328+1 1072672 L4850 2018 2168 152542626^131072+1 1072614 L5460 2023 Generalized Fermat 2169 151999396^131072+1 1072411 L5586 2023 Generalized Fermat 2170 151609814^131072+1 1072265 L5663 2023 Generalized Fermat 2171 151218242^131072+1 1072118 L5588 2023 Generalized Fermat 2172 151108236^131072+1 1072076 L4672 2023 Generalized Fermat 2173 151044622^131072+1 1072052 L5544 2023 Generalized Fermat 2174 151030068^131072+1 1072047 L4774 2023 Generalized Fermat 2175 150908454^131072+1 1072001 L4758 2023 Generalized Fermat 2176 150863054^131072+1 1071984 L5720 2023 Generalized Fermat 2177 1183*2^3560584+1 1071846 L1823 2018 2178 150014492^131072+1 1071663 L4476 2023 Generalized Fermat 2179 149972788^131072+1 1071647 L4559 2023 Generalized Fermat 2180 415*2^3559614+1 1071554 L3035 2016 2181 149665588^131072+1 1071530 L4892 2023 Generalized Fermat 2182 149142686^131072+1 1071331 L4684 2023 Generalized Fermat 2183 149057554^131072+1 1071298 L4933 2023 Generalized Fermat 2184 148598024^131072+1 1071123 L4476 2023 Generalized Fermat 2185 1103*2^3558177-503*2^1092022-1 1071122 p423 2022 Arithmetic progression (3,d=1103*2^3558176-503*2^1092022) 2186 1103*2^3558176-1 1071121 L1828 2018 2187 148592576^131072+1 1071121 L4476 2023 Generalized Fermat 2188 148425726^131072+1 1071057 L4289 2023 Generalized Fermat 2189 148154288^131072+1 1070952 L5714 2023 Generalized Fermat 2190 148093952^131072+1 1070929 L4720 2023 Generalized Fermat 2191 148070542^131072+1 1070920 L5155 2023 Generalized Fermat 2192 147988292^131072+1 1070889 L5155 2023 Generalized Fermat 2193 147816036^131072+1 1070822 L5634 2023 Generalized Fermat 2194 1379*2^3557072-1 1070789 L1828 2018 2195 147539992^131072+1 1070716 L4917 2023 Generalized Fermat 2196 147433824^131072+1 1070675 L4753 2023 Generalized Fermat 2197 147310498^131072+1 1070627 L5403 2023 Generalized Fermat 2198 147265916^131072+1 1070610 L5543 2023 Generalized Fermat 2199 146994540^131072+1 1070505 L5634 2023 Generalized Fermat 2200 146520528^131072+1 1070321 L6123 2023 Generalized Fermat 2201 146465338^131072+1 1070300 L5704 2023 Generalized Fermat 2202 146031082^131072+1 1070131 L4697 2023 Generalized Fermat 2203 145949782^131072+1 1070099 L5029 2023 Generalized Fermat 2204 145728478^131072+1 1070013 L5543 2023 Generalized Fermat 2205 145245346^131072+1 1069824 L5586 2023 Generalized Fermat 2206 145137270^131072+1 1069781 L4742 2023 Generalized Fermat 2207 145132288^131072+1 1069779 L4774 2023 Generalized Fermat 2208 144926960^131072+1 1069699 L5036 2023 Generalized Fermat 2209 144810806^131072+1 1069653 L5543 2023 Generalized Fermat 2210 681*2^3553141+1 1069605 L3035 2018 2211 144602744^131072+1 1069571 L5543 2023 Generalized Fermat 2212 143844356^131072+1 1069272 L5693 2023 Generalized Fermat 2213 599*2^3551793+1 1069200 L3824 2018 2214b 55*2^3551791-1 1069198 L2017 2025 2215 143421820^131072+1 1069104 L4904 2023 Generalized Fermat 2216 621*2^3551472+1 1069103 L4687 2018 2217 143416574^131072+1 1069102 L4591 2023 Generalized Fermat 2218 143126384^131072+1 1068987 L5288 2023 Generalized Fermat 2219 142589776^131072+1 1068773 L4201 2023 Generalized Fermat 2220 773*2^3550373+1 1068772 L1808 2018 2221 142527792^131072+1 1068748 L4387 2023 Generalized Fermat 2222 142207386^131072+1 1068620 L5694 2023 Generalized Fermat 2223 142195844^131072+1 1068616 L5548 2023 Generalized Fermat 2224 141636602^131072+1 1068391 L5639 2023 Generalized Fermat 2225 141554190^131072+1 1068358 L4956 2023 Generalized Fermat 2226b 95*2^3548546-1 1068221 L2017 2025 2227 1199*2^3548380-1 1068172 L1828 2018 2228 140928044^131072+1 1068106 L4870 2023 Generalized Fermat 2229 191*2^3548117+1 1068092 L4203 2015 2230 140859866^131072+1 1068078 L5011 2023 Generalized Fermat 2231 140824516^131072+1 1068064 L4760 2023 Generalized Fermat 2232 140649396^131072+1 1067993 L5578 2023 Generalized Fermat 2233 867*2^3547711+1 1067971 L4155 2018 2234 140473436^131072+1 1067922 L4210 2023 Generalized Fermat 2235 140237690^131072+1 1067826 L5051 2023 Generalized Fermat 2236 139941370^131072+1 1067706 L5671 2023 Generalized Fermat 2237 3^2237561+3^1118781+1 1067588 L3839 2014 Generalized unique 2238 139352402^131072+1 1067466 L5663 2023 Generalized Fermat 2239 351*2^3545752+1 1067381 L4082 2016 2240 138896860^131072+1 1067279 L4745 2023 Generalized Fermat 2241 138894074^131072+1 1067278 L5041 2023 Generalized Fermat 2242 138830036^131072+1 1067252 L5662 2023 Generalized Fermat 2243 138626864^131072+1 1067169 L5663 2023 Generalized Fermat 2244 138527284^131072+1 1067128 L5663 2023 Generalized Fermat 2245 93*2^3544744+1 1067077 L1728 2014 2246e 26279*24^773017+1 1066932 A11 2025 2247 138000006^131072+1 1066911 L5051 2023 Generalized Fermat 2248 137900696^131072+1 1066870 L4249 2023 Generalized Fermat 2249 137878102^131072+1 1066860 L5051 2023 Generalized Fermat 2250 1159*2^3543702+1 1066764 L1823 2018 2251 137521726^131072+1 1066713 L4672 2023 Generalized Fermat 2252 137486564^131072+1 1066699 L5586 2023 Generalized Fermat 2253 136227118^131072+1 1066175 L5416 2023 Generalized Fermat 2254 136192168^131072+1 1066160 L5556 2023 Generalized Fermat 2255 136124076^131072+1 1066132 L5041 2023 Generalized Fermat 2256 136122686^131072+1 1066131 L5375 2023 Generalized Fermat 2257 2*3^2234430-1 1066095 A2 2023 2258 178658*5^1525224-1 1066092 L3789 2014 2259 135744154^131072+1 1065973 L5068 2023 Generalized Fermat 2260 135695350^131072+1 1065952 L4249 2023 Generalized Fermat 2261 135623220^131072+1 1065922 L5657 2023 Generalized Fermat 2262 135513092^131072+1 1065876 L5656 2023 Generalized Fermat 2263 135497678^131072+1 1065869 L4387 2023 Generalized Fermat 2264 135458028^131072+1 1065852 L5051 2023 Generalized Fermat 2265 135332960^131072+1 1065800 L5655 2023 Generalized Fermat 2266 135135930^131072+1 1065717 L4387 2023 Generalized Fermat 2267 1085*2^3539671+1 1065551 L3035 2018 2268 134706086^131072+1 1065536 L5378 2023 Generalized Fermat 2269 134459616^131072+1 1065431 L5658 2023 Generalized Fermat 2270 134447516^131072+1 1065426 L4387 2023 Generalized Fermat 2271 134322272^131072+1 1065373 L4387 2023 Generalized Fermat 2272 134206304^131072+1 1065324 L4684 2023 Generalized Fermat 2273 134176868^131072+1 1065311 L5375 2023 Generalized Fermat 2274 133954018^131072+1 1065217 L5088 2023 Generalized Fermat 2275 133676500^131072+1 1065099 L4387 2023 Generalized Fermat 2276 133569020^131072+1 1065053 L5277 2023 Generalized Fermat 2277 133345154^131072+1 1064958 L4210 2023 Generalized Fermat 2278 133180238^131072+1 1064887 L5586 2023 Generalized Fermat 2279 133096042^131072+1 1064851 L4755 2023 Generalized Fermat 2280 465*2^3536871+1 1064707 L4459 2016 2281 1019*2^3536312-1 1064539 L1828 2012 2282 131820886^131072+1 1064303 L5069 2023 Generalized Fermat 2283 131412078^131072+1 1064126 L5653 2023 Generalized Fermat 2284 131370186^131072+1 1064108 L5036 2023 Generalized Fermat 2285 131309874^131072+1 1064082 L5069 2023 Generalized Fermat 2286 131112524^131072+1 1063996 L4245 2023 Generalized Fermat 2287 1179*2^3534450+1 1063979 L3035 2018 2288 130907540^131072+1 1063907 L4526 2023 Generalized Fermat 2289 130593462^131072+1 1063771 L4559 2023 Generalized Fermat 2290 447*2^3533656+1 1063740 L4457 2016 2291 130518578^131072+1 1063738 L5029 2023 Generalized Fermat 2292 1059*2^3533550+1 1063708 L1823 2018 2293 130198372^131072+1 1063598 L5416 2023 Generalized Fermat 2294 130148002^131072+1 1063576 L4387 2023 Generalized Fermat 2295 130128232^131072+1 1063567 L5029 2023 Generalized Fermat 2296 130051980^131072+1 1063534 L5416 2023 Generalized Fermat 2297 130048816^131072+1 1063533 L4245 2023 Generalized Fermat 2298 345*2^3532957+1 1063529 L4314 2016 2299 553*2^3532758+1 1063469 L1823 2018 2300 129292212^131072+1 1063201 L4285 2023 Generalized Fermat 2301 129159632^131072+1 1063142 L5051 2023 Generalized Fermat 2302 128558886^131072+1 1062877 L5518 2023 Generalized Fermat 2303 128520182^131072+1 1062860 L4745 2023 Generalized Fermat 2304 543131*2^3529754-1 1062568 L4925 2022 2305 127720948^131072+1 1062504 L5378 2023 Generalized Fermat 2306 141*2^3529287+1 1062424 L4185 2015 2307 127093036^131072+1 1062224 L4591 2023 Generalized Fermat 2308 24950*745^369781-1 1062074 L4189 2024 2309 126611934^131072+1 1062008 L4776 2023 Generalized Fermat 2310 126423276^131072+1 1061923 L4201 2023 Generalized Fermat 2311 126334514^131072+1 1061883 L4249 2023 Generalized Fermat 2312 13*2^3527315-1 1061829 L1862 2016 2313 126199098^131072+1 1061822 L4591 2023 Generalized Fermat 2314 126189358^131072+1 1061818 L4704 2023 Generalized Fermat 2315 125966884^131072+1 1061717 L4747 2023 Generalized Fermat 2316 125714084^131072+1 1061603 L4745 2023 Generalized Fermat 2317 125141096^131072+1 1061343 L4559 2023 Generalized Fermat 2318 1393*2^3525571-1 1061306 L1828 2017 2319 125006494^131072+1 1061282 L5639 2023 Generalized Fermat 2320 124877454^131072+1 1061223 L4245 2023 Generalized Fermat 2321 124875502^131072+1 1061222 L4591 2023 Generalized Fermat 2322 124749274^131072+1 1061164 L4591 2023 Generalized Fermat 2323 124586054^131072+1 1061090 L4249 2023 Generalized Fermat 2324 124582356^131072+1 1061088 L5606 2023 Generalized Fermat 2325 124543852^131072+1 1061071 L4249 2023 Generalized Fermat 2326 124393514^131072+1 1061002 L4774 2023 Generalized Fermat 2327 124219534^131072+1 1060922 L4249 2023 Generalized Fermat 2328 124133348^131072+1 1060883 L5088 2023 Generalized Fermat 2329 124080788^131072+1 1060859 L5639 2023 Generalized Fermat 2330 1071*2^3523944+1 1060816 L1675 2018 2331 123910270^131072+1 1060780 L4249 2023 Generalized Fermat 2332 123856592^131072+1 1060756 L4201 2023 Generalized Fermat 2333 123338660^131072+1 1060517 L4905 2022 Generalized Fermat 2334 123306230^131072+1 1060502 L5638 2023 Generalized Fermat 2335 123195196^131072+1 1060451 L5029 2022 Generalized Fermat 2336 122941512^131072+1 1060333 L4559 2022 Generalized Fermat 2337 122869094^131072+1 1060300 L4939 2022 Generalized Fermat 2338 122481106^131072+1 1060120 L4704 2022 Generalized Fermat 2339 122414564^131072+1 1060089 L5627 2022 Generalized Fermat 2340 122372192^131072+1 1060069 L5099 2022 Generalized Fermat 2341 121854624^131072+1 1059828 L5051 2022 Generalized Fermat 2342 121462664^131072+1 1059645 L5632 2022 Generalized Fermat 2343 121158848^131072+1 1059502 L4774 2022 Generalized Fermat 2344 2220172*3^2220172+1 1059298 p137 2023 Generalized Cullen 2345 329*2^3518451+1 1059162 L1823 2016 2346 135*2^3518338+1 1059128 L4045 2015 2347 120106930^131072+1 1059006 L4249 2022 Generalized Fermat 2348 2*10^1059002-1 1059003 L3432 2013 Near-repdigit 2349 119744014^131072+1 1058833 L4249 2022 Generalized Fermat 2350 64*10^1058794+1 1058796 L4036 2017 Generalized Fermat 2351 119604848^131072+1 1058767 L4201 2022 Generalized Fermat 2352 119541900^131072+1 1058737 L4747 2022 Generalized Fermat 2353 119510296^131072+1 1058722 L4201 2022 Generalized Fermat 2354 119246256^131072+1 1058596 L4249 2022 Generalized Fermat 2355 119137704^131072+1 1058544 L4201 2022 Generalized Fermat 2356 118888350^131072+1 1058425 L4999 2022 Generalized Fermat 2357 599*2^3515959+1 1058412 L1823 2018 2358 118583824^131072+1 1058279 L4210 2022 Generalized Fermat 2359 118109876^131072+1 1058051 L4550 2022 Generalized Fermat 2360 117906758^131072+1 1057953 L4249 2022 Generalized Fermat 2361 117687318^131072+1 1057847 L4245 2022 Generalized Fermat 2362 117375862^131072+1 1057696 L4774 2022 Generalized Fermat 2363 117345018^131072+1 1057681 L4848 2022 Generalized Fermat 2364 117196584^131072+1 1057609 L4559 2022 Generalized Fermat 2365 117153716^131072+1 1057588 L4774 2022 Generalized Fermat 2366 117088740^131072+1 1057557 L4559 2022 Generalized Fermat 2367 116936156^131072+1 1057483 L5332 2022 Generalized Fermat 2368 116402336^131072+1 1057222 L4760 2022 Generalized Fermat 2369 7*2^3511774+1 1057151 p236 2008 Divides GF(3511773,6) 2370 116036228^131072+1 1057043 L4773 2022 Generalized Fermat 2371 116017862^131072+1 1057034 L4559 2022 Generalized Fermat 2372 115992582^131072+1 1057021 L4835 2022 Generalized Fermat 2373 115873312^131072+1 1056963 L4677 2022 Generalized Fermat 2374 1135*2^3510890+1 1056887 L1823 2018 2375 115704568^131072+1 1056880 L4559 2022 Generalized Fermat 2376 115479166^131072+1 1056769 L4774 2022 Generalized Fermat 2377 115409608^131072+1 1056735 L4774 2022 Generalized Fermat 2378 115256562^131072+1 1056659 L4559 2022 Generalized Fermat 2379 114687250^131072+1 1056377 L5007 2022 Generalized Fermat 2380 114643510^131072+1 1056356 L4659 2022 Generalized Fermat 2381 114340846^131072+1 1056205 L4559 2022 Generalized Fermat 2382 114159720^131072+1 1056115 L4787 2022 Generalized Fermat 2383 114055498^131072+1 1056063 L4387 2022 Generalized Fermat 2384 114009952^131072+1 1056040 L4387 2022 Generalized Fermat 2385 113904214^131072+1 1055987 L4559 2022 Generalized Fermat 2386 113807058^131072+1 1055939 L5157 2022 Generalized Fermat 2387 113550956^131072+1 1055810 L5578 2022 Generalized Fermat 2388 113521888^131072+1 1055796 L4387 2022 Generalized Fermat 2389 113431922^131072+1 1055751 L4559 2022 Generalized Fermat 2390 113328940^131072+1 1055699 L4787 2022 Generalized Fermat 2391 113327472^131072+1 1055698 L5467 2022 Generalized Fermat 2392 113325850^131072+1 1055698 L4559 2022 Generalized Fermat 2393 113313172^131072+1 1055691 L5005 2022 Generalized Fermat 2394 113191714^131072+1 1055630 L5056 2022 Generalized Fermat 2395 113170004^131072+1 1055619 L4584 2022 Generalized Fermat 2396 428639*2^3506452-1 1055553 L2046 2011 2397 112996304^131072+1 1055532 L5544 2022 Generalized Fermat 2398 112958834^131072+1 1055513 L5512 2022 Generalized Fermat 2399 112852910^131072+1 1055459 L5157 2022 Generalized Fermat 2400 112719374^131072+1 1055392 L4793 2022 Generalized Fermat 2401 112580428^131072+1 1055322 L5512 2022 Generalized Fermat 2402 112248096^131072+1 1055154 L5359 2022 Generalized Fermat 2403 112053266^131072+1 1055055 L5359 2022 Generalized Fermat 2404 112023072^131072+1 1055039 L5156 2022 Generalized Fermat 2405 111673524^131072+1 1054861 L5548 2022 Generalized Fermat 2406 111181588^131072+1 1054610 L4550 2022 Generalized Fermat 2407 104*383^408249+1 1054591 L2012 2021 2408 110866802^131072+1 1054449 L5547 2022 Generalized Fermat 2409 555*2^3502765+1 1054441 L1823 2018 2410 110824714^131072+1 1054427 L4201 2022 Generalized Fermat 2411 8300*171^472170+1 1054358 L5780 2023 2412 110428380^131072+1 1054223 L5543 2022 Generalized Fermat 2413 110406480^131072+1 1054212 L5051 2022 Generalized Fermat 2414 643*2^3501974+1 1054203 L1823 2018 2415 2*23^774109+1 1054127 g427 2014 Divides Phi(23^774109,2) 2416 1159*2^3501490+1 1054057 L2125 2018 2417 1001*2^3501038-1 1053921 A46 2024 2418 109678642^131072+1 1053835 L4559 2022 Generalized Fermat 2419 109654098^131072+1 1053823 L5143 2022 Generalized Fermat 2420 109142690^131072+1 1053557 L4201 2022 Generalized Fermat 2421 109082020^131072+1 1053525 L4773 2022 Generalized Fermat 2422 1189*2^3499042+1 1053320 L4724 2018 2423 108584736^131072+1 1053265 L5057 2022 Generalized Fermat 2424 108581414^131072+1 1053263 L5088 2022 Generalized Fermat 2425 108195632^131072+1 1053060 L5025 2022 Generalized Fermat 2426 108161744^131072+1 1053043 L4945 2022 Generalized Fermat 2427c 35*2^3498070-1 1053026 L1817 2025 2428 108080390^131072+1 1053000 L4945 2022 Generalized Fermat 2429 107979316^131072+1 1052947 L4559 2022 Generalized Fermat 2430 107922308^131072+1 1052916 L5025 2022 Generalized Fermat 2431 609*2^3497474+1 1052848 L1823 2018 2432 9*2^3497442+1 1052836 L1780 2012 Generalized Fermat, divides GF(3497441,10) 2433 107732730^131072+1 1052816 L5518 2022 Generalized Fermat 2434 107627678^131072+1 1052761 L5025 2022 Generalized Fermat 2435 107492880^131072+1 1052689 L4550 2022 Generalized Fermat 2436 107420312^131072+1 1052651 L4550 2022 Generalized Fermat 2437 107404768^131072+1 1052643 L4267 2022 Generalized Fermat 2438 107222132^131072+1 1052546 L5019 2022 Generalized Fermat 2439 107126228^131072+1 1052495 L5025 2022 Generalized Fermat 2440 87*2^3496188+1 1052460 L1576 2014 2441 106901434^131072+1 1052375 L4760 2022 Generalized Fermat 2442 106508704^131072+1 1052166 L5505 2022 Generalized Fermat 2443 106440698^131072+1 1052130 L4245 2022 Generalized Fermat 2444 106019242^131072+1 1051904 L5025 2022 Generalized Fermat 2445 105937832^131072+1 1051860 L4745 2022 Generalized Fermat 2446 783*2^3494129+1 1051841 L3824 2018 2447 105861526^131072+1 1051819 L5500 2022 Generalized Fermat 2448 105850338^131072+1 1051813 L5504 2022 Generalized Fermat 2449 105534478^131072+1 1051643 L5025 2022 Generalized Fermat 2450 105058710^131072+1 1051386 L5499 2022 Generalized Fermat 2451 104907548^131072+1 1051304 L4245 2022 Generalized Fermat 2452 104808996^131072+1 1051250 L4591 2022 Generalized Fermat 2453 104641854^131072+1 1051159 L4245 2022 Generalized Fermat 2454 51*2^3490971+1 1050889 L1823 2014 2455 1485*2^3490746+1 1050823 L1134 2021 2456 103828182^131072+1 1050715 L5072 2022 Generalized Fermat 2457 103605376^131072+1 1050593 L5056 2022 Generalized Fermat 2458e 3609*24^761179+1 1050592 A11 2025 2459 103289324^131072+1 1050419 L5044 2022 Generalized Fermat 2460 103280694^131072+1 1050414 L4745 2022 Generalized Fermat 2461 103209792^131072+1 1050375 L5025 2022 Generalized Fermat 2462 103094212^131072+1 1050311 L4245 2022 Generalized Fermat 2463 103013294^131072+1 1050266 L4745 2022 Generalized Fermat 2464 753*2^3488818+1 1050242 L1823 2018 2465 102507732^131072+1 1049986 L4245 2022 Generalized Fermat 2466 102469684^131072+1 1049965 L4245 2022 Generalized Fermat 2467 102397132^131072+1 1049925 L4720 2022 Generalized Fermat 2468 102257714^131072+1 1049847 L4245 2022 Generalized Fermat 2469 699*2^3487253+1 1049771 L1204 2018 2470 102050324^131072+1 1049732 L5036 2022 Generalized Fermat 2471 102021074^131072+1 1049716 L4245 2022 Generalized Fermat 2472 101915106^131072+1 1049656 L6123 2022 Generalized Fermat 2473 101856256^131072+1 1049623 L4774 2022 Generalized Fermat 2474 1001*2^3486566-1 1049564 L4518 2024 2475 249*2^3486411+1 1049517 L4045 2015 2476 195*2^3486379+1 1049507 L4108 2015 2477 101607438^131072+1 1049484 L4591 2022 Generalized Fermat 2478 4687*2^3485926+1 1049372 L5302 2023 2479 2691*2^3485924+1 1049372 L5302 2023 2480 6083*2^3485877+1 1049358 L5837 2023 2481 101328382^131072+1 1049328 L4591 2022 Generalized Fermat 2482 101270816^131072+1 1049295 L4245 2022 Generalized Fermat 2483 9757*2^3485666+1 1049295 L5284 2023 2484 8859*2^3484982+1 1049089 L5833 2023 2485 100865034^131072+1 1049067 L4387 2022 Generalized Fermat 2486 59912*5^1500861+1 1049062 L3772 2014 2487 495*2^3484656+1 1048989 L3035 2016 2488 100719472^131072+1 1048985 L5270 2022 Generalized Fermat 2489 100534258^131072+1 1048880 L4245 2022 Generalized Fermat 2490 100520930^131072+1 1048872 L4201 2022 Generalized Fermat 2491 4467*2^3484204+1 1048854 L5189 2023 2492 4873*2^3484142+1 1048835 L5710 2023 2493 100441116^131072+1 1048827 L4309 2022 Generalized Fermat 2494 (3*2^1742059)^2-3*2^1742059+1 1048825 A3 2023 Generalized unique 2495 3891*2^3484099+1 1048822 L5260 2023 2496 7833*2^3484060+1 1048811 L5830 2023 2497 100382228^131072+1 1048794 L4308 2022 Generalized Fermat 2498 100369508^131072+1 1048786 L5157 2022 Generalized Fermat 2499 100324226^131072+1 1048761 L4201 2022 Generalized Fermat 2500 3097*2^3483800+1 1048732 L5829 2023 2501 5873*2^3483573+1 1048664 L5710 2023 2502 2895*2^3483455+1 1048628 L5480 2023 2503 9029*2^3483337+1 1048593 L5393 2023 2504 100010426^131072+1 1048582 L5375 2022 Generalized Fermat 2505 5531*2^3483263+1 1048571 L5825 2023 2506 323*2^3482789+1 1048427 L1204 2016 2507 3801*2^3482723+1 1048408 L5517 2023 2508 99665972^131072+1 1048386 L4201 2022 Generalized Fermat 2509 99650934^131072+1 1048377 L5375 2022 Generalized Fermat 2510 99557826^131072+1 1048324 L5466 2022 Generalized Fermat 2511 8235*2^3482277+1 1048274 L5820 2023 2512 9155*2^3482129+1 1048230 L5226 2023 2513 99351950^131072+1 1048206 L5143 2022 Generalized Fermat 2514 4325*2^3481969+1 1048181 L5434 2023 2515 99189780^131072+1 1048113 L4201 2022 Generalized Fermat 2516 1149*2^3481694+1 1048098 L1823 2018 2517 98978354^131072+1 1047992 L5465 2022 Generalized Fermat 2518 6127*2^3481244+1 1047963 L5226 2023 2519 98922946^131072+1 1047960 L5453 2022 Generalized Fermat 2520 8903*2^3481217+1 1047955 L5226 2023 2521 3595*2^3481178+1 1047943 L5214 2023 2522 3799*2^3480810+1 1047832 L5226 2023 2523 6101*2^3480801+1 1047830 L5226 2023 2524 98652282^131072+1 1047804 L4201 2022 Generalized Fermat 2525 1740349*2^3480698+1 1047801 L5765 2023 Generalized Cullen 2526 98557818^131072+1 1047750 L5464 2022 Generalized Fermat 2527 98518362^131072+1 1047727 L5460 2022 Generalized Fermat 2528 5397*2^3480379+1 1047703 L5226 2023 2529 5845*2^3479972+1 1047580 L5517 2023 2530 98240694^131072+1 1047566 L4720 2022 Generalized Fermat 2531 98200338^131072+1 1047543 L4559 2022 Generalized Fermat 2532 701*2^3479779+1 1047521 L2125 2018 2533 98137862^131072+1 1047507 L4525 2022 Generalized Fermat 2534 813*2^3479728+1 1047506 L4724 2018 2535 7125*2^3479509+1 1047441 L5812 2023 2536 1971*2^3479061+1 1047306 L5226 2023 2537 1215*2^3478543+1 1047149 L5226 2023 2538 97512766^131072+1 1047143 L5460 2022 Generalized Fermat 2539 5985*2^3478217+1 1047052 L5387 2023 2540 3093*2^3478148+1 1047031 L5261 2023 2541 2145*2^3478095+1 1047015 L5387 2023 2542 6685*2^3478086+1 1047013 L5237 2023 2543 9603*2^3478084+1 1047012 L5178 2023 2544 1315*2^3477718+1 1046901 L5316 2023 2545 97046574^131072+1 1046870 L4956 2022 Generalized Fermat 2546 197*2^3477399+1 1046804 L2125 2015 2547 8303*2^3477201+1 1046746 L5387 2023 2548 96821302^131072+1 1046738 L5453 2022 Generalized Fermat 2549 5925*2^3477009+1 1046688 L5810 2023 2550 96734274^131072+1 1046686 L5297 2022 Generalized Fermat 2551 7825*2^3476524+1 1046542 L5174 2023 2552 96475576^131072+1 1046534 L4424 2022 Generalized Fermat 2553 8197*2^3476332+1 1046485 L5174 2023 2554 8529*2^3476111+1 1046418 L5387 2023 2555 8411*2^3476055+1 1046401 L5783 2023 2556 4319*2^3475955+1 1046371 L5803 2023 2557 96111850^131072+1 1046319 L4245 2022 Generalized Fermat 2558 95940796^131072+1 1046218 L4591 2022 Generalized Fermat 2559 6423*2^3475393+1 1046202 L5174 2023 2560 2281*2^3475340+1 1046185 L5302 2023 2561 7379*2^3474983+1 1046078 L5798 2023 2562 4*5^1496566+1 1046056 L4965 2023 Generalized Fermat 2563 95635202^131072+1 1046036 L5452 2021 Generalized Fermat 2564 95596816^131072+1 1046013 L4591 2021 Generalized Fermat 2565 4737*2^3474562+1 1045952 L5302 2023 2566 2407*2^3474406+1 1045904 L5557 2023 2567 95308284^131072+1 1045841 L4584 2021 Generalized Fermat 2568 491*2^3473837+1 1045732 L4343 2016 2569 2693*2^3473721+1 1045698 L5174 2023 2570 94978760^131072+1 1045644 L4201 2021 Generalized Fermat 2571 3375*2^3473210+1 1045544 L5294 2023 2572 8835*2^3472666+1 1045381 L5178 2023 2573 5615*2^3472377+1 1045294 L5174 2023 2574 1785*2^3472229+1 1045249 L875 2023 2575 8997*2^3472036+1 1045191 L5302 2023 2576 9473*2^3471885+1 1045146 L5294 2023 2577 7897*2^3471568+1 1045050 L5294 2023 2578 93950924^131072+1 1045025 L5425 2021 Generalized Fermat 2579 93886318^131072+1 1044985 L5433 2021 Generalized Fermat 2580 1061*2^3471354-1 1044985 L1828 2017 2581 1913*2^3471177+1 1044932 L5189 2023 2582 93773904^131072+1 1044917 L4939 2021 Generalized Fermat 2583 7723*2^3471074+1 1044902 L5189 2023 2584 4195*2^3470952+1 1044865 L5294 2023 2585 93514592^131072+1 1044760 L4591 2021 Generalized Fermat 2586 5593*2^3470520+1 1044735 L5387 2023 2587 3665*2^3469955+1 1044565 L5189 2023 2588 3301*2^3469708+1 1044490 L5261 2023 2589 6387*2^3469634+1 1044468 L5192 2023 2590 93035888^131072+1 1044467 L4245 2021 Generalized Fermat 2591 8605*2^3469570+1 1044449 L5387 2023 2592 1359*2^3468725+1 1044194 L5197 2023 2593 92460588^131072+1 1044114 L5254 2021 Generalized Fermat 2594 7585*2^3468338+1 1044078 L5197 2023 2595 1781*2^3468335+1 1044077 L5387 2023 2596 6885*2^3468181+1 1044031 L5197 2023 2597 4372*30^706773-1 1043994 L4955 2023 2598 7287*2^3467938+1 1043958 L5776 2023 2599 92198216^131072+1 1043953 L4738 2021 Generalized Fermat 2600 3163*2^3467710+1 1043889 L5517 2023 2601 6099*2^3467689+1 1043883 L5197 2023 2602 6665*2^3467627+1 1043864 L5174 2023 2603 4099*2^3467462+1 1043814 L5774 2023 2604 5285*2^3467445+1 1043809 L5189 2023 2605 1001*2^3467258-1 1043752 L4518 2024 2606 91767880^131072+1 1043686 L5051 2021 Generalized Fermat 2607 91707732^131072+1 1043649 L4591 2021 Generalized Fermat 2608 5935*2^3466880+1 1043639 L5197 2023 2609 91689894^131072+1 1043638 L4591 2021 Generalized Fermat 2610 91685784^131072+1 1043635 L4591 2021 Generalized Fermat 2611 8937*2^3466822+1 1043622 L5174 2023 2612 91655310^131072+1 1043616 L4659 2021 Generalized Fermat 2613 8347*2^3466736+1 1043596 L5770 2023 2614 8863*2^3465780+1 1043308 L5766 2023 2615 3895*2^3465744+1 1043297 L5640 2023 2616 91069366^131072+1 1043251 L5277 2021 Generalized Fermat 2617 91049202^131072+1 1043239 L4591 2021 Generalized Fermat 2618 91033554^131072+1 1043229 L4591 2021 Generalized Fermat 2619 8561*2^3465371+1 1043185 L5197 2023 2620 90942952^131072+1 1043172 L4387 2021 Generalized Fermat 2621 90938686^131072+1 1043170 L4387 2021 Generalized Fermat 2622 9971*2^3465233+1 1043144 L5488 2023 2623 90857490^131072+1 1043119 L4591 2021 Generalized Fermat 2624 3801*2^3464980+1 1043067 L5197 2023 2625 3099*2^3464739+1 1042994 L5284 2023 2626 90382348^131072+1 1042820 L4267 2021 Generalized Fermat 2627 641*2^3464061+1 1042790 L1444 2018 2628 6717*2^3463735+1 1042692 L5754 2023 2629 6015*2^3463561+1 1042640 L5387 2023 2630c 57*2^3463424-1 1042597 L1817 2025 2631 90006846^131072+1 1042583 L4773 2021 Generalized Fermat 2632 1667*2^3463355+1 1042577 L5226 2023 2633 2871*2^3463313+1 1042565 L5189 2023 2634 89977312^131072+1 1042565 L5070 2021 Generalized Fermat 2635 6007*2^3463048+1 1042486 L5226 2023 2636 89790434^131072+1 1042446 L5007 2021 Generalized Fermat 2637 9777*2^3462742+1 1042394 L5197 2023 2638 5215*2^3462740+1 1042393 L5174 2023 2639 8365*2^3462722+1 1042388 L5320 2023 2640 3597*2^3462056+1 1042187 L5174 2023 2641 2413*2^3461890+1 1042137 L5197 2023 2642 89285798^131072+1 1042125 L5157 2021 Generalized Fermat 2643 453*2^3461688+1 1042075 L3035 2016 2644 89113896^131072+1 1042016 L5338 2021 Generalized Fermat 2645 4401*2^3461476+1 1042012 L5197 2023 2646 9471*2^3461305+1 1041961 L5594 2023 2647 7245*2^3461070+1 1041890 L5449 2023 2648 3969*2^3460942+1 1041851 L5471 2023 Generalized Fermat 2649 4365*2^3460914+1 1041843 L5197 2023 2650 4613*2^3460861+1 1041827 L5614 2023 2651 88760062^131072+1 1041789 L4903 2021 Generalized Fermat 2652 5169*2^3460553+1 1041734 L5742 2023 2653 8395*2^3460530+1 1041728 L5284 2023 2654 5835*2^3460515+1 1041723 L5740 2023 2655 8059*2^3460246+1 1041642 L5350 2023 2656 571*2^3460216+1 1041632 L3035 2018 2657 6065*2^3460205+1 1041630 L5683 2023 2658 88243020^131072+1 1041457 L4774 2021 Generalized Fermat 2659 88166868^131072+1 1041408 L5277 2021 Generalized Fermat 2660 6237*2^3459386+1 1041383 L5509 2023 2661 88068088^131072+1 1041344 L4933 2021 Generalized Fermat 2662 4029*2^3459062+1 1041286 L5727 2023 2663 87920992^131072+1 1041249 L4249 2021 Generalized Fermat 2664 7055*2^3458909+1 1041240 L5509 2023 2665 7297*2^3458768+1 1041197 L5726 2023 2666 2421*2^3458432+1 1041096 L5725 2023 2667 7907*2^3458207+1 1041028 L5509 2023 2668 87547832^131072+1 1041006 L4591 2021 Generalized Fermat 2669 87454694^131072+1 1040946 L4672 2021 Generalized Fermat 2670 7839*2^3457846+1 1040920 L5231 2023 2671 87370574^131072+1 1040891 L5297 2021 Generalized Fermat 2672 87352356^131072+1 1040879 L4387 2021 Generalized Fermat 2673 87268788^131072+1 1040825 L4917 2021 Generalized Fermat 2674 87192538^131072+1 1040775 L4861 2021 Generalized Fermat 2675 5327*2^3457363+1 1040774 L5715 2023 2676 87116452^131072+1 1040725 L5297 2021 Generalized Fermat 2677 87039658^131072+1 1040675 L5297 2021 Generalized Fermat 2678 6059*2^3457001+1 1040665 L5197 2023 2679 8953*2^3456938+1 1040646 L5724 2023 2680 8669*2^3456759+1 1040593 L5710 2023 2681 86829162^131072+1 1040537 L5265 2021 Generalized Fermat 2682 4745*2^3456167+1 1040414 L5705 2023 2683 8213*2^3456141+1 1040407 L5703 2023 2684 86413544^131072+1 1040264 L4914 2021 Generalized Fermat 2685 86347638^131072+1 1040221 L4848 2021 Generalized Fermat 2686 86295564^131072+1 1040186 L5030 2021 Generalized Fermat 2687 1155*2^3455254+1 1040139 L4711 2017 2688 37292*5^1487989+1 1040065 L3553 2013 2689 86060696^131072+1 1040031 L5057 2021 Generalized Fermat 2690 5525*2^3454069+1 1039783 L5651 2023 2691 4235*2^3453573+1 1039633 L5650 2023 2692 6441*2^3453227+1 1039529 L5683 2023 2693 4407*2^3453195+1 1039519 L5650 2023 2694 9867*2^3453039+1 1039473 L5686 2023 2695 85115888^131072+1 1039403 L4909 2021 Generalized Fermat 2696 4857*2^3452675+1 1039363 L5600 2023 2697 8339*2^3452667+1 1039361 L5651 2023 2698 84924212^131072+1 1039275 L4309 2021 Generalized Fermat 2699 7079*2^3452367+1 1039270 L5650 2023 2700 5527*2^3452342+1 1039263 L5679 2023 2701 84817722^131072+1 1039203 L4726 2021 Generalized Fermat 2702 84765338^131072+1 1039168 L4245 2021 Generalized Fermat 2703 84757790^131072+1 1039163 L5051 2021 Generalized Fermat 2704 84723284^131072+1 1039140 L5051 2021 Generalized Fermat 2705 84715930^131072+1 1039135 L4963 2021 Generalized Fermat 2706 84679936^131072+1 1039111 L4864 2021 Generalized Fermat 2707 3719*2^3451667+1 1039059 L5294 2023 2708 6725*2^3451455+1 1038996 L5685 2023 2709 8407*2^3451334+1 1038959 L5524 2023 2710 84445014^131072+1 1038952 L4909 2021 Generalized Fermat 2711 84384358^131072+1 1038912 L4622 2021 Generalized Fermat 2712 4*10^1038890+1 1038891 L4789 2024 Generalized Fermat 2713 1623*2^3451109+1 1038891 L5308 2023 2714 8895*2^3450982+1 1038854 L5666 2023 2715 84149050^131072+1 1038753 L5033 2021 Generalized Fermat 2716 2899*2^3450542+1 1038721 L5600 2023 2717 6337*2^3449506+1 1038409 L5197 2023 2718 4381*2^3449456+1 1038394 L5392 2023 2719 2727*2^3449326+1 1038355 L5421 2023 2720 2877*2^3449311+1 1038350 L5517 2023 2721 7507*2^3448920+1 1038233 L5284 2023 2722 3629*2^3448919+1 1038232 L5192 2023 2723 83364886^131072+1 1038220 L4591 2021 Generalized Fermat 2724 83328182^131072+1 1038195 L5051 2021 Generalized Fermat 2725 1273*2^3448551-1 1038121 L1828 2012 2726 1461*2^3448423+1 1038082 L4944 2023 2727 3235*2^3448352+1 1038061 L5571 2023 2728 4755*2^3448344+1 1038059 L5524 2023 2729 5655*2^3448288+1 1038042 L5651 2023 2730 4873*2^3448176+1 1038009 L5524 2023 2731 83003850^131072+1 1037973 L4963 2021 Generalized Fermat 2732 8139*2^3447967+1 1037946 L5652 2023 2733 1065*2^3447906+1 1037927 L4664 2017 2734 1717*2^3446756+1 1037581 L5517 2023 2735 6357*2^3446434+1 1037484 L5284 2023 2736 1155*2^3446253+1 1037429 L3035 2017 2737 9075*2^3446090+1 1037381 L5648 2023 2738 82008736^131072+1 1037286 L4963 2021 Generalized Fermat 2739 82003030^131072+1 1037282 L4410 2021 Generalized Fermat 2740 1483*2^3445724+1 1037270 L5650 2023 2741 81976506^131072+1 1037264 L4249 2021 Generalized Fermat 2742 2223*2^3445682+1 1037257 L5647 2023 2743 8517*2^3445488+1 1037200 L5302 2023 2744 2391*2^3445281+1 1037137 L5596 2023 2745 6883*2^3444784+1 1036988 L5264 2023 2746 81477176^131072+1 1036916 L4245 2020 Generalized Fermat 2747 81444036^131072+1 1036893 L4245 2020 Generalized Fermat 2748 8037*2^3443920+1 1036728 L5626 2023 2749 1375*2^3443850+1 1036706 L5192 2023 2750 81096098^131072+1 1036649 L4249 2020 Generalized Fermat 2751 27288429267119080686...(1036580 other digits)...83679577406643267931 1036620 p384 2015 2752 943*2^3442990+1 1036447 L4687 2017 2753 7743*2^3442814+1 1036395 L5514 2023 2754 5511*2^3442468+1 1036290 L5514 2022 2755 80284312^131072+1 1036076 L5051 2020 Generalized Fermat 2756 6329*2^3441717+1 1036064 L5631 2022 2757 3957*2^3441568+1 1036019 L5476 2022 2758 80146408^131072+1 1035978 L5051 2020 Generalized Fermat 2759 4191*2^3441427+1 1035977 L5189 2022 2760 2459*2^3441331+1 1035948 L5514 2022 2761 4335*2^3441306+1 1035940 L5178 2022 2762 2331*2^3441249+1 1035923 L5626 2022 2763 79912550^131072+1 1035812 L5186 2020 Generalized Fermat 2764 79801426^131072+1 1035733 L4245 2020 Generalized Fermat 2765 79789806^131072+1 1035725 L4658 2020 Generalized Fermat 2766 2363*2^3440385+1 1035663 L5625 2022 2767 5265*2^3440332+1 1035647 L5421 2022 2768 6023*2^3440241+1 1035620 L5517 2022 2769 943*2^3440196+1 1035606 L1448 2017 2770 6663*2^3439901+1 1035518 L5624 2022 2771 79485098^131072+1 1035507 L5130 2020 Generalized Fermat 2772 79428414^131072+1 1035466 L4793 2020 Generalized Fermat 2773 79383608^131072+1 1035434 L4387 2020 Generalized Fermat 2774 5745*2^3439450+1 1035382 L5178 2022 2775e 5889*24^750125+1 1035335 A32 2025 2776 79201682^131072+1 1035303 L5051 2020 Generalized Fermat 2777 5109*2^3439090+1 1035273 L5594 2022 2778 543*2^3438810+1 1035188 L3035 2017 2779 625*2^3438572+1 1035117 L1355 2017 Generalized Fermat 2780 3325*2^3438506+1 1035097 L5619 2022 2781 78910032^131072+1 1035093 L5051 2020 Generalized Fermat 2782 78880690^131072+1 1035072 L5159 2020 Generalized Fermat 2783 78851276^131072+1 1035051 L4928 2020 Generalized Fermat 2784 4775*2^3438217+1 1035011 L5618 2022 2785 78714954^131072+1 1034953 L5130 2020 Generalized Fermat 2786 6963*2^3437988+1 1034942 L5616 2022 2787 74*941^348034-1 1034913 L5410 2020 2788 7423*2^3437856+1 1034902 L5192 2022 2789 6701*2^3437801+1 1034886 L5615 2022 2790 5741*2^3437773+1 1034877 L5517 2022 2791 488639*2^3437688-1 1034853 L5327 2024 2792 78439440^131072+1 1034753 L5051 2020 Generalized Fermat 2793 5601*2^3437259+1 1034722 L5612 2022 2794 7737*2^3437192+1 1034702 L5611 2022 2795 113*2^3437145+1 1034686 L4045 2015 2796 78240016^131072+1 1034608 L4245 2020 Generalized Fermat 2797 6387*2^3436719+1 1034560 L5613 2022 2798 78089172^131072+1 1034498 L4245 2020 Generalized Fermat 2799 2921*2^3436299+1 1034433 L5231 2022 2800 9739*2^3436242+1 1034416 L5178 2022 2801 77924964^131072+1 1034378 L5051 2020 Generalized Fermat 2802 77918854^131072+1 1034374 L4760 2020 Generalized Fermat 2803 1147*2^3435970+1 1034334 L3035 2017 2804 4589*2^3435707+1 1034255 L5174 2022 2805 7479*2^3435683+1 1034248 L5421 2022 2806 2863*2^3435616+1 1034227 L5197 2022 2807 77469882^131072+1 1034045 L4591 2020 Generalized Fermat 2808 9863*2^3434697+1 1033951 L5189 2022 2809 4065*2^3434623+1 1033929 L5197 2022 2810 77281404^131072+1 1033906 L4963 2020 Generalized Fermat 2811 9187*2^3434126+1 1033779 L5600 2022 2812 9531*2^3434103+1 1033772 L5601 2022 2813 1757*2^3433547+1 1033604 L5594 2022 2814 1421*2^3433099+1 1033469 L5237 2022 2815 3969*2^3433007+1 1033442 L5189 2022 2816 6557*2^3433003+1 1033441 L5261 2022 2817 7335*2^3432982+1 1033435 L5231 2022 2818 7125*2^3432836+1 1033391 L5594 2022 2819 2517*2^3432734+1 1033360 L5231 2022 2820 911*2^3432643+1 1033332 L1355 2017 2821 5413*2^3432626+1 1033328 L5231 2022 2822 76416048^131072+1 1033265 L4672 2020 Generalized Fermat 2823 3753*2^3432413+1 1033263 L5261 2022 2824e 2164*24^748621+1 1033259 A62 2025 2825 2691*2^3432191+1 1033196 L5585 2022 2826 3933*2^3432125+1 1033177 L5387 2022 2827 76026988^131072+1 1032975 L5094 2020 Generalized Fermat 2828 76018874^131072+1 1032969 L4774 2020 Generalized Fermat 2829e 5889*24^748409+1 1032967 A15 2025 2830 1435*2^3431284+1 1032923 L5587 2022 2831 75861530^131072+1 1032851 L5053 2020 Generalized Fermat 2832 6783*2^3430781+1 1032772 L5261 2022 2833 8079*2^3430683+1 1032743 L5585 2022 2834 75647276^131072+1 1032690 L4677 2020 Generalized Fermat 2835 75521414^131072+1 1032595 L4584 2020 Generalized Fermat 2836 6605*2^3430187+1 1032593 L5463 2022 2837 3761*2^3430057+1 1032554 L5582 2022 2838 6873*2^3429937+1 1032518 L5294 2022 2839 8067*2^3429891+1 1032504 L5581 2022 2840 3965*2^3429719+1 1032452 L5579 2022 2841 3577*2^3428812+1 1032179 L5401 2022 2842 8747*2^3428755+1 1032163 L5493 2022 2843 9147*2^3428638+1 1032127 L5493 2022 2844 3899*2^3428535+1 1032096 L5174 2022 2845 74833516^131072+1 1032074 L5102 2020 Generalized Fermat 2846 74817490^131072+1 1032062 L4591 2020 Generalized Fermat 2847 8891*2^3428303+1 1032026 L5532 2022 2848 793181*20^793181+1 1031959 L5765 2023 Generalized Cullen 2849 2147*2^3427371+1 1031745 L5189 2022 2850 74396818^131072+1 1031741 L4791 2020 Generalized Fermat 2851 74381296^131072+1 1031729 L4550 2020 Generalized Fermat 2852 74363146^131072+1 1031715 L4898 2020 Generalized Fermat 2853 1127*2^3427219+1 1031699 L3035 2017 2854 74325990^131072+1 1031687 L5024 2020 Generalized Fermat 2855 3021*2^3427059+1 1031652 L5554 2022 2856 3255*2^3426983+1 1031629 L5231 2022 2857 1733*2^3426753+1 1031559 L5565 2022 2858 2339*2^3426599+1 1031513 L5237 2022 2859 4729*2^3426558+1 1031501 L5493 2022 2860 73839292^131072+1 1031313 L4550 2020 Generalized Fermat 2861 5445*2^3425839+1 1031285 L5237 2022 2862 159*2^3425766+1 1031261 L4045 2015 2863 73690464^131072+1 1031198 L4884 2020 Generalized Fermat 2864 3405*2^3425045+1 1031045 L5261 2022 2865 73404316^131072+1 1030976 L5011 2020 Generalized Fermat 2866 1695*2^3424517+1 1030886 L5387 2022 2867 4715*2^3424433+1 1030861 L5557 2022 2868 5525*2^3424423+1 1030858 L5387 2022 2869 8615*2^3424231+1 1030801 L5261 2022 2870 5805*2^3424200+1 1030791 L5237 2022 2871 73160610^131072+1 1030787 L4550 2020 Generalized Fermat 2872 73132228^131072+1 1030765 L4905 2020 Generalized Fermat 2873 73099962^131072+1 1030740 L5068 2020 Generalized Fermat 2874 2109*2^3423798-3027*2^988658+1 1030670 CH13 2023 Arithmetic progression (3,d=2109*2^3423797-3027*2^988658) 2875 2109*2^3423797+1 1030669 L5197 2022 2876 4929*2^3423494+1 1030579 L5554 2022 2877 2987*2^3422911+1 1030403 L5226 2022 2878 72602370^131072+1 1030351 L4201 2020 Generalized Fermat 2879 4843*2^3422644+1 1030323 L5553 2022 2880 5559*2^3422566+1 1030299 L5555 2022 2881 7583*2^3422501+1 1030280 L5421 2022 2882 1119*2^3422189+1 1030185 L1355 2017 2883 2895*2^3422031-143157*2^2144728+1 1030138 p423 2023 Arithmetic progression (3,d=2895*2^3422030-143157*2^2144728) 2884 2895*2^3422030+1 1030138 L5237 2022 2885 2835*2^3421697+1 1030037 L5387 2022 2886 3363*2^3421353+1 1029934 L5226 2022 2887 72070092^131072+1 1029932 L4201 2020 Generalized Fermat 2888 9147*2^3421264+1 1029908 L5237 2022 2889 9705*2^3420915+1 1029803 L5540 2022 2890 1005*2^3420846+1 1029781 L2714 2017 Divides GF(3420844,10) 2891 8919*2^3420758+1 1029755 L5226 2022 2892 71732900^131072+1 1029665 L5053 2020 Generalized Fermat 2893 71679108^131072+1 1029623 L5072 2020 Generalized Fermat 2894 5489*2^3420137+1 1029568 L5174 2022 2895 9957*2^3420098+1 1029557 L5237 2022 2896 93*10^1029523-1 1029525 L4789 2019 Near-repdigit 2897 71450224^131072+1 1029440 L5029 2020 Generalized Fermat 2898d 1962*5^1472736-1 1029402 A11 2025 2899 7213*2^3419370+1 1029337 L5421 2022 2900 7293*2^3419264+1 1029305 L5192 2022 2901 975*2^3419230+1 1029294 L3545 2017 2902 4191*2^3419227+1 1029294 L5421 2022 2903 28080*745^358350-1 1029242 L4189 2024 2904 2393*2^3418921+1 1029202 L5197 2022 2905 999*2^3418885+1 1029190 L3035 2017 2906 2925*2^3418543+1 1029088 L5174 2022 2907 70960658^131072+1 1029049 L5039 2020 Generalized Fermat 2908 70948704^131072+1 1029039 L4660 2020 Generalized Fermat 2909 70934282^131072+1 1029028 L5067 2020 Generalized Fermat 2910 7383*2^3418297+1 1029014 L5189 2022 2911 70893680^131072+1 1028995 L5063 2020 Generalized Fermat 2912 907*2^3417890+1 1028891 L3035 2017 2913 5071*2^3417884+1 1028890 L5237 2022 2914 3473*2^3417741+1 1028847 L5541 2022 2915 191249*2^3417696-1 1028835 L1949 2010 2916 70658696^131072+1 1028806 L5051 2020 Generalized Fermat 2917 3299*2^3417329+1 1028723 L5421 2022 2918 6947*2^3416979+1 1028618 L5540 2022 2919 70421038^131072+1 1028615 L4984 2020 Generalized Fermat 2920 8727*2^3416652+1 1028519 L5226 2022 2921 8789*2^3416543+1 1028486 L5197 2022 2922 70050828^131072+1 1028315 L5021 2020 Generalized Fermat 2923 7917*2^3415947+1 1028307 L5537 2022 2924 70022042^131072+1 1028291 L4201 2020 Generalized Fermat 2925 2055*2^3415873+1 1028284 L5535 2022 2926 4731*2^3415712+1 1028236 L5192 2022 2927 2219*2^3415687+1 1028228 L5178 2022 2928 69915032^131072+1 1028204 L4591 2020 Generalized Fermat 2929 5877*2^3415419+1 1028148 L5532 2022 2930 3551*2^3415275+1 1028104 L5231 2022 2931 69742382^131072+1 1028063 L5053 2020 Generalized Fermat 2932 2313*2^3415046+1 1028035 L5226 2022 2933 69689592^131072+1 1028020 L4387 2020 Generalized Fermat 2934 7637*2^3414875+1 1027984 L5507 2022 2935 2141*2^3414821+1 1027967 L5226 2022 2936 69622572^131072+1 1027965 L4909 2020 Generalized Fermat 2937 3667*2^3414686+1 1027927 L5226 2022 2938 69565722^131072+1 1027919 L4387 2020 Generalized Fermat 2939 6159*2^3414623+1 1027908 L5226 2022 2940 69534788^131072+1 1027894 L5029 2020 Generalized Fermat 2941e 4606*24^744714+1 1027867 A11 2025 2942e 2586*24^744604+1 1027715 A11 2025 2943 4577*2^3413539+1 1027582 L5387 2022 2944 5137*2^3413524+1 1027577 L5261 2022 2945 8937*2^3413364+1 1027529 L5527 2022 2946 8829*2^3413339+1 1027522 L5531 2022 2947 7617*2^3413315+1 1027515 L5197 2022 2948 68999820^131072+1 1027454 L5044 2020 Generalized Fermat 2949 3141*2^3413112+1 1027453 L5463 2022 2950 8831*2^3412931+1 1027399 L5310 2022 2951 68924112^131072+1 1027391 L4745 2020 Generalized Fermat 2952 68918852^131072+1 1027387 L5021 2020 Generalized Fermat 2953 5421*2^3412877+1 1027383 L5310 2022 2954 9187*2^3412700+1 1027330 L5337 2022 2955 68811158^131072+1 1027298 L4245 2020 Generalized Fermat 2956 8243*2^3412577+1 1027292 L5524 2022 2957 1751*2^3412565+1 1027288 L5523 2022 2958 9585*2^3412318+1 1027215 L5197 2022 2959 9647*2^3412247+1 1027193 L5178 2022 2960 3207*2^3412108+1 1027151 L5189 2022 2961 479*2^3411975+1 1027110 L2873 2016 2962 245*2^3411973+1 1027109 L1935 2015 2963 177*2^3411847+1 1027071 L4031 2015 2964 68536972^131072+1 1027071 L5027 2020 Generalized Fermat 2965 9963*2^3411566+1 1026988 L5237 2022 2966 68372810^131072+1 1026934 L4956 2020 Generalized Fermat 2967 9785*2^3411223+1 1026885 L5189 2022 2968 5401*2^3411136+1 1026858 L5261 2022 2969 68275006^131072+1 1026853 L4963 2020 Generalized Fermat 2970 9431*2^3411105+1 1026849 L5237 2022 2971 8227*2^3410878+1 1026781 L5316 2022 2972 4735*2^3410724+1 1026734 L5226 2022 2973 9515*2^3410707+1 1026730 L5237 2022 2974 6783*2^3410690+1 1026724 L5434 2022 2975 8773*2^3410558+1 1026685 L5261 2022 2976 4629*2^3410321+1 1026613 L5517 2022 2977 67894288^131072+1 1026535 L5025 2020 Generalized Fermat 2978 113*2^3409934-1 1026495 L2484 2014 2979 5721*2^3409839+1 1026468 L5226 2022 2980 67725850^131072+1 1026393 L5029 2020 Generalized Fermat 2981 6069*2^3409493+1 1026364 L5237 2022 2982 1981*910^346850+1 1026347 L1141 2021 2983 5317*2^3409236+1 1026287 L5471 2022 2984 7511*2^3408985+1 1026211 L5514 2022 2985 7851*2^3408909+1 1026188 L5176 2022 2986 67371416^131072+1 1026094 L4550 2020 Generalized Fermat 2987 6027*2^3408444+1 1026048 L5239 2022 2988 59*2^3408416-1 1026038 L426 2010 2989 2153*2^3408333+1 1026014 L5237 2022 2990 9831*2^3408056+1 1025932 L5233 2022 2991 3615*2^3408035+1 1025925 L5217 2022 2992 6343*2^3407950+1 1025899 L5226 2022 2993 8611*2^3407516+1 1025769 L5509 2022 2994 66982940^131072+1 1025765 L4249 2020 Generalized Fermat 2995 7111*2^3407452+1 1025750 L5508 2022 2996 66901180^131072+1 1025696 L5018 2020 Generalized Fermat 2997 6945*2^3407256+1 1025691 L5507 2022 2998 6465*2^3407229+1 1025682 L5301 2022 2999 1873*2^3407156+1 1025660 L5440 2022 3000 7133*2^3406377+1 1025426 L5279 2022 3001 7063*2^3406122+1 1025349 L5178 2022 3002 3105*2^3405800+1 1025252 L5502 2022 3003 953*2^3405729+1 1025230 L3035 2017 3004 66272848^131072+1 1025159 L5013 2020 Generalized Fermat 3005 66131722^131072+1 1025037 L4530 2020 Generalized Fermat 3006 373*2^3404702+1 1024921 L3924 2016 3007 7221*2^3404507+1 1024863 L5231 2022 3008 6641*2^3404259+1 1024788 L5501 2022 3009 9225*2^3404209+1 1024773 L5250 2022 3010 65791182^131072+1 1024743 L4623 2019 Generalized Fermat 3011 833*2^3403765+1 1024639 L3035 2017 3012 65569854^131072+1 1024552 L4210 2019 Generalized Fermat 3013 2601*2^3403459+1 1024547 L5350 2022 3014 8835*2^3403266+1 1024490 L5161 2022 3015 7755*2^3403010+1 1024412 L5161 2022 3016 3123*2^3402834+1 1024359 L5260 2022 3017 65305572^131072+1 1024322 L5001 2019 Generalized Fermat 3018 65200798^131072+1 1024230 L4999 2019 Generalized Fermat 3019 1417*2^3402246+1 1024182 L5497 2022 3020 5279*2^3402241+1 1024181 L5250 2022 3021 6651*2^3402137+1 1024150 L5476 2022 3022 1779*2^3401715+1 1024022 L5493 2022 3023 64911056^131072+1 1023977 L4870 2019 Generalized Fermat 3024 8397*2^3401502+1 1023959 L5476 2022 3025 4057*2^3401472+1 1023949 L5492 2022 3026 64791668^131072+1 1023872 L4905 2019 Generalized Fermat 3027 4095*2^3401174+1 1023860 L5418 2022 3028 5149*2^3400970+1 1023798 L5176 2022 3029 4665*2^3400922+1 1023784 L5308 2022 3030 24*414^391179+1 1023717 L4273 2016 3031 64568930^131072+1 1023676 L4977 2019 Generalized Fermat 3032 64506894^131072+1 1023621 L4977 2019 Generalized Fermat 3033 1725*2^3400371+1 1023617 L5197 2022 3034 64476916^131072+1 1023595 L4997 2019 Generalized Fermat 3035 9399*2^3400243+1 1023580 L5488 2022 3036 1241*2^3400127+1 1023544 L5279 2022 3037 1263*2^3399876+1 1023468 L5174 2022 3038 1167*2^3399748+1 1023430 L3545 2017 3039 64024604^131072+1 1023194 L4591 2019 Generalized Fermat 3040e 3526*24^741308+1 1023166 A66 2025 3041 7679*2^3398569+1 1023076 L5295 2022 3042 6447*2^3398499+1 1023054 L5302 2022 3043 63823568^131072+1 1023015 L4585 2019 Generalized Fermat 3044 2785*2^3398332+1 1023004 L5250 2022 3045 611*2^3398273+1 1022985 L3035 2017 3046 2145*2^3398034+1 1022914 L5302 2022 3047 3385*2^3397254+1 1022679 L5161 2022 3048 4*3^2143374+1 1022650 L4965 2020 Generalized Fermat 3049 4463*2^3396657+1 1022500 L5476 2022 3050 2889*2^3396450+1 1022437 L5178 2022 3051 8523*2^3396448+1 1022437 L5231 2022 3052 63168480^131072+1 1022428 L4861 2019 Generalized Fermat 3053 63165756^131072+1 1022425 L4987 2019 Generalized Fermat 3054 3349*2^3396326+1 1022400 L5480 2022 3055 63112418^131072+1 1022377 L4201 2019 Generalized Fermat 3056 4477*2^3395786+1 1022238 L5161 2022 3057 3853*2^3395762+1 1022230 L5302 2022 3058 2693*2^3395725+1 1022219 L5284 2022 3059 8201*2^3395673+1 1022204 L5178 2022 3060 255*2^3395661+1 1022199 L3898 2014 3061 1049*2^3395647+1 1022195 L3035 2017 3062 9027*2^3395623+1 1022189 L5263 2022 3063 2523*2^3395549+1 1022166 L5472 2022 3064 3199*2^3395402+1 1022122 L5264 2022 3065 342924651*2^3394939-1 1021988 L4166 2017 3066 3825*2^3394947+1 1021985 L5471 2022 3067 1895*2^3394731+1 1021920 L5174 2022 3068 62276102^131072+1 1021618 L4715 2019 Generalized Fermat 3069 555*2^3393389+1 1021515 L2549 2017 3070 1865*2^3393387+1 1021515 L5237 2022 3071 4911*2^3393373+1 1021511 L5231 2022 3072 62146946^131072+1 1021500 L4720 2019 Generalized Fermat 3073 5229*2^3392587+1 1021275 L5463 2022 3074 61837354^131072+1 1021215 L4656 2019 Generalized Fermat 3075 609*2^3392301+1 1021188 L3035 2017 3076 9787*2^3392236+1 1021169 L5350 2022 3077 303*2^3391977+1 1021090 L2602 2016 3078 805*2^3391818+1 1021042 L4609 2017 3079 6475*2^3391496+1 1020946 L5174 2022 3080 67*2^3391385-1 1020911 L1959 2014 3081 61267078^131072+1 1020688 L4923 2019 Generalized Fermat 3082 4639*2^3390634+1 1020687 L5189 2022 3083 5265*2^3390581+1 1020671 L5456 2022 3084 663*2^3390469+1 1020636 L4316 2017 3085 6945*2^3390340+1 1020598 L5174 2022 3086 5871*2^3390268+1 1020577 L5231 2022 3087 7443*2^3390141+1 1020539 L5226 2022 3088 5383*2^3389924+1 1020473 L5350 2021 3089 61030988^131072+1 1020468 L4898 2019 Generalized Fermat 3090 9627*2^3389331+1 1020295 L5231 2021 3091 60642326^131072+1 1020104 L4591 2019 Generalized Fermat 3092 8253*2^3388624+1 1020082 L5226 2021 3093 3329*2^3388472-1 1020036 L4841 2020 3094 4695*2^3388393+1 1020012 L5237 2021 3095 60540024^131072+1 1020008 L4591 2019 Generalized Fermat 3096 7177*2^3388144+1 1019937 L5174 2021 3097 60455792^131072+1 1019929 L4760 2019 Generalized Fermat 3098 9611*2^3388059+1 1019912 L5435 2021 3099 1833*2^3387760+1 1019821 L5226 2021 3100 9003*2^3387528+1 1019752 L5189 2021 3101 3161*2^3387141+1 1019635 L5226 2021 3102 7585*2^3387110+1 1019626 L5189 2021 3103 60133106^131072+1 1019624 L4942 2019 Generalized Fermat 3104 453*2^3387048+1 1019606 L2602 2016 3105 5177*2^3386919+1 1019568 L5226 2021 3106 8739*2^3386813+1 1019537 L5226 2021 3107 2875*2^3386638+1 1019484 L5226 2021 3108 7197*2^3386526+1 1019450 L5178 2021 3109 1605*2^3386229+1 1019360 L5226 2021 3110 8615*2^3386181+1 1019346 L5442 2021 3111 3765*2^3386141+1 1019334 L5174 2021 3112 5379*2^3385806+1 1019233 L5237 2021 3113 59720358^131072+1 1019232 L4656 2019 Generalized Fermat 3114 59692546^131072+1 1019206 L4747 2019 Generalized Fermat 3115 59515830^131072+1 1019037 L4737 2019 Generalized Fermat 3116 173198*5^1457792-1 1018959 L3720 2013 3117 59405420^131072+1 1018931 L4645 2019 Generalized Fermat 3118 2109*2^3384733+1 1018910 L5261 2021 3119 7067*2^3384667+1 1018891 L5439 2021 3120 59362002^131072+1 1018890 L4249 2019 Generalized Fermat 3121 59305348^131072+1 1018835 L4932 2019 Generalized Fermat 3122 2077*2^3384472+1 1018831 L5237 2021 3123 59210784^131072+1 1018745 L4926 2019 Generalized Fermat 3124 59161754^131072+1 1018697 L4928 2019 Generalized Fermat 3125 9165*2^3383917+1 1018665 L5435 2021 3126 5579*2^3383209+1 1018452 L5434 2021 3127 8241*2^3383131+1 1018428 L5387 2021 3128 7409*2^3382869+1 1018349 L5161 2021 3129 4883*2^3382813+1 1018332 L5161 2021 3130 9783*2^3382792+1 1018326 L5189 2021 3131 58589880^131072+1 1018145 L4923 2019 Generalized Fermat 3132 58523466^131072+1 1018080 L4802 2019 Generalized Fermat 3133 8877*2^3381936+1 1018069 L5429 2021 3134 58447816^131072+1 1018006 L4591 2019 Generalized Fermat 3135 58447642^131072+1 1018006 L4591 2019 Generalized Fermat 3136 6675*2^3381688+1 1017994 L5197 2021 3137 2445*2^3381129+1 1017825 L5231 2021 3138 58247118^131072+1 1017811 L4309 2019 Generalized Fermat 3139 3381*2^3380585+1 1017662 L5237 2021 3140 7899*2^3380459+1 1017624 L5421 2021 3141 5945*2^3379933+1 1017465 L5418 2021 3142 1425*2^3379921+1 1017461 L1134 2020 3143 4975*2^3379420+1 1017311 L5161 2021 3144 57704312^131072+1 1017278 L4591 2019 Generalized Fermat 3145 57694224^131072+1 1017268 L4656 2019 Generalized Fermat 3146 57594734^131072+1 1017169 L4656 2019 Generalized Fermat 3147 9065*2^3378851+1 1017140 L5414 2021 3148 2369*2^3378761+1 1017112 L5197 2021 3149 57438404^131072+1 1017015 L4745 2019 Generalized Fermat 3150 621*2^3378148+1 1016927 L3035 2017 3151 7035*2^3378141+1 1016926 L5408 2021 3152 2067*2^3378115+1 1016918 L5405 2021 3153 1093*2^3378000+1 1016883 L4583 2017 3154 9577*2^3377612+1 1016767 L5406 2021 3155 861*2^3377601+1 1016763 L4582 2017 3156 5811*2^3377016+1 1016587 L5261 2021 3157 2285*2^3376911+1 1016555 L5261 2021 3158 4199*2^3376903+1 1016553 L5174 2021 3159 6405*2^3376890+1 1016549 L5269 2021 3160 1783*2^3376810+1 1016525 L5261 2021 3161 5401*2^3376768+1 1016513 L5174 2021 3162 56917336^131072+1 1016496 L4729 2019 Generalized Fermat 3163 2941*2^3376536+1 1016443 L5174 2021 3164 1841*2^3376379+1 1016395 L5401 2021 3165 6731*2^3376133+1 1016322 L5261 2021 3166 56735576^131072+1 1016314 L4760 2019 Generalized Fermat 3167 8121*2^3375933+1 1016262 L5356 2021 3168 5505*2^3375777+1 1016214 L5174 2021 3169 56584816^131072+1 1016162 L4289 2019 Generalized Fermat 3170 3207*2^3375314+1 1016075 L5237 2021 3171 56459558^131072+1 1016036 L4892 2019 Generalized Fermat 3172 5307*2^3374939+1 1015962 L5392 2021 3173 56383242^131072+1 1015959 L4889 2019 Generalized Fermat 3174 56307420^131072+1 1015883 L4843 2019 Generalized Fermat 3175 208003!-1 1015843 p394 2016 Factorial 3176 6219*2^3374198+1 1015739 L5393 2021 3177 3777*2^3374072+1 1015701 L5261 2021 3178 9347*2^3374055+1 1015696 L5387 2021 3179 1461*2^3373383+1 1015493 L5384 2021 3180 6395*2^3373135+1 1015419 L5382 2021 3181 7869*2^3373021+1 1015385 L5381 2021 3182 55645700^131072+1 1015210 L4745 2019 Generalized Fermat 3183 4905*2^3372216+1 1015142 L5261 2021 3184 55579418^131072+1 1015142 L4745 2019 Generalized Fermat 3185 2839*2^3372034+1 1015087 L5174 2021 3186 7347*2^3371803+1 1015018 L5217 2021 3187 9799*2^3371378+1 1014890 L5261 2021 3188 4329*2^3371201+1 1014837 L5197 2021 3189 3657*2^3371183+1 1014831 L5360 2021 3190 55268442^131072+1 1014822 L4525 2019 Generalized Fermat 3191 179*2^3371145+1 1014819 L3763 2014 3192 5155*2^3371016+1 1014781 L5237 2021 3193 7575*2^3371010+1 1014780 L5237 2021 3194 55184170^131072+1 1014736 L4871 2018 Generalized Fermat 3195 9195*2^3370798+1 1014716 L5178 2021 3196 1749*2^3370786+1 1014711 L5362 2021 3197 8421*2^3370599+1 1014656 L5174 2021 3198 55015050^131072+1 1014561 L4205 2018 Generalized Fermat 3199 4357*2^3369572+1 1014346 L5231 2021 3200 6073*2^3369544+1 1014338 L5358 2021 3201 839*2^3369383+1 1014289 L2891 2017 3202 65*2^3369359+1 1014280 L5236 2021 3203 8023*2^3369228+1 1014243 L5356 2021 3204 677*2^3369115+1 1014208 L2103 2017 3205 1437*2^3369083+1 1014199 L5282 2021 3206 9509*2^3368705+1 1014086 L5237 2021 3207 54548788^131072+1 1014076 L4726 2018 Generalized Fermat 3208 4851*2^3368668+1 1014074 L5307 2021 3209 7221*2^3368448+1 1014008 L5353 2021 3210 5549*2^3368437+1 1014005 L5217 2021 3211 715*2^3368210+1 1013936 L4527 2017 3212 617*2^3368119+1 1013908 L4552 2017 3213 54361742^131072+1 1013881 L4210 2018 Generalized Fermat 3214 1847*2^3367999+1 1013872 L5352 2021 3215 54334044^131072+1 1013852 L4745 2018 Generalized Fermat 3216f 17819*24^734523+1 1013802 A11 2025 3217 6497*2^3367743+1 1013796 L5285 2021 3218 2533*2^3367666+1 1013772 L5326 2021 3219 6001*2^3367552+1 1013738 L5350 2021 3220 54212352^131072+1 1013724 L4307 2018 Generalized Fermat 3221 54206254^131072+1 1013718 L4249 2018 Generalized Fermat 3222 777*2^3367372+1 1013683 L4408 2017 3223 9609*2^3367351+1 1013678 L5285 2021 3224 54161106^131072+1 1013670 L4307 2018 Generalized Fermat 3225 2529*2^3367317+1 1013667 L5237 2021 3226 5941*2^3366960+1 1013560 L5189 2021 3227 5845*2^3366956+1 1013559 L5197 2021 3228 54032538^131072+1 1013535 L4591 2018 Generalized Fermat 3229 9853*2^3366608+1 1013454 L5178 2021 3230 61*2^3366033-1 1013279 L4405 2017 3231 7665*2^3365896+1 1013240 L5345 2021 3232 8557*2^3365648+1 1013165 L5346 2021 3233 369*2^3365614+1 1013154 L4364 2016 3234 53659976^131072+1 1013141 L4823 2018 Generalized Fermat 3235 8201*2^3365283+1 1013056 L5345 2021 3236 9885*2^3365151+1 1013016 L5344 2021 3237 5173*2^3365096+1 1012999 L5285 2021 3238 8523*2^3364918+1 1012946 L5237 2021 3239 3985*2^3364776+1 1012903 L5178 2021 3240 9711*2^3364452+1 1012805 L5192 2021 3241 7003*2^3364172+1 1012721 L5217 2021 3242 6703*2^3364088+1 1012696 L5337 2021 3243 7187*2^3364011+1 1012673 L5217 2021 3244 53161266^131072+1 1012610 L4307 2018 Generalized Fermat 3245 53078434^131072+1 1012521 L4835 2018 Generalized Fermat 3246 2345*2^3363157+1 1012415 L5336 2021 3247 6527*2^3363135+1 1012409 L5167 2021 3248 9387*2^3363088+1 1012395 L5161 2021 3249 8989*2^3362986+1 1012364 L5161 2021 3250 533*2^3362857+1 1012324 L3171 2017 3251 619*2^3362814+1 1012311 L4527 2017 3252 2289*2^3362723+1 1012284 L5161 2021 3253 7529*2^3362565+1 1012237 L5161 2021 3254 7377*2^3362366+1 1012177 L5161 2021 3255 4509*2^3362311+1 1012161 L5324 2021 3256 7021*2^3362208+1 1012130 L5178 2021 3257 52712138^131072+1 1012127 L4819 2018 Generalized Fermat 3258 104*873^344135-1 1012108 L4700 2018 3259 4953*2^3362054+1 1012083 L5323 2021 3260 8575*2^3361798+1 1012006 L5237 2021 3261 2139*2^3361706+1 1011978 L5174 2021 3262 6939*2^3361203+1 1011827 L5217 2021 3263 52412612^131072+1 1011802 L4289 2018 Generalized Fermat 3264 3^2120580-3^623816-1 1011774 CH9 2019 3265 8185*2^3360896+1 1011735 L5189 2021 3266 2389*2^3360882+1 1011730 L5317 2021 3267 2787*2^3360631+1 1011655 L5197 2021 3268 6619*2^3360606+1 1011648 L5316 2021 3269 2755*2^3360526+1 1011623 L5174 2021 3270 1445*2^3360099+1 1011494 L5261 2021 3271 2846*67^553905-1 1011476 L4955 2023 3272 8757*2^3359788+1 1011401 L5197 2021 3273 52043532^131072+1 1011400 L4810 2018 Generalized Fermat 3274 5085*2^3359696+1 1011373 L5261 2021 3275 51954384^131072+1 1011303 L4720 2018 Generalized Fermat 3276 6459*2^3359457+1 1011302 L5310 2021 3277 51872628^131072+1 1011213 L4591 2018 Generalized Fermat 3278 6115*2^3358998+1 1011163 L5309 2021 3279 7605*2^3358929+1 1011143 L5308 2021 3280 2315*2^3358899+1 1011133 L5197 2021 3281 6603*2^3358525+1 1011021 L5307 2021 3282 51580416^131072+1 1010891 L4765 2018 Generalized Fermat 3283 51570250^131072+1 1010880 L4591 2018 Generalized Fermat 3284 51567684^131072+1 1010877 L4800 2018 Generalized Fermat 3285 5893*2^3357490+1 1010709 L5285 2021 3286 6947*2^3357075+1 1010585 L5302 2021 3287 4621*2^3357068+1 1010582 L5301 2021 3288 51269192^131072+1 1010547 L4795 2018 Generalized Fermat 3289a 104*468^378388-1 1010392 A11 2025 3290 1479*2^3356275+1 1010343 L5178 2021 3291 3645*2^3356232+1 1010331 L5296 2021 3292 1259*2^3356215+1 1010325 L5298 2021 3293 2075*2^3356057+1 1010278 L5174 2021 3294 4281*2^3356051+1 1010276 L5295 2021 3295 1275*2^3356045+1 1010274 L5294 2021 3296 50963598^131072+1 1010206 L4726 2018 Generalized Fermat 3297 4365*2^3355770+1 1010192 L5261 2021 3298 50844724^131072+1 1010074 L4656 2018 Generalized Fermat 3299 2183*2^3355297+1 1010049 L5266 2021 3300 3087*2^3355000+1 1009960 L5226 2021 3301 8673*2^3354760+1 1009888 L5233 2021 3302 50495632^131072+1 1009681 L4591 2018 Generalized Fermat 3303 3015*2^3353943+1 1009641 L5290 2021 3304 6819*2^3353877+1 1009622 L5174 2021 3305 9*10^1009567-1 1009568 L3735 2016 Near-repdigit 3306 6393*2^3353366+1 1009468 L5287 2021 3307 3573*2^3353273+1 1009440 L5161 2021 3308 4047*2^3353222+1 1009425 L5286 2021 3309 1473*2^3353114+1 1009392 L5161 2021 3310 1183*2^3353058+1 1009375 L3824 2017 3311 50217306^131072+1 1009367 L4720 2018 Generalized Fermat 3312 81*2^3352924+1 1009333 L1728 2012 Generalized Fermat 3313 50110436^131072+1 1009245 L4591 2018 Generalized Fermat 3314 50055102^131072+1 1009183 L4309 2018 Generalized Fermat 3315 7123*2^3352180+1 1009111 L5161 2021 3316 2757*2^3352180+1 1009111 L5285 2021 3317a 243*2^3352138-1 1009097 A76 2025 3318 9307*2^3352014+1 1009061 L5284 2021 3319 2217*2^3351732+1 1008976 L5283 2021 3320 543*2^3351686+1 1008961 L4198 2017 3321 4419*2^3351666+1 1008956 L5279 2021 3322 49817700^131072+1 1008912 L4760 2018 Generalized Fermat 3323 3059*2^3351379+1 1008870 L5278 2021 3324 7789*2^3351046+1 1008770 L5276 2021 3325 9501*2^3350668+1 1008656 L5272 2021 3326 49530004^131072+1 1008582 L4591 2018 Generalized Fermat 3327 9691*2^3349952+1 1008441 L5242 2021 3328 49397682^131072+1 1008430 L4764 2018 Generalized Fermat 3329 3209*2^3349719+1 1008370 L5269 2021 3330 49331672^131072+1 1008354 L4763 2018 Generalized Fermat 3331 393*2^3349525+1 1008311 L3101 2016 3332 49243622^131072+1 1008252 L4741 2018 Generalized Fermat 3333 5487*2^3349303+1 1008245 L5266 2021 3334 49225986^131072+1 1008232 L4757 2018 Generalized Fermat 3335 2511*2^3349104+1 1008185 L5264 2021 3336 1005*2^3349046-1 1008167 L4518 2021 3337 7659*2^3348894+1 1008122 L5263 2021 3338 9703*2^3348872+1 1008115 L5262 2021 3339 49090656^131072+1 1008075 L4752 2018 Generalized Fermat 3340 7935*2^3348578+1 1008027 L5161 2021 3341 49038514^131072+1 1008015 L4743 2018 Generalized Fermat 3342 7821*2^3348400+1 1007973 L5260 2021 3343 7911*2^3347532+1 1007712 L5250 2021 3344 8295*2^3347031+1 1007561 L5249 2021 3345 48643706^131072+1 1007554 L4691 2018 Generalized Fermat 3346 4029*2^3346729+1 1007470 L5239 2021 3347 9007*2^3346716+1 1007466 L5161 2021 3348 8865*2^3346499+1 1007401 L5238 2021 3349 6171*2^3346480+1 1007395 L5174 2021 3350 6815*2^3346045+1 1007264 L5235 2021 3351 5*326^400785+1 1007261 L4786 2019 3352 5951*2^3345977+1 1007244 L5233 2021 3353 48370248^131072+1 1007234 L4701 2018 Generalized Fermat 3354 1257*2^3345843+1 1007203 L5192 2021 3355 4701*2^3345815+1 1007195 L5192 2021 3356 48273828^131072+1 1007120 L4456 2018 Generalized Fermat 3357 7545*2^3345355+1 1007057 L5231 2021 3358 5559*2^3344826+1 1006897 L5223 2021 3359 6823*2^3344692+1 1006857 L5223 2021 3360 4839*2^3344453+1 1006785 L5188 2021 3361 7527*2^3344332+1 1006749 L5220 2021 3362 7555*2^3344240+1 1006721 L5188 2021 3363 6265*2^3344080+1 1006673 L5197 2021 3364 1299*2^3343943+1 1006631 L5217 2021 3365 2815*2^3343754+1 1006574 L5216 2021 3366 5349*2^3343734+1 1006568 L5174 2021 3367 2863*2^3342920+1 1006323 L5179 2020 3368 7387*2^3342848+1 1006302 L5208 2020 3369 9731*2^3342447+1 1006181 L5203 2020 3370 7725*2^3341708+1 1005959 L5195 2020 3371 7703*2^3341625+1 1005934 L5178 2020 3372 7047*2^3341482+1 1005891 L5194 2020 3373 4839*2^3341309+1 1005838 L5192 2020 3374 47179704^131072+1 1005815 L4673 2017 Generalized Fermat 3375 47090246^131072+1 1005707 L4654 2017 Generalized Fermat 3376 8989*2^3340866+1 1005705 L5189 2020 3377 6631*2^3340808+1 1005688 L5188 2020 3378 1341*2^3340681+1 1005649 L5188 2020 3379 733*2^3340464+1 1005583 L3035 2016 3380 2636*138^469911+1 1005557 L5410 2021 3381 3679815*2^3340001+1 1005448 L4922 2019 3382 57*2^3339932-1 1005422 L3519 2015 3383 46776558^131072+1 1005326 L4659 2017 Generalized Fermat 3384 46736070^131072+1 1005277 L4245 2017 Generalized Fermat 3385 46730280^131072+1 1005270 L4656 2017 Generalized Fermat 3386 3651*2^3339341+1 1005246 L5177 2020 3387 3853*2^3339296+1 1005232 L5178 2020 3388 8015*2^3339267+1 1005224 L5176 2020 3389 3027*2^3339182+1 1005198 L5174 2020 3390 9517*2^3339002+1 1005144 L5172 2020 3391 4003*2^3338588+1 1005019 L3035 2020 3392 6841*2^3338336+1 1004944 L1474 2020 3393 2189*2^3338209+1 1004905 L5031 2020 3394 46413358^131072+1 1004883 L4626 2017 Generalized Fermat 3395 46385310^131072+1 1004848 L4622 2017 Generalized Fermat 3396 46371508^131072+1 1004831 L4620 2017 Generalized Fermat 3397 2957*2^3337667+1 1004742 L5144 2020 3398 1515*2^3337389+1 1004658 L1474 2020 3399 7933*2^3337270+1 1004623 L4666 2020 3400 1251*2^3337116+1 1004576 L4893 2020 3401 651*2^3337101+1 1004571 L3260 2016 3402 46077492^131072+1 1004469 L4595 2017 Generalized Fermat 3403 8397*2^3336654+1 1004437 L5125 2020 3404 8145*2^3336474+1 1004383 L5110 2020 3405 1087*2^3336385-1 1004355 L1828 2012 3406 5325*2^3336120+1 1004276 L2125 2020 3407 849*2^3335669+1 1004140 L3035 2016 3408 8913*2^3335216+1 1004005 L5079 2020 3409 7725*2^3335213+1 1004004 L3035 2020 3410 611*2^3334875+1 1003901 L3813 2016 3411 45570624^131072+1 1003840 L4295 2017 Generalized Fermat 3412 403*2^3334410+1 1003761 L4293 2016 3413 5491*2^3334392+1 1003756 L4815 2020 3414 6035*2^3334341+1 1003741 L2125 2020 3415 1725*2^3334341+1 1003740 L2125 2020 3416 4001*2^3334031+1 1003647 L1203 2020 3417 2315*2^3333969+1 1003629 L2125 2020 3418 6219*2^3333810+1 1003581 L4582 2020 3419 8063*2^3333721+1 1003554 L1823 2020 3420 9051*2^3333677+1 1003541 L3924 2020 3421 45315256^131072+1 1003520 L4562 2017 Generalized Fermat 3422 4091*2^3333153+1 1003383 L1474 2020 3423 9949*2^3332750+1 1003262 L5090 2020 3424 3509*2^3332649+1 1003231 L5085 2020 3425 3781*2^3332436+1 1003167 L1823 2020 3426 4425*2^3332394+1 1003155 L3431 2020 3427 6459*2^3332086+1 1003062 L2629 2020 3428 44919410^131072+1 1003020 L4295 2017 Generalized Fermat 3429 5257*2^3331758+1 1002963 L1188 2020 3430 2939*2^3331393+1 1002853 L1823 2020 3431 6959*2^3331365+1 1002845 L1675 2020 3432 8815*2^3330748+1 1002660 L3329 2020 3433 4303*2^3330652+1 1002630 L4730 2020 3434 8595*2^3330649+1 1002630 L4723 2020 3435 673*2^3330436+1 1002564 L3035 2016 3436 8163*2^3330042+1 1002447 L3278 2020 3437 44438760^131072+1 1002408 L4505 2016 Generalized Fermat 3438 193*2^3329782+1 1002367 L3460 2014 Divides Fermat F(3329780) 3439 44330870^131072+1 1002270 L4501 2016 Generalized Fermat 3440 2829*2^3329061+1 1002151 L4343 2020 3441 5775*2^3329034+1 1002143 L1188 2020 3442 7101*2^3328905+1 1002105 L4568 2020 3443 7667*2^3328807+1 1002075 L4087 2020 3444 129*2^3328805+1 1002073 L3859 2014 3445 7261*2^3328740+1 1002055 L2914 2020 3446 4395*2^3328588+1 1002009 L3924 2020 3447 44085096^131072+1 1001953 L4482 2016 Generalized Fermat 3448 143183*2^3328297+1 1001923 L4504 2017 3449 44049878^131072+1 1001908 L4466 2016 Generalized Fermat 3450 9681*2^3327987+1 1001828 L1204 2020 3451 2945*2^3327987+1 1001828 L2158 2020 3452 5085*2^3327789+1 1001769 L1823 2020 3453 8319*2^3327650+1 1001727 L1204 2020 3454 4581*2^3327644+1 1001725 L2142 2020 3455 655*2^3327518+1 1001686 L4490 2016 3456 8863*2^3327406+1 1001653 L1675 2020 3457 659*2^3327371+1 1001642 L3502 2016 3458 3411*2^3327343+1 1001634 L1675 2020 3459 4987*2^3327294+1 1001619 L3924 2020 3460 821*2^3327003+1 1001531 L3035 2016 3461 2435*2^3326969+1 1001521 L3035 2020 3462 1931*2^3326850-1 1001485 L4113 2022 3463 2277*2^3326794+1 1001469 L5014 2020 3464 6779*2^3326639+1 1001422 L3924 2020 3465 31*2^3326149-1 1001273 L1862 2024 3466 6195*2^3325993+1 1001228 L1474 2019 3467 555*2^3325925+1 1001206 L4414 2016 3468 9041*2^3325643+1 1001123 L3924 2019 3469 1965*2^3325639-1 1001121 L4113 2022 3470 1993*2^3325302+1 1001019 L3662 2019 3471 6179*2^3325027+1 1000937 L3048 2019 3472 4485*2^3324900+1 1000899 L1355 2019 3473 3559*2^3324650+1 1000823 L3035 2019 3474 12512*13^898392-1 1000762 L2425 2024 3475 43165206^131072+1 1000753 L4309 2016 Generalized Fermat 3476 43163894^131072+1 1000751 L4334 2016 Generalized Fermat 3477 6927*2^3324387+1 1000745 L3091 2019 3478 9575*2^3324287+1 1000715 L3824 2019 3479 1797*2^3324259+1 1000705 L3895 2019 3480 4483*2^3324048+1 1000642 L3035 2019 3481 791*2^3323995+1 1000626 L3035 2016 3482 6987*2^3323926+1 1000606 L4973 2019 3483 3937*2^3323886+1 1000593 L3035 2019 3484 2121*2^3323852+1 1000583 L1823 2019 3485 1571*2^3323493+1 1000475 L3035 2019 3486 2319*2^3323402+1 1000448 L4699 2019 3487 2829*2^3323341+1 1000429 L4754 2019 3488 4335*2^3323323+1 1000424 L1823 2019 3489 8485*2^3322938+1 1000308 L4858 2019 3490 6505*2^3322916+1 1000302 L4858 2019 3491 597*2^3322871+1 1000287 L3035 2016 3492 9485*2^3322811+1 1000270 L2603 2019 3493 8619*2^3322774+1 1000259 L3035 2019 3494 387*2^3322763+1 1000254 L1455 2016 3495 1965*2^3322579-1 1000200 L4113 2022 3496 42654182^131072+1 1000075 L4208 2015 Generalized Fermat 3497 6366*745^348190-1 1000060 L4189 2022 3498a 224331639195*2^3322000-1 1000033 A75 2025 3499 13841792445*2^3322000-1 1000032 L5827 2023 3500 5553507*2^3322000+1 1000029 p391 2016 3501 5029159647*2^3321910-1 1000005 L4960 2021 3502 5009522505*2^3321910-1 1000005 L4960 2021 3503 4766298357*2^3321910-1 1000005 L4960 2021 3504 4759383915*2^3321910-1 1000005 L4960 2021 3505 4635733263*2^3321910-1 1000005 L4960 2021 3506 4603393047*2^3321910-1 1000005 L4960 2021 3507 4550053935*2^3321910-1 1000005 L4960 2021 3508 4288198767*2^3321910-1 1000005 L4960 2021 3509 4229494557*2^3321910-1 1000005 L4960 2021 3510 4110178197*2^3321910-1 1000005 L4960 2021 3511 4022490843*2^3321910-1 1000005 L4960 2021 3512 3936623697*2^3321910-1 1000005 L4960 2021 3513 3751145343*2^3321910-1 1000005 L4960 2021 3514 3715773735*2^3321910-1 1000005 L4960 2021 3515 3698976057*2^3321910-1 1000005 L4960 2021 3516 3659465685*2^3321910-1 1000005 L4960 2020 3517 3652932033*2^3321910-1 1000005 L4960 2020 3518 3603204333*2^3321910-1 1000005 L4960 2020 3519 3543733545*2^3321910-1 1000005 L4960 2020 3520 3191900133*2^3321910-1 1000005 L4960 2020 3521 3174957723*2^3321910-1 1000005 L4960 2020 3522 2973510903*2^3321910-1 1000005 L4960 2019 3523 2848144257*2^3321910-1 1000005 L4960 2019 3524 2820058827*2^3321910-1 1000005 L4960 2019 3525 2611553775*2^3321910-1 1000004 L4960 2020 3526 2601087525*2^3321910-1 1000004 L4960 2019 3527 2386538565*2^3321910-1 1000004 L4960 2019 3528 2272291887*2^3321910-1 1000004 L4960 2019 3529 2167709265*2^3321910-1 1000004 L4960 2019 3530 2087077797*2^3321910-1 1000004 L4960 2019 3531 1848133623*2^3321910-1 1000004 L4960 2019 3532 1825072257*2^3321910-1 1000004 L4960 2019 3533 1633473837*2^3321910-1 1000004 L4960 2019 3534 1228267623*2^3321910-1 1000004 L4808 2019 3535 1148781333*2^3321910-1 1000004 L4808 2019 3536 1065440787*2^3321910-1 1000004 L4808 2019 3537 1055109357*2^3321910-1 1000004 L4960 2019 3538 992309607*2^3321910-1 1000004 L4808 2019 3539 926102325*2^3321910-1 1000004 L4808 2019 3540 892610007*2^3321910-1 1000004 L4960 2019 3541 763076757*2^3321910-1 1000004 L4960 2019 3542 607766997*2^3321910-1 1000004 L4808 2019 3543 539679177*2^3321910-1 1000004 L4808 2019 3544 425521077*2^3321910-1 1000004 L4808 2019 3545 132940575*2^3321910-1 1000003 L4808 2019 3546 239378138685*2^3321891+1 1000001 L5104 2020 3547 464253*2^3321908-1 1000000 L466 2013 3548 3^2095902+3^647322-1 1000000 x44 2018 3549 191273*2^3321908-1 1000000 L466 2013 3550 1814570322984178^65536+1 1000000 L5080 2020 Generalized Fermat 3551 1814570322977518^65536+1 1000000 L5080 2020 Generalized Fermat 3552 3292665455999520712131952624640^32768+1 1000000 L5749 2023 Generalized Fermat 3553 3292665455999520712131951642528^32768+1 1000000 L5120 2020 Generalized Fermat 3554 3292665455999520712131951625894^32768+1 1000000 L5122 2020 Generalized Fermat 3555 10841645805132531666786792405311319418846637043199917731999190^16384+1 1000000 L5749 2023 Generalized Fermat 3556 10841645805132531666786792405311319418846637043199917731311876^16384+1 1000000 L5207 2020 Generalized Fermat 3557 10841645805132531666786792405311319418846637043199917731150000^16384+1 1000000 L5122 2020 Generalized Fermat 3558 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729599864^8192+1 1000000 L5749 2023 Generalized Fermat 3559 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729375350^8192+1 1000000 p417 2021 Generalized Fermat 3560 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729240092^8192+1 1000000 p419 2021 Generalized Fermat 3561 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729154678^8192+1 1000000 p418 2021 Generalized Fermat 3562 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729122666^8192+1 1000000 p417 2021 Generalized Fermat 3563 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729023786^8192+1 1000000 p416 2021 Generalized Fermat 3564 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097875144^4096+1 1000000 p421 2021 Generalized Fermat 3565 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097840702^4096+1 1000000 p417 2021 Generalized Fermat 3566 ((sqrtnint(10^999999,2048)+2)+7748134)^2048+1 1000000 A55 2025 Generalized Fermat 3567 ((sqrtnint(10^999999,2048)+2)+364176)^2048+1 1000000 p417 2022 Generalized Fermat 3568 10^999999+10^840885+10^333333+1 1000000 p436 2023 3569 10^999999+308267*10^292000+1 1000000 CH10 2021 3570 10^999999-1022306*10^287000-1 999999 CH13 2021 3571 10^999999-1087604*10^287000-1 999999 CH13 2021 3572 531631540026641*6^1285077+1 999999 L3494 2021 3573 3139*2^3321905-1 999997 L185 2008 3574 702*507^369680+1 999991 A28 2024 3575 42550702^131072+1 999937 L4309 2022 Generalized Fermat 3576 42414020^131072+1 999753 L5030 2022 Generalized Fermat 3577 4847*2^3321063+1 999744 SB9 2005 3578 42254832^131072+1 999539 L5375 2022 Generalized Fermat 3579 42243204^131072+1 999524 L4898 2022 Generalized Fermat 3580 42230406^131072+1 999506 L5453 2022 Generalized Fermat 3581 42168978^131072+1 999424 L5462 2022 Generalized Fermat 3582 439*2^3318318+1 998916 L5573 2022 3583 201382*5^1428998+1 998833 A11 2024 3584 41688706^131072+1 998772 L5270 2022 Generalized Fermat 3585 41364744^131072+1 998327 L5453 2022 Generalized Fermat 3586 41237116^131072+1 998152 L5459 2022 Generalized Fermat 3587 47714*17^811139+1 998070 L5765 2023 Generalized Cullen 3588 41102236^131072+1 997965 L4245 2022 Generalized Fermat 3589 41007562^131072+1 997834 L4210 2022 Generalized Fermat 3590 41001148^131072+1 997825 L4210 2022 Generalized Fermat 3591 975*2^3312951+1 997301 L5231 2022 3592 40550398^131072+1 997196 L4245 2022 Generalized Fermat 3593 11796*46^599707+1 997172 L5670 2023 3594 40463598^131072+1 997074 L4591 2022 Generalized Fermat 3595 689*2^3311423+1 996841 L5226 2022 3596 40151896^131072+1 996633 L4245 2022 Generalized Fermat 3597 593*2^3309333+1 996212 L5572 2022 3598 383*2^3309321+1 996208 L5570 2022 3599 49*2^3309087-1 996137 L1959 2013 3600 39746366^131072+1 996056 L4201 2022 Generalized Fermat 3601 139413*6^1279992+1 996033 L4001 2015 3602 1274*67^545368-1 995886 L5410 2023 3603 51*2^3308171+1 995861 L2840 2015 3604 719*2^3308127+1 995849 L5192 2022 3605 39597790^131072+1 995842 L4737 2022 Generalized Fermat 3606 39502358^131072+1 995705 L5453 2022 Generalized Fermat 3607 39324372^131072+1 995448 L5202 2022 Generalized Fermat 3608 245114*5^1424104-1 995412 L3686 2013 3609 39100746^131072+1 995123 L5441 2022 Generalized Fermat 3610 38824296^131072+1 994719 L4245 2022 Generalized Fermat 3611 38734748^131072+1 994588 L4249 2021 Generalized Fermat 3612 175124*5^1422646-1 994393 L3686 2013 3613 453*2^3303073+1 994327 L5568 2022 3614 856*75^530221-1 994200 A11 2024 3615 38310998^131072+1 993962 L4737 2021 Generalized Fermat 3616 531*2^3301693+1 993912 L5226 2022 3617 38196496^131072+1 993791 L4861 2021 Generalized Fermat 3618 38152876^131072+1 993726 L4245 2021 Generalized Fermat 3619 195*2^3301018+1 993708 L5569 2022 3620 341*2^3300789+1 993640 L5192 2022 3621 37909914^131072+1 993363 L4249 2021 Generalized Fermat 3622 849*2^3296427+1 992327 L5571 2022 3623 1611*22^738988+1 992038 L4139 2015 3624 36531196^131072+1 991254 L4249 2021 Generalized Fermat 3625 2017*2^3292325-1 991092 L3345 2017 3626 36422846^131072+1 991085 L4245 2021 Generalized Fermat 3627 36416848^131072+1 991076 L5202 2021 Generalized Fermat 3628 885*2^3290927+1 990671 L5161 2022 3629 36038176^131072+1 990481 L4245 2021 Generalized Fermat 3630 35997532^131072+1 990416 L4245 2021 Generalized Fermat 3631 35957420^131072+1 990353 L4245 2021 Generalized Fermat 3632 107970^196608-107970^98304+1 989588 L4506 2016 Generalized unique 3633 35391288^131072+1 989449 L5070 2021 Generalized Fermat 3634 35372304^131072+1 989419 L5443 2021 Generalized Fermat 3635 219*2^3286614+1 989372 L5567 2022 3636 61*2^3286535-1 989348 L4405 2016 3637 35327718^131072+1 989347 L4591 2021 Generalized Fermat 3638 35282096^131072+1 989274 L4245 2021 Generalized Fermat 3639 35141602^131072+1 989046 L4729 2021 Generalized Fermat 3640 35139782^131072+1 989043 L4245 2021 Generalized Fermat 3641 35047222^131072+1 988893 L4249 2021 Generalized Fermat 3642 531*2^3284944+1 988870 L5536 2022 3643 34957136^131072+1 988747 L5321 2021 Generalized Fermat 3644 301*2^3284232+1 988655 L5564 2022 3645 34871942^131072+1 988608 L4245 2021 Generalized Fermat 3646 34763644^131072+1 988431 L4737 2021 Generalized Fermat 3647 34585314^131072+1 988138 L4201 2021 Generalized Fermat 3648 311*2^3282455+1 988120 L5568 2022 3649 34530386^131072+1 988048 L5070 2021 Generalized Fermat 3650 833*2^3282181+1 988038 L5564 2022 3651 561*2^3281889+1 987950 L5477 2022 3652 34087952^131072+1 987314 L4764 2021 Generalized Fermat 3653 87*2^3279368+1 987191 L3458 2015 3654 965*2^3279151+1 987126 L5564 2022 3655 33732746^131072+1 986717 L4359 2021 Generalized Fermat 3656 33474284^131072+1 986279 L5051 2021 Generalized Fermat 3657 33395198^131072+1 986145 L4658 2021 Generalized Fermat 3658 427*2^3275606+1 986059 L5566 2022 3659 33191418^131072+1 985796 L4201 2021 Generalized Fermat 3660 337*2^3274106+1 985607 L5564 2022 3661d 19861029*2^3273589-1 985456 A31 2025 3662 357*2^3273543+1 985438 L5237 2022 Divides GF(3273542,10) 3663 1045*2^3273488+1 985422 L5192 2022 3664 32869172^131072+1 985241 L4285 2021 Generalized Fermat 3665 32792696^131072+1 985108 L5198 2021 Generalized Fermat 3666 1047*2^3272351+1 985079 L5563 2022 3667 32704348^131072+1 984955 L5312 2021 Generalized Fermat 3668 6781*24^713573-1 984886 A11 2024 3669 32608738^131072+1 984788 L5395 2021 Generalized Fermat 3670 75*2^3271125-1 984709 A38 2024 3671 933*2^3270993+1 984670 L5562 2022 3672 311*2^3270759+1 984600 L5560 2022 3673 32430486^131072+1 984476 L4245 2021 Generalized Fermat 3674 32417420^131072+1 984453 L4245 2021 Generalized Fermat 3675 65*2^3270127+1 984409 L3924 2015 3676 32348894^131072+1 984333 L4245 2021 Generalized Fermat 3677 579*2^3269850+1 984326 L5226 2022 3678 32286660^131072+1 984223 L5400 2021 Generalized Fermat 3679 32200644^131072+1 984071 L4387 2021 Generalized Fermat 3680 32137342^131072+1 983959 L4559 2021 Generalized Fermat 3681 32096608^131072+1 983887 L4559 2021 Generalized Fermat 3682 32055422^131072+1 983814 L4559 2021 Generalized Fermat 3683 31821360^131072+1 983397 L4861 2021 Generalized Fermat 3684 31768014^131072+1 983301 L4252 2021 Generalized Fermat 3685 335*2^3266237+1 983238 L5559 2022 3686d 981493*2^3266031-1 983180 p420 2025 3687 1031*2^3265915+1 983142 L5364 2022 3688 31469984^131072+1 982765 L5078 2021 Generalized Fermat 3689 5*2^3264650-1 982759 L384 2013 3690 223*2^3264459-1 982703 L1884 2012 3691 1101*2^3264400+1 982686 L5231 2022 3692 483*2^3264181+1 982620 L5174 2022 3693 525*2^3263227+1 982332 L5231 2022 3694 31145080^131072+1 982174 L4201 2021 Generalized Fermat 3695 622*48^584089+1 981998 L5629 2023 3696 31044982^131072+1 981991 L5041 2021 Generalized Fermat 3697 683*2^3262037+1 981974 L5192 2022 3698 923*2^3261401+1 981783 L5477 2022 3699 30844300^131072+1 981622 L5102 2021 Generalized Fermat 3700 30819256^131072+1 981575 L4201 2021 Generalized Fermat 3701 9*2^3259381-1 981173 L1828 2011 3702 31*2^3259185-1 981114 L1862 2024 3703 1059*2^3258751+1 980985 L5231 2022 3704 6*5^1403337+1 980892 L4965 2020 3705 30318724^131072+1 980643 L4309 2021 Generalized Fermat 3706 30315072^131072+1 980636 L5375 2021 Generalized Fermat 3707 30300414^131072+1 980609 L4755 2021 Generalized Fermat 3708 30225714^131072+1 980468 L4201 2021 Generalized Fermat 3709 875*2^3256589+1 980334 L5550 2022 3710 30059800^131072+1 980155 L4928 2021 Generalized Fermat 3711d 176268*5^1402258-1 980142 A11 2025 3712 30022816^131072+1 980085 L5273 2021 Generalized Fermat 3713 29959190^131072+1 979964 L4905 2021 Generalized Fermat 3714 968*75^522276-1 979303 A11 2024 3715 29607314^131072+1 979292 L5378 2021 Generalized Fermat 3716 779*2^3253063+1 979273 L5192 2022 3717 29505368^131072+1 979095 L5378 2021 Generalized Fermat 3718 163*2^3250978+1 978645 L5161 2022 Divides GF(3250977,6) 3719 29169314^131072+1 978443 L5380 2021 Generalized Fermat 3720 417*2^3248255+1 977825 L5178 2022 3721 28497098^131072+1 977116 L4308 2021 Generalized Fermat 3722 28398204^131072+1 976918 L5379 2021 Generalized Fermat 3723 28294666^131072+1 976710 L5375 2021 Generalized Fermat 3724 28175634^131072+1 976470 L5378 2021 Generalized Fermat 3725 33*2^3242126-1 975979 L3345 2014 3726 27822108^131072+1 975752 L4760 2021 Generalized Fermat 3727 39*2^3240990+1 975637 L3432 2014 3728 27758510^131072+1 975621 L4289 2021 Generalized Fermat 3729 3706*103^484644+1 975514 A11 2024 3730 27557876^131072+1 975208 L4245 2021 Generalized Fermat 3731 27544748^131072+1 975181 L4387 2021 Generalized Fermat 3732 27408050^131072+1 974898 L4210 2021 Generalized Fermat 3733 14275*60^548133-1 974668 x51 2024 3734 225*2^3236967+1 974427 L5529 2022 3735 27022768^131072+1 974092 L4309 2021 Generalized Fermat 3736 26896670^131072+1 973826 L5376 2021 Generalized Fermat 3737 1075*2^3234606+1 973717 L5192 2022 3738 26757382^131072+1 973530 L5375 2021 Generalized Fermat 3739e 8091*24^705188+1 973313 A64 2025 3740 26599558^131072+1 973194 L4245 2021 Generalized Fermat 3741 6*5^1392287+1 973168 L4965 2020 3742 26500832^131072+1 972982 L4956 2021 Generalized Fermat 3743 325*2^3231474+1 972774 L5536 2022 3744 933*2^3231438+1 972763 L5197 2022 3745 123*2^3230548+1 972494 L5178 2022 Divides GF(3230546,12) 3746 26172278^131072+1 972272 L4245 2021 Generalized Fermat 3747 697*2^3229518+1 972185 L5534 2022 3748 22598*745^338354-1 971810 L4189 2022 3749 385*2^3226814+1 971371 L5178 2022 3750 211195*2^3224974+1 970820 L2121 2013 3751 1173*2^3223546+1 970388 L5178 2022 3752 7*6^1246814+1 970211 L4965 2019 3753 25128150^131072+1 969954 L4738 2021 Generalized Fermat 3754 25124378^131072+1 969946 L5102 2021 Generalized Fermat 3755 1089*2^3221691+1 969829 L5178 2022 3756 35*832^332073-1 969696 L4001 2019 3757 600921*2^3219922-1 969299 g337 2018 3758 939*2^3219319+1 969115 L5178 2022 3759 24734116^131072+1 969055 L5070 2021 Generalized Fermat 3760 76896*5^1386360+1 969029 A42 2024 3761 24644826^131072+1 968849 L5070 2021 Generalized Fermat 3762 24642712^131072+1 968844 L5070 2021 Generalized Fermat 3763 24641166^131072+1 968840 L5070 2021 Generalized Fermat 3764 129*2^3218214+1 968782 L5529 2022 3765 24522386^131072+1 968565 L5070 2021 Generalized Fermat 3766 24486806^131072+1 968483 L4737 2021 Generalized Fermat 3767 811*2^3216944+1 968400 L5233 2022 3768 24297936^131072+1 968042 L4201 2021 Generalized Fermat 3769 1023*2^3214745+1 967738 L5178 2022 3770 187*2^3212152+1 966957 L5178 2022 3771 301*2^3211281-1 966695 L5545 2022 3772 6*409^369832+1 965900 L4001 2015 3773 23363426^131072+1 965809 L5033 2021 Generalized Fermat 3774 1165*2^3207702+1 965618 L5178 2022 3775 94373*2^3206717+1 965323 L2785 2013 3776 2751*2^3206569-1 965277 L4036 2015 3777 761*2^3206341+1 965208 L5178 2022 3778 23045178^131072+1 965029 L5023 2021 Generalized Fermat 3779 23011666^131072+1 964946 L5273 2021 Generalized Fermat 3780 911*2^3205225+1 964872 L5364 2022 3781 22980158^131072+1 964868 L4201 2021 Generalized Fermat 3782 22901508^131072+1 964673 L4743 2021 Generalized Fermat 3783 22808110^131072+1 964440 L5248 2021 Generalized Fermat 3784 22718284^131072+1 964215 L5254 2021 Generalized Fermat 3785 22705306^131072+1 964183 L5248 2021 Generalized Fermat 3786 113983*2^3201175-1 963655 L613 2008 3787 34*888^326732-1 963343 L4001 2017 3788 899*2^3198219+1 962763 L5503 2022 3789 22007146^131072+1 962405 L4245 2020 Generalized Fermat 3790 4*3^2016951+1 962331 L4965 2020 3791 21917442^131072+1 962173 L4622 2020 Generalized Fermat 3792 987*2^3195883+1 962060 L5282 2022 3793 21869554^131072+1 962048 L5061 2020 Generalized Fermat 3794 21757066^131072+1 961754 L4773 2020 Generalized Fermat 3795d 68*828^329490-1 961464 A62 2025 3796 21582550^131072+1 961296 L5068 2020 Generalized Fermat 3797 21517658^131072+1 961125 L5126 2020 Generalized Fermat 3798 20968936^131072+1 959654 L4245 2020 Generalized Fermat 3799a 13*422^365511-1 959582 A11 2025 3800 671*2^3185411+1 958908 L5315 2022 3801 20674450^131072+1 958849 L4245 2020 Generalized Fermat 3802 1027*2^3184540+1 958646 L5174 2022 3803 789*2^3183463+1 958321 L5482 2022 3804 855*2^3183158+1 958229 L5161 2022 3805 20234282^131072+1 957624 L4942 2020 Generalized Fermat 3806 20227142^131072+1 957604 L4677 2020 Generalized Fermat 3807 625*2^3180780+1 957513 L5178 2022 Generalized Fermat 3808 20185276^131072+1 957486 L4201 2020 Generalized Fermat 3809 935*2^3180599+1 957459 L5477 2022 3810 573*2^3179293+1 957066 L5226 2022 3811 33*2^3176269+1 956154 L3432 2013 3812 81*2^3174353-1 955578 L3887 2022 3813 19464034^131072+1 955415 L4956 2020 Generalized Fermat 3814 600921*2^3173683-1 955380 g337 2018 3815 587*2^3173567+1 955342 L5301 2022 3816 19216648^131072+1 954687 L5024 2020 Generalized Fermat 3817 1414*95^482691-1 954633 L4877 2019 3818 305*2^3171039+1 954581 L5301 2022 3819 755*2^3170701+1 954479 L5302 2022 3820 775*2^3170580+1 954443 L5449 2022 3821 78*236^402022-1 953965 L5410 2020 3822 18968126^131072+1 953946 L5011 2020 Generalized Fermat 3823 18813106^131072+1 953479 L4201 2020 Generalized Fermat 3824 18608780^131072+1 952857 L4488 2020 Generalized Fermat 3825 1087*2^3164677-1 952666 L1828 2012 3826 18509226^131072+1 952552 L4884 2020 Generalized Fermat 3827 18501600^131072+1 952528 L4875 2020 Generalized Fermat 3828 459*2^3163175+1 952214 L5178 2022 3829 15*2^3162659+1 952057 p286 2012 3830 18309468^131072+1 951934 L4928 2020 Generalized Fermat 3831 18298534^131072+1 951900 L4201 2020 Generalized Fermat 3832 849*2^3161727+1 951778 L5178 2022 3833 67*2^3161450+1 951694 L3223 2015 3834 119*2^3161195+1 951617 L5320 2022 3835 1759*2^3160863-1 951518 L4965 2021 3836 58*117^460033+1 951436 L5410 2020 3837 417*2^3160443+1 951391 L5302 2022 3838 9231*70^515544+1 951234 L5410 2021 3839 671*2^3159523+1 951115 L5188 2022 3840 17958952^131072+1 950834 L4201 2020 Generalized Fermat 3841 1001*2^3158422-1 950783 L4518 2023 3842 17814792^131072+1 950375 L4752 2020 Generalized Fermat 3843 17643330^131072+1 949824 L4201 2020 Generalized Fermat 3844 19*2^3155009-1 949754 L1828 2012 3845 281*2^3151457+1 948686 L5316 2022 3846 179*2^3150265+1 948327 L5302 2022 3847 17141888^131072+1 948183 L4963 2019 Generalized Fermat 3848 17138628^131072+1 948172 L4963 2019 Generalized Fermat 3849 17119936^131072+1 948110 L4963 2019 Generalized Fermat 3850 17052490^131072+1 947885 L4715 2019 Generalized Fermat 3851 17025822^131072+1 947796 L4870 2019 Generalized Fermat 3852 16985784^131072+1 947662 L4295 2019 Generalized Fermat 3853 865*2^3147482+1 947490 L5178 2021 3854 963*2^3145753+1 946969 L5451 2021 3855 16741226^131072+1 946837 L4201 2019 Generalized Fermat 3856 387*2^3144483+1 946587 L5450 2021 3857 1035*2^3144236+1 946513 L5449 2021 3858 1065*2^3143667+1 946342 L4944 2021 3859 1598*187^416536-1 946308 A11 2025 3860 193*2^3142150+1 945884 L5178 2021 3861 915*2^3141942+1 945822 L5448 2021 3862 939*2^3141397+1 945658 L5320 2021 3863 1063*2^3141350+1 945644 L5178 2021 3864 16329572^131072+1 945420 L4201 2019 Generalized Fermat 3865 69*2^3140225-1 945304 L3764 2014 3866 3*2^3136255-1 944108 L256 2007 3867 417*2^3136187+1 944089 L5178 2021 3868 15731520^131072+1 943296 L4245 2019 Generalized Fermat 3869 62721^196608-62721^98304+1 943210 L4506 2016 Generalized unique 3870 15667716^131072+1 943064 L4387 2019 Generalized Fermat 3871 15567144^131072+1 942698 L4918 2019 Generalized Fermat 3872 299*2^3130621+1 942414 L5178 2021 3873 15342502^131072+1 941870 L4245 2019 Generalized Fermat 3874 15237960^131072+1 941481 L4898 2019 Generalized Fermat 3875 571*2^3127388+1 941441 L5440 2021 3876b 349*2^3126971-1 941315 L2235 2025 3877 107*2^3126660-1 941221 A38 2024 3878 15147290^131072+1 941141 L4861 2019 Generalized Fermat 3879 197*2^3126343+1 941126 L5178 2021 3880 15091270^131072+1 940930 L4760 2019 Generalized Fermat 3881 1097*2^3124455+1 940558 L5178 2021 3882 3125*2^3124079+1 940445 L1160 2019 3883 495*2^3123624+1 940308 L5438 2021 3884 14790404^131072+1 939784 L4871 2019 Generalized Fermat 3885 1041*2^3120649+1 939412 L5437 2021 3886d 325*2^3120105-1 939248 L2017 2025 3887 14613898^131072+1 939101 L4926 2019 Generalized Fermat 3888 3317*2^3117162-1 938363 L5399 2021 3889 763*2^3115684+1 937918 L4944 2021 3890 25*746^326451-1 937810 A28 2024 3891 581*2^3114611+1 937595 L5178 2021 3892 14217182^131072+1 937534 L4387 2019 Generalized Fermat 3893 134*864^319246-1 937473 L5410 2020 3894 700057*2^3113753-1 937339 L5410 2022 3895b 383748*277^383748+1 937303 A67 2025 Generalized Cullen 3896 5*6^1204077-1 936955 A2 2023 3897 1197*2^3111838+1 936760 L5178 2021 3898 14020004^131072+1 936739 L4249 2019 Generalized Fermat 3899 27777*2^3111027+1 936517 L2777 2014 Generalized Cullen 3900 755*2^3110759+1 936435 L5320 2021 3901 13800346^131072+1 935840 L4880 2019 Generalized Fermat 3902 866981*12^866981-1 935636 L5765 2023 Generalized Woodall 3903 313*2^3107219-1 935369 L5819 2024 3904 13613070^131072+1 935062 L4245 2019 Generalized Fermat 3905 628*80^491322+1 935033 L5410 2021 3906 761*2^3105087+1 934728 L5197 2021 3907 13433028^131072+1 934305 L4868 2018 Generalized Fermat 3908 1019*2^3103680-1 934304 L1828 2012 3909 12*978^312346+1 934022 L4294 2023 3910 579*2^3102639+1 933991 L5315 2021 3911 99*2^3102401-1 933918 L1862 2017 3912 256612*5^1335485-1 933470 L1056 2013 3913 13083418^131072+1 932803 L4747 2018 Generalized Fermat 3914 882*1017^310074+1 932495 A10 2024 3915 69*2^3097340-1 932395 L3764 2014 3916 153*2^3097277+1 932376 L4944 2021 3917 12978952^131072+1 932347 L4849 2018 Generalized Fermat 3918 12961862^131072+1 932272 L4245 2018 Generalized Fermat 3919 207*2^3095391+1 931808 L5178 2021 3920 12851074^131072+1 931783 L4670 2018 Generalized Fermat 3921 45*2^3094632-1 931579 L1862 2018 3922 259*2^3094582+1 931565 L5214 2021 3923 553*2^3094072+1 931412 L4944 2021 3924 57*2^3093440-1 931220 L2484 2020 3925 12687374^131072+1 931054 L4289 2018 Generalized Fermat 3926 513*2^3092705+1 931000 L4329 2016 3927 12661786^131072+1 930939 L4819 2018 Generalized Fermat 3928 933*2^3091825+1 930736 L5178 2021 3929 38*875^316292-1 930536 L4001 2019 3930 5*2^3090860-1 930443 L1862 2012 3931 12512992^131072+1 930266 L4814 2018 Generalized Fermat 3932 4*5^1330541-1 930009 L4965 2022 3933 12357518^131072+1 929554 L4295 2018 Generalized Fermat 3934 12343130^131072+1 929488 L4720 2018 Generalized Fermat 3935 297*2^3087543+1 929446 L5326 2021 3936 1149*2^3087514+1 929438 L5407 2021 3937 745*2^3087428+1 929412 L5178 2021 3938 373*520^342177+1 929357 L3610 2014 3939 19401*2^3086450-1 929119 L541 2015 3940 75*2^3086355+1 929088 L3760 2015 3941 65*2^3080952-1 927461 L2484 2020 3942 11876066^131072+1 927292 L4737 2018 Generalized Fermat 3943 1139*2^3079783+1 927111 L5174 2021 3944 271*2^3079189-1 926931 L2484 2018 3945 766*33^610412+1 926923 L4001 2016 3946 11778792^131072+1 926824 L4672 2018 Generalized Fermat 3947 555*2^3078792+1 926812 L5226 2021 3948 31*332^367560+1 926672 L4294 2018 3949 167*2^3077568-1 926443 L1862 2020 3950 10001*2^3075602-1 925853 L4405 2019 3951 116*107^455562-1 924513 L4064 2021 3952 11292782^131072+1 924425 L4672 2018 Generalized Fermat 3953 14844*430^350980-1 924299 L4001 2016 3954 11267296^131072+1 924297 L4654 2017 Generalized Fermat 3955e 19861029*2^3070319+1 924266 A31 2025 3956 4*3^1936890+1 924132 L4965 2020 Generalized Fermat 3957 1105*2^3069884+1 924131 L5314 2021 3958 319*2^3069362+1 923973 L5377 2021 3959 11195602^131072+1 923933 L4706 2017 Generalized Fermat 3960 973*2^3069092+1 923892 L5214 2021 3961 765*2^3068511+1 923717 L5174 2021 3962 60849*2^3067914+1 923539 L591 2014 3963 674*249^385359+1 923400 L5410 2019 3964 499*2^3066970+1 923253 L5373 2021 3965 553*2^3066838+1 923213 L5368 2021 3966 629*2^3066827+1 923210 L5226 2021 3967 11036888^131072+1 923120 L4660 2017 Generalized Fermat 3968 261*2^3066009+1 922964 L5197 2021 3969 10994460^131072+1 922901 L4704 2017 Generalized Fermat 3970 214916*3^1934246-1 922876 L4965 2023 Generalized Woodall 3971 21*2^3065701+1 922870 p286 2012 3972 10962066^131072+1 922733 L4702 2017 Generalized Fermat 3973 10921162^131072+1 922520 L4559 2017 Generalized Fermat 3974 875*2^3063847+1 922313 L5364 2021 3975 43*2^3063674+1 922260 L3432 2013 3976 677*2^3063403+1 922180 L5346 2021 3977 8460*241^387047-1 921957 L5410 2019 3978 10765720^131072+1 921704 L4695 2017 Generalized Fermat 3979 111*2^3060238-1 921226 L2484 2020 3980 1165*2^3060228+1 921224 L5360 2021 3981 5*2^3059698-1 921062 L503 2008 3982 10453790^131072+1 920031 L4694 2017 Generalized Fermat 3983 453*2^3056181+1 920005 L5320 2021 3984 791*2^3055695+1 919859 L5177 2021 3985 10368632^131072+1 919565 L4692 2017 Generalized Fermat 3986 582971*2^3053414-1 919175 L5410 2022 3987 123*2^3049038+1 917854 L4119 2015 3988 10037266^131072+1 917716 L4691 2017 Generalized Fermat 3989 400*95^463883-1 917435 L4001 2019 3990 9907326^131072+1 916975 L4690 2017 Generalized Fermat 3991 454*383^354814+1 916558 L2012 2020 3992 9785844^131072+1 916272 L4326 2017 Generalized Fermat 3993 435*2^3041954+1 915723 L5320 2021 3994 639*2^3040438+1 915266 L5320 2021 3995 13822*115^443832+1 914608 A11 2024 3996 1045*2^3037988+1 914529 L5178 2021 3997 291*2^3037904+1 914503 L3545 2015 3998 311*2^3037565+1 914401 L5178 2021 3999 373*2^3036746+1 914155 L5178 2021 4000 9419976^131072+1 914103 L4591 2017 Generalized Fermat 4001 5706*162^413708+1 914098 A14 2024 4002 341*2^3036506-1 914082 p435 2023 4003 801*2^3036045+1 913944 L5348 2021 4004 915*2^3033775+1 913261 L5178 2021 4005c 203*2^3033614-1 913212 L1817 2025 4006 38804*3^1913975+1 913203 L5410 2021 4007c 161*2^3033558-1 913195 L1817 2025 4008 9240606^131072+1 913009 L4591 2017 Generalized Fermat 4009 869*2^3030655+1 912322 L5260 2021 4010 643*2^3030650+1 912320 L5320 2021 4011 99*2^3029959-1 912111 L1862 2020 4012 417*2^3029342+1 911926 L5178 2021 4013c 207*2^3029112-1 911856 A58 2025 4014 345*2^3027769+1 911452 L5343 2021 4015 26*3^1910099+1 911351 L4799 2020 4016 355*2^3027372+1 911333 L5174 2021 4017 99*2^3026660-1 911118 L1862 2020 4018 417*2^3026492+1 911068 L5197 2021 4019 1065*2^3025527+1 910778 L5208 2021 4020 34202*3^1908800+1 910734 L5410 2021 4021 8343*42^560662+1 910099 L4444 2020 4022 699*2^3023263+1 910096 L5335 2021 4023 8770526^131072+1 910037 L4245 2017 Generalized Fermat 4024 8704114^131072+1 909604 L4670 2017 Generalized Fermat 4025 383731*2^3021377-1 909531 L466 2011 4026 46821*2^3021380-374567 909531 p363 2013 4027 2^3021377-1 909526 G3 1998 Mersenne 37 4028 255*2^3021196-1 909474 L3994 2025 4029 615*2^3019445+1 908947 L5260 2021 4030 389*2^3019025+1 908820 L5178 2021 4031 875*2^3018175+1 908565 L5334 2021 4032 375*2^3016803-1 908151 L2235 2023 4033 555*2^3016352+1 908016 L5178 2021 4034 7*2^3015762+1 907836 g279 2008 4035 759*2^3015314+1 907703 L5178 2021 4036 32582*3^1901790+1 907389 L5372 2021 4037 75*2^3012342+1 906808 L3941 2015 4038 459*2^3011814+1 906650 L5178 2021 4039 171*2^3010938-1 906385 A27 2025 4040 991*2^3010036+1 906115 L5326 2021 4041 583*2^3009698+1 906013 L5325 2021 4042 8150484^131072+1 905863 L4249 2017 Generalized Fermat 4043 593*2^3006969+1 905191 L5178 2021 4044a 53*308^363703+1 905096 A71 2025 4045 327*2^3006540-1 905062 L2257 2023 4046 75*2^3006235-1 904969 A38 2024 4047 367*2^3004536+1 904459 L5178 2021 4048 7926326^131072+1 904276 L4249 2017 Generalized Fermat 4049 1003*2^3003756+1 904224 L5320 2021 4050 626*1017^300576+1 903932 A9 2024 4051 573*2^3002662+1 903895 L5319 2021 4052 7858180^131072+1 903784 L4201 2017 Generalized Fermat 4053 329*2^3002295+1 903784 L5318 2021 4054 4*5^1292915-1 903710 L4965 2022 4055 7832704^131072+1 903599 L4249 2017 Generalized Fermat 4056 268514*5^1292240-1 903243 L3562 2013 4057 7*10^902708+1 902709 p342 2013 4058 435*2^2997453+1 902326 L5167 2021 4059 583*2^2996526+1 902047 L5174 2021 4060 1037*2^2995695+1 901798 L5178 2021 4061 717*2^2995326+1 901686 L5178 2021 4062 885*2^2995274+1 901671 L5178 2021 4063 43*2^2994958+1 901574 L3222 2013 4064 1065*2^2994154+1 901334 L5315 2021 4065 561*2^2994132+1 901327 L5314 2021 4066 147*2^2993165-1 901035 L1817 2025 4067 1095*2^2992587-1 900862 L1828 2011 4068 519*2^2991849+1 900640 L5311 2021 4069b 5077*2^2990757-1 900312 L3519 2025 4070 7379442^131072+1 900206 L4201 2017 Generalized Fermat 4071e 109932*5^1287894-1 900205 A11 2025 4072 459*2^2990134+1 900123 L5197 2021 4073 15*2^2988834+1 899730 p286 2012 4074 29*564^326765+1 899024 L4001 2017 4075 5129*24^650539+1 897885 A11 2024 4076 971*2^2982525+1 897833 L5197 2021 4077 1033*2^2980962+1 897362 L5305 2021 4078 357*2^2980540-1 897235 L2257 2023 4079 367*2^2979033-1 896781 L2257 2023 4080 39*2^2978894+1 896739 L2719 2013 4081 38*977^299737+1 896184 L5410 2021 4082 4348099*2^2976221-1 895939 L466 2008 4083 205833*2^2976222-411665 895938 L4667 2017 4084 593*2^2976226-18975 895937 p373 2014 4085 2^2976221-1 895932 G2 1997 Mersenne 36 4086 1024*3^1877301+1 895704 p378 2014 4087 1065*2^2975442+1 895701 L5300 2021 Divides GF(2975440,3) 4088 24704*3^1877135+1 895626 L5410 2021 4089 591*2^2975069+1 895588 L5299 2021 4090 249*2^2975002+1 895568 L2322 2015 4091 18431*82^467690-1 895076 A14 2024 4092 195*2^2972947+1 894949 L3234 2015 4093 6705932^131072+1 894758 L4201 2017 Generalized Fermat 4094 391*2^2971600+1 894544 L5242 2021 4095 46425*2^2971203+1 894426 L2777 2014 Generalized Cullen 4096 625*2^2970336+1 894164 L5233 2021 Generalized Fermat 4097 369*2^2968175-1 893513 L2257 2023 4098 493*72^480933+1 893256 L3610 2014 4099 561*2^2964753+1 892483 L5161 2021 4100 1185*2^2964350+1 892362 L5161 2021 4101 6403134^131072+1 892128 L4510 2016 Generalized Fermat 4102 6391936^131072+1 892028 L4511 2016 Generalized Fermat 4103 1964*991^297652-1 891791 A11 2025 4104 395*2^2961370-1 891464 L2257 2023 4105 21*2^2959789-1 890987 L5313 2021 4106 627*2^2959098+1 890781 L5197 2021 4107 45*2^2958002-1 890449 L1862 2017 4108 729*2^2955389+1 889664 L5282 2021 4109 706*1017^295508+1 888691 p433 2023 4110 198677*2^2950515+1 888199 L2121 2012 4111 88*985^296644+1 887987 L5410 2020 4112 303*2^2949403-1 887862 L1817 2022 4113 5877582^131072+1 887253 L4245 2016 Generalized Fermat 4114 321*2^2946654-1 887034 L1817 2022 4115 17*2^2946584-1 887012 L3519 2013 4116 489*2^2944673+1 886438 L5167 2021 4117 141*2^2943065+1 885953 L3719 2015 4118 757*2^2942742+1 885857 L5261 2021 4119 5734100^131072+1 885846 L4477 2016 Generalized Fermat 4120 33*2^2939064-5606879602425*2^1290000-1 884748 p423 2021 Arithmetic progression (3,d=33*2^2939063-5606879602425*2^1290000) 4121 33*2^2939063-1 884748 L3345 2013 4122 5903*2^2938744-1 884654 L4036 2015 4123 717*2^2937963+1 884418 L5256 2021 4124 5586416^131072+1 884361 L4454 2016 Generalized Fermat 4125 297*2^2937584-1 884304 L1817 2025 4126 243*2^2937316+1 884223 L4114 2015 4127 973*2^2937046+1 884142 L5253 2021 4128 61*2^2936967-1 884117 L2484 2017 4129 203*2^2935338-1 883628 L1817 2025 4130 903*2^2934602+1 883407 L5246 2021 4131 5471814^131072+1 883181 L4362 2016 Generalized Fermat 4132 188*228^374503+1 883056 L4786 2020 4133 53*248^368775+1 883016 L5196 2020 4134 13613*82^461323-1 882891 A11 2024 4135 5400728^131072+1 882436 L4201 2016 Generalized Fermat 4136 17*326^350899+1 881887 L4786 2019 4137 855*2^2929550+1 881886 L5200 2021 4138 5326454^131072+1 881648 L4201 2016 Generalized Fermat 4139 839*2^2928551+1 881585 L5242 2021 4140 7019*10^881309-1 881313 L3564 2013 4141 25*2^2927222+1 881184 L1935 2013 Generalized Fermat 4142 391*2^2925759-1 880744 L2257 2023 4143 577*2^2925602+1 880697 L5201 2021 4144 97366*5^1259955-1 880676 L3567 2013 4145e 246234*5^1259806-1 880572 A65 2025 4146 19861029*2^2924096-1 880248 A31 2024 4147 973*2^2923062+1 879933 L5228 2021 4148 1126*177^391360+1 879770 L4955 2020 4149 243944*5^1258576-1 879713 L3566 2013 4150 693*2^2921528+1 879471 L5201 2021 4151 6*10^879313+1 879314 L5009 2019 4152 269*2^2918105+1 878440 L2715 2015 4153 331*2^2917844+1 878362 L5210 2021 4154 169*2^2917805-1 878350 L2484 2018 4155 1085*2^2916967+1 878098 L5174 2020 4156 389*2^2916499+1 877957 L5215 2020 4157 431*2^2916429+1 877936 L5214 2020 4158 1189*2^2916406+1 877929 L5174 2020 4159 1011*2^2916119-1 877843 L4518 2023 4160 7*2^2915954+1 877791 g279 2008 Divides GF(2915953,12) [g322] 4161 4974408^131072+1 877756 L4380 2016 Generalized Fermat 4162 465*2^2914079+1 877228 L5210 2020 4163 427194*113^427194+1 877069 p310 2012 Generalized Cullen 4164 322*952^294414+1 876955 A11 2025 4165 4893072^131072+1 876817 L4303 2016 Generalized Fermat 4166 493*2^2912552+1 876769 L5192 2021 4167 379*2^2911423-1 876429 L2257 2023 4168 143157*2^2911403+1 876425 L4504 2017 4169 567*2^2910402+1 876122 L5201 2020 4170f 4098*1003^291860+1 875964 A14 2025 4171 683*2^2909217+1 875765 L5199 2020 4172 674*249^365445+1 875682 L5410 2019 4173 475*2^2908802+1 875640 L5192 2021 4174 2351*24^634318+1 875497 A11 2024 4175 117*2^2908312-1 875492 A27 2025 4176 371*2^2907377+1 875211 L5197 2020 4177 8161*24^633274+1 874056 A11 2024 4178 207*2^2903535+1 874054 L3173 2015 4179 851*2^2902731+1 873813 L5177 2020 4180 267*2^2902469-1 873733 A27 2024 4181 777*2^2901907+1 873564 L5192 2020 4182 717*2^2900775+1 873224 L5185 2020 4183 99*2^2899303-1 872780 L1862 2017 4184 63*2^2898957+1 872675 L3262 2013 4185 173*2^2897448-1 872221 A27 2024 4186 11*2^2897409+1 872209 L2973 2013 Divides GF(2897408,3) 4187 187*2^2896841-1 872039 L3994 2024 4188 29601*24^631722+1 871915 A11 2024 4189 747*2^2895307+1 871578 L5178 2020 4190 403*2^2894566+1 871354 L5180 2020 4191e 62022*5^1246456-1 871241 A11 2025 4192 629*2^2892961+1 870871 L5173 2020 4193 627*2^2891514+1 870436 L5168 2020 4194 325*2^2890955-1 870267 L5545 2022 4195 363*2^2890208+1 870042 L3261 2020 4196 471*2^2890148+1 870024 L5158 2020 4197 4329134^131072+1 869847 L4395 2016 Generalized Fermat 4198 583*2^2889248+1 869754 L5139 2020 4199 353*2^2888332-1 869478 L2257 2023 4200 955*2^2887934+1 869358 L4958 2020 4201 8300*171^389286+1 869279 L5410 2023 4202 303*2^2887603-1 869258 L5184 2022 4203 937*2^2887130+1 869116 L5134 2020 4204 885*2^2886389+1 868893 L3924 2020 4205 763*2^2885928+1 868754 L2125 2020 4206 1071*2^2884844+1 868428 L3593 2020 4207 1181*2^2883981+1 868168 L3593 2020 4208 327*2^2881349-1 867375 L5545 2022 4209 51*2^2881227+1 867338 L3512 2013 4210 933*2^2879973+1 866962 L4951 2020 4211 261*2^2879941+1 866952 L4119 2015 4212 4085818^131072+1 866554 L4201 2016 Generalized Fermat 4213 65*2^2876718-1 865981 L2484 2016 4214 21*948^290747-1 865500 L4985 2019 4215 4013*2^2873250-1 864939 L1959 2014 4216 41*2^2872058-1 864578 L2484 2013 4217 359*2^2870935+1 864241 L1300 2020 4218 165*2^2870868+1 864220 L4119 2015 4219 961*2^2870596+1 864139 L1300 2020 Generalized Fermat 4220 665*2^2869847+1 863913 L2885 2020 4221f 12*753^300293+1 863883 A59 2025 4222 283*2^2868750+1 863583 L3877 2015 4223 663703*20^663703-1 863504 L5765 2023 Generalized Woodall 4224 845*2^2868291+1 863445 L5100 2020 4225 3125*2^2867399+1 863177 L1754 2019 4226 701*2^2867141+1 863099 L1422 2020 4227 9*10^862868+1 862869 L4789 2024 Generalized Fermat 4228 3814944^131072+1 862649 L4201 2016 Generalized Fermat 4229 81030*91^440109-1 862197 A11 2024 4230 119*954^289255+1 861852 L5410 2022 4231 307*2^2862962+1 861840 L4740 2020 4232 147*2^2862651+1 861746 L1741 2015 4233 1207*2^2861901-1 861522 L1828 2011 4234 231*2^2860725+1 861167 L2873 2015 4235 193*2^2858812+1 860591 L2997 2015 4236e 41079*78^454700-1 860341 A11 2025 4237 629*2^2857891+1 860314 L3035 2020 4238 493*2^2857856+1 860304 L5087 2020 4239 241*2^2857313-1 860140 L2484 2018 4240 707*2^2856331+1 859845 L5084 2020 4241 3615210^131072+1 859588 L4201 2016 Generalized Fermat 4242 949*2^2854946+1 859428 L2366 2020 4243 222361*2^2854840+1 859398 g403 2006 4244 725*2^2854661+1 859342 L5031 2020 4245 178972*5^1228284+1 858539 A42 2024 4246 399*2^2851994+1 858539 L4099 2020 4247 225*2^2851959+1 858528 L3941 2015 4248 247*2^2851602+1 858421 L3865 2015 4249 183*2^2850321+1 858035 L2117 2015 4250 1191*2^2849315+1 857733 L1188 2020 4251 717*2^2848598+1 857517 L1204 2020 4252 795*2^2848360+1 857445 L4099 2020 4253 4242104*15^728840-1 857189 L5410 2023 4254 2*647^304931+1 857133 L550 2025 Divides Phi(647^304931,2) 4255 3450080^131072+1 856927 L4201 2016 Generalized Fermat 4256 705*2^2846638+1 856927 L1808 2020 4257 369*2^2846547+1 856899 L4099 2020 4258 233*2^2846392-1 856852 L2484 2021 4259 223952*91^437353-1 856798 A11 2024 4260 955*2^2844974+1 856426 L1188 2020 4261 753*2^2844700+1 856343 L1204 2020 4262 11138*745^297992-1 855884 L4189 2019 4263 111*2^2841992+1 855527 L1792 2015 4264 44*744^297912-1 855478 L5410 2021 4265 649*2^2841318+1 855325 L4732 2020 4266 228*912^288954-1 855305 L5410 2022 4267 305*2^2840155+1 854975 L4907 2020 4268 914*871^290787-1 854923 L5787 2023 4269 1149*2^2839622+1 854815 L2042 2020 4270 95*2^2837909+1 854298 L3539 2013 4271 199*2^2835667-1 853624 L2484 2019 4272 595*2^2833406+1 852943 L4343 2020 4273 1101*2^2832061+1 852539 L4930 2020 4274 813*2^2831757+1 852447 L4951 2020 4275 435*2^2831709+1 852432 L4951 2020 4276 38*500^315752-1 852207 A21 2024 4277 13613*82^445251-1 852132 A11 2024 4278 393*2^2828738-1 851538 L2257 2023 4279 543*2^2828217+1 851381 L4746 2019 4280a 13*2022^257457+1 851098 L6279 2025 4281 68*1010^283267+1 851027 L5778 2023 4282 704*249^354745+1 850043 L5410 2019 4283 1001*2^2822037+1 849521 L1209 2019 4284 84466*5^1215373-1 849515 L3562 2013 4285 97*2^2820650+1 849103 L2163 2013 4286 381*2^2820157-1 848955 L2257 2023 4287 43814*91^433332-1 848920 A32 2024 4288 107*2^2819922-1 848884 L2484 2013 4289 84256*3^1778899+1 848756 L4789 2018 4290 45472*3^1778899-1 848756 L4789 2018 4291 495*2^2819449-1 848742 L3994 2024 4292 14804*3^1778530+1 848579 L4064 2021 4293 497*2^2818787+1 848543 L4842 2019 4294 97*2^2818306+1 848397 L3262 2013 4295 313*2^2817751-1 848231 L802 2021 4296a 25489*58^480810+1 847879 A11 2025 4297 177*2^2816050+1 847718 L129 2012 4298 585*2^2816000-1 847704 L5819 2024 4299 553*2^2815596+1 847582 L4980 2019 4300 1071*2^2814469+1 847243 L3035 2019 4301 105*2^2813000+1 846800 L3200 2015 4302 1115*2^2812911+1 846774 L1125 2019 4303 96*10^846519-1 846521 L2425 2011 Near-repdigit 4304 763*2^2811726+1 846417 L3919 2019 4305 1125*2^2811598+1 846379 L4981 2019 4306 891*2^2810100+1 845928 L4981 2019 4307 441*2^2809881+1 845862 L4980 2019 4308b 14016*58^479652+1 845836 A73 2025 4309 499*2^2809261-1 845675 L5516 2024 4310 711*2^2808473+1 845438 L1502 2019 4311 1089*2^2808231+1 845365 L4687 2019 4312 63*2^2807130+1 845033 L3262 2013 4313 1083*2^2806536+1 844855 L3035 2019 4314 675*2^2805669+1 844594 L1932 2019 4315 819*2^2805389+1 844510 L3372 2019 4316 1027*2^2805222+1 844459 L3035 2019 4317 437*2^2803775+1 844024 L3168 2019 4318 29113*820^289614+1 843886 A50 2024 4319 381*2^2801281-1 843273 L2257 2023 4320 4431*372^327835-1 842718 L5410 2019 4321 150344*5^1205508-1 842620 L3547 2013 4322 311*2^2798459+1 842423 L4970 2019 4323 81*2^2797443-1 842117 L3887 2021 4324 400254*127^400254+1 842062 g407 2013 Generalized Cullen 4325 2639850^131072+1 841690 L4249 2016 Generalized Fermat 4326 43*2^2795582+1 841556 L2842 2013 4327 1001*2^2794357+1 841189 L1675 2019 4328 117*2^2794014+1 841085 L1741 2015 4329e 1962*5^1203024-1 840881 A63 2025 4330 1057*2^2792700+1 840690 L1675 2019 4331 345*2^2792269+1 840560 L1754 2019 4332 267*2^2792074-1 840501 L1817 2024 4333 711*2^2792072+1 840501 L4256 2019 4334 293*2^2791482-1 840323 A27 2024 4335e 42896*78^444110-1 840303 A11 2025 4336 315*2^2791414-1 840302 L2235 2021 4337 973*2^2789516+1 839731 L3372 2019 4338 27602*3^1759590+1 839543 L4064 2021 4339 2187*2^2786802+1 838915 L1745 2019 4340 15*2^2785940+1 838653 p286 2012 4341 333*2^2785626-1 838560 L802 2021 4342 1337*2^2785444-1 838506 L4518 2017 4343 711*2^2784213+1 838135 L4687 2019 4344 58582*91^427818+1 838118 L5410 2020 4345 923*2^2783153+1 837816 L1675 2019 4346 1103*2^2783149+1 837815 L3784 2019 4347 20708*82^437279-1 836875 A48 2024 4348 297*2^2778276-1 836347 A27 2024 4349 485*2^2778151+1 836310 L1745 2019 4350 600921*2^2776014-1 835670 g337 2017 4351 1129*2^2774934+1 835342 L1774 2019 4352 750*1017^277556-1 834703 L4955 2021 4353 8700*241^350384-1 834625 L5410 2019 4354 1023*2^2772512+1 834613 L4724 2019 4355 656*249^348030+1 833953 L5410 2019 4356 92*10^833852-1 833854 L4789 2018 Near-repdigit 4357 437*2^2769299+1 833645 L3760 2019 4358 967*2^2768408+1 833377 L3760 2019 4359 2280466^131072+1 833359 L4201 2016 Generalized Fermat 4360 1171*2^2768112+1 833288 L2676 2019 4361 57*2^2765963+1 832640 L3262 2013 4362 1323*2^2764024+1 832058 L1115 2019 4363 189*2^2762731-1 831668 A27 2024 4364 471*2^2762718-1 831664 L5516 2023 4365 115*2^2762111-1 831481 A27 2024 4366 77*2^2762047+1 831461 L3430 2013 4367 745*2^2761514+1 831302 L1204 2019 4368 2194180^131072+1 831164 L4276 2016 Generalized Fermat 4369 543*2^2760224-1 830913 L5516 2023 4370 7*10^830865+1 830866 p342 2014 4371 893*2^2758841+1 830497 L4826 2019 4372 593*2^2757554-1 830110 L5516 2023 4373 557*2^2757276-1 830026 L5516 2023 4374 537*2^2755164+1 829390 L3035 2019 4375 225*370^322863-1 829180 A14 2024 4376 579*2^2754370+1 829151 L1823 2019 4377 441*2^2754188+1 829096 L2564 2019 Generalized Fermat 4378 455*2^2754132-1 829080 L5516 2023 4379 139*2^2751839-1 828389 A27 2024 4380 677*792^285769-1 828369 L541 2023 4381 215*2^2751022-1 828143 L2484 2018 4382 337*2^2750860+1 828094 L4854 2019 4383 701*2^2750267+1 827916 L3784 2019 4384 467*2^2749195+1 827593 L1745 2019 4385 245*2^2748663+1 827433 L3173 2015 4386 591*2^2748315+1 827329 L3029 2019 4387 205*2^2747571-1 827104 L1817 2024 4388 57*2^2747499+1 827082 L3514 2013 Divides Fermat F(2747497) 4389 1007*2^2747268-1 827014 L4518 2022 4390 1089*2^2746155+1 826679 L2583 2019 4391 707*2^2745815+1 826576 L3760 2019 4392b 14016*58^468332+1 825874 A68 2025 4393 525*2^2743252-1 825804 L5516 2023 4394 459*2^2742310+1 825521 L4582 2019 4395 777*2^2742196+1 825487 L3919 2019 4396 609*2^2741078+1 825150 L3091 2019 4397 684*157^375674+1 824946 L5112 2022 4398 639*2^2740186+1 824881 L4958 2019 4399 905*2^2739805+1 824767 L4958 2019 4400 119*954^276761+1 824625 L5410 2022 4401 1955556^131072+1 824610 L4250 2015 Generalized Fermat 4402c 1741*168^370406-1 824272 A11 2025 4403 777*2^2737282+1 824007 L1823 2019 4404 224*938^277168-1 823802 A11 2025 4405 765*2^2735232+1 823390 L1823 2019 4406 609*2^2735031+1 823330 L1823 2019 4407 9*10^823037+1 823038 L4789 2024 4408 305*2^2733989+1 823016 L1823 2019 4409 165*2^2732983+1 822713 L1741 2015 4410 1133*2^2731993+1 822415 L4687 2019 4411 251*2^2730917+1 822091 L3924 2015 4412 189*2^2730633-1 822005 A27 2024 4413 1185*2^2730620+1 822002 L4948 2019 4414 (10^410997+1)^2-2 821995 p405 2022 4415 173*2^2729905+1 821786 L3895 2015 4416 285*2^2728979-1 821507 A27 2024 4417 1981*2^2728877-1 821478 L1134 2018 4418 693*2^2728537+1 821375 L3035 2019 4419 501*2^2728224+1 821280 L3035 2019 4420 763*2^2727928+1 821192 L3924 2019 4421 553*2^2727583-1 821088 L5516 2023 4422 5292*820^281664+1 820721 A11 2024 4423 465*2^2726085-1 820637 L5516 2023 4424 291*2^2725533-1 820470 L1817 2024 4425 10*743^285478+1 819606 L4955 2019 4426 17*2^2721830-1 819354 p279 2010 4427 1006*639^291952+1 819075 L4444 2021 4428 1101*2^2720091+1 818833 L4935 2019 4429 1766192^131072+1 818812 L4231 2015 Generalized Fermat 4430 555*2^2719105-1 818535 L5516 2023 4431 165*2^2717378-1 818015 L2055 2012 4432 495*2^2717011-1 817905 L5516 2023 4433 68633*2^2715609+1 817485 L5105 2020 4434 1722230^131072+1 817377 L4210 2015 Generalized Fermat 4435 9574*5^1169232+1 817263 L5410 2021 4436 1717162^131072+1 817210 L4226 2015 Generalized Fermat 4437 133*2^2713410+1 816820 L3223 2015 4438 9022*96^411931-1 816563 L5410 2023 4439e 17423*52^475727-1 816354 A11 2025 4440 45*2^2711732+1 816315 L1349 2012 4441 569*2^2711451+1 816231 L4568 2019 4442 567*2^2710898-1 816065 L5516 2023 4443 12830*3^1709456+1 815622 L5410 2021 4444 335*2^2708958-1 815481 L2235 2020 4445 93*2^2708718-1 815408 L1862 2016 4446 1660830^131072+1 815311 L4207 2015 Generalized Fermat 4447 837*2^2708160+1 815241 L4314 2019 4448 261*2^2707551-1 815057 A27 2024 4449 1005*2^2707268+1 814972 L4687 2019 4450 13*458^306196+1 814748 L3610 2015 4451 253*2^2705844+1 814543 L4083 2015 4452 657*2^2705620+1 814476 L4907 2019 4453 39*2^2705367+1 814399 L1576 2013 Divides GF(2705360,3) 4454 405*2^2704471-1 814130 L5516 2023 4455 303*2^2703864+1 813947 L1204 2019 4456 141*2^2702160+1 813434 L1741 2015 4457 753*2^2701925+1 813364 L4314 2019 4458 133*2^2701452+1 813221 L3173 2015 4459 58434*5^1162930+1 812858 A11 2024 4460 521*2^2700095+1 812813 L4854 2019 4461 393*2^2698956+1 812470 L1823 2019 4462 417*2^2698652+1 812378 L3035 2019 4463 525*2^2698118+1 812218 L1823 2019 4464 3125*2^2697651+1 812078 L3924 2019 4465 287*2^2697536-1 812042 A27 2024 4466 153*2^2697173+1 811933 L3865 2015 4467 1560730^131072+1 811772 L4201 2015 Generalized Fermat 4468 26*3^1700041+1 811128 L4799 2020 4469 1538654^131072-1538654^65536+1 810961 L4561 2017 Generalized unique 4470 11*2^2691961+1 810363 p286 2013 Divides GF(2691960,12) 4471 555*2^2691334-1 810176 L5516 2023 4472 58*536^296735-1 809841 L5410 2021 4473 33016*3^1696980+1 809670 L5366 2021 4474 7335*2^2689080-1 809498 L4036 2015 4475 1049*2^2688749+1 809398 L4869 2018 4476 120*957^271487-1 809281 L541 2023 4477 329*2^2688221+1 809238 L3035 2018 4478 1578*37^515979-1 809163 p443 2024 4479 865*2^2687434+1 809002 L4844 2018 4480 989*2^2686591+1 808748 L2805 2018 4481 136*904^273532+1 808609 L5410 2020 4482 243*2^2685873+1 808531 L3865 2015 4483 909*2^2685019+1 808275 L3431 2018 4484 1455*2^2683954-6325241166627*2^1290000-1 807954 p423 2021 Arithmetic progression (3,d=1455*2^2683953-6325241166627*2^1290000) 4485 1455*2^2683953-1 807954 L1134 2020 4486 11210*241^339153-1 807873 L5410 2019 4487 1456746^131072-1456746^65536+1 807848 L4561 2017 Generalized unique 4488 975*2^2681840+1 807318 L4155 2018 4489 999*2^2681353-1 807171 L4518 2022 4490 295*2^2680932+1 807044 L1741 2015 4491 275*2^2679936-1 806744 A27 2024 4492 1427604^131072-1427604^65536+1 806697 L4561 2017 Generalized unique 4493 575*2^2679711+1 806677 L2125 2018 4494f 46533*52^469992-1 806513 L6248 2025 4495 2386*52^469972+1 806477 L4955 2019 4496 2778*991^269162+1 806433 p433 2023 4497 10*80^423715-1 806369 p247 2023 4498 219*2^2676229+1 805628 L1792 2015 4499 637*2^2675976+1 805552 L3035 2018 4500 1395583^131072-1395583^65536+1 805406 L4561 2017 Generalized unique 4501 951*2^2674564+1 805127 L1885 2018 4502 531*2^2673250-1 804732 L5516 2023 4503 1372930^131072+1 804474 g236 2003 Generalized Fermat 4504 662*1009^267747-1 804286 L5410 2020 4505 261*2^2671677+1 804258 L3035 2015 4506 895*2^2671520+1 804211 L3035 2018 4507 1361244^131072+1 803988 g236 2004 Generalized Fermat 4508 789*2^2670409+1 803877 L3035 2018 4509 256*11^771408+1 803342 L3802 2014 Generalized Fermat 4510 503*2^2668529+1 803310 L4844 2018 4511 255*2^2668448+1 803286 L1129 2015 4512 4189*2^2666639-1 802742 L1959 2017 4513 539*2^2664603+1 802129 L4717 2018 4514 3^1681130+3^445781+1 802103 CH9 2022 4515 26036*745^279261-1 802086 L4189 2020 4516 295*2^2663855-1 801903 A27 2024 4517 1396*5^1146713-1 801522 L3547 2013 4518 676*687^282491-1 801418 L5426 2023 4519 267*2^2662090+1 801372 L3234 2015 Divides Fermat F(2662088) 4520 51*892^271541+1 801147 L5410 2019 4521 1851*24^580404+1 801084 A49 2024 4522 12124*477^299035-1 800975 A11 2025 4523 297*2^2660048+1 800757 L3865 2015 4524 133*2^2658587-1 800317 L1817 2024 4525 99*2^2658496-1 800290 L1862 2021 4526 851*2^2656411+1 799663 L4717 2018 4527 487*2^2655008+1 799240 L3760 2018 4528 153*2^2654686-1 799143 A27 2024 4529d 13291*108^392961-1 799061 A11 2025 4530 441*2^2652807-1 798578 L5516 2023 4531e 77594*78^421949-1 798373 A11 2025 4532 371*2^2651663+1 798233 L3760 2018 4533 69*2^2649939-1 797713 L3764 2014 4534 207*2^2649810+1 797675 L1204 2015 4535 505*2^2649496+1 797581 L3760 2018 4536 993*2^2649256+1 797509 L3760 2018 4537 225*718^279185-1 797390 A11 2024 4538 517*2^2648698+1 797341 L3760 2018 4539 340*703^280035+1 797250 L4001 2018 4540 441*2^2648307+1 797223 L3760 2018 4541b 265666*1001^265666+1 797119 A67 2025 Generalized Cullen 4542 1129*2^2646590+1 796707 L3760 2018 4543 128*518^293315+1 796156 L4001 2019 4544 211*744^277219-1 796057 L5410 2021 4545 1181782^131072-1181782^65536+1 795940 L4142 2015 Generalized unique 4546 1176694^131072+1 795695 g236 2003 Generalized Fermat 4547 13*2^2642943-1 795607 L1862 2012 4548e 73406*105^393484+1 795311 A11 2025 4549 119*410^304307+1 795091 L4294 2019 4550 501*2^2641052+1 795039 L3035 2018 4551 267*2^2640554-1 794889 A27 2024 4552 879*2^2639962+1 794711 L3760 2018 4553 57*2^2639528-1 794579 L2484 2016 4554 342673*2^2639439-1 794556 L53 2007 4555 813*2^2639092+1 794449 L2158 2018 4556 1147980^131072-1147980^65536+1 794288 L4142 2015 Generalized unique 4557 197*972^265841-1 794247 L4955 2022 4558 1027*2^2638186+1 794177 L3760 2018 4559 889*2^2637834+1 794071 L3545 2018 4560 175*2^2637399-1 793939 A27 2024 4561d 1098*97^399549+1 793816 A11 2025 4562 421*2^2636975-1 793812 L5516 2023 4563 92182*5^1135262+1 793520 L3547 2013 4564 5608*70^429979+1 793358 L5390 2021 4565b 13107*58^449714+1 793043 A68 2025 4566 741*2^2634385+1 793032 L1204 2018 4567d 99268*105^392060-1 792433 A11 2025 4568f 34449*52^461672-1 792236 A11 2025 4569 465*2^2630496+1 791861 L1444 2018 4570 189*2^2630487+1 791858 L3035 2015 4571 87*2^2630468+1 791852 L3262 2013 4572 123454321*2^2630208+1 791780 L6049 2024 Generalized Fermat 4573e 5252*53^459192-1 791778 A63 2025 4574 4*5^1132659-1 791696 L4965 2022 4575 1131*2^2629345+1 791515 L4826 2018 4576 967*2^2629344+1 791515 L3760 2018 4577 267*2^2629210+1 791474 L3035 2015 4578 154*883^268602+1 791294 L5410 2020 4579 237*2^2627713-1 791023 L1817 2024 4580 819*2^2627529+1 790968 L1387 2018 4581 183*2^2626880-1 790772 L1817 2024 4582 17152*5^1131205-1 790683 L3552 2013 4583 183*2^2626442+1 790641 L3035 2015 4584 137*2^2626238-1 790579 A27 2024 4585 813*2^2626224+1 790576 L4830 2018 4586 66*952^265412+1 790568 A52 2025 4587 807*2^2625044+1 790220 L1412 2018 4588 557*2^2624952-1 790193 L5516 2023 4589 4*10^789955+1 789956 L4789 2024 4590 1063730^131072+1 789949 g260 2013 Generalized Fermat 4591 1243*2^2623707-1 789818 L1828 2011 4592 693*2^2623557+1 789773 L3278 2018 4593 981*2^2622032+1 789314 L1448 2018 4594 145*2^2621020+1 789008 L3035 2015 4595 963*792^271959-1 788338 L5410 2021 4596 1798*165^354958+1 787117 p365 2024 4597 541*2^2614676+1 787099 L4824 2018 4598 545*2^2614294-1 786984 L5516 2023 4599 (10^393063-1)^2-2 786126 p405 2022 Near-repdigit 4600 1061*268^323645-1 785857 L5410 2019 4601 1662*483^292719-1 785646 L5410 2022 4602 984522^131072-984522^65536+1 785545 p379 2015 Generalized unique 4603 1071*2^2609316+1 785486 L3760 2018 4604 87*2^2609046+1 785404 L2520 2013 4605 18922*111^383954+1 785315 L4927 2021 4606 543*2^2608129+1 785128 L4822 2018 4607 377*2^2607856-1 785046 L2257 2023 4608 329584*5^1122935-1 784904 L3553 2013 4609 10*311^314806+1 784737 L3610 2014 4610e 85806*52^457298-1 784730 A11 2025 4611 1019*2^2606525+1 784646 L1201 2018 4612 977*2^2606211+1 784551 L4746 2018 4613 13*2^2606075-1 784508 L1862 2011 4614 693*2^2605905+1 784459 L4821 2018 4615 6984*507^289940-1 784294 A54 2025 4616 147*2^2604275+1 783968 L1741 2015 4617 105*2^2603631+1 783774 L3459 2015 4618 93*2^2602483-1 783428 L1862 2016 4619 155*2^2602213+1 783347 L2719 2015 4620 545*2^2602018-1 783289 L5516 2023 4621b 787*58^444113+1 783165 A72 2025 4622 303*2^2601525+1 783140 L4816 2018 4623 711*2^2600535+1 782842 L4815 2018 4624 1133*2^2599345+1 782484 L4796 2018 4625 397*2^2598796+1 782319 L3877 2018 4626 421*2^2597273-1 781860 L5516 2023 4627 585*2^2596523-1 781635 L5819 2023 4628 203*2^2595752-1 781402 A27 2024 4629 1536*177^347600+1 781399 L5410 2020 4630 1171*2^2595736+1 781398 L3035 2018 4631 (146^180482+1)^2-2 781254 p405 2022 4632 579*2^2595159-1 781224 L5516 2023 4633 543*2^2594975-1 781169 L5516 2023 4634 909548^131072+1 781036 p387 2015 Generalized Fermat 4635 7386*82^408082-1 780997 A11 2024 4636 2*218^333925+1 780870 L4683 2017 4637 15690*29^533930+1 780823 L5787 2023 4638 1149*2^2593359+1 780682 L1125 2018 4639 225*2^2592918+1 780549 L1792 2015 Generalized Fermat 4640 495*2^2592802-1 780514 L5516 2023 4641 333*2^2591874-1 780235 L2017 2019 4642 883969^131072-883969^65536+1 779412 p379 2015 Generalized unique 4643 2154*687^274573-1 778956 L5752 2023 4644 872989^131072-872989^65536+1 778700 p379 2015 Generalized unique 4645 703*2^2586728+1 778686 L4256 2018 4646 2642*372^302825-1 778429 L5410 2019 4647 120*825^266904+1 778416 L4001 2018 4648 337*2^2585660+1 778364 L2873 2018 4649 31*2^2585311-1 778258 L4521 2022 4650 393*2^2584957+1 778153 L4600 2018 4651 151*2^2584480+1 778009 L4043 2015 4652 862325^131072-862325^65536+1 778001 p379 2015 Generalized unique 4653 385*2^2584280+1 777949 L4600 2018 4654 861088^131072-861088^65536+1 777919 p379 2015 Generalized unique 4655 65*2^2583720-1 777780 L2484 2015 4656 25*2^2583690+1 777770 L3249 2013 Generalized Fermat 4657 82*920^262409-1 777727 L4064 2015 4658 123*2^2583362-1 777672 L1817 2024 4659 1041*2^2582112+1 777297 L1456 2018 4660 153*2^2581916-1 777237 L1817 2024 4661 334310*211^334310-1 777037 p350 2012 Generalized Woodall 4662 229*2^2581111-1 776995 L1862 2017 4663 61*2^2580689-1 776867 L2484 2015 4664 1113*2^2580205+1 776723 L4724 2018 4665 51*2^2578652+1 776254 L3262 2013 4666 173*2^2578197+1 776117 L3035 2015 4667 833*2^2578029+1 776067 L4724 2018 4668d 43724*105^383786-1 775709 A62 2025 4669e 51729*52^452017-1 775668 A11 2025 4670 80*394^298731-1 775358 L541 2020 4671e 41748*78^409654-1 775109 A11 2025 4672 302*423^295123-1 775096 L5413 2021 4673 460*628^276994+1 775021 L5410 2020 4674 459*2^2573899+1 774824 L1204 2018 4675 593*2^2572634-1 774443 L5516 2023 4676 806883^131072-806883^65536+1 774218 p379 2015 Generalized unique 4677 3*2^2571360-3*2^1285680+1 774057 A3 2023 Generalized unique 4678 181*2^2570921-1 773927 A27 2024 4679 285*2^2570839-1 773903 A27 2024 4680b 34396*58^438577+1 773404 A11 2025 4681 357*2^2568110-1 773081 L2257 2023 4682 627*2^2567718+1 772963 L3803 2018 4683 933*2^2567598+1 772927 L4724 2018 4684 757*2^2566468+1 772587 L2606 2018 4685 471*2^2566323-1 772543 L5516 2023 4686 231*2^2565263+1 772224 L3035 2015 4687 4*737^269302+1 772216 L4294 2016 Generalized Fermat 4688 941*2^2564867+1 772105 L4724 2018 4689 923*2^2563709+1 771757 L1823 2018 4690 151*596^278054+1 771671 L4876 2019 4691 770202^131072-770202^65536+1 771570 p379 2015 Generalized unique 4692 303*2^2562423-1 771369 L2017 2018 4693 75*2^2562382-1 771356 L2055 2011 4694 147559*2^2562218+1 771310 L764 2012 4695 117*412^294963+1 771300 p268 2021 4696 829*2^2561730+1 771161 L1823 2018 4697 404*12^714558+1 771141 L1471 2011 4698 5*308^309755+1 770842 L4294 2024 4699 757576^131072-757576^65536+1 770629 p379 2015 Generalized unique 4700 295*80^404886+1 770537 L5410 2021 4701 1193*2^2559453+1 770476 L2030 2018 4702 205*2^2559417-1 770464 A27 2024 4703 19*984^257291+1 770072 L5410 2020 4704 116*950^258458-1 769619 L5410 2021 4705 147314*91^392798-1 769513 A11 2024 4706 612497*18^612497+1 768857 L5765 2023 Generalized Cullen 4707 19861029*2^2553830+1 768787 A31 2024 4708 175*2^2553699-1 768743 A27 2024 4709 731582^131072-731582^65536+1 768641 p379 2015 Generalized unique 4710 479*2^2553152-1 768579 L5516 2023 4711 65*752^267180-1 768470 L5410 2020 4712 120312*91^392238-1 768416 A15 2024 4713 419*2^2552363+1 768341 L4713 2018 4714 369*2^2551955-1 768218 L2257 2023 4715 34*759^266676-1 768093 L4001 2019 4716 315*2^2550412+1 767754 L4712 2017 4717 415*2^2549590+1 767506 L4710 2017 4718 1152*792^264617-1 767056 L4955 2021 4719d 151210*105^379481-1 767009 A52 2025 4720 693*2^2547752+1 766953 L4600 2017 4721 673*2^2547226+1 766795 L2873 2017 4722 169*2^2545526+1 766282 L2125 2015 Divides GF(2545525,10), generalized Fermat 4723 196*814^263256+1 766242 L5410 2021 Generalized Fermat 4724 183*2^2545116+1 766159 L3035 2015 4725c 29004*45^463428+1 766150 A68 2025 4726 311*2^2544778-1 766058 L2017 2018 4727 9*2^2543551+1 765687 L1204 2011 Divides Fermat F(2543548), GF(2543549,3), GF(2543549,6), GF(2543549,12) 4728 67*446^288982+1 765612 L4273 2020 4729 663*2^2542990+1 765520 L4703 2017 4730 705*2^2542464+1 765361 L2873 2017 4731d 90896*105^378627-1 765282 A11 2025 4732 689186^131072+1 765243 g429 2013 Generalized Fermat 4733 745*2^2540726+1 764838 L4696 2017 4734 682504^131072-682504^65536+1 764688 p379 2015 Generalized unique 4735 64*177^340147-1 764644 L3610 2015 4736 421*2^2539336+1 764419 L4148 2017 4737 (2^64-189)*10^764330+1 764350 p439 2024 4738 123287*2^2538167+1 764070 L3054 2012 4739 305716*5^1093095-1 764047 L3547 2013 4740 223*2^2538080+1 764041 L2125 2015 4741 83*2^2537641+1 763908 L1300 2013 4742 543539*2^2536028-1 763427 L4187 2022 4743 473*2^2533376-1 762625 L5516 2023 4744 645*2^2532811+1 762455 L4600 2017 4745 953*2^2531601+1 762091 L4404 2017 4746 694*567^276568-1 761556 L4444 2021 4747 545*2^2528179+1 761061 L1502 2017 4748 517*2^2527857-1 760964 L5516 2023 4749 203*2^2526505+1 760557 L3910 2015 4750 967*2^2526276+1 760488 L1204 2017 4751 3317*2^2523366-1 759613 L5399 2021 4752 241*2^2522801-1 759442 L2484 2018 4753 153*2^2522271-1 759282 A27 2024 4754 360307*6^975466-1 759066 p255 2017 4755 326*80^398799+1 758953 L4444 2021 4756 749*2^2519457+1 758436 L1823 2017 4757 199*2^2518871-1 758259 L2484 2018 4758 6*10^758068+1 758069 L5009 2019 4759 87*2^2518122-1 758033 L2484 2014 4760 515*2^2517626-1 757884 L5516 2023 4761 605347^131072-605347^65536+1 757859 p379 2015 Generalized unique 4762 711*2^2516187+1 757451 L3035 2017 4763 967*2^2514698+1 757003 L4600 2017 4764 33*2^2513872-1 756753 L3345 2013 4765 1-V(-3,-3,1307101)-3^1307101 756533 p437 2024 4766 973*2^2511920+1 756167 L1823 2017 4767 679*2^2511814+1 756135 L4598 2017 4768 1093*2^2511384+1 756005 L1823 2017 4769 38*875^256892-1 755780 L4001 2019 4770 209*2^2510308-1 755681 A27 2024 4771 45*2^2507894+1 754953 L1349 2012 4772 130484*5^1080012-1 754902 L3547 2013 4773 572186^131072+1 754652 g0 2004 Generalized Fermat 4774 242*501^279492-1 754586 L4911 2019 4775 883*2^2506382+1 754500 L1823 2017 4776 9702*871^256606+1 754431 A44 2025 4777 77*2^2505854-1 754340 A27 2024 4778 847*2^2505540+1 754246 L4600 2017 4779 39768*5^1079005+1 754197 A11 2024 4780 175604*91^384974-1 754186 A16 2024 4781 191*2^2504121+1 753818 L3035 2015 4782 783*2^2500912+1 752853 L1823 2017 4783 133*488^279973-1 752688 L541 2023 4784 165*2^2500130-1 752617 L2055 2011 4785d 12585*2^2500004-1 752581 L6267 2025 4786 33*2^2499883-1 752542 L3345 2013 4787 319*2^2498685-1 752182 L2017 2018 4788 215206*5^1076031-1 752119 L20 2023 Generalized Woodall 4789f 41712*52^438229-1 752008 A11 2025 4790 477*2^2496685-1 751580 L5516 2023 4791b 3511*58^426200+1 751577 A11 2025 4792 321*2^2496594-1 751553 L2235 2018 4793 531*2^2495930-1 751353 L5516 2023 4794 365*2^2494991+1 751070 L3035 2017 4795 91*2^2494467-1 750912 L1817 2024 4796 213*2^2493004-1 750472 L1863 2017 4797 777*2^2492560+1 750339 L3035 2017 4798 57*2^2492031+1 750178 L1230 2013 4799 879*2^2491342+1 749972 L4600 2017 4800 14*152^343720-1 749945 L3610 2015 4801 231*2^2489083+1 749292 L3035 2015 4802 255*2^2488562+1 749135 L3035 2015 4803 483*2^2488154-1 749012 L5516 2023 4804 708*48^445477-1 748958 L5410 2022 4805 221*780^258841-1 748596 L4001 2018 4806 303*2^2486629+1 748553 L3035 2017 4807 6*433^283918-1 748548 L3610 2015 4808 413*2^2486596-1 748543 L5516 2023 4809 617*2^2485919+1 748339 L1885 2017 4810 4118*82^390928-1 748168 A11 2024 4811 515*2^2484885+1 748028 L3035 2017 4812 1095*2^2484828+1 748011 L3035 2017 4813 1113*2^2484125+1 747800 L3035 2017 4814 607*2^2483616+1 747646 L3035 2017 4815 625*2^2483272+1 747543 L2487 2017 Generalized Fermat 4816 527*2^2482876-1 747423 L5516 2023 4817 723*2^2482064+1 747179 L3035 2017 4818 2154*687^263317-1 747023 L5410 2023 4819 26*3^1565545+1 746957 L4799 2020 4820 14336*3^1563960+1 746203 L5410 2021 4821 3*2^2478785+1 746190 g245 2003 Divides Fermat F(2478782), GF(2478782,3), GF(2478776,6), GF(2478782,12) 4822 483*2^2478266-1 746036 L5516 2023 4823 429*2^2478139-1 745997 L5516 2023 4824 33324*5^1067123+1 745892 A11 2024 4825 1071*2^2477584+1 745831 L3035 2017 4826 22*30^504814-1 745673 p355 2014 4827 2074*483^277812-1 745637 L5410 2022 4828 11*2^2476839+1 745604 L2691 2011 4829 95977*6^957680-1 745225 L4521 2024 4830 825*2^2474996+1 745051 L1300 2017 4831 1061*2^2474282-1 744837 L1828 2012 4832 435*2^2473905+1 744723 L3035 2017 4833 1005*2^2473724-1 744669 L4518 2021 4834 1121*2^2473401+1 744571 L3924 2017 4835 325*2^2473267-1 744531 L2017 2018 4836 400*639^265307-1 744322 L5410 2022 4837 11996*3^1559395+1 744025 L5410 2021 4838 889*2^2471082+1 743873 L1300 2017 4839 529*2^2470514+1 743702 L3924 2017 Generalized Fermat 4840 561*2^2469713-1 743461 L5516 2023 4841 883*2^2469268+1 743327 L4593 2017 4842 5754*313^297824-1 743237 L5089 2020 4843 81*2^2468789+1 743182 g418 2009 4844 55154*5^1063213+1 743159 L3543 2013 4845 119*2^2468556-1 743112 L2484 2018 4846 2136*396^285974+1 742877 L5410 2021 4847 525*2^2467658+1 742842 L3035 2017 4848 465*2^2467625-1 742832 L5516 2023 4849 715*2^2465640+1 742235 L3035 2017 4850 26773*2^2465343-1 742147 L197 2006 4851 581*550^270707-1 741839 L5410 2020 4852 993*2^2464082+1 741766 L3035 2017 4853 295*2^2463785-1 741676 L1817 2024 4854 1179*2^2463746+1 741665 L3035 2017 4855 857*2^2463411+1 741564 L3662 2017 4856 227*2^2462914-1 741414 L1817 2024 4857 103*2^2462567-1 741309 L2484 2014 4858 12587*2^2462524-1 741298 L2012 2017 4859 6962*507^273940-1 741014 A11 2025 4860 15592*67^405715+1 740871 A11 2024 4861 5*2^2460482-1 740680 L503 2008 4862 763*2^2458592+1 740113 L1823 2017 4863 453*2^2458461+1 740074 L3035 2017 4864 519*2^2458058+1 739952 L3803 2017 4865 373*2^2457859-1 739892 L2257 2023 4866 545*2^2457692-1 739842 L5516 2023 4867 137*2^2457639+1 739826 L4021 2014 4868 411*2^2457241-1 739706 L5516 2023 4869d 79128*105^365950-1 739660 A14 2025 4870 41676*7^875197-1 739632 L2777 2012 Generalized Woodall 4871 2688*991^246849+1 739582 L5410 2021 4872 6143*82^386291-1 739293 A11 2024 4873 133*2^2455666+1 739232 L2322 2014 4874 99*2^2455541-1 739194 L1862 2015 4875 115*2^2454363-1 738839 L1817 2024 4876 14855*82^385937-1 738616 A11 2024 4877 129*2^2452892-1 738397 L1817 2024 4878 377*2^2452639+1 738321 L3035 2017 4879 2189*138^345010+1 738284 L5410 2020 4880 1129*2^2452294+1 738218 L3035 2017 4881 1103*2^2451133+1 737868 L4531 2017 4882 65*2^2450614-1 737711 L2074 2014 4883 549*2^2450523+1 737684 L3035 2017 4884 4*789^254595+1 737582 L4955 2019 4885 3942*55^423771-1 737519 L4955 2019 4886 441*2^2449825-1 737474 L5516 2023 4887 (3*2^1224895)^2-3*2^1224895+1 737462 A3 2023 Generalized unique 4888 2166*483^274670-1 737204 L5410 2022 4889 765*2^2448660+1 737123 L4412 2017 4890 77*2^2448152-1 736970 L5819 2024 4891 607*2^2447836+1 736875 L4523 2017 4892 1261*988^246031+1 736807 L5342 2021 4893 1005*2^2446722+1 736540 L4522 2017 4894 703*2^2446472+1 736465 L2805 2017 4895 75*2^2446050+1 736337 L3035 2013 4896 115*26^520277-1 736181 L1471 2014 4897 114986*5^1052966-1 735997 L3528 2013 4898 1029*2^2444707+1 735934 L3035 2017 4899 4*5^1052422+1 735613 L4965 2023 Generalized Fermat 4900 1035*2^2443369+1 735531 L3173 2017 4901 1052072*5^1052072-1 735373 L20 2023 Generalized Woodall 4902e 13194*93^373570+1 735371 A11 2025 4903 1017*2^2442723+1 735336 L4417 2017 4904 489*2^2442281-1 735203 L5516 2023 4905 962*3^1540432+1 734976 L5410 2021 4906 1065*2^2441132+1 734857 L1823 2017 4907 210060*91^374955-1 734558 A10 2024 4908 369*2^2436949-1 733598 L2257 2023 4909 393*2^2436849+1 733568 L3035 2016 4910a 783*2^2436523-1 733470 A58 2025 4911 1425*2^2435607-1 733194 L1134 2020 4912a 915*2^2434220-1 732777 A58 2025 4913 183*2^2433172-1 732461 L1817 2024 4914 386892^131072+1 732377 p259 2009 Generalized Fermat 4915a 979*2^2432857-1 732366 A74 2025 4916 465*2^2431455+1 731944 L3035 2016 4917 905*2^2430509+1 731660 L4408 2016 4918 223*2^2430490+1 731653 L4016 2014 4919 8*410^279991+1 731557 L4700 2019 4920 962*333^289821+1 731061 A52 2025 4921 69*2^2428251-1 730979 L384 2014 4922 6070*466^273937+1 730974 L5410 2021 4923 541*2^2427667-1 730804 L5516 2023 4924b 871*2^2427397-1 730723 A27 2025 4925 233*2^2426512-1 730456 L2484 2020 4926 645*2^2426494+1 730451 L3035 2016 4927 665*2^2425789+1 730239 L3173 2016 4928 539*2^2425704-1 730213 L5516 2023 4929 23*2^2425641+1 730193 L2675 2011 4930 527*2^2424868-1 729961 L5516 2023 4931 361*2^2424232+1 729770 L3035 2016 Generalized Fermat 4932 433*2^2423839-1 729651 L5516 2023 4933 753*2^2422914+1 729373 L3035 2016 4934b 713*2^2422880-1 729363 A58 2025 4935 5619*52^424922+1 729172 L5410 2019 4936 105*2^2422105+1 729129 L2520 2014 4937 62*962^244403+1 729099 L5409 2021 4938 3338*396^280633+1 729003 L5410 2021 4939 539*2^2421556-1 728964 L5516 2023 4940 201*2^2421514-1 728951 L1862 2016 4941 1084*7^862557+1 728949 L5211 2021 4942 239*2^2421404-1 728918 L2484 2018 4943 577*2^2420868+1 728757 L4489 2016 4944 3156*82^380339-1 727902 A11 2024 4945b 889*2^2417923-1 727871 A27 2025 4946 929*2^2417767+1 727824 L3924 2016 4947 4075*2^2417579-1 727768 L1959 2017 4948 303*2^2417452-1 727729 L2235 2018 4949 895*2^2417396+1 727712 L3035 2016 4950 113*1010^242194-1 727631 L5789 2023 4951 1764*327^289322+1 727518 L5410 2020 Generalized Fermat 4952 3317*2^2415998-1 727292 L5399 2021 4953f 43406*52^423786-1 727223 A11 2025 4954b 943*2^2415451-1 727127 A27 2025 4955 115*2^2415271-1 727072 A27 2024 4956 5724*313^291243-1 726814 L4444 2020 4957 1081*2^2412780+1 726323 L1203 2016 4958 333*2^2412735-1 726309 L2017 2018 4959d 164352*105^359264-1 726146 A11 2025 4960 6891*52^423132+1 726100 L5410 2019 4961 83*2^2411962-1 726075 L1959 2018 4962 69*2^2410035-1 725495 L2074 2013 4963 12362*1027^240890-1 725462 L4444 2018 4964 143157*2^2409056+1 725204 L4504 2016 4965 340594^131072-340594^65536+1 725122 p379 2015 Generalized unique 4966c 37560*45^438558+1 725035 A68 2025 4967 339*2^2408337+1 724985 L3029 2016 4968 811*2^2408096+1 724913 L2526 2016 4969 157*2^2407958+1 724870 L1741 2014 4970 243686*5^1036954-1 724806 L3549 2013 4971 91*2^2407249-1 724657 A27 2024 4972 3660*163^327506+1 724509 L4955 2019 4973 303*2^2406433+1 724411 L4425 2016 4974 345*2^2405701+1 724191 L3035 2016 4975 921*2^2405056+1 723997 L2805 2016 4976 970*323^288448+1 723778 A11 2024 4977b 681*2^2404318-1 723775 A27 2025 4978 673*2^2403606+1 723561 L3035 2016 4979 475*2^2403220+1 723444 L4445 2016 4980b 797*2^2402848-1 723333 A27 2025 4981 837*2^2402798+1 723318 L3372 2016 4982 329886^131072-329886^65536+1 723303 p379 2015 Generalized unique 4983 231*2^2402748+1 723302 L3995 2014 4984 375*2^2401881+1 723041 L2805 2016 4985 511*2^2401795-1 723016 L5516 2023 4986 107*2^2401731+1 722996 L3998 2014 4987 419*2^2401672-1 722978 L5516 2023 4988 143*2^2400710-1 722688 L5819 2024 4989 1023*2^2398601+1 722054 L4414 2016 4990 539*2^2398227+1 721941 L4061 2016 4991 659*2^2397567+1 721743 L4441 2016 4992 40*844^246524+1 721416 L4001 2017 4993 453*2^2395836-1 721222 L5516 2023 4994 465*2^2395133+1 721010 L4088 2016 4995 56*318^288096+1 720941 L1471 2019 4996 667*2^2394430+1 720799 L4408 2016 4997 15*2^2393365+1 720476 L1349 2010 4998 1642*273^295670+1 720304 L5410 2019 4999 8*908^243439+1 720115 L5410 2021 5000 1183953*2^2367907-1 712818 L447 2007 Woodall 5001 150209!+1 712355 p3 2011 Factorial 5002 147855!-1 700177 p362 2013 Factorial 5003a 5321*2^2308643+1 694975 L5517 2025 Divides GF(2308641,5) 5004 3*2^2291610+1 689844 L753 2008 Divides GF(2291607,3), GF(2291609,5) 5005 2*11171^168429+1 681817 g427 2014 Divides Phi(11171^168429,2) 5006 11*2^2230369+1 671410 L2561 2011 Divides GF(2230368,3) 5007 2*179^294739+1 664004 g424 2011 Divides Phi(179^294739,2) 5008 2717*2^2196891+1 661334 L5239 2025 Divides GF(2196890,12) 5009 2*10271^164621+1 660397 g427 2014 Divides Phi(10271^164621,2) 5010 2*659^233973+1 659544 g424 2015 Divides Phi(659^233973,2) 5011 2*191^287901+1 656713 g424 2015 Divides Phi(191^287901,2) 5012 7*2^2167800+1 652574 g279 2007 Divides Fermat F(2167797), GF(2167799,5), GF(2167799,10) 5013 1179*2^2158475+1 649769 L3035 2014 Divides GF(2158470,6) 5014 3*2^2145353+1 645817 g245 2003 Divides Fermat F(2145351), GF(2145351,3), GF(2145352,5), GF(2145348,6), GF(2145352,10), GF(2145351,12) 5015 753*2^2143388+1 645227 L2583 2014 Divides GF(2143383,3) 5016 25*2^2141884+1 644773 L1741 2011 Divides Fermat F(2141872), GF(2141871,5), GF(2141872,10); generalized Fermat 5017 7*2^2139912+1 644179 g279 2007 Divides GF(2139911,12) 5018 189*2^2115473+1 636824 L3784 2014 Divides GF(2115468,6) 5019 107*2^2081775+1 626679 L3432 2013 Divides GF(2081774,6) 5020 2167*2^2050616+1 617301 L6095 2025 Divides GF(2050615,5) 5021 45*2^2014557+1 606444 L1349 2012 Divides GF(2014552,10) 5022 251749*2^2013995-1 606279 L436 2007 Woodall 5023 657*2^1998854+1 601718 L2520 2013 Divides GF(1998852,10) 5024 101*2^1988279+1 598534 L3141 2013 Divides GF(1988278,12) 5025 175*2^1962288+1 590710 L2137 2013 Divides GF(1962284,10) 5026 225*2^1960083+1 590047 L3548 2013 Divides GF(1960078,6) 5027 2*47^346759+1 579816 g424 2011 Divides Phi(47^346759,2) 5028 4401*2^1925824+1 579735 L5309 2024 Divides GF(1925823,5) 5029 71*2^1873569+1 564003 L1223 2011 Divides GF(1873568,5) 5030 13*2^1861732+1 560439 g267 2005 Divides GF(1861731,6) 5031 3*2^1832496+1 551637 p189 2007 Divides GF(1832490,3), GF(1832494,5) 5032 39*2^1824871+1 549343 L2664 2011 Divides GF(1824867,6) 5033 45*2^1779971+1 535827 L1223 2011 Divides GF(1779969,5) 5034 2*191^232149+1 529540 g424 2011 Divides Phi(191^232149,2) 5035 183*2^1747660+1 526101 L2163 2013 Divides Fermat F(1747656) 5036 110059!+1 507082 p312 2011 Factorial 5037 2^1667321-2^833661+1 501914 L137 2011 Gaussian Mersenne norm 38, generalized unique 5038 2*359^192871+1 492804 g424 2014 Divides Phi(359^192871,2) 5039 10^490030+10^309648+12345678987654321*10^245007+10^180382+1 490031 p363 2024 Palindrome 5040 10^490000+3*(10^7383-1)/9*10^241309+1 490001 p413 2021 Palindrome 5041 1098133#-1 476311 p346 2012 Primorial 5042 10^474500+999*10^237249+1 474501 p363 2014 Palindrome 5043 103040!-1 471794 p301 2010 Factorial 5044 135*2^1515894+1 456332 L1129 2013 Divides GF(1515890,10) 5045 131*2^1494099+1 449771 L2959 2012 Divides Fermat F(1494096) 5046 1467763*2^1467763-1 441847 L381 2007 Woodall 5047 4125*2^1445205-1 435054 L1959 2014 Arithmetic progression (2,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5048 94550!-1 429390 p290 2010 Factorial 5049 2415*2^1413627-1 425548 L1959 2014 Arithmetic progression (2,d=2415*2^1413627-1489088842587*2^1290000) [p199] 5050 2985*2^1404274-1 422733 L1959 2014 Arithmetic progression (2,d=2985*2^1404274-770527213395*2^1290000) [p199] 5051 2^1398269-1 420921 G1 1996 Mersenne 35 5052 17*2^1388355+1 417938 g267 2005 Divides GF(1388354,10) 5053 338707*2^1354830+1 407850 L124 2005 Cullen 5054 107*2^1337019+1 402485 L2659 2012 Divides GF(1337018,10) 5055 1389*2^1335434+1 402009 L1209 2015 Divides GF(1335433,10) 5056 10^400000+4*(10^102381-1)/9*10^148810+1 400001 p413 2021 Palindrome 5057 10^390636+999*10^195317+1 390637 p363 2014 Palindrome 5058 6325241166627*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=1455*2^2683953-6325241166627*2^1290000) 5059 5606879602425*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=33*2^2939063-5606879602425*2^1290000) 5060 2618163402417*2^1290001-1 388342 L927 2016 Sophie Germain (2p+1) 5061 4966510140375*2^1290000-1 388342 L3573 2020 Arithmetic progression (2,d=2227792035315*2^1290001) 5062 2996863034895*2^1290000+1 388342 L2035 2016 Twin (p+2) 5063 2996863034895*2^1290000-1 388342 L2035 2016 Twin (p) 5064 2723880039837*2^1290000-1 388342 L3829 2016 Arithmetic progression (1,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5065 2618163402417*2^1290000-1 388342 L927 2016 Sophie Germain (p) 5066 2060323099527*2^1290000-1 388342 L3606 2015 Arithmetic progression (2,d=69718264533*2^1290002) [p199] 5067 1938662032575*2^1290000-1 388341 L927 2015 Arithmetic progression (1,d=10032831585*2^1290001) [p199] 5068 1781450041395*2^1290000-1 388341 L3203 2015 Arithmetic progression (1,d=69718264533*2^1290002) [p199] 5069 15*2^1276177+1 384169 g279 2006 Divides GF(1276174,3), GF(1276174,10) 5070 1268979*2^1268979-1 382007 L201 2007 Woodall 5071 2^1257787-1 378632 SG 1996 Mersenne 34 5072 329*2^1246017+1 375092 L2085 2012 Divides Fermat F(1246013) 5073 843301#-1 365851 p302 2010 Primorial 5074 10^362600+666*10^181299+1 362601 p363 2014 Palindrome 5075 2^1203793-2^601897+1 362378 L192 2006 Gaussian Mersenne norm 37, generalized unique 5076 1195203*2^1195203-1 359799 L124 2005 Woodall 5077 2145*2^1099064+1 330855 L1792 2013 Divides Fermat F(1099061) 5078 10^320236+10^160118+1+(137*10^160119+731*10^159275)*(10^843-1)/999 320237 p44 2014 Palindrome 5079 10^320096+10^160048+1+(137*10^160049+731*10^157453)*(10^2595-1)/999 320097 p44 2014 Palindrome 5080 10^314727-8*10^157363-1 314727 p235 2013 Near-repdigit, palindrome 5081 10^300010+10^204235+12345678987654321*10^149997+10^95775+1 300011 x45 2024 Palindrome 5082 10^300000+5*(10^48153-1)/9*10^125924+1 300001 p413 2021 Palindrome 5083 10^300000+10^158172+11011*10^149998+10^141828+1 300001 p409 2024 Palindrome 5084 2^991961-2^495981+1 298611 x28 2005 Gaussian Mersenne norm 36, generalized unique 5085 11*2^960901+1 289262 g277 2005 Divides Fermat F(960897) 5086 1705*2^906110+1 272770 L3174 2012 Divides Fermat F(906108) 5087 2^859433-1 258716 SG 1994 Mersenne 33 5088 13243*2^699764+1 210655 L5808 2023 Divides Fermat F(699760) 5089 667071*2^667071-1 200815 g55 2000 Woodall 5090 18543637900515*2^666668-1 200701 L2429 2012 Sophie Germain (2p+1) 5091 18543637900515*2^666667-1 200701 L2429 2012 Sophie Germain (p) 5092 3756801695685*2^666669+1 200700 L1921 2011 Twin (p+2) 5093 3756801695685*2^666669-1 200700 L1921 2011 Twin (p) 5094 392113#+1 169966 p16 2001 Primorial 5095 213778324725*2^561418+1 169015 p430 2023 Cunningham chain 2nd kind (2p-1) 5096 213778324725*2^561417+1 169015 p430 2023 Cunningham chain 2nd kind (p) 5097 366439#+1 158936 p16 2001 Primorial 5098 2*893962950^16384+1 146659 p428 2023 Cunningham chain 2nd kind (2p-1) 5099 893962950^16384+1 146659 p427 2023 Cunningham chain 2nd kind (p), generalized Fermat 5100 481899*2^481899+1 145072 gm 1998 Cullen 5101 669821552^16384-669821552^8192+1 144605 A18 2024 Twin (p+2), generalized unique 5102 669821552^16384-669821552^8192-1 144605 A18 2024 Twin (p) 5103 34790!-1 142891 p85 2002 Factorial 5104 (124750^27751-1)/124749 141416 p441 2024 Generalized repunit 5105 222710306^16384-222710306^8192+1 136770 A13 2024 Twin (p+2), generalized unique 5106 222710306^16384-222710306^8192-1 136770 A13 2024 Twin (p) 5107 (92365^24691-1)/92364 122599 CH14 2024 Generalized repunit 5108f 9955858992*11^111111+1 115721 A25 2025 Twin (p+2) 5109f 9955858992*11^111111-1 115721 A25 2025 Twin (p) 5110e 7977227425*(2^368352-2^257849)+2^110505+1 110895 x52 2025 Consecutive primes arithmetic progression (2,d=6) 5111e 7977227425*(2^368352-2^257849)+2^110505-5 110895 x52 2025 Consecutive primes arithmetic progression (1,d=6) 5112 (102936^21961-1)/102935 110076 CH14 2023 Generalized repunit 5113 2^364289-2^182145+1 109662 p58 2001 Gaussian Mersenne norm 35, generalized unique 5114e R(109297) 109297 E12 2025 Repunit, ECPP, unique 5115 361275*2^361275+1 108761 DS 1998 Cullen 5116 26951!+1 107707 p65 2002 Factorial 5117d 15898321815*2^333645+1 100448 p364 2025 Twin (p+2) 5118d 15898321815*2^333645-1 100448 p364 2025 Twin (p) 5119 47356235323005*2^333444-1 100391 L6077 2024 Sophie Germain (2p+1) 5120 47356235323005*2^333443-1 100391 L6077 2024 Sophie Germain (p) 5121 21480284945595*2^333444-1 100390 L6029 2024 Sophie Germain (2p+1) 5122 21480284945595*2^333443-1 100390 L6029 2024 Sophie Germain (p) 5123 65516468355*2^333333+1 100355 L923 2009 Twin (p+2) 5124 65516468355*2^333333-1 100355 L923 2009 Twin (p) 5125f 954589277*(2^332267-2^110758)+2^221511+1 100032 p408 2025 Consecutive primes arithmetic progression (2,d=4) 5126f 954589277*(2^332267-2^110758)+2^221511-3 100032 p408 2025 Consecutive primes arithmetic progression (1,d=4) 5127 8797170843*(2^317583+2^190552)+2^127033+3 95612 p408 2025 Consecutive primes arithmetic progression (2,d=4) 5128 8797170843*(2^317583+2^190552)+2^127033-1 95612 p408 2025 Consecutive primes arithmetic progression (1,d=4) 5129 (7176^24691-1)/7175 95202 CH2 2017 Generalized repunit 5130a (58425^18757-1)/58424 89403 p441 2025 Generalized repunit 5131 R(86453) 86453 E3 2023 Repunit, ECPP, unique 5132 (84741735735*(2^190738-1)+4)*2^95369+5 86138 p408 2024 Consecutive primes arithmetic progression (2,d=6) 5133 (84741735735*(2^190738-1)+4)*2^95369-1 86138 p408 2024 Consecutive primes arithmetic progression (1,d=6) 5134 (74018908351*(2^190738-1)+4)*2^95369+3 86138 p408 2024 Consecutive primes arithmetic progression (2,d=4) 5135 (74018908351*(2^190738-1)+4)*2^95369-1 86138 p408 2024 Consecutive primes arithmetic progression (1,d=4) 5136 21480!-1 83727 p65 2001 Factorial 5137 (74968^17107-1)/74967 83390 p441 2024 Generalized repunit 5138e 66629493*2^269335-1 81086 L3494 2025 Sophie Germain (2p+1) 5139e 66629493*2^269334-1 81086 L3494 2025 Sophie Germain (p) 5140e 1867513233*2^266698+1 80294 L527 2025 Twin (p+2) 5141e 1867513233*2^266698-1 80294 L527 2025 Twin (p) 5142 201926367*2^266668+1 80284 A25 2024 Twin (p+2) 5143 201926367*2^266668-1 80284 A25 2024 Twin (p) 5144 107928275961*2^265876+1 80048 p364 2023 Cunningham chain 2nd kind (2p-1) 5145 107928275961*2^265875+1 80048 p364 2023 Cunningham chain 2nd kind (p) 5146 22942396995*2^265777-1 80018 L3494 2023 Sophie Germain (2p+1) 5147 22942396995*2^265776-1 80017 L3494 2023 Sophie Germain (p) 5148 183027*2^265441-1 79911 L983 2010 Sophie Germain (2p+1) 5149 183027*2^265440-1 79911 L983 2010 Sophie Germain (p) 5150 262419*2^262419+1 79002 DS 1998 Cullen 5151 160204065*2^262148+1 78923 L5115 2021 Twin (p+2) 5152 160204065*2^262148-1 78923 L5115 2021 Twin (p) 5153 3622179275715*2^256003+1 77078 x47 2020 Cunningham chain 2nd kind (2p-1) 5154 3622179275715*2^256002+1 77077 x47 2020 Cunningham chain 2nd kind (p) 5155 648621027630345*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5156 620366307356565*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5157 648621027630345*2^253824-1 76424 x24 2009 Sophie Germain (p) 5158 620366307356565*2^253824-1 76424 x24 2009 Sophie Germain (p) 5159 2570606397*2^252763+1 76099 p364 2020 Cunningham chain 2nd kind (2p-1) 5160 2570606397*2^252762+1 76099 p364 2020 Cunningham chain 2nd kind (p) 5161 1893611985^8192-1893611985^4096+1 76000 A13 2024 Twin (p+2), generalized unique 5162 1893611985^8192-1893611985^4096-1 76000 A13 2024 Twin (p) 5163 1589173270^8192-1589173270^4096+1 75376 A22 2024 Twin (p+2), generalized unique 5164 1589173270^8192-1589173270^4096-1 75376 A22 2024 Twin (p) 5165 (40734^16111-1)/40733 74267 CH2 2015 Generalized repunit 5166 (64758^15373-1)/64757 73960 p170 2018 Generalized repunit 5167 996094234^8192-996094234^4096+1 73715 A18 2024 Twin (p+2), generalized unique 5168 996094234^8192-996094234^4096-1 73715 A18 2024 Twin (p) 5169 895721531^8192-895721531^4096+1 73337 A7 2024 Twin (p+2), generalized unique 5170 895721531^8192-895721531^4096-1 73337 A7 2024 Twin (p) 5171 5^104824+104824^5 73269 E4 2023 ECPP 5172 795507696^8192-795507696^4096+1 72915 A5 2024 Twin (p+2), generalized unique 5173 795507696^8192-795507696^4096-1 72915 A5 2024 Twin (p) 5174 primV(111534,1,27000) 72683 x25 2013 Generalized Lucas primitive part 5175 691595760^8192-691595760^4096+1 72417 A13 2024 Twin (p+2), generalized unique 5176 691595760^8192-691595760^4096-1 72417 A13 2024 Twin (p) 5177 647020826^8192-647020826^4096+1 72180 A5 2024 Twin (p+2), generalized unique 5178 647020826^8192-647020826^4096-1 72180 A5 2024 Twin (p) 5179 629813654^8192-629813654^4096+1 72084 A5 2024 Twin (p+2), generalized unique 5180 629813654^8192-629813654^4096-1 72084 A5 2024 Twin (p) 5181a (V(27730,1,16209)+1)/(V(27730,1,9)+1) 71976 CH15 2025 Lehmer primitive part 5182 (58729^15091-1)/58728 71962 CH2 2017 Generalized repunit 5183 504983334^8192-504983334^4096+1 71298 A7 2024 Twin (p+2), generalized unique 5184 504983334^8192-504983334^4096-1 71298 A7 2024 Twin (p) 5185b (V(10981,1,17553)+1)/(V(10981,1,3)+1) 70914 CH15 2025 Lehmer primitive part, cyclotomy 5186c (2^216091-1)*(10^4950-15183422626)+1 70000 p449 2025 Twin (p+2) 5187c (2^216091-1)*(10^4950-15183422626)-1 70000 p449 2025 Twin (p) 5188 (27987^15313-1)/27986 68092 CH12 2020 Generalized repunit 5189 (23340^15439-1)/23339 67435 p170 2020 Generalized repunit 5190 10957126745325*2^222334-1 66943 L5843 2023 Sophie Germain (2p+1) 5191 20690306380455*2^222333-1 66943 L5843 2023 Sophie Germain (2p+1) 5192 10030004436315*2^222334-1 66943 L5843 2023 Sophie Germain (2p+1) 5193 8964472847055*2^222334-1 66943 L5843 2023 Sophie Germain (2p+1) 5194 10957126745325*2^222333-1 66942 L5843 2023 Sophie Germain (p) 5195 20690306380455*2^222332-1 66942 L5843 2023 Sophie Germain (p) 5196 10030004436315*2^222333-1 66942 L5843 2023 Sophie Germain (p) 5197 8964472847055*2^222333-1 66942 L5843 2023 Sophie Germain (p) 5198 (2^221509-1)/292391881 66673 E12 2023 Mersenne cofactor, ECPP 5199 (24741^15073-1)/24740 66218 p170 2020 Generalized repunit 5200 (63847^13339-1)/63846 64091 p170 2013 Generalized repunit 5201 1068669447*2^211089-1 63554 L4166 2020 Sophie Germain (2p+1) 5202 1068669447*2^211088-1 63553 L4166 2020 Sophie Germain (p) 5203 145823#+1 63142 p21 2000 Primorial 5204 U(15694,1,14700)+U(15694,1,14699) 61674 x45 2019 Lehmer number 5205 (28507^13831-1)/28506 61612 CH12 2020 Generalized repunit 5206 2^203789+2^101895+1 61347 O 2000 Gaussian Mersenne norm 34, generalized unique 5207 (26371^13681-1)/26370 60482 p170 2012 Generalized repunit 5208 U(24,-25,43201) 60391 CH12 2020 Generalized Lucas number 5209 99064503957*2^200009-1 60220 L95 2016 Sophie Germain (2p+1) 5210 99064503957*2^200008-1 60220 L95 2016 Sophie Germain (p) 5211 (4529^16381-1)/4528 59886 CH2 2012 Generalized repunit 5212 3^125330+1968634623437000 59798 E4 2022 ECPP 5213 (9082^15091-1)/9081 59729 CH2 2014 Generalized repunit 5214 primV(27655,1,19926) 57566 x25 2013 Generalized Lucas primitive part 5215 Ramanujan tau function at 199^4518 57125 E3 2022 ECPP 5216 (43326^12041-1)/43325 55827 p170 2017 Generalized repunit 5217 12443794755*2^184517-1 55556 L3494 2021 Sophie Germain (2p+1) 5218 21749869755*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 5219 14901867165*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 5220 12443794755*2^184516-1 55555 L3494 2021 Sophie Germain (p) 5221 21749869755*2^184515-1 55555 L3494 2021 Sophie Germain (p) 5222 14901867165*2^184515-1 55555 L3494 2021 Sophie Germain (p) 5223 607095*2^176312-1 53081 L983 2009 Sophie Germain (2p+1) 5224 607095*2^176311-1 53081 L983 2009 Sophie Germain (p) 5225 (38284^11491-1)/38283 52659 CH2 2013 Generalized repunit 5226 (2^174533-1)/193594572654550537/91917886778031629891960890057 52494 E5 2022 Mersenne cofactor, ECPP 5227 (940^17581-1)/939 52268 E2 2025 ECPP generalized repunit 5228 48047305725*2^172404-1 51910 L99 2007 Sophie Germain (2p+1) 5229 48047305725*2^172403-1 51910 L99 2007 Sophie Germain (p) 5230 U(809,1,17325)-U(809,1,17324) 50378 x45 2019 Lehmer number 5231 10^50000+65859 50001 E3 2022 ECPP 5232 R(49081) 49081 c70 2022 Repunit, unique, ECPP 5233b (V(8275,1,12447)-1)/(V(8275,1,27)-1) 48659 x45 2025 Lehmer primitive part 5234 2^160423-2^80212+1 48293 O 2000 Gaussian Mersenne norm 33, generalized unique 5235 U(67,-1,26161) 47773 x45 2019 Generalized Lucas number 5236 primV(40395,-1,15588) 47759 x23 2007 Generalized Lucas primitive part 5237b (V(24444,1,10809)+1)/(V(24444,1,9)+1) 47393 x45 2025 Lehmer primitive part 5238 primV(53394,-1,15264) 47200 CH4 2007 Generalized Lucas primitive part 5239 151023*2^151023-1 45468 g25 1998 Woodall 5240a (2^151013-1)/61157791169561859593299975690769 45428 E5 2025 Mersenne cofactor, ECPP 5241f 24157096*104561#+1 45260 p364 2025 Arithmetic progression (4,d=6519272*104561#) 5242f 17637824*104561#+1 45259 p364 2025 Arithmetic progression (3,d=6519272*104561#) 5243f 11118552*104561#+1 45259 p364 2025 Arithmetic progression (2,d=6519272*104561#) 5244f 4599280*104561#+1 45259 p364 2025 Arithmetic progression (1,d=6519272*104561#) 5245 2^148227+60443 44621 E11 2024 ECPP 5246 U(52245,1,9241)+U(52245,1,9240) 43595 x45 2019 Lehmer number 5247 71509*2^143019-1 43058 g23 1998 Woodall, arithmetic progression (2,d=(143018*2^83969-80047)*2^59049) [x12] 5248 U(2449,-1,12671) 42939 x45 2018 Generalized Lucas number, cyclotomy 5249 V(202667) 42355 E4 2023 Lucas number, ECPP 5250 2^139964+35461 42134 E11 2024 ECPP 5251 U(201107) 42029 E11 2023 Fibonacci number, ECPP 5252b -E(12146)/1226039954339 41943 E1 2025 Euler irregular, ECPP 5253 (2^138937+1)/3 41824 E12 2023 Wagstaff, ECPP, generalized Lucas number 5254b (2^136883-1)/536581361 41198 E5 2025 Mersenne cofactor, ECPP 5255 E(11848)/7910215 40792 E8 2022 Euler irregular, ECPP 5256 V(193201) 40377 E4 2023 Lucas number, ECPP 5257 p(1289844341) 40000 c84 2020 Partitions, ECPP 5258 primV(4836,1,16704) 39616 x25 2013 Generalized Lucas primitive part 5259 (2^130439-1)/260879 39261 E9 2023 Mersenne cofactor, ECPP 5260 U(21041,-1,9059) 39159 x45 2018 Generalized Lucas number, cyclotomy 5261 V(183089) 38264 E4 2023 Lucas number, ECPP 5262 (2^127031+1)/3 38240 E5 2023 Wagstaff, ECPP, generalized Lucas number 5263 U(5617,-1,9539) 35763 x45 2019 Generalized Lucas number, cyclotomy 5264 (2^117239+1)/3 35292 E2 2022 Wagstaff, ECPP, generalized Lucas number 5265 p(1000007396) 35219 E4 2022 Partitions, ECPP 5266c 1864754598*Bern(12306)/7988337402668760859 35160 E1 2025 Irregular, ECPP 5267 (V(60145,1,7317)-1)/(V(60145,1,27)-1) 34841 x45 2019 Lehmer primitive part 5268 primV(38513,-1,11502) 34668 x23 2006 Generalized Lucas primitive part 5269 E(10168)/1097239206089665 34323 E10 2023 Euler irregular, ECPP 5270b Phi(717,-10^72) 34273 E1 2025 Unique, ECPP 5271 primV(9008,1,16200) 34168 x23 2005 Generalized Lucas primitive part 5272 (V(28138,1,7587)-1)/(V(28138,1,27)-1) 33637 x45 2019 Lehmer primitive part 5273 V(159521) 33338 E4 2023 Lucas number, ECPP 5274 U(35896,1,7260)+U(35896,1,7259) 33066 x45 2019 Lehmer number 5275 primV(6586,1,16200) 32993 x25 2013 Generalized Lucas primitive part 5276 U(1624,-1,10169) 32646 x45 2018 Generalized Lucas number, cyclotomy 5277 (V(48395,1,6921)-1)/(V(48395,1,9)-1) 32382 x45 2019 Lehmer primitive part 5278f 7300751*74719#-1 32315 p364 2025 Arithmetic progression (4,d=1475275*74719#) 5279f 5825476*74719#-1 32314 p364 2025 Arithmetic progression (3,d=1475275*74719#) 5280f 4350201*74719#-1 32314 p364 2025 Arithmetic progression (2,d=1475275*74719#) 5281f 2874926*74719#-1 32314 p364 2025 Arithmetic progression (1,d=1475275*74719#) 5282 2^106693+2^53347+1 32118 O 2000 Gaussian Mersenne norm 32, generalized unique 5283 primV(28875,1,13500) 32116 x25 2016 Generalized Lucas primitive part 5284b Phi(34051,-10) 32033 E1 2025 Unique, ECPP 5285 (2^106391-1)/286105171290931103 32010 c95 2022 Mersenne cofactor, ECPP 5286b Phi(23023,-100) 31681 E1 2025 Unique, ECPP 5287 (2^105269-1)/308568703561/44450301591671/36340288035156065237111970871\ /304727251426107823036749303510161 31603 E17 2024 Mersenne cofactor, ECPP 5288b Phi(4613,-100000000) 31585 E1 2025 Unique, ECPP 5289 (V(77786,1,6453)+1)/(V(77786,1,27)+1) 31429 x25 2012 Lehmer primitive part 5290c Phi(10295,-10000) 31360 E1 2025 Unique, ECPP 5291 primV(10987,1,14400) 31034 x25 2005 Generalized Lucas primitive part 5292 V(148091) 30950 c81 2015 Lucas number, ECPP 5293 U(148091) 30949 x49 2021 Fibonacci number, ECPP 5294 -E(9266)/2129452307358569777 30900 E10 2023 Euler irregular, ECPP 5295 Phi(11589,-10000) 30897 E1 2022 Unique,ECPP 5296 (V(73570,1,6309)-1)/(V(73570,1,9)-1) 30661 x25 2016 Lehmer primitive part 5297 V(145703)/179214691 30442 E4 2023 Lucas cofactor, ECPP 5298 V(145193)/38621339 30336 E4 2023 Lucas cofactor, ECPP 5299 1524633857*2^99902-1 30083 p364 2022 Arithmetic progression (4,d=928724769*2^99901) 5300 2120542945*2^99901-1 30083 p364 2022 Arithmetic progression (3,d=928724769*2^99901) 5301 18622159*2^99907-1 30083 p364 2022 Arithmetic progression (2,d=928724769*2^99901) 5302 263093407*2^99901-1 30082 p364 2022 Arithmetic progression (1,d=928724769*2^99901) 5303 Phi(36547,-10) 29832 E1 2022 Unique, ECPP 5304 49363*2^98727-1 29725 Y 1997 Woodall 5305 U(2341,-1,8819) 29712 x25 2008 Generalized Lucas number 5306 primV(24127,-1,6718) 29433 CH3 2005 Generalized Lucas primitive part 5307 primV(12215,-1,13500) 29426 x25 2016 Generalized Lucas primitive part 5308 V(140057) 29271 c76 2014 Lucas number,ECPP 5309 U(1404,-1,9209) 28981 CH10 2018 Generalized Lucas number, cyclotomy 5310 U(23396,1,6615)+U(23396,1,6614) 28898 x45 2019 Lehmer number 5311 (2^95369+1)/3 28709 x49 2021 Generalized Lucas number, Wagstaff, ECPP 5312 primV(45922,1,11520) 28644 x25 2011 Generalized Lucas primitive part 5313 primV(205011) 28552 x39 2009 Lucas primitive part 5314 -30*Bern(10264)/262578313564364605963 28506 c94 2021 Irregular, ECPP 5315 U(16531,1,6721)-U(16531,1,6720) 28347 x36 2007 Lehmer number 5316 (V(28286,1,6309)+1)/(V(28286,1,9)+1) 28045 x25 2016 Lehmer primitive part 5317 U(5092,1,7561)+U(5092,1,7560) 28025 x25 2014 Lehmer number 5318 U(132409)/2882138154561602271737 27651 E16 2024 Fibonacci cofactor, ECPP 5319 90825*2^90825+1 27347 Y 1997 Cullen 5320 U(5239,1,7350)-U(5239,1,7349) 27333 CH10 2017 Lehmer number 5321 U(130021) 27173 x48 2021 Fibonacci number, ECPP 5322 primV(5673,1,13500) 27028 CH3 2005 Generalized Lucas primitive part 5323 primV(44368,1,9504) 26768 CH3 2005 Generalized Lucas primitive part 5324 546351925018076058*Bern(9702)/129255048976106804786904258880518941 26709 c77 2021 Irregular, ECPP 5325 22359307*60919#+1 26383 p364 2022 Arithmetic progression (4,d=5210718*60919#) 5326 17148589*60919#+1 26383 p364 2022 Arithmetic progression (3,d=5210718*60919#) 5327 17029817*60919#+1 26383 p364 2022 Arithmetic progression (4,d=1809778*60919#) 5328 15220039*60919#+1 26383 p364 2022 Arithmetic progression (3,d=1809778*60919#) 5329 13410261*60919#+1 26383 p364 2022 Arithmetic progression (2,d=1809778*60919#) 5330 11937871*60919#+1 26382 p364 2022 Arithmetic progression (2,d=5210718*60919#) 5331 11600483*60919#+1 26382 p364 2022 Arithmetic progression (1,d=1809778*60919#) 5332 6727153*60919#+1 26382 p364 2022 Arithmetic progression (1,d=5210718*60919#) 5333 (2^87691-1)/806957040167570408395443233 26371 E1 2022 Mersenne cofactor, ECPP 5334 primV(10986,-1,9756) 26185 x23 2005 Generalized Lucas primitive part 5335 (2^86371-1)/41681512921035887 25984 E2 2022 Mersenne cofactor, ECPP 5336 (2^86137-1)/2584111/7747937967916174363624460881 25896 c84 2022 Mersenne cofactor, ECPP 5337 primV(11076,-1,12000) 25885 x25 2005 Generalized Lucas primitive part 5338 -E(7894)/19 25790 E10 2023 Euler irregular, ECPP 5339 2^85237+2^42619+1 25659 x16 2000 Gaussian Mersenne norm 31, generalized unique 5340 V(122869)/40546771/1243743094029841 25656 E1 2024 Lucas cofactor, ECPP 5341 primU(183537) 25571 E1 2024 Fibonacci primitive part, ECPP 5342 primV(17505,1,11250) 25459 x25 2011 Generalized Lucas primitive part 5343 U(2325,-1,7561) 25451 x20 2013 Generalized Lucas number 5344 U(13084,-13085,6151) 25319 x45 2018 Generalized Lucas number, cyclotomy 5345 (2^84211-1)/1347377/31358793176711980763958121/33146416760423478241695\ 91561 25291 c95 2020 Mersenne cofactor, ECPP 5346 U(120937)/241873/13689853218820385381 25250 E1 2024 Fibonacci cofactor, ECPP 5347 primV(42,-1,23376) 25249 x23 2007 Generalized Lucas primitive part 5348 U(1064,-1065,8311) 25158 CH10 2018 Generalized Lucas number, cyclotomy 5349 primV(7577,-1,10692) 25140 x33 2007 Generalized Lucas primitive part 5350 (2^83339+1)/3 25088 c54 2014 ECPP, generalized Lucas number, Wagstaff 5351 (2^82939-1)/883323903012540278033571819073 24938 c84 2021 Mersenne cofactor, ECPP 5352 primV(194181) 24908 E1 2024 Lucas primitive part, ECPP 5353 primV(119162) 24903 E1 2024 Lucas primitive part, ECPP 5354 -E(7634)/1559 24828 E10 2023 Euler irregular, ECPP 5355 primU(118319) 24553 E1 2024 Fibonacci primitive part, ECPP 5356 U(1766,1,7561)-U(1766,1,7560) 24548 x25 2013 Lehmer number 5357 U(117167)/17658707237 24476 E1 2024 Fibonacci cofactor, ECPP 5358 V(116593)/120790349 24359 E4 2023 Lucas cofactor, ECPP 5359 primV(214470) 23895 E1 2024 Lucas primitive part, ECPP 5360 primU(115373) 23875 E1 2024 Fibonacci primitive part, ECPP 5361 U(1383,1,7561)+U(1383,1,7560) 23745 x25 2013 Lehmer number 5362 798*Bern(8766)/14670751334144820770719 23743 c94 2021 Irregular, ECPP 5363 Phi(11867,-100) 23732 c47 2021 Unique, ECPP 5364 primU(135421) 23725 E1 2024 Fibonacci primitive part, ECPP 5365 primV(143234) 23654 E1 2024 Lucas primitive part, ECPP 5366 (2^78737-1)/1590296767505866614563328548192658003295567890593 23654 E2 2022 Mersenne cofactor, ECPP 5367 Phi(35421,-10) 23613 c77 2021 Unique, ECPP 5368 6917!-1 23560 g1 1998 Factorial 5369 primU(164185) 23524 E1 2024 Fibonacci primitive part, ECPP 5370 2^77291+2^38646+1 23267 O 2000 Gaussian Mersenne norm 30, generalized unique 5371 primU(166737) 23231 E1 2024 Fibonacci primitive part, ECPP 5372 (V(59936,1,4863)+1)/(V(59936,1,3)+1) 23220 x25 2013 Lehmer primitive part 5373 U(1118,1,7561)-U(1118,1,7560) 23047 x25 2013 Lehmer number 5374 primA(275285) 23012 E1 2024 Lucas Aurifeuillian primitive part, ECPP 5375 primV(110723) 22997 E1 2024 Lucas primitive part, ECPP 5376 primV(180906) 22905 E1 2024 Lucas primitive part, ECPP 5377 (V(45366,1,4857)+1)/(V(45366,1,3)+1) 22604 x25 2013 Lehmer primitive part 5378 U(106663)/35892566541651557 22275 E1 2024 Fibonacci cofactor, ECPP 5379 348054*Bern(8286)/1570865077944473903275073668721 22234 E1 2022 Irregular, ECPP 5380 p(398256632) 22223 E1 2022 Partitions, ECPP 5381 U(105509)/144118801533126010445795676378394340544227572822879081 21997 E1 2022 Fibonacci cofactor, ECPP 5382 U(104911) 21925 c82 2015 Fibonacci number, ECPP 5383 primB(282035) 21758 E1 2023 Lucas Aurifeuillian primitive part, ECPP 5384 primA(276335) 21736 E1 2024 Lucas Aurifeuillian primitive part, ECPP 5385 Phi(1203,10^27) 21600 c47 2021 Unique, ECPP 5386 U(19258,-1,5039) 21586 x23 2007 Generalized Lucas number 5387 6380!+1 21507 g1 1998 Factorial 5388 primV(154281) 21495 E4 2023 Lucas primitive part, ECPP 5389 U(43100,1,4620)+U(43100,1,4619) 21407 x25 2016 Lehmer number 5390 -E(6658)/85079 21257 c77 2020 Euler irregular, ECPP 5391 Phi(39855,-10) 21248 c95 2020 Unique, ECPP 5392 (V(23354,1,4869)-1)/(V(23354,1,9)-1) 21231 x25 2013 Lehmer primitive part 5393 primA(296695) 21137 E1 2023 Lucas Aurifeuillian primitive part, ECPP 5394 U(15631,1,5040)-U(15631,1,5039) 21134 x25 2003 Lehmer number 5395 primA(413205) 21127 E1 2023 Lucas Aurifeuillian primitive part, ECPP 5396 U(35759,1,4620)+U(35759,1,4619) 21033 x25 2016 Lehmer number 5397 p(355646102) 21000 E1 2022 Partitions, ECPP 5398 V(100417)/713042903779101607511808799053206435494854433884796747437071\ 9436805470448849 20911 E1 2024 Lucas cofactor, ECPP 5399 p(350199893) 20838 E7 2022 Partitions, ECPP 5400 U(31321,1,4620)-U(31321,1,4619) 20767 x25 2016 Lehmer number 5401 primU(102689) 20715 E1 2024 Fibonacci primitive part, ECPP 5402 primU(105821) 20598 E1 2022 Fibonacci primitive part, ECPP 5403 primU(172179) 20540 E1 2022 Fibonacci primitive part, ECPP 5404 V(98081)/31189759/611955609270431/6902594225498651/641303018340927841 20442 E1 2024 Lucas cofactor, ECPP 5405 U(11200,-1,5039) 20400 x25 2004 Generalized Lucas number, cyclotomy 5406 4404139952163*2^67002+1 20183 p408 2024 Triplet (3) 5407 4404139952163*2^67002-1 20183 p408 2024 Triplet (2) 5408 4404139952163*2^67002-5 20183 E15 2024 Triplet (1), ECPP 5409 Phi(23749,-10) 20160 c47 2014 Unique, ECPP 5410 U(22098,1,4620)+U(22098,1,4619) 20067 x25 2016 Lehmer number 5411 primV(112028) 20063 E1 2022 Lucas primitive part, ECPP 5412 1128330746865*2^66441-1 20013 p158 2020 Cunningham chain (4p+3) 5413 1128330746865*2^66440-1 20013 p158 2020 Cunningham chain (2p+1) 5414 1128330746865*2^66439-1 20013 p158 2020 Cunningham chain (p) 5415 4111286921397*2^66420+5 20008 c88 2019 Triplet (3) 5416 4111286921397*2^66420+1 20008 L4808 2019 Triplet (2) 5417 4111286921397*2^66420-1 20008 L4808 2019 Triplet (1) 5418 U(21412,1,4620)-U(21412,1,4619) 20004 x25 2016 Lehmer number 5419 p(322610098) 20000 E1 2022 Partitions, ECPP 5420 primV(151521) 19863 E1 2022 Lucas primitive part, ECPP 5421 V(94823) 19817 c73 2014 Lucas number, ECPP 5422 U(19361,1,4620)+U(19361,1,4619) 19802 x25 2016 Lehmer number 5423 U(8454,-1,5039) 19785 x25 2013 Generalized Lucas number 5424 (2^64381-1)/1825231878561264571177401910928543898820492254252817499611\ 8699181907547497 19308 E13 2024 Mersenne cofactor, ECPP 5425 U(6584,-1,5039) 19238 x23 2007 Generalized Lucas number 5426 V(91943)/551659/2390519/9687119153094919 19187 E1 2022 Lucas cofactor, ECPP 5427 (V(428,1,8019)-1)/(V(428,1,729)-1) 19184 E1 2022 Lehmer primitive part, ECPP 5428 V(91873)/3674921/193484539/167745030829 19175 E1 2022 Lucas cofactor, ECPP 5429 (2^63703-1)/42808417 19169 c59 2014 Mersenne cofactor, ECPP 5430 primU(137439) 19148 E1 2022 Fibonacci primitive part, ECPP 5431 primU(107779) 18980 E1 2022 Fibonacci primitive part, ECPP 5432 (U(162,1,8581)+U(162,1,8580))/(U(162,1,66)+U(162,1,65)) 18814 E1 2022 Lehmer primitive part, ECPP 5433 V(89849) 18778 c70 2014 Lucas number, ECPP 5434 primV(145353) 18689 c69 2013 ECPP, Lucas primitive part 5435 Phi(14943,-100) 18688 c47 2014 Unique, ECPP 5436 (U(859,1,6385)-U(859,1,6384))/(U(859,1,57)-U(859,1,56)) 18567 E1 2022 Lehmer primitive part, ECPP 5437 Phi(18827,10) 18480 c47 2014 Unique, ECPP 5438 primB(220895) 18465 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5439 primV(153279) 18283 E1 2022 Lucas primitive part, ECPP 5440 42209#+1 18241 p8 1999 Primorial 5441 (V(46662,1,3879)-1)/(V(46662,1,9)-1) 18069 x25 2012 Lehmer primitive part 5442 V(86477)/1042112515940998434071039 18049 c77 2020 Lucas cofactor, ECPP 5443 7457*2^59659+1 17964 Y 1997 Cullen 5444 primB(235015) 17856 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5445 primV(148197) 17696 E1 2022 Lucas primitive part, ECPP 5446 (V(447,1,6723)+1)/(V(447,1,81)+1) 17604 E1 2022 Lehmer primitive part, ECPP 5447 (2^58199-1)/237604901713907577052391 17497 c59 2015 Mersenne cofactor, ECPP 5448 Phi(26031,-10) 17353 c47 2014 Unique, ECPP 5449 primV(169830) 17335 E1 2022 Lucas primitive part, ECPP 5450 (V(561,1,6309)+1)/(V(561,1,9)+1) 17319 x25 2016 Lehmer primitive part 5451 U(9657,1,4321)-U(9657,1,4320) 17215 x23 2005 Lehmer number 5452 (2^57131-1)/61481396117165983261035042726614288722959856631 17152 c59 2015 Mersenne cofactor, ECPP 5453 U(81839) 17103 p54 2001 Fibonacci number 5454 (V(1578,1,5589)+1)/(V(1578,1,243)+1) 17098 E1 2022 Lehmer primitive part, ECPP 5455 V(81671) 17069 c66 2013 Lucas number, ECPP 5456 primV(101510) 16970 E1 2022 Lucas primitive part, ECPP 5457 primV(86756) 16920 c74 2015 Lucas primitive part, ECPP 5458 V(80761)/570100885555095451 16861 c77 2020 Lucas cofactor, ECPP 5459 6521953289619*2^55555+1 16737 p296 2013 Triplet (3) 5460 6521953289619*2^55555-1 16737 p296 2013 Triplet (2) 5461 6521953289619*2^55555-5 16737 c58 2013 Triplet (1), ECPP 5462 primV(122754) 16653 c77 2021 Lucas primitive part, ECPP 5463 U(15823,1,3960)-U(15823,1,3959) 16625 x25 2002 Lehmer number, cyclotomy 5464 p(221444161) 16569 c77 2017 Partitions, ECPP 5465 primA(201485) 16535 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5466 U(78919)/15574900936381642440917 16471 c77 2020 Fibonacci cofactor, ECPP 5467 17484430616589*2^54201+5 16330 E14 2024 Consecutive primes arithmetic progression (3,d=6), ECPP 5468 17484430616589*2^54201-1 16330 p440 2024 Consecutive primes arithmetic progression (2,d=6) 5469 17484430616589*2^54201-7 16330 E14 2024 Consecutive primes arithmetic progression (1,d=6), ECPP 5470 primV(123573) 16198 c77 2019 Lucas primitive part, ECPP 5471 primB(225785) 16176 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5472 V(77417)/313991497376559420151 16159 c77 2020 Lucas cofactor, ECPP 5473 (2^53381-1)/15588960193/38922536168186976769/1559912715971690629450336\ 68006103 16008 c84 2017 Mersenne cofactor, ECPP 5474 -E(5186)/295970922359784619239409649676896529941379763 15954 c63 2018 Euler irregular, ECPP 5475 primV(121227) 15890 c77 2019 Lucas primitive part, ECPP 5476 Phi(2949,-100000000) 15713 c47 2013 Unique, ECPP 5477 primU(131481) 15695 c77 2019 Fibonacci primitive part, ECPP 5478 primV(120258) 15649 c77 2019 Lucas primitive part, ECPP 5479 (2^51487-1)/57410994232247/17292148963401772464767849635553 15455 c77 2018 Mersenne cofactor, ECPP 5480 primB(183835) 15368 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5481 primU(77387) 15319 c77 2019 Fibonacci primitive part, ECPP 5482 primB(181705) 15189 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5483 U(71983)/5614673/363946049 15028 c77 2018 Fibonacci cofactor, ECPP 5484 2494779036241*2^49800+13 15004 c93 2022 Consecutive primes arithmetic progression (3,d=6) 5485 2494779036241*2^49800+7 15004 c93 2022 Consecutive primes arithmetic progression (2,d=6) 5486 2494779036241*2^49800+1 15004 p408 2022 Consecutive primes arithmetic progression (1,d=6) 5487 primB(268665) 14972 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5488 Phi(5015,-10000) 14848 c47 2013 Unique, ECPP 5489 2^49207-2^24604+1 14813 x16 2000 Gaussian Mersenne norm 29, generalized unique 5490 214923707595*2^49073+1 14784 p364 2025 Cunningham chain 2nd kind (4p-3) 5491 primA(284895) 14626 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5492 U(69239)/1384781 14464 c77 2018 Fibonacci cofactor, ECPP 5493 primA(170575) 14258 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5494 V(68213)/7290202116115634431 14237 c77 2018 Lucas cofactor, ECPP 5495 p(158375386) 14011 E1 2022 Partitions, ECPP 5496 p(158295265) 14007 E1 2022 Partitions, ECPP 5497 p(158221457) 14004 E1 2022 Partitions, ECPP 5498 primU(67703) 13954 c77 2018 Fibonacci primitive part, ECPP 5499 U(66947)/12485272838388758877279873712131648167413 13951 c77 2017 Fibonacci cofactor, ECPP 5500 V(66533)/2128184670585621839884209100279 13875 c77 2018 Lucas cofactor, ECPP 5501 6*Bern(5534)/226840561549600012633271691723599339 13862 c71 2014 Irregular, ECPP 5502 4410546*Bern(5526)/9712202742835546740714595866405369616019 13840 c63 2018 Irregular,ECPP 5503f 191279029*32003#+1 13773 p364 2025 Arithmetic progression (5,d=20571563*32003#) 5504f 170707466*32003#+1 13773 p364 2025 Arithmetic progression (4,d=20571563*32003#) 5505f 150135903*32003#+1 13773 p364 2025 Arithmetic progression (3,d=20571563*32003#) 5506f 129564340*32003#+1 13773 p364 2025 Arithmetic progression (2,d=20571563*32003#) 5507f 108992777*32003#+1 13773 p364 2025 Arithmetic progression (1,d=20571563*32003#) 5508 primB(163595) 13675 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5509 6*Bern(5462)/23238026668982614152809832227 13657 c64 2013 Irregular, ECPP 5510 56667641271*2^44441+5 13389 c99 2022 Triplet (3), ECPP 5511 56667641271*2^44441+1 13389 p426 2022 Triplet (2) 5512 56667641271*2^44441-1 13389 p426 2022 Triplet (1) 5513 V(64063)/464426465381142115542697818362662865912299 13347 E1 2024 Lucas cofactor, ECPP 5514 512792361*30941#+1 13338 p364 2022 Arithmetic progression (5,d=18195056*30941#) 5515 494597305*30941#+1 13338 p364 2022 Arithmetic progression (4,d=18195056*30941#) 5516 476402249*30941#+1 13338 p364 2022 Arithmetic progression (3,d=18195056*30941#) 5517 458207193*30941#+1 13338 p364 2022 Arithmetic progression (2,d=18195056*30941#) 5518 440012137*30941#+1 13338 p364 2022 Arithmetic progression (1,d=18195056*30941#) 5519 1815615642825*2^44046-1 13272 p395 2016 Cunningham chain (4p+3) 5520 1815615642825*2^44045-1 13272 p395 2016 Cunningham chain (2p+1) 5521 1815615642825*2^44044-1 13271 p395 2016 Cunningham chain (p) 5522 p(141528106) 13244 E6 2022 Partitions, ECPP 5523 p(141513546) 13244 E6 2022 Partitions, ECPP 5524 p(141512238) 13244 E6 2022 Partitions, ECPP 5525 p(141255053) 13232 E6 2022 Partitions, ECPP 5526 p(141150528) 13227 E6 2022 Partitions, ECPP 5527 p(141112026) 13225 E6 2022 Partitions, ECPP 5528 p(141111278) 13225 E6 2022 Partitions, ECPP 5529 p(140859260) 13213 E6 2022 Partitions, ECPP 5530 p(140807155) 13211 E6 2022 Partitions, ECPP 5531 p(140791396) 13210 E6 2022 Partitions, ECPP 5532 primU(94551) 13174 c77 2018 Fibonacci primitive part, ECPP 5533 primB(242295) 13014 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5534 U(61813)/594517433/3761274442997 12897 c77 2018 Fibonacci cofactor, ECPP 5535 (2^42737+1)/3 12865 M 2007 ECPP, generalized Lucas number, Wagstaff 5536 primU(62771) 12791 c77 2018 Fibonacci primitive part, ECPP 5537 primA(154415) 12728 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5538 primA(263865) 12570 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5539 6*Bern(5078)/643283455240626084534218914061 12533 c63 2013 Irregular, ECPP 5540 (2^41681-1)/1052945423/16647332713153/2853686272534246492102086015457 12495 c77 2015 Mersenne cofactor, ECPP 5541 U(59369)/2442423669148466039458303756169988568809269383644075940757020\ 9763004757 12337 c79 2015 Fibonacci cofactor, ECPP 5542 742478255901*2^40069+1 12074 p395 2016 Cunningham chain 2nd kind (4p-3) 5543 996824343*2^40074+1 12073 p395 2016 Cunningham chain 2nd kind (4p-3) 5544 664342014133*2^39840+1 12005 p408 2020 Consecutive primes arithmetic progression (3,d=30) 5545 664342014133*2^39840-29 12005 c93 2020 Consecutive primes arithmetic progression (2,d=30), ECPP 5546 664342014133*2^39840-59 12005 c93 2020 Consecutive primes arithmetic progression (1,d=30), ECPP 5547 V(56003) 11704 p193 2006 Lucas number 5548 primA(143705) 11703 c77 2017 Lucas Aurifeuillian primitive part, ECPP 5549 4207993863*2^38624+5 11637 L5354 2021 Triplet (3), ECPP 5550 4207993863*2^38624+1 11637 L5354 2021 Triplet (2) 5551 4207993863*2^38624-1 11637 L5354 2021 Triplet (1) 5552 primU(73025) 11587 c77 2015 Fibonacci primitive part, ECPP 5553 primU(67781) 11587 c77 2015 Fibonacci primitive part, ECPP 5554 primB(219165) 11557 c77 2015 Lucas Aurifeuillian primitive part, ECPP 5555 198429723072*11^11005+1 11472 L3323 2016 Cunningham chain 2nd kind (4p-3) 5556 U(54799)/4661437953906084533621577211561 11422 c8 2015 Fibonacci cofactor, ECPP 5557 U(54521)/6403194135342743624071073 11370 c8 2015 Fibonacci cofactor, ECPP 5558 primU(67825) 11336 x23 2007 Fibonacci primitive part 5559 3610!-1 11277 C 1993 Factorial 5560 U(53189)/69431662887136064191105625570683133711989 11075 c8 2014 Fibonacci cofactor, ECPP 5561 primU(61733) 11058 c77 2015 Fibonacci primitive part, ECPP 5562 778965587811*2^36627-1 11038 p395 2016 Cunningham chain (4p+3) 5563 778965587811*2^36626-1 11038 p395 2016 Cunningham chain (2p+1) 5564 778965587811*2^36625-1 11038 p395 2016 Cunningham chain (p) 5565 272879344275*2^36622-1 11036 p395 2016 Cunningham chain (4p+3) 5566 272879344275*2^36621-1 11036 p395 2016 Cunningham chain (2p+1) 5567 272879344275*2^36620-1 11036 p395 2016 Cunningham chain (p) 5568 V(52859)/1124137922466041911 11029 c8 2014 Lucas cofactor, ECPP 5569 3507!-1 10912 C 1992 Factorial 5570 V(52201)/70585804042896975505694709575919458733851279868446609 10857 c8 2015 Lucas cofactor, ECPP 5571 V(52009)/39772636393178951550299332730909 10838 c8 2015 Lucas cofactor, ECPP 5572 V(51941)/2808052157610902114547210696868337380250300924116591143641642\ 866931 10789 c8 2015 Lucas cofactor, ECPP 5573 1258566*Bern(4462)/6610083971965402783802518108033 10763 c64 2013 Irregular, ECPP 5574 3428602715439*2^35678+13 10753 c93 2020 Consecutive primes arithmetic progression (3,d=6), ECPP 5575 3428602715439*2^35678+7 10753 c93 2020 Consecutive primes arithmetic progression (2,d=6), ECPP 5576 3428602715439*2^35678+1 10753 p408 2020 Consecutive primes arithmetic progression (1,d=6) 5577 333645655005*2^35549-1 10713 p364 2015 Cunningham chain (4p+3) 5578 333645655005*2^35548-1 10713 p364 2015 Cunningham chain (2p+1) 5579 333645655005*2^35547-1 10713 p364 2015 Cunningham chain (p) 5580 V(51349)/224417260052884218046541 10708 c8 2014 Lucas cofactor, ECPP 5581 V(51169) 10694 p54 2001 Lucas number 5582 U(51031)/95846689435051369 10648 c8 2014 Fibonacci cofactor, ECPP 5583 V(50989)/69818796119453411 10640 c8 2014 Lucas cofactor, ECPP 5584 U(50833) 10624 CH4 2005 Fibonacci number 5585 2683143625525*2^35176+13 10602 c92 2019 Consecutive primes arithmetic progression (3,d=6),ECPP 5586 2683143625525*2^35176+7 10602 c92 2019 Consecutive primes arithmetic progression (2,d=6),ECPP 5587 2683143625525*2^35176+1 10602 p407 2019 Consecutive primes arithmetic progression (1,d=6) 5588 3020616601*24499#+1 10593 p422 2021 Arithmetic progression (6,d=56497325*24499#) 5589 2964119276*24499#+1 10593 p422 2021 Arithmetic progression (5,d=56497325*24499#) 5590 2907621951*24499#+1 10593 p422 2021 Arithmetic progression (4,d=56497325*24499#) 5591 2851124626*24499#+1 10593 p422 2021 Arithmetic progression (3,d=56497325*24499#) 5592 2794627301*24499#+1 10593 p422 2021 Arithmetic progression (2,d=56497325*24499#) 5593 2738129976*24499#+1 10593 p422 2021 Arithmetic progression (1,d=56497325*24499#) 5594 24029#+1 10387 C 1993 Primorial 5595 400791048*24001#+1 10378 p155 2018 Arithmetic progression (5,d=59874860*24001#) 5596 393142614*24001#+1 10378 p155 2018 Arithmetic progression (5,d=54840724*24001#) 5597 340916188*24001#+1 10378 p155 2018 Arithmetic progression (4,d=59874860*24001#) 5598 338301890*24001#+1 10378 p155 2018 Arithmetic progression (4,d=54840724*24001#) 5599 283461166*24001#+1 10377 p155 2018 Arithmetic progression (3,d=54840724*24001#) 5600 281041328*24001#+1 10377 p155 2018 Arithmetic progression (3,d=59874860*24001#) 5601 228620442*24001#+1 10377 p155 2018 Arithmetic progression (2,d=54840724*24001#) 5602 221488788*24001#+1 10377 p155 2018 Arithmetic progression (5,d=22703701*24001#) 5603 221166468*24001#+1 10377 p155 2018 Arithmetic progression (2,d=59874860*24001#) 5604 198785087*24001#+1 10377 p155 2018 Arithmetic progression (4,d=22703701*24001#) 5605 176081386*24001#+1 10377 p155 2018 Arithmetic progression (3,d=22703701*24001#) 5606 173779718*24001#+1 10377 p155 2018 Arithmetic progression (1,d=54840724*24001#) 5607 163456812*24001#+1 10377 p155 2018 Arithmetic progression (2,d=10601738*24001#) 5608 161291608*24001#+1 10377 p155 2018 Arithmetic progression (1,d=59874860*24001#) 5609 152855074*24001#+1 10377 p155 2018 Arithmetic progression (1,d=10601738*24001#) 5610 6*Bern(4306)/2153 10342 FE8 2009 Irregular, ECPP 5611 23801#+1 10273 C 1993 Primorial 5612 667674063382677*2^33608+7 10132 c88 2019 Quadruplet (4), ECPP 5613 667674063382677*2^33608+5 10132 c88 2019 Quadruplet (3), ECPP 5614 667674063382677*2^33608+1 10132 L4808 2019 Quadruplet (2) 5615 667674063382677*2^33608-1 10132 L4808 2019 Quadruplet (1) 5616 9649755890145*2^33335+1 10048 p364 2015 Cunningham chain 2nd kind (4p-3) 5617 32469*2^32469+1 9779 MM 1997 Cullen 5618 8073*2^32294+1 9726 MM 1997 Cullen 5619 E(3308)/39308792292493140803643373186476368389461245 9516 c8 2014 Euler irregular, ECPP 5620 V(44507) 9302 CH3 2005 Lucas number 5621 U(43399)/470400609575881344601538056264109423291827366228494341196421 9010 c8 2013 Fibonacci cofactor, ECPP 5622 U(42829)/107130175995197969243646842778153077 8916 c8 2014 Fibonacci cofactor, ECPP 5623 U(42043)/1681721 8780 c56 2012 Fibonacci cofactor, ECPP 5624 U(40763)/643247084652261620737 8498 c8 2013 Fibonacci cofactor, ECPP 5625 2^27529-2^13765+1 8288 O 2000 Gaussian Mersenne norm 28, generalized unique 5626 18523#+1 8002 D 1989 Primorial 5627 6*Bern(3458)/28329084584758278770932715893606309 7945 c8 2013 Irregular, ECPP 5628 U(37987)/1832721858208455887947958246414213 7906 c39 2012 Fibonacci cofactor, ECPP 5629 U(37511) 7839 x13 2005 Fibonacci number 5630 -E(2762)/2670541 7760 c11 2004 Euler irregular, ECPP 5631 V(36779) 7687 CH3 2005 Lucas number 5632 U(35999) 7523 p54 2001 Fibonacci number, cyclotomy 5633 V(35449) 7409 p12 2001 Lucas number 5634 -30*Bern(3176)/6689693100056872989386833739813089720559189736259127537\ 0617658634396391181 7138 c63 2016 Irregular, ECPP 5635 2154675239*16301#+1 7036 p155 2018 Arithmetic progression (6,d=141836149*16301#) 5636 2012839090*16301#+1 7036 p155 2018 Arithmetic progression (5,d=141836149*16301#) 5637 1871002941*16301#+1 7036 p155 2018 Arithmetic progression (4,d=141836149*16301#) 5638 1729166792*16301#+1 7036 p155 2018 Arithmetic progression (3,d=141836149*16301#) 5639 1587330643*16301#+1 7035 p155 2018 Arithmetic progression (2,d=141836149*16301#) 5640 1445494494*16301#+1 7035 p155 2018 Arithmetic progression (1,d=141836149*16301#) 5641 -10365630*Bern(3100)/1670366116112864481699585217650438278080436881373\ 643007997602585219667 6943 c63 2016 Irregular ECPP 5642 23005*2^23005-1 6930 Y 1997 Woodall 5643 22971*2^22971-1 6920 Y 1997 Woodall 5644 15877#-1 6845 CD 1992 Primorial 5645 6*Bern(2974)/19622040971147542470479091157507 6637 c8 2013 Irregular, ECPP 5646 U(30757) 6428 p54 2001 Fibonacci number, cyclotomy 5647 E(2220)/392431891068600713525 6011 c8 2013 Euler irregular, ECPP 5648 -E(2202)/53781055550934778283104432814129020709 5938 c8 2013 Euler irregular, ECPP 5649 13649#+1 5862 D 1987 Primorial 5650 274386*Bern(2622)/8518594882415401157891061256276973722693 5701 c8 2013 Irregular, ECPP 5651 18885*2^18885-1 5690 K 1987 Woodall 5652 1963!-1 5614 CD 1992 Factorial 5653 289*2^18502+1 5573 K 1984 Cullen, generalized Fermat 5654 E(2028)/11246153954845684745 5412 c55 2011 Euler irregular, ECPP 5655 -30*Bern(2504)/1248230090315232335602406373438221652417581490266755814\ 38903418303340323897 5354 c63 2013 Irregular ECPP 5656 U(25561) 5342 p54 2001 Fibonacci number 5657 -E(1990)/8338208577950624722417016286765473477033741642105671913 5258 c8 2013 Euler irregular, ECPP 5658 33957462*Bern(2370)/40685 5083 c11 2003 Irregular, ECPP 5659 4122429552750669*2^16567+7 5003 c83 2016 Quadruplet (4), ECPP 5660 4122429552750669*2^16567+5 5003 c83 2016 Quadruplet (3), ECPP 5661 4122429552750669*2^16567+1 5003 L4342 2016 Quadruplet (2) 5662 4122429552750669*2^16567-1 5003 L4342 2016 Quadruplet (1) 5663 35734184537*11677#/3+9 5002 c98 2024 Consecutive primes arithmetic progression (4,d=6), ECPP 5664 35734184537*11677#/3+3 5002 c98 2024 Consecutive primes arithmetic progression (3,d=6), ECPP 5665 35734184537*11677#/3-3 5002 c98 2024 Consecutive primes arithmetic progression (2,d=6), ECPP 5666 35734184537*11677#/3-9 5002 c98 2024 Consecutive primes arithmetic progression (1,d=6), ECPP 5667 E(1840)/31237282053878368942060412182384934425 4812 c4 2011 Euler irregular, ECPP 5668 7911*2^15823-1 4768 K 1987 Woodall 5669 E(1736)/13510337079405137518589526468536905 4498 c4 2004 Euler irregular, ECPP 5670 2^14699+2^7350+1 4425 O 2000 Gaussian Mersenne norm 27, generalized unique 5671 744029027072*10111#-1 4362 p364 2025 Cunningham chain (8p+7) 5672 (2^14479+1)/3 4359 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5673 62399583639*9923#-3399421517 4285 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5674 62399583639*9923#-3399421547 4285 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5675 62399583639*9923#-3399421577 4285 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5676 62399583639*9923#-3399421607 4285 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5677 49325406476*9811#*8+1 4234 p382 2019 Cunningham chain 2nd kind (8p-7) 5678 276474*Bern(2030)/469951697500688159155 4200 c8 2003 Irregular, ECPP 5679 V(19469) 4069 x25 2002 Lucas number, cyclotomy, APR-CL assisted 5680 1477!+1 4042 D 1984 Factorial 5681 -2730*Bern(1884)/100983617849 3844 c8 2003 Irregular, ECPP 5682 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+9 3753 c101 2023 Quadruplet (4),ECPP 5683 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+7 3753 c101 2023 Quadruplet (3),ECPP 5684 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+3 3753 c101 2023 Quadruplet (2),ECPP 5685 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+1 3753 c101 2023 Quadruplet (1),ECPP 5686 12379*2^12379-1 3731 K 1984 Woodall 5687 (2^12391+1)/3 3730 M 1996 Generalized Lucas number, Wagstaff 5688 -E(1466)/167900532276654417372106952612534399239 3682 c8 2013 Euler irregular, ECPP 5689 E(1468)/12330876589623053882799895025030461658552339028064108285 3671 c4 2003 Euler irregular, ECPP 5690 1268118079424*8501#-1 3640 p434 2023 Cunningham chain (8p+7) 5691 101406820312263*2^12042+7 3640 c67 2018 Quadruplet (4) 5692 101406820312263*2^12042+5 3640 c67 2018 Quadruplet (3) 5693 101406820312263*2^12042+1 3640 p364 2018 Quadruplet (2) 5694 101406820312263*2^12042-1 3640 p364 2018 Quadruplet (1) 5695 2673092556681*15^3048+4 3598 c67 2015 Quadruplet (4) 5696 2673092556681*15^3048+2 3598 c67 2015 Quadruplet (3) 5697 2673092556681*15^3048-2 3598 c67 2015 Quadruplet (2) 5698 2673092556681*15^3048-4 3598 c67 2015 Quadruplet (1) 5699 6016459977*7927#-1 3407 p364 2022 Arithmetic progression (7,d=577051223*7927#) 5700 5439408754*7927#-1 3407 p364 2022 Arithmetic progression (6,d=577051223*7927#) 5701 4862357531*7927#-1 3407 p364 2022 Arithmetic progression (5,d=577051223*7927#) 5702 4285306308*7927#-1 3407 p364 2022 Arithmetic progression (4,d=577051223*7927#) 5703 3708255085*7927#-1 3407 p364 2022 Arithmetic progression (3,d=577051223*7927#) 5704 3131203862*7927#-1 3407 p364 2022 Arithmetic progression (2,d=577051223*7927#) 5705 2554152639*7927#-1 3407 p364 2022 Arithmetic progression (1,d=577051223*7927#) 5706 62753735335*7919#+3399421667 3404 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5707 62753735335*7919#+3399421637 3404 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5708 62753735335*7919#+3399421607 3404 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5709 62753735335*7919#+3399421577 3404 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5710 (2^11279+1)/3 3395 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 5711 109766820328*7877#-1 3385 p395 2016 Cunningham chain (8p+7) 5712 585150568069684836*7757#/85085+17 3344 c88 2022 Quintuplet (5), ECPP 5713 585150568069684836*7757#/85085+13 3344 c88 2022 Quintuplet (4), ECPP 5714 585150568069684836*7757#/85085+11 3344 c88 2022 Quintuplet (3), ECPP 5715 585150568069684836*7757#/85085+7 3344 c88 2022 Quintuplet (2), ECPP 5716 585150568069684836*7757#/85085+5 3344 c88 2022 Quintuplet (1), ECPP 5717 104052837*7759#-1 3343 p398 2017 Arithmetic progression (6,d=12009836*7759#) 5718 92043001*7759#-1 3343 p398 2017 Arithmetic progression (5,d=12009836*7759#) 5719 80033165*7759#-1 3343 p398 2017 Arithmetic progression (4,d=12009836*7759#) 5720 68023329*7759#-1 3343 p398 2017 Arithmetic progression (3,d=12009836*7759#) 5721 56013493*7759#-1 3343 p398 2017 Arithmetic progression (2,d=12009836*7759#) 5722 44003657*7759#-1 3343 p398 2017 Arithmetic progression (1,d=12009836*7759#) 5723 2072453060816*7699#+1 3316 p364 2019 Cunningham chain 2nd kind (8p-7) 5724 (2^10691+1)/3 3218 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5725 231692481512*7517#-1 3218 p395 2016 Cunningham chain (8p+7) 5726 (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+19 3207 c100 2023 Consecutive primes arithmetic progression (4,d=6),ECPP 5727 (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+13 3207 c100 2023 Consecutive primes arithmetic progression (3,d=6),ECPP 5728 (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+7 3207 c100 2023 Consecutive primes arithmetic progression (2,d=6),ECPP 5729 (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+1 3207 c100 2023 Consecutive primes arithmetic progression (1,d=6),ECPP 5730 (2^10501+1)/3 3161 M 1996 Generalized Lucas number, Wagstaff 5731 2^10141+2^5071+1 3053 O 2000 Gaussian Mersenne norm 26, generalized unique 5732 121152729080*7019#/1729+19 3025 c92 2019 Consecutive primes arithmetic progression (4,d=6), ECPP 5733 121152729080*7019#/1729+13 3025 c92 2019 Consecutive primes arithmetic progression (3,d=6), ECPP 5734 121152729080*7019#/1729+7 3025 c92 2019 Consecutive primes arithmetic progression (2,d=6), ECPP 5735 121152729080*7019#/1729+1 3025 p407 2019 Consecutive primes arithmetic progression (1,d=6) 5736 V(14449) 3020 DK 1995 Lucas number 5737 3124777373*7001#+1 3019 p155 2012 Arithmetic progression (7,d=481789017*7001#) 5738 2996180304*7001#+1 3019 p155 2012 Arithmetic progression (6,d=46793757*7001#) 5739 2949386547*7001#+1 3019 p155 2012 Arithmetic progression (5,d=46793757*7001#) 5740 2946259686*7001#+1 3019 p155 2012 Arithmetic progression (6,d=313558156*7001#) 5741 2911906960*7001#+1 3019 p155 2012 Arithmetic progression (5,d=3093612*7001#) 5742 2908813348*7001#+1 3019 p155 2012 Arithmetic progression (4,d=3093612*7001#) 5743 2905719736*7001#+1 3019 p155 2012 Arithmetic progression (3,d=3093612*7001#) 5744 2902626124*7001#+1 3019 p155 2012 Arithmetic progression (2,d=3093612*7001#) 5745 2902592790*7001#+1 3019 p155 2012 Arithmetic progression (4,d=46793757*7001#) 5746 2899532512*7001#+1 3019 p155 2012 Arithmetic progression (1,d=3093612*7001#) 5747 2855799033*7001#+1 3019 p155 2012 Arithmetic progression (3,d=46793757*7001#) 5748 2809005276*7001#+1 3019 p155 2012 Arithmetic progression (2,d=46793757*7001#) 5749 2762211519*7001#+1 3019 p155 2012 Arithmetic progression (1,d=46793757*7001#) 5750 2642988356*7001#+1 3019 p155 2012 Arithmetic progression (6,d=481789017*7001#) 5751 2161199339*7001#+1 3019 p155 2012 Arithmetic progression (5,d=481789017*7001#) 5752 1679410322*7001#+1 3019 p155 2012 Arithmetic progression (4,d=481789017*7001#) 5753 1197621305*7001#+1 3019 p155 2012 Arithmetic progression (3,d=481789017*7001#) 5754 715832288*7001#+1 3019 p155 2012 Arithmetic progression (2,d=481789017*7001#) 5755 234043271*7001#+1 3018 p155 2012 Arithmetic progression (1,d=481789017*7001#) 5756 U(14431) 3016 p54 2001 Fibonacci number 5757 138281163736*6977#+1 3006 p395 2016 Cunningham chain 2nd kind (8p-7) 5758 375967981369*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5759 V(13963) 2919 c11 2002 Lucas number, ECPP 5760 284787490256*6701#+1 2879 p364 2015 Cunningham chain 2nd kind (8p-7) 5761 9531*2^9531-1 2874 K 1984 Woodall 5762 -E(1174)/50550511342697072710795058639332351763 2829 c8 2013 Euler irregular, ECPP 5763 -E(1142)/6233437695283865492412648122953349079446935570718422828539863\ 59013986902240869 2697 c77 2015 Euler irregular, ECPP 5764 V(12251) 2561 p54 2001 Lucas number 5765 974!-1 2490 CD 1992 Factorial 5766 7755*2^7755-1 2339 K 1984 Woodall 5767 772463767240*5303#+1 2272 p308 2019 Cunningham chain 2nd kind (8p-7) 5768 116814018316*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10892863626*5303#) 5769 116746086504*5303#+1 2271 p406 2019 Arithmetic progression (7,d=9726011684*5303#) 5770 116242725347*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10388428124*5303#) 5771 107020074820*5303#+1 2271 p406 2019 Arithmetic progression (6,d=9726011684*5303#) 5772 105921154690*5303#+1 2271 p406 2019 Arithmetic progression (6,d=10892863626*5303#) 5773 105854297223*5303#+1 2271 p406 2019 Arithmetic progression (6,d=10388428124*5303#) 5774 97867278281*5303#+1 2271 p406 2019 Arithmetic progression (5,d=2972005888*5303#) 5775 97348096836*5303#+1 2271 p406 2019 Arithmetic progression (5,d=5447332033*5303#) 5776 97294063136*5303#+1 2271 p406 2019 Arithmetic progression (5,d=9726011684*5303#) 5777 96461651937*5303#+1 2271 p406 2019 Arithmetic progression (4,d=435232416*5303#) 5778 96026419521*5303#+1 2271 p406 2019 Arithmetic progression (3,d=435232416*5303#) 5779 95664304943*5303#+1 2271 p406 2019 Arithmetic progression (4,d=817534485*5303#) 5780 95591187105*5303#+1 2271 p406 2019 Arithmetic progression (2,d=435232416*5303#) 5781 95155954689*5303#+1 2271 p406 2019 Arithmetic progression (1,d=435232416*5303#) 5782 94895272393*5303#+1 2271 p406 2019 Arithmetic progression (4,d=2972005888*5303#) 5783 94846770458*5303#+1 2271 p406 2019 Arithmetic progression (3,d=817534485*5303#) 5784 94029235973*5303#+1 2271 p406 2019 Arithmetic progression (2,d=817534485*5303#) 5785 93984538785*5303#+1 2271 p406 2019 Arithmetic progression (3,d=387018369*5303#) 5786 93597520416*5303#+1 2271 p406 2019 Arithmetic progression (2,d=387018369*5303#) 5787 93211701488*5303#+1 2271 p406 2019 Arithmetic progression (1,d=817534485*5303#) 5788 93210502047*5303#+1 2271 p406 2019 Arithmetic progression (1,d=387018369*5303#) 5789 69285767989*5303#+1 2271 p406 2019 Arithmetic progression (8,d=3026809034*5303#) 5790 66258958955*5303#+1 2271 p406 2019 Arithmetic progression (7,d=3026809034*5303#) 5791 63232149921*5303#+1 2271 p406 2019 Arithmetic progression (6,d=3026809034*5303#) 5792 60205340887*5303#+1 2271 p406 2019 Arithmetic progression (5,d=3026809034*5303#) 5793 57178531853*5303#+1 2271 p406 2019 Arithmetic progression (4,d=3026809034*5303#) 5794 54151722819*5303#+1 2271 p406 2019 Arithmetic progression (3,d=3026809034*5303#) 5795 51124913785*5303#+1 2271 p406 2019 Arithmetic progression (2,d=3026809034*5303#) 5796 48098104751*5303#+1 2270 p406 2019 Arithmetic progression (1,d=3026809034*5303#) 5797 V(10691) 2235 DK 1995 Lucas number 5798 566761969187*4733#/2+4 2034 c67 2020 Quintuplet (5) 5799 566761969187*4733#/2+2 2034 c67 2020 Quintuplet (4) 5800 566761969187*4733#/2-2 2034 c67 2020 Quintuplet (3) 5801 566761969187*4733#/2-4 2034 c67 2020 Quintuplet (2) 5802 566761969187*4733#/2-8 2034 c67 2020 Quintuplet (1) 5803 U(9677) 2023 c2 2000 Fibonacci number, ECPP 5804 7610828704751636272*4679#-1 2020 p151 2024 Cunningham chain (16p+15) 5805 126831252923413*4657#/273+13 2002 c88 2020 Quintuplet (5) 5806 126831252923413*4657#/273+9 2002 c88 2020 Quintuplet (4) 5807 126831252923413*4657#/273+7 2002 c88 2020 Quintuplet (3) 5808 126831252923413*4657#/273+3 2002 c88 2020 Quintuplet (2) 5809 126831252923413*4657#/273+1 2002 c88 2020 Quintuplet (1) 5810 6611*2^6611+1 1994 K 1984 Cullen 5811 U(9311) 1946 DK 1995 Fibonacci number 5812 2738129459017*4211#+3399421637 1805 c98 2022 Consecutive primes arithmetic progression (5,d=30) 5813 2738129459017*4211#+3399421607 1805 c98 2022 Consecutive primes arithmetic progression (4,d=30) 5814 2738129459017*4211#+3399421577 1805 c98 2022 Consecutive primes arithmetic progression (3,d=30) 5815 2738129459017*4211#+3399421547 1805 c98 2022 Consecutive primes arithmetic progression (2,d=30) 5816 2738129459017*4211#+3399421517 1805 c98 2022 Consecutive primes arithmetic progression (1,d=30) 5817 V(8467) 1770 c2 2000 Lucas number, ECPP 5818 5795*2^5795+1 1749 K 1984 Cullen 5819 (2^5807+1)/3 1748 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 5820 54201838768*3917#-1 1681 p395 2016 Cunningham chain (16p+15) 5821 102619722624*3797#+1 1631 p395 2016 Cunningham chain 2nd kind (16p-15) 5822 394254311495*3733#/2+4 1606 c67 2017 Quintuplet (5) 5823 394254311495*3733#/2+2 1606 c67 2017 Quintuplet (4) 5824 394254311495*3733#/2-2 1606 c67 2017 Quintuplet (3) 5825 394254311495*3733#/2-4 1606 c67 2017 Quintuplet (2) 5826 394254311495*3733#/2-8 1606 c67 2017 Quintuplet (1) 5827 83*2^5318-1 1603 K 1984 Woodall 5828 2316765173284*3593#+16073 1543 c18 2016 Quintuplet (5), ECPP 5829 2316765173284*3593#+16069 1543 c18 2016 Quintuplet (4), ECPP 5830 2316765173284*3593#+16067 1543 c18 2016 Quintuplet (3), ECPP 5831 2316765173284*3593#+16063 1543 c18 2016 Quintuplet (2), ECPP 5832 2316765173284*3593#+16061 1543 c18 2016 Quintuplet (1), ECPP 5833 652229318541*3527#+3399421637 1504 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5834 652229318541*3527#+3399421607 1504 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5835 652229318541*3527#+3399421577 1504 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5836 652229318541*3527#+3399421547 1504 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5837 652229318541*3527#+3399421517 1504 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5838 3199190962192*3499#-1 1494 p382 2016 Cunningham chain (16p+15) 5839 4713*2^4713+1 1423 K 1984 Cullen 5840 449209457832*3307#+1633050403 1408 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5841 449209457832*3307#+1633050373 1408 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5842 449209457832*3307#+1633050343 1408 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5843 449209457832*3307#+1633050313 1408 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5844 449209457832*3307#+1633050283 1408 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5845 5780736564512*3023#-1 1301 p364 2015 Cunningham chain (16p+15) 5846 2746496109133*3001#+27011 1290 c97 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5847 2746496109133*3001#+26981 1290 c97 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5848 2746496109133*3001#+26951 1290 c97 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5849 2746496109133*3001#+26921 1290 c97 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5850 2746496109133*3001#+26891 1290 c97 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5851 898966996992*3001#+1 1289 p364 2015 Cunningham chain 2nd kind (16p-15) 5852 42530119784448*2969#+1 1281 p382 2017 Cunningham chain 2nd kind (16p-15) 5853 22623218234368*2969#+1 1280 p382 2017 Cunningham chain 2nd kind (16p-15) 5854 1542946580224*2851#-1 1231 p364 2023 Cunningham chain (16p+15) 5855 406463527990*2801#+1633050403 1209 x38 2013 Consecutive primes arithmetic progression (5,d=30) 5856 406463527990*2801#+1633050373 1209 x38 2013 Consecutive primes arithmetic progression (4,d=30) 5857 406463527990*2801#+1633050343 1209 x38 2013 Consecutive primes arithmetic progression (3,d=30) 5858 406463527990*2801#+1633050313 1209 x38 2013 Consecutive primes arithmetic progression (2,d=30) 5859 406463527990*2801#+1633050283 1209 x38 2013 Consecutive primes arithmetic progression (1,d=30) 5860 1290733709840*2677#+1 1141 p295 2011 Cunningham chain 2nd kind (16p-15) 5861 U(5387) 1126 WM 1990 Fibonacci number 5862 1176100079*2591#+1 1101 p252 2019 Arithmetic progression (8,d=60355670*2591#) 5863 1115744409*2591#+1 1101 p252 2019 Arithmetic progression (7,d=60355670*2591#) 5864 1055388739*2591#+1 1100 p252 2019 Arithmetic progression (6,d=60355670*2591#) 5865 995033069*2591#+1 1100 p252 2019 Arithmetic progression (5,d=60355670*2591#) 5866 934677399*2591#+1 1100 p252 2019 Arithmetic progression (4,d=60355670*2591#) 5867 874321729*2591#+1 1100 p252 2019 Arithmetic progression (3,d=60355670*2591#) 5868 813966059*2591#+1 1100 p252 2019 Arithmetic progression (2,d=60355670*2591#) 5869 753610389*2591#+1 1100 p252 2019 Arithmetic progression (1,d=60355670*2591#) 5870 (2^3539+1)/3 1065 M 1989 First titanic by ECPP, generalized Lucas number, Wagstaff 5871 2968802755*2459#+1 1057 p155 2009 Arithmetic progression (8,d=359463429*2459#) 5872 2609339326*2459#+1 1057 p155 2009 Arithmetic progression (7,d=359463429*2459#) 5873 2249875897*2459#+1 1057 p155 2009 Arithmetic progression (6,d=359463429*2459#) 5874 1890412468*2459#+1 1056 p155 2009 Arithmetic progression (5,d=359463429*2459#) 5875 1530949039*2459#+1 1056 p155 2009 Arithmetic progression (4,d=359463429*2459#) 5876 1171485610*2459#+1 1056 p155 2009 Arithmetic progression (3,d=359463429*2459#) 5877 812022181*2459#+1 1056 p155 2009 Arithmetic progression (2,d=359463429*2459#) 5878 452558752*2459#+1 1056 p155 2009 Arithmetic progression (1,d=359463429*2459#) 5879 5963982717*2417#-1 1040 p364 2025 Arithmetic progression (8,d=108526765*2417#) 5880 5855455952*2417#-1 1040 p364 2025 Arithmetic progression (7,d=108526765*2417#) 5881 5746929187*2417#-1 1040 p364 2025 Arithmetic progression (6,d=108526765*2417#) 5882 5638402422*2417#-1 1040 p364 2025 Arithmetic progression (5,d=108526765*2417#) 5883 5529875657*2417#-1 1040 p364 2025 Arithmetic progression (4,d=108526765*2417#) 5884 5421348892*2417#-1 1040 p364 2025 Arithmetic progression (3,d=108526765*2417#) 5885 5312822127*2417#-1 1040 p364 2025 Arithmetic progression (2,d=108526765*2417#) 5886 5204295362*2417#-1 1040 p364 2025 Arithmetic progression (1,d=108526765*2417#) 5887 4692090369*2417#-1 1040 p364 2025 Arithmetic progression (8,d=370899838*2417#) 5888 4321190531*2417#-1 1040 p364 2025 Arithmetic progression (7,d=370899838*2417#) 5889 3950290693*2417#-1 1040 p364 2025 Arithmetic progression (6,d=370899838*2417#) 5890 3579390855*2417#-1 1040 p364 2025 Arithmetic progression (5,d=370899838*2417#) 5891 3208491017*2417#-1 1040 p364 2025 Arithmetic progression (4,d=370899838*2417#) 5892 2837591179*2417#-1 1040 p364 2025 Arithmetic progression (3,d=370899838*2417#) 5893 2466691341*2417#-1 1040 p364 2025 Arithmetic progression (2,d=370899838*2417#) 5894 2095791503*2417#-1 1040 p364 2025 Arithmetic progression (1,d=370899838*2417#) 5895 28993093368077*2399#+19433 1037 c18 2016 Sextuplet (6), ECPP 5896 28993093368077*2399#+19429 1037 c18 2016 Sextuplet (5), ECPP 5897 28993093368077*2399#+19427 1037 c18 2016 Sextuplet (4), ECPP 5898 28993093368077*2399#+19423 1037 c18 2016 Sextuplet (3), ECPP 5899 28993093368077*2399#+19421 1037 c18 2016 Sextuplet (2), ECPP 5900 28993093368077*2399#+19417 1037 c18 2016 Sextuplet (1), ECPP 5901e 64158976085*2399#+1 1034 p41 2025 Arithmetic progression (9,d=6383832302*2399#) 5902e 57775143783*2399#+1 1034 p41 2025 Arithmetic progression (8,d=6383832302*2399#) 5903e 51391311481*2399#+1 1034 p41 2025 Arithmetic progression (7,d=6383832302*2399#) 5904e 45007479179*2399#+1 1034 p41 2025 Arithmetic progression (6,d=6383832302*2399#) 5905e 38623646877*2399#+1 1034 p41 2025 Arithmetic progression (5,d=6383832302*2399#) 5906e 32239814575*2399#+1 1034 p41 2025 Arithmetic progression (4,d=6383832302*2399#) 5907e 25855982273*2399#+1 1034 p41 2025 Arithmetic progression (3,d=6383832302*2399#) 5908e 19472149971*2399#+1 1034 p41 2025 Arithmetic progression (2,d=6383832302*2399#) 5909e 13088317669*2399#+1 1034 p41 2025 Arithmetic progression (1,d=6383832302*2399#) 5910 R(1031) 1031 WD 1985 Repunit 5911 89595955370432*2371#-1 1017 p364 2015 Cunningham chain (32p+31) 5912 116040452086*2371#+1 1014 p308 2012 Arithmetic progression (9,d=6317280828*2371#) 5913 109723171258*2371#+1 1014 p308 2012 Arithmetic progression (8,d=6317280828*2371#) 5914 103405890430*2371#+1 1014 p308 2012 Arithmetic progression (7,d=6317280828*2371#) 5915 97336164242*2371#+1 1014 p308 2013 Arithmetic progression (9,d=6350457699*2371#) 5916 97088609602*2371#+1 1014 p308 2012 Arithmetic progression (6,d=6317280828*2371#) 5917 93537753980*2371#+1 1014 p308 2013 Arithmetic progression (9,d=3388165411*2371#) 5918 92836168856*2371#+1 1014 p308 2013 Arithmetic progression (9,d=127155673*2371#) 5919 92709013183*2371#+1 1014 p308 2013 Arithmetic progression (8,d=127155673*2371#) 5920 92581857510*2371#+1 1014 p308 2013 Arithmetic progression (7,d=127155673*2371#) 5921 92454701837*2371#+1 1014 p308 2013 Arithmetic progression (6,d=127155673*2371#) 5922 92327546164*2371#+1 1014 p308 2013 Arithmetic progression (5,d=127155673*2371#) 5923 92200390491*2371#+1 1014 p308 2013 Arithmetic progression (4,d=127155673*2371#) 5924 92073234818*2371#+1 1014 p308 2013 Arithmetic progression (3,d=127155673*2371#) 5925 91946079145*2371#+1 1014 p308 2013 Arithmetic progression (2,d=127155673*2371#) 5926 91818923472*2371#+1 1014 p308 2013 Arithmetic progression (1,d=127155673*2371#) 5927 90985706543*2371#+1 1014 p308 2013 Arithmetic progression (8,d=6350457699*2371#) 5928 90771328774*2371#+1 1014 p308 2012 Arithmetic progression (5,d=6317280828*2371#) 5929 90149588569*2371#+1 1014 p308 2013 Arithmetic progression (8,d=3388165411*2371#) 5930 86761423158*2371#+1 1014 p308 2013 Arithmetic progression (7,d=3388165411*2371#) 5931 84635248844*2371#+1 1014 p308 2013 Arithmetic progression (7,d=6350457699*2371#) 5932 84454047946*2371#+1 1014 p308 2012 Arithmetic progression (4,d=6317280828*2371#) 5933 83373257747*2371#+1 1014 p308 2013 Arithmetic progression (6,d=3388165411*2371#) 5934 79985092336*2371#+1 1014 p308 2013 Arithmetic progression (5,d=3388165411*2371#) 5935 78284791145*2371#+1 1014 p308 2013 Arithmetic progression (6,d=6350457699*2371#) 5936 78136767118*2371#+1 1014 p308 2012 Arithmetic progression (3,d=6317280828*2371#) 5937 76596926925*2371#+1 1014 p308 2013 Arithmetic progression (4,d=3388165411*2371#) 5938 73208761514*2371#+1 1014 p308 2013 Arithmetic progression (3,d=3388165411*2371#) 5939 71934333446*2371#+1 1014 p308 2013 Arithmetic progression (5,d=6350457699*2371#) 5940 71819486290*2371#+1 1014 p308 2012 Arithmetic progression (2,d=6317280828*2371#) 5941 69820596103*2371#+1 1014 p308 2013 Arithmetic progression (2,d=3388165411*2371#) 5942 66432430692*2371#+1 1014 p308 2013 Arithmetic progression (1,d=3388165411*2371#) 5943 65583875747*2371#+1 1014 p308 2013 Arithmetic progression (4,d=6350457699*2371#) 5944 65502205462*2371#+1 1014 p308 2012 Arithmetic progression (1,d=6317280828*2371#) 5945 61526034135*2371#+1 1014 p308 2011 Arithmetic progression (3,d=1298717501*2371#) 5946 60227316634*2371#+1 1014 p308 2011 Arithmetic progression (2,d=1298717501*2371#) 5947 58928599133*2371#+1 1014 p308 2011 Arithmetic progression (1,d=1298717501*2371#) 5948 533098369554*2357#+3399421667 1012 c98 2021 Consecutive primes arithmetic progression (6,d=30), ECPP 5949 533098369554*2357#+3399421637 1012 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5950 533098369554*2357#+3399421607 1012 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5951 533098369554*2357#+3399421577 1012 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5952 533098369554*2357#+3399421547 1012 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5953 533098369554*2357#+3399421517 1012 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5954 113225039190926127209*2339#/57057+21 1002 c88 2021 Septuplet (7) 5955 113225039190926127209*2339#/57057+19 1002 c88 2021 Septuplet (6) 5956 113225039190926127209*2339#/57057+13 1002 c88 2021 Septuplet (5) 5957 113225039190926127209*2339#/57057+9 1002 c88 2021 Septuplet (4) 5958 113225039190926127209*2339#/57057+7 1002 c88 2021 Septuplet (3) 5959 1184490310627008*2339#+1 1001 p364 2025 Cunningham chain 2nd kind (32p-31) ----- ------------------------------- -------- ----- ---- -------------- KEY TO PROOF-CODES (primality provers): A1 Propper, Srsieve, PrimeGrid, PRST A2 Propper, Srsieve, PRST A3 Atnashev, PRST A5 Gahan, Cyclo, PRST A6 Propper, Gcwsieve, PRST A7 Baur, Cyclo, PRST A8 Baur1, Srsieve, PRST A9 Wright1, Srsieve, CRUS, PRST A10 Grosvenor, Srsieve, CRUS, PRST A11 Anonymous, Srsieve, CRUS, PRST A12 Kruse, Srsieve, CRUS, PRST A13 Marler, Cyclo, PRST A14 Thompson5, Srsieve, CRUS, PRST A15 Sielemann, Srsieve, CRUS, PRST A16 Broer, Srsieve, CRUS, PRST A18 Trunov, Cyclo, PRST A19 Propper, Batalov, Srsieve, PRST A20 Propper, Batalov, Gcwsieve, PRST A21 Piesker, Srsieve, CRUS, PRST A22 Doornink, Cyclo, PRST A23 Brown1, Srsieve, PrimeGrid, PRST A24 Ogawa, MultiSieve, NewPGen, PRST A25 Schmidt2, NewPGen, PRST A26 VISCAPI, Srsieve, CRUS, PRST A27 Piesker, PSieve, Srsieve, NPLB, PRST A28 Gingrich1, Srsieve, CRUS, PRST A29 Kelava1, Srsieve, Prime95, PRST A30 Silva2, Srsieve, PrimeGrid, PRST A31 Dinkel, MultiSieve, PRST A32 Cedric, Srsieve, CRUS, PRST A38 Batalov, PSieve, Srsieve, PRST A41 Gmirkin, Srsieve, PrimeGrid, PRST A42 Dadocad72, Srsieve, CRUS, PRST A43 Propper, MultiSieve, PRST A44 Smith12, Srsieve, CRUS, PRST A45 Kaczala, Srsieve, PrimeGrid, PRST A46 Primecrunch.com, Hedges, Srsieve, PRST A48 Peteri, Srsieve, CRUS, PRST A49 Swerczek, Srsieve, CRUS, PRST A50 Bird2, Srsieve, CRUS, PRST A51 Gahan, NewPGen, PRST A52 Schumacher, Srsieve, CRUS, PRST A54 Lynch, Srsieve, CRUS, PRST A55 Nielsen1, Gahan, PRST A57 Busler, Srsieve, CRUS, PRST A58 Schmidt2, PSieve, Srsieve, NPLB, PRST A59 Straleger, Srsieve, CRUS, PRST A60 Presler, Srsieve, PrimeGrid, PRST A61 Williams7, Gcwsieve, MultiSieve, PrimeGrid, PRST A62 Gehrke, Srsieve, CRUS, PRST A63 Davies, Srsieve, CRUS, PRST A64 Freeman.kennethgmail.com, Srsieve, CRUS, PRST A65 Dickinson, Srsieve, CRUS, PRST A66 Terber, Srsieve, CRUS, PRST A67 Gahan, Gcwsieve, PRST A68 Schroeder3, Srsieve, CRUS, PRST A69 Chodzinski, Srsieve, CRUS, PRST A70 Korolev, Srsieve, CRUS, PRST A71 Harju, Srsieve, CRUS, PRST A72 Brase, Srsieve, CRUS, PRST A73 Brooks2, Srsieve, CRUS, PRST A74 Dettweiler, PSieve, Srsieve, NPLB, PRST A75 Yasuhisa, TwinGen, NewPGen, TPS, PRST A76 Brockwell, PSieve, Srsieve, NPLB, PRST C Caldwell, Cruncher c2 Water, Primo c4 Broadhurst, Primo c8 Broadhurst, Water, Primo c11 Oakes, Primo c18 Luhn, Primo c39 Minovic, OpenPFGW, Primo c47 Chandler, Primo c54 Wu_T, Primo c55 Gramolin, Primo c56 Soule, Minovic, OpenPFGW, Primo c58 Kaiser1, NewPGen, OpenPFGW, Primo c59 Metcalfe, OpenPFGW, Primo c63 Ritschel, TOPS, Primo c64 Metcalfe, Minovic, Ritschel, TOPS, Primo c66 Steine, Primo c67 Batalov, NewPGen, OpenPFGW, Primo c69 Jacobsen, Primo c70 Underwood, Dubner, Primo c71 Metcalfe, Ritschel, Andersen, TOPS, Primo c73 Underwood, Lifchitz, Primo c74 Lasher, Dubner, Primo c76 Kaiser1, Water, Underwood, Primo c77 Batalov, Primo c79 Batalov, Broadhurst, Water, Primo c81 Water, Underwood, Primo c82 Steine, Water, Primo c83 Kaiser1, PolySieve, NewPGen, Primo c84 Underwood, Primo c88 Kaiser1, PolySieve, Primo c92 Lamprecht, Luhn, Primo c93 Batalov, PolySieve, Primo c94 Gelhar, Ritschel, TOPS, Primo c95 Gelhar, Primo c97 Lamprecht, Luhn, APSieve, OpenPFGW, Primo c98 Batalov, EMsieve, Primo c99 Kruse, Schoeler, Primo c100 DavisK, APTreeSieve, NewPGen, OpenPFGW, Primo c101 DavisK, APTreeSieve, OpenPFGW, Primo CD Caldwell, Dubner, Cruncher CH10 Batalov, OpenPFGW, Primo, CHG CH12 Propper, Batalov, OpenPFGW, Primo, CHG CH13 Propper, Batalov, EMsieve, OpenPFGW, CHG CH14 Wu_T, CM, OpenPFGW, CHG CH15 Propper, Batalov, CM, OpenPFGW, CHG CH2 Wu_T, OpenPFGW, Primo, CHG CH3 Broadhurst, Water, OpenPFGW, Primo, CHG CH4 Irvine, Broadhurst, Water, OpenPFGW, Primo, CHG CH9 Zhou, OpenPFGW, CHG D Dubner, Cruncher DK Dubner, Keller, Cruncher DS Smith_Darren, Proth.exe E1 Batalov, CM E2 Propper, CM E3 Enge, CM E4 Childers, CM E5 Underwood, CM E6 Lasher, Broadhurst, Underwood, CM E7 Lasher, CM E8 Broadhurst, Underwood, CM E9 Mock, CM E10 Doornink, CM E11 Karpovich, CM E12 Enge, Underwood, CM E13 Batalov, Masser, CM E14 Batalov, EMsieve, CM E15 Batalov, PolySieve, CM E16 Propper, Batalov, CM E17 Foreman, Batalov, CM FE8 Oakes, Broadhurst, Water, Morain, FastECPP g0 Gallot, Proth.exe g1 Caldwell, Proth.exe G1 Armengaud, GIMPS, Prime95 G2 Spence, GIMPS, Prime95 G3 Clarkson, Kurowski, GIMPS, Prime95 G4 Hajratwala, Kurowski, GIMPS, Prime95 G5 Cameron, Kurowski, GIMPS, Prime95 G6 Shafer, GIMPS, Prime95 G7 Findley_J, GIMPS, Prime95 G8 Nowak, GIMPS, Prime95 G9 Boone, Cooper, GIMPS, Prime95 G10 Smith_E, GIMPS, Prime95 G11 Elvenich, GIMPS, Prime95 G12 Strindmo, GIMPS, Prime95 G13 Cooper, GIMPS, Prime95 G14 Cooper, GIMPS, Prime95 G15 Pace, GIMPS, Prime95 G16 Laroche, GIMPS, Prime95 g23 Ballinger, Proth.exe g25 OHare, Proth.exe g55 Toplic, Proth.exe g236 Heuer, GFN17Sieve, GFNSearch, Proth.exe g245 Cosgrave, NewPGen, PRP, Proth.exe g260 AYENI, Proth.exe g267 Grobstich, NewPGen, PRP, Proth.exe g277 Eaton, NewPGen, PRP, Proth.exe g279 Cooper, NewPGen, PRP, Proth.exe g337 Hsieh, NewPGen, PRP, Proth.exe g403 Yoshimura, ProthSieve, PrimeSierpinski, LLR, Proth.exe g407 HermleGC, MultiSieve, PRP, Proth.exe g413 Scott, AthGFNSieve, Proth.exe g414 Gilvey, Srsieve, PrimeGrid, PrimeSierpinski, LLR, Proth.exe g418 Taura, NewPGen, PRP, Proth.exe g424 Broadhurst, NewPGen, OpenPFGW, Proth.exe g427 Batalov, Srsieve, LLR, Proth.exe g429 Underbakke, GenefX64, AthGFNSieve, PrimeGrid, Proth.exe g431 Shenton, Srsieve, Proth.exe gm Morii, Proth.exe K Keller L20 Kapek, LLR L53 Zaveri, ProthSieve, RieselSieve, PRP, LLR L95 Urushi, LLR L99 Underbakke, TwinGen, LLR L124 Rodenkirch, MultiSieve, LLR L129 Snyder, LLR L137 Jaworski, Rieselprime, LLR L161 Schafer, NewPGen, LLR L181 Siegert, LLR L185 Hassler, NewPGen, LLR L192 Jaworski, LLR L197 DaltonJ, ProthSieve, RieselSieve, LLR L201 Siemelink, LLR L256 Underwood, Srsieve, NewPGen, 321search, LLR L381 Mate, Siemelink, Rodenkirch, MultiSieve, LLR L384 Pinho, Srsieve, Rieselprime, LLR L426 Jaworski, Srsieve, Rieselprime, LLR L436 Andersen2, Gcwsieve, MultiSieve, PrimeGrid, LLR L447 Kohlman, Gcwsieve, MultiSieve, PrimeGrid, LLR L466 Zhou, NewPGen, LLR L503 Benson, Srsieve, LLR L521 Thompson1, Gcwsieve, MultiSieve, PrimeGrid, LLR L527 Tornberg, TwinGen, LLR L541 Barnes, Srsieve, CRUS, LLR L550 Bonath, Srsieve, CRUS, LLR L591 Penne, Srsieve, CRUS, LLR L606 Bennett, Srsieve, NewPGen, PrimeGrid, 321search, LLR L613 Keogh, Srsieve, ProthSieve, RieselSieve, LLR L622 Cardall, Srsieve, ProthSieve, RieselSieve, LLR L671 Wong, Srsieve, PrimeGrid, LLR L689 Brown1, Srsieve, PrimeGrid, LLR L690 Cholt, Srsieve, PrimeGrid, LLR L753 Wolfram, Srsieve, PrimeGrid, LLR L760 Riesen, Srsieve, Rieselprime, LLR L764 Ewing, Srsieve, PrimeGrid, LLR L780 Brady, Srsieve, PrimeGrid, LLR L801 Gesker, Gcwsieve, MultiSieve, PrimeGrid, LLR L802 Zachariassen, Srsieve, NPLB, LLR L875 Hatland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L917 Bergman1, Gcwsieve, MultiSieve, PrimeGrid, LLR L923 Kaiser1, Klahn, NewPGen, PrimeGrid, TPS, SunGard, LLR L927 Brown1, TwinGen, PrimeGrid, LLR L983 Wu_T, LLR L1056 Schwieger, Srsieve, PrimeGrid, LLR L1115 Splain, PSieve, Srsieve, PrimeGrid, LLR L1125 Laluk, PSieve, Srsieve, PrimeGrid, LLR L1129 Slomma, PSieve, Srsieve, PrimeGrid, LLR L1134 Ogawa, Srsieve, NewPGen, LLR L1141 Ogawa, NewPGen, LLR L1160 Sunderland, PSieve, Srsieve, PrimeGrid, LLR L1188 Faith, PSieve, Srsieve, PrimeGrid, LLR L1201 Carpenter1, PSieve, Srsieve, PrimeGrid, LLR L1203 Mauno, PSieve, Srsieve, PrimeGrid, LLR L1204 Brown1, PSieve, Srsieve, PrimeGrid, LLR L1209 Wong, PSieve, Srsieve, PrimeGrid, LLR L1223 Courty, PSieve, Srsieve, PrimeGrid, LLR L1230 Yooil1, PSieve, Srsieve, PrimeGrid, LLR L1300 Yama, PSieve, Srsieve, PrimeGrid, LLR L1301 Sorbera, Srsieve, CRUS, LLR L1349 Wallace, Srsieve, NewPGen, PrimeGrid, LLR L1353 Mumper, Srsieve, PrimeGrid, LLR L1355 Beck, PSieve, Srsieve, PrimeGrid, LLR L1372 Glennie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L1387 Anonymous, PSieve, Srsieve, PrimeGrid, LLR L1412 Jones_M, PSieve, Srsieve, PrimeGrid, LLR L1422 Steichen, PSieve, Srsieve, PrimeGrid, LLR L1444 Davies, PSieve, Srsieve, PrimeGrid, LLR L1448 Hron, PSieve, Srsieve, PrimeGrid, LLR L1455 Heikkila, PSieve, Srsieve, PrimeGrid, LLR L1456 Webster, PSieve, Srsieve, PrimeGrid, LLR L1460 Salah, Srsieve, PrimeGrid, PrimeSierpinski, LLR L1471 Gunn, Srsieve, CRUS, LLR L1474 Brown6, PSieve, Srsieve, PrimeGrid, LLR L1486 Dinkel, PSieve, Srsieve, PrimeGrid, LLR L1502 Champ, PSieve, Srsieve, PrimeGrid, LLR L1576 Craig, PSieve, Srsieve, PrimeGrid, LLR L1675 Schwieger, PSieve, Srsieve, PrimeGrid, LLR L1728 Gasewicz, PSieve, Srsieve, PrimeGrid, LLR L1741 Granowski, PSieve, Srsieve, PrimeGrid, LLR L1745 Cholt, PSieve, Srsieve, PrimeGrid, LLR L1754 Hubbard, PSieve, Srsieve, PrimeGrid, LLR L1774 Schoefer, PSieve, Srsieve, PrimeGrid, LLR L1780 Ming, PSieve, Srsieve, PrimeGrid, LLR L1792 Tang, PSieve, Srsieve, PrimeGrid, LLR L1808 Reynolds1, PSieve, Srsieve, PrimeGrid, LLR L1817 Barnes, PSieve, Srsieve, NPLB, LLR L1823 Larsson, PSieve, Srsieve, PrimeGrid, LLR L1828 Benson, PSieve, Srsieve, Rieselprime, LLR L1862 Curtis, PSieve, Srsieve, Rieselprime, LLR L1863 Wozny, PSieve, Srsieve, Rieselprime, LLR L1884 Jaworski, PSieve, Srsieve, Rieselprime, LLR L1885 Ostaszewski, PSieve, Srsieve, PrimeGrid, LLR L1921 Winslow, TwinGen, PrimeGrid, LLR L1932 Dragnev, PSieve, Srsieve, PrimeGrid, LLR L1935 Channing, PSieve, Srsieve, PrimeGrid, LLR L1949 Pritchard, Srsieve, PrimeGrid, RieselSieve, LLR L1959 Metcalfe, PSieve, Srsieve, Rieselprime, LLR L1979 Tibbott, PSieve, Srsieve, PrimeGrid, LLR L2012 Pedersen_K, Srsieve, CRUS, OpenPFGW, LLR L2017 Hubbard, PSieve, Srsieve, NPLB, LLR L2030 Tonner, PSieve, Srsieve, PrimeGrid, LLR L2035 Greer, TwinGen, PrimeGrid, LLR L2042 Lachance, PSieve, Srsieve, PrimeGrid, LLR L2046 Melvold, Srsieve, PrimeGrid, LLR L2054 Kaiser1, Srsieve, CRUS, LLR L2055 Soule, PSieve, Srsieve, Rieselprime, LLR L2074 Minovic, PSieve, Srsieve, Rieselprime, LLR L2085 Dodson1, PSieve, Srsieve, PrimeGrid, LLR L2086 Sveen, PSieve, Srsieve, PrimeGrid, LLR L2103 Schmidt1, PSieve, Srsieve, PrimeGrid, LLR L2117 Karlsteen, PSieve, Srsieve, PrimeGrid, LLR L2121 VanRangelrooij, PSieve, Srsieve, PrimeGrid, LLR L2125 Greer, PSieve, Srsieve, PrimeGrid, LLR L2137 Hayashi1, PSieve, Srsieve, PrimeGrid, LLR L2142 Hajek, PSieve, Srsieve, PrimeGrid, LLR L2158 Krauss, PSieve, Srsieve, PrimeGrid, LLR L2163 VanRooijen1, PSieve, Srsieve, PrimeGrid, LLR L2233 Herder, Srsieve, PrimeGrid, LLR L2235 Mullage, PSieve, Srsieve, NPLB, LLR L2257 Dettweiler, PSieve, Srsieve, NPLB, LLR L2269 Schori, Srsieve, PrimeGrid, LLR L2322 Szafranski, PSieve, Srsieve, PrimeGrid, LLR L2366 Satoh, PSieve, Srsieve, PrimeGrid, LLR L2371 Luszczek, Srsieve, PrimeGrid, LLR L2373 Tarasov1, Srsieve, PrimeGrid, LLR L2408 Reinman, Srsieve, PrimeGrid, LLR L2425 DallOsto, LLR L2429 Bliedung, TwinGen, PrimeGrid, LLR L2484 Ritschel, PSieve, Srsieve, Rieselprime, LLR L2487 Liao, PSieve, Srsieve, PrimeGrid, LLR L2520 Mamanakis, PSieve, Srsieve, PrimeGrid, LLR L2526 Martinik, PSieve, Srsieve, PrimeGrid, LLR L2549 McKay, PSieve, Srsieve, PrimeGrid, LLR L2552 Foulher, PSieve, Srsieve, PrimeGrid, LLR L2561 Vinklat, PSieve, Srsieve, PrimeGrid, LLR L2564 Bravin, PSieve, Srsieve, PrimeGrid, LLR L2583 Nakamura, PSieve, Srsieve, PrimeGrid, LLR L2602 Mueller4, PSieve, Srsieve, PrimeGrid, LLR L2603 Hoffman, PSieve, Srsieve, PrimeGrid, LLR L2606 Slakans, PSieve, Srsieve, PrimeGrid, LLR L2629 Becker2, PSieve, Srsieve, PrimeGrid, LLR L2659 Reber, PSieve, Srsieve, PrimeGrid, LLR L2664 Koluvere, PSieve, Srsieve, PrimeGrid, LLR L2675 Ling, PSieve, Srsieve, PrimeGrid, LLR L2676 Cox2, PSieve, Srsieve, PrimeGrid, LLR L2691 Pettersen, PSieve, Srsieve, PrimeGrid, LLR L2714 Piotrowski, PSieve, Srsieve, PrimeGrid, LLR L2715 Donovan, PSieve, Srsieve, PrimeGrid, LLR L2719 Yost, PSieve, Srsieve, PrimeGrid, LLR L2777 Ritschel, Gcwsieve, TOPS, LLR L2785 Meili, PSieve, Srsieve, PrimeGrid, LLR L2805 Barr, PSieve, Srsieve, PrimeGrid, LLR L2840 Santana, PSieve, Srsieve, PrimeGrid, LLR L2842 English1, PSieve, Srsieve, PrimeGrid, LLR L2873 Jurach, PSieve, Srsieve, PrimeGrid, LLR L2885 Busacker, PSieve, Srsieve, PrimeGrid, LLR L2891 Lacroix, PSieve, Srsieve, PrimeGrid, LLR L2914 Merrylees, PSieve, Srsieve, PrimeGrid, LLR L2959 Derrera, PSieve, Srsieve, PrimeGrid, LLR L2973 Kurtovic, Srsieve, PrimeGrid, LLR L2975 Loureiro, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L2992 Boehm, PSieve, Srsieve, PrimeGrid, LLR L2997 Williams2, PSieve, Srsieve, PrimeGrid, LLR L3023 Winslow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3029 Walsh, PSieve, Srsieve, PrimeGrid, LLR L3033 Snow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3035 Scalise, PSieve, Srsieve, PrimeGrid, LLR L3048 Breslin, PSieve, Srsieve, PrimeGrid, LLR L3054 Winslow, Srsieve, PrimeGrid, LLR L3091 Ridgway, PSieve, Srsieve, PrimeGrid, LLR L3101 Reichard, PSieve, Srsieve, PrimeGrid, LLR L3118 Yama, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3141 Kus, PSieve, Srsieve, PrimeGrid, LLR L3168 Schwegler, PSieve, Srsieve, PrimeGrid, LLR L3171 Bergelt, PSieve, Srsieve, PrimeGrid, LLR L3173 Zhou2, PSieve, Srsieve, PrimeGrid, LLR L3174 Boniecki, PSieve, Srsieve, PrimeGrid, LLR L3183 Haller, Srsieve, PrimeGrid, LLR L3184 Hayslette, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3200 Athanas, PSieve, Srsieve, PrimeGrid, LLR L3203 Scalise, TwinGen, PrimeGrid, LLR L3209 McArdle, GenefX64, AthGFNSieve, PrimeGrid, LLR L3222 Yamamoto, PSieve, Srsieve, PrimeGrid, LLR L3223 Yurgandzhiev, PSieve, Srsieve, PrimeGrid, LLR L3230 Kumagai, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3234 Parangalan, PSieve, Srsieve, PrimeGrid, LLR L3249 Lind, PSieve, Srsieve, PrimeGrid, LLR L3260 Stanko, PSieve, Srsieve, PrimeGrid, LLR L3261 Batalov, PSieve, Srsieve, PrimeGrid, LLR L3262 Molder, PSieve, Srsieve, PrimeGrid, LLR L3278 Fischer1, PSieve, Srsieve, PrimeGrid, LLR L3323 Ritschel, NewPGen, TOPS, LLR L3325 Elvy, PSieve, Srsieve, PrimeGrid, LLR L3329 Tatearka, PSieve, Srsieve, PrimeGrid, LLR L3345 Domanov1, PSieve, Rieselprime, LLR L3372 Ryan, PSieve, Srsieve, PrimeGrid, LLR L3430 Durstewitz, PSieve, Srsieve, PrimeGrid, LLR L3431 Gahan, PSieve, Srsieve, PrimeGrid, LLR L3432 Batalov, Srsieve, LLR L3458 Jia, PSieve, Srsieve, PrimeGrid, LLR L3459 Boruvka, PSieve, Srsieve, PrimeGrid, LLR L3460 Ottusch, PSieve, Srsieve, PrimeGrid, LLR L3483 Farrow, PSieve, Srsieve, PrimeGrid, LLR L3494 Batalov, NewPGen, LLR L3502 Ristic, PSieve, Srsieve, PrimeGrid, LLR L3512 Tsuji, PSieve, Srsieve, PrimeGrid, LLR L3514 Bishop1, PSieve, Srsieve, PrimeGrid, OpenPFGW, LLR L3519 Kurtovic, PSieve, Srsieve, Rieselprime, LLR L3523 Brown1, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3528 Batalov, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3532 Batalov, Gcwsieve, LLR L3539 Jacobs, PSieve, Srsieve, PrimeGrid, LLR L3543 Yama, PrimeGrid, LLR L3545 Eskam1, PSieve, Srsieve, PrimeGrid, LLR L3547 Ready, Srsieve, PrimeGrid, LLR L3548 Ready, PSieve, Srsieve, PrimeGrid, LLR L3549 Hirai, Srsieve, PrimeGrid, LLR L3552 Benson2, Srsieve, PrimeGrid, LLR L3553 Cilliers, Srsieve, PrimeGrid, LLR L3562 Schouten, Srsieve, PrimeGrid, LLR L3564 Jaworski, Srsieve, CRUS, LLR L3566 Slakans, Srsieve, PrimeGrid, LLR L3567 Meili, Srsieve, PrimeGrid, LLR L3573 Batalov, TwinGen, PrimeGrid, LLR L3593 Veit, PSieve, Srsieve, PrimeGrid, LLR L3606 Sander, TwinGen, PrimeGrid, LLR L3610 Batalov, Srsieve, CRUS, LLR L3659 Volynsky, Srsieve, PrimeGrid, LLR L3662 Schawe, PSieve, Srsieve, PrimeGrid, LLR L3665 Kelava1, PSieve, Srsieve, Rieselprime, LLR L3686 Yost, Srsieve, PrimeGrid, LLR L3719 Skinner, PSieve, Srsieve, PrimeGrid, LLR L3720 Ohno, Srsieve, PrimeGrid, LLR L3735 Kurtovic, Srsieve, LLR L3749 Meador, Srsieve, PrimeGrid, LLR L3760 Okazaki, PSieve, Srsieve, PrimeGrid, LLR L3763 Martin4, PSieve, Srsieve, PrimeGrid, LLR L3764 Diepeveen, PSieve, Srsieve, Rieselprime, LLR L3770 Tang, Srsieve, PrimeGrid, LLR L3772 Ottusch, Srsieve, PrimeGrid, LLR L3784 Cavnaugh, PSieve, Srsieve, PrimeGrid, LLR L3789 Toda, Srsieve, PrimeGrid, LLR L3802 Aggarwal, Srsieve, LLR L3803 Bredl, PSieve, Srsieve, PrimeGrid, LLR L3813 Chambers2, PSieve, Srsieve, PrimeGrid, LLR L3824 Mazzucato, PSieve, Srsieve, PrimeGrid, LLR L3829 Abrahmi, TwinGen, PrimeGrid, LLR L3839 Batalov, EMsieve, LLR L3849 Smith10, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3859 Clifton, PSieve, Srsieve, PrimeGrid, LLR L3865 Silva, PSieve, Srsieve, PrimeGrid, LLR L3869 Cholt, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3877 Jarne, PSieve, Srsieve, PrimeGrid, LLR L3887 Byerly, PSieve, Rieselprime, LLR L3895 Englehard, PSieve, Srsieve, PrimeGrid, LLR L3898 Christy, PSieve, Srsieve, PrimeGrid, LLR L3903 Miao, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3904 Darimont, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3910 Bischof, PSieve, Srsieve, PrimeGrid, LLR L3917 Rodenkirch, PSieve, Srsieve, LLR L3919 Pickering, PSieve, Srsieve, PrimeGrid, LLR L3924 Kim5, PSieve, Srsieve, PrimeGrid, LLR L3925 Okazaki, Srsieve, PrimeGrid, LLR L3933 Batalov, PSieve, Srsieve, CRUS, Rieselprime, LLR L3941 Lee8, PSieve, Srsieve, PrimeGrid, LLR L3961 Darimont, Srsieve, PrimeGrid, LLR L3964 Iakovlev, Srsieve, PrimeGrid, LLR L3993 Gushchak, Srsieve, PrimeGrid, LLR L3994 Domanov1, PSieve, Srsieve, NPLB, LLR L3995 Unbekannt, PSieve, Srsieve, PrimeGrid, LLR L3998 Rossman, PSieve, Srsieve, PrimeGrid, LLR L4001 Willig, Srsieve, CRUS, LLR L4016 Bedenbaugh, PSieve, Srsieve, PrimeGrid, LLR L4021 Busse, PSieve, Srsieve, PrimeGrid, LLR L4031 Darney, PSieve, Srsieve, PrimeGrid, LLR L4034 Vanc, Srsieve, PrimeGrid, LLR L4036 Domanov1, PSieve, Srsieve, CRUS, LLR L4043 Niedbala, PSieve, Srsieve, PrimeGrid, LLR L4045 Chew, PSieve, Srsieve, PrimeGrid, LLR L4061 Lee, PSieve, Srsieve, PrimeGrid, LLR L4064 Davies, Srsieve, CRUS, LLR L4082 Zimmerman, PSieve, Srsieve, PrimeGrid, LLR L4083 Charrondiere, PSieve, Srsieve, PrimeGrid, LLR L4087 Kecic, PSieve, Srsieve, PrimeGrid, LLR L4088 Graeber, PSieve, Srsieve, PrimeGrid, LLR L4099 Nietering, PSieve, Srsieve, PrimeGrid, LLR L4103 Klopffleisch, Srsieve, PrimeGrid, LLR L4108 Yoshioka, PSieve, Srsieve, PrimeGrid, LLR L4113 Batalov, PSieve, Srsieve, LLR L4114 Bubloski, PSieve, Srsieve, PrimeGrid, LLR L4119 Nelson3, PSieve, Srsieve, PrimeGrid, LLR L4139 Hawker, Srsieve, CRUS, LLR L4142 Batalov, CycloSv, EMsieve, PIES, LLR L4146 Schmidt1, Srsieve, PrimeGrid, LLR L4147 Mohacsy, PSieve, Srsieve, PrimeGrid, LLR L4148 Glatte, PSieve, Srsieve, PrimeGrid, LLR L4155 Jones4, PSieve, Srsieve, PrimeGrid, LLR L4159 Schulz5, Srsieve, PrimeGrid, LLR L4166 Kwok, PSieve, LLR L4185 Hoefliger, PSieve, Srsieve, PrimeGrid, LLR L4187 Schmidt2, Srsieve, CRUS, LLR L4189 Lawrence, Powell, Srsieve, CRUS, LLR L4190 Fnasek, PSieve, Srsieve, PrimeGrid, LLR L4197 Kumagai1, Srsieve, PrimeGrid, LLR L4198 Rawles, PSieve, Srsieve, PrimeGrid, LLR L4200 Harste, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4201 Brown1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4203 Azarenko, PSieve, Srsieve, PrimeGrid, LLR L4204 Winslow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4205 Bischof, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4207 Jaamann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4208 Farrow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4210 Cholt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4226 Heath, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4231 Schneider1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4245 Greer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4249 Larsson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4250 Vogt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4252 Nietering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4256 Gniesmer, PSieve, Srsieve, PrimeGrid, LLR L4267 Batalov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4273 Rangelrooij, Srsieve, CRUS, LLR L4274 AhlforsDahl, Srsieve, PrimeGrid, LLR L4276 Borbely, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4285 Bravin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4286 Zimmerman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4289 Ito2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4293 Trunov, PSieve, Srsieve, PrimeGrid, LLR L4294 Kurtovic, Srsieve, CRUS, Prime95, LLR L4295 Splain, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4303 Thorson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4307 Keller1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4308 Matillek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4309 Kecic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4314 DeThomas, PSieve, Srsieve, PrimeGrid, LLR L4316 Nilsson1, PSieve, Srsieve, PrimeGrid, LLR L4326 Steel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4329 Okon, Srsieve, LLR L4334 Miller5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4340 Becker4, Srsieve, PrimeGrid, LLR L4341 Goetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4342 Kaiser1, PolySieve, NewPGen, LLR L4343 Norton, PSieve, Srsieve, PrimeGrid, LLR L4348 Burridge, Srsieve, PrimeGrid, LLR L4359 Andou, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4362 Mochizuki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4364 Steinbach, PSieve, Srsieve, PrimeGrid, LLR L4371 Schmidt2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4380 Rix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4387 Davies, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4393 Veit1, Srsieve, CRUS, LLR L4395 Nilsson1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4398 Greer, Srsieve, PrimeGrid, LLR L4404 Stepnicka, PSieve, Srsieve, PrimeGrid, LLR L4405 Eckhard, Srsieve, LLR L4406 Mathers, PSieve, Srsieve, PrimeGrid, LLR L4408 Fricke, PSieve, Srsieve, PrimeGrid, LLR L4410 Andresson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4411 Leudesdorff, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4412 Simpson3, PSieve, Srsieve, PrimeGrid, LLR L4414 Falk, PSieve, Srsieve, PrimeGrid, LLR L4417 Rasp, PSieve, Srsieve, PrimeGrid, LLR L4424 Miyauchi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4425 Weber1, PSieve, Srsieve, PrimeGrid, LLR L4429 Lacroix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4435 Larsson, Srsieve, PrimeGrid, LLR L4441 Miyauchi, PSieve, Srsieve, PrimeGrid, LLR L4444 Terber, Srsieve, CRUS, LLR L4445 Leudesdorff, PSieve, Srsieve, PrimeGrid, LLR L4454 Clark5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4456 Chambers2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4457 Geiger, PSieve, Srsieve, PrimeGrid, LLR L4459 Biscop, PSieve, Srsieve, PrimeGrid, LLR L4466 Falk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4472 Harvanek, Gcwsieve, MultiSieve, PrimeGrid, LLR L4476 Shane, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4477 Tennant, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4482 Mena, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4488 Vrontakis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4489 Szreter, PSieve, Srsieve, PrimeGrid, LLR L4490 Mazumdar, PSieve, Srsieve, PrimeGrid, LLR L4499 Ohsugi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4501 Eskam1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4504 Sesok, NewPGen, LLR L4505 Lind, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4506 Propper, Batalov, CycloSv, EMsieve, PIES, Prime95, LLR L4510 Ming, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4511 Donovan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4518 Primecrunch.com, Hedges, Srsieve, LLR L4521 Curtis, Srsieve, CRUS, LLR L4522 Lorsung, PSieve, Srsieve, PrimeGrid, LLR L4523 Mull, PSieve, Srsieve, PrimeGrid, LLR L4525 Kong1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4526 Schoefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4527 Fruzynski, PSieve, Srsieve, PrimeGrid, LLR L4530 Reynolds1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4531 Butez, PSieve, Srsieve, PrimeGrid, LLR L4537 Mayer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4544 Krauss, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4548 Sydekum, Srsieve, CRUS, Prime95, LLR L4549 Schick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4550 Terry, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4552 Koski, PSieve, Srsieve, PrimeGrid, LLR L4559 Okazaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4561 Propper, Batalov, CycloSv, Cyclo, EMsieve, PIES, LLR L4562 Donovan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4564 DeThomas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4568 Vrontakis, PSieve, Srsieve, PrimeGrid, LLR L4582 Kinney, PSieve, Srsieve, PrimeGrid, LLR L4583 Rohmann, PSieve, Srsieve, PrimeGrid, LLR L4584 Goforth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4585 Schawe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4591 Schwieger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4593 Mangio, PSieve, Srsieve, PrimeGrid, LLR L4595 Mangio, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4598 Connaughty, PSieve, Srsieve, PrimeGrid, LLR L4599 Loureiro, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4600 Simbarsky, PSieve, Srsieve, PrimeGrid, LLR L4609 Elgetz, PSieve, Srsieve, PrimeGrid, LLR L4620 Kinney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4622 Jurach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4623 Dugger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4626 Iltus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4645 McKibbon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4649 Humphries, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4654 Voskoboynikov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4656 Beck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4658 Maguin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4659 AverayJones, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4660 Snow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4664 Toledo, PSieve, Srsieve, PrimeGrid, LLR L4665 Szeluga, Kupidura, Banka, LLR L4666 Slade, PSieve, Srsieve, PrimeGrid, LLR L4667 Morelli, LLR L4668 Okazaki, Gcwsieve, MultiSieve, PrimeGrid, LLR L4669 Schwegler, Srsieve, PrimeGrid, LLR L4670 Drumm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4672 Slade, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4673 Okhrimouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4675 Lind, Srsieve, PrimeGrid, LLR L4676 Maloney, Srsieve, PrimeGrid, PrimeSierpinski, LLR L4677 Provencher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4683 Bird2, Srsieve, CRUS, LLR L4684 Sveen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4685 Masser, Srsieve, CRUS, LLR L4687 Campbell1, PSieve, Srsieve, PrimeGrid, LLR L4689 Gordon2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4690 Brandt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4691 Fruzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4692 Hajek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4694 Schapendonk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4695 Goudie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4696 Plottel, PSieve, Srsieve, PrimeGrid, LLR L4697 Sellsted, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4699 Parsonnet, PSieve, Srsieve, PrimeGrid, LLR L4700 Liu4, Srsieve, CRUS, LLR L4701 Kalus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4702 Charette, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4703 Pacini, PSieve, Srsieve, PrimeGrid, LLR L4704 Kurtovic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4706 Kraemer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4710 Wiedemann, PSieve, Srsieve, PrimeGrid, LLR L4711 Closs, PSieve, Srsieve, PrimeGrid, LLR L4712 Gravemeyer, PSieve, Srsieve, PrimeGrid, LLR L4713 Post, PSieve, Srsieve, PrimeGrid, LLR L4715 Skinner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4717 Wypych, PSieve, Srsieve, PrimeGrid, LLR L4718 Brown1, Gcwsieve, MultiSieve, PrimeGrid, LLR L4720 Gahan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4723 Lexut, PSieve, Srsieve, PrimeGrid, LLR L4724 Thonon, PSieve, Srsieve, PrimeGrid, LLR L4726 Miller7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4729 Wimmer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4730 Bowe, PSieve, Srsieve, PrimeGrid, LLR L4732 Miller7, PSieve, Srsieve, PrimeGrid, LLR L4733 Brazier, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4737 Reinhardt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4738 Gelhar, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4740 Silva1, PSieve, Srsieve, PrimeGrid, LLR L4741 Wong, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4742 Schlereth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4743 Plsak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4745 Cavnaugh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4746 Brech, PSieve, Srsieve, PrimeGrid, LLR L4747 Brech, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4752 Harvey2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4753 Riemann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4754 Calvin, PSieve, Srsieve, PrimeGrid, LLR L4755 Glatte, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4756 Dumange, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4757 Johnson9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4758 Walling, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4760 Sipes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4761 Romaidis, PSieve, Srsieve, PrimeGrid, LLR L4763 Guilleminot, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4764 McLean2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4765 Kumsta, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4772 Bird1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4773 Tohmola, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4774 Boehm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4775 Steinbach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4776 Lee7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4783 Marini, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4784 Bertolotti, Gcwsieve, MultiSieve, PrimeGrid, LLR L4786 Sydekum, Srsieve, CRUS, LLR L4787 Sunderland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4789 Kurtovic, Srsieve, Prime95, LLR L4791 Vaisanen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4793 Koski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4795 Lawson2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4796 White2, PSieve, Srsieve, PrimeGrid, LLR L4799 Vanderveen1, LLR L4800 Doenges, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4802 Jones5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4806 Rajala, Srsieve, CRUS, LLR L4807 Tsuji, Srsieve, PrimeGrid, LLR L4808 Kaiser1, PolySieve, LLR L4809 Bocan, Srsieve, PrimeGrid, LLR L4810 Dhuyvetters, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4814 Telesz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4815 Kozisek, PSieve, Srsieve, PrimeGrid, LLR L4816 Doenges, PSieve, Srsieve, PrimeGrid, LLR L4819 Inci, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4821 Svantner, PSieve, Srsieve, PrimeGrid, LLR L4822 Magklaras, PSieve, Srsieve, PrimeGrid, LLR L4823 Helm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4824 Allivato, PSieve, Srsieve, PrimeGrid, LLR L4826 Soraku, PSieve, Srsieve, PrimeGrid, LLR L4830 Eisler1, PSieve, Srsieve, PrimeGrid, LLR L4832 Meekins, Srsieve, CRUS, LLR L4834 Helm, PSieve, Srsieve, PrimeGrid, LLR L4835 Katzur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4840 Ylijoki, PSieve, Srsieve, PrimeGrid, LLR L4841 Baur, PSieve, Srsieve, PrimeGrid, LLR L4842 Smith11, PSieve, Srsieve, PrimeGrid, LLR L4843 Hutchins, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4844 Valentino, PSieve, Srsieve, PrimeGrid, LLR L4848 Adamec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4849 Burt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4850 Jones5, PSieve, Srsieve, PrimeGrid, LLR L4851 Schioler, PSieve, Srsieve, PrimeGrid, LLR L4854 Gory, PSieve, Srsieve, PrimeGrid, LLR L4858 Koriabine, PSieve, Srsieve, PrimeGrid, LLR L4859 Wang4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4861 Thonon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4864 Freihube, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4868 Bergmann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4869 Ogata, PSieve, Srsieve, PrimeGrid, LLR L4870 Wharton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4871 Gory, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4875 Parsonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4876 Tennant, Srsieve, CRUS, LLR L4877 Cherenkov, Srsieve, CRUS, LLR L4879 Propper, Batalov, Srsieve, LLR L4880 Goossens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4881 Bonath, Srsieve, LLR L4884 Somer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4889 Hundhausen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4892 Hewitt1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4893 Little, PSieve, Srsieve, PrimeGrid, LLR L4898 Kozisek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4899 Schioler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4903 Laurent1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4904 Dunchouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4905 Niegocki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4907 Reinhardt, PSieve, Srsieve, PrimeGrid, LLR L4909 Hall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4911 Calveley, Srsieve, CRUS, LLR L4914 Bishop_D, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4917 Corlatti, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4918 Weiss1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4920 Walsh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4922 Bulba, Sesok, LLR L4923 Koriabine, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4925 Korolev, Srsieve, CRUS, LLR L4926 Shenton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4927 Smith12, Srsieve, SRBase, CRUS, LLR L4928 Doornink, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4929 Givoni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4930 Shintani, PSieve, Srsieve, PrimeGrid, LLR L4932 Schroeder2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4933 Jacques, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4935 Simard, PSieve, Srsieve, PrimeGrid, LLR L4937 Ito2, Srsieve, PrimeGrid, LLR L4939 Coscia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4942 Matheis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4944 Schori, LLR2, PSieve, Srsieve, PrimeGrid, LLR L4945 Meili, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4948 SchwartzLowe, PSieve, Srsieve, PrimeGrid, LLR L4951 Niegocki, PSieve, Srsieve, PrimeGrid, LLR L4954 Romaidis, Srsieve, PrimeGrid, LLR L4955 Grosvenor, Srsieve, CRUS, LLR L4956 Merrylees, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4958 Shenton, PSieve, Srsieve, PrimeGrid, LLR L4959 Deakin, PSieve, Srsieve, PrimeGrid, LLR L4960 Kaiser1, NewPGen, TPS, LLR L4963 Mortimore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4964 Doescher, GFNSvCUDA, GeneFer, LLR L4965 Propper, LLR L4968 Kaczala, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4970 Michael, PSieve, Srsieve, PrimeGrid, LLR L4972 Greer, Gcwsieve, MultiSieve, PrimeGrid, LLR L4973 Landrum, PSieve, Srsieve, PrimeGrid, LLR L4975 Thompson5, Srsieve, CRUS, LLR L4976 Propper, Batalov, Gcwsieve, LLR L4977 Miller8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4979 Matheis, PSieve, Srsieve, PrimeGrid, LLR L4980 Poon1, PSieve, Srsieve, PrimeGrid, LLR L4981 MartinezCucalon, PSieve, Srsieve, PrimeGrid, LLR L4984 Hemsley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4985 Veit, Srsieve, CRUS, LLR L4987 Canossi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4988 Harris3, PSieve, Srsieve, PrimeGrid, LLR L4990 Heindl, PSieve, Srsieve, PrimeGrid, LLR L4997 Gardner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4999 Andrews1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5001 Mamonov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5002 Kato, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5005 Hass, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5007 Faith, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5008 Niegocki, Srsieve, PrimeGrid, LLR L5009 Jungmann, Srsieve, LLR L5011 Strajt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5013 Wypych, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5014 Strokov, PSieve, Srsieve, PrimeGrid, LLR L5016 NebredaJunghans, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5018 Nielsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5019 Ayiomamitis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5020 Eikelenboom, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5021 Svantner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5022 Manz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5023 Schulz6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5024 Schumacher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5025 Lexut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5027 Moudy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5029 Krompolc, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5030 Calvin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5031 Schumacher, PSieve, Srsieve, PrimeGrid, LLR L5033 Ni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5036 Jung2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5037 Diepeveen, Underwood, PSieve, Srsieve, Rieselprime, LLR L5039 Gilliland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5041 Wallbaum, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5043 Vanderveen1, Propper, LLR L5044 Bergelt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5047 Little, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5051 Veit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5053 Yoshigoe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5056 Chu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5057 Hauhia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5061 Cooper5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5063 Wendelboe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5067 Tirkkonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5068 Silva1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5069 Friedrichsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5070 Millerick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5071 McLean2, Srsieve, CRUS, LLR L5072 Romaidis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5076 Atnashev, Srsieve, PrimeGrid, LLR L5077 Martinelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5078 McDonald4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5079 Meditz, PSieve, Srsieve, PrimeGrid, LLR L5080 Gahan, GFNSvCUDA, PrivGfnServer, LLR L5081 Howell, Srsieve, PrimeGrid, LLR L5083 Pickering, Srsieve, PrimeGrid, LLR L5084 Yagi, PSieve, Srsieve, PrimeGrid, LLR L5085 Strajt, PSieve, Srsieve, PrimeGrid, LLR L5087 Coscia, PSieve, Srsieve, PrimeGrid, LLR L5088 Hall1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5089 MARSIN, Srsieve, CRUS, LLR L5090 Jourdan, PSieve, Srsieve, PrimeGrid, LLR L5094 Th�mmler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5099 Lobring, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5100 Stephens, PSieve, Srsieve, PrimeGrid, LLR L5101 Candido, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5102 Liu6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5104 Gahan, LLR2, NewPGen, LLR L5105 Helm, LLR2, Srsieve, PrivGfnServer, LLR L5106 Glennie, PSieve, Srsieve, PrimeGrid, LLR L5110 Provencher, PSieve, Srsieve, PrimeGrid, LLR L5112 Vanderveen1, Srsieve, CRUS, LLR L5115 Doescher, LLR L5117 Trunov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5120 Greer, LLR2, PrivGfnServer, LLR L5122 Tennant, LLR2, PrivGfnServer, LLR L5123 Propper, Batalov, EMsieve, LLR L5125 Tirkkonen, PSieve, Srsieve, PrimeGrid, LLR L5126 Warach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5127 Kemenes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5129 Veit, Srsieve, PrimeGrid, LLR L5130 Jourdan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5134 Cooper5, PSieve, Srsieve, PrimeGrid, LLR L5139 Belozersky, PSieve, Srsieve, PrimeGrid, LLR L5143 Dickinson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5144 McNary, PSieve, Srsieve, PrimeGrid, LLR L5155 Harju, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5156 Dinkel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5157 Asano, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5158 Zuschlag, PSieve, Srsieve, PrimeGrid, LLR L5159 Huetter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5161 Greer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5162 Th�mmler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5166 Jaros1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5167 Gelhar, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5168 Hawkinson, PSieve, Srsieve, PrimeGrid, LLR L5169 Atnashev, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5171 Brown1, LLR2, Srsieve, PrimeGrid, LLR L5172 McNary, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5173 Bishop_D, PSieve, Srsieve, PrimeGrid, LLR L5174 Scalise, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5175 Liiv, PSieve, Srsieve, Rieselprime, LLR L5176 Early, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5177 Tapper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5178 Larsson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5179 Okazaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5180 Laluk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5181 Atnashev, LLR2, Srsieve, PrimeGrid, LLR L5183 Winskill1, PSieve, Srsieve, PrimeGrid, 12121search, LLR L5184 Byerly, PSieve, Srsieve, NPLB, LLR L5185 Elgetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5186 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, United, PrimeGrid, LLR L5188 Wong, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5189 Jackson1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5191 Kaiser1, NewPGen, LLR L5192 Anonymous, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5194 Jonas, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5195 Ridgway, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5196 Sielemann, Srsieve, CRUS, LLR L5197 Propper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5198 Elgetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5199 Romaidis, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5200 Terry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5201 Ford, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5202 Molne, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5203 Topham, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5205 Zuschlag, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5206 Wiseler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5207 Atnashev, LLR2, PrivGfnServer, LLR L5208 Schnur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5210 Brech, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5211 Orpen1, Srsieve, CRUS, LLR L5214 Dinkel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5215 Hawkinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5216 Brazier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5217 Wiseler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5220 Jones4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5223 Vera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5226 Brown1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5228 Jacques, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5229 Karpenko, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5230 Tapper, LLR2, Srsieve, PrimeGrid, LLR L5231 Veit, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5232 Bliedung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5233 Sipes, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5234 Greeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5235 Karpinski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5236 Shenton, LLR2, PSieve, Srsieve, PrivGfnServer, PrimeGrid, LLR L5237 Schwieger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5238 Jourdan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5239 Strajt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5242 Krompolc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5246 Vaisanen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5248 Delgado, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5249 Racanelli, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5250 Nakamura, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5253 Burt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5254 Gerstenberger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5256 Snow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5260 Ostaszewski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5261 Kim5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5262 Clark5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5263 Ito2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5264 Cholt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5265 Fleischman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5266 Sheridan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5267 Schnur, LLR2, Srsieve, PrimeGrid, LLR L5269 Clemence, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5270 Hennebert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5272 Conner, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5273 McGonegal, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5275 Templin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5276 Schawe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5277 McDevitt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5278 Nose, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5279 Schick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5282 Somer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5283 Hua, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5284 Fischer1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5285 Merrylees, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5286 Reynolds1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5287 Thonon, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5288 Heindl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5290 Cooper5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5294 Hewitt1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5295 Gilliland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5296 Piaive, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5297 Nakamura, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5298 Kaczmarek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5299 Corlatti, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5300 Hajek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5301 Harju, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5302 Davies, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5305 Thanry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5307 Bauer2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5308 Krauss, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5309 Bishop_D, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5310 Hubbard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5311 Reich, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5312 Tyndall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5313 Barnes, PSieve, Srsieve, Rieselprime, LLR L5314 Satoh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5315 Dec, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5316 Walsh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5317 Freeze, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5318 Ruber, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5319 Abbey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5320 Niegocki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5321 Dark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5322 Monnin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5323 Chan1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5324 Boehm, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5325 Drager, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5326 Deakin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5327 Shenton, LLR2, Srsieve, LLR L5332 Mizusawa, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5334 Jones6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5335 Harvey1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5336 Leblanc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5337 Kawamura1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5338 Deakin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5342 Rodenkirch, Srsieve, CRUS, LLR L5343 Tajika, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5344 Lowe1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5345 Johnson8, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5346 Polansky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5348 Adam, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5350 McDevitt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5352 Eklof, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5353 Belolipetskiy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5354 Doornink, NewPGen, OpenPFGW, LLR L5355 Henriksson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5356 Hsu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5358 Gmirkin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5359 Ridgway, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5360 Leitch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5361 Schneider6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5362 Domanov1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5364 Blyth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5366 Michael, Srsieve, CRUS, LLR L5368 Valentino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5369 Schnur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5370 Piotrowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5372 Vitiello, Srsieve, CRUS, LLR L5373 Baranchikov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5375 Blanchard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5376 Ranch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5377 Yasuhisa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5378 Seeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5379 Smith4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5380 Campulka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5381 Meppiel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5382 Bulanov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5384 Riemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5387 Johns, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5390 Lemkau, Srsieve, CRUS, LLR L5391 Black1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5392 McDonald4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5393 Lu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5395 Early, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5396 Andrade, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5399 Kolesov, LLR L5400 Hefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5401 Champ, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5402 Greer, LLR2, Gcwsieve, MultiSieve, PrimeGrid, LLR L5403 Slade1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5404 Wiseler, LLR2, Srsieve, PrimeGrid, LLR L5405 Gerstenberger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5406 Jaros, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5407 Mahnken, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5408 Kreth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5409 Lu, Srsieve, CRUS, LLR L5410 Anonymous, Srsieve, CRUS, LLR L5412 Poon1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5413 David1, Srsieve, CRUS, LLR L5414 Mollerus, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5416 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5418 Pollak, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5421 Iwasaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5425 Lichtenwimmer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5426 Gilliland, Srsieve, CRUS, LLR L5427 Hewitt1, LLR2, Srsieve, PrimeGrid, LLR L5429 Meditz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5432 Tatsianenka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5433 Hatanaka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5434 Parsonnet, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5435 Murphy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5437 Rijfers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5438 Tang, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5439 Batalov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5440 McGonegal, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5441 Cherenkov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5442 Moreira, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5443 Venjakob, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5444 Platz, LLR2, Srsieve, PrimeGrid, LLR L5448 Rubin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5449 Reinhardt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5450 Mizusawa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5451 Wilkins, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5452 Morera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5453 Slaets, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5456 Gundermann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5457 Iwasaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5459 Sekanina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5460 Headrick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5461 Anonymous, LLR2, Srsieve, PrimeGrid, LLR L5462 Raimist, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5463 Goforth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5464 Pickering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5465 Hubbard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5466 Furushima, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5467 Tamai1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5470 Latge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5471 Dunchouk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5472 Ready, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5473 StPierre, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5476 Steinbach, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5477 Meador, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5480 Boddener, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5482 Raimist, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5485 Mahnken, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5488 Kecic, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5491 Piaive, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5492 Slaets, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5493 Liu6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5497 Goetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5499 Osada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5500 Racanelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5501 Seeley, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5502 Floyd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5503 Soule, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5504 Cerny, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5505 Chovanec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5507 Brandt2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5508 Gauch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5509 Nietering, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5512 Akesson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5514 Cavnaugh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5516 Piesker, PSieve, Srsieve, NPLB, LLR L5517 Cavecchia, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5518 Eisler1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5523 Sekanina, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5524 Matillek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5526 Kickler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5527 Doornink, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5529 Baur1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5530 Matillek, LLR2, Srsieve, PrimeGrid, LLR L5531 Koci, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5532 Morera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5534 Cervelle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5535 Skahill, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5536 Bennett1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5537 Schafer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5540 Brown6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5541 Parker, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5543 Lucendo, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5544 Byerly, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5545 Kruse, PSieve, Srsieve, NPLB, LLR L5546 Steinwedel, PSieve, Srsieve, NPLB, LLR L5547 Hoonoki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5548 Steinberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5549 Zhang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5550 Provencher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5553 DAmico, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5554 Lucendo, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5555 Parangalan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5556 Javens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5557 Drake, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5558 Lee7, LLR2, Srsieve, PrimeGrid, LLR L5559 Roberts, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5560 Amberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5562 Cheung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5563 Akesson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5564 Lee7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5565 Bailey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5566 Latge, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5567 Marshall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5568 Schioler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5569 Michael, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5570 Arnold, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5571 Williams7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5572 Sveen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5573 Friedrichsen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5574 Laboisne, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5575 Blanchard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5576 Amorim, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5577 Utebaev, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5578 Jablonski1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5579 Cox2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5581 Pickles, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5582 Einvik, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5583 Tanaka3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5584 Barr, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5585 Faith, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5586 Vultur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5587 AverayJones, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5588 Shi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5589 Kupka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5590 Schumacher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5592 Shintani, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5594 Brown7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5595 Hyvonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5596 Kozisek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5600 Steinberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5601 Sato1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5602 Wen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5604 Takahashi2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5606 Clark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5607 Rodermond, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5608 Pieritz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5609 Sielemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5610 Katzur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5611 Smith13, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5612 Lugowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5613 Delisle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5614 Becker2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5615 Dodd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5616 Miller7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5617 Sliwicki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5618 Wilson4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5619 Piotrowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5620 He, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5621 Millerick, LLR2, Srsieve, PrimeGrid, LLR L5624 Farrow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5625 Sellsted, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5626 Clark, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5627 Bulanov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5628 Baranchikov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5629 Dickinson, Srsieve, CRUS, LLR L5631 Mittelstadt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5632 Marler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5634 Gao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5636 Santosa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5637 Bestor, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5638 Piskun, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5639 Cavecchia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5640 Xu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5641 Kwok, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5645 Orpen1, SRBase, LLR L5646 Dickey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5647 Soraku, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5648 York, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5649 Dietsch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5650 Ketamino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5651 Lexut, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5652 Wilson5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5653 Beck1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5655 Hoffman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5656 McAdams, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5657 Alden, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5658 Sloan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5662 OMalley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5663 Li5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5666 Wendelboe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5667 Totty, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5668 Finn, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5670 Heindl1, Srsieve, CRUS, LLR L5671 Rauh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5676 Fnasek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5679 Shane, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5682 Floyd, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5683 Glatte, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5685 Bestor, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5686 Pistorius, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5687 Wellck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5690 Eldred, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5693 Huan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5694 Petersen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5696 Earle, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5697 Black2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5698 Stenschke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5700 Huang1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5703 Koudelka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5704 Hampicke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5705 Wharton, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5706 Wallbaum, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5707 Johns, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5710 Hass, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5711 Gingrich1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5712 Stahl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5714 Loucks, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5715 Calvin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5718 Ketamino, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5720 Trigueiro, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5721 Fischer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5722 Rickard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5723 Fergusson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5724 Pilz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5725 Gingrich1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5726 Noxe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5727 Headrick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5731 Michael, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5732 Monroe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5735 Kobrzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5736 Riva, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5738 Schaeffer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5740 Chu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5742 Steinmetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5745 Saladin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5746 Meister1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5748 Norbert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5749 Gahan, LLR2, LLR L5750 Shi, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5752 Wissel, LLR L5754 Abad, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5755 Kwiatkowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5756 Wei, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5758 Bishop1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5763 Williams7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5764 Tirkkonen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5765 Propper, Gcwsieve, LLR L5766 Takahashi2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5767 Xu2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5768 Lewis2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5769 Welsh1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5770 Silva1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5771 Becker-Bergemann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5772 Tarson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5773 Lugowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5774 Chambers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5775 Garambois, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5776 Anonymous, LLR2, PSieve, Srsieve, United, PrimeGrid, LLR L5778 Sarok, Srsieve, CRUS, LLR L5780 Blanchard, Srsieve, CRUS, LLR L5782 Kang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5783 Bishop1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5784 Coplin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5787 Johnson10, Srsieve, CRUS, LLR L5789 Williams8, LLR L5791 Rindahl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5793 Wang5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5794 Morgan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5796 Hall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5797 Ivanovski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5798 Schoeberl, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5799 Lehmann1, LLR2, Srsieve, PrimeGrid, LLR L5802 Borgerding, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5803 Kwok, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5804 Bowe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5805 Belozersky, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5807 Krauss, Srsieve, PrimeGrid, PRST, LLR L5808 Propper, Batalov, PSieve, Srsieve, LLR L5809 Zhao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5810 Meister1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5811 Dettweiler, LLR2, Srsieve, CRUS, LLR L5812 Song, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5814 Chodzinski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5816 Guenter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5817 Kilstromer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5818 Belozersky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5819 Schmidt2, LLR2, PSieve, Srsieve, NPLB, LLR L5820 Hoonoki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5821 Elmore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5825 Norton, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5826 Morávek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5827 Yasuhisa, TwinGen, NewPGen, TPS, LLR L5829 Dickinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5830 McLean2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5831 Chapman2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5833 Russell2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5834 Roberts, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5836 Becker2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5837 Lin1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5839 Stewart1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5841 Yarham, Srsieve, CRUS, LLR L5842 Steenerson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5843 Vink, Kruse, Kwok, TwinGen, NewPGen, TPS, LLR L5844 Kadowaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5847 Eldredge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5848 Bressani, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5851 Liskay, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5852 Kwiatkowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5853 Simard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5854 Lehmann1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5855 Williams9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5858 GervaisLavoie, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5860 Joseph, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5862 Oppliger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5863 Duvinage, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5864 Amberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5865 Mendrik1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5866 Kim3, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5869 Arnold, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5870 Bodlina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5871 Yakubchak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5875 Monroe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5878 Klinkenberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5879 Sanner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5880 Gehrke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5881 Medcalf, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5882 Basil, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5888 Presler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5894 Tamai1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5904 Rix, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5913 Burtner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5923 Ryabchikov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5929 Bauer2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5938 Philip, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5945 Bush, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5948 Meuler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5956 Garnier1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5960 Jayaputera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5961 Carlier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5969 Kang, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5971 Da_Mota, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5974 Presler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5977 Brockerhoff, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5980 Schmidt1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5984 Desbonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5986 Wolfe1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5989 Williams10, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5995 Lee10, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5997 Smith15, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5998 Da_Mota, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6005 Overstreet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6006 Propper, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6010 Chaney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6011 Mehner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6013 Preston1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6015 Uehara1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6019 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, Rechenkraft, PrimeGrid, LLR L6026 Bruner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6027 Johnson10, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6029 Schmidt2, Kwok, LLR2, TwinGen, NewPGen, TPS, LLR L6033 Tang3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6035 Garrison1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6036 Hogan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6038 Schafer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6040 Garland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6042 Fink, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6043 Podsada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6044 Chesnut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6047 Wheeler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6049 Chen4, LLR L6057 Kim7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6058 StGeorge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6064 Adrian, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6065 Yakubchak1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6067 O’Hara, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6070 Mumper, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6072 Lundström, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6073 Rojas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6075 Chodzinski, LLR2, Srsieve, PrimeGrid, LLR L6076 Yakubchak2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6077 Vink, Schmidt2, Kwok, TwinGen, NewPGen, TPS, LLR L6078 Zhaozheng, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6080 Sondergard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6082 Mckinley, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6083 Yagi, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6084 Criswell, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6085 Granowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6086 Pastierik, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6087 Osaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6088 Abad, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6089 Lynch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6090 Champ, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6091 Paniczko, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6092 Boerner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6093 Wagner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6094 Skendelis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6095 Stach, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6096 Biggs, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6102 Yakubchak3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6123 Mukanos, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6129 Slade2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6159 Weinberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6163 Drozd, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6166 Carquillat, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6170 Liang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6176 Shriner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6177 Mostad, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6178 Hua, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6182 Jans, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6183 Lack, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6185 Abromeit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6187 Deram, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6189 Mohacsy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6201 Lein, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6202 Stach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6204 Probst, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6205 McDonald3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6207 Allen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6215 Vykouril, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6217 Keskitalo, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6220 Sandhop, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6221 Wu2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6227 Zhao1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6229 Dean1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6230 Gnann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6235 Rosick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6236 Neujahr, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6237 Steffens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6238 Pabsch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6243 Baker2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6245 Perek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6246 Slade, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6248 Hui, Srsieve, CRUS, LLR L6249 Puada, MultiSieve, PRST, LLR L6250 Gulliver, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6252 Carlin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6255 Kim8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6256 Sariyar, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6259 Baker2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6260 Cui, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6261 Saito2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6262 Woodrow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6263 Scheuern, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6264 Ogawa, LLR2, Srsieve, NewPGen, LLR L6265 DiMichina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6266 Pomeranke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6267 Garnett, MultiSieve, LLR L6268 Monteith, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6269 Edlund, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6270 Bressani, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6271 Hood1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6272 GervaisLavoie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6273 Hasznos, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6274 Heidrich, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6275 Margossian, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6276 Patterson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6277 Gefreiter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6278 Silva3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6279 Antonov, CRUS, LLR L6280 Birzer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6281 Fitzgerald, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR M Morain MM Morii MP1 Durant, GIMPS, GpuOwl O Oakes p3 Dohmen, OpenPFGW p8 Caldwell, OpenPFGW p12 Water, OpenPFGW p16 Heuer, OpenPFGW p21 Anderson, Robinson, OpenPFGW p41 Luhn, OpenPFGW p44 Broadhurst, OpenPFGW p49 Berg, OpenPFGW p54 Broadhurst, Water, OpenPFGW p58 Glover, Oakes, OpenPFGW p65 DavisK, Kuosa, OpenPFGW p85 Marchal, Carmody, Kuosa, OpenPFGW p137 Rodenkirch, MultiSieve, OpenPFGW p151 Kubota, NewPGen, OpenPFGW p155 DavisK, NewPGen, OpenPFGW p158 Paridon, NewPGen, OpenPFGW p170 Wu_T, Primo, OpenPFGW p189 Bohanon, LLR, OpenPFGW p193 Irvine, Broadhurst, Primo, OpenPFGW p235 Bedwell, OpenPFGW p236 Cooper, NewPGen, PRP, OpenPFGW p247 Bonath, Srsieve, CRUS, LLR, OpenPFGW p252 Oakes, NewPGen, OpenPFGW p255 Siemelink, Srsieve, CRUS, OpenPFGW p259 Underbakke, GenefX64, AthGFNSieve, OpenPFGW p268 Rodenkirch, Srsieve, CRUS, OpenPFGW p279 Domanov1, Srsieve, Rieselprime, Prime95, OpenPFGW p286 Batalov, Srsieve, OpenPFGW p290 Domanov1, Fpsieve, PrimeGrid, OpenPFGW p295 Angel, NewPGen, OpenPFGW p296 Kaiser1, Srsieve, LLR, OpenPFGW p301 Winskill1, Fpsieve, PrimeGrid, OpenPFGW p302 Gasewicz, Fpsieve, PrimeGrid, OpenPFGW p308 DavisK, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p309 Yama, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p310 Hubbard, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p312 Doggart, Fpsieve, PrimeGrid, OpenPFGW p314 Hubbard, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p332 Johnson6, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p334 Goetz, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p338 Tomecko, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p342 Trice, OpenPFGW p346 Burt, Fpsieve, PrimeGrid, OpenPFGW p350 Koen, Gcwsieve, GenWoodall, OpenPFGW p355 Domanov1, Srsieve, CRUS, OpenPFGW p362 Snow, Fpsieve, PrimeGrid, OpenPFGW p363 Batalov, OpenPFGW p364 Batalov, NewPGen, OpenPFGW p365 Poplin, Srsieve, CRUS, OpenPFGW p373 Morelli, OpenPFGW p378 Batalov, Srsieve, CRUS, LLR, OpenPFGW p379 Batalov, CycloSv, Cyclo, EMsieve, PIES, OpenPFGW p382 Oestlin, NewPGen, OpenPFGW p384 Booker, OpenPFGW p387 Zimmerman, GeneFer, AthGFNSieve, PrimeGrid, OpenPFGW p391 Keiser, NewPGen, OpenPFGW p394 Fukui, MultiSieve, OpenPFGW p395 Angel, Augustin, NewPGen, OpenPFGW p398 Stocker, OpenPFGW p405 Propper, Cksieve, OpenPFGW p406 DavisK, Luhn, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p407 Lamprecht, Luhn, OpenPFGW p408 Batalov, PolySieve, OpenPFGW p409 Nielsen1, OpenPFGW p413 Morimoto, OpenPFGW p414 Naimi, OpenPFGW p416 Monnin, LLR2, PrivGfnServer, OpenPFGW p417 Tennant, LLR2, PrivGfnServer, OpenPFGW p418 Sielemann, LLR2, PrivGfnServer, OpenPFGW p419 Bird1, LLR2, PrivGfnServer, OpenPFGW p420 Alex, OpenPFGW p421 Gahan, LLR2, PrivGfnServer, OpenPFGW p422 Kaiser1, PolySieve, OpenPFGW p423 Propper, Batalov, EMsieve, OpenPFGW p425 Propper, MultiSieve, OpenPFGW p426 Schoeler, NewPGen, OpenPFGW p427 Niegocki, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p428 Trunov, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p430 Propper, Batalov, NewPGen, OpenPFGW p431 Piesker, Srsieve, CRUS, OpenPFGW p433 Dettweiler, LLR2, Srsieve, CRUS, OpenPFGW p434 Doornink, MultiSieve, OpenPFGW p435 Dettweiler, LLR2, PSieve, Srsieve, NPLB, OpenPFGW p436 Schwieger, OpenPFGW p437 Propper, Batalov, EMsieve, PIES, OpenPFGW p439 Trice, MultiSieve, OpenPFGW p440 Batalov, EMsieve, OpenPFGW p441 Wu_T, CM, OpenPFGW p442 Presler, MultiSieve, PrimeGrid, PRST, OpenPFGW p443 Brochtrup, Srsieve, CRUS, OpenPFGW p444 Kadowaki, MultiSieve, PrimeGrid, PRST, OpenPFGW p445 Merrylees, MultiSieve, PrimeGrid, PRST, OpenPFGW p446 Greer, MultiSieve, PrimeGrid, PRST, OpenPFGW p447 Wallbaum, MultiSieve, PrimeGrid, PRST, OpenPFGW p448 Little, MultiSieve, PrimeGrid, PRST, OpenPFGW p449 Rodriguez2, OpenPFGW p450 Propper, OpenPFGW p451 Davies, MultiSieve, PrimeGrid, PRST, OpenPFGW PM Mihailescu SB10 Agafonov, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB11 Sunde, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB12 Szabolcs, Srsieve, SoBSieve, ProthSieve, Ksieve, PrimeGrid, LLR, SB SB6 Sundquist, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB7 Team_Prime_Rib, SoBSieve, ProthSieve, Ksieve, PRP, SB SB8 Gordon, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB9 Hassler, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SG Slowinski, Gage WD Williams, Dubner, Cruncher WM Morain, Williams x13 Renze x16 Doumen, Beelen, Unknown x20 Irvine, Broadhurst, Water x23 Broadhurst, Water, Renze, OpenPFGW, Primo x24 Jarai_Z, Farkas, Csajbok, Kasza, Jarai, Unknown x25 Broadhurst, Water, OpenPFGW, Primo x28 Iskra x33 Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x36 Irvine, Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x38 Broadhurst, OpenPFGW, Primo x39 Broadhurst, Dubner, Keller, OpenPFGW, Primo x44 Zhou, Unknown x45 Batalov, OpenPFGW, Primo, Unknown x47 Szekeres, Magyar, Gevay, Farkas, Jarai, Unknown x48 Asuncion, Allombert, Unknown x49 Facq, Asuncion, Allombert, Unknown x50 Propper, GFNSvCUDA, GeneFer, Unknown x51 Lexut1, Srsieve, CRUS, Unknown x52 Batalov, PolySieve, OpenPFGW, Unknown x54 Gallot, GeneFer, Unknown Y Young