THE LARGEST KNOWN PRIMES (The 5,000 largest known primes) (selected smaller primes which have comments are included) Originally Compiled by Samuel Yates -- Continued by Chris Caldwell and now maintained by Reginald McLean (Tue Nov 19 14:37:32 UTC 2024) So that I can maintain this database of the 5,000 largest known primes (plus selected smaller primes with 1,000 or more digits), please send any new primes (that are large enough) to: https://t5k.org/bios/submission.php This list in a searchable form (plus information such as how to find large primes and how to prove primality) is available at the interactive web site: https://t5k.org/primes/ See the last pages for information about the provers. The letters after the rank refer to when the prime was submitted. 'a' is this month, 'b' last month... ----- ------------------------------- -------- ----- ---- -------------- rank description digits who year comment ----- ------------------------------- -------- ----- ---- -------------- 1b 2^136279841-1 41024320 MP1 2024 Mersenne 52?? 2 2^82589933-1 24862048 G16 2018 Mersenne 51?? 3 2^77232917-1 23249425 G15 2018 Mersenne 50?? 4 2^74207281-1 22338618 G14 2016 Mersenne 49?? 5 2^57885161-1 17425170 G13 2013 Mersenne 48 6 2^43112609-1 12978189 G10 2008 Mersenne 47 7 2^42643801-1 12837064 G12 2009 Mersenne 46 8 516693^2097152-516693^1048576+1 11981518 L4561 2023 Generalized unique 9 465859^2097152-465859^1048576+1 11887192 L4561 2023 Generalized unique 10 2^37156667-1 11185272 G11 2008 Mersenne 45 11 2^32582657-1 9808358 G9 2006 Mersenne 44 12 10223*2^31172165+1 9383761 SB12 2016 13 2^30402457-1 9152052 G9 2005 Mersenne 43 14b 4*5^11786358+1 8238312 A2 2024 Generalized Fermat 15 2^25964951-1 7816230 G8 2005 Mersenne 42 16d 69*2^24612729-1 7409172 A2 2024 17 2^24036583-1 7235733 G7 2004 Mersenne 41 18d 107347*2^23427517-1 7052391 A2 2024 19b 3*2^22103376-1 6653780 L6075 2024 20 1963736^1048576+1 6598776 L4245 2022 Generalized Fermat 21 1951734^1048576+1 6595985 L5583 2022 Generalized Fermat 22 202705*2^21320516+1 6418121 L5181 2021 23 2^20996011-1 6320430 G6 2003 Mersenne 40 24 1059094^1048576+1 6317602 L4720 2018 Generalized Fermat 25 3*2^20928756-1 6300184 L5799 2023 26 919444^1048576+1 6253210 L4286 2017 Generalized Fermat 27 81*2^20498148+1 6170560 L4965 2023 Generalized Fermat 28 7*2^20267500+1 6101127 L4965 2022 Divides GF(20267499,12) [GG] 29 4*5^8431178+1 5893142 A2 2024 Generalized Fermat 30 168451*2^19375200+1 5832522 L4676 2017 31 69*2^19374980-1 5832452 L4965 2022 32 3*2^18924988-1 5696990 L5530 2022 33 69*2^18831865-1 5668959 L4965 2021 34f 2*3^11879700+1 5668058 A2 2024 35 97139*2^18397548-1 5538219 L4965 2023 36 7*2^18233956+1 5488969 L4965 2020 Divides Fermat F(18233954) 37 3*2^18196595-1 5477722 L5461 2022 38c 4*3^11279466+1 5381674 A2 2024 Generalized Fermat 39 3*2^17748034-1 5342692 L5404 2021 40 123447^1048576-123447^524288+1 5338805 L4561 2017 Generalized unique 41 3622*5^7558139-1 5282917 L4965 2022 42 7*6^6772401+1 5269954 L4965 2019 43 2*3^10852677+1 5178044 L4965 2023 Divides phi 44 8508301*2^17016603-1 5122515 L4784 2018 Woodall 45 8*10^5112847-1 5112848 A19 2024 Near-repdigit 46 13*2^16828072+1 5065756 A2 2023 47 3*2^16819291-1 5063112 L5230 2021 48a 5287180*3^10574360-1 5045259 A20 2024 Generalized Woodall 49 3*2^16408818+1 4939547 L5171 2020 Divides GF(16408814,3), GF(16408817,5) 50 2329989*2^16309923-1 4909783 A20 2024 Generalized Woodall 51 69*2^15866556-1 4776312 L4965 2021 52 2036*3^10009192+1 4775602 A2 2024 53 2525532*73^2525532+1 4705888 L5402 2021 Generalized Cullen 54 1419499*2^15614489-1 4700436 A20 2024 Generalized Woodall 55 11*2^15502315+1 4666663 L4965 2023 Divides GF(15502313,10) [GG] 56 (10^2332974+1)^2-2 4665949 p405 2024 57 37*2^15474010+1 4658143 L4965 2022 58 93839*2^15337656-1 4617100 L4965 2022 59 2^15317227+2^7658614+1 4610945 L5123 2020 Gaussian Mersenne norm 41?, generalized unique 60 13*2^15294536+1 4604116 A2 2023 61 6*5^6546983+1 4576146 L4965 2020 62 4788920*3^9577840-1 4569798 A20 2024 Generalized Woodall 63 69*2^14977631-1 4508719 L4965 2021 64 192971*2^14773498-1 4447272 L4965 2021 65c 4*3^9214845+1 4396600 A2 2024 66 9145334*3^9145334+1 4363441 A6 2023 Generalized Cullen 67 4*5^6181673-1 4320805 L4965 2022 68 396101*2^14259638-1 4292585 A20 2024 Generalized Woodall 69 6962*31^2863120-1 4269952 L5410 2020 70 37*2^14166940+1 4264676 L4965 2022 71 99739*2^14019102+1 4220176 L5008 2019 72 69*2^13832885-1 4164116 L4965 2022 73 404849*2^13764867+1 4143644 L4976 2021 Generalized Cullen 74 25*2^13719266+1 4129912 L4965 2022 Generalized Fermat 75 81*2^13708272+1 4126603 L4965 2022 Generalized Fermat 76 2740879*2^13704395-1 4125441 L4976 2019 Generalized Woodall 77 479216*3^8625889-1 4115601 L4976 2019 Generalized Woodall 78 143332^786432-143332^393216+1 4055114 L4506 2017 Generalized unique 79 81*2^13470584+1 4055052 L4965 2022 Generalized Fermat 80 2^13466917-1 4053946 G5 2001 Mersenne 39 81d 5778486*5^5778486+1 4038996 A6 2024 Generalized Cullen 82 9*2^13334487+1 4014082 L4965 2020 Divides GF(13334485,3) 83 206039*2^13104952-1 3944989 L4965 2021 84 2805222*5^5610444+1 3921539 L4972 2019 Generalized Cullen 85 19249*2^13018586+1 3918990 SB10 2007 86 2293*2^12918431-1 3888839 L4965 2021 87 81*2^12804541+1 3854553 L4965 2022 88 4*5^5380542+1 3760839 L4965 2023 Generalized Fermat 89 9*2^12406887+1 3734847 L4965 2020 Divides GF(12406885,3) 90b 11937916^524288+1 3710349 L6080 2024 Generalized Fermat 91 7*2^12286041-1 3698468 L4965 2023 92f 10913140^524288+1 3689913 L6043 2024 Generalized Fermat 93 69*2^12231580-1 3682075 L4965 2021 94 27*2^12184319+1 3667847 L4965 2021 95f 9332124^524288+1 3654278 L5025 2024 Generalized Fermat 96 8630170^524288+1 3636472 L5543 2024 Generalized Fermat 97b 863282*5^5179692-1 3620456 A20 2024 Generalized Woodall 98b 670490*12^3352450-1 3617907 A20 2024 Generalized Woodall 99c 4*3^7578378+1 3615806 A2 2024 Generalized Fermat 100d 11*2^11993994-1 3610554 A2 2024 101 3761*2^11978874-1 3606004 L4965 2022 102 95*2^11954552-1 3598681 A29 2024 103b 259072*5^5136295-1 3590122 A45 2024 104 3*2^11895718-1 3580969 L4159 2015 105 37*2^11855148+1 3568757 L4965 2022 106 6339004^524288+1 3566218 L1372 2023 Generalized Fermat 107 763795*6^4582771+1 3566095 A6 2023 Generalized Cullen 108 5897794^524288+1 3549792 x50 2022 Generalized Fermat 109 3*2^11731850-1 3531640 L4103 2015 110 69*2^11718455-1 3527609 L4965 2020 111c 8629*2^11708579-1 3524638 A2 2024 112 41*2^11676439+1 3514960 L4965 2022 113 4896418^524288+1 3507424 L4245 2022 Generalized Fermat 114 81*2^11616017+1 3496772 L4965 2022 115 69*2^11604348-1 3493259 L4965 2020 116 4450871*6^4450871+1 3463458 L5765 2023 Generalized Cullen 117 9*2^11500843+1 3462100 L4965 2020 Divides GF(11500840,12) 118 3*2^11484018-1 3457035 L3993 2014 119 193997*2^11452891+1 3447670 L4398 2018 120c 29914*5^4930904+1 3446559 A41 2024 121 3638450^524288+1 3439810 L4591 2020 Generalized Fermat 122 9221*2^11392194-1 3429397 L5267 2021 123 9*2^11366286+1 3421594 L4965 2020 Generalized Fermat 124 5*2^11355764-1 3418427 L4965 2021 125 732050*6^4392301+1 3417881 L5765 2023 Generalized Cullen 126 3214654^524288+1 3411613 L4309 2019 Generalized Fermat 127 146561*2^11280802-1 3395865 L5181 2020 128f 51208*5^4857576+1 3395305 A30 2024 129 2985036^524288+1 3394739 L4752 2019 Generalized Fermat 130 6929*2^11255424-1 3388225 L4965 2022 131 2877652^524288+1 3386397 L4250 2019 Generalized Fermat 132 2788032^524288+1 3379193 L4584 2019 Generalized Fermat 133 2733014^524288+1 3374655 L4929 2019 Generalized Fermat 134 9*2^11158963+1 3359184 L4965 2020 Divides GF(11158962,5) 135 9271*2^11134335-1 3351773 L4965 2021 136 136804*5^4777253-1 3339162 A23 2024 137 2312092^524288+1 3336572 L4720 2018 Generalized Fermat 138b 987324*48^1974648-1 3319866 A20 2024 Generalized Woodall 139 2061748^524288+1 3310478 L4783 2018 Generalized Fermat 140 1880370^524288+1 3289511 L4201 2018 Generalized Fermat 141 27*2^10902757-1 3282059 L4965 2022 142 3*2^10829346+1 3259959 L3770 2014 Divides GF(10829343,3), GF(10829345,5) 143 11*2^10803449+1 3252164 L4965 2022 Divides GF(10803448,6) 144 11*2^10797109+1 3250255 L4965 2022 145 7*2^10612737-1 3194754 L4965 2022 146c 7351117#+1 3191401 p448 2024 Primorial 147 37*2^10599476+1 3190762 L4965 2022 Divides GF(10599475,10) 148 5*2^10495620-1 3159498 L4965 2021 149 3^6608603-3^3304302+1 3153105 L5123 2023 Generalized unique 150 5*2^10349000-1 3115361 L4965 2021 151 844833^524288-844833^262144+1 3107335 L4506 2017 Generalized unique 152 52922*5^4399812-1 3075342 A1 2023 153 712012^524288-712012^262144+1 3068389 L4506 2017 Generalized unique 154 177742*5^4386703-1 3066180 L5807 2023 155c 4*3^6402015+1 3054539 A2 2024 156 874208*54^1748416-1 3028951 L4976 2019 Generalized Woodall 157 475856^524288+1 2976633 L3230 2012 Generalized Fermat 158 2*3^6236772+1 2975697 L4965 2022 159 15*2^9830108+1 2959159 A2 2023 160 9*2^9778263+1 2943552 L4965 2020 161d 198*558^1061348+1 2915138 A28 2024 162 1806676*41^1806676+1 2913785 L4668 2018 Generalized Cullen 163 356926^524288+1 2911151 L3209 2012 Generalized Fermat 164 341112^524288+1 2900832 L3184 2012 Generalized Fermat 165 213988*5^4138363-1 2892597 L5621 2022 166 43*2^9596983-1 2888982 L4965 2022 167 121*2^9584444+1 2885208 L5183 2020 Generalized Fermat 168d 15*2^9482269-1 2854449 A2 2024 169 11*2^9381365+1 2824074 L4965 2020 Divides GF(9381364,6) 170 15*2^9312889+1 2803461 L4965 2023 171 49*2^9187790+1 2765803 L4965 2022 Generalized Fermat 172d 6369619#+1 2765105 p445 2024 Primorial 173 27653*2^9167433+1 2759677 SB8 2005 174d 6354977#-1 2758832 p446 2024 Primorial 175 90527*2^9162167+1 2758093 L1460 2010 176 6795*2^9144320-1 2752719 L4965 2021 177d 31*2^9088085-1 2735788 A2 2024 178 75*2^9079482+1 2733199 L4965 2023 179 1323365*116^1323365+1 2732038 L4718 2018 Generalized Cullen 180 57*2^9075622-1 2732037 L4965 2022 181d 10^2718281-5*10^1631138-5*10^1087142-1 2718281 p423 2024 Palindrome 182 63838*5^3887851-1 2717497 L5558 2022 183 13*2^8989858+1 2706219 L4965 2020 184 4159*2^8938471-1 2690752 L4965 2022 185 273809*2^8932416-1 2688931 L1056 2017 186 93*2^8898285+1 2678653 A2 2024 187 2*3^5570081+1 2657605 L4965 2020 Divides Phi(3^5570081,2) [g427] 188 25*2^8788628+1 2645643 L5161 2021 Generalized Fermat 189 2038*366^1028507-1 2636562 L2054 2016 190 64598*5^3769854-1 2635020 L5427 2022 191 63*2^8741225+1 2631373 A2 2024 192 8*785^900325+1 2606325 L4786 2022 193 17*2^8636199+1 2599757 L5161 2021 Divides GF(8636198,10) 194 75898^524288+1 2558647 p334 2011 Generalized Fermat 195 25*2^8456828+1 2545761 L5237 2021 Divides GF(8456827,12), generalized Fermat 196 39*2^8413422+1 2532694 L5232 2021 197 31*2^8348000+1 2513000 L5229 2021 198 27*2^8342438-1 2511326 L3483 2021 199 3687*2^8261084-1 2486838 L4965 2021 200 101*2^8152967+1 2454290 A2 2023 Divides GF(8152966,12) 201 273662*5^3493296-1 2441715 L5444 2021 202 81*2^8109236+1 2441126 L4965 2022 Generalized Fermat 203 11*2^8103463+1 2439387 L4965 2020 Divides GF(8103462,12) 204 102818*5^3440382-1 2404729 L5427 2021 205 11*2^7971110-1 2399545 L2484 2019 206 27*2^7963247+1 2397178 L5161 2021 Divides Fermat F(7963245) 207 3177*2^7954621-1 2394584 L4965 2021 208 39*2^7946769+1 2392218 L5226 2021 Divides GF(7946767,12) 209 7*6^3072198+1 2390636 L4965 2019 210 3765*2^7904593-1 2379524 L4965 2021 211 29*2^7899985+1 2378134 L5161 2021 Divides GF(7899984,6) 212 5113*2^7895471-1 2376778 L4965 2022 213 861*2^7895451-1 2376771 L4965 2021 214 75*2^7886683+1 2374131 A2 2023 215 99*2^7830910+1 2357341 A2 2024 216 28433*2^7830457+1 2357207 SB7 2004 217 2589*2^7803339-1 2349043 L4965 2022 218 59*2^7792307+1 2345720 A2 2024 219 101*2^7784453+1 2343356 A2 2024 220 95*2^7778585+1 2341590 A2 2024 221 8401*2^7767655-1 2338302 L4965 2023 222 9693*2^7767343-1 2338208 A2 2023 223 5*2^7755002-1 2334489 L4965 2021 224 2945*2^7753232-1 2333959 L4965 2022 225c 2*836^798431+1 2333181 L4294 2024 226 63*2^7743186+1 2330934 A2 2024 227 2545*2^7732265-1 2327648 L4965 2021 228 5539*2^7730709-1 2327180 L4965 2021 229 4817*2^7719584-1 2323831 L4965 2021 230d 183*558^842752+1 2314734 A28 2024 231 1341174*53^1341174+1 2312561 L4668 2017 Generalized Cullen 232 9467*2^7680034-1 2311925 L4965 2022 233 45*2^7661004+1 2306194 L5200 2020 234 15*2^7619838+1 2293801 L5192 2020 235 3597*2^7580693-1 2282020 L4965 2021 236d 5256037#+1 2281955 p444 2024 Primorial 237 3129*2^7545557-1 2271443 L4965 2023 238 7401*2^7523295-1 2264742 L4965 2021 239 45*2^7513661+1 2261839 L5179 2020 240 558640^393216-558640^196608+1 2259865 L4506 2017 Generalized unique 241 9*2^7479919-1 2251681 L3345 2023 242 1875*2^7474308-1 2249995 L4965 2022 243 69*2^7452023+1 2243285 L4965 2023 Divides GF(7452020,3) [GG] 244 1281979*2^7447178+1 2241831 A8 2023 245 4*5^3189669-1 2229484 L4965 2022 246 29*2^7374577+1 2219971 L5169 2020 Divides GF(7374576,3) 247c 2653*2^7368343-1 2218096 A2 2024 248c 21555*2^7364128-1 2216828 A11 2024 249 3197*2^7359542-1 2215447 L4965 2022 250 109838*5^3168862-1 2214945 L5129 2020 251 95*2^7354869+1 2214039 A2 2023 252 101*2^7345194-1 2211126 L1884 2019 253 85*2^7333444+1 2207589 A2 2023 254 15*2^7300254+1 2197597 L5167 2020 255 422429!+1 2193027 p425 2022 Factorial 256 1759*2^7284439-1 2192838 L4965 2021 257 1909683*14^1909683+1 2188748 L5765 2023 Generalized Cullen 258 737*2^7269322-1 2188287 L4665 2017 259c 6909*2^7258896-1 2185150 A2 2024 260 93*2^7241494+1 2179909 A2 2023 261 118568*5^3112069+1 2175248 L690 2020 262c 40*257^901632+1 2172875 A11 2024 263 580633*2^7208783-1 2170066 A11 2024 264 6039*2^7207973-1 2169820 L4965 2021 265 502573*2^7181987-1 2162000 L3964 2014 266 402539*2^7173024-1 2159301 L3961 2014 267 3343*2^7166019-1 2157191 L1884 2016 268 161041*2^7107964+1 2139716 L4034 2015 269 294*213^918952-1 2139672 L5811 2023 270 27*2^7046834+1 2121310 L3483 2018 271 1759*2^7046791-1 2121299 L4965 2021 272 327*2^7044001-1 2120459 L4965 2021 273 5*2^7037188-1 2118406 L4965 2021 274 3*2^7033641+1 2117338 L2233 2011 Divides GF(7033639,3) 275 625783*2^7031319-1 2116644 A11 2024 276 33661*2^7031232+1 2116617 SB11 2007 277 237804^393216-237804^196608+1 2114016 L4506 2017 Generalized unique 278 207494*5^3017502-1 2109149 L5083 2020 279 15*2^6993631-1 2105294 L4965 2021 280 8943501*2^6972593-1 2098967 L466 2022 281 6020095*2^6972593-1 2098967 L466 2022 282 2^6972593-1 2098960 G4 1999 Mersenne 38 283 273*2^6963847-1 2096330 L4965 2022 284 6219*2^6958945-1 2094855 L4965 2021 285 51*2^6945567+1 2090826 L4965 2020 Divides GF(6945564,12) [p286] 286c 3323*2^6921196-1 2083492 A2 2024 287 238694*5^2979422-1 2082532 L5081 2020 288 4*72^1119849-1 2079933 L4444 2016 289 33*2^6894190-1 2075360 L4965 2021 290d 4778027#-1 2073926 p442 2024 Primorial 291 2345*2^6882320-1 2071789 L4965 2022 292 57*2^6857990+1 2064463 A2 2023 293 146264*5^2953282-1 2064261 L1056 2020 294 69*2^6838971-1 2058738 L5037 2020 295 35816*5^2945294-1 2058677 L5076 2020 296 127*2^6836153-1 2057890 L1862 2018 297 19*2^6833086+1 2056966 L5166 2020 298 65*2^6810465+1 2050157 A2 2023 299 40597*2^6808509-1 2049571 L3749 2013 300 283*2^6804731-1 2048431 L2484 2020 301 1861709*2^6789999+1 2044000 L5191 2020 302 5781*2^6789459-1 2043835 L4965 2021 303 8435*2^6786180-1 2042848 L4965 2021 304 51*2^6753404+1 2032979 L4965 2020 305 93*2^6750726+1 2032173 A2 2023 306 69*2^6745775+1 2030683 L4965 2023 307 9995*2^6711008-1 2020219 L4965 2021 308 39*2^6684941+1 2012370 L5162 2020 309 6679881*2^6679881+1 2010852 L917 2009 Cullen 310 37*2^6660841-1 2005115 L3933 2014 311 39*2^6648997+1 2001550 L5161 2020 312 10^2000007-10^1127194-10^872812-1 2000007 p423 2024 Palindrome 313 10^2000005-10^1051046-10^948958-1 2000005 p423 2024 Palindrome 314 304207*2^6643565-1 1999918 L3547 2013 315 69*2^6639971-1 1998833 L5037 2020 316b 42006214^262144+1 1998406 L5512 2024 Generalized Fermat 317 6471*2^6631137-1 1996175 L4965 2021 318e 40460760^262144+1 1994139 L5460 2024 Generalized Fermat 319f 39896728^262144+1 1992541 L6047 2024 Generalized Fermat 320 39164812^262144+1 1990433 L6038 2024 Generalized Fermat 321 38786786^262144+1 1989328 L6035 2024 Generalized Fermat 322 38786700^262144+1 1989328 L4245 2024 Generalized Fermat 323 38738332^262144+1 1989186 L6033 2024 Generalized Fermat 324 9935*2^6603610-1 1987889 L4965 2023 325 38214850^262144+1 1987637 L5412 2024 Generalized Fermat 326 38108804^262144+1 1987321 L4764 2024 Generalized Fermat 327 37986650^262144+1 1986955 L6027 2024 Generalized Fermat 328 37787006^262144+1 1986355 L4622 2024 Generalized Fermat 329 37700936^262144+1 1986096 L5416 2024 Generalized Fermat 330 37689944^262144+1 1986063 L5416 2024 Generalized Fermat 331 37349040^262144+1 1985028 L5543 2024 Generalized Fermat 332 37047448^262144+1 1984105 L5746 2024 Generalized Fermat 333 36778106^262144+1 1983274 L5998 2024 Generalized Fermat 334 36748386^262144+1 1983182 L5998 2024 Generalized Fermat 335 36717890^262144+1 1983088 L4760 2024 Generalized Fermat 336 36210400^262144+1 1981503 L6006 2024 Generalized Fermat 337 35196086^262144+1 1978269 L5543 2024 Generalized Fermat 338 34443124^262144+1 1975807 L5639 2024 Generalized Fermat 339 33798406^262144+1 1973655 L4656 2024 Generalized Fermat 340 33491530^262144+1 1972617 L5030 2024 Generalized Fermat 341 33061466^262144+1 1971146 L5275 2024 Generalized Fermat 342 32497152^262144+1 1969186 L5586 2024 Generalized Fermat 343 32171198^262144+1 1968038 L4892 2024 Generalized Fermat 344 32067848^262144+1 1967672 L4684 2024 Generalized Fermat 345 31371484^262144+1 1965172 L5847 2024 Generalized Fermat 346 30941436^262144+1 1963601 L4362 2024 Generalized Fermat 347 554051*2^6517658-1 1962017 L5811 2023 348 29645358^262144+1 1958729 L5024 2023 Generalized Fermat 349 29614286^262144+1 1958610 L5870 2023 Generalized Fermat 350 1319*2^6506224-1 1958572 L4965 2021 351 3163*2^6504943-1 1958187 L4965 2023 352 29445800^262144+1 1957960 L4726 2023 Generalized Fermat 353 322498*5^2800819-1 1957694 L4954 2019 354 29353924^262144+1 1957604 L4387 2023 Generalized Fermat 355 99*2^6502814+1 1957545 A2 2023 356 29333122^262144+1 1957524 L5869 2023 Generalized Fermat 357 88444*5^2799269-1 1956611 L3523 2019 358 29097000^262144+1 1956604 L5375 2023 Generalized Fermat 359 28342134^262144+1 1953611 L5864 2023 Generalized Fermat 360 28259150^262144+1 1953277 L4898 2023 Generalized Fermat 361 28004468^262144+1 1952246 L5586 2023 Generalized Fermat 362 27789002^262144+1 1951367 L5860 2023 Generalized Fermat 363 13*2^6481780+1 1951212 L4965 2020 364 27615064^262144+1 1950652 L4201 2023 Generalized Fermat 365 21*2^6468257-1 1947141 L4965 2021 366 26640150^262144+1 1946560 L5839 2023 Generalized Fermat 367 26128000^262144+1 1944350 L5821 2023 Generalized Fermat 368 25875054^262144+1 1943243 L5070 2023 Generalized Fermat 369 25690360^262144+1 1942427 L5809 2023 Generalized Fermat 370 25635940^262144+1 1942186 L4307 2023 Generalized Fermat 371 25461468^262144+1 1941408 L4210 2023 Generalized Fermat 372 25333402^262144+1 1940834 L5802 2023 Generalized Fermat 373 24678636^262144+1 1937853 L5586 2023 Generalized Fermat 374 138514*5^2771922+1 1937496 L4937 2019 375 24429706^262144+1 1936699 L4670 2023 Generalized Fermat 376 33*2^6432160-1 1936275 L4965 2022 377 15*2^6429089-1 1935350 L4965 2021 378 23591460^262144+1 1932724 L5720 2023 Generalized Fermat 379 23479122^262144+1 1932181 L5773 2023 Generalized Fermat 380 398023*2^6418059-1 1932034 L3659 2013 381 22984886^262144+1 1929758 L4928 2023 Generalized Fermat 382 3^4043119+3^2021560+1 1929059 L5123 2023 Generalized unique 383 22790808^262144+1 1928793 L5047 2023 Generalized Fermat 384 22480000^262144+1 1927230 L4307 2023 Generalized Fermat 385 22479752^262144+1 1927229 L5159 2023 Generalized Fermat 386 22470828^262144+1 1927183 L4201 2023 Generalized Fermat 387 55*2^6395254+1 1925166 A2 2023 388 20866766^262144+1 1918752 L4245 2023 Generalized Fermat 389c 4*3^4020126+1 1918089 A2 2024 Generalized Fermat 390 20710506^262144+1 1917896 L5676 2023 Generalized Fermat 391 20543682^262144+1 1916975 L5663 2023 Generalized Fermat 392 20105956^262144+1 1914523 L5005 2023 Generalized Fermat 393 631*2^6359347-1 1914357 L4965 2021 394 4965*2^6356707-1 1913564 L4965 2022 395 19859450^262144+1 1913119 L5025 2023 Generalized Fermat 396 19527922^262144+1 1911202 L4745 2023 Generalized Fermat 397 19322744^262144+1 1910000 L4775 2023 Generalized Fermat 398 1995*2^6333396-1 1906546 L4965 2021 399 1582137*2^6328550+1 1905090 L801 2009 Cullen 400 18395930^262144+1 1904404 x50 2022 Generalized Fermat 401 17191822^262144+1 1896697 x50 2022 Generalized Fermat 402 87*2^6293522+1 1894541 A2 2023 403 16769618^262144+1 1893866 L4677 2022 Generalized Fermat 404 16048460^262144+1 1888862 L5127 2022 Generalized Fermat 405 10^1888529-10^944264-1 1888529 p423 2021 Near-repdigit, palindrome 406 15913772^262144+1 1887902 L4387 2022 Generalized Fermat 407 15859176^262144+1 1887511 L5544 2022 Generalized Fermat 408 3303*2^6264946-1 1885941 L4965 2021 409 15417192^262144+1 1884293 L5051 2022 Generalized Fermat 410 14741470^262144+1 1879190 L4204 2022 Generalized Fermat 411e 4328927#+1 1878843 p442 2024 Primorial 412 14399216^262144+1 1876516 L4745 2021 Generalized Fermat 413 1344935*2^6231985+1 1876021 L161 2023 414 14103144^262144+1 1874151 L5254 2021 Generalized Fermat 415 13911580^262144+1 1872594 L5068 2021 Generalized Fermat 416 13640376^262144+1 1870352 L4307 2021 Generalized Fermat 417 13553882^262144+1 1869628 L4307 2021 Generalized Fermat 418 8825*2^6199424-1 1866217 A2 2023 419 13039868^262144+1 1865227 L5273 2021 Generalized Fermat 420 7*6^2396573+1 1864898 L4965 2019 421 12959788^262144+1 1864525 L4591 2021 Generalized Fermat 422 69*2^6186659+1 1862372 L4965 2023 423 12582496^262144+1 1861162 L5202 2021 Generalized Fermat 424 12529818^262144+1 1860684 L4871 2020 Generalized Fermat 425 12304152^262144+1 1858615 L4591 2020 Generalized Fermat 426 12189878^262144+1 1857553 L4905 2020 Generalized Fermat 427 39*2^6164630+1 1855741 L4087 2020 Divides GF(6164629,5) 428 11081688^262144+1 1846702 L5051 2020 Generalized Fermat 429 10979776^262144+1 1845650 L5088 2020 Generalized Fermat 430 10829576^262144+1 1844082 L4677 2020 Generalized Fermat 431 194368*5^2638045-1 1843920 L690 2018 432 10793312^262144+1 1843700 L4905 2020 Generalized Fermat 433 10627360^262144+1 1841936 L4956 2020 Generalized Fermat 434 10578478^262144+1 1841411 L4307 2020 Generalized Fermat 435 66916*5^2628609-1 1837324 L690 2018 436 521921*2^6101122-1 1836627 L5811 2023 437 3*2^6090515-1 1833429 L1353 2010 438 9812766^262144+1 1832857 L4245 2020 Generalized Fermat 439 9750938^262144+1 1832137 L4309 2020 Generalized Fermat 440 8349*2^6082397-1 1830988 L4965 2021 441 9450844^262144+1 1828578 L5020 2020 Generalized Fermat 442 71*2^6070943+1 1827538 L4965 2023 443 32*470^683151+1 1825448 L4064 2021 444 9125820^262144+1 1824594 L5002 2019 Generalized Fermat 445 8883864^262144+1 1821535 L4715 2019 Generalized Fermat 446 21*2^6048861+1 1820890 L5106 2020 Divides GF(6048860,5) 447 9999*2^6037057-1 1817340 L4965 2021 448 8521794^262144+1 1816798 L4289 2019 Generalized Fermat 449 33*2^6019138-1 1811943 L4965 2022 450 67*2^6018626+1 1811789 L4965 2023 451 122*123^865890+1 1809631 L4294 2024 452 1583*2^5989282-1 1802957 L4036 2015 453 101806*15^1527091-1 1796004 L5765 2023 Generalized Woodall 454 6291332^262144+1 1782250 L4864 2018 Generalized Fermat 455 6287774^262144+1 1782186 L4726 2018 Generalized Fermat 456 327926*5^2542838-1 1777374 L4807 2018 457 81556*5^2539960+1 1775361 L4809 2018 458 5828034^262144+1 1773542 L4720 2018 Generalized Fermat 459 993*10^1768283-1 1768286 L4879 2019 Near-repdigit 460 9*10^1762063-1 1762064 L4879 2020 Near-repdigit 461 93606^354294+93606^177147+1 1761304 p437 2023 Generalized unique 462 5205422^262144+1 1760679 L4201 2018 Generalized Fermat 463 5152128^262144+1 1759508 L4720 2018 Generalized Fermat 464 4489246^262144+1 1743828 L4591 2018 Generalized Fermat 465 2240501*6^2240501+1 1743456 L5765 2023 Generalized Cullen 466 2*3^3648969+1 1741001 L5043 2020 Divides Phi(3^3648964,2) [g427] 467 7*2^5775996+1 1738749 L3325 2012 468 4246258^262144+1 1737493 L4720 2018 Generalized Fermat 469 3933508^262144+1 1728783 L4309 2018 Generalized Fermat 470 3853792^262144+1 1726452 L4715 2018 Generalized Fermat 471 3673932^262144+1 1721010 L4649 2017 Generalized Fermat 472 (10^859669-1)^2-2 1719338 p405 2022 Near-repdigit 473 3596074^262144+1 1718572 L4689 2017 Generalized Fermat 474 3547726^262144+1 1717031 L4201 2017 Generalized Fermat 475 8*10^1715905-1 1715906 L4879 2020 Near-repdigit 476 1243*2^5686715-1 1711875 L1828 2016 477 25*2^5658915-1 1703505 L1884 2021 478 1486287*14^1486287+1 1703482 L5765 2023 Generalized Cullen 479 41*2^5651731+1 1701343 L1204 2020 480 3060772^262144+1 1700222 L4649 2017 Generalized Fermat 481 9*2^5642513+1 1698567 L3432 2013 482 10*3^3550446+1 1693995 L4965 2020 483 2622*11^1621920-1 1689060 L2054 2015 484 81*2^5600028+1 1685779 L4965 2022 Generalized Fermat 485 2676404^262144+1 1684945 L4591 2017 Generalized Fermat 486 301562*5^2408646-1 1683577 L4675 2017 487 2611294^262144+1 1682141 L4250 2017 Generalized Fermat 488 55599^354294+55599^177147+1 1681149 p437 2023 Generalized unique 489 171362*5^2400996-1 1678230 L4669 2017 490 2514168^262144+1 1677825 L4564 2017 Generalized Fermat 491 31*2^5560820+1 1673976 L1204 2020 Divides GF(5560819,6) 492a 163*2^5550632+1 1670909 L5517 2024 493a 205*2^5532904+1 1665573 L5517 2024 494a 191*2^5531015+1 1665004 L5517 2024 495 13*2^5523860+1 1662849 L1204 2020 Divides Fermat F(5523858) 496a 89*2^5519481+1 1661532 L5178 2024 497 252191*2^5497878-1 1655032 L3183 2012 498 2042774^262144+1 1654187 L4499 2016 Generalized Fermat 499b 247*2^5477512+1 1648898 L5373 2024 500b 129*2^5453363+1 1641628 L6083 2024 501 1828858^262144+1 1641593 L4200 2016 Generalized Fermat 502 258317*2^5450519+1 1640776 g414 2008 503 7*6^2104746+1 1637812 L4965 2019 504b 91*2^5435752+1 1636327 L5214 2024 505b 159*2^5432226+1 1635266 L6082 2024 506b 193*2^5431414+1 1635021 L5214 2024 507 5*2^5429494-1 1634442 L3345 2017 508e 77*2^5422903+1 1632459 A2 2024 Divides GF(5422902,12) 509b 165*2^5416628+1 1630570 L5537 2024 510b 147*2^5410159+1 1628623 L5517 2024 511b 285*2^5408709+1 1628187 L5178 2024 512 43*2^5408183-1 1628027 L1884 2018 513 8*815^559138-1 1627740 A26 2024 514 1615588^262144+1 1627477 L4200 2016 Generalized Fermat 515c 245*2^5404089+1 1626796 L5282 2024 516 2*296598^296598-1 1623035 L4965 2022 517c 127*2^5391378+1 1622969 L5178 2024 518 1349*2^5385004-1 1621051 L1828 2017 519 1488256^262144+1 1618131 L4249 2016 Generalized Fermat 520c 153*2^5369765+1 1616463 L5969 2024 521 1415198^262144+1 1612400 L4308 2016 Generalized Fermat 522 84*730^560037+1 1603569 A12 2024 523c 93*2^5323466+1 1602525 L5537 2024 524c 237*2^5315983+1 1600273 L6064 2024 525 45*2^5308037+1 1597881 L4761 2019 526 5468*70^864479-1 1595053 L5410 2022 527d 131*2^5298475+1 1595003 L5517 2024 528d 237*2^5291999+1 1593053 L5532 2024 529d 221*2^5284643+1 1590839 L5517 2024 530 92*10^1585996-1 1585998 L4789 2023 Near-repdigit 531 1082083^262144-1082083^131072+1 1581846 L4506 2017 Generalized unique 532d 247*2^5254234+1 1581685 L5923 2024 533d 273*2^5242597+1 1578182 L5192 2024 534 7*2^5229669-1 1574289 L4965 2021 535 180062*5^2249192-1 1572123 L4435 2016 536 124125*6^2018254+1 1570512 L4001 2019 537 27*2^5213635+1 1569462 L3760 2015 538e 227*2^5213195+1 1569331 L5517 2024 539 9992*10^1567410-1 1567414 L4879 2020 Near-repdigit 540 27*252^652196+1 1566186 A21 2024 541e 149*2^5196375+1 1564267 L5174 2024 542e 277*2^5185268+1 1560924 L5888 2024 543 308084!+1 1557176 p425 2022 Factorial 544 843575^262144-843575^131072+1 1553498 L4506 2017 Generalized unique 545 25*2^5152151-1 1550954 L1884 2020 546f 125*2^5149981+1 1550301 L6042 2024 547f 147*2^5146964+1 1549393 L5559 2024 548 53546*5^2216664-1 1549387 L4398 2016 549 773620^262144+1 1543643 L3118 2012 Generalized Fermat 550 39*2^5119458+1 1541113 L1204 2019 551 607*26^1089034+1 1540957 L5410 2021 552 81*2^5115131+1 1539810 L4965 2022 Divides GF(5115128,12) [GG] 553 223*2^5105835-1 1537012 L2484 2019 554 99*10^1536527-1 1536529 L4879 2019 Near-repdigit 555 81*2^5100331+1 1535355 L4965 2022 Divides GF(5100327,6) [GG] 556 992*10^1533933-1 1533936 L4879 2019 Near-repdigit 557 51*2^5085142-1 1530782 L760 2014 558 3*2^5082306+1 1529928 L780 2009 Divides GF(5082303,3), GF(5082305,5) 559 676754^262144+1 1528413 L2975 2012 Generalized Fermat 560 296024*5^2185270-1 1527444 L671 2016 561 181*2^5057960+1 1522600 L5178 2024 562 5359*2^5054502+1 1521561 SB6 2003 563 175*2^5049344+1 1520007 L5178 2024 564 183*2^5042357+1 1517903 L5178 2024 565 1405486*12^1405486-1 1516781 L5765 2023 Generalized Woodall 566 53*2^5019181+1 1510926 L4965 2023 567 131*2^5013361+1 1509175 L5178 2024 568 13*2^4998362+1 1504659 L3917 2014 569 525094^262144+1 1499526 p338 2012 Generalized Fermat 570 92158*5^2145024+1 1499313 L4348 2016 571 499238*10^1497714-1 1497720 L4976 2019 Generalized Woodall 572 357*2^4972628+1 1496913 L5783 2024 573 77072*5^2139921+1 1495746 L4340 2016 574 175*2^4965756+1 1494844 L5888 2024 575 221*2^4960867+1 1493373 L5178 2024 576 375*2^4950021+1 1490108 L5178 2024 577 2*3^3123036+1 1490068 L5043 2020 578 75*2^4940218+1 1487156 L5517 2024 Divides GF(4940214,12) 579 95*2^4929067+1 1483799 L5172 2024 580 161*2^4928111+1 1483512 L5961 2024 581 51*2^4923905+1 1482245 L4965 2023 582 289*2^4911870+1 1478623 L5178 2024 Generalized Fermat 583 519397*2^4908893-1 1477730 L5410 2022 584 306398*5^2112410-1 1476517 L4274 2016 585 183*2^4894125+1 1473281 L5961 2024 Divides GF(4894123,3), GF(4894124,5) 586 39*684^519468-1 1472723 L5410 2023 587 195*2^4887935+1 1471418 L5261 2024 588 281*2^4886723+1 1471053 L5971 2024 589 281*2^4879761+1 1468957 L5961 2024 590 96*789^506568+1 1467569 A14 2024 591 243*2^4872108+1 1466654 L5178 2024 592 213*2^4865126+1 1464552 L5803 2024 593 265711*2^4858008+1 1462412 g414 2008 594 154222*5^2091432+1 1461854 L3523 2015 595 1271*2^4850526-1 1460157 L1828 2012 596 333*2^4846958-1 1459083 L5546 2022 597 357*2^4843507+1 1458044 L5178 2024 598 156*532^534754-1 1457695 L5410 2023 599 362978^262144-362978^131072+1 1457490 p379 2015 Generalized unique 600 361658^262144+1 1457075 p332 2011 Generalized Fermat 601 231*2^4836124+1 1455821 L5517 2024 602 7*10^1454508+1 1454509 p439 2024 603 303*2^4829593+1 1453855 L5706 2024 604 100186*5^2079747-1 1453686 L4197 2015 605 375*2^4824253+1 1452248 L5625 2024 606 288465!+1 1449771 p3 2022 Factorial 607 15*2^4800315+1 1445040 L1754 2019 Divides GF(4800313,3), GF(4800310,5) 608 235*2^4799708+1 1444859 L5971 2024 609 347*2^4798851+1 1444601 L5554 2024 610 239*2^4795541+1 1443605 L5995 2024 611 2^4792057-2^2396029+1 1442553 L3839 2014 Gaussian Mersenne norm 40, generalized unique 612 92*10^1439761-1 1439763 L4789 2020 Near-repdigit 613 269*2^4777025+1 1438031 L5683 2024 614 653*10^1435026-1 1435029 p355 2014 615 197*2^4765318-1 1434506 L5175 2021 616 1401*2^4759435-1 1432736 L4965 2023 617 2169*2^4754343-1 1431204 L4965 2023 618 188*468^535963+1 1431156 L4832 2019 619 1809*2^4752792-1 1430737 L4965 2022 620 61*2^4749928+1 1429873 L5285 2024 621 2427*2^4749044-1 1429609 L4965 2022 622 303*2^4748019-1 1429299 L5545 2023 623 2259*2^4746735-1 1428913 L4965 2022 624 309*2^4745713-1 1428605 L5545 2023 625 183*2^4740056+1 1426902 L5945 2024 626 2223*2^4729304-1 1423666 L4965 2022 627 1851*2^4727663-1 1423172 L4965 2022 628 1725*2^4727375-1 1423085 L4965 2022 629 1611*2^4724014-1 1422074 L4965 2022 630 1383*2^4719270-1 1420645 L4965 2022 631 1749*2^4717431-1 1420092 L4965 2022 632 321*2^4715725+1 1419578 L5178 2024 633 371*2^4715211+1 1419423 L5527 2024 634 2325*2^4713991-1 1419057 L4965 2022 635 3267113#-1 1418398 p301 2021 Primorial 636 291*2^4708553+1 1417419 L5308 2024 637 100*406^543228+1 1417027 L5410 2020 Generalized Fermat 638 2337*2^4705660-1 1416549 L4965 2022 639 1229*2^4703492-1 1415896 L1828 2018 640 303*2^4694937+1 1413320 L5977 2024 641 3719*30^956044-1 1412197 L5410 2023 642 6*894^478421-1 1411983 L4294 2023 643 263*2^4688269+1 1411313 L5904 2024 644 155*2^4687127+1 1410969 L5969 2024 645 144052*5^2018290+1 1410730 L4146 2015 646 195*2^4685711-1 1410542 L5175 2021 647 9*2^4683555-1 1409892 L1828 2012 648 31*2^4673544+1 1406879 L4990 2019 649 34*993^469245+1 1406305 L4806 2018 650 197*2^4666979+1 1404903 L5233 2024 651 79*2^4658115-1 1402235 L1884 2018 652 39*2^4657951+1 1402185 L1823 2019 653 4*650^498101-1 1401116 L4294 2021 654 11*2^4643238-1 1397755 L2484 2014 655 884411*38^884411+1 1397184 L5765 2023 Generalized Cullen 656 68*995^465908-1 1396712 L4001 2017 657 7*6^1793775+1 1395830 L4965 2019 658 269*2^4636583+1 1395753 L5509 2024 659 117*2^4632990+1 1394672 L5960 2024 660 213*2^4625484+1 1392412 L5956 2024 661a 1425*2^4618342+1 1390263 L1134 2024 662c 4*7^1640811+1 1386647 A2 2024 663 192098^262144-192098^131072+1 1385044 p379 2015 Generalized unique 664 339*2^4592225+1 1382401 L5302 2024 665 6*10^1380098+1 1380099 L5009 2023 666 27*2^4583717-1 1379838 L2992 2014 667 221*2^4578577+1 1378292 L5710 2024 668 359*2^4578161+1 1378167 L5894 2024 669 3^2888387-3^1444194+1 1378111 L5123 2023 Generalized unique 670 1198433*14^1198433+1 1373564 L5765 2023 Generalized Cullen 671 67*2^4561350+1 1373105 L5614 2024 672 121*2^4553899-1 1370863 L3023 2012 673 231*2^4552115+1 1370326 L5302 2024 674 223*2^4549924+1 1369666 L5904 2024 675 9473*2^4543680-1 1367788 L5037 2022 676 27*2^4542344-1 1367384 L1204 2014 677 29*2^4532463+1 1364409 L4988 2019 678 4*797^468702+1 1359920 L4548 2017 Generalized Fermat 679 145310^262144+1 1353265 p314 2011 Generalized Fermat 680d 2*3^2834778-1 1352534 A2 2024 681 479*2^4492481+1 1352375 L5882 2024 682 373*2^4487274+1 1350807 L5320 2024 683 527*2^4486247+1 1350498 L5178 2024 684 25*2^4481024+1 1348925 L4364 2019 Generalized Fermat 685 83*2^4479409+1 1348439 L5178 2024 686 417*2^4473466+1 1346651 L5178 2024 687 81*536^493229+1 1346106 p431 2023 688 303*2^4471002-1 1345909 L5545 2022 689 1425*2^4469783+1 1345542 L1134 2023 690 2*1283^432757+1 1345108 L4879 2019 Divides Phi(1283^432757,2) 691b 1-V(-2,-2,3074821)-2^3074821 1342125 p437 2024 692 447*2^4457132+1 1341734 L5875 2024 693 36772*6^1723287-1 1340983 L1301 2014 694 583854*14^1167708-1 1338349 L4976 2019 Generalized Woodall 695 20*634^476756-1 1335915 L4975 2023 696 297*2^4432947+1 1334453 L5178 2023 697 85*2^4432870+1 1334429 L4965 2023 698 151*2^4424321-1 1331856 L1884 2016 699 231*2^4422227+1 1331226 L5192 2023 700 131*2^4421071+1 1330878 L5178 2023 701 225*2^4419349+1 1330359 L5866 2023 702 1485*2^4416137+1 1329393 L1134 2024 703 469*2^4414802+1 1328991 L5830 2023 704 549*2^4411029+1 1327855 L5862 2023 705 445*2^4410256+1 1327622 L5537 2023 706 259*2^4395550+1 1323195 L5858 2023 707 219*2^4394846+1 1322983 L5517 2023 708 165*2^4379097+1 1318242 L5852 2023 709 183*2^4379002+1 1318214 L5476 2023 710 1455*2^4376470+1 1317452 L1134 2023 711 165*2^4375458+1 1317147 L5851 2023 712 195*2^4373994-1 1316706 L5175 2020 713 381*2^4373129+1 1316446 L5421 2023 714 (10^657559-1)^2-2 1315118 p405 2022 Near-repdigit 715 49*2^4365175-1 1314051 L1959 2017 716 49*2^4360869-1 1312755 L1959 2017 717 253*2^4358512+1 1312046 L875 2023 718 219*2^4354805+1 1310930 L5848 2023 719 249*2^4351621+1 1309971 L5260 2023 720 159*2^4348734+1 1309102 L5421 2023 721 115*2^4347620+1 1308767 L5178 2023 722 533*2^4338237+1 1305943 L5260 2023 723 141*2^4337804+1 1305812 L5178 2023 724 363*2^4334518+1 1304823 L5261 2023 725 299*2^4333939+1 1304649 L5517 2023 726 13*2^4333087-1 1304391 L1862 2018 727 353159*2^4331116-1 1303802 L2408 2011 728 195*2^4330189+1 1303520 L5178 2023 729 145*2^4327756+1 1302787 L5517 2023 730 9959*2^4308760-1 1297071 L5037 2022 731 195*2^4304861+1 1295895 L5178 2023 732 23*2^4300741+1 1294654 L4147 2019 733 682156*79^682156+1 1294484 L4472 2016 Generalized Cullen 734 141941*2^4299438-1 1294265 L689 2011 735 87*2^4297718+1 1293744 L4965 2023 736e 22*905^437285-1 1292900 L5342 2024 737 435*2^4292968+1 1292315 L5783 2023 738 993149*20^993149+1 1292123 L5765 2023 Generalized Cullen 739 415*2^4280864+1 1288672 L5818 2023 740 79*2^4279006+1 1288112 L4965 2023 741 205*2^4270310+1 1285494 L5517 2023 742 483*2^4270112+1 1285435 L5178 2023 743 123*2^4266441+1 1284329 L5178 2023 744 612749*2^4254500-1 1280738 L5410 2022 745 223*2^4252660+1 1280181 L5178 2023 746 1644731*6^1644731+1 1279856 L5765 2023 Generalized Cullen 747 38*380^495986-1 1279539 L5410 2023 748 2*1151^417747+1 1278756 L4879 2019 Divides Phi(1151^417747,2) 749 15*2^4246384+1 1278291 L3432 2013 Divides GF(4246381,6) 750 3*2^4235414-1 1274988 L606 2008 751 2*1259^411259+1 1274914 L4879 2020 Divides Phi(1259^411259,2) 752 93*2^4232892+1 1274230 L4965 2023 753 131*2^4227493+1 1272605 L5226 2023 754 45*436^481613+1 1271213 L5410 2020 755 109208*5^1816285+1 1269534 L3523 2014 756 435*2^4216447+1 1269280 L5178 2023 757 1091*2^4215518-1 1269001 L1828 2018 758 191*2^4203426-1 1265360 L2484 2012 759 269*2^4198809+1 1263970 L5226 2023 760 545*2^4198333+1 1263827 L5804 2023 761 53*2^4197093+1 1263453 L5563 2023 762 1259*2^4196028-1 1263134 L1828 2016 763 329*2^4193199+1 1262282 L5226 2023 764 141*2^4192911+1 1262195 L5226 2023 Divides Fermat F(4192909) 765 325918*5^1803339-1 1260486 L3567 2014 766 345*2^4173969+1 1256493 L5226 2023 767 161*2^4164267+1 1253572 L5178 2023 768 135*2^4162529+1 1253049 L5178 2023 Divides GF(4162525,10) 769 177*2^4162494+1 1253038 L5796 2023 770 237*2^4153348+1 1250285 L5178 2023 771 69*2^4151165+1 1249628 L4965 2023 772 133778*5^1785689+1 1248149 L3903 2014 773 201*2^4146003+1 1248074 L5161 2023 774 329*2^4136019+1 1245069 L5178 2023 775 81*2^4131975+1 1243851 L4965 2022 776 459*2^4129577+1 1243130 L5226 2023 777 551*2^4126303+1 1242144 L5226 2023 778 363*2^4119017+1 1239951 L5226 2023 779 105*2^4113039+1 1238151 L5178 2023 780 204*532^454080-1 1237785 L5410 2023 781 41*684^436354+1 1237090 L4444 2023 782 17*2^4107544-1 1236496 L4113 2015 783 261*2^4106385+1 1236148 L5178 2023 784 24032*5^1768249+1 1235958 L3925 2014 785 172*159^561319-1 1235689 L4001 2017 786 10^1234567-20342924302*10^617278-1 1234567 p423 2021 Palindrome 787 10^1234567-1927633367291*10^617277-1 1234567 p423 2023 Palindrome 788 10^1234567-3626840486263*10^617277-1 1234567 p423 2021 Palindrome 789 10^1234567-4708229228074*10^617277-1 1234567 p423 2021 Palindrome 790 67*2^4100746+1 1234450 L5178 2023 791 191*2^4099097+1 1233954 L5563 2023 792 325*2^4097700+1 1233534 L5226 2023 793 519*2^4095491+1 1232869 L5226 2023 794 111*2^4091044+1 1231530 L5783 2023 Divides GF(4091041,3) 795 1182072*11^1182072-1 1231008 L5765 2023 Generalized Woodall 796 64*425^467857-1 1229712 p268 2021 797e 8*558^447047+1 1227876 A28 2024 798 163*778^424575+1 1227440 A11 2024 799 381*2^4069617+1 1225080 L5226 2023 800 97*2^4066717-1 1224206 L2484 2019 801 95*2^4063895+1 1223357 L5226 2023 802 79*2^4062818+1 1223032 L5178 2023 803 1031*2^4054974-1 1220672 L1828 2017 804 309*2^4054114+1 1220413 L5178 2023 805 2022202116^131072+1 1219734 L4704 2022 Generalized Fermat 806 37*2^4046360+1 1218078 L2086 2019 807 141*2^4043116+1 1217102 L5517 2023 808 39653*430^460397-1 1212446 L4187 2016 809 1777034894^131072+1 1212377 L4704 2022 Generalized Fermat 810 141*2^4024411+1 1211471 L5226 2023 811 515*2^4021165+1 1210494 L5174 2023 812 73*2^4016912+1 1209213 L5226 2023 813 40734^262144+1 1208473 p309 2011 Generalized Fermat 814 235*2^4013398+1 1208156 L5178 2023 815 9*2^4005979-1 1205921 L1828 2012 816 417*2^4003224+1 1205094 L5764 2023 817 12*68^656921+1 1203815 L4001 2016 818 67*688^423893+1 1202836 L4001 2017 819 221*2^3992723+1 1201932 L5178 2023 820 213*2^3990702+1 1201324 L5216 2023 821 1993191*2^3986382-1 1200027 L3532 2015 Generalized Woodall 822 163*2^3984604+1 1199488 L5756 2023 823 725*2^3983355+1 1199113 L5706 2023 824 (146^276995+1)^2-2 1199030 p405 2022 825 455*2^3981067+1 1198424 L5724 2023 826 138172*5^1714207-1 1198185 L3904 2014 827 50*383^463313+1 1196832 L2012 2021 828 339*2^3974295+1 1196385 L5178 2023 829 699*2^3974045+1 1196310 L5750 2023 830 1202113^196608-1202113^98304+1 1195366 L4506 2016 Generalized unique 831 29*2^3964697+1 1193495 L1204 2019 832 599*2^3963655+1 1193182 L5226 2023 833 683*2^3962937+1 1192966 L5226 2023 834 39*2^3961129+1 1192421 L1486 2019 835 165*2^3960664+1 1192281 L5178 2023 836 79*2^3957238+1 1191250 L5745 2023 837 687*2^3955918+1 1190853 L5554 2023 Divides GF(3955915,6) 838 163*2^3954818+1 1190522 L5178 2023 839 431*2^3953647+1 1190169 L5554 2023 840 1110815^196608-1110815^98304+1 1188622 L4506 2016 Generalized unique 841 341*2^3938565+1 1185629 L5554 2023 842 503*2^3936845+1 1185112 L5706 2023 843 717*2^3934760+1 1184484 L5285 2023 844 493*2^3929192+1 1182808 L5161 2023 845 273*2^3929128+1 1182788 L5554 2023 846 609*2^3928682+1 1182654 L5178 2023 847 609*2^3928441+1 1182582 L5527 2023 848 281*2^3926467+1 1181987 L5174 2023 849 153*2^3922478+1 1180786 L5554 2023 850 69*2^3920863+1 1180300 L5554 2023 851 273*2^3919321+1 1179836 L5706 2023 852 531*2^3918985+1 1179735 L5706 2023 853 1000032472^131072+1 1179650 L4704 2022 Generalized Fermat 854 555*2^3916875+1 1179100 L5302 2023 855 571*2^3910616+1 1177216 L5178 2023 856 421*2^3905144+1 1175569 L5600 2023 857 P1174253 1174253 p414 2022 858 567*2^3897588+1 1173294 L5600 2023 859 417*2^3895404+1 1172637 L5600 2023 860 539*2^3894953+1 1172501 L5285 2023 861 645*2^3893849+1 1172169 L5600 2023 862 818764*3^2456293-1 1171956 L4965 2023 Generalized Woodall 863 22478*5^1675150-1 1170884 L3903 2014 864 1199*2^3889576-1 1170883 L1828 2018 865 298989*2^3886857+1 1170067 L2777 2014 Generalized Cullen 866 93*10^1170023-1 1170025 L4789 2022 Near-repdigit 867 711*2^3886480+1 1169950 L5320 2023 868 375*2^3884634+1 1169394 L5600 2023 869 94*872^397354+1 1168428 L5410 2019 870 269*2^3877485+1 1167242 L5649 2023 871 163*2^3874556+1 1166360 L5646 2023 Divides GF(3874552,5) 872 1365*2^3872811+1 1165836 L1134 2023 873 313*2^3869536+1 1164849 L5600 2023 874 159*2^3860863+1 1162238 L5226 2023 875 445*2^3860780+1 1162214 L5640 2023 876 397*2^3859450+1 1161813 L5226 2023 877 685*2^3856790+1 1161013 L5226 2023 878 27*2^3855094-1 1160501 L3033 2012 879 537*2^3853860+1 1160131 L5636 2022 880 164*978^387920-1 1160015 L4700 2018 881 175*2^3850344+1 1159072 L5226 2022 882 685*2^3847268+1 1158146 L5226 2022 883 655*2^3846352+1 1157871 L5282 2022 884 583*2^3846196+1 1157824 L5226 2022 885 615*2^3844151+1 1157208 L5226 2022 886 14772*241^485468-1 1156398 L5410 2022 887 525*2^3840963+1 1156248 L5613 2022 888 313*2^3837304+1 1155147 L5298 2022 889 49*2^3837090+1 1155081 L4979 2019 Generalized Fermat 890 431*2^3835247+1 1154528 L5161 2022 891 97*2^3833722+1 1154068 L5226 2022 892 2*839^394257+1 1152714 L4879 2019 Divides Phi(839^394257,2) 893 125*392^444161+1 1151839 L4832 2022 894 255*2^3824348+1 1151246 L5226 2022 895 30*514^424652-1 1151218 L4001 2017 896 569*2^3823191+1 1150898 L5226 2022 897 24518^262144+1 1150678 g413 2008 Generalized Fermat 898 563*2^3819237+1 1149708 L5178 2022 899 345*2^3817949+1 1149320 L5373 2022 900 700219^196608-700219^98304+1 1149220 L4506 2016 Generalized unique 901 241*2^3815727-1 1148651 L2484 2019 902 351*2^3815467+1 1148573 L5226 2022 903 109*980^383669-1 1147643 L4001 2018 904 427*2^3811610+1 1147412 L5614 2022 905 569*2^3810475+1 1147071 L5610 2022 906 213*2^3807864+1 1146284 L5609 2022 907 87*2^3806438+1 1145854 L5607 2022 908 369*2^3805321+1 1145519 L5541 2022 909 123547*2^3804809-1 1145367 L2371 2011 910 2564*75^610753+1 1145203 L3610 2014 911 539*2^3801705+1 1144430 L5161 2022 912 159*2^3801463+1 1144357 L5197 2022 913 235*2^3801284+1 1144303 L5608 2022 914 660955^196608-660955^98304+1 1144293 L4506 2016 Generalized unique 915 519*2^3800625+1 1144105 L5315 2022 916 281*2^3798465+1 1143455 L5178 2022 917 166*443^432000+1 1143249 L5410 2020 918 85*2^3797698+1 1143223 L5161 2022 919 326834*5^1634978-1 1142807 L3523 2014 920 459*2^3795969+1 1142704 L5161 2022 921 105*298^461505-1 1141866 L5841 2023 922 447*2^3780151+1 1137942 L5596 2022 923 345*2^3779921+1 1137873 L5557 2022 924 477*2^3779871+1 1137858 L5197 2022 925 251*2^3774587+1 1136267 L5592 2022 926 439*2^3773958+1 1136078 L5557 2022 927 43*182^502611-1 1135939 L4064 2020 928 415267*2^3771929-1 1135470 L2373 2011 929 11*2^3771821+1 1135433 p286 2013 930 427*2^3768104+1 1134315 L5192 2022 931 1455*2^3768024-1 1134292 L1134 2022 932 711*2^3767492+1 1134131 L5161 2022 933 265*2^3765189-1 1133438 L2484 2018 934 297*2^3765140+1 1133423 L5197 2022 935 381*2^3764189+1 1133137 L5589 2022 936 115*2^3763650+1 1132974 L5554 2022 937 411*2^3759067+1 1131595 L5589 2022 938 405*2^3757192+1 1131031 L5590 2022 939 938237*2^3752950-1 1129757 L521 2007 Woodall 940 399866798^131072+1 1127471 L4964 2019 Generalized Fermat 941 701*2^3744713+1 1127274 L5554 2022 942 207394*5^1612573-1 1127146 L3869 2014 943 684*10^1127118+1 1127121 L4036 2017 944 535386^196608-535386^98304+1 1126302 L4506 2016 Generalized unique 945 104944*5^1610735-1 1125861 L3849 2014 946 23451*2^3739388+1 1125673 L591 2015 947 78*622^402915-1 1125662 L5645 2023 948 615*2^3738023+1 1125260 L5161 2022 949 347*2^3737875+1 1125216 L5178 2022 950 163*2^3735726+1 1124568 L5477 2022 Divides GF(3735725,6) 951 375*2^3733510+1 1123902 L5584 2022 952 25*2^3733144+1 1123790 L2125 2019 Generalized Fermat 953 629*2^3731479+1 1123290 L5283 2022 954 113*2^3728113+1 1122276 L5161 2022 955 303*2^3725438+1 1121472 L5161 2022 956 187*2^3723972+1 1121030 L5178 2022 957 2*1103^368361+1 1120767 L4879 2019 Divides Phi(1103^368361,2) 958 105*2^3720512+1 1119988 L5493 2022 959 447*2^3719024+1 1119541 L5493 2022 960 177*2^3717746+1 1119156 L5279 2022 961 2*131^528469+1 1118913 L4879 2019 Divides Phi(131^528469,2) 962 123*2^3716758+1 1118858 L5563 2022 963 313*2^3716716+1 1118846 L5237 2022 964 367*2^3712952+1 1117713 L5264 2022 965 53*2^3709297+1 1116612 L5197 2022 966 2^3704053+2^1852027+1 1115032 L3839 2014 Gaussian Mersenne norm 39, generalized unique 967 395*2^3701693+1 1114324 L5536 2022 968 589*2^3699954+1 1113800 L5576 2022 969 314187728^131072+1 1113744 L4704 2019 Generalized Fermat 970 119*2^3698412-1 1113336 L2484 2018 971 391*2^3693728+1 1111926 L5493 2022 972 485*2^3688111+1 1110235 L5237 2022 973 341*2^3686613+1 1109784 L5573 2022 974 87*2^3686558+1 1109767 L5573 2022 975 675*2^3682616+1 1108581 L5231 2022 976 569*2^3682167+1 1108446 L5488 2022 977 330286*5^1584399-1 1107453 L3523 2014 978 34*951^371834-1 1107391 L5410 2019 979 45*2^3677787+1 1107126 L1204 2019 980 625*2^3676300+1 1106680 L5302 2022 Generalized Fermat 981 13*2^3675223-1 1106354 L1862 2016 982 271643232^131072+1 1105462 L4704 2019 Generalized Fermat 983 463*2^3671262+1 1105163 L5524 2022 984 735*2^3670991+1 1105082 L5575 2022 985 475*2^3670046+1 1104797 L5524 2022 986 15*2^3668194-1 1104238 L3665 2013 987 273*2^3665736+1 1103499 L5192 2022 988 13*2^3664703-1 1103187 L1862 2016 989 1486*165^497431+1 1103049 A11 2024 990 406515^196608-406515^98304+1 1102790 L4506 2016 Generalized unique 991 609*2^3662931+1 1102655 L5573 2022 992a 252171992^131072+1 1101228 L5639 2024 Generalized Fermat 993a 251361006^131072+1 1101044 L5127 2024 Generalized Fermat 994a 251085988^131072+1 1100982 L4201 2024 Generalized Fermat 995a 250775680^131072+1 1100912 L6073 2024 Generalized Fermat 996a 249754922^131072+1 1100679 L4898 2024 Generalized Fermat 997a 249751100^131072+1 1100679 L6088 2024 Generalized Fermat 998a 249735514^131072+1 1100675 L4201 2024 Generalized Fermat 999a 249634320^131072+1 1100652 L6087 2024 Generalized Fermat 1000 118*892^373012+1 1100524 L5071 2020 1001b 248934378^131072+1 1100492 L5974 2024 Generalized Fermat 1002b 248857694^131072+1 1100475 L6086 2024 Generalized Fermat 1003b 248820272^131072+1 1100466 L5768 2024 Generalized Fermat 1004b 248632632^131072+1 1100423 L5416 2024 Generalized Fermat 1005b 248621940^131072+1 1100421 L5051 2024 Generalized Fermat 1006b 248617468^131072+1 1100420 L5416 2024 Generalized Fermat 1007 33300*430^417849-1 1100397 L4393 2016 1008b 247389350^131072+1 1100138 L6085 2024 Generalized Fermat 1009b 247342010^131072+1 1100127 L6073 2024 Generalized Fermat 1010b 247145256^131072+1 1100082 L4939 2024 Generalized Fermat 1011b 246980946^131072+1 1100044 L4249 2024 Generalized Fermat 1012b 246952054^131072+1 1100037 L6084 2024 Generalized Fermat 1013b 246943520^131072+1 1100035 L5746 2024 Generalized Fermat 1014b (2^2976221-1)*(10^204068-1172064)+1 1100000 p449 2024 1015b 246677978^131072+1 1099974 L5512 2024 Generalized Fermat 1016b 246634478^131072+1 1099964 L5117 2024 Generalized Fermat 1017b 246394910^131072+1 1099908 L6038 2024 Generalized Fermat 1018b 246207020^131072+1 1099865 L5606 2024 Generalized Fermat 1019b 246012578^131072+1 1099820 L5606 2024 Generalized Fermat 1020b 245507802^131072+1 1099703 L5606 2024 Generalized Fermat 1021b 245461196^131072+1 1099692 L6078 2024 Generalized Fermat 1022 655*2^3653008+1 1099668 L5574 2022 1023b 244873604^131072+1 1099556 L6076 2024 Generalized Fermat 1024b 244660242^131072+1 1099506 L6038 2024 Generalized Fermat 1025b 244342390^131072+1 1099432 L5416 2024 Generalized Fermat 1026c 244202408^131072+1 1099400 L4371 2024 Generalized Fermat 1027 291*268^452750-1 1099341 L5410 2022 1028c 243786926^131072+1 1099303 L6073 2024 Generalized Fermat 1029c 243427990^131072+1 1099219 L4892 2024 Generalized Fermat 1030c 242973858^131072+1 1099113 L6072 2024 Generalized Fermat 1031c 242950108^131072+1 1099107 L4387 2024 Generalized Fermat 1032c 242933064^131072+1 1099103 L5782 2024 Generalized Fermat 1033c 242926826^131072+1 1099102 L5826 2024 Generalized Fermat 1034c 242855212^131072+1 1099085 L4591 2024 Generalized Fermat 1035b 242494358^131072+1 1099000 L5416 2024 Generalized Fermat 1036c 242295536^131072+1 1098953 L5205 2024 Generalized Fermat 1037c 242161196^131072+1 1098922 L6070 2024 Generalized Fermat 1038c 241765100^131072+1 1098829 L6067 2024 Generalized Fermat 1039c 241550882^131072+1 1098778 L6065 2024 Generalized Fermat 1040c 241438172^131072+1 1098752 L4591 2024 Generalized Fermat 1041c 241338084^131072+1 1098728 L4591 2024 Generalized Fermat 1042c 241249426^131072+1 1098707 L5526 2024 Generalized Fermat 1043 33*2^3649810+1 1098704 L4958 2019 1044c 241151312^131072+1 1098684 L4387 2024 Generalized Fermat 1045c 241000970^131072+1 1098648 L5707 2024 Generalized Fermat 1046c 240966866^131072+1 1098640 L4559 2024 Generalized Fermat 1047c 240965802^131072+1 1098640 L6058 2024 Generalized Fermat 1048c 240910640^131072+1 1098627 L5101 2024 Generalized Fermat 1049c 240856112^131072+1 1098614 L4875 2024 Generalized Fermat 1050d 240307734^131072+1 1098484 L4249 2024 Generalized Fermat 1051d 240190808^131072+1 1098457 L5056 2024 Generalized Fermat 1052d 239927858^131072+1 1098394 L4477 2024 Generalized Fermat 1053d 239545562^131072+1 1098304 L4591 2024 Generalized Fermat 1054d 239520486^131072+1 1098298 L5634 2024 Generalized Fermat 1055d 238968056^131072+1 1098166 L4477 2024 Generalized Fermat 1056d 238871106^131072+1 1098143 L6058 2024 Generalized Fermat 1057d 238852190^131072+1 1098139 L5526 2024 Generalized Fermat 1058d 238698190^131072+1 1098102 L5077 2024 Generalized Fermat 1059d 238653710^131072+1 1098091 L6057 2024 Generalized Fermat 1060d 238627390^131072+1 1098085 L5871 2024 Generalized Fermat 1061d 238438430^131072+1 1098040 L5707 2024 Generalized Fermat 1062d 238381768^131072+1 1098026 L5707 2024 Generalized Fermat 1063d 238193230^131072+1 1097981 L4201 2024 Generalized Fermat 1064d 238168282^131072+1 1097975 L4201 2024 Generalized Fermat 1065d 238109742^131072+1 1097961 L4559 2024 Generalized Fermat 1066e 237601644^131072+1 1097840 L5782 2024 Generalized Fermat 1067e 237260908^131072+1 1097758 L4201 2024 Generalized Fermat 1068e 237185928^131072+1 1097740 L5755 2024 Generalized Fermat 1069e 237108488^131072+1 1097722 L5639 2024 Generalized Fermat 1070e 236924362^131072+1 1097677 L5639 2024 Generalized Fermat 1071e 236602468^131072+1 1097600 L6038 2024 Generalized Fermat 1072e 236500052^131072+1 1097575 L5198 2024 Generalized Fermat 1073e 236417078^131072+1 1097555 L5588 2024 Generalized Fermat 1074d 236278180^131072+1 1097522 L5416 2024 Generalized Fermat 1075e 236240868^131072+1 1097513 L6038 2024 Generalized Fermat 1076e 235947986^131072+1 1097442 L4201 2024 Generalized Fermat 1077e 235577802^131072+1 1097353 L5077 2024 Generalized Fermat 1078e 235566676^131072+1 1097350 L5416 2024 Generalized Fermat 1079e 235108160^131072+1 1097239 L4898 2024 Generalized Fermat 1080e 234962380^131072+1 1097204 L4201 2024 Generalized Fermat 1081f 234806100^131072+1 1097166 L5088 2024 Generalized Fermat 1082e 234661134^131072+1 1097131 L5416 2024 Generalized Fermat 1083f 234566344^131072+1 1097108 L5974 2024 Generalized Fermat 1084f 234523400^131072+1 1097098 L4201 2024 Generalized Fermat 1085f 234385314^131072+1 1097064 L4285 2024 Generalized Fermat 1086f 234307964^131072+1 1097045 L4559 2024 Generalized Fermat 1087f 234291722^131072+1 1097041 L4999 2024 Generalized Fermat 1088f 233937376^131072+1 1096955 L6044 2024 Generalized Fermat 1089f 233903532^131072+1 1096947 L4559 2024 Generalized Fermat 1090e 233559012^131072+1 1096863 L5416 2024 Generalized Fermat 1091f 233447012^131072+1 1096836 L4477 2024 Generalized Fermat 1092f 233349574^131072+1 1096812 L5432 2024 Generalized Fermat 1093f 233034976^131072+1 1096735 L5101 2024 Generalized Fermat 1094f 232796676^131072+1 1096677 L6040 2024 Generalized Fermat 1095f 232485778^131072+1 1096601 L4477 2024 Generalized Fermat 1096f 232050760^131072+1 1096494 L5782 2024 Generalized Fermat 1097 295*2^3642206+1 1096416 L5161 2022 1098 231583998^131072+1 1096380 L4477 2024 Generalized Fermat 1099 231295516^131072+1 1096309 L5634 2024 Generalized Fermat 1100 230663736^131072+1 1096153 L4774 2024 Generalized Fermat 1101 230655072^131072+1 1096151 L5526 2024 Generalized Fermat 1102 230396424^131072+1 1096087 L4928 2024 Generalized Fermat 1103 230275166^131072+1 1096057 L6011 2024 Generalized Fermat 1104 230267830^131072+1 1096055 L6036 2024 Generalized Fermat 1105 989*2^3640585+1 1095929 L5115 2020 1106 567*2^3639287+1 1095538 L4959 2019 1107 227669832^131072+1 1095409 L5707 2024 Generalized Fermat 1108 227406222^131072+1 1095343 L4371 2024 Generalized Fermat 1109 227239620^131072+1 1095302 L4559 2024 Generalized Fermat 1110 227135580^131072+1 1095276 L5974 2024 Generalized Fermat 1111 227009830^131072+1 1095244 L4359 2024 Generalized Fermat 1112 226881840^131072+1 1095212 L5784 2024 Generalized Fermat 1113 226782570^131072+1 1095187 L6026 2024 Generalized Fermat 1114 226710488^131072+1 1095169 L5588 2024 Generalized Fermat 1115 226639300^131072+1 1095151 L5634 2024 Generalized Fermat 1116 226453444^131072+1 1095104 L4559 2024 Generalized Fermat 1117 226341130^131072+1 1095076 L4341 2024 Generalized Fermat 1118 226249042^131072+1 1095053 L5370 2024 Generalized Fermat 1119 226100602^131072+1 1095016 L4429 2024 Generalized Fermat 1120 225580118^131072+1 1094884 L5056 2024 Generalized Fermat 1121 225124888^131072+1 1094769 L4591 2024 Generalized Fermat 1122 224635814^131072+1 1094646 L4875 2024 Generalized Fermat 1123 224347630^131072+1 1094572 L5512 2024 Generalized Fermat 1124 224330804^131072+1 1094568 L6019 2024 Generalized Fermat 1125 224249932^131072+1 1094548 L4371 2024 Generalized Fermat 1126 224072278^131072+1 1094503 L5974 2024 Generalized Fermat 1127 639*2^3635707+1 1094460 L1823 2019 1128 223490796^131072+1 1094355 L5332 2024 Generalized Fermat 1129 223074802^131072+1 1094249 L5416 2024 Generalized Fermat 1130 223010262^131072+1 1094232 L6015 2024 Generalized Fermat 1131 222996490^131072+1 1094229 L5731 2024 Generalized Fermat 1132 222888506^131072+1 1094201 L5974 2024 Generalized Fermat 1133 222593516^131072+1 1094126 L6011 2024 Generalized Fermat 1134 222486400^131072+1 1094098 L5332 2024 Generalized Fermat 1135 221636362^131072+1 1093880 L4904 2024 Generalized Fermat 1136 221528336^131072+1 1093853 L5721 2024 Generalized Fermat 1137 221330854^131072+1 1093802 L6010 2024 Generalized Fermat 1138 221325712^131072+1 1093801 L4201 2024 Generalized Fermat 1139 221174400^131072+1 1093762 L4201 2024 Generalized Fermat 1140 221008432^131072+1 1093719 L5974 2024 Generalized Fermat 1141 220956326^131072+1 1093705 L5731 2024 Generalized Fermat 1142 220838206^131072+1 1093675 L5974 2024 Generalized Fermat 1143 220325976^131072+1 1093543 L5690 2024 Generalized Fermat 1144 220317996^131072+1 1093541 L5989 2024 Generalized Fermat 1145 220288248^131072+1 1093533 L5721 2024 Generalized Fermat 1146 219984494^131072+1 1093455 L6005 2024 Generalized Fermat 1147 219556482^131072+1 1093344 L5721 2024 Generalized Fermat 1148 219525472^131072+1 1093336 L4898 2024 Generalized Fermat 1149 219447698^131072+1 1093315 L4933 2024 Generalized Fermat 1150 219430370^131072+1 1093311 L4774 2024 Generalized Fermat 1151 219331584^131072+1 1093285 L5746 2024 Generalized Fermat 1152 753*2^3631472+1 1093185 L1823 2019 1153 2*205731^205731-1 1093111 L4965 2022 1154 218012734^131072+1 1092942 L4928 2024 Generalized Fermat 1155 217820568^131072+1 1092892 L5690 2024 Generalized Fermat 1156 217559364^131072+1 1092823 L4898 2024 Generalized Fermat 1157 217458668^131072+1 1092797 L5989 2024 Generalized Fermat 1158 217423702^131072+1 1092788 L5998 2024 Generalized Fermat 1159 217176690^131072+1 1092723 L5637 2024 Generalized Fermat 1160 217170570^131072+1 1092722 L4371 2024 Generalized Fermat 1161 65531*2^3629342-1 1092546 L2269 2011 1162 1121*2^3629201+1 1092502 L4761 2019 1163 216307766^131072+1 1092495 L4387 2024 Generalized Fermat 1164 216084296^131072+1 1092436 L4201 2024 Generalized Fermat 1165 215*2^3628962-1 1092429 L2484 2018 1166 216039994^131072+1 1092425 L5880 2024 Generalized Fermat 1167 216027436^131072+1 1092421 L5277 2024 Generalized Fermat 1168 216018002^131072+1 1092419 L5586 2024 Generalized Fermat 1169 215949788^131072+1 1092401 L4537 2024 Generalized Fermat 1170 215945398^131072+1 1092400 L4245 2024 Generalized Fermat 1171 215783788^131072+1 1092357 L5711 2024 Generalized Fermat 1172 215717854^131072+1 1092340 L4245 2024 Generalized Fermat 1173 215462154^131072+1 1092272 L4387 2024 Generalized Fermat 1174 215237318^131072+1 1092213 L5693 2024 Generalized Fermat 1175 215004526^131072+1 1092151 L4928 2024 Generalized Fermat 1176 113*2^3628034-1 1092150 L2484 2014 1177 214992758^131072+1 1092148 L5974 2024 Generalized Fermat 1178 214814516^131072+1 1092101 L5746 2024 Generalized Fermat 1179 1175*2^3627541+1 1092002 L4840 2019 1180 214403112^131072+1 1091992 L4905 2024 Generalized Fermat 1181 214321816^131072+1 1091970 L5989 2024 Generalized Fermat 1182 214134178^131072+1 1091920 L5297 2024 Generalized Fermat 1183 214059556^131072+1 1091900 L4362 2024 Generalized Fermat 1184 2*431^414457+1 1091878 L4879 2019 Divides Phi(431^414457,2) 1185 213879170^131072+1 1091852 L5986 2024 Generalized Fermat 1186b 19116*24^791057-1 1091831 A44 2024 1187 213736552^131072+1 1091814 L4289 2024 Generalized Fermat 1188 213656000^131072+1 1091793 L4892 2024 Generalized Fermat 1189 213580840^131072+1 1091773 L4201 2024 Generalized Fermat 1190 213425082^131072+1 1091731 L4892 2024 Generalized Fermat 1191 213162592^131072+1 1091661 L4549 2024 Generalized Fermat 1192 213151104^131072+1 1091658 L4763 2024 Generalized Fermat 1193 212912634^131072+1 1091595 L5639 2024 Generalized Fermat 1194 212894100^131072+1 1091590 L5470 2024 Generalized Fermat 1195 212865234^131072+1 1091582 L5782 2024 Generalized Fermat 1196 212862096^131072+1 1091581 L4870 2024 Generalized Fermat 1197 212838152^131072+1 1091575 L5718 2024 Generalized Fermat 1198 212497738^131072+1 1091483 L5051 2024 Generalized Fermat 1199 212121206^131072+1 1091383 L4774 2024 Generalized Fermat 1200 211719438^131072+1 1091275 L4775 2024 Generalized Fermat 1201 211448294^131072+1 1091202 L5929 2024 Generalized Fermat 1202 211407740^131072+1 1091191 L4341 2024 Generalized Fermat 1203 211326826^131072+1 1091169 L5143 2024 Generalized Fermat 1204 210908700^131072+1 1091056 L5639 2024 Generalized Fermat 1205 210564358^131072+1 1090963 L5639 2024 Generalized Fermat 1206 210434680^131072+1 1090928 L4380 2024 Generalized Fermat 1207 210397166^131072+1 1090918 L4870 2024 Generalized Fermat 1208 210160342^131072+1 1090854 L5974 2024 Generalized Fermat 1209 210088618^131072+1 1090834 L5041 2024 Generalized Fermat 1210 209917216^131072+1 1090788 L5755 2024 Generalized Fermat 1211 209839940^131072+1 1090767 L5639 2024 Generalized Fermat 1212 209637998^131072+1 1090712 L4544 2024 Generalized Fermat 1213 951*2^3623185+1 1090691 L1823 2019 1214 209494470^131072+1 1090673 L5869 2024 Generalized Fermat 1215 209385420^131072+1 1090644 L5720 2024 Generalized Fermat 1216 209108558^131072+1 1090568 L5460 2024 Generalized Fermat 1217 209101202^131072+1 1090566 L5011 2024 Generalized Fermat 1218 208565926^131072+1 1090420 L5016 2024 Generalized Fermat 1219 208497360^131072+1 1090402 L5234 2024 Generalized Fermat 1220 208392300^131072+1 1090373 L5030 2024 Generalized Fermat 1221 208374066^131072+1 1090368 L5869 2024 Generalized Fermat 1222 208352366^131072+1 1090362 L5044 2024 Generalized Fermat 1223 208236434^131072+1 1090330 L5984 2024 Generalized Fermat 1224 208003690^131072+1 1090267 L5639 2024 Generalized Fermat 1225 207985150^131072+1 1090262 L5791 2024 Generalized Fermat 1226 207753480^131072+1 1090198 L5974 2024 Generalized Fermat 1227 207514736^131072+1 1090133 L4477 2024 Generalized Fermat 1228 207445740^131072+1 1090114 L5273 2024 Generalized Fermat 1229 29*920^367810-1 1090113 L4064 2015 1230 207296788^131072+1 1090073 L5234 2024 Generalized Fermat 1231 207264358^131072+1 1090064 L5758 2024 Generalized Fermat 1232 207213640^131072+1 1090050 L5077 2024 Generalized Fermat 1233 206709064^131072+1 1089911 L5639 2024 Generalized Fermat 1234 206640054^131072+1 1089892 L5288 2024 Generalized Fermat 1235 206594738^131072+1 1089880 L5707 2024 Generalized Fermat 1236 206585726^131072+1 1089877 L5667 2024 Generalized Fermat 1237 206473754^131072+1 1089846 L5855 2024 Generalized Fermat 1238 206230080^131072+1 1089779 L5143 2024 Generalized Fermat 1239 206021166^131072+1 1089722 L5639 2024 Generalized Fermat 1240 205990406^131072+1 1089713 L4755 2024 Generalized Fermat 1241 205963322^131072+1 1089706 L5844 2024 Generalized Fermat 1242 205339678^131072+1 1089533 L4905 2024 Generalized Fermat 1243 205160722^131072+1 1089483 L5639 2024 Generalized Fermat 1244 205150506^131072+1 1089480 L5543 2024 Generalized Fermat 1245 205010004^131072+1 1089441 L5025 2024 Generalized Fermat 1246 14641*2^3618876+1 1089395 L181 2018 Generalized Fermat 1247 204695540^131072+1 1089354 L4905 2024 Generalized Fermat 1248 485*2^3618563+1 1089299 L3924 2019 1249 204382086^131072+1 1089267 L4477 2024 Generalized Fermat 1250 204079052^131072+1 1089182 L4763 2024 Generalized Fermat 1251 204016062^131072+1 1089165 L5712 2024 Generalized Fermat 1252 203275588^131072+1 1088958 L5041 2024 Generalized Fermat 1253 203250558^131072+1 1088951 L4210 2024 Generalized Fermat 1254 203238918^131072+1 1088948 L5586 2024 Generalized Fermat 1255 202515696^131072+1 1088745 L4549 2024 Generalized Fermat 1256 202391964^131072+1 1088710 L4835 2024 Generalized Fermat 1257 202251688^131072+1 1088670 L5288 2024 Generalized Fermat 1258 202114688^131072+1 1088632 L5711 2024 Generalized Fermat 1259 202045732^131072+1 1088612 L4537 2024 Generalized Fermat 1260 201593074^131072+1 1088485 L5027 2024 Generalized Fermat 1261 201536524^131072+1 1088469 L5769 2024 Generalized Fermat 1262 201389466^131072+1 1088427 L4537 2024 Generalized Fermat 1263 201249512^131072+1 1088388 L5234 2024 Generalized Fermat 1264 201239624^131072+1 1088385 L5732 2024 Generalized Fermat 1265 200519642^131072+1 1088181 L5712 2024 Generalized Fermat 1266 200459670^131072+1 1088164 L5948 2024 Generalized Fermat 1267 200433382^131072+1 1088156 L5948 2024 Generalized Fermat 1268 200280100^131072+1 1088113 L4892 2024 Generalized Fermat 1269 200053318^131072+1 1088048 L5586 2024 Generalized Fermat 1270 199971120^131072+1 1088025 L5030 2024 Generalized Fermat 1271 95*2^3614033+1 1087935 L1474 2019 1272 199502780^131072+1 1087891 L5878 2024 Generalized Fermat 1273 198402358^131072+1 1087577 L5606 2024 Generalized Fermat 1274 198320982^131072+1 1087553 L5938 2024 Generalized Fermat 1275 198319118^131072+1 1087553 L4737 2024 Generalized Fermat 1276 1005*2^3612300+1 1087414 L1823 2019 1277 197752702^131072+1 1087390 L5355 2024 Generalized Fermat 1278 197607368^131072+1 1087348 L5041 2024 Generalized Fermat 1279 197352408^131072+1 1087275 L4861 2024 Generalized Fermat 1280 861*2^3611815+1 1087268 L1745 2019 1281 197230100^131072+1 1087239 L4753 2024 Generalized Fermat 1282 197212998^131072+1 1087234 L5469 2024 Generalized Fermat 1283 197197506^131072+1 1087230 L4753 2024 Generalized Fermat 1284 197018872^131072+1 1087178 L4884 2024 Generalized Fermat 1285 1087*2^3611476+1 1087166 L4834 2019 1286 196722548^131072+1 1087093 L5782 2024 Generalized Fermat 1287 196703802^131072+1 1087087 L4742 2024 Generalized Fermat 1288 196687752^131072+1 1087082 L5051 2024 Generalized Fermat 1289 195950620^131072+1 1086869 L5929 2024 Generalized Fermat 1290 195834796^131072+1 1086835 L5070 2024 Generalized Fermat 1291 195048992^131072+1 1086606 L5143 2024 Generalized Fermat 1292 194911702^131072+1 1086566 L5948 2024 Generalized Fermat 1293 194819864^131072+1 1086539 L5690 2024 Generalized Fermat 1294 485767*2^3609357-1 1086531 L622 2008 1295 194730404^131072+1 1086513 L5782 2024 Generalized Fermat 1296 194644872^131072+1 1086488 L4720 2024 Generalized Fermat 1297 194584114^131072+1 1086470 L4201 2024 Generalized Fermat 1298 194263106^131072+1 1086376 L4892 2024 Generalized Fermat 1299 194202254^131072+1 1086359 L4835 2024 Generalized Fermat 1300 194159546^131072+1 1086346 L4387 2024 Generalized Fermat 1301 193935716^131072+1 1086280 L4835 2024 Generalized Fermat 1302 193247784^131072+1 1086078 L5234 2024 Generalized Fermat 1303 192866222^131072+1 1085966 L5913 2024 Generalized Fermat 1304 192651588^131072+1 1085902 L5880 2024 Generalized Fermat 1305 192606308^131072+1 1085889 L4476 2024 Generalized Fermat 1306 675*2^3606447+1 1085652 L3278 2019 1307 191678526^131072+1 1085614 L5234 2024 Generalized Fermat 1308 669*2^3606266+1 1085598 L1675 2019 1309 191567332^131072+1 1085581 L4309 2024 Generalized Fermat 1310 65077*2^3605944+1 1085503 L4685 2020 1311 191194450^131072+1 1085470 L4245 2024 Generalized Fermat 1312 1365*2^3605491+1 1085365 L1134 2022 1313 190810274^131072+1 1085356 L5460 2024 Generalized Fermat 1314 190309640^131072+1 1085206 L5880 2024 Generalized Fermat 1315 190187176^131072+1 1085169 L5470 2024 Generalized Fermat 1316 190144032^131072+1 1085156 L4341 2024 Generalized Fermat 1317 851*2^3604395+1 1085034 L2125 2019 1318 189411830^131072+1 1084937 L5578 2024 Generalized Fermat 1319 189240324^131072+1 1084885 L4892 2024 Generalized Fermat 1320 188766416^131072+1 1084743 L5639 2024 Generalized Fermat 1321 188655374^131072+1 1084709 L5842 2024 Generalized Fermat 1322 188646712^131072+1 1084706 L4905 2024 Generalized Fermat 1323 187961358^131072+1 1084499 L5881 2024 Generalized Fermat 1324 1143*2^3602429+1 1084443 L4754 2019 1325 187731580^131072+1 1084430 L5847 2024 Generalized Fermat 1326 187643362^131072+1 1084403 L5707 2024 Generalized Fermat 1327 187584550^131072+1 1084385 L5526 2024 Generalized Fermat 1328 187330820^131072+1 1084308 L5879 2024 Generalized Fermat 1329 1183*2^3601898+1 1084283 L1823 2019 1330 187231212^131072+1 1084278 L4550 2024 Generalized Fermat 1331 187184006^131072+1 1084263 L5051 2024 Generalized Fermat 1332 187007398^131072+1 1084210 L5604 2024 Generalized Fermat 1333 185411044^131072+1 1083722 L5044 2023 Generalized Fermat 1334 185248324^131072+1 1083672 L4371 2023 Generalized Fermat 1335 185110536^131072+1 1083629 L4559 2023 Generalized Fermat 1336 185015722^131072+1 1083600 L5723 2023 Generalized Fermat 1337 184855564^131072+1 1083551 L5748 2023 Generalized Fermat 1338 184835362^131072+1 1083545 L5416 2024 Generalized Fermat 1339 184814078^131072+1 1083538 L4559 2023 Generalized Fermat 1340 184653266^131072+1 1083488 L5606 2023 Generalized Fermat 1341 184523024^131072+1 1083448 L4550 2023 Generalized Fermat 1342 184317182^131072+1 1083385 L5863 2023 Generalized Fermat 1343 184310672^131072+1 1083383 L5863 2023 Generalized Fermat 1344 184119204^131072+1 1083324 L5863 2023 Generalized Fermat 1345 183839694^131072+1 1083237 L5865 2023 Generalized Fermat 1346 183591732^131072+1 1083160 L5586 2023 Generalized Fermat 1347 183392536^131072+1 1083098 L5044 2023 Generalized Fermat 1348 183383118^131072+1 1083096 L4371 2023 Generalized Fermat 1349 183157240^131072+1 1083025 L5853 2023 Generalized Fermat 1350 182252536^131072+1 1082744 L5854 2023 Generalized Fermat 1351 182166824^131072+1 1082717 L5854 2023 Generalized Fermat 1352 181969816^131072+1 1082655 L4591 2023 Generalized Fermat 1353 181913260^131072+1 1082637 L5853 2023 Generalized Fermat 1354 189*2^3596375+1 1082620 L3760 2016 1355 181302244^131072+1 1082446 L4550 2023 Generalized Fermat 1356 180680920^131072+1 1082251 L5639 2023 Generalized Fermat 1357 180455838^131072+1 1082180 L5847 2023 Generalized Fermat 1358 180111908^131072+1 1082071 L5844 2023 Generalized Fermat 1359 180084608^131072+1 1082062 L5056 2023 Generalized Fermat 1360 180045220^131072+1 1082050 L4550 2023 Generalized Fermat 1361 180002474^131072+1 1082036 L5361 2023 Generalized Fermat 1362 179913814^131072+1 1082008 L4875 2023 Generalized Fermat 1363 1089*2^3593267+1 1081685 L3035 2019 1364 178743858^131072+1 1081637 L5051 2023 Generalized Fermat 1365 178437884^131072+1 1081539 L4591 2023 Generalized Fermat 1366 178435022^131072+1 1081538 L5639 2023 Generalized Fermat 1367 178311240^131072+1 1081499 L5369 2023 Generalized Fermat 1368 178086108^131072+1 1081427 L4939 2023 Generalized Fermat 1369 178045832^131072+1 1081414 L5836 2023 Generalized Fermat 1370 177796222^131072+1 1081334 L5834 2023 Generalized Fermat 1371 177775606^131072+1 1081328 L5794 2023 Generalized Fermat 1372 177648552^131072+1 1081287 L5782 2023 Generalized Fermat 1373 177398652^131072+1 1081207 L4559 2023 Generalized Fermat 1374 177319028^131072+1 1081181 L5526 2023 Generalized Fermat 1375 177296064^131072+1 1081174 L5831 2023 Generalized Fermat 1376 177129922^131072+1 1081121 L4559 2023 Generalized Fermat 1377 176799404^131072+1 1081014 L4775 2023 Generalized Fermat 1378 176207346^131072+1 1080823 L5805 2023 Generalized Fermat 1379 176085282^131072+1 1080784 L5805 2023 Generalized Fermat 1380 175482140^131072+1 1080589 L5639 2023 Generalized Fermat 1381 175271418^131072+1 1080520 L5051 2023 Generalized Fermat 1382 19581121*2^3589357-1 1080512 p49 2022 1383 175200596^131072+1 1080497 L5817 2023 Generalized Fermat 1384 1101*2^3589103+1 1080431 L1823 2019 1385 174728608^131072+1 1080344 L5416 2023 Generalized Fermat 1386 174697724^131072+1 1080334 L4747 2023 Generalized Fermat 1387 174534362^131072+1 1080280 L5814 2023 Generalized Fermat 1388 174142738^131072+1 1080152 L4249 2023 Generalized Fermat 1389 174103532^131072+1 1080140 L4249 2023 Generalized Fermat 1390 173962482^131072+1 1080093 L4249 2023 Generalized Fermat 1391 35*2^3587843+1 1080050 L1979 2014 Divides GF(3587841,5) 1392 173717408^131072+1 1080013 L5634 2023 Generalized Fermat 1393 173561300^131072+1 1079962 L4249 2023 Generalized Fermat 1394 173343810^131072+1 1079891 L4249 2023 Generalized Fermat 1395 172026454^131072+1 1079456 L4737 2023 Generalized Fermat 1396 172004036^131072+1 1079449 L5512 2023 Generalized Fermat 1397 275*2^3585539+1 1079358 L3803 2016 1398 171677924^131072+1 1079341 L5512 2023 Generalized Fermat 1399 171610156^131072+1 1079319 L4249 2023 Generalized Fermat 1400 171518672^131072+1 1079288 L5586 2023 Generalized Fermat 1401 171128300^131072+1 1079158 L4249 2023 Generalized Fermat 1402 170982934^131072+1 1079110 L4201 2023 Generalized Fermat 1403 170626040^131072+1 1078991 L5748 2023 Generalized Fermat 1404 169929578^131072+1 1078758 L5748 2023 Generalized Fermat 1405 169369502^131072+1 1078570 L4410 2023 Generalized Fermat 1406 169299904^131072+1 1078547 L4559 2023 Generalized Fermat 1407 169059224^131072+1 1078466 L5746 2023 Generalized Fermat 1408 168885632^131072+1 1078408 L5793 2023 Generalized Fermat 1409 168602250^131072+1 1078312 L5782 2023 Generalized Fermat 1410 168576546^131072+1 1078303 L5639 2023 Generalized Fermat 1411 167845698^131072+1 1078056 L5735 2023 Generalized Fermat 1412 167604930^131072+1 1077974 L4859 2023 Generalized Fermat 1413 2*59^608685+1 1077892 g427 2014 Divides Phi(59^608685,2) 1414 167206862^131072+1 1077839 L5641 2023 Generalized Fermat 1415 166964502^131072+1 1077756 L5627 2023 Generalized Fermat 1416 651*2^3579843+1 1077643 L3035 2018 1417 166609122^131072+1 1077635 L5782 2023 Generalized Fermat 1418 166397330^131072+1 1077563 L5578 2023 Generalized Fermat 1419 166393356^131072+1 1077561 L5782 2023 Generalized Fermat 1420 166288612^131072+1 1077525 L4672 2023 Generalized Fermat 1421 166277052^131072+1 1077521 L5755 2023 Generalized Fermat 1422 166052226^131072+1 1077444 L4670 2023 Generalized Fermat 1423 165430644^131072+1 1077231 L4672 2023 Generalized Fermat 1424 165427494^131072+1 1077230 L4249 2023 Generalized Fermat 1425 583*2^3578402+1 1077210 L3035 2018 1426 165361824^131072+1 1077207 L5586 2023 Generalized Fermat 1427 165258594^131072+1 1077172 L4884 2023 Generalized Fermat 1428 165036358^131072+1 1077095 L5156 2023 Generalized Fermat 1429 164922680^131072+1 1077056 L4249 2023 Generalized Fermat 1430 164800594^131072+1 1077014 L5775 2023 Generalized Fermat 1431 164660428^131072+1 1076965 L4249 2023 Generalized Fermat 1432 309*2^3577339+1 1076889 L4406 2016 1433 164440734^131072+1 1076889 L5485 2023 Generalized Fermat 1434 163871194^131072+1 1076692 L5772 2023 Generalized Fermat 1435 163838506^131072+1 1076680 L5758 2023 Generalized Fermat 1436 163821336^131072+1 1076674 L5544 2023 Generalized Fermat 1437 163820256^131072+1 1076674 L5452 2023 Generalized Fermat 1438 163666380^131072+1 1076621 L5030 2023 Generalized Fermat 1439 163585288^131072+1 1076592 L4928 2023 Generalized Fermat 1440 163359994^131072+1 1076514 L5769 2023 Generalized Fermat 1441 163214942^131072+1 1076463 L4933 2023 Generalized Fermat 1442 163193584^131072+1 1076456 L5595 2023 Generalized Fermat 1443 163152818^131072+1 1076442 L5639 2023 Generalized Fermat 1444 163044252^131072+1 1076404 L5775 2023 Generalized Fermat 1445 162950466^131072+1 1076371 L5694 2023 Generalized Fermat 1446 162874590^131072+1 1076345 L5586 2023 Generalized Fermat 1447 162850104^131072+1 1076336 L5769 2023 Generalized Fermat 1448 162817576^131072+1 1076325 L5772 2023 Generalized Fermat 1449 1185*2^3574583+1 1076060 L4851 2018 1450 251*2^3574535+1 1076045 L3035 2016 1451 1485*2^3574333+1 1075985 L1134 2022 1452 161706626^131072+1 1075935 L4870 2023 Generalized Fermat 1453 161619620^131072+1 1075904 L5586 2023 Generalized Fermat 1454 161588716^131072+1 1075893 L4928 2023 Generalized Fermat 1455 161571504^131072+1 1075887 L5030 2023 Generalized Fermat 1456 161569668^131072+1 1075887 L5639 2023 Generalized Fermat 1457 160998114^131072+1 1075685 L5586 2023 Generalized Fermat 1458 160607310^131072+1 1075547 L5763 2023 Generalized Fermat 1459 160325616^131072+1 1075447 L5586 2023 Generalized Fermat 1460 160228242^131072+1 1075412 L5632 2023 Generalized Fermat 1461 160146172^131072+1 1075383 L4773 2023 Generalized Fermat 1462 159800918^131072+1 1075260 L5586 2023 Generalized Fermat 1463 159794566^131072+1 1075258 L4249 2023 Generalized Fermat 1464 159784836^131072+1 1075254 L5639 2023 Generalized Fermat 1465 159784822^131072+1 1075254 L5637 2023 Generalized Fermat 1466 1019*2^3571635+1 1075173 L1823 2018 1467 159509138^131072+1 1075156 L5637 2023 Generalized Fermat 1468 119*2^3571416-1 1075106 L2484 2018 1469 159214418^131072+1 1075051 L5755 2023 Generalized Fermat 1470 158831096^131072+1 1074914 L5022 2023 Generalized Fermat 1471 35*2^3570777+1 1074913 L2891 2014 1472 158696888^131072+1 1074865 L5030 2023 Generalized Fermat 1473 158472238^131072+1 1074785 L5586 2023 Generalized Fermat 1474 33*2^3570132+1 1074719 L2552 2014 1475 157923226^131072+1 1074587 L4249 2023 Generalized Fermat 1476 157541220^131072+1 1074449 L5416 2023 Generalized Fermat 1477 5*2^3569154-1 1074424 L503 2009 1478 157374268^131072+1 1074389 L5578 2023 Generalized Fermat 1479 81*492^399095-1 1074352 L4001 2015 1480 156978838^131072+1 1074246 L5332 2023 Generalized Fermat 1481 156789840^131072+1 1074177 L4747 2023 Generalized Fermat 1482 156756400^131072+1 1074165 L4249 2023 Generalized Fermat 1483 22934*5^1536762-1 1074155 L3789 2014 1484 156625064^131072+1 1074117 L5694 2023 Generalized Fermat 1485 156519708^131072+1 1074079 L5746 2023 Generalized Fermat 1486 156468140^131072+1 1074060 L4249 2023 Generalized Fermat 1487 156203340^131072+1 1073964 L5578 2023 Generalized Fermat 1488 156171526^131072+1 1073952 L5698 2023 Generalized Fermat 1489 155778562^131072+1 1073809 L4309 2023 Generalized Fermat 1490 155650426^131072+1 1073762 L5668 2023 Generalized Fermat 1491 155536474^131072+1 1073720 L4249 2023 Generalized Fermat 1492 155339878^131072+1 1073648 L5206 2023 Generalized Fermat 1493 155305266^131072+1 1073636 L5549 2023 Generalized Fermat 1494 155006218^131072+1 1073526 L4742 2023 Generalized Fermat 1495 154553092^131072+1 1073359 L4920 2023 Generalized Fermat 1496 154492166^131072+1 1073337 L4326 2023 Generalized Fermat 1497 154478286^131072+1 1073332 L4544 2023 Generalized Fermat 1498 154368914^131072+1 1073291 L5738 2023 Generalized Fermat 1499 153966766^131072+1 1073143 L5732 2023 Generalized Fermat 1500b 3437687*2^3564664-1 1073078 L5327 2024 1501 265*2^3564373-1 1072986 L2484 2018 1502 153485148^131072+1 1072965 L5736 2023 Generalized Fermat 1503 153432848^131072+1 1072945 L5030 2023 Generalized Fermat 1504 153413432^131072+1 1072938 L4835 2023 Generalized Fermat 1505 771*2^3564109+1 1072907 L2125 2018 1506 381*2^3563676+1 1072776 L4190 2016 1507 152966530^131072+1 1072772 L5070 2023 Generalized Fermat 1508 555*2^3563328+1 1072672 L4850 2018 1509 152542626^131072+1 1072614 L5460 2023 Generalized Fermat 1510 151999396^131072+1 1072411 L5586 2023 Generalized Fermat 1511 151609814^131072+1 1072265 L5663 2023 Generalized Fermat 1512 151218242^131072+1 1072118 L5588 2023 Generalized Fermat 1513 151108236^131072+1 1072076 L4672 2023 Generalized Fermat 1514 151044622^131072+1 1072052 L5544 2023 Generalized Fermat 1515 151030068^131072+1 1072047 L4774 2023 Generalized Fermat 1516 150908454^131072+1 1072001 L4758 2023 Generalized Fermat 1517 150863054^131072+1 1071984 L5720 2023 Generalized Fermat 1518 1183*2^3560584+1 1071846 L1823 2018 1519 150014492^131072+1 1071663 L4476 2023 Generalized Fermat 1520 149972788^131072+1 1071647 L4559 2023 Generalized Fermat 1521 415*2^3559614+1 1071554 L3035 2016 1522 149665588^131072+1 1071530 L4892 2023 Generalized Fermat 1523 149142686^131072+1 1071331 L4684 2023 Generalized Fermat 1524 149057554^131072+1 1071298 L4933 2023 Generalized Fermat 1525 148598024^131072+1 1071123 L4476 2023 Generalized Fermat 1526 1103*2^3558177-503*2^1092022-1 1071122 p423 2022 Arithmetic progression (3,d=1103*2^3558176-503*2^1092022) 1527 1103*2^3558176-1 1071121 L1828 2018 1528 148592576^131072+1 1071121 L4476 2023 Generalized Fermat 1529 148425726^131072+1 1071057 L4289 2023 Generalized Fermat 1530 148154288^131072+1 1070952 L5714 2023 Generalized Fermat 1531 148093952^131072+1 1070929 L4720 2023 Generalized Fermat 1532 148070542^131072+1 1070920 L5155 2023 Generalized Fermat 1533 147988292^131072+1 1070889 L5155 2023 Generalized Fermat 1534 147816036^131072+1 1070822 L5634 2023 Generalized Fermat 1535 1379*2^3557072-1 1070789 L1828 2018 1536 147539992^131072+1 1070716 L4917 2023 Generalized Fermat 1537 147433824^131072+1 1070675 L4753 2023 Generalized Fermat 1538 147310498^131072+1 1070627 L5403 2023 Generalized Fermat 1539 147265916^131072+1 1070610 L5543 2023 Generalized Fermat 1540 146994540^131072+1 1070505 L5634 2023 Generalized Fermat 1541 146520528^131072+1 1070321 L5469 2023 Generalized Fermat 1542 146465338^131072+1 1070300 L5704 2023 Generalized Fermat 1543 146031082^131072+1 1070131 L4697 2023 Generalized Fermat 1544 145949782^131072+1 1070099 L5029 2023 Generalized Fermat 1545 145728478^131072+1 1070013 L5543 2023 Generalized Fermat 1546 145245346^131072+1 1069824 L5586 2023 Generalized Fermat 1547 145137270^131072+1 1069781 L4742 2023 Generalized Fermat 1548 145132288^131072+1 1069779 L4774 2023 Generalized Fermat 1549 144926960^131072+1 1069699 L5036 2023 Generalized Fermat 1550 144810806^131072+1 1069653 L5543 2023 Generalized Fermat 1551 681*2^3553141+1 1069605 L3035 2018 1552 144602744^131072+1 1069571 L5543 2023 Generalized Fermat 1553 143844356^131072+1 1069272 L5693 2023 Generalized Fermat 1554 599*2^3551793+1 1069200 L3824 2018 1555 143421820^131072+1 1069104 L4904 2023 Generalized Fermat 1556 621*2^3551472+1 1069103 L4687 2018 1557 143416574^131072+1 1069102 L4591 2023 Generalized Fermat 1558 143126384^131072+1 1068987 L5288 2023 Generalized Fermat 1559 142589776^131072+1 1068773 L4201 2023 Generalized Fermat 1560 773*2^3550373+1 1068772 L1808 2018 1561 142527792^131072+1 1068748 L4387 2023 Generalized Fermat 1562 142207386^131072+1 1068620 L5694 2023 Generalized Fermat 1563 142195844^131072+1 1068616 L5548 2023 Generalized Fermat 1564 141636602^131072+1 1068391 L5639 2023 Generalized Fermat 1565 141554190^131072+1 1068358 L4956 2023 Generalized Fermat 1566 1199*2^3548380-1 1068172 L1828 2018 1567 140928044^131072+1 1068106 L4870 2023 Generalized Fermat 1568 191*2^3548117+1 1068092 L4203 2015 1569 140859866^131072+1 1068078 L5011 2023 Generalized Fermat 1570 140824516^131072+1 1068064 L4760 2023 Generalized Fermat 1571 140649396^131072+1 1067993 L5578 2023 Generalized Fermat 1572 867*2^3547711+1 1067971 L4155 2018 1573 140473436^131072+1 1067922 L4210 2023 Generalized Fermat 1574 140237690^131072+1 1067826 L5051 2023 Generalized Fermat 1575 139941370^131072+1 1067706 L5671 2023 Generalized Fermat 1576 3^2237561+3^1118781+1 1067588 L3839 2014 Generalized unique 1577 139352402^131072+1 1067466 L5663 2023 Generalized Fermat 1578 351*2^3545752+1 1067381 L4082 2016 1579 138896860^131072+1 1067279 L4745 2023 Generalized Fermat 1580 138894074^131072+1 1067278 L5041 2023 Generalized Fermat 1581 138830036^131072+1 1067252 L5662 2023 Generalized Fermat 1582 138626864^131072+1 1067169 L5663 2023 Generalized Fermat 1583 138527284^131072+1 1067128 L5663 2023 Generalized Fermat 1584 93*2^3544744+1 1067077 L1728 2014 1585 138000006^131072+1 1066911 L5051 2023 Generalized Fermat 1586 137900696^131072+1 1066870 L4249 2023 Generalized Fermat 1587 137878102^131072+1 1066860 L5051 2023 Generalized Fermat 1588 1159*2^3543702+1 1066764 L1823 2018 1589 137521726^131072+1 1066713 L4672 2023 Generalized Fermat 1590 137486564^131072+1 1066699 L5586 2023 Generalized Fermat 1591 136227118^131072+1 1066175 L5416 2023 Generalized Fermat 1592 136192168^131072+1 1066160 L5556 2023 Generalized Fermat 1593 136124076^131072+1 1066132 L5041 2023 Generalized Fermat 1594 136122686^131072+1 1066131 L5375 2023 Generalized Fermat 1595 2*3^2234430-1 1066095 A2 2023 1596 178658*5^1525224-1 1066092 L3789 2014 1597 135744154^131072+1 1065973 L5068 2023 Generalized Fermat 1598 135695350^131072+1 1065952 L4249 2023 Generalized Fermat 1599 135623220^131072+1 1065922 L5657 2023 Generalized Fermat 1600 135513092^131072+1 1065876 L5656 2023 Generalized Fermat 1601 135497678^131072+1 1065869 L4387 2023 Generalized Fermat 1602 135458028^131072+1 1065852 L5051 2023 Generalized Fermat 1603 135332960^131072+1 1065800 L5655 2023 Generalized Fermat 1604 135135930^131072+1 1065717 L4387 2023 Generalized Fermat 1605 1085*2^3539671+1 1065551 L3035 2018 1606 134706086^131072+1 1065536 L5378 2023 Generalized Fermat 1607 134459616^131072+1 1065431 L5658 2023 Generalized Fermat 1608 134447516^131072+1 1065426 L4387 2023 Generalized Fermat 1609 134322272^131072+1 1065373 L4387 2023 Generalized Fermat 1610 134206304^131072+1 1065324 L4684 2023 Generalized Fermat 1611 134176868^131072+1 1065311 L5375 2023 Generalized Fermat 1612 133954018^131072+1 1065217 L5088 2023 Generalized Fermat 1613 133676500^131072+1 1065099 L4387 2023 Generalized Fermat 1614 133569020^131072+1 1065053 L5277 2023 Generalized Fermat 1615 133345154^131072+1 1064958 L4210 2023 Generalized Fermat 1616 133180238^131072+1 1064887 L5586 2023 Generalized Fermat 1617 133096042^131072+1 1064851 L4755 2023 Generalized Fermat 1618 465*2^3536871+1 1064707 L4459 2016 1619 1019*2^3536312-1 1064539 L1828 2012 1620 131820886^131072+1 1064303 L5069 2023 Generalized Fermat 1621 131412078^131072+1 1064126 L5653 2023 Generalized Fermat 1622 131370186^131072+1 1064108 L5036 2023 Generalized Fermat 1623 131309874^131072+1 1064082 L5069 2023 Generalized Fermat 1624 131112524^131072+1 1063996 L4245 2023 Generalized Fermat 1625 1179*2^3534450+1 1063979 L3035 2018 1626 130907540^131072+1 1063907 L4526 2023 Generalized Fermat 1627 130593462^131072+1 1063771 L4559 2023 Generalized Fermat 1628 447*2^3533656+1 1063740 L4457 2016 1629 130518578^131072+1 1063738 L5029 2023 Generalized Fermat 1630 1059*2^3533550+1 1063708 L1823 2018 1631 130198372^131072+1 1063598 L5416 2023 Generalized Fermat 1632 130148002^131072+1 1063576 L4387 2023 Generalized Fermat 1633 130128232^131072+1 1063567 L5029 2023 Generalized Fermat 1634 130051980^131072+1 1063534 L5416 2023 Generalized Fermat 1635 130048816^131072+1 1063533 L4245 2023 Generalized Fermat 1636 345*2^3532957+1 1063529 L4314 2016 1637 553*2^3532758+1 1063469 L1823 2018 1638 129292212^131072+1 1063201 L4285 2023 Generalized Fermat 1639 129159632^131072+1 1063142 L5051 2023 Generalized Fermat 1640 128558886^131072+1 1062877 L5518 2023 Generalized Fermat 1641 128520182^131072+1 1062860 L4745 2023 Generalized Fermat 1642 543131*2^3529754-1 1062568 L4925 2022 1643 127720948^131072+1 1062504 L5378 2023 Generalized Fermat 1644 141*2^3529287+1 1062424 L4185 2015 1645 127093036^131072+1 1062224 L4591 2023 Generalized Fermat 1646 24950*745^369781-1 1062074 L4189 2024 1647 126611934^131072+1 1062008 L4776 2023 Generalized Fermat 1648 126423276^131072+1 1061923 L4201 2023 Generalized Fermat 1649 126334514^131072+1 1061883 L4249 2023 Generalized Fermat 1650 13*2^3527315-1 1061829 L1862 2016 1651 126199098^131072+1 1061822 L4591 2023 Generalized Fermat 1652 126189358^131072+1 1061818 L4704 2023 Generalized Fermat 1653 125966884^131072+1 1061717 L4747 2023 Generalized Fermat 1654 125714084^131072+1 1061603 L4745 2023 Generalized Fermat 1655 125141096^131072+1 1061343 L4559 2023 Generalized Fermat 1656 1393*2^3525571-1 1061306 L1828 2017 1657 125006494^131072+1 1061282 L5639 2023 Generalized Fermat 1658 124877454^131072+1 1061223 L4245 2023 Generalized Fermat 1659 124875502^131072+1 1061222 L4591 2023 Generalized Fermat 1660 124749274^131072+1 1061164 L4591 2023 Generalized Fermat 1661 124586054^131072+1 1061090 L4249 2023 Generalized Fermat 1662 124582356^131072+1 1061088 L5606 2023 Generalized Fermat 1663 124543852^131072+1 1061071 L4249 2023 Generalized Fermat 1664 124393514^131072+1 1061002 L4774 2023 Generalized Fermat 1665 124219534^131072+1 1060922 L4249 2023 Generalized Fermat 1666 124133348^131072+1 1060883 L5088 2023 Generalized Fermat 1667 124080788^131072+1 1060859 L5639 2023 Generalized Fermat 1668 1071*2^3523944+1 1060816 L1675 2018 1669 123910270^131072+1 1060780 L4249 2023 Generalized Fermat 1670 123856592^131072+1 1060756 L4201 2023 Generalized Fermat 1671 123338660^131072+1 1060517 L4905 2022 Generalized Fermat 1672 123306230^131072+1 1060502 L5638 2023 Generalized Fermat 1673 123195196^131072+1 1060451 L5029 2022 Generalized Fermat 1674 122941512^131072+1 1060333 L4559 2022 Generalized Fermat 1675 122869094^131072+1 1060300 L4939 2022 Generalized Fermat 1676 122481106^131072+1 1060120 L4704 2022 Generalized Fermat 1677 122414564^131072+1 1060089 L5627 2022 Generalized Fermat 1678 122372192^131072+1 1060069 L5099 2022 Generalized Fermat 1679 121854624^131072+1 1059828 L5051 2022 Generalized Fermat 1680 121462664^131072+1 1059645 L5632 2022 Generalized Fermat 1681 121158848^131072+1 1059502 L4774 2022 Generalized Fermat 1682 2220172*3^2220172+1 1059298 p137 2023 Generalized Cullen 1683 329*2^3518451+1 1059162 L1823 2016 1684 135*2^3518338+1 1059128 L4045 2015 1685 120106930^131072+1 1059006 L4249 2022 Generalized Fermat 1686 2*10^1059002-1 1059003 L3432 2013 Near-repdigit 1687 119744014^131072+1 1058833 L4249 2022 Generalized Fermat 1688 64*10^1058794+1 1058796 L4036 2017 Generalized Fermat 1689 119604848^131072+1 1058767 L4201 2022 Generalized Fermat 1690 119541900^131072+1 1058737 L4747 2022 Generalized Fermat 1691 119510296^131072+1 1058722 L4201 2022 Generalized Fermat 1692 119246256^131072+1 1058596 L4249 2022 Generalized Fermat 1693 119137704^131072+1 1058544 L4201 2022 Generalized Fermat 1694 118888350^131072+1 1058425 L4999 2022 Generalized Fermat 1695 599*2^3515959+1 1058412 L1823 2018 1696 118583824^131072+1 1058279 L4210 2022 Generalized Fermat 1697 118109876^131072+1 1058051 L4550 2022 Generalized Fermat 1698 117906758^131072+1 1057953 L4249 2022 Generalized Fermat 1699 117687318^131072+1 1057847 L4245 2022 Generalized Fermat 1700 117375862^131072+1 1057696 L4774 2022 Generalized Fermat 1701 117345018^131072+1 1057681 L4848 2022 Generalized Fermat 1702 117196584^131072+1 1057609 L4559 2022 Generalized Fermat 1703 117153716^131072+1 1057588 L4774 2022 Generalized Fermat 1704 117088740^131072+1 1057557 L4559 2022 Generalized Fermat 1705 116936156^131072+1 1057483 L5332 2022 Generalized Fermat 1706 116402336^131072+1 1057222 L4760 2022 Generalized Fermat 1707 7*2^3511774+1 1057151 p236 2008 Divides GF(3511773,6) 1708 116036228^131072+1 1057043 L4773 2022 Generalized Fermat 1709 116017862^131072+1 1057034 L4559 2022 Generalized Fermat 1710 115992582^131072+1 1057021 L4835 2022 Generalized Fermat 1711 115873312^131072+1 1056963 L4677 2022 Generalized Fermat 1712 1135*2^3510890+1 1056887 L1823 2018 1713 115704568^131072+1 1056880 L4559 2022 Generalized Fermat 1714 115479166^131072+1 1056769 L4774 2022 Generalized Fermat 1715 115409608^131072+1 1056735 L4774 2022 Generalized Fermat 1716 115256562^131072+1 1056659 L4559 2022 Generalized Fermat 1717 114687250^131072+1 1056377 L5007 2022 Generalized Fermat 1718 114643510^131072+1 1056356 L4659 2022 Generalized Fermat 1719 114340846^131072+1 1056205 L4559 2022 Generalized Fermat 1720 114159720^131072+1 1056115 L4787 2022 Generalized Fermat 1721 114055498^131072+1 1056063 L4387 2022 Generalized Fermat 1722 114009952^131072+1 1056040 L4387 2022 Generalized Fermat 1723 113904214^131072+1 1055987 L4559 2022 Generalized Fermat 1724 113807058^131072+1 1055939 L5157 2022 Generalized Fermat 1725 113550956^131072+1 1055810 L5578 2022 Generalized Fermat 1726 113521888^131072+1 1055796 L4387 2022 Generalized Fermat 1727 113431922^131072+1 1055751 L4559 2022 Generalized Fermat 1728 113328940^131072+1 1055699 L4787 2022 Generalized Fermat 1729 113327472^131072+1 1055698 L5467 2022 Generalized Fermat 1730 113325850^131072+1 1055698 L4559 2022 Generalized Fermat 1731 113313172^131072+1 1055691 L5005 2022 Generalized Fermat 1732 113191714^131072+1 1055630 L5056 2022 Generalized Fermat 1733 113170004^131072+1 1055619 L4584 2022 Generalized Fermat 1734 428639*2^3506452-1 1055553 L2046 2011 1735 112996304^131072+1 1055532 L5544 2022 Generalized Fermat 1736 112958834^131072+1 1055513 L5512 2022 Generalized Fermat 1737 112852910^131072+1 1055459 L5157 2022 Generalized Fermat 1738 112719374^131072+1 1055392 L4793 2022 Generalized Fermat 1739 112580428^131072+1 1055322 L5512 2022 Generalized Fermat 1740 112248096^131072+1 1055154 L5359 2022 Generalized Fermat 1741 112053266^131072+1 1055055 L5359 2022 Generalized Fermat 1742 112023072^131072+1 1055039 L5156 2022 Generalized Fermat 1743 111673524^131072+1 1054861 L5548 2022 Generalized Fermat 1744 111181588^131072+1 1054610 L4550 2022 Generalized Fermat 1745 104*383^408249+1 1054591 L2012 2021 1746 110866802^131072+1 1054449 L5547 2022 Generalized Fermat 1747 555*2^3502765+1 1054441 L1823 2018 1748 110824714^131072+1 1054427 L4201 2022 Generalized Fermat 1749 8300*171^472170+1 1054358 L5780 2023 1750 110428380^131072+1 1054223 L5543 2022 Generalized Fermat 1751 110406480^131072+1 1054212 L5051 2022 Generalized Fermat 1752 643*2^3501974+1 1054203 L1823 2018 1753 2*23^774109+1 1054127 g427 2014 Divides Phi(23^774109,2) 1754 1159*2^3501490+1 1054057 L2125 2018 1755a 1001*2^3501038-1 1053921 A46 2024 1756 109678642^131072+1 1053835 L4559 2022 Generalized Fermat 1757 109654098^131072+1 1053823 L5143 2022 Generalized Fermat 1758 109142690^131072+1 1053557 L4201 2022 Generalized Fermat 1759 109082020^131072+1 1053525 L4773 2022 Generalized Fermat 1760 1189*2^3499042+1 1053320 L4724 2018 1761 108584736^131072+1 1053265 L5057 2022 Generalized Fermat 1762 108581414^131072+1 1053263 L5088 2022 Generalized Fermat 1763 108195632^131072+1 1053060 L5025 2022 Generalized Fermat 1764 108161744^131072+1 1053043 L4945 2022 Generalized Fermat 1765 108080390^131072+1 1053000 L4945 2022 Generalized Fermat 1766 107979316^131072+1 1052947 L4559 2022 Generalized Fermat 1767 107922308^131072+1 1052916 L5025 2022 Generalized Fermat 1768 609*2^3497474+1 1052848 L1823 2018 1769 9*2^3497442+1 1052836 L1780 2012 Generalized Fermat, divides GF(3497441,10) 1770 107732730^131072+1 1052816 L5518 2022 Generalized Fermat 1771 107627678^131072+1 1052761 L5025 2022 Generalized Fermat 1772 107492880^131072+1 1052689 L4550 2022 Generalized Fermat 1773 107420312^131072+1 1052651 L4550 2022 Generalized Fermat 1774 107404768^131072+1 1052643 L4267 2022 Generalized Fermat 1775 107222132^131072+1 1052546 L5019 2022 Generalized Fermat 1776 107126228^131072+1 1052495 L5025 2022 Generalized Fermat 1777 87*2^3496188+1 1052460 L1576 2014 1778 106901434^131072+1 1052375 L4760 2022 Generalized Fermat 1779 106508704^131072+1 1052166 L5505 2022 Generalized Fermat 1780 106440698^131072+1 1052130 L4245 2022 Generalized Fermat 1781 106019242^131072+1 1051904 L5025 2022 Generalized Fermat 1782 105937832^131072+1 1051860 L4745 2022 Generalized Fermat 1783 783*2^3494129+1 1051841 L3824 2018 1784 105861526^131072+1 1051819 L5500 2022 Generalized Fermat 1785 105850338^131072+1 1051813 L5504 2022 Generalized Fermat 1786 105534478^131072+1 1051643 L5025 2022 Generalized Fermat 1787 105058710^131072+1 1051386 L5499 2022 Generalized Fermat 1788 104907548^131072+1 1051304 L4245 2022 Generalized Fermat 1789 104808996^131072+1 1051250 L4591 2022 Generalized Fermat 1790 104641854^131072+1 1051159 L4245 2022 Generalized Fermat 1791 51*2^3490971+1 1050889 L1823 2014 1792 1485*2^3490746+1 1050823 L1134 2021 1793 103828182^131072+1 1050715 L5072 2022 Generalized Fermat 1794 103605376^131072+1 1050593 L5056 2022 Generalized Fermat 1795 103289324^131072+1 1050419 L5044 2022 Generalized Fermat 1796 103280694^131072+1 1050414 L4745 2022 Generalized Fermat 1797 103209792^131072+1 1050375 L5025 2022 Generalized Fermat 1798 103094212^131072+1 1050311 L4245 2022 Generalized Fermat 1799 103013294^131072+1 1050266 L4745 2022 Generalized Fermat 1800 753*2^3488818+1 1050242 L1823 2018 1801 102507732^131072+1 1049986 L4245 2022 Generalized Fermat 1802 102469684^131072+1 1049965 L4245 2022 Generalized Fermat 1803 102397132^131072+1 1049925 L4720 2022 Generalized Fermat 1804 102257714^131072+1 1049847 L4245 2022 Generalized Fermat 1805 699*2^3487253+1 1049771 L1204 2018 1806 102050324^131072+1 1049732 L5036 2022 Generalized Fermat 1807 102021074^131072+1 1049716 L4245 2022 Generalized Fermat 1808 101915106^131072+1 1049656 L5469 2022 Generalized Fermat 1809 101856256^131072+1 1049623 L4774 2022 Generalized Fermat 1810d 1001*2^3486566-1 1049564 L4518 2024 1811 249*2^3486411+1 1049517 L4045 2015 1812 195*2^3486379+1 1049507 L4108 2015 1813 101607438^131072+1 1049484 L4591 2022 Generalized Fermat 1814 4687*2^3485926+1 1049372 L5302 2023 1815 2691*2^3485924+1 1049372 L5302 2023 1816 6083*2^3485877+1 1049358 L5837 2023 1817 101328382^131072+1 1049328 L4591 2022 Generalized Fermat 1818 101270816^131072+1 1049295 L4245 2022 Generalized Fermat 1819 9757*2^3485666+1 1049295 L5284 2023 1820 8859*2^3484982+1 1049089 L5833 2023 1821 100865034^131072+1 1049067 L4387 2022 Generalized Fermat 1822 59912*5^1500861+1 1049062 L3772 2014 1823 495*2^3484656+1 1048989 L3035 2016 1824 100719472^131072+1 1048985 L5270 2022 Generalized Fermat 1825 100534258^131072+1 1048880 L4245 2022 Generalized Fermat 1826 100520930^131072+1 1048872 L4201 2022 Generalized Fermat 1827 4467*2^3484204+1 1048854 L5189 2023 1828 4873*2^3484142+1 1048835 L5710 2023 1829 100441116^131072+1 1048827 L4309 2022 Generalized Fermat 1830 (3*2^1742059)^2-3*2^1742059+1 1048825 A3 2023 Generalized unique 1831 3891*2^3484099+1 1048822 L5260 2023 1832 7833*2^3484060+1 1048811 L5830 2023 1833 100382228^131072+1 1048794 L4308 2022 Generalized Fermat 1834 100369508^131072+1 1048786 L5157 2022 Generalized Fermat 1835 100324226^131072+1 1048761 L4201 2022 Generalized Fermat 1836 3097*2^3483800+1 1048732 L5829 2023 1837 5873*2^3483573+1 1048664 L5710 2023 1838 2895*2^3483455+1 1048628 L5480 2023 1839 9029*2^3483337+1 1048593 L5393 2023 1840 100010426^131072+1 1048582 L5375 2022 Generalized Fermat 1841 5531*2^3483263+1 1048571 L5825 2023 1842 323*2^3482789+1 1048427 L1204 2016 1843 3801*2^3482723+1 1048408 L5517 2023 1844 99665972^131072+1 1048386 L4201 2022 Generalized Fermat 1845 99650934^131072+1 1048377 L5375 2022 Generalized Fermat 1846 99557826^131072+1 1048324 L5466 2022 Generalized Fermat 1847 8235*2^3482277+1 1048274 L5820 2023 1848 9155*2^3482129+1 1048230 L5226 2023 1849 99351950^131072+1 1048206 L5143 2022 Generalized Fermat 1850 4325*2^3481969+1 1048181 L5434 2023 1851 99189780^131072+1 1048113 L4201 2022 Generalized Fermat 1852 1149*2^3481694+1 1048098 L1823 2018 1853 98978354^131072+1 1047992 L5465 2022 Generalized Fermat 1854 6127*2^3481244+1 1047963 L5226 2023 1855 98922946^131072+1 1047960 L5453 2022 Generalized Fermat 1856 8903*2^3481217+1 1047955 L5226 2023 1857 3595*2^3481178+1 1047943 L5214 2023 1858 3799*2^3480810+1 1047832 L5226 2023 1859 6101*2^3480801+1 1047830 L5226 2023 1860 98652282^131072+1 1047804 L4201 2022 Generalized Fermat 1861 1740349*2^3480698+1 1047801 L5765 2023 Generalized Cullen 1862 98557818^131072+1 1047750 L5464 2022 Generalized Fermat 1863 98518362^131072+1 1047727 L5460 2022 Generalized Fermat 1864 5397*2^3480379+1 1047703 L5226 2023 1865 5845*2^3479972+1 1047580 L5517 2023 1866 98240694^131072+1 1047566 L4720 2022 Generalized Fermat 1867 98200338^131072+1 1047543 L4559 2022 Generalized Fermat 1868 701*2^3479779+1 1047521 L2125 2018 1869 98137862^131072+1 1047507 L4525 2022 Generalized Fermat 1870 813*2^3479728+1 1047506 L4724 2018 1871 7125*2^3479509+1 1047441 L5812 2023 1872 1971*2^3479061+1 1047306 L5226 2023 1873 1215*2^3478543+1 1047149 L5226 2023 1874 97512766^131072+1 1047143 L5460 2022 Generalized Fermat 1875 5985*2^3478217+1 1047052 L5387 2023 1876 3093*2^3478148+1 1047031 L5261 2023 1877 2145*2^3478095+1 1047015 L5387 2023 1878 6685*2^3478086+1 1047013 L5237 2023 1879 9603*2^3478084+1 1047012 L5178 2023 1880 1315*2^3477718+1 1046901 L5316 2023 1881 97046574^131072+1 1046870 L4956 2022 Generalized Fermat 1882 197*2^3477399+1 1046804 L2125 2015 1883 8303*2^3477201+1 1046746 L5387 2023 1884 96821302^131072+1 1046738 L5453 2022 Generalized Fermat 1885 5925*2^3477009+1 1046688 L5810 2023 1886 96734274^131072+1 1046686 L5297 2022 Generalized Fermat 1887 7825*2^3476524+1 1046542 L5174 2023 1888 96475576^131072+1 1046534 L4424 2022 Generalized Fermat 1889 8197*2^3476332+1 1046485 L5174 2023 1890 8529*2^3476111+1 1046418 L5387 2023 1891 8411*2^3476055+1 1046401 L5783 2023 1892 4319*2^3475955+1 1046371 L5803 2023 1893 96111850^131072+1 1046319 L4245 2022 Generalized Fermat 1894 95940796^131072+1 1046218 L4591 2022 Generalized Fermat 1895 6423*2^3475393+1 1046202 L5174 2023 1896 2281*2^3475340+1 1046185 L5302 2023 1897 7379*2^3474983+1 1046078 L5798 2023 1898 4*5^1496566+1 1046056 L4965 2023 Generalized Fermat 1899 95635202^131072+1 1046036 L5452 2021 Generalized Fermat 1900 95596816^131072+1 1046013 L4591 2021 Generalized Fermat 1901 4737*2^3474562+1 1045952 L5302 2023 1902 2407*2^3474406+1 1045904 L5557 2023 1903 95308284^131072+1 1045841 L4584 2021 Generalized Fermat 1904 491*2^3473837+1 1045732 L4343 2016 1905 2693*2^3473721+1 1045698 L5174 2023 1906 94978760^131072+1 1045644 L4201 2021 Generalized Fermat 1907 3375*2^3473210+1 1045544 L5294 2023 1908 8835*2^3472666+1 1045381 L5178 2023 1909 5615*2^3472377+1 1045294 L5174 2023 1910 1785*2^3472229+1 1045249 L875 2023 1911 8997*2^3472036+1 1045191 L5302 2023 1912 9473*2^3471885+1 1045146 L5294 2023 1913 7897*2^3471568+1 1045050 L5294 2023 1914 93950924^131072+1 1045025 L5425 2021 Generalized Fermat 1915 93886318^131072+1 1044985 L5433 2021 Generalized Fermat 1916 1061*2^3471354-1 1044985 L1828 2017 1917 1913*2^3471177+1 1044932 L5189 2023 1918 93773904^131072+1 1044917 L4939 2021 Generalized Fermat 1919 7723*2^3471074+1 1044902 L5189 2023 1920 4195*2^3470952+1 1044865 L5294 2023 1921 93514592^131072+1 1044760 L4591 2021 Generalized Fermat 1922 5593*2^3470520+1 1044735 L5387 2023 1923 3665*2^3469955+1 1044565 L5189 2023 1924 3301*2^3469708+1 1044490 L5261 2023 1925 6387*2^3469634+1 1044468 L5192 2023 1926 93035888^131072+1 1044467 L4245 2021 Generalized Fermat 1927 8605*2^3469570+1 1044449 L5387 2023 1928 1359*2^3468725+1 1044194 L5197 2023 1929 92460588^131072+1 1044114 L5254 2021 Generalized Fermat 1930 7585*2^3468338+1 1044078 L5197 2023 1931 1781*2^3468335+1 1044077 L5387 2023 1932 6885*2^3468181+1 1044031 L5197 2023 1933 4372*30^706773-1 1043994 L4955 2023 1934 7287*2^3467938+1 1043958 L5776 2023 1935 92198216^131072+1 1043953 L4738 2021 Generalized Fermat 1936 3163*2^3467710+1 1043889 L5517 2023 1937 6099*2^3467689+1 1043883 L5197 2023 1938 6665*2^3467627+1 1043864 L5174 2023 1939 4099*2^3467462+1 1043814 L5774 2023 1940 5285*2^3467445+1 1043809 L5189 2023 1941d 1001*2^3467258-1 1043752 L4518 2024 1942 91767880^131072+1 1043686 L5051 2021 Generalized Fermat 1943 91707732^131072+1 1043649 L4591 2021 Generalized Fermat 1944 5935*2^3466880+1 1043639 L5197 2023 1945 91689894^131072+1 1043638 L4591 2021 Generalized Fermat 1946 91685784^131072+1 1043635 L4591 2021 Generalized Fermat 1947 8937*2^3466822+1 1043622 L5174 2023 1948 91655310^131072+1 1043616 L4659 2021 Generalized Fermat 1949 8347*2^3466736+1 1043596 L5770 2023 1950 8863*2^3465780+1 1043308 L5766 2023 1951 3895*2^3465744+1 1043297 L5640 2023 1952 91069366^131072+1 1043251 L5277 2021 Generalized Fermat 1953 91049202^131072+1 1043239 L4591 2021 Generalized Fermat 1954 91033554^131072+1 1043229 L4591 2021 Generalized Fermat 1955 8561*2^3465371+1 1043185 L5197 2023 1956 90942952^131072+1 1043172 L4387 2021 Generalized Fermat 1957 90938686^131072+1 1043170 L4387 2021 Generalized Fermat 1958 9971*2^3465233+1 1043144 L5488 2023 1959 90857490^131072+1 1043119 L4591 2021 Generalized Fermat 1960 3801*2^3464980+1 1043067 L5197 2023 1961 3099*2^3464739+1 1042994 L5284 2023 1962 90382348^131072+1 1042820 L4267 2021 Generalized Fermat 1963 641*2^3464061+1 1042790 L1444 2018 1964 6717*2^3463735+1 1042692 L5754 2023 1965 6015*2^3463561+1 1042640 L5387 2023 1966 90006846^131072+1 1042583 L4773 2021 Generalized Fermat 1967 1667*2^3463355+1 1042577 L5226 2023 1968 2871*2^3463313+1 1042565 L5189 2023 1969 89977312^131072+1 1042565 L5070 2021 Generalized Fermat 1970 6007*2^3463048+1 1042486 L5226 2023 1971 89790434^131072+1 1042446 L5007 2021 Generalized Fermat 1972 9777*2^3462742+1 1042394 L5197 2023 1973 5215*2^3462740+1 1042393 L5174 2023 1974 8365*2^3462722+1 1042388 L5320 2023 1975 3597*2^3462056+1 1042187 L5174 2023 1976 2413*2^3461890+1 1042137 L5197 2023 1977 89285798^131072+1 1042125 L5157 2021 Generalized Fermat 1978 453*2^3461688+1 1042075 L3035 2016 1979 89113896^131072+1 1042016 L5338 2021 Generalized Fermat 1980 4401*2^3461476+1 1042012 L5197 2023 1981 9471*2^3461305+1 1041961 L5594 2023 1982 7245*2^3461070+1 1041890 L5449 2023 1983 3969*2^3460942+1 1041851 L5471 2023 Generalized Fermat 1984 4365*2^3460914+1 1041843 L5197 2023 1985 4613*2^3460861+1 1041827 L5614 2023 1986 88760062^131072+1 1041789 L4903 2021 Generalized Fermat 1987 5169*2^3460553+1 1041734 L5742 2023 1988 8395*2^3460530+1 1041728 L5284 2023 1989 5835*2^3460515+1 1041723 L5740 2023 1990 8059*2^3460246+1 1041642 L5350 2023 1991 571*2^3460216+1 1041632 L3035 2018 1992 6065*2^3460205+1 1041630 L5683 2023 1993 88243020^131072+1 1041457 L4774 2021 Generalized Fermat 1994 88166868^131072+1 1041408 L5277 2021 Generalized Fermat 1995 6237*2^3459386+1 1041383 L5509 2023 1996 88068088^131072+1 1041344 L4933 2021 Generalized Fermat 1997 4029*2^3459062+1 1041286 L5727 2023 1998 87920992^131072+1 1041249 L4249 2021 Generalized Fermat 1999 7055*2^3458909+1 1041240 L5509 2023 2000 7297*2^3458768+1 1041197 L5726 2023 2001 2421*2^3458432+1 1041096 L5725 2023 2002 7907*2^3458207+1 1041028 L5509 2023 2003 87547832^131072+1 1041006 L4591 2021 Generalized Fermat 2004 87454694^131072+1 1040946 L4672 2021 Generalized Fermat 2005 7839*2^3457846+1 1040920 L5231 2023 2006 87370574^131072+1 1040891 L5297 2021 Generalized Fermat 2007 87352356^131072+1 1040879 L4387 2021 Generalized Fermat 2008 87268788^131072+1 1040825 L4917 2021 Generalized Fermat 2009 87192538^131072+1 1040775 L4861 2021 Generalized Fermat 2010 5327*2^3457363+1 1040774 L5715 2023 2011 87116452^131072+1 1040725 L5297 2021 Generalized Fermat 2012 87039658^131072+1 1040675 L5297 2021 Generalized Fermat 2013 6059*2^3457001+1 1040665 L5197 2023 2014 8953*2^3456938+1 1040646 L5724 2023 2015 8669*2^3456759+1 1040593 L5710 2023 2016 86829162^131072+1 1040537 L5265 2021 Generalized Fermat 2017 4745*2^3456167+1 1040414 L5705 2023 2018 8213*2^3456141+1 1040407 L5703 2023 2019 86413544^131072+1 1040264 L4914 2021 Generalized Fermat 2020 86347638^131072+1 1040221 L4848 2021 Generalized Fermat 2021 86295564^131072+1 1040186 L5030 2021 Generalized Fermat 2022 1155*2^3455254+1 1040139 L4711 2017 2023 37292*5^1487989+1 1040065 L3553 2013 2024 86060696^131072+1 1040031 L5057 2021 Generalized Fermat 2025 5525*2^3454069+1 1039783 L5651 2023 2026 4235*2^3453573+1 1039633 L5650 2023 2027 6441*2^3453227+1 1039529 L5683 2023 2028 4407*2^3453195+1 1039519 L5650 2023 2029 9867*2^3453039+1 1039473 L5686 2023 2030 85115888^131072+1 1039403 L4909 2021 Generalized Fermat 2031 4857*2^3452675+1 1039363 L5600 2023 2032 8339*2^3452667+1 1039361 L5651 2023 2033 84924212^131072+1 1039275 L4309 2021 Generalized Fermat 2034 7079*2^3452367+1 1039270 L5650 2023 2035 5527*2^3452342+1 1039263 L5679 2023 2036 84817722^131072+1 1039203 L4726 2021 Generalized Fermat 2037 84765338^131072+1 1039168 L4245 2021 Generalized Fermat 2038 84757790^131072+1 1039163 L5051 2021 Generalized Fermat 2039 84723284^131072+1 1039140 L5051 2021 Generalized Fermat 2040 84715930^131072+1 1039135 L4963 2021 Generalized Fermat 2041 84679936^131072+1 1039111 L4864 2021 Generalized Fermat 2042 3719*2^3451667+1 1039059 L5294 2023 2043 6725*2^3451455+1 1038996 L5685 2023 2044 8407*2^3451334+1 1038959 L5524 2023 2045 84445014^131072+1 1038952 L4909 2021 Generalized Fermat 2046 84384358^131072+1 1038912 L4622 2021 Generalized Fermat 2047 4*10^1038890+1 1038891 L4789 2024 Generalized Fermat 2048 1623*2^3451109+1 1038891 L5308 2023 2049 8895*2^3450982+1 1038854 L5666 2023 2050 84149050^131072+1 1038753 L5033 2021 Generalized Fermat 2051 2899*2^3450542+1 1038721 L5600 2023 2052 6337*2^3449506+1 1038409 L5197 2023 2053 4381*2^3449456+1 1038394 L5392 2023 2054 2727*2^3449326+1 1038355 L5421 2023 2055 2877*2^3449311+1 1038350 L5517 2023 2056 7507*2^3448920+1 1038233 L5284 2023 2057 3629*2^3448919+1 1038232 L5192 2023 2058 83364886^131072+1 1038220 L4591 2021 Generalized Fermat 2059 83328182^131072+1 1038195 L5051 2021 Generalized Fermat 2060 1273*2^3448551-1 1038121 L1828 2012 2061 1461*2^3448423+1 1038082 L4944 2023 2062 3235*2^3448352+1 1038061 L5571 2023 2063 4755*2^3448344+1 1038059 L5524 2023 2064 5655*2^3448288+1 1038042 L5651 2023 2065 4873*2^3448176+1 1038009 L5524 2023 2066 83003850^131072+1 1037973 L4963 2021 Generalized Fermat 2067 8139*2^3447967+1 1037946 L5652 2023 2068 1065*2^3447906+1 1037927 L4664 2017 2069 1717*2^3446756+1 1037581 L5517 2023 2070 6357*2^3446434+1 1037484 L5284 2023 2071 1155*2^3446253+1 1037429 L3035 2017 2072 9075*2^3446090+1 1037381 L5648 2023 2073 82008736^131072+1 1037286 L4963 2021 Generalized Fermat 2074 82003030^131072+1 1037282 L4410 2021 Generalized Fermat 2075 1483*2^3445724+1 1037270 L5650 2023 2076 81976506^131072+1 1037264 L4249 2021 Generalized Fermat 2077 2223*2^3445682+1 1037257 L5647 2023 2078 8517*2^3445488+1 1037200 L5302 2023 2079 2391*2^3445281+1 1037137 L5596 2023 2080 6883*2^3444784+1 1036988 L5264 2023 2081 81477176^131072+1 1036916 L4245 2020 Generalized Fermat 2082 81444036^131072+1 1036893 L4245 2020 Generalized Fermat 2083 8037*2^3443920+1 1036728 L5626 2023 2084 1375*2^3443850+1 1036706 L5192 2023 2085 81096098^131072+1 1036649 L4249 2020 Generalized Fermat 2086 27288429267119080686...(1036580 other digits)...83679577406643267931 1036620 p384 2015 2087 943*2^3442990+1 1036447 L4687 2017 2088 7743*2^3442814+1 1036395 L5514 2023 2089 5511*2^3442468+1 1036290 L5514 2022 2090 80284312^131072+1 1036076 L5051 2020 Generalized Fermat 2091 6329*2^3441717+1 1036064 L5631 2022 2092 3957*2^3441568+1 1036019 L5476 2022 2093 80146408^131072+1 1035978 L5051 2020 Generalized Fermat 2094 4191*2^3441427+1 1035977 L5189 2022 2095 2459*2^3441331+1 1035948 L5514 2022 2096 4335*2^3441306+1 1035940 L5178 2022 2097 2331*2^3441249+1 1035923 L5626 2022 2098 79912550^131072+1 1035812 L5186 2020 Generalized Fermat 2099 79801426^131072+1 1035733 L4245 2020 Generalized Fermat 2100 79789806^131072+1 1035725 L4658 2020 Generalized Fermat 2101 2363*2^3440385+1 1035663 L5625 2022 2102 5265*2^3440332+1 1035647 L5421 2022 2103 6023*2^3440241+1 1035620 L5517 2022 2104 943*2^3440196+1 1035606 L1448 2017 2105 6663*2^3439901+1 1035518 L5624 2022 2106 79485098^131072+1 1035507 L5130 2020 Generalized Fermat 2107 79428414^131072+1 1035466 L4793 2020 Generalized Fermat 2108 79383608^131072+1 1035434 L4387 2020 Generalized Fermat 2109 5745*2^3439450+1 1035382 L5178 2022 2110 79201682^131072+1 1035303 L5051 2020 Generalized Fermat 2111 5109*2^3439090+1 1035273 L5594 2022 2112 543*2^3438810+1 1035188 L3035 2017 2113 625*2^3438572+1 1035117 L1355 2017 Generalized Fermat 2114 3325*2^3438506+1 1035097 L5619 2022 2115 78910032^131072+1 1035093 L5051 2020 Generalized Fermat 2116 78880690^131072+1 1035072 L5159 2020 Generalized Fermat 2117 78851276^131072+1 1035051 L4928 2020 Generalized Fermat 2118 4775*2^3438217+1 1035011 L5618 2022 2119 78714954^131072+1 1034953 L5130 2020 Generalized Fermat 2120 6963*2^3437988+1 1034942 L5616 2022 2121 74*941^348034-1 1034913 L5410 2020 2122 7423*2^3437856+1 1034902 L5192 2022 2123 6701*2^3437801+1 1034886 L5615 2022 2124 5741*2^3437773+1 1034877 L5517 2022 2125 488639*2^3437688-1 1034853 L5327 2024 2126 78439440^131072+1 1034753 L5051 2020 Generalized Fermat 2127 5601*2^3437259+1 1034722 L5612 2022 2128 7737*2^3437192+1 1034702 L5611 2022 2129 113*2^3437145+1 1034686 L4045 2015 2130 78240016^131072+1 1034608 L4245 2020 Generalized Fermat 2131 6387*2^3436719+1 1034560 L5613 2022 2132 78089172^131072+1 1034498 L4245 2020 Generalized Fermat 2133 2921*2^3436299+1 1034433 L5231 2022 2134 9739*2^3436242+1 1034416 L5178 2022 2135 77924964^131072+1 1034378 L5051 2020 Generalized Fermat 2136 77918854^131072+1 1034374 L4760 2020 Generalized Fermat 2137 1147*2^3435970+1 1034334 L3035 2017 2138 4589*2^3435707+1 1034255 L5174 2022 2139 7479*2^3435683+1 1034248 L5421 2022 2140 2863*2^3435616+1 1034227 L5197 2022 2141 77469882^131072+1 1034045 L4591 2020 Generalized Fermat 2142 9863*2^3434697+1 1033951 L5189 2022 2143 4065*2^3434623+1 1033929 L5197 2022 2144 77281404^131072+1 1033906 L4963 2020 Generalized Fermat 2145 9187*2^3434126+1 1033779 L5600 2022 2146 9531*2^3434103+1 1033772 L5601 2022 2147 1757*2^3433547+1 1033604 L5594 2022 2148 1421*2^3433099+1 1033469 L5237 2022 2149 3969*2^3433007+1 1033442 L5189 2022 2150 6557*2^3433003+1 1033441 L5261 2022 2151 7335*2^3432982+1 1033435 L5231 2022 2152 7125*2^3432836+1 1033391 L5594 2022 2153 2517*2^3432734+1 1033360 L5231 2022 2154 911*2^3432643+1 1033332 L1355 2017 2155 5413*2^3432626+1 1033328 L5231 2022 2156 76416048^131072+1 1033265 L4672 2020 Generalized Fermat 2157 3753*2^3432413+1 1033263 L5261 2022 2158 2691*2^3432191+1 1033196 L5585 2022 2159 3933*2^3432125+1 1033177 L5387 2022 2160 76026988^131072+1 1032975 L5094 2020 Generalized Fermat 2161 76018874^131072+1 1032969 L4774 2020 Generalized Fermat 2162 1435*2^3431284+1 1032923 L5587 2022 2163 75861530^131072+1 1032851 L5053 2020 Generalized Fermat 2164 6783*2^3430781+1 1032772 L5261 2022 2165 8079*2^3430683+1 1032743 L5585 2022 2166 75647276^131072+1 1032690 L4677 2020 Generalized Fermat 2167 75521414^131072+1 1032595 L4584 2020 Generalized Fermat 2168 6605*2^3430187+1 1032593 L5463 2022 2169 3761*2^3430057+1 1032554 L5582 2022 2170 6873*2^3429937+1 1032518 L5294 2022 2171 8067*2^3429891+1 1032504 L5581 2022 2172 3965*2^3429719+1 1032452 L5579 2022 2173 3577*2^3428812+1 1032179 L5401 2022 2174 8747*2^3428755+1 1032163 L5493 2022 2175 9147*2^3428638+1 1032127 L5493 2022 2176 3899*2^3428535+1 1032096 L5174 2022 2177 74833516^131072+1 1032074 L5102 2020 Generalized Fermat 2178 74817490^131072+1 1032062 L4591 2020 Generalized Fermat 2179 8891*2^3428303+1 1032026 L5532 2022 2180 793181*20^793181+1 1031959 L5765 2023 Generalized Cullen 2181 2147*2^3427371+1 1031745 L5189 2022 2182 74396818^131072+1 1031741 L4791 2020 Generalized Fermat 2183 74381296^131072+1 1031729 L4550 2020 Generalized Fermat 2184 74363146^131072+1 1031715 L4898 2020 Generalized Fermat 2185 1127*2^3427219+1 1031699 L3035 2017 2186 74325990^131072+1 1031687 L5024 2020 Generalized Fermat 2187 3021*2^3427059+1 1031652 L5554 2022 2188 3255*2^3426983+1 1031629 L5231 2022 2189 1733*2^3426753+1 1031559 L5565 2022 2190 2339*2^3426599+1 1031513 L5237 2022 2191 4729*2^3426558+1 1031501 L5493 2022 2192 73839292^131072+1 1031313 L4550 2020 Generalized Fermat 2193 5445*2^3425839+1 1031285 L5237 2022 2194 159*2^3425766+1 1031261 L4045 2015 2195 73690464^131072+1 1031198 L4884 2020 Generalized Fermat 2196 3405*2^3425045+1 1031045 L5261 2022 2197 73404316^131072+1 1030976 L5011 2020 Generalized Fermat 2198 1695*2^3424517+1 1030886 L5387 2022 2199 4715*2^3424433+1 1030861 L5557 2022 2200 5525*2^3424423+1 1030858 L5387 2022 2201 8615*2^3424231+1 1030801 L5261 2022 2202 5805*2^3424200+1 1030791 L5237 2022 2203 73160610^131072+1 1030787 L4550 2020 Generalized Fermat 2204 73132228^131072+1 1030765 L4905 2020 Generalized Fermat 2205 73099962^131072+1 1030740 L5068 2020 Generalized Fermat 2206 2109*2^3423798-3027*2^988658+1 1030670 CH13 2023 Arithmetic progression (3,d=2109*2^3423797-3027*2^988658) 2207 2109*2^3423797+1 1030669 L5197 2022 2208 4929*2^3423494+1 1030579 L5554 2022 2209 2987*2^3422911+1 1030403 L5226 2022 2210 72602370^131072+1 1030351 L4201 2020 Generalized Fermat 2211 4843*2^3422644+1 1030323 L5553 2022 2212 5559*2^3422566+1 1030299 L5555 2022 2213 7583*2^3422501+1 1030280 L5421 2022 2214 1119*2^3422189+1 1030185 L1355 2017 2215 2895*2^3422031-143157*2^2144728+1 1030138 p423 2023 Arithmetic progression (3,d=2895*2^3422030-143157*2^2144728) 2216 2895*2^3422030+1 1030138 L5237 2022 2217 2835*2^3421697+1 1030037 L5387 2022 2218 3363*2^3421353+1 1029934 L5226 2022 2219 72070092^131072+1 1029932 L4201 2020 Generalized Fermat 2220 9147*2^3421264+1 1029908 L5237 2022 2221 9705*2^3420915+1 1029803 L5540 2022 2222 1005*2^3420846+1 1029781 L2714 2017 Divides GF(3420844,10) 2223 8919*2^3420758+1 1029755 L5226 2022 2224 71732900^131072+1 1029665 L5053 2020 Generalized Fermat 2225 71679108^131072+1 1029623 L5072 2020 Generalized Fermat 2226 5489*2^3420137+1 1029568 L5174 2022 2227 9957*2^3420098+1 1029557 L5237 2022 2228 93*10^1029523-1 1029525 L4789 2019 Near-repdigit 2229 71450224^131072+1 1029440 L5029 2020 Generalized Fermat 2230 7213*2^3419370+1 1029337 L5421 2022 2231 7293*2^3419264+1 1029305 L5192 2022 2232 975*2^3419230+1 1029294 L3545 2017 2233 4191*2^3419227+1 1029294 L5421 2022 2234 28080*745^358350-1 1029242 L4189 2024 2235 2393*2^3418921+1 1029202 L5197 2022 2236 999*2^3418885+1 1029190 L3035 2017 2237 2925*2^3418543+1 1029088 L5174 2022 2238 70960658^131072+1 1029049 L5039 2020 Generalized Fermat 2239 70948704^131072+1 1029039 L4660 2020 Generalized Fermat 2240 70934282^131072+1 1029028 L5067 2020 Generalized Fermat 2241 7383*2^3418297+1 1029014 L5189 2022 2242 70893680^131072+1 1028995 L5063 2020 Generalized Fermat 2243 907*2^3417890+1 1028891 L3035 2017 2244 5071*2^3417884+1 1028890 L5237 2022 2245 3473*2^3417741+1 1028847 L5541 2022 2246 191249*2^3417696-1 1028835 L1949 2010 2247 70658696^131072+1 1028806 L5051 2020 Generalized Fermat 2248 3299*2^3417329+1 1028723 L5421 2022 2249 6947*2^3416979+1 1028618 L5540 2022 2250 70421038^131072+1 1028615 L4984 2020 Generalized Fermat 2251 8727*2^3416652+1 1028519 L5226 2022 2252 8789*2^3416543+1 1028486 L5197 2022 2253 70050828^131072+1 1028315 L5021 2020 Generalized Fermat 2254 7917*2^3415947+1 1028307 L5537 2022 2255 70022042^131072+1 1028291 L4201 2020 Generalized Fermat 2256 2055*2^3415873+1 1028284 L5535 2022 2257 4731*2^3415712+1 1028236 L5192 2022 2258 2219*2^3415687+1 1028228 L5178 2022 2259 69915032^131072+1 1028204 L4591 2020 Generalized Fermat 2260 5877*2^3415419+1 1028148 L5532 2022 2261 3551*2^3415275+1 1028104 L5231 2022 2262 69742382^131072+1 1028063 L5053 2020 Generalized Fermat 2263 2313*2^3415046+1 1028035 L5226 2022 2264 69689592^131072+1 1028020 L4387 2020 Generalized Fermat 2265 7637*2^3414875+1 1027984 L5507 2022 2266 2141*2^3414821+1 1027967 L5226 2022 2267 69622572^131072+1 1027965 L4909 2020 Generalized Fermat 2268 3667*2^3414686+1 1027927 L5226 2022 2269 69565722^131072+1 1027919 L4387 2020 Generalized Fermat 2270 6159*2^3414623+1 1027908 L5226 2022 2271 69534788^131072+1 1027894 L5029 2020 Generalized Fermat 2272 4577*2^3413539+1 1027582 L5387 2022 2273 5137*2^3413524+1 1027577 L5261 2022 2274 8937*2^3413364+1 1027529 L5527 2022 2275 8829*2^3413339+1 1027522 L5531 2022 2276 7617*2^3413315+1 1027515 L5197 2022 2277 68999820^131072+1 1027454 L5044 2020 Generalized Fermat 2278 3141*2^3413112+1 1027453 L5463 2022 2279 8831*2^3412931+1 1027399 L5310 2022 2280 68924112^131072+1 1027391 L4745 2020 Generalized Fermat 2281 68918852^131072+1 1027387 L5021 2020 Generalized Fermat 2282 5421*2^3412877+1 1027383 L5310 2022 2283 9187*2^3412700+1 1027330 L5337 2022 2284 68811158^131072+1 1027298 L4245 2020 Generalized Fermat 2285 8243*2^3412577+1 1027292 L5524 2022 2286 1751*2^3412565+1 1027288 L5523 2022 2287 9585*2^3412318+1 1027215 L5197 2022 2288 9647*2^3412247+1 1027193 L5178 2022 2289 3207*2^3412108+1 1027151 L5189 2022 2290 479*2^3411975+1 1027110 L2873 2016 2291 245*2^3411973+1 1027109 L1935 2015 2292 177*2^3411847+1 1027071 L4031 2015 2293 68536972^131072+1 1027071 L5027 2020 Generalized Fermat 2294 9963*2^3411566+1 1026988 L5237 2022 2295 68372810^131072+1 1026934 L4956 2020 Generalized Fermat 2296 9785*2^3411223+1 1026885 L5189 2022 2297 5401*2^3411136+1 1026858 L5261 2022 2298 68275006^131072+1 1026853 L4963 2020 Generalized Fermat 2299 9431*2^3411105+1 1026849 L5237 2022 2300 8227*2^3410878+1 1026781 L5316 2022 2301 4735*2^3410724+1 1026734 L5226 2022 2302 9515*2^3410707+1 1026730 L5237 2022 2303 6783*2^3410690+1 1026724 L5434 2022 2304 8773*2^3410558+1 1026685 L5261 2022 2305 4629*2^3410321+1 1026613 L5517 2022 2306 67894288^131072+1 1026535 L5025 2020 Generalized Fermat 2307 113*2^3409934-1 1026495 L2484 2014 2308 5721*2^3409839+1 1026468 L5226 2022 2309 67725850^131072+1 1026393 L5029 2020 Generalized Fermat 2310 6069*2^3409493+1 1026364 L5237 2022 2311 1981*910^346850+1 1026347 L1141 2021 2312 5317*2^3409236+1 1026287 L5471 2022 2313 7511*2^3408985+1 1026211 L5514 2022 2314 7851*2^3408909+1 1026188 L5176 2022 2315 67371416^131072+1 1026094 L4550 2020 Generalized Fermat 2316 6027*2^3408444+1 1026048 L5239 2022 2317 59*2^3408416-1 1026038 L426 2010 2318 2153*2^3408333+1 1026014 L5237 2022 2319 9831*2^3408056+1 1025932 L5233 2022 2320 3615*2^3408035+1 1025925 L5217 2022 2321 6343*2^3407950+1 1025899 L5226 2022 2322 8611*2^3407516+1 1025769 L5509 2022 2323 66982940^131072+1 1025765 L4249 2020 Generalized Fermat 2324 7111*2^3407452+1 1025750 L5508 2022 2325 66901180^131072+1 1025696 L5018 2020 Generalized Fermat 2326 6945*2^3407256+1 1025691 L5507 2022 2327 6465*2^3407229+1 1025682 L5301 2022 2328 1873*2^3407156+1 1025660 L5440 2022 2329 7133*2^3406377+1 1025426 L5279 2022 2330 7063*2^3406122+1 1025349 L5178 2022 2331 3105*2^3405800+1 1025252 L5502 2022 2332 953*2^3405729+1 1025230 L3035 2017 2333 66272848^131072+1 1025159 L5013 2020 Generalized Fermat 2334 66131722^131072+1 1025037 L4530 2020 Generalized Fermat 2335 373*2^3404702+1 1024921 L3924 2016 2336 7221*2^3404507+1 1024863 L5231 2022 2337 6641*2^3404259+1 1024788 L5501 2022 2338 9225*2^3404209+1 1024773 L5250 2022 2339 65791182^131072+1 1024743 L4623 2019 Generalized Fermat 2340 833*2^3403765+1 1024639 L3035 2017 2341 65569854^131072+1 1024552 L4210 2019 Generalized Fermat 2342 2601*2^3403459+1 1024547 L5350 2022 2343 8835*2^3403266+1 1024490 L5161 2022 2344 7755*2^3403010+1 1024412 L5161 2022 2345 3123*2^3402834+1 1024359 L5260 2022 2346 65305572^131072+1 1024322 L5001 2019 Generalized Fermat 2347 65200798^131072+1 1024230 L4999 2019 Generalized Fermat 2348 1417*2^3402246+1 1024182 L5497 2022 2349 5279*2^3402241+1 1024181 L5250 2022 2350 6651*2^3402137+1 1024150 L5476 2022 2351 1779*2^3401715+1 1024022 L5493 2022 2352 64911056^131072+1 1023977 L4870 2019 Generalized Fermat 2353 8397*2^3401502+1 1023959 L5476 2022 2354 4057*2^3401472+1 1023949 L5492 2022 2355 64791668^131072+1 1023872 L4905 2019 Generalized Fermat 2356 4095*2^3401174+1 1023860 L5418 2022 2357 5149*2^3400970+1 1023798 L5176 2022 2358 4665*2^3400922+1 1023784 L5308 2022 2359 24*414^391179+1 1023717 L4273 2016 2360 64568930^131072+1 1023676 L4977 2019 Generalized Fermat 2361 64506894^131072+1 1023621 L4977 2019 Generalized Fermat 2362 1725*2^3400371+1 1023617 L5197 2022 2363 64476916^131072+1 1023595 L4997 2019 Generalized Fermat 2364 9399*2^3400243+1 1023580 L5488 2022 2365 1241*2^3400127+1 1023544 L5279 2022 2366 1263*2^3399876+1 1023468 L5174 2022 2367 1167*2^3399748+1 1023430 L3545 2017 2368 64024604^131072+1 1023194 L4591 2019 Generalized Fermat 2369 7679*2^3398569+1 1023076 L5295 2022 2370 6447*2^3398499+1 1023054 L5302 2022 2371 63823568^131072+1 1023015 L4585 2019 Generalized Fermat 2372 2785*2^3398332+1 1023004 L5250 2022 2373 611*2^3398273+1 1022985 L3035 2017 2374 2145*2^3398034+1 1022914 L5302 2022 2375 3385*2^3397254+1 1022679 L5161 2022 2376 4*3^2143374+1 1022650 L4965 2020 Generalized Fermat 2377 4463*2^3396657+1 1022500 L5476 2022 2378 2889*2^3396450+1 1022437 L5178 2022 2379 8523*2^3396448+1 1022437 L5231 2022 2380 63168480^131072+1 1022428 L4861 2019 Generalized Fermat 2381 63165756^131072+1 1022425 L4987 2019 Generalized Fermat 2382 3349*2^3396326+1 1022400 L5480 2022 2383 63112418^131072+1 1022377 L4201 2019 Generalized Fermat 2384 4477*2^3395786+1 1022238 L5161 2022 2385 3853*2^3395762+1 1022230 L5302 2022 2386 2693*2^3395725+1 1022219 L5284 2022 2387 8201*2^3395673+1 1022204 L5178 2022 2388 255*2^3395661+1 1022199 L3898 2014 2389 1049*2^3395647+1 1022195 L3035 2017 2390 9027*2^3395623+1 1022189 L5263 2022 2391 2523*2^3395549+1 1022166 L5472 2022 2392 3199*2^3395402+1 1022122 L5264 2022 2393 342924651*2^3394939-1 1021988 L4166 2017 2394 3825*2^3394947+1 1021985 L5471 2022 2395 1895*2^3394731+1 1021920 L5174 2022 2396 62276102^131072+1 1021618 L4715 2019 Generalized Fermat 2397 555*2^3393389+1 1021515 L2549 2017 2398 1865*2^3393387+1 1021515 L5237 2022 2399 4911*2^3393373+1 1021511 L5231 2022 2400 62146946^131072+1 1021500 L4720 2019 Generalized Fermat 2401 5229*2^3392587+1 1021275 L5463 2022 2402 61837354^131072+1 1021215 L4656 2019 Generalized Fermat 2403 609*2^3392301+1 1021188 L3035 2017 2404 9787*2^3392236+1 1021169 L5350 2022 2405 303*2^3391977+1 1021090 L2602 2016 2406 805*2^3391818+1 1021042 L4609 2017 2407 6475*2^3391496+1 1020946 L5174 2022 2408 67*2^3391385-1 1020911 L1959 2014 2409 61267078^131072+1 1020688 L4923 2019 Generalized Fermat 2410 4639*2^3390634+1 1020687 L5189 2022 2411 5265*2^3390581+1 1020671 L5456 2022 2412 663*2^3390469+1 1020636 L4316 2017 2413 6945*2^3390340+1 1020598 L5174 2022 2414 5871*2^3390268+1 1020577 L5231 2022 2415 7443*2^3390141+1 1020539 L5226 2022 2416 5383*2^3389924+1 1020473 L5350 2021 2417 61030988^131072+1 1020468 L4898 2019 Generalized Fermat 2418 9627*2^3389331+1 1020295 L5231 2021 2419 60642326^131072+1 1020104 L4591 2019 Generalized Fermat 2420 8253*2^3388624+1 1020082 L5226 2021 2421 3329*2^3388472-1 1020036 L4841 2020 2422 4695*2^3388393+1 1020012 L5237 2021 2423 60540024^131072+1 1020008 L4591 2019 Generalized Fermat 2424 7177*2^3388144+1 1019937 L5174 2021 2425 60455792^131072+1 1019929 L4760 2019 Generalized Fermat 2426 9611*2^3388059+1 1019912 L5435 2021 2427 1833*2^3387760+1 1019821 L5226 2021 2428 9003*2^3387528+1 1019752 L5189 2021 2429 3161*2^3387141+1 1019635 L5226 2021 2430 7585*2^3387110+1 1019626 L5189 2021 2431 60133106^131072+1 1019624 L4942 2019 Generalized Fermat 2432 453*2^3387048+1 1019606 L2602 2016 2433 5177*2^3386919+1 1019568 L5226 2021 2434 8739*2^3386813+1 1019537 L5226 2021 2435 2875*2^3386638+1 1019484 L5226 2021 2436 7197*2^3386526+1 1019450 L5178 2021 2437 1605*2^3386229+1 1019360 L5226 2021 2438 8615*2^3386181+1 1019346 L5442 2021 2439 3765*2^3386141+1 1019334 L5174 2021 2440 5379*2^3385806+1 1019233 L5237 2021 2441 59720358^131072+1 1019232 L4656 2019 Generalized Fermat 2442 59692546^131072+1 1019206 L4747 2019 Generalized Fermat 2443 59515830^131072+1 1019037 L4737 2019 Generalized Fermat 2444 173198*5^1457792-1 1018959 L3720 2013 2445 59405420^131072+1 1018931 L4645 2019 Generalized Fermat 2446 2109*2^3384733+1 1018910 L5261 2021 2447 7067*2^3384667+1 1018891 L5439 2021 2448 59362002^131072+1 1018890 L4249 2019 Generalized Fermat 2449 59305348^131072+1 1018835 L4932 2019 Generalized Fermat 2450 2077*2^3384472+1 1018831 L5237 2021 2451 59210784^131072+1 1018745 L4926 2019 Generalized Fermat 2452 59161754^131072+1 1018697 L4928 2019 Generalized Fermat 2453 9165*2^3383917+1 1018665 L5435 2021 2454 5579*2^3383209+1 1018452 L5434 2021 2455 8241*2^3383131+1 1018428 L5387 2021 2456 7409*2^3382869+1 1018349 L5161 2021 2457 4883*2^3382813+1 1018332 L5161 2021 2458 9783*2^3382792+1 1018326 L5189 2021 2459 58589880^131072+1 1018145 L4923 2019 Generalized Fermat 2460 58523466^131072+1 1018080 L4802 2019 Generalized Fermat 2461 8877*2^3381936+1 1018069 L5429 2021 2462 58447816^131072+1 1018006 L4591 2019 Generalized Fermat 2463 58447642^131072+1 1018006 L4591 2019 Generalized Fermat 2464 6675*2^3381688+1 1017994 L5197 2021 2465 2445*2^3381129+1 1017825 L5231 2021 2466 58247118^131072+1 1017811 L4309 2019 Generalized Fermat 2467 3381*2^3380585+1 1017662 L5237 2021 2468 7899*2^3380459+1 1017624 L5421 2021 2469 5945*2^3379933+1 1017465 L5418 2021 2470 1425*2^3379921+1 1017461 L1134 2020 2471 4975*2^3379420+1 1017311 L5161 2021 2472 57704312^131072+1 1017278 L4591 2019 Generalized Fermat 2473 57694224^131072+1 1017268 L4656 2019 Generalized Fermat 2474 57594734^131072+1 1017169 L4656 2019 Generalized Fermat 2475 9065*2^3378851+1 1017140 L5414 2021 2476 2369*2^3378761+1 1017112 L5197 2021 2477 57438404^131072+1 1017015 L4745 2019 Generalized Fermat 2478 621*2^3378148+1 1016927 L3035 2017 2479 7035*2^3378141+1 1016926 L5408 2021 2480 2067*2^3378115+1 1016918 L5405 2021 2481 1093*2^3378000+1 1016883 L4583 2017 2482 9577*2^3377612+1 1016767 L5406 2021 2483 861*2^3377601+1 1016763 L4582 2017 2484 5811*2^3377016+1 1016587 L5261 2021 2485 2285*2^3376911+1 1016555 L5261 2021 2486 4199*2^3376903+1 1016553 L5174 2021 2487 6405*2^3376890+1 1016549 L5269 2021 2488 1783*2^3376810+1 1016525 L5261 2021 2489 5401*2^3376768+1 1016513 L5174 2021 2490 56917336^131072+1 1016496 L4729 2019 Generalized Fermat 2491 2941*2^3376536+1 1016443 L5174 2021 2492 1841*2^3376379+1 1016395 L5401 2021 2493 6731*2^3376133+1 1016322 L5261 2021 2494 56735576^131072+1 1016314 L4760 2019 Generalized Fermat 2495 8121*2^3375933+1 1016262 L5356 2021 2496 5505*2^3375777+1 1016214 L5174 2021 2497 56584816^131072+1 1016162 L4289 2019 Generalized Fermat 2498 3207*2^3375314+1 1016075 L5237 2021 2499 56459558^131072+1 1016036 L4892 2019 Generalized Fermat 2500 5307*2^3374939+1 1015962 L5392 2021 2501 56383242^131072+1 1015959 L4889 2019 Generalized Fermat 2502 56307420^131072+1 1015883 L4843 2019 Generalized Fermat 2503 208003!-1 1015843 p394 2016 Factorial 2504 6219*2^3374198+1 1015739 L5393 2021 2505 3777*2^3374072+1 1015701 L5261 2021 2506 9347*2^3374055+1 1015696 L5387 2021 2507 1461*2^3373383+1 1015493 L5384 2021 2508 6395*2^3373135+1 1015419 L5382 2021 2509 7869*2^3373021+1 1015385 L5381 2021 2510 55645700^131072+1 1015210 L4745 2019 Generalized Fermat 2511 4905*2^3372216+1 1015142 L5261 2021 2512 55579418^131072+1 1015142 L4745 2019 Generalized Fermat 2513 2839*2^3372034+1 1015087 L5174 2021 2514 7347*2^3371803+1 1015018 L5217 2021 2515 9799*2^3371378+1 1014890 L5261 2021 2516 4329*2^3371201+1 1014837 L5197 2021 2517 3657*2^3371183+1 1014831 L5360 2021 2518 55268442^131072+1 1014822 L4525 2019 Generalized Fermat 2519 179*2^3371145+1 1014819 L3763 2014 2520 5155*2^3371016+1 1014781 L5237 2021 2521 7575*2^3371010+1 1014780 L5237 2021 2522 55184170^131072+1 1014736 L4871 2018 Generalized Fermat 2523 9195*2^3370798+1 1014716 L5178 2021 2524 1749*2^3370786+1 1014711 L5362 2021 2525 8421*2^3370599+1 1014656 L5174 2021 2526 55015050^131072+1 1014561 L4205 2018 Generalized Fermat 2527 4357*2^3369572+1 1014346 L5231 2021 2528 6073*2^3369544+1 1014338 L5358 2021 2529 839*2^3369383+1 1014289 L2891 2017 2530 65*2^3369359+1 1014280 L5236 2021 2531 8023*2^3369228+1 1014243 L5356 2021 2532 677*2^3369115+1 1014208 L2103 2017 2533 1437*2^3369083+1 1014199 L5282 2021 2534 9509*2^3368705+1 1014086 L5237 2021 2535 54548788^131072+1 1014076 L4726 2018 Generalized Fermat 2536 4851*2^3368668+1 1014074 L5307 2021 2537 7221*2^3368448+1 1014008 L5353 2021 2538 5549*2^3368437+1 1014005 L5217 2021 2539 715*2^3368210+1 1013936 L4527 2017 2540 617*2^3368119+1 1013908 L4552 2017 2541 54361742^131072+1 1013881 L4210 2018 Generalized Fermat 2542 1847*2^3367999+1 1013872 L5352 2021 2543 54334044^131072+1 1013852 L4745 2018 Generalized Fermat 2544 6497*2^3367743+1 1013796 L5285 2021 2545 2533*2^3367666+1 1013772 L5326 2021 2546 6001*2^3367552+1 1013738 L5350 2021 2547 54212352^131072+1 1013724 L4307 2018 Generalized Fermat 2548 54206254^131072+1 1013718 L4249 2018 Generalized Fermat 2549 777*2^3367372+1 1013683 L4408 2017 2550 9609*2^3367351+1 1013678 L5285 2021 2551 54161106^131072+1 1013670 L4307 2018 Generalized Fermat 2552 2529*2^3367317+1 1013667 L5237 2021 2553 5941*2^3366960+1 1013560 L5189 2021 2554 5845*2^3366956+1 1013559 L5197 2021 2555 54032538^131072+1 1013535 L4591 2018 Generalized Fermat 2556 9853*2^3366608+1 1013454 L5178 2021 2557 61*2^3366033-1 1013279 L4405 2017 2558 7665*2^3365896+1 1013240 L5345 2021 2559 8557*2^3365648+1 1013165 L5346 2021 2560 369*2^3365614+1 1013154 L4364 2016 2561 53659976^131072+1 1013141 L4823 2018 Generalized Fermat 2562 8201*2^3365283+1 1013056 L5345 2021 2563 9885*2^3365151+1 1013016 L5344 2021 2564 5173*2^3365096+1 1012999 L5285 2021 2565 8523*2^3364918+1 1012946 L5237 2021 2566 3985*2^3364776+1 1012903 L5178 2021 2567 9711*2^3364452+1 1012805 L5192 2021 2568 7003*2^3364172+1 1012721 L5217 2021 2569 6703*2^3364088+1 1012696 L5337 2021 2570 7187*2^3364011+1 1012673 L5217 2021 2571 53161266^131072+1 1012610 L4307 2018 Generalized Fermat 2572 53078434^131072+1 1012521 L4835 2018 Generalized Fermat 2573 2345*2^3363157+1 1012415 L5336 2021 2574 6527*2^3363135+1 1012409 L5167 2021 2575 9387*2^3363088+1 1012395 L5161 2021 2576 8989*2^3362986+1 1012364 L5161 2021 2577 533*2^3362857+1 1012324 L3171 2017 2578 619*2^3362814+1 1012311 L4527 2017 2579 2289*2^3362723+1 1012284 L5161 2021 2580 7529*2^3362565+1 1012237 L5161 2021 2581 7377*2^3362366+1 1012177 L5161 2021 2582 4509*2^3362311+1 1012161 L5324 2021 2583 7021*2^3362208+1 1012130 L5178 2021 2584 52712138^131072+1 1012127 L4819 2018 Generalized Fermat 2585 104*873^344135-1 1012108 L4700 2018 2586 4953*2^3362054+1 1012083 L5323 2021 2587 8575*2^3361798+1 1012006 L5237 2021 2588 2139*2^3361706+1 1011978 L5174 2021 2589 6939*2^3361203+1 1011827 L5217 2021 2590 52412612^131072+1 1011802 L4289 2018 Generalized Fermat 2591 3^2120580-3^623816-1 1011774 CH9 2019 2592 8185*2^3360896+1 1011735 L5189 2021 2593 2389*2^3360882+1 1011730 L5317 2021 2594 2787*2^3360631+1 1011655 L5197 2021 2595 6619*2^3360606+1 1011648 L5316 2021 2596 2755*2^3360526+1 1011623 L5174 2021 2597 1445*2^3360099+1 1011494 L5261 2021 2598 2846*67^553905-1 1011476 L4955 2023 2599 8757*2^3359788+1 1011401 L5197 2021 2600 52043532^131072+1 1011400 L4810 2018 Generalized Fermat 2601 5085*2^3359696+1 1011373 L5261 2021 2602 51954384^131072+1 1011303 L4720 2018 Generalized Fermat 2603 6459*2^3359457+1 1011302 L5310 2021 2604 51872628^131072+1 1011213 L4591 2018 Generalized Fermat 2605 6115*2^3358998+1 1011163 L5309 2021 2606 7605*2^3358929+1 1011143 L5308 2021 2607 2315*2^3358899+1 1011133 L5197 2021 2608 6603*2^3358525+1 1011021 L5307 2021 2609 51580416^131072+1 1010891 L4765 2018 Generalized Fermat 2610 51570250^131072+1 1010880 L4591 2018 Generalized Fermat 2611 51567684^131072+1 1010877 L4800 2018 Generalized Fermat 2612 5893*2^3357490+1 1010709 L5285 2021 2613 6947*2^3357075+1 1010585 L5302 2021 2614 4621*2^3357068+1 1010582 L5301 2021 2615 51269192^131072+1 1010547 L4795 2018 Generalized Fermat 2616 1479*2^3356275+1 1010343 L5178 2021 2617 3645*2^3356232+1 1010331 L5296 2021 2618 1259*2^3356215+1 1010325 L5298 2021 2619 2075*2^3356057+1 1010278 L5174 2021 2620 4281*2^3356051+1 1010276 L5295 2021 2621 1275*2^3356045+1 1010274 L5294 2021 2622 50963598^131072+1 1010206 L4726 2018 Generalized Fermat 2623 4365*2^3355770+1 1010192 L5261 2021 2624 50844724^131072+1 1010074 L4656 2018 Generalized Fermat 2625 2183*2^3355297+1 1010049 L5266 2021 2626 3087*2^3355000+1 1009960 L5226 2021 2627 8673*2^3354760+1 1009888 L5233 2021 2628 50495632^131072+1 1009681 L4591 2018 Generalized Fermat 2629 3015*2^3353943+1 1009641 L5290 2021 2630 6819*2^3353877+1 1009622 L5174 2021 2631 9*10^1009567-1 1009568 L3735 2016 Near-repdigit 2632 6393*2^3353366+1 1009468 L5287 2021 2633 3573*2^3353273+1 1009440 L5161 2021 2634 4047*2^3353222+1 1009425 L5286 2021 2635 1473*2^3353114+1 1009392 L5161 2021 2636 1183*2^3353058+1 1009375 L3824 2017 2637 50217306^131072+1 1009367 L4720 2018 Generalized Fermat 2638 81*2^3352924+1 1009333 L1728 2012 Generalized Fermat 2639 50110436^131072+1 1009245 L4591 2018 Generalized Fermat 2640 50055102^131072+1 1009183 L4309 2018 Generalized Fermat 2641 7123*2^3352180+1 1009111 L5161 2021 2642 2757*2^3352180+1 1009111 L5285 2021 2643 9307*2^3352014+1 1009061 L5284 2021 2644 2217*2^3351732+1 1008976 L5283 2021 2645 543*2^3351686+1 1008961 L4198 2017 2646 4419*2^3351666+1 1008956 L5279 2021 2647 49817700^131072+1 1008912 L4760 2018 Generalized Fermat 2648 3059*2^3351379+1 1008870 L5278 2021 2649 7789*2^3351046+1 1008770 L5276 2021 2650 9501*2^3350668+1 1008656 L5272 2021 2651 49530004^131072+1 1008582 L4591 2018 Generalized Fermat 2652 9691*2^3349952+1 1008441 L5242 2021 2653 49397682^131072+1 1008430 L4764 2018 Generalized Fermat 2654 3209*2^3349719+1 1008370 L5269 2021 2655 49331672^131072+1 1008354 L4763 2018 Generalized Fermat 2656 393*2^3349525+1 1008311 L3101 2016 2657 49243622^131072+1 1008252 L4741 2018 Generalized Fermat 2658 5487*2^3349303+1 1008245 L5266 2021 2659 49225986^131072+1 1008232 L4757 2018 Generalized Fermat 2660 2511*2^3349104+1 1008185 L5264 2021 2661 1005*2^3349046-1 1008167 L4518 2021 2662 7659*2^3348894+1 1008122 L5263 2021 2663 9703*2^3348872+1 1008115 L5262 2021 2664 49090656^131072+1 1008075 L4752 2018 Generalized Fermat 2665 7935*2^3348578+1 1008027 L5161 2021 2666 49038514^131072+1 1008015 L4743 2018 Generalized Fermat 2667 7821*2^3348400+1 1007973 L5260 2021 2668 7911*2^3347532+1 1007712 L5250 2021 2669 8295*2^3347031+1 1007561 L5249 2021 2670 48643706^131072+1 1007554 L4691 2018 Generalized Fermat 2671 4029*2^3346729+1 1007470 L5239 2021 2672 9007*2^3346716+1 1007466 L5161 2021 2673 8865*2^3346499+1 1007401 L5238 2021 2674 6171*2^3346480+1 1007395 L5174 2021 2675 6815*2^3346045+1 1007264 L5235 2021 2676 5*326^400785+1 1007261 L4786 2019 2677 5951*2^3345977+1 1007244 L5233 2021 2678 48370248^131072+1 1007234 L4701 2018 Generalized Fermat 2679 1257*2^3345843+1 1007203 L5192 2021 2680 4701*2^3345815+1 1007195 L5192 2021 2681 48273828^131072+1 1007120 L4456 2018 Generalized Fermat 2682 7545*2^3345355+1 1007057 L5231 2021 2683 5559*2^3344826+1 1006897 L5223 2021 2684 6823*2^3344692+1 1006857 L5223 2021 2685 4839*2^3344453+1 1006785 L5188 2021 2686 7527*2^3344332+1 1006749 L5220 2021 2687 7555*2^3344240+1 1006721 L5188 2021 2688 6265*2^3344080+1 1006673 L5197 2021 2689 1299*2^3343943+1 1006631 L5217 2021 2690 2815*2^3343754+1 1006574 L5216 2021 2691 5349*2^3343734+1 1006568 L5174 2021 2692 2863*2^3342920+1 1006323 L5179 2020 2693 7387*2^3342848+1 1006302 L5208 2020 2694 9731*2^3342447+1 1006181 L5203 2020 2695 7725*2^3341708+1 1005959 L5195 2020 2696 7703*2^3341625+1 1005934 L5178 2020 2697 7047*2^3341482+1 1005891 L5194 2020 2698 4839*2^3341309+1 1005838 L5192 2020 2699 47179704^131072+1 1005815 L4673 2017 Generalized Fermat 2700 47090246^131072+1 1005707 L4654 2017 Generalized Fermat 2701 8989*2^3340866+1 1005705 L5189 2020 2702 6631*2^3340808+1 1005688 L5188 2020 2703 1341*2^3340681+1 1005649 L5188 2020 2704 733*2^3340464+1 1005583 L3035 2016 2705 2636*138^469911+1 1005557 L5410 2021 2706 3679815*2^3340001+1 1005448 L4922 2019 2707 57*2^3339932-1 1005422 L3519 2015 2708 46776558^131072+1 1005326 L4659 2017 Generalized Fermat 2709 46736070^131072+1 1005277 L4245 2017 Generalized Fermat 2710 46730280^131072+1 1005270 L4656 2017 Generalized Fermat 2711 3651*2^3339341+1 1005246 L5177 2020 2712 3853*2^3339296+1 1005232 L5178 2020 2713 8015*2^3339267+1 1005224 L5176 2020 2714 3027*2^3339182+1 1005198 L5174 2020 2715 9517*2^3339002+1 1005144 L5172 2020 2716 4003*2^3338588+1 1005019 L3035 2020 2717 6841*2^3338336+1 1004944 L1474 2020 2718 2189*2^3338209+1 1004905 L5031 2020 2719 46413358^131072+1 1004883 L4626 2017 Generalized Fermat 2720 46385310^131072+1 1004848 L4622 2017 Generalized Fermat 2721 46371508^131072+1 1004831 L4620 2017 Generalized Fermat 2722 2957*2^3337667+1 1004742 L5144 2020 2723 1515*2^3337389+1 1004658 L1474 2020 2724 7933*2^3337270+1 1004623 L4666 2020 2725 1251*2^3337116+1 1004576 L4893 2020 2726 651*2^3337101+1 1004571 L3260 2016 2727 46077492^131072+1 1004469 L4595 2017 Generalized Fermat 2728 8397*2^3336654+1 1004437 L5125 2020 2729 8145*2^3336474+1 1004383 L5110 2020 2730 1087*2^3336385-1 1004355 L1828 2012 2731 5325*2^3336120+1 1004276 L2125 2020 2732 849*2^3335669+1 1004140 L3035 2016 2733 8913*2^3335216+1 1004005 L5079 2020 2734 7725*2^3335213+1 1004004 L3035 2020 2735 611*2^3334875+1 1003901 L3813 2016 2736 45570624^131072+1 1003840 L4295 2017 Generalized Fermat 2737 403*2^3334410+1 1003761 L4293 2016 2738 5491*2^3334392+1 1003756 L4815 2020 2739 6035*2^3334341+1 1003741 L2125 2020 2740 1725*2^3334341+1 1003740 L2125 2020 2741 4001*2^3334031+1 1003647 L1203 2020 2742 2315*2^3333969+1 1003629 L2125 2020 2743 6219*2^3333810+1 1003581 L4582 2020 2744 8063*2^3333721+1 1003554 L1823 2020 2745 9051*2^3333677+1 1003541 L3924 2020 2746 45315256^131072+1 1003520 L4562 2017 Generalized Fermat 2747 4091*2^3333153+1 1003383 L1474 2020 2748 9949*2^3332750+1 1003262 L5090 2020 2749 3509*2^3332649+1 1003231 L5085 2020 2750 3781*2^3332436+1 1003167 L1823 2020 2751 4425*2^3332394+1 1003155 L3431 2020 2752 6459*2^3332086+1 1003062 L2629 2020 2753 44919410^131072+1 1003020 L4295 2017 Generalized Fermat 2754 5257*2^3331758+1 1002963 L1188 2020 2755 2939*2^3331393+1 1002853 L1823 2020 2756 6959*2^3331365+1 1002845 L1675 2020 2757 8815*2^3330748+1 1002660 L3329 2020 2758 4303*2^3330652+1 1002630 L4730 2020 2759 8595*2^3330649+1 1002630 L4723 2020 2760 673*2^3330436+1 1002564 L3035 2016 2761 8163*2^3330042+1 1002447 L3278 2020 2762 44438760^131072+1 1002408 L4505 2016 Generalized Fermat 2763 193*2^3329782+1 1002367 L3460 2014 Divides Fermat F(3329780) 2764 44330870^131072+1 1002270 L4501 2016 Generalized Fermat 2765 2829*2^3329061+1 1002151 L4343 2020 2766 5775*2^3329034+1 1002143 L1188 2020 2767 7101*2^3328905+1 1002105 L4568 2020 2768 7667*2^3328807+1 1002075 L4087 2020 2769 129*2^3328805+1 1002073 L3859 2014 2770 7261*2^3328740+1 1002055 L2914 2020 2771 4395*2^3328588+1 1002009 L3924 2020 2772 44085096^131072+1 1001953 L4482 2016 Generalized Fermat 2773 143183*2^3328297+1 1001923 L4504 2017 2774 44049878^131072+1 1001908 L4466 2016 Generalized Fermat 2775 9681*2^3327987+1 1001828 L1204 2020 2776 2945*2^3327987+1 1001828 L2158 2020 2777 5085*2^3327789+1 1001769 L1823 2020 2778 8319*2^3327650+1 1001727 L1204 2020 2779 4581*2^3327644+1 1001725 L2142 2020 2780 655*2^3327518+1 1001686 L4490 2016 2781 8863*2^3327406+1 1001653 L1675 2020 2782 659*2^3327371+1 1001642 L3502 2016 2783 3411*2^3327343+1 1001634 L1675 2020 2784 4987*2^3327294+1 1001619 L3924 2020 2785 821*2^3327003+1 1001531 L3035 2016 2786 2435*2^3326969+1 1001521 L3035 2020 2787 1931*2^3326850-1 1001485 L4113 2022 2788 2277*2^3326794+1 1001469 L5014 2020 2789 6779*2^3326639+1 1001422 L3924 2020 2790c 31*2^3326149-1 1001273 L1862 2024 2791 6195*2^3325993+1 1001228 L1474 2019 2792 555*2^3325925+1 1001206 L4414 2016 2793 9041*2^3325643+1 1001123 L3924 2019 2794 1965*2^3325639-1 1001121 L4113 2022 2795 1993*2^3325302+1 1001019 L3662 2019 2796 6179*2^3325027+1 1000937 L3048 2019 2797 4485*2^3324900+1 1000899 L1355 2019 2798 3559*2^3324650+1 1000823 L3035 2019 2799f 12512*13^898392-1 1000762 L2425 2024 2800 43165206^131072+1 1000753 L4309 2016 Generalized Fermat 2801 43163894^131072+1 1000751 L4334 2016 Generalized Fermat 2802 6927*2^3324387+1 1000745 L3091 2019 2803 9575*2^3324287+1 1000715 L3824 2019 2804 1797*2^3324259+1 1000705 L3895 2019 2805 4483*2^3324048+1 1000642 L3035 2019 2806 791*2^3323995+1 1000626 L3035 2016 2807 6987*2^3323926+1 1000606 L4973 2019 2808 3937*2^3323886+1 1000593 L3035 2019 2809 2121*2^3323852+1 1000583 L1823 2019 2810 1571*2^3323493+1 1000475 L3035 2019 2811 2319*2^3323402+1 1000448 L4699 2019 2812 2829*2^3323341+1 1000429 L4754 2019 2813 4335*2^3323323+1 1000424 L1823 2019 2814 8485*2^3322938+1 1000308 L4858 2019 2815 6505*2^3322916+1 1000302 L4858 2019 2816 597*2^3322871+1 1000287 L3035 2016 2817 9485*2^3322811+1 1000270 L2603 2019 2818 8619*2^3322774+1 1000259 L3035 2019 2819 387*2^3322763+1 1000254 L1455 2016 2820 1965*2^3322579-1 1000200 L4113 2022 2821 42654182^131072+1 1000075 L4208 2015 Generalized Fermat 2822 6366*745^348190-1 1000060 L4189 2022 2823 13841792445*2^3322000-1 1000032 L5827 2023 2824 5553507*2^3322000+1 1000029 p391 2016 2825 5029159647*2^3321910-1 1000005 L4960 2021 2826 5009522505*2^3321910-1 1000005 L4960 2021 2827 4766298357*2^3321910-1 1000005 L4960 2021 2828 4759383915*2^3321910-1 1000005 L4960 2021 2829 4635733263*2^3321910-1 1000005 L4960 2021 2830 4603393047*2^3321910-1 1000005 L4960 2021 2831 4550053935*2^3321910-1 1000005 L4960 2021 2832 4288198767*2^3321910-1 1000005 L4960 2021 2833 4229494557*2^3321910-1 1000005 L4960 2021 2834 4110178197*2^3321910-1 1000005 L4960 2021 2835 4022490843*2^3321910-1 1000005 L4960 2021 2836 3936623697*2^3321910-1 1000005 L4960 2021 2837 3751145343*2^3321910-1 1000005 L4960 2021 2838 3715773735*2^3321910-1 1000005 L4960 2021 2839 3698976057*2^3321910-1 1000005 L4960 2021 2840 3659465685*2^3321910-1 1000005 L4960 2020 2841 3652932033*2^3321910-1 1000005 L4960 2020 2842 3603204333*2^3321910-1 1000005 L4960 2020 2843 3543733545*2^3321910-1 1000005 L4960 2020 2844 3191900133*2^3321910-1 1000005 L4960 2020 2845 3174957723*2^3321910-1 1000005 L4960 2020 2846 2973510903*2^3321910-1 1000005 L4960 2019 2847 2848144257*2^3321910-1 1000005 L4960 2019 2848 2820058827*2^3321910-1 1000005 L4960 2019 2849 2611553775*2^3321910-1 1000004 L4960 2020 2850 2601087525*2^3321910-1 1000004 L4960 2019 2851 2386538565*2^3321910-1 1000004 L4960 2019 2852 2272291887*2^3321910-1 1000004 L4960 2019 2853 2167709265*2^3321910-1 1000004 L4960 2019 2854 2087077797*2^3321910-1 1000004 L4960 2019 2855 1848133623*2^3321910-1 1000004 L4960 2019 2856 1825072257*2^3321910-1 1000004 L4960 2019 2857 1633473837*2^3321910-1 1000004 L4960 2019 2858 1228267623*2^3321910-1 1000004 L4808 2019 2859 1148781333*2^3321910-1 1000004 L4808 2019 2860 1065440787*2^3321910-1 1000004 L4808 2019 2861 1055109357*2^3321910-1 1000004 L4960 2019 2862 992309607*2^3321910-1 1000004 L4808 2019 2863 926102325*2^3321910-1 1000004 L4808 2019 2864 892610007*2^3321910-1 1000004 L4960 2019 2865 763076757*2^3321910-1 1000004 L4960 2019 2866 607766997*2^3321910-1 1000004 L4808 2019 2867 539679177*2^3321910-1 1000004 L4808 2019 2868 425521077*2^3321910-1 1000004 L4808 2019 2869 132940575*2^3321910-1 1000003 L4808 2019 2870 239378138685*2^3321891+1 1000001 L5104 2020 2871 464253*2^3321908-1 1000000 L466 2013 2872 3^2095902+3^647322-1 1000000 x44 2018 2873 191273*2^3321908-1 1000000 L466 2013 2874 1814570322984178^65536+1 1000000 L5080 2020 Generalized Fermat 2875 1814570322977518^65536+1 1000000 L5080 2020 Generalized Fermat 2876 3292665455999520712131952624640^32768+1 1000000 L5749 2023 Generalized Fermat 2877 3292665455999520712131951642528^32768+1 1000000 L5120 2020 Generalized Fermat 2878 3292665455999520712131951625894^32768+1 1000000 L5122 2020 Generalized Fermat 2879 10841645805132531666786792405311319418846637043199917731999190^16384+1 1000000 L5749 2023 Generalized Fermat 2880 10841645805132531666786792405311319418846637043199917731311876^16384+1 1000000 L5207 2020 Generalized Fermat 2881 10841645805132531666786792405311319418846637043199917731150000^16384+1 1000000 L5122 2020 Generalized Fermat 2882 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729599864^8192+1 1000000 L5749 2023 Generalized Fermat 2883 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729375350^8192+1 1000000 p417 2021 Generalized Fermat 2884 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729240092^8192+1 1000000 p419 2021 Generalized Fermat 2885 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729154678^8192+1 1000000 p418 2021 Generalized Fermat 2886 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729122666^8192+1 1000000 p417 2021 Generalized Fermat 2887 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729023786^8192+1 1000000 p416 2021 Generalized Fermat 2888 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097875144^4096+1 1000000 p421 2021 Generalized Fermat 2889 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097840702^4096+1 1000000 p417 2021 Generalized Fermat 2890 ((sqrtnint(10^999999,2048)+2)+364176)^2048+1 1000000 p417 2022 Generalized Fermat 2891 10^999999+10^840885+10^333333+1 1000000 p436 2023 2892 10^999999+308267*10^292000+1 1000000 CH10 2021 2893 10^999999-1022306*10^287000-1 999999 CH13 2021 2894 10^999999-1087604*10^287000-1 999999 CH13 2021 2895 531631540026641*6^1285077+1 999999 L3494 2021 2896 3139*2^3321905-1 999997 L185 2008 2897 702*507^369680+1 999991 A28 2024 2898 42550702^131072+1 999937 L4309 2022 Generalized Fermat 2899 42414020^131072+1 999753 L5030 2022 Generalized Fermat 2900 4847*2^3321063+1 999744 SB9 2005 2901 42254832^131072+1 999539 L5375 2022 Generalized Fermat 2902 42243204^131072+1 999524 L4898 2022 Generalized Fermat 2903 42230406^131072+1 999506 L5453 2022 Generalized Fermat 2904 42168978^131072+1 999424 L5462 2022 Generalized Fermat 2905 439*2^3318318+1 998916 L5573 2022 2906a 201382*5^1428998+1 998833 A11 2024 2907 41688706^131072+1 998772 L5270 2022 Generalized Fermat 2908 41364744^131072+1 998327 L5453 2022 Generalized Fermat 2909 41237116^131072+1 998152 L5459 2022 Generalized Fermat 2910 47714*17^811139+1 998070 L5765 2023 Generalized Cullen 2911 41102236^131072+1 997965 L4245 2022 Generalized Fermat 2912 41007562^131072+1 997834 L4210 2022 Generalized Fermat 2913 41001148^131072+1 997825 L4210 2022 Generalized Fermat 2914 975*2^3312951+1 997301 L5231 2022 2915 40550398^131072+1 997196 L4245 2022 Generalized Fermat 2916 11796*46^599707+1 997172 L5670 2023 2917 40463598^131072+1 997074 L4591 2022 Generalized Fermat 2918 689*2^3311423+1 996841 L5226 2022 2919 40151896^131072+1 996633 L4245 2022 Generalized Fermat 2920 593*2^3309333+1 996212 L5572 2022 2921 383*2^3309321+1 996208 L5570 2022 2922 49*2^3309087-1 996137 L1959 2013 2923 39746366^131072+1 996056 L4201 2022 Generalized Fermat 2924 139413*6^1279992+1 996033 L4001 2015 2925 1274*67^545368-1 995886 L5410 2023 2926 51*2^3308171+1 995861 L2840 2015 2927 719*2^3308127+1 995849 L5192 2022 2928 39597790^131072+1 995842 L4737 2022 Generalized Fermat 2929 39502358^131072+1 995705 L5453 2022 Generalized Fermat 2930 39324372^131072+1 995448 L5202 2022 Generalized Fermat 2931 245114*5^1424104-1 995412 L3686 2013 2932 39100746^131072+1 995123 L5441 2022 Generalized Fermat 2933 38824296^131072+1 994719 L4245 2022 Generalized Fermat 2934 38734748^131072+1 994588 L4249 2021 Generalized Fermat 2935 175124*5^1422646-1 994393 L3686 2013 2936 453*2^3303073+1 994327 L5568 2022 2937e 856*75^530221-1 994200 A11 2024 2938 38310998^131072+1 993962 L4737 2021 Generalized Fermat 2939 531*2^3301693+1 993912 L5226 2022 2940 38196496^131072+1 993791 L4861 2021 Generalized Fermat 2941 38152876^131072+1 993726 L4245 2021 Generalized Fermat 2942 195*2^3301018+1 993708 L5569 2022 2943 341*2^3300789+1 993640 L5192 2022 2944 37909914^131072+1 993363 L4249 2021 Generalized Fermat 2945 849*2^3296427+1 992327 L5571 2022 2946 1611*22^738988+1 992038 L4139 2015 2947 36531196^131072+1 991254 L4249 2021 Generalized Fermat 2948 2017*2^3292325-1 991092 L3345 2017 2949 36422846^131072+1 991085 L4245 2021 Generalized Fermat 2950 36416848^131072+1 991076 L5202 2021 Generalized Fermat 2951 885*2^3290927+1 990671 L5161 2022 2952 36038176^131072+1 990481 L4245 2021 Generalized Fermat 2953 35997532^131072+1 990416 L4245 2021 Generalized Fermat 2954 35957420^131072+1 990353 L4245 2021 Generalized Fermat 2955 107970^196608-107970^98304+1 989588 L4506 2016 Generalized unique 2956 35391288^131072+1 989449 L5070 2021 Generalized Fermat 2957 35372304^131072+1 989419 L5443 2021 Generalized Fermat 2958 219*2^3286614+1 989372 L5567 2022 2959 61*2^3286535-1 989348 L4405 2016 2960 35327718^131072+1 989347 L4591 2021 Generalized Fermat 2961 35282096^131072+1 989274 L4245 2021 Generalized Fermat 2962 35141602^131072+1 989046 L4729 2021 Generalized Fermat 2963 35139782^131072+1 989043 L4245 2021 Generalized Fermat 2964 35047222^131072+1 988893 L4249 2021 Generalized Fermat 2965 531*2^3284944+1 988870 L5536 2022 2966 34957136^131072+1 988747 L5321 2021 Generalized Fermat 2967 301*2^3284232+1 988655 L5564 2022 2968 34871942^131072+1 988608 L4245 2021 Generalized Fermat 2969 34763644^131072+1 988431 L4737 2021 Generalized Fermat 2970 34585314^131072+1 988138 L4201 2021 Generalized Fermat 2971 311*2^3282455+1 988120 L5568 2022 2972 34530386^131072+1 988048 L5070 2021 Generalized Fermat 2973 833*2^3282181+1 988038 L5564 2022 2974 561*2^3281889+1 987950 L5477 2022 2975 34087952^131072+1 987314 L4764 2021 Generalized Fermat 2976 87*2^3279368+1 987191 L3458 2015 2977 965*2^3279151+1 987126 L5564 2022 2978 33732746^131072+1 986717 L4359 2021 Generalized Fermat 2979 33474284^131072+1 986279 L5051 2021 Generalized Fermat 2980 33395198^131072+1 986145 L4658 2021 Generalized Fermat 2981 427*2^3275606+1 986059 L5566 2022 2982 33191418^131072+1 985796 L4201 2021 Generalized Fermat 2983 337*2^3274106+1 985607 L5564 2022 2984 357*2^3273543+1 985438 L5237 2022 Divides GF(3273542,10) 2985 1045*2^3273488+1 985422 L5192 2022 2986 32869172^131072+1 985241 L4285 2021 Generalized Fermat 2987 32792696^131072+1 985108 L5198 2021 Generalized Fermat 2988 1047*2^3272351+1 985079 L5563 2022 2989 32704348^131072+1 984955 L5312 2021 Generalized Fermat 2990b 6781*24^713573-1 984886 A11 2024 2991 32608738^131072+1 984788 L5395 2021 Generalized Fermat 2992c 75*2^3271125-1 984709 A38 2024 2993 933*2^3270993+1 984670 L5562 2022 2994 311*2^3270759+1 984600 L5560 2022 2995 32430486^131072+1 984476 L4245 2021 Generalized Fermat 2996 32417420^131072+1 984453 L4245 2021 Generalized Fermat 2997 65*2^3270127+1 984409 L3924 2015 2998 32348894^131072+1 984333 L4245 2021 Generalized Fermat 2999 579*2^3269850+1 984326 L5226 2022 3000 32286660^131072+1 984223 L5400 2021 Generalized Fermat 3001 32200644^131072+1 984071 L4387 2021 Generalized Fermat 3002 32137342^131072+1 983959 L4559 2021 Generalized Fermat 3003 32096608^131072+1 983887 L4559 2021 Generalized Fermat 3004 32055422^131072+1 983814 L4559 2021 Generalized Fermat 3005 31821360^131072+1 983397 L4861 2021 Generalized Fermat 3006 31768014^131072+1 983301 L4252 2021 Generalized Fermat 3007 335*2^3266237+1 983238 L5559 2022 3008 1031*2^3265915+1 983142 L5364 2022 3009 31469984^131072+1 982765 L5078 2021 Generalized Fermat 3010 5*2^3264650-1 982759 L384 2013 3011 223*2^3264459-1 982703 L1884 2012 3012 1101*2^3264400+1 982686 L5231 2022 3013 483*2^3264181+1 982620 L5174 2022 3014 525*2^3263227+1 982332 L5231 2022 3015 31145080^131072+1 982174 L4201 2021 Generalized Fermat 3016 622*48^584089+1 981998 L5629 2023 3017 31044982^131072+1 981991 L5041 2021 Generalized Fermat 3018 683*2^3262037+1 981974 L5192 2022 3019 923*2^3261401+1 981783 L5477 2022 3020 30844300^131072+1 981622 L5102 2021 Generalized Fermat 3021 30819256^131072+1 981575 L4201 2021 Generalized Fermat 3022 9*2^3259381-1 981173 L1828 2011 3023 31*2^3259185-1 981114 L1862 2024 3024 1059*2^3258751+1 980985 L5231 2022 3025 6*5^1403337+1 980892 L4965 2020 3026 30318724^131072+1 980643 L4309 2021 Generalized Fermat 3027 30315072^131072+1 980636 L5375 2021 Generalized Fermat 3028 30300414^131072+1 980609 L4755 2021 Generalized Fermat 3029 30225714^131072+1 980468 L4201 2021 Generalized Fermat 3030 875*2^3256589+1 980334 L5550 2022 3031 30059800^131072+1 980155 L4928 2021 Generalized Fermat 3032 30022816^131072+1 980085 L5273 2021 Generalized Fermat 3033 29959190^131072+1 979964 L4905 2021 Generalized Fermat 3034e 968*75^522276-1 979303 A11 2024 3035 29607314^131072+1 979292 L5378 2021 Generalized Fermat 3036 779*2^3253063+1 979273 L5192 2022 3037 29505368^131072+1 979095 L5378 2021 Generalized Fermat 3038 163*2^3250978+1 978645 L5161 2022 Divides GF(3250977,6) 3039 29169314^131072+1 978443 L5380 2021 Generalized Fermat 3040 417*2^3248255+1 977825 L5178 2022 3041 28497098^131072+1 977116 L4308 2021 Generalized Fermat 3042 28398204^131072+1 976918 L5379 2021 Generalized Fermat 3043 28294666^131072+1 976710 L5375 2021 Generalized Fermat 3044 28175634^131072+1 976470 L5378 2021 Generalized Fermat 3045 33*2^3242126-1 975979 L3345 2014 3046 27822108^131072+1 975752 L4760 2021 Generalized Fermat 3047 39*2^3240990+1 975637 L3432 2014 3048 27758510^131072+1 975621 L4289 2021 Generalized Fermat 3049 3706*103^484644+1 975514 A11 2024 3050 27557876^131072+1 975208 L4245 2021 Generalized Fermat 3051 27544748^131072+1 975181 L4387 2021 Generalized Fermat 3052 27408050^131072+1 974898 L4210 2021 Generalized Fermat 3053e 14275*60^548133-1 974668 x51 2024 3054 225*2^3236967+1 974427 L5529 2022 3055 27022768^131072+1 974092 L4309 2021 Generalized Fermat 3056 26896670^131072+1 973826 L5376 2021 Generalized Fermat 3057 1075*2^3234606+1 973717 L5192 2022 3058 26757382^131072+1 973530 L5375 2021 Generalized Fermat 3059 26599558^131072+1 973194 L4245 2021 Generalized Fermat 3060 6*5^1392287+1 973168 L4965 2020 3061 26500832^131072+1 972982 L4956 2021 Generalized Fermat 3062 325*2^3231474+1 972774 L5536 2022 3063 933*2^3231438+1 972763 L5197 2022 3064 123*2^3230548+1 972494 L5178 2022 Divides GF(3230546,12) 3065 26172278^131072+1 972272 L4245 2021 Generalized Fermat 3066 697*2^3229518+1 972185 L5534 2022 3067 22598*745^338354-1 971810 L4189 2022 3068 385*2^3226814+1 971371 L5178 2022 3069 211195*2^3224974+1 970820 L2121 2013 3070 1173*2^3223546+1 970388 L5178 2022 3071 7*6^1246814+1 970211 L4965 2019 3072 25128150^131072+1 969954 L4738 2021 Generalized Fermat 3073 25124378^131072+1 969946 L5102 2021 Generalized Fermat 3074 1089*2^3221691+1 969829 L5178 2022 3075 35*832^332073-1 969696 L4001 2019 3076 600921*2^3219922-1 969299 g337 2018 3077 939*2^3219319+1 969115 L5178 2022 3078 24734116^131072+1 969055 L5070 2021 Generalized Fermat 3079b 76896*5^1386360+1 969029 A42 2024 3080 24644826^131072+1 968849 L5070 2021 Generalized Fermat 3081 24642712^131072+1 968844 L5070 2021 Generalized Fermat 3082 24641166^131072+1 968840 L5070 2021 Generalized Fermat 3083 129*2^3218214+1 968782 L5529 2022 3084 24522386^131072+1 968565 L5070 2021 Generalized Fermat 3085 24486806^131072+1 968483 L4737 2021 Generalized Fermat 3086 811*2^3216944+1 968400 L5233 2022 3087 24297936^131072+1 968042 L4201 2021 Generalized Fermat 3088 1023*2^3214745+1 967738 L5178 2022 3089 187*2^3212152+1 966957 L5178 2022 3090 301*2^3211281-1 966695 L5545 2022 3091 6*409^369832+1 965900 L4001 2015 3092 23363426^131072+1 965809 L5033 2021 Generalized Fermat 3093 1165*2^3207702+1 965618 L5178 2022 3094 94373*2^3206717+1 965323 L2785 2013 3095 2751*2^3206569-1 965277 L4036 2015 3096 761*2^3206341+1 965208 L5178 2022 3097 23045178^131072+1 965029 L5023 2021 Generalized Fermat 3098 23011666^131072+1 964946 L5273 2021 Generalized Fermat 3099 911*2^3205225+1 964872 L5364 2022 3100 22980158^131072+1 964868 L4201 2021 Generalized Fermat 3101 22901508^131072+1 964673 L4743 2021 Generalized Fermat 3102 22808110^131072+1 964440 L5248 2021 Generalized Fermat 3103 22718284^131072+1 964215 L5254 2021 Generalized Fermat 3104 22705306^131072+1 964183 L5248 2021 Generalized Fermat 3105 113983*2^3201175-1 963655 L613 2008 3106 34*888^326732-1 963343 L4001 2017 3107 899*2^3198219+1 962763 L5503 2022 3108 22007146^131072+1 962405 L4245 2020 Generalized Fermat 3109 4*3^2016951+1 962331 L4965 2020 3110 21917442^131072+1 962173 L4622 2020 Generalized Fermat 3111 987*2^3195883+1 962060 L5282 2022 3112 21869554^131072+1 962048 L5061 2020 Generalized Fermat 3113 21757066^131072+1 961754 L4773 2020 Generalized Fermat 3114 21582550^131072+1 961296 L5068 2020 Generalized Fermat 3115 21517658^131072+1 961125 L5126 2020 Generalized Fermat 3116 20968936^131072+1 959654 L4245 2020 Generalized Fermat 3117 671*2^3185411+1 958908 L5315 2022 3118 20674450^131072+1 958849 L4245 2020 Generalized Fermat 3119 1027*2^3184540+1 958646 L5174 2022 3120 789*2^3183463+1 958321 L5482 2022 3121 855*2^3183158+1 958229 L5161 2022 3122 20234282^131072+1 957624 L4942 2020 Generalized Fermat 3123 20227142^131072+1 957604 L4677 2020 Generalized Fermat 3124 625*2^3180780+1 957513 L5178 2022 Generalized Fermat 3125 20185276^131072+1 957486 L4201 2020 Generalized Fermat 3126 935*2^3180599+1 957459 L5477 2022 3127 573*2^3179293+1 957066 L5226 2022 3128 33*2^3176269+1 956154 L3432 2013 3129 81*2^3174353-1 955578 L3887 2022 3130 19464034^131072+1 955415 L4956 2020 Generalized Fermat 3131 600921*2^3173683-1 955380 g337 2018 3132 587*2^3173567+1 955342 L5301 2022 3133 19216648^131072+1 954687 L5024 2020 Generalized Fermat 3134 1414*95^482691-1 954633 L4877 2019 3135 305*2^3171039+1 954581 L5301 2022 3136 755*2^3170701+1 954479 L5302 2022 3137 775*2^3170580+1 954443 L5449 2022 3138 78*236^402022-1 953965 L5410 2020 3139 18968126^131072+1 953946 L5011 2020 Generalized Fermat 3140 18813106^131072+1 953479 L4201 2020 Generalized Fermat 3141 18608780^131072+1 952857 L4488 2020 Generalized Fermat 3142 1087*2^3164677-1 952666 L1828 2012 3143 18509226^131072+1 952552 L4884 2020 Generalized Fermat 3144 18501600^131072+1 952528 L4875 2020 Generalized Fermat 3145 459*2^3163175+1 952214 L5178 2022 3146 15*2^3162659+1 952057 p286 2012 3147 18309468^131072+1 951934 L4928 2020 Generalized Fermat 3148 18298534^131072+1 951900 L4201 2020 Generalized Fermat 3149 849*2^3161727+1 951778 L5178 2022 3150 67*2^3161450+1 951694 L3223 2015 3151 119*2^3161195+1 951617 L5320 2022 3152 1759*2^3160863-1 951518 L4965 2021 3153 58*117^460033+1 951436 L5410 2020 3154 417*2^3160443+1 951391 L5302 2022 3155 9231*70^515544+1 951234 L5410 2021 3156 671*2^3159523+1 951115 L5188 2022 3157 17958952^131072+1 950834 L4201 2020 Generalized Fermat 3158 1001*2^3158422-1 950783 L4518 2023 3159 17814792^131072+1 950375 L4752 2020 Generalized Fermat 3160 17643330^131072+1 949824 L4201 2020 Generalized Fermat 3161 19*2^3155009-1 949754 L1828 2012 3162 281*2^3151457+1 948686 L5316 2022 3163 179*2^3150265+1 948327 L5302 2022 3164 17141888^131072+1 948183 L4963 2019 Generalized Fermat 3165 17138628^131072+1 948172 L4963 2019 Generalized Fermat 3166 17119936^131072+1 948110 L4963 2019 Generalized Fermat 3167 17052490^131072+1 947885 L4715 2019 Generalized Fermat 3168 17025822^131072+1 947796 L4870 2019 Generalized Fermat 3169 16985784^131072+1 947662 L4295 2019 Generalized Fermat 3170 865*2^3147482+1 947490 L5178 2021 3171 963*2^3145753+1 946969 L5451 2021 3172 16741226^131072+1 946837 L4201 2019 Generalized Fermat 3173 387*2^3144483+1 946587 L5450 2021 3174 1035*2^3144236+1 946513 L5449 2021 3175 1065*2^3143667+1 946342 L4944 2021 3176 193*2^3142150+1 945884 L5178 2021 3177 915*2^3141942+1 945822 L5448 2021 3178 939*2^3141397+1 945658 L5320 2021 3179 1063*2^3141350+1 945644 L5178 2021 3180 16329572^131072+1 945420 L4201 2019 Generalized Fermat 3181 69*2^3140225-1 945304 L3764 2014 3182 3*2^3136255-1 944108 L256 2007 3183 417*2^3136187+1 944089 L5178 2021 3184 15731520^131072+1 943296 L4245 2019 Generalized Fermat 3185 62721^196608-62721^98304+1 943210 L4506 2016 Generalized unique 3186 15667716^131072+1 943064 L4387 2019 Generalized Fermat 3187 15567144^131072+1 942698 L4918 2019 Generalized Fermat 3188 299*2^3130621+1 942414 L5178 2021 3189 15342502^131072+1 941870 L4245 2019 Generalized Fermat 3190 15237960^131072+1 941481 L4898 2019 Generalized Fermat 3191 571*2^3127388+1 941441 L5440 2021 3192c 107*2^3126660-1 941221 A38 2024 3193 15147290^131072+1 941141 L4861 2019 Generalized Fermat 3194 197*2^3126343+1 941126 L5178 2021 3195 15091270^131072+1 940930 L4760 2019 Generalized Fermat 3196 1097*2^3124455+1 940558 L5178 2021 3197 3125*2^3124079+1 940445 L1160 2019 3198 495*2^3123624+1 940308 L5438 2021 3199 14790404^131072+1 939784 L4871 2019 Generalized Fermat 3200 1041*2^3120649+1 939412 L5437 2021 3201 14613898^131072+1 939101 L4926 2019 Generalized Fermat 3202 3317*2^3117162-1 938363 L5399 2021 3203 763*2^3115684+1 937918 L4944 2021 3204b 25*746^326451-1 937810 A28 2024 3205 581*2^3114611+1 937595 L5178 2021 3206 14217182^131072+1 937534 L4387 2019 Generalized Fermat 3207 134*864^319246-1 937473 L5410 2020 3208 700057*2^3113753-1 937339 L5410 2022 3209 5*6^1204077-1 936955 A2 2023 3210 1197*2^3111838+1 936760 L5178 2021 3211 14020004^131072+1 936739 L4249 2019 Generalized Fermat 3212 27777*2^3111027+1 936517 L2777 2014 Generalized Cullen 3213 755*2^3110759+1 936435 L5320 2021 3214 13800346^131072+1 935840 L4880 2019 Generalized Fermat 3215 866981*12^866981-1 935636 L5765 2023 Generalized Woodall 3216c 313*2^3107219-1 935369 L5819 2024 3217 13613070^131072+1 935062 L4245 2019 Generalized Fermat 3218 628*80^491322+1 935033 L5410 2021 3219 761*2^3105087+1 934728 L5197 2021 3220 13433028^131072+1 934305 L4868 2018 Generalized Fermat 3221 1019*2^3103680-1 934304 L1828 2012 3222 12*978^312346+1 934022 L4294 2023 3223 579*2^3102639+1 933991 L5315 2021 3224 99*2^3102401-1 933918 L1862 2017 3225 256612*5^1335485-1 933470 L1056 2013 3226 13083418^131072+1 932803 L4747 2018 Generalized Fermat 3227 882*1017^310074+1 932495 A10 2024 3228 69*2^3097340-1 932395 L3764 2014 3229 153*2^3097277+1 932376 L4944 2021 3230 12978952^131072+1 932347 L4849 2018 Generalized Fermat 3231 12961862^131072+1 932272 L4245 2018 Generalized Fermat 3232 207*2^3095391+1 931808 L5178 2021 3233 12851074^131072+1 931783 L4670 2018 Generalized Fermat 3234 45*2^3094632-1 931579 L1862 2018 3235 259*2^3094582+1 931565 L5214 2021 3236 553*2^3094072+1 931412 L4944 2021 3237 57*2^3093440-1 931220 L2484 2020 3238 12687374^131072+1 931054 L4289 2018 Generalized Fermat 3239 513*2^3092705+1 931000 L4329 2016 3240 12661786^131072+1 930939 L4819 2018 Generalized Fermat 3241 933*2^3091825+1 930736 L5178 2021 3242 38*875^316292-1 930536 L4001 2019 3243 5*2^3090860-1 930443 L1862 2012 3244 12512992^131072+1 930266 L4814 2018 Generalized Fermat 3245 4*5^1330541-1 930009 L4965 2022 3246 12357518^131072+1 929554 L4295 2018 Generalized Fermat 3247 12343130^131072+1 929488 L4720 2018 Generalized Fermat 3248 297*2^3087543+1 929446 L5326 2021 3249 1149*2^3087514+1 929438 L5407 2021 3250 745*2^3087428+1 929412 L5178 2021 3251 373*520^342177+1 929357 L3610 2014 3252 19401*2^3086450-1 929119 L541 2015 3253 75*2^3086355+1 929088 L3760 2015 3254 65*2^3080952-1 927461 L2484 2020 3255 11876066^131072+1 927292 L4737 2018 Generalized Fermat 3256 1139*2^3079783+1 927111 L5174 2021 3257 271*2^3079189-1 926931 L2484 2018 3258 766*33^610412+1 926923 L4001 2016 3259 11778792^131072+1 926824 L4672 2018 Generalized Fermat 3260 555*2^3078792+1 926812 L5226 2021 3261 31*332^367560+1 926672 L4294 2018 3262 167*2^3077568-1 926443 L1862 2020 3263 10001*2^3075602-1 925853 L4405 2019 3264 116*107^455562-1 924513 L4064 2021 3265 11292782^131072+1 924425 L4672 2018 Generalized Fermat 3266 14844*430^350980-1 924299 L4001 2016 3267 11267296^131072+1 924297 L4654 2017 Generalized Fermat 3268 4*3^1936890+1 924132 L4965 2020 Generalized Fermat 3269 1105*2^3069884+1 924131 L5314 2021 3270 319*2^3069362+1 923973 L5377 2021 3271 11195602^131072+1 923933 L4706 2017 Generalized Fermat 3272 973*2^3069092+1 923892 L5214 2021 3273 765*2^3068511+1 923717 L5174 2021 3274 60849*2^3067914+1 923539 L591 2014 3275 674*249^385359+1 923400 L5410 2019 3276 499*2^3066970+1 923253 L5373 2021 3277 553*2^3066838+1 923213 L5368 2021 3278 629*2^3066827+1 923210 L5226 2021 3279 11036888^131072+1 923120 L4660 2017 Generalized Fermat 3280 261*2^3066009+1 922964 L5197 2021 3281 10994460^131072+1 922901 L4704 2017 Generalized Fermat 3282 214916*3^1934246-1 922876 L4965 2023 Generalized Woodall 3283 21*2^3065701+1 922870 p286 2012 3284 10962066^131072+1 922733 L4702 2017 Generalized Fermat 3285 10921162^131072+1 922520 L4559 2017 Generalized Fermat 3286 875*2^3063847+1 922313 L5364 2021 3287 43*2^3063674+1 922260 L3432 2013 3288 677*2^3063403+1 922180 L5346 2021 3289 8460*241^387047-1 921957 L5410 2019 3290 10765720^131072+1 921704 L4695 2017 Generalized Fermat 3291 111*2^3060238-1 921226 L2484 2020 3292 1165*2^3060228+1 921224 L5360 2021 3293 5*2^3059698-1 921062 L503 2008 3294 10453790^131072+1 920031 L4694 2017 Generalized Fermat 3295 453*2^3056181+1 920005 L5320 2021 3296 791*2^3055695+1 919859 L5177 2021 3297 10368632^131072+1 919565 L4692 2017 Generalized Fermat 3298 582971*2^3053414-1 919175 L5410 2022 3299 123*2^3049038+1 917854 L4119 2015 3300 10037266^131072+1 917716 L4691 2017 Generalized Fermat 3301 400*95^463883-1 917435 L4001 2019 3302 9907326^131072+1 916975 L4690 2017 Generalized Fermat 3303 454*383^354814+1 916558 L2012 2020 3304 9785844^131072+1 916272 L4326 2017 Generalized Fermat 3305 435*2^3041954+1 915723 L5320 2021 3306 639*2^3040438+1 915266 L5320 2021 3307 13822*115^443832+1 914608 A11 2024 3308 1045*2^3037988+1 914529 L5178 2021 3309 291*2^3037904+1 914503 L3545 2015 3310 311*2^3037565+1 914401 L5178 2021 3311 373*2^3036746+1 914155 L5178 2021 3312 9419976^131072+1 914103 L4591 2017 Generalized Fermat 3313c 5706*162^413708+1 914098 A14 2024 3314 341*2^3036506-1 914082 p435 2023 3315 801*2^3036045+1 913944 L5348 2021 3316 915*2^3033775+1 913261 L5178 2021 3317 38804*3^1913975+1 913203 L5410 2021 3318 9240606^131072+1 913009 L4591 2017 Generalized Fermat 3319 869*2^3030655+1 912322 L5260 2021 3320 643*2^3030650+1 912320 L5320 2021 3321 99*2^3029959-1 912111 L1862 2020 3322 417*2^3029342+1 911926 L5178 2021 3323 345*2^3027769+1 911452 L5343 2021 3324 26*3^1910099+1 911351 L4799 2020 3325 355*2^3027372+1 911333 L5174 2021 3326 99*2^3026660-1 911118 L1862 2020 3327 417*2^3026492+1 911068 L5197 2021 3328 1065*2^3025527+1 910778 L5208 2021 3329 34202*3^1908800+1 910734 L5410 2021 3330 8343*42^560662+1 910099 L4444 2020 3331 699*2^3023263+1 910096 L5335 2021 3332 8770526^131072+1 910037 L4245 2017 Generalized Fermat 3333 8704114^131072+1 909604 L4670 2017 Generalized Fermat 3334 383731*2^3021377-1 909531 L466 2011 3335 46821*2^3021380-374567 909531 p363 2013 3336 2^3021377-1 909526 G3 1998 Mersenne 37 3337 615*2^3019445+1 908947 L5260 2021 3338 389*2^3019025+1 908820 L5178 2021 3339 875*2^3018175+1 908565 L5334 2021 3340 375*2^3016803-1 908151 L2235 2023 3341 555*2^3016352+1 908016 L5178 2021 3342 7*2^3015762+1 907836 g279 2008 3343 759*2^3015314+1 907703 L5178 2021 3344 32582*3^1901790+1 907389 L5372 2021 3345 75*2^3012342+1 906808 L3941 2015 3346 459*2^3011814+1 906650 L5178 2021 3347 991*2^3010036+1 906115 L5326 2021 3348 583*2^3009698+1 906013 L5325 2021 3349 8150484^131072+1 905863 L4249 2017 Generalized Fermat 3350 593*2^3006969+1 905191 L5178 2021 3351 327*2^3006540-1 905062 L2257 2023 3352d 75*2^3006235-1 904969 A38 2024 3353 367*2^3004536+1 904459 L5178 2021 3354 7926326^131072+1 904276 L4249 2017 Generalized Fermat 3355 1003*2^3003756+1 904224 L5320 2021 3356 626*1017^300576+1 903932 A9 2024 3357 573*2^3002662+1 903895 L5319 2021 3358 7858180^131072+1 903784 L4201 2017 Generalized Fermat 3359 329*2^3002295+1 903784 L5318 2021 3360 4*5^1292915-1 903710 L4965 2022 3361 7832704^131072+1 903599 L4249 2017 Generalized Fermat 3362 268514*5^1292240-1 903243 L3562 2013 3363 7*10^902708+1 902709 p342 2013 3364 435*2^2997453+1 902326 L5167 2021 3365 583*2^2996526+1 902047 L5174 2021 3366 1037*2^2995695+1 901798 L5178 2021 3367 717*2^2995326+1 901686 L5178 2021 3368 885*2^2995274+1 901671 L5178 2021 3369 43*2^2994958+1 901574 L3222 2013 3370 1065*2^2994154+1 901334 L5315 2021 3371 561*2^2994132+1 901327 L5314 2021 3372 1095*2^2992587-1 900862 L1828 2011 3373 519*2^2991849+1 900640 L5311 2021 3374 7379442^131072+1 900206 L4201 2017 Generalized Fermat 3375 459*2^2990134+1 900123 L5197 2021 3376 15*2^2988834+1 899730 p286 2012 3377 29*564^326765+1 899024 L4001 2017 3378 971*2^2982525+1 897833 L5197 2021 3379 1033*2^2980962+1 897362 L5305 2021 3380 357*2^2980540-1 897235 L2257 2023 3381 367*2^2979033-1 896781 L2257 2023 3382 39*2^2978894+1 896739 L2719 2013 3383 38*977^299737+1 896184 L5410 2021 3384 4348099*2^2976221-1 895939 L466 2008 3385 205833*2^2976222-411665 895938 L4667 2017 3386 593*2^2976226-18975 895937 p373 2014 3387 2^2976221-1 895932 G2 1997 Mersenne 36 3388 1024*3^1877301+1 895704 p378 2014 3389 1065*2^2975442+1 895701 L5300 2021 Divides GF(2975440,3) 3390 24704*3^1877135+1 895626 L5410 2021 3391 591*2^2975069+1 895588 L5299 2021 3392 249*2^2975002+1 895568 L2322 2015 3393 195*2^2972947+1 894949 L3234 2015 3394 6705932^131072+1 894758 L4201 2017 Generalized Fermat 3395 391*2^2971600+1 894544 L5242 2021 3396 46425*2^2971203+1 894426 L2777 2014 Generalized Cullen 3397 625*2^2970336+1 894164 L5233 2021 Generalized Fermat 3398 369*2^2968175-1 893513 L2257 2023 3399 493*72^480933+1 893256 L3610 2014 3400 561*2^2964753+1 892483 L5161 2021 3401 1185*2^2964350+1 892362 L5161 2021 3402 6403134^131072+1 892128 L4510 2016 Generalized Fermat 3403 6391936^131072+1 892028 L4511 2016 Generalized Fermat 3404 395*2^2961370-1 891464 L2257 2023 3405 21*2^2959789-1 890987 L5313 2021 3406 627*2^2959098+1 890781 L5197 2021 3407 45*2^2958002-1 890449 L1862 2017 3408 729*2^2955389+1 889664 L5282 2021 3409 706*1017^295508+1 888691 p433 2023 3410 198677*2^2950515+1 888199 L2121 2012 3411 88*985^296644+1 887987 L5410 2020 3412 303*2^2949403-1 887862 L1817 2022 3413 5877582^131072+1 887253 L4245 2016 Generalized Fermat 3414 321*2^2946654-1 887034 L1817 2022 3415 17*2^2946584-1 887012 L3519 2013 3416 489*2^2944673+1 886438 L5167 2021 3417 141*2^2943065+1 885953 L3719 2015 3418 757*2^2942742+1 885857 L5261 2021 3419 5734100^131072+1 885846 L4477 2016 Generalized Fermat 3420 33*2^2939064-5606879602425*2^1290000-1 884748 p423 2021 Arithmetic progression (3,d=33*2^2939063-5606879602425*2^1290000) 3421 33*2^2939063-1 884748 L3345 2013 3422 5903*2^2938744-1 884654 L4036 2015 3423 717*2^2937963+1 884418 L5256 2021 3424 5586416^131072+1 884361 L4454 2016 Generalized Fermat 3425 243*2^2937316+1 884223 L4114 2015 3426 973*2^2937046+1 884142 L5253 2021 3427 61*2^2936967-1 884117 L2484 2017 3428 903*2^2934602+1 883407 L5246 2021 3429 5471814^131072+1 883181 L4362 2016 Generalized Fermat 3430 188*228^374503+1 883056 L4786 2020 3431 53*248^368775+1 883016 L5196 2020 3432 5400728^131072+1 882436 L4201 2016 Generalized Fermat 3433 17*326^350899+1 881887 L4786 2019 3434 855*2^2929550+1 881886 L5200 2021 3435 5326454^131072+1 881648 L4201 2016 Generalized Fermat 3436 839*2^2928551+1 881585 L5242 2021 3437 7019*10^881309-1 881313 L3564 2013 3438 25*2^2927222+1 881184 L1935 2013 Generalized Fermat 3439 391*2^2925759-1 880744 L2257 2023 3440 577*2^2925602+1 880697 L5201 2021 3441 97366*5^1259955-1 880676 L3567 2013 3442d 19861029*2^2924096-1 880248 A31 2024 3443 973*2^2923062+1 879933 L5228 2021 3444 1126*177^391360+1 879770 L4955 2020 3445 243944*5^1258576-1 879713 L3566 2013 3446 693*2^2921528+1 879471 L5201 2021 3447 6*10^879313+1 879314 L5009 2019 3448 269*2^2918105+1 878440 L2715 2015 3449 331*2^2917844+1 878362 L5210 2021 3450 169*2^2917805-1 878350 L2484 2018 3451 1085*2^2916967+1 878098 L5174 2020 3452 389*2^2916499+1 877957 L5215 2020 3453 431*2^2916429+1 877936 L5214 2020 3454 1189*2^2916406+1 877929 L5174 2020 3455 1011*2^2916119-1 877843 L4518 2023 3456 7*2^2915954+1 877791 g279 2008 Divides GF(2915953,12) [g322] 3457 4974408^131072+1 877756 L4380 2016 Generalized Fermat 3458 465*2^2914079+1 877228 L5210 2020 3459 427194*113^427194+1 877069 p310 2012 Generalized Cullen 3460 4893072^131072+1 876817 L4303 2016 Generalized Fermat 3461 493*2^2912552+1 876769 L5192 2021 3462 379*2^2911423-1 876429 L2257 2023 3463 143157*2^2911403+1 876425 L4504 2017 3464 567*2^2910402+1 876122 L5201 2020 3465 683*2^2909217+1 875765 L5199 2020 3466 674*249^365445+1 875682 L5410 2019 3467 475*2^2908802+1 875640 L5192 2021 3468 371*2^2907377+1 875211 L5197 2020 3469 207*2^2903535+1 874054 L3173 2015 3470 851*2^2902731+1 873813 L5177 2020 3471 777*2^2901907+1 873564 L5192 2020 3472 717*2^2900775+1 873224 L5185 2020 3473 99*2^2899303-1 872780 L1862 2017 3474 63*2^2898957+1 872675 L3262 2013 3475 11*2^2897409+1 872209 L2973 2013 Divides GF(2897408,3) 3476 747*2^2895307+1 871578 L5178 2020 3477 403*2^2894566+1 871354 L5180 2020 3478 629*2^2892961+1 870871 L5173 2020 3479 627*2^2891514+1 870436 L5168 2020 3480 325*2^2890955-1 870267 L5545 2022 3481 363*2^2890208+1 870042 L3261 2020 3482 471*2^2890148+1 870024 L5158 2020 3483 4329134^131072+1 869847 L4395 2016 Generalized Fermat 3484 583*2^2889248+1 869754 L5139 2020 3485 353*2^2888332-1 869478 L2257 2023 3486 955*2^2887934+1 869358 L4958 2020 3487 8300*171^389286+1 869279 L5410 2023 3488 303*2^2887603-1 869258 L5184 2022 3489 937*2^2887130+1 869116 L5134 2020 3490 885*2^2886389+1 868893 L3924 2020 3491 763*2^2885928+1 868754 L2125 2020 3492 1071*2^2884844+1 868428 L3593 2020 3493 1181*2^2883981+1 868168 L3593 2020 3494 327*2^2881349-1 867375 L5545 2022 3495 51*2^2881227+1 867338 L3512 2013 3496 933*2^2879973+1 866962 L4951 2020 3497 261*2^2879941+1 866952 L4119 2015 3498 4085818^131072+1 866554 L4201 2016 Generalized Fermat 3499 65*2^2876718-1 865981 L2484 2016 3500 21*948^290747-1 865500 L4985 2019 3501 4013*2^2873250-1 864939 L1959 2014 3502 41*2^2872058-1 864578 L2484 2013 3503 359*2^2870935+1 864241 L1300 2020 3504 165*2^2870868+1 864220 L4119 2015 3505 961*2^2870596+1 864139 L1300 2020 Generalized Fermat 3506 665*2^2869847+1 863913 L2885 2020 3507 283*2^2868750+1 863583 L3877 2015 3508 663703*20^663703-1 863504 L5765 2023 Generalized Woodall 3509 845*2^2868291+1 863445 L5100 2020 3510 3125*2^2867399+1 863177 L1754 2019 3511 701*2^2867141+1 863099 L1422 2020 3512 9*10^862868+1 862869 L4789 2024 Generalized Fermat 3513 3814944^131072+1 862649 L4201 2016 Generalized Fermat 3514e 81030*91^440109-1 862197 A11 2024 3515 119*954^289255+1 861852 L5410 2022 3516 307*2^2862962+1 861840 L4740 2020 3517 147*2^2862651+1 861746 L1741 2015 3518 1207*2^2861901-1 861522 L1828 2011 3519 231*2^2860725+1 861167 L2873 2015 3520 193*2^2858812+1 860591 L2997 2015 3521 629*2^2857891+1 860314 L3035 2020 3522 493*2^2857856+1 860304 L5087 2020 3523 241*2^2857313-1 860140 L2484 2018 3524 707*2^2856331+1 859845 L5084 2020 3525 3615210^131072+1 859588 L4201 2016 Generalized Fermat 3526 949*2^2854946+1 859428 L2366 2020 3527 222361*2^2854840+1 859398 g403 2006 3528 725*2^2854661+1 859342 L5031 2020 3529b 178972*5^1228284+1 858539 A42 2024 3530 399*2^2851994+1 858539 L4099 2020 3531 225*2^2851959+1 858528 L3941 2015 3532 247*2^2851602+1 858421 L3865 2015 3533 183*2^2850321+1 858035 L2117 2015 3534 1191*2^2849315+1 857733 L1188 2020 3535 717*2^2848598+1 857517 L1204 2020 3536 795*2^2848360+1 857445 L4099 2020 3537 4242104*15^728840-1 857189 L5410 2023 3538 3450080^131072+1 856927 L4201 2016 Generalized Fermat 3539 705*2^2846638+1 856927 L1808 2020 3540 369*2^2846547+1 856899 L4099 2020 3541 233*2^2846392-1 856852 L2484 2021 3542e 223952*91^437353-1 856798 A11 2024 3543 955*2^2844974+1 856426 L1188 2020 3544 753*2^2844700+1 856343 L1204 2020 3545 11138*745^297992-1 855884 L4189 2019 3546 111*2^2841992+1 855527 L1792 2015 3547 44*744^297912-1 855478 L5410 2021 3548 649*2^2841318+1 855325 L4732 2020 3549 228*912^288954-1 855305 L5410 2022 3550 305*2^2840155+1 854975 L4907 2020 3551 914*871^290787-1 854923 L5787 2023 3552 1149*2^2839622+1 854815 L2042 2020 3553 95*2^2837909+1 854298 L3539 2013 3554 199*2^2835667-1 853624 L2484 2019 3555 595*2^2833406+1 852943 L4343 2020 3556 1101*2^2832061+1 852539 L4930 2020 3557 813*2^2831757+1 852447 L4951 2020 3558 435*2^2831709+1 852432 L4951 2020 3559 38*500^315752-1 852207 A21 2024 3560 393*2^2828738-1 851538 L2257 2023 3561 543*2^2828217+1 851381 L4746 2019 3562 68*1010^283267+1 851027 L5778 2023 3563 704*249^354745+1 850043 L5410 2019 3564 1001*2^2822037+1 849521 L1209 2019 3565 84466*5^1215373-1 849515 L3562 2013 3566 97*2^2820650+1 849103 L2163 2013 3567 381*2^2820157-1 848955 L2257 2023 3568e 43814*91^433332-1 848920 A32 2024 3569 107*2^2819922-1 848884 L2484 2013 3570 84256*3^1778899+1 848756 L4789 2018 3571 45472*3^1778899-1 848756 L4789 2018 3572 495*2^2819449-1 848742 L3994 2024 3573 14804*3^1778530+1 848579 L4064 2021 3574 497*2^2818787+1 848543 L4842 2019 3575 97*2^2818306+1 848397 L3262 2013 3576 313*2^2817751-1 848231 L802 2021 3577 177*2^2816050+1 847718 L129 2012 3578 585*2^2816000-1 847704 L5819 2024 3579 553*2^2815596+1 847582 L4980 2019 3580 1071*2^2814469+1 847243 L3035 2019 3581 105*2^2813000+1 846800 L3200 2015 3582 1115*2^2812911+1 846774 L1125 2019 3583 96*10^846519-1 846521 L2425 2011 Near-repdigit 3584 763*2^2811726+1 846417 L3919 2019 3585 1125*2^2811598+1 846379 L4981 2019 3586 891*2^2810100+1 845928 L4981 2019 3587 441*2^2809881+1 845862 L4980 2019 3588 499*2^2809261-1 845675 L5516 2024 3589 711*2^2808473+1 845438 L1502 2019 3590 1089*2^2808231+1 845365 L4687 2019 3591 63*2^2807130+1 845033 L3262 2013 3592 1083*2^2806536+1 844855 L3035 2019 3593 675*2^2805669+1 844594 L1932 2019 3594 819*2^2805389+1 844510 L3372 2019 3595 1027*2^2805222+1 844459 L3035 2019 3596 437*2^2803775+1 844024 L3168 2019 3597 381*2^2801281-1 843273 L2257 2023 3598 4431*372^327835-1 842718 L5410 2019 3599 150344*5^1205508-1 842620 L3547 2013 3600 311*2^2798459+1 842423 L4970 2019 3601 81*2^2797443-1 842117 L3887 2021 3602 400254*127^400254+1 842062 g407 2013 Generalized Cullen 3603 2639850^131072+1 841690 L4249 2016 Generalized Fermat 3604 43*2^2795582+1 841556 L2842 2013 3605 1001*2^2794357+1 841189 L1675 2019 3606 117*2^2794014+1 841085 L1741 2015 3607 1057*2^2792700+1 840690 L1675 2019 3608 345*2^2792269+1 840560 L1754 2019 3609a 267*2^2792074-1 840501 L1817 2024 3610 711*2^2792072+1 840501 L4256 2019 3611 315*2^2791414-1 840302 L2235 2021 3612 973*2^2789516+1 839731 L3372 2019 3613 27602*3^1759590+1 839543 L4064 2021 3614 2187*2^2786802+1 838915 L1745 2019 3615 15*2^2785940+1 838653 p286 2012 3616 333*2^2785626-1 838560 L802 2021 3617 1337*2^2785444-1 838506 L4518 2017 3618 711*2^2784213+1 838135 L4687 2019 3619 58582*91^427818+1 838118 L5410 2020 3620 923*2^2783153+1 837816 L1675 2019 3621 1103*2^2783149+1 837815 L3784 2019 3622a 297*2^2778276-1 836347 A27 2024 3623 485*2^2778151+1 836310 L1745 2019 3624 600921*2^2776014-1 835670 g337 2017 3625 1129*2^2774934+1 835342 L1774 2019 3626 750*1017^277556-1 834703 L4955 2021 3627 8700*241^350384-1 834625 L5410 2019 3628 1023*2^2772512+1 834613 L4724 2019 3629 656*249^348030+1 833953 L5410 2019 3630 92*10^833852-1 833854 L4789 2018 Near-repdigit 3631 437*2^2769299+1 833645 L3760 2019 3632 967*2^2768408+1 833377 L3760 2019 3633 2280466^131072+1 833359 L4201 2016 Generalized Fermat 3634 1171*2^2768112+1 833288 L2676 2019 3635 57*2^2765963+1 832640 L3262 2013 3636 1323*2^2764024+1 832058 L1115 2019 3637a 189*2^2762731-1 831668 A27 2024 3638 471*2^2762718-1 831664 L5516 2023 3639a 115*2^2762111-1 831481 A27 2024 3640 77*2^2762047+1 831461 L3430 2013 3641 745*2^2761514+1 831302 L1204 2019 3642 2194180^131072+1 831164 L4276 2016 Generalized Fermat 3643 543*2^2760224-1 830913 L5516 2023 3644 7*10^830865+1 830866 p342 2014 3645 893*2^2758841+1 830497 L4826 2019 3646 593*2^2757554-1 830110 L5516 2023 3647 557*2^2757276-1 830026 L5516 2023 3648 537*2^2755164+1 829390 L3035 2019 3649 225*370^322863-1 829180 A14 2024 3650 579*2^2754370+1 829151 L1823 2019 3651 441*2^2754188+1 829096 L2564 2019 Generalized Fermat 3652 455*2^2754132-1 829080 L5516 2023 3653b 139*2^2751839-1 828389 A27 2024 3654 677*792^285769-1 828369 L541 2023 3655 215*2^2751022-1 828143 L2484 2018 3656 337*2^2750860+1 828094 L4854 2019 3657 701*2^2750267+1 827916 L3784 2019 3658 467*2^2749195+1 827593 L1745 2019 3659 245*2^2748663+1 827433 L3173 2015 3660 591*2^2748315+1 827329 L3029 2019 3661b 205*2^2747571-1 827104 L1817 2024 3662 57*2^2747499+1 827082 L3514 2013 Divides Fermat F(2747497) 3663 1007*2^2747268-1 827014 L4518 2022 3664 1089*2^2746155+1 826679 L2583 2019 3665 707*2^2745815+1 826576 L3760 2019 3666 525*2^2743252-1 825804 L5516 2023 3667 459*2^2742310+1 825521 L4582 2019 3668 777*2^2742196+1 825487 L3919 2019 3669 609*2^2741078+1 825150 L3091 2019 3670 684*157^375674+1 824946 L5112 2022 3671 639*2^2740186+1 824881 L4958 2019 3672 905*2^2739805+1 824767 L4958 2019 3673 119*954^276761+1 824625 L5410 2022 3674 1955556^131072+1 824610 L4250 2015 Generalized Fermat 3675 777*2^2737282+1 824007 L1823 2019 3676 765*2^2735232+1 823390 L1823 2019 3677 609*2^2735031+1 823330 L1823 2019 3678 9*10^823037+1 823038 L4789 2024 3679 305*2^2733989+1 823016 L1823 2019 3680 165*2^2732983+1 822713 L1741 2015 3681 1133*2^2731993+1 822415 L4687 2019 3682 251*2^2730917+1 822091 L3924 2015 3683b 189*2^2730633-1 822005 A27 2024 3684 1185*2^2730620+1 822002 L4948 2019 3685 (10^410997+1)^2-2 821995 p405 2022 3686 173*2^2729905+1 821786 L3895 2015 3687b 285*2^2728979-1 821507 A27 2024 3688 1981*2^2728877-1 821478 L1134 2018 3689 693*2^2728537+1 821375 L3035 2019 3690 501*2^2728224+1 821280 L3035 2019 3691 763*2^2727928+1 821192 L3924 2019 3692 553*2^2727583-1 821088 L5516 2023 3693 465*2^2726085-1 820637 L5516 2023 3694b 291*2^2725533-1 820470 L1817 2024 3695 10*743^285478+1 819606 L4955 2019 3696 17*2^2721830-1 819354 p279 2010 3697 1006*639^291952+1 819075 L4444 2021 3698 1101*2^2720091+1 818833 L4935 2019 3699 1766192^131072+1 818812 L4231 2015 Generalized Fermat 3700 555*2^2719105-1 818535 L5516 2023 3701 165*2^2717378-1 818015 L2055 2012 3702 495*2^2717011-1 817905 L5516 2023 3703 68633*2^2715609+1 817485 L5105 2020 3704 1722230^131072+1 817377 L4210 2015 Generalized Fermat 3705 9574*5^1169232+1 817263 L5410 2021 3706 1717162^131072+1 817210 L4226 2015 Generalized Fermat 3707 133*2^2713410+1 816820 L3223 2015 3708 9022*96^411931-1 816563 L5410 2023 3709 45*2^2711732+1 816315 L1349 2012 3710 569*2^2711451+1 816231 L4568 2019 3711 567*2^2710898-1 816065 L5516 2023 3712 12830*3^1709456+1 815622 L5410 2021 3713 335*2^2708958-1 815481 L2235 2020 3714 93*2^2708718-1 815408 L1862 2016 3715 1660830^131072+1 815311 L4207 2015 Generalized Fermat 3716 837*2^2708160+1 815241 L4314 2019 3717b 261*2^2707551-1 815057 A27 2024 3718 1005*2^2707268+1 814972 L4687 2019 3719 13*458^306196+1 814748 L3610 2015 3720 253*2^2705844+1 814543 L4083 2015 3721 657*2^2705620+1 814476 L4907 2019 3722 39*2^2705367+1 814399 L1576 2013 Divides GF(2705360,3) 3723 405*2^2704471-1 814130 L5516 2023 3724 303*2^2703864+1 813947 L1204 2019 3725 141*2^2702160+1 813434 L1741 2015 3726 753*2^2701925+1 813364 L4314 2019 3727 133*2^2701452+1 813221 L3173 2015 3728d 58434*5^1162930+1 812858 A11 2024 3729 521*2^2700095+1 812813 L4854 2019 3730 393*2^2698956+1 812470 L1823 2019 3731 417*2^2698652+1 812378 L3035 2019 3732 525*2^2698118+1 812218 L1823 2019 3733 3125*2^2697651+1 812078 L3924 2019 3734b 287*2^2697536-1 812042 A27 2024 3735 153*2^2697173+1 811933 L3865 2015 3736 1560730^131072+1 811772 L4201 2015 Generalized Fermat 3737 26*3^1700041+1 811128 L4799 2020 3738 1538654^131072-1538654^65536+1 810961 L4561 2017 Generalized unique 3739 11*2^2691961+1 810363 p286 2013 Divides GF(2691960,12) 3740 555*2^2691334-1 810176 L5516 2023 3741 58*536^296735-1 809841 L5410 2021 3742 33016*3^1696980+1 809670 L5366 2021 3743 7335*2^2689080-1 809498 L4036 2015 3744 1049*2^2688749+1 809398 L4869 2018 3745 120*957^271487-1 809281 L541 2023 3746 329*2^2688221+1 809238 L3035 2018 3747d 1578*37^515979-1 809163 p443 2024 3748 865*2^2687434+1 809002 L4844 2018 3749 989*2^2686591+1 808748 L2805 2018 3750 136*904^273532+1 808609 L5410 2020 3751 243*2^2685873+1 808531 L3865 2015 3752 909*2^2685019+1 808275 L3431 2018 3753 1455*2^2683954-6325241166627*2^1290000-1 807954 p423 2021 Arithmetic progression (3,d=1455*2^2683953-6325241166627*2^1290000) 3754 1455*2^2683953-1 807954 L1134 2020 3755 11210*241^339153-1 807873 L5410 2019 3756 1456746^131072-1456746^65536+1 807848 L4561 2017 Generalized unique 3757 975*2^2681840+1 807318 L4155 2018 3758 999*2^2681353-1 807171 L4518 2022 3759 295*2^2680932+1 807044 L1741 2015 3760b 275*2^2679936-1 806744 A27 2024 3761 1427604^131072-1427604^65536+1 806697 L4561 2017 Generalized unique 3762 575*2^2679711+1 806677 L2125 2018 3763 2386*52^469972+1 806477 L4955 2019 3764 2778*991^269162+1 806433 p433 2023 3765 10*80^423715-1 806369 p247 2023 3766 219*2^2676229+1 805628 L1792 2015 3767 637*2^2675976+1 805552 L3035 2018 3768 1395583^131072-1395583^65536+1 805406 L4561 2017 Generalized unique 3769 951*2^2674564+1 805127 L1885 2018 3770 531*2^2673250-1 804732 L5516 2023 3771 1372930^131072+1 804474 g236 2003 Generalized Fermat 3772 662*1009^267747-1 804286 L5410 2020 3773 261*2^2671677+1 804258 L3035 2015 3774 895*2^2671520+1 804211 L3035 2018 3775 1361244^131072+1 803988 g236 2004 Generalized Fermat 3776 789*2^2670409+1 803877 L3035 2018 3777 256*11^771408+1 803342 L3802 2014 Generalized Fermat 3778 503*2^2668529+1 803310 L4844 2018 3779 255*2^2668448+1 803286 L1129 2015 3780 4189*2^2666639-1 802742 L1959 2017 3781 539*2^2664603+1 802129 L4717 2018 3782 3^1681130+3^445781+1 802103 CH9 2022 3783 26036*745^279261-1 802086 L4189 2020 3784c 295*2^2663855-1 801903 A27 2024 3785 1396*5^1146713-1 801522 L3547 2013 3786 676*687^282491-1 801418 L5426 2023 3787 267*2^2662090+1 801372 L3234 2015 Divides Fermat F(2662088) 3788 51*892^271541+1 801147 L5410 2019 3789 297*2^2660048+1 800757 L3865 2015 3790c 133*2^2658587-1 800317 L1817 2024 3791 99*2^2658496-1 800290 L1862 2021 3792 851*2^2656411+1 799663 L4717 2018 3793 487*2^2655008+1 799240 L3760 2018 3794c 153*2^2654686-1 799143 A27 2024 3795 441*2^2652807-1 798578 L5516 2023 3796 371*2^2651663+1 798233 L3760 2018 3797 69*2^2649939-1 797713 L3764 2014 3798 207*2^2649810+1 797675 L1204 2015 3799 505*2^2649496+1 797581 L3760 2018 3800 993*2^2649256+1 797509 L3760 2018 3801 517*2^2648698+1 797341 L3760 2018 3802 340*703^280035+1 797250 L4001 2018 3803 441*2^2648307+1 797223 L3760 2018 3804 1129*2^2646590+1 796707 L3760 2018 3805 128*518^293315+1 796156 L4001 2019 3806 211*744^277219-1 796057 L5410 2021 3807 1181782^131072-1181782^65536+1 795940 L4142 2015 Generalized unique 3808 1176694^131072+1 795695 g236 2003 Generalized Fermat 3809 13*2^2642943-1 795607 L1862 2012 3810 119*410^304307+1 795091 L4294 2019 3811 501*2^2641052+1 795039 L3035 2018 3812c 267*2^2640554-1 794889 A27 2024 3813 879*2^2639962+1 794711 L3760 2018 3814 57*2^2639528-1 794579 L2484 2016 3815 342673*2^2639439-1 794556 L53 2007 3816 813*2^2639092+1 794449 L2158 2018 3817 1147980^131072-1147980^65536+1 794288 L4142 2015 Generalized unique 3818 197*972^265841-1 794247 L4955 2022 3819 1027*2^2638186+1 794177 L3760 2018 3820 889*2^2637834+1 794071 L3545 2018 3821c 175*2^2637399-1 793939 A27 2024 3822 421*2^2636975-1 793812 L5516 2023 3823 92182*5^1135262+1 793520 L3547 2013 3824 5608*70^429979+1 793358 L5390 2021 3825 741*2^2634385+1 793032 L1204 2018 3826 465*2^2630496+1 791861 L1444 2018 3827 189*2^2630487+1 791858 L3035 2015 3828 87*2^2630468+1 791852 L3262 2013 3829e 123454321*2^2630208+1 791780 L6049 2024 Generalized Fermat 3830 4*5^1132659-1 791696 L4965 2022 3831 1131*2^2629345+1 791515 L4826 2018 3832 967*2^2629344+1 791515 L3760 2018 3833 267*2^2629210+1 791474 L3035 2015 3834 154*883^268602+1 791294 L5410 2020 3835d 237*2^2627713-1 791023 L1817 2024 3836 819*2^2627529+1 790968 L1387 2018 3837d 183*2^2626880-1 790772 L1817 2024 3838 17152*5^1131205-1 790683 L3552 2013 3839 183*2^2626442+1 790641 L3035 2015 3840c 137*2^2626238-1 790579 A27 2024 3841 813*2^2626224+1 790576 L4830 2018 3842 807*2^2625044+1 790220 L1412 2018 3843 557*2^2624952-1 790193 L5516 2023 3844 4*10^789955+1 789956 L4789 2024 3845 1063730^131072+1 789949 g260 2013 Generalized Fermat 3846 1243*2^2623707-1 789818 L1828 2011 3847 693*2^2623557+1 789773 L3278 2018 3848 981*2^2622032+1 789314 L1448 2018 3849 145*2^2621020+1 789008 L3035 2015 3850 963*792^271959-1 788338 L5410 2021 3851 1798*165^354958+1 787117 p365 2024 3852 541*2^2614676+1 787099 L4824 2018 3853 545*2^2614294-1 786984 L5516 2023 3854 (10^393063-1)^2-2 786126 p405 2022 Near-repdigit 3855 1061*268^323645-1 785857 L5410 2019 3856 1662*483^292719-1 785646 L5410 2022 3857 984522^131072-984522^65536+1 785545 p379 2015 Generalized unique 3858 1071*2^2609316+1 785486 L3760 2018 3859 87*2^2609046+1 785404 L2520 2013 3860 18922*111^383954+1 785315 L4927 2021 3861 543*2^2608129+1 785128 L4822 2018 3862 377*2^2607856-1 785046 L2257 2023 3863 329584*5^1122935-1 784904 L3553 2013 3864 10*311^314806+1 784737 L3610 2014 3865 1019*2^2606525+1 784646 L1201 2018 3866 977*2^2606211+1 784551 L4746 2018 3867 13*2^2606075-1 784508 L1862 2011 3868 693*2^2605905+1 784459 L4821 2018 3869 147*2^2604275+1 783968 L1741 2015 3870 105*2^2603631+1 783774 L3459 2015 3871 93*2^2602483-1 783428 L1862 2016 3872 155*2^2602213+1 783347 L2719 2015 3873 545*2^2602018-1 783289 L5516 2023 3874 303*2^2601525+1 783140 L4816 2018 3875 711*2^2600535+1 782842 L4815 2018 3876 1133*2^2599345+1 782484 L4796 2018 3877 397*2^2598796+1 782319 L3877 2018 3878 421*2^2597273-1 781860 L5516 2023 3879 585*2^2596523-1 781635 L5819 2023 3880d 203*2^2595752-1 781402 A27 2024 3881 1536*177^347600+1 781399 L5410 2020 3882 1171*2^2595736+1 781398 L3035 2018 3883 (146^180482+1)^2-2 781254 p405 2022 3884 579*2^2595159-1 781224 L5516 2023 3885 543*2^2594975-1 781169 L5516 2023 3886 909548^131072+1 781036 p387 2015 Generalized Fermat 3887 2*218^333925+1 780870 L4683 2017 3888 15690*29^533930+1 780823 L5787 2023 3889 1149*2^2593359+1 780682 L1125 2018 3890 225*2^2592918+1 780549 L1792 2015 Generalized Fermat 3891 495*2^2592802-1 780514 L5516 2023 3892 333*2^2591874-1 780235 L2017 2019 3893 883969^131072-883969^65536+1 779412 p379 2015 Generalized unique 3894 2154*687^274573-1 778956 L5752 2023 3895 872989^131072-872989^65536+1 778700 p379 2015 Generalized unique 3896 703*2^2586728+1 778686 L4256 2018 3897 2642*372^302825-1 778429 L5410 2019 3898 120*825^266904+1 778416 L4001 2018 3899 337*2^2585660+1 778364 L2873 2018 3900 31*2^2585311-1 778258 L4521 2022 3901 393*2^2584957+1 778153 L4600 2018 3902 151*2^2584480+1 778009 L4043 2015 3903 862325^131072-862325^65536+1 778001 p379 2015 Generalized unique 3904 385*2^2584280+1 777949 L4600 2018 3905 861088^131072-861088^65536+1 777919 p379 2015 Generalized unique 3906 65*2^2583720-1 777780 L2484 2015 3907 25*2^2583690+1 777770 L3249 2013 Generalized Fermat 3908 82*920^262409-1 777727 L4064 2015 3909d 123*2^2583362-1 777672 L1817 2024 3910 1041*2^2582112+1 777297 L1456 2018 3911d 153*2^2581916-1 777237 L1817 2024 3912 334310*211^334310-1 777037 p350 2012 Generalized Woodall 3913 229*2^2581111-1 776995 L1862 2017 3914 61*2^2580689-1 776867 L2484 2015 3915 1113*2^2580205+1 776723 L4724 2018 3916 51*2^2578652+1 776254 L3262 2013 3917 173*2^2578197+1 776117 L3035 2015 3918 833*2^2578029+1 776067 L4724 2018 3919 80*394^298731-1 775358 L541 2020 3920 302*423^295123-1 775096 L5413 2021 3921 460*628^276994+1 775021 L5410 2020 3922 459*2^2573899+1 774824 L1204 2018 3923 593*2^2572634-1 774443 L5516 2023 3924 806883^131072-806883^65536+1 774218 p379 2015 Generalized unique 3925 3*2^2571360-3*2^1285680+1 774057 A3 2023 Generalized unique 3926d 181*2^2570921-1 773927 A27 2024 3927d 285*2^2570839-1 773903 A27 2024 3928 357*2^2568110-1 773081 L2257 2023 3929 627*2^2567718+1 772963 L3803 2018 3930 933*2^2567598+1 772927 L4724 2018 3931 757*2^2566468+1 772587 L2606 2018 3932 471*2^2566323-1 772543 L5516 2023 3933 231*2^2565263+1 772224 L3035 2015 3934 4*737^269302+1 772216 L4294 2016 Generalized Fermat 3935 941*2^2564867+1 772105 L4724 2018 3936 923*2^2563709+1 771757 L1823 2018 3937 151*596^278054+1 771671 L4876 2019 3938 770202^131072-770202^65536+1 771570 p379 2015 Generalized unique 3939 303*2^2562423-1 771369 L2017 2018 3940 75*2^2562382-1 771356 L2055 2011 3941 147559*2^2562218+1 771310 L764 2012 3942 117*412^294963+1 771300 p268 2021 3943 829*2^2561730+1 771161 L1823 2018 3944 404*12^714558+1 771141 L1471 2011 3945 5*308^309755+1 770842 L4294 2024 3946 757576^131072-757576^65536+1 770629 p379 2015 Generalized unique 3947 295*80^404886+1 770537 L5410 2021 3948 1193*2^2559453+1 770476 L2030 2018 3949e 205*2^2559417-1 770464 A27 2024 3950 19*984^257291+1 770072 L5410 2020 3951 116*950^258458-1 769619 L5410 2021 3952 147314*91^392798-1 769513 A11 2024 3953 612497*18^612497+1 768857 L5765 2023 Generalized Cullen 3954e 175*2^2553699-1 768743 A27 2024 3955 731582^131072-731582^65536+1 768641 p379 2015 Generalized unique 3956 479*2^2553152-1 768579 L5516 2023 3957 65*752^267180-1 768470 L5410 2020 3958 120312*91^392238-1 768416 A15 2024 3959 419*2^2552363+1 768341 L4713 2018 3960 369*2^2551955-1 768218 L2257 2023 3961 34*759^266676-1 768093 L4001 2019 3962 315*2^2550412+1 767754 L4712 2017 3963 415*2^2549590+1 767506 L4710 2017 3964 1152*792^264617-1 767056 L4955 2021 3965 693*2^2547752+1 766953 L4600 2017 3966 673*2^2547226+1 766795 L2873 2017 3967 169*2^2545526+1 766282 L2125 2015 Divides GF(2545525,10), generalized Fermat 3968 196*814^263256+1 766242 L5410 2021 Generalized Fermat 3969 183*2^2545116+1 766159 L3035 2015 3970 311*2^2544778-1 766058 L2017 2018 3971 9*2^2543551+1 765687 L1204 2011 Divides Fermat F(2543548), GF(2543549,3), GF(2543549,6), GF(2543549,12) 3972 67*446^288982+1 765612 L4273 2020 3973 663*2^2542990+1 765520 L4703 2017 3974 705*2^2542464+1 765361 L2873 2017 3975 689186^131072+1 765243 g429 2013 Generalized Fermat 3976 745*2^2540726+1 764838 L4696 2017 3977 682504^131072-682504^65536+1 764688 p379 2015 Generalized unique 3978 64*177^340147-1 764644 L3610 2015 3979 421*2^2539336+1 764419 L4148 2017 3980e (2^64-189)*10^764330+1 764350 p439 2024 3981 123287*2^2538167+1 764070 L3054 2012 3982 305716*5^1093095-1 764047 L3547 2013 3983 223*2^2538080+1 764041 L2125 2015 3984 83*2^2537641+1 763908 L1300 2013 3985 543539*2^2536028-1 763427 L4187 2022 3986 473*2^2533376-1 762625 L5516 2023 3987 645*2^2532811+1 762455 L4600 2017 3988 953*2^2531601+1 762091 L4404 2017 3989 694*567^276568-1 761556 L4444 2021 3990 545*2^2528179+1 761061 L1502 2017 3991 517*2^2527857-1 760964 L5516 2023 3992 203*2^2526505+1 760557 L3910 2015 3993 967*2^2526276+1 760488 L1204 2017 3994 3317*2^2523366-1 759613 L5399 2021 3995 241*2^2522801-1 759442 L2484 2018 3996e 153*2^2522271-1 759282 A27 2024 3997 360307*6^975466-1 759066 p255 2017 3998 326*80^398799+1 758953 L4444 2021 3999 749*2^2519457+1 758436 L1823 2017 4000 199*2^2518871-1 758259 L2484 2018 4001 6*10^758068+1 758069 L5009 2019 4002 87*2^2518122-1 758033 L2484 2014 4003 515*2^2517626-1 757884 L5516 2023 4004 605347^131072-605347^65536+1 757859 p379 2015 Generalized unique 4005 711*2^2516187+1 757451 L3035 2017 4006 967*2^2514698+1 757003 L4600 2017 4007 33*2^2513872-1 756753 L3345 2013 4008b 1-V(-3,-3,1307101)-3^1307101 756533 p437 2024 4009 973*2^2511920+1 756167 L1823 2017 4010 679*2^2511814+1 756135 L4598 2017 4011 1093*2^2511384+1 756005 L1823 2017 4012 38*875^256892-1 755780 L4001 2019 4013e 209*2^2510308-1 755681 A27 2024 4014 45*2^2507894+1 754953 L1349 2012 4015 130484*5^1080012-1 754902 L3547 2013 4016 572186^131072+1 754652 g0 2004 Generalized Fermat 4017 242*501^279492-1 754586 L4911 2019 4018 883*2^2506382+1 754500 L1823 2017 4019e 77*2^2505854-1 754340 A27 2024 4020 847*2^2505540+1 754246 L4600 2017 4021d 39768*5^1079005+1 754197 A11 2024 4022 175604*91^384974-1 754186 A16 2024 4023 191*2^2504121+1 753818 L3035 2015 4024 783*2^2500912+1 752853 L1823 2017 4025 133*488^279973-1 752688 L541 2023 4026 165*2^2500130-1 752617 L2055 2011 4027 33*2^2499883-1 752542 L3345 2013 4028 319*2^2498685-1 752182 L2017 2018 4029 215206*5^1076031-1 752119 L20 2023 Generalized Woodall 4030 477*2^2496685-1 751580 L5516 2023 4031 321*2^2496594-1 751553 L2235 2018 4032 531*2^2495930-1 751353 L5516 2023 4033 365*2^2494991+1 751070 L3035 2017 4034f 91*2^2494467-1 750912 L1817 2024 4035 213*2^2493004-1 750472 L1863 2017 4036 777*2^2492560+1 750339 L3035 2017 4037 57*2^2492031+1 750178 L1230 2013 4038 879*2^2491342+1 749972 L4600 2017 4039 14*152^343720-1 749945 L3610 2015 4040 231*2^2489083+1 749292 L3035 2015 4041 255*2^2488562+1 749135 L3035 2015 4042 483*2^2488154-1 749012 L5516 2023 4043 708*48^445477-1 748958 L5410 2022 4044 221*780^258841-1 748596 L4001 2018 4045 303*2^2486629+1 748553 L3035 2017 4046 6*433^283918-1 748548 L3610 2015 4047 413*2^2486596-1 748543 L5516 2023 4048 617*2^2485919+1 748339 L1885 2017 4049a 4118*82^390928-1 748168 A11 2024 4050 515*2^2484885+1 748028 L3035 2017 4051 1095*2^2484828+1 748011 L3035 2017 4052 1113*2^2484125+1 747800 L3035 2017 4053 607*2^2483616+1 747646 L3035 2017 4054 625*2^2483272+1 747543 L2487 2017 Generalized Fermat 4055 527*2^2482876-1 747423 L5516 2023 4056 723*2^2482064+1 747179 L3035 2017 4057 2154*687^263317-1 747023 L5410 2023 4058 26*3^1565545+1 746957 L4799 2020 4059 14336*3^1563960+1 746203 L5410 2021 4060 3*2^2478785+1 746190 g245 2003 Divides Fermat F(2478782), GF(2478782,3), GF(2478776,6), GF(2478782,12) 4061 483*2^2478266-1 746036 L5516 2023 4062 429*2^2478139-1 745997 L5516 2023 4063c 33324*5^1067123+1 745892 A11 2024 4064 1071*2^2477584+1 745831 L3035 2017 4065 22*30^504814-1 745673 p355 2014 4066 2074*483^277812-1 745637 L5410 2022 4067 11*2^2476839+1 745604 L2691 2011 4068b 95977*6^957680-1 745225 L4521 2024 4069 825*2^2474996+1 745051 L1300 2017 4070 1061*2^2474282-1 744837 L1828 2012 4071 435*2^2473905+1 744723 L3035 2017 4072 1005*2^2473724-1 744669 L4518 2021 4073 1121*2^2473401+1 744571 L3924 2017 4074 325*2^2473267-1 744531 L2017 2018 4075 400*639^265307-1 744322 L5410 2022 4076 11996*3^1559395+1 744025 L5410 2021 4077 889*2^2471082+1 743873 L1300 2017 4078 529*2^2470514+1 743702 L3924 2017 Generalized Fermat 4079 561*2^2469713-1 743461 L5516 2023 4080 883*2^2469268+1 743327 L4593 2017 4081 5754*313^297824-1 743237 L5089 2020 4082 81*2^2468789+1 743182 g418 2009 4083 55154*5^1063213+1 743159 L3543 2013 4084 119*2^2468556-1 743112 L2484 2018 4085 2136*396^285974+1 742877 L5410 2021 4086 525*2^2467658+1 742842 L3035 2017 4087 465*2^2467625-1 742832 L5516 2023 4088 715*2^2465640+1 742235 L3035 2017 4089 26773*2^2465343-1 742147 L197 2006 4090 581*550^270707-1 741839 L5410 2020 4091 993*2^2464082+1 741766 L3035 2017 4092f 295*2^2463785-1 741676 L1817 2024 4093 1179*2^2463746+1 741665 L3035 2017 4094 857*2^2463411+1 741564 L3662 2017 4095f 227*2^2462914-1 741414 L1817 2024 4096 103*2^2462567-1 741309 L2484 2014 4097 12587*2^2462524-1 741298 L2012 2017 4098e 15592*67^405715+1 740871 A11 2024 4099 5*2^2460482-1 740680 L503 2008 4100 763*2^2458592+1 740113 L1823 2017 4101 453*2^2458461+1 740074 L3035 2017 4102 519*2^2458058+1 739952 L3803 2017 4103 373*2^2457859-1 739892 L2257 2023 4104 545*2^2457692-1 739842 L5516 2023 4105 137*2^2457639+1 739826 L4021 2014 4106 411*2^2457241-1 739706 L5516 2023 4107 41676*7^875197-1 739632 L2777 2012 Generalized Woodall 4108 2688*991^246849+1 739582 L5410 2021 4109a 6143*82^386291-1 739293 A11 2024 4110 133*2^2455666+1 739232 L2322 2014 4111 99*2^2455541-1 739194 L1862 2015 4112f 115*2^2454363-1 738839 L1817 2024 4113a 14855*82^385937-1 738616 A11 2024 4114f 129*2^2452892-1 738397 L1817 2024 4115 377*2^2452639+1 738321 L3035 2017 4116 2189*138^345010+1 738284 L5410 2020 4117 1129*2^2452294+1 738218 L3035 2017 4118 1103*2^2451133+1 737868 L4531 2017 4119 65*2^2450614-1 737711 L2074 2014 4120 549*2^2450523+1 737684 L3035 2017 4121 4*789^254595+1 737582 L4955 2019 4122 3942*55^423771-1 737519 L4955 2019 4123 441*2^2449825-1 737474 L5516 2023 4124 (3*2^1224895)^2-3*2^1224895+1 737462 A3 2023 Generalized unique 4125 2166*483^274670-1 737204 L5410 2022 4126 765*2^2448660+1 737123 L4412 2017 4127f 77*2^2448152-1 736970 L5819 2024 4128 607*2^2447836+1 736875 L4523 2017 4129 1261*988^246031+1 736807 L5342 2021 4130 1005*2^2446722+1 736540 L4522 2017 4131 703*2^2446472+1 736465 L2805 2017 4132 75*2^2446050+1 736337 L3035 2013 4133 115*26^520277-1 736181 L1471 2014 4134 114986*5^1052966-1 735997 L3528 2013 4135 1029*2^2444707+1 735934 L3035 2017 4136 4*5^1052422+1 735613 L4965 2023 Generalized Fermat 4137 1035*2^2443369+1 735531 L3173 2017 4138 1052072*5^1052072-1 735373 L20 2023 Generalized Woodall 4139 1017*2^2442723+1 735336 L4417 2017 4140 489*2^2442281-1 735203 L5516 2023 4141 962*3^1540432+1 734976 L5410 2021 4142 1065*2^2441132+1 734857 L1823 2017 4143 210060*91^374955-1 734558 A10 2024 4144 369*2^2436949-1 733598 L2257 2023 4145 393*2^2436849+1 733568 L3035 2016 4146 1425*2^2435607-1 733194 L1134 2020 4147f 183*2^2433172-1 732461 L1817 2024 4148 386892^131072+1 732377 p259 2009 Generalized Fermat 4149 465*2^2431455+1 731944 L3035 2016 4150 905*2^2430509+1 731660 L4408 2016 4151 223*2^2430490+1 731653 L4016 2014 4152 8*410^279991+1 731557 L4700 2019 4153 69*2^2428251-1 730979 L384 2014 4154 6070*466^273937+1 730974 L5410 2021 4155 541*2^2427667-1 730804 L5516 2023 4156 233*2^2426512-1 730456 L2484 2020 4157 645*2^2426494+1 730451 L3035 2016 4158 665*2^2425789+1 730239 L3173 2016 4159 539*2^2425704-1 730213 L5516 2023 4160 23*2^2425641+1 730193 L2675 2011 4161 527*2^2424868-1 729961 L5516 2023 4162 361*2^2424232+1 729770 L3035 2016 Generalized Fermat 4163 433*2^2423839-1 729651 L5516 2023 4164 753*2^2422914+1 729373 L3035 2016 4165 5619*52^424922+1 729172 L5410 2019 4166 105*2^2422105+1 729129 L2520 2014 4167 62*962^244403+1 729099 L5409 2021 4168 3338*396^280633+1 729003 L5410 2021 4169 539*2^2421556-1 728964 L5516 2023 4170 201*2^2421514-1 728951 L1862 2016 4171 1084*7^862557+1 728949 L5211 2021 4172 239*2^2421404-1 728918 L2484 2018 4173 577*2^2420868+1 728757 L4489 2016 4174a 3156*82^380339-1 727902 A11 2024 4175 929*2^2417767+1 727824 L3924 2016 4176 4075*2^2417579-1 727768 L1959 2017 4177 303*2^2417452-1 727729 L2235 2018 4178 895*2^2417396+1 727712 L3035 2016 4179 113*1010^242194-1 727631 L5789 2023 4180 1764*327^289322+1 727518 L5410 2020 Generalized Fermat 4181 3317*2^2415998-1 727292 L5399 2021 4182f 115*2^2415271-1 727072 A27 2024 4183 5724*313^291243-1 726814 L4444 2020 4184 1081*2^2412780+1 726323 L1203 2016 4185 333*2^2412735-1 726309 L2017 2018 4186 6891*52^423132+1 726100 L5410 2019 4187 83*2^2411962-1 726075 L1959 2018 4188 69*2^2410035-1 725495 L2074 2013 4189 12362*1027^240890-1 725462 L4444 2018 4190 143157*2^2409056+1 725204 L4504 2016 4191 340594^131072-340594^65536+1 725122 p379 2015 Generalized unique 4192 339*2^2408337+1 724985 L3029 2016 4193 811*2^2408096+1 724913 L2526 2016 4194 157*2^2407958+1 724870 L1741 2014 4195 243686*5^1036954-1 724806 L3549 2013 4196f 91*2^2407249-1 724657 A27 2024 4197 3660*163^327506+1 724509 L4955 2019 4198 303*2^2406433+1 724411 L4425 2016 4199 345*2^2405701+1 724191 L3035 2016 4200 921*2^2405056+1 723997 L2805 2016 4201 970*323^288448+1 723778 A11 2024 4202 673*2^2403606+1 723561 L3035 2016 4203 475*2^2403220+1 723444 L4445 2016 4204 837*2^2402798+1 723318 L3372 2016 4205 329886^131072-329886^65536+1 723303 p379 2015 Generalized unique 4206 231*2^2402748+1 723302 L3995 2014 4207 375*2^2401881+1 723041 L2805 2016 4208 511*2^2401795-1 723016 L5516 2023 4209 107*2^2401731+1 722996 L3998 2014 4210 419*2^2401672-1 722978 L5516 2023 4211f 143*2^2400710-1 722688 L5819 2024 4212 1023*2^2398601+1 722054 L4414 2016 4213 539*2^2398227+1 721941 L4061 2016 4214 659*2^2397567+1 721743 L4441 2016 4215 40*844^246524+1 721416 L4001 2017 4216 453*2^2395836-1 721222 L5516 2023 4217 465*2^2395133+1 721010 L4088 2016 4218 56*318^288096+1 720941 L1471 2019 4219 667*2^2394430+1 720799 L4408 2016 4220 15*2^2393365+1 720476 L1349 2010 4221 1642*273^295670+1 720304 L5410 2019 4222 8*908^243439+1 720115 L5410 2021 4223 427*2^2391685-1 719972 L5516 2023 4224 633*2^2391222+1 719833 L3743 2016 4225 9*10^719055+1 719056 L4789 2024 4226 273*2^2388104+1 718894 L3668 2014 4227 118*558^261698+1 718791 L4877 2019 4228f 77*2^2387116-1 718596 L1817 2024 4229 1485*2^2386037-1 718272 L1134 2017 4230 399*2^2384115+1 717693 L4412 2016 4231 99*2^2383846+1 717612 L1780 2013 4232 737*2^2382804-1 717299 L191 2007 4233 111*2^2382772+1 717288 L3810 2014 4234 423*2^2382134-1 717097 L2519 2023 4235 61*2^2381887-1 717022 L2432 2012 4236 202*249^299162+1 716855 L5410 2019 4237 321*2^2378535-1 716013 L2017 2018 4238 435*2^2378522+1 716010 L1218 2016 4239 829*672^253221+1 715953 p433 2023 4240 4*3^1499606+1 715495 L4962 2020 Generalized Fermat 4241 147*2^2375995+1 715248 L1130 2014 4242 915*2^2375923+1 715228 L1741 2016 4243 1981*2^2375591-1 715128 L1134 2017 4244 81*2^2375447-1 715083 L3887 2021 4245 1129*2^2374562+1 714818 L3035 2016 4246 97*2^2374485-1 714794 L2484 2018 4247 1117*2^2373977-1 714642 L1828 2012 4248 161*2^2373286-1 714433 L1817 2024 4249 949*2^2372902+1 714318 L4408 2016 4250 1005*2^2372754-1 714274 L4518 2021 4251 659*2^2372657+1 714244 L3035 2016 4252 1365*2^2372586+1 714223 L1134 2016 4253 509*2^2370721+1 713661 L1792 2016 4254 99*2^2370390+1 713561 L1204 2013 4255 959*2^2370077+1 713468 L1502 2016 4256a 21683*82^372763-1 713404 A11 2024 4257 1135*2^2369808+1 713387 L2520 2016 4258 125*2^2369461+1 713281 L3035 2014 4259 475*2^2369411-1 713267 L5516 2023 4260 1183953*2^2367907-1 712818 L447 2007 Woodall 4261 57671892869766803925...(712708 other digits)...06520121133805600769 712748 p360 2013 4262 119878*5^1019645-1 712707 L3528 2013 4263 453*2^2367388+1 712658 L3035 2016 4264 150209!+1 712355 p3 2011 Factorial 4265 77*2^2363352-1 711442 L1817 2024 4266 281*2^2363327+1 711435 L1741 2014 4267d 225408*5^1017214-1 711008 A11 2024 4268 2683*2^2360743-1 710658 L1959 2012 4269 16132*67^389127+1 710580 A11 2024 4270 409*2^2360166+1 710484 L1199 2016 4271 465*2^2360088-1 710460 L5516 2023 4272 561*2^2359543-1 710296 L5516 2023 4273 305*2^2358854-1 710089 L2017 2018 4274 1706*123^339764+1 710078 L5410 2021 4275c 169324*5^1015854+1 710057 A36 2024 4276 403*2^2357572+1 709703 L3029 2016 4277 155*2^2357111+1 709564 L3975 2014 4278 523*2^2356047-1 709244 L2519 2023 4279 365*2^2355607+1 709111 L2117 2016 4280 33706*6^910462+1 708482 L587 2014 4281 423*2^2353447-1 708461 L5516 2023 4282 1087*2^2352830+1 708276 L1492 2016 4283 152*1002^235971+1 708120 L5410 2019 4284 179*2^2352291+1 708113 L1741 2014 4285 85*2^2352083-1 708050 L1817 2024 4286 559*2^2351894+1 707994 L3924 2016 4287 24573*2^2350824+1 707673 p168 2018 4288 1035*2^2350388+1 707541 L2526 2016 4289d 51306*5^1011671-1 707133 A34 2024 4290 513*2^2348508-1 706975 L5516 2023 4291 433*2^2348252+1 706897 L2322 2016 4292 329*2^2348105+1 706853 L3029 2016 4293 45*2^2347187+1 706576 L1349 2012 4294 7675*46^424840+1 706410 L5410 2019 4295 127*2^2346377-1 706332 L282 2009 4296 933*2^2345893+1 706188 L3035 2016 4297 903*2^2345013+1 705923 L2006 2016 4298 33*2^2345001+1 705918 L2322 2013 4299 242079^131072-242079^65536+1 705687 p379 2015 Generalized unique 4300 495*2^2343641-1 705509 L5516 2023 4301 627*2^2343140+1 705359 L3125 2016 4302 83*2^2342345+1 705119 L2626 2013 4303 914*871^239796-1 705008 L5410 2023 4304 61*380^273136+1 704634 L5410 2019 4305 277*2^2340182+1 704468 L1158 2014 4306 159*2^2339566+1 704282 L3035 2014 4307 335*2^2338972-1 704104 L2235 2017 4308 535*2^2338971-1 704104 L2519 2023 4309 22*422^268038+1 703685 L4955 2019 4310 9602*241^295318-1 703457 L5410 2019 4311 1149*2^2336638+1 703402 L4388 2016 4312 339*2^2336421-1 703336 L2519 2017 4313 231*2^2335281-1 702992 L1862 2019 4314 275293*2^2335007-1 702913 L193 2006 4315 105*2^2334755-1 702834 L1959 2018 4316 228188^131072+1 702323 g124 2010 Generalized Fermat 4317 809*2^2333017+1 702312 L2675 2016 4318 795*2^2332488+1 702152 L3029 2016 4319 3^1471170-3^529291+1 701927 p269 2019 4320 351*2^2331311-1 701798 L2257 2023 4321 229*2^2331017-1 701709 L1862 2021 4322 118*761^243458+1 701499 L5410 2019 4323 435*2^2329948+1 701387 L2322 2016 4324d 205906*5^1003382+1 701340 A39 2024 4325 585*2^2329350+1 701207 L2707 2016 4326 213*2^2328530-1 700960 L1863 2017 4327 1482*327^278686+1 700773 L5410 2020 4328 26472*91^357645+1 700646 L5410 2020 4329 1107*2^2327472+1 700642 L3601 2016 4330 435*2^2327152+1 700546 L2337 2016 4331 413*2^2327048-1 700514 L5516 2023 4332 4161*2^2326875-1 700463 L1959 2016 4333 427*2^2326288+1 700286 L2719 2016 4334 438*19^547574-1 700215 L5410 2020 4335 147855!-1 700177 p362 2013 Factorial 4336 5872*3^1467401+1 700132 L4444 2021 4337 421*2^2324375-1 699710 L5516 2023 4338 451*2^2323952+1 699582 L3173 2016 4339 431*2^2323633+1 699486 L3260 2016 4340 3084*871^237917-1 699484 L5790 2023 4341 228*912^236298-1 699444 L5366 2022 4342 1085*2^2323291+1 699384 L1209 2016 4343 15*2^2323205-1 699356 L2484 2011 4344 7566*46^420563+1 699299 L5410 2019 4345 1131*2^2322167+1 699045 L1823 2016 4346 385*2^2321502+1 698845 L1129 2016 4347 8348*3^1464571+1 698782 L5367 2021 4348 645*2^2320231+1 698462 L3377 2016 4349d 51306*5^999035-1 698301 A28 2024 4350 1942*877^237267+1 698280 L5410 2022 4351 165*2^2319575+1 698264 L2627 2014 4352 809*2^2319373+1 698204 L3924 2016 4353d 10*11^670128+1 697868 A2 2024 4354 125098*6^896696+1 697771 L587 2014 4355 65536*5^997872+1 697488 L3802 2014 Generalized Fermat 4356 381*2^2314743+1 696810 L4358 2016 4357 120*825^238890+1 696714 L4837 2018 4358 3375*2^2314297+1 696677 L1745 2019 4359 4063*2^2313843-1 696540 L1959 2016 4360 345*2^2313720-1 696502 L2017 2017 4361 74*830^238594-1 696477 L5410 2020 4362 495*2^2313462-1 696425 L5545 2023 4363 926*639^248221-1 696388 L4444 2022 4364 361*2^2312832+1 696235 L3415 2016 Generalized Fermat 4365 1983*366^271591-1 696222 L2054 2012 4366 3*2^2312734-1 696203 L158 2005 4367d 46188*5^995988-1 696171 A11 2024 4368 2643996*7^823543-1 695981 p396 2021 4369 53653*2^2311848+1 695941 L2012 2017 4370 873*2^2311086+1 695710 L2526 2016 4371 1033*2^2310976+1 695677 L4352 2016 4372 4063*2^2310187-1 695440 L1959 2016 4373 4063*2^2309263-1 695162 L1959 2016 4374 565*2^2308984+1 695077 L2322 2016 4375 447*2^2308104-1 694812 L5516 2023 4376 450457*2^2307905-1 694755 L172 2006 4377 1018*3^1455600+1 694501 L5410 2021 4378 553*2^2306343-1 694282 L5516 2023 4379 1185*2^2306324+1 694276 L4347 2016 4380 3267*2^2305266+1 693958 L1204 2019 4381 107*770^240408-1 693938 L4955 2020 4382 467*2^2304298-1 693666 L5516 2023 4383 537*2^2304115+1 693611 L3267 2016 4384 842*1017^230634-1 693594 L4001 2017 4385 729*2^2303162+1 693324 L1204 2016 Generalized Fermat 4386 641*2^2302879+1 693239 L2051 2016 4387 729*2^2300290+1 692460 L1204 2016 Generalized Fermat 4388 189*2^2299959+1 692359 L2627 2014 4389 2582*111^338032-1 691389 L4786 2021 4390 659*2^2294393+1 690684 L3378 2016 4391 1087*2^2293345-1 690369 L1828 2011 4392 97768*5^987383-1 690157 L1016 2013 4393 4761657101009*2^2292504-1 690126 L257 2019 4394 12061*60^388015-1 689954 A11 2024 4395 3*2^2291610+1 689844 L753 2008 Divides GF(2291607,3), GF(2291609,5) 4396 319*2^2290722+1 689579 L1792 2015 4397 3066*697^242498-1 689482 L5410 2023 4398 779*2^2290273+1 689444 L3034 2016 4399b 22356*24^499418+1 689307 A11 2024 4400 1001*2^2289438-1 689193 L4518 2020 4401 971*2^2289135+1 689102 L4198 2016 4402 399*2^2288691+1 688968 L1990 2015 4403 1425*2^2288483-1 688906 L1134 2021 4404 180139^131072-180139^65536+1 688864 p379 2015 Generalized unique 4405 74270*151^315734-1 687982 L4001 2018 4406 23902*52^400831+1 687832 L5410 2019 4407e 391581*2^2284871-1 687821 A2 2024 4408 417*2^2284402+1 687677 L2322 2015 4409 130*686^242244+1 687085 L4064 2018 4410 427*2^2282080+1 686978 L3260 2015 4411 109*2^2280194+1 686409 L2520 2014 4412 105*2^2280078-1 686374 L2444 2014 4413 1019*2^2278467+1 685890 L4323 2016 4414 213*2^2277870-1 685710 L1863 2017 4415 904*957^229937-1 685425 L5410 2022 4416 547*2^2276648+1 685343 L3260 2015 4417 26*3^1435875+1 685088 L4799 2020 4418 7913*2^2275664-1 685048 L4036 2015 4419 5*6^880336+1 685036 p420 2023 4420 651*2^2275040+1 684859 L4082 2016 4421 155877*2^2273465-1 684387 L541 2014 4422 16*710^240014+1 684344 L5410 2019 Generalized Fermat 4423 739*2^2272938+1 684226 L1209 2016 4424 279*798^235749-1 684147 L541 2021 4425 4821*396^263301+1 683980 L5410 2021 4426 (362^133647+1)^2-2 683928 p403 2019 4427 943*2^2269594+1 683219 L1823 2016 4428 493*2^2269427-1 683169 L5516 2023 4429 182*792^235539+1 682766 L4837 2019 4430 1286*603^245567+1 682758 L4444 2019 4431 50*893^231310-1 682564 L4975 2019 4432 329*2^2266631+1 682327 L4109 2015 4433 739*2^2266602+1 682319 L2520 2016 4434 19683*2^2265896+1 682107 L2914 2019 4435 1151*2^2265761+1 682066 L1823 2016 4436 851*2^2265691+1 682044 L3173 2016 4437 977*2^2265655+1 682034 L2413 2016 4438 2*11171^168429+1 681817 g427 2014 Divides Phi(11171^168429,2) 4439 185*2^2264906-1 681807 L2484 2022 4440 31924*3^1428855+1 681742 L5410 2021 4441 217*2^2264546+1 681699 L3179 2014 4442 178*821^233901-1 681671 L5410 2022 4443 841*2^2264184+1 681591 L1823 2016 Generalized Fermat 4444 93*2^2263894+1 681502 L2826 2013 4445 34*912^230098+1 681091 L5410 2022 4446 377*2^2262094-1 680961 L2257 2023 4447 74*932^229308-1 680913 L4444 2021 4448 217499*28^470508-1 680905 p366 2013 4449 963*2^2261357+1 680740 L1300 2016 4450 2138*3^1426626+1 680677 L5410 2021 4451d 43926*5^973444-1 680413 A11 2024 4452 1065*2^2260193+1 680389 L1204 2016 4453 837*2^2259470+1 680172 L1823 2016 4454 927*2^2258112+1 679763 L4287 2016 4455 265*2^2258071-1 679750 L2484 2018 4456 430157*38^430157+1 679561 L5765 2023 Generalized Cullen 4457 561*2^2256600+1 679308 L3877 2015 4458 495*2^2255944+1 679110 L4119 2015 4459 489*2^2255331-1 678925 L5516 2023 4460 129*2^2255199+1 678885 L3049 2014 4461 735*2^2254660+1 678724 L4283 2016 4462 162*814^233173+1 678682 L5410 2021 4463 403*2^2254355-1 678632 L5516 2023 4464 973*2^2254320+1 678621 L1204 2016 4465 275102*151^311399-1 678537 L4001 2018 4466 603*2^2252402+1 678044 L1803 2016 4467 1029*2^2252198+1 677983 L3125 2016 4468 39*2^2251104-1 677652 L177 2015 4469 575*2^2250751+1 677547 L1741 2015 4470 2838*88^348438+1 677536 L5410 2020 4471 725*2^2250697+1 677531 L2859 2016 4472 65*2^2250637+1 677512 L3487 2013 4473 14641*2^2250096+1 677351 L181 2017 Generalized Fermat 4474 187*2^2249974+1 677312 L2322 2014 4475 141*2^2249967+1 677310 L3877 2014 4476 459*2^2249183+1 677075 L3877 2015 4477 904*957^227111-1 677001 L5410 2022 4478 319*2^2248914+1 676994 L2322 2015 4479 569*2^2248709+1 676932 L4133 2015 4480 571*2^2248701-1 676930 L5516 2023 4481 221*2^2248363+1 676828 L1130 2014 4482 144912*151^310514-1 676609 L4001 2018 4483 649*2^2247490+1 676565 L1204 2016 4484 374565*2^2247391+1 676538 L3532 2013 Generalized Cullen 4485 721*2^2246420+1 676243 L3037 2016 4486 875*2^2246363+1 676226 L2859 2016 4487 3888*931^227714-1 676075 L4001 2018 4488 347*2^2245598-1 675995 L2519 2017 4489 1199*2^2244631+1 675705 L3593 2016 4490 137*2^2244398-1 675634 L2484 2022 4491 197*2^2244347+1 675619 L1129 2014 4492 6510*565^245490+1 675605 L5410 2022 4493 507*2^2244237-1 675586 L5516 2023 4494 5055*2^2242777-1 675147 L4036 2015 4495 295*2^2242469-1 675053 L1817 2024 4496 651*2^2241783+1 674847 L3260 2016 4497 35*2^2241049+1 674625 L2742 2013 4498 4161*2^2240358-1 674419 L1959 2016 4499 164978*151^309413-1 674210 L4001 2018 4500 493*2^2238775-1 673942 L5516 2023 4501d 189942*5^963996-1 673810 A11 2024 4502d 43428*5^963789+1 673665 A37 2024 4503 2354*138^314727+1 673482 L5410 2020 4504 20*698^236810-1 673455 L5410 2020 4505 146*447^254042-1 673292 L4001 2018 4506 675*2^2236244+1 673180 L4191 2016 4507 615*2^2235833+1 673056 L1823 2016 4508 53069*28^465060-1 673021 p257 2016 4509 831*2^2235253+1 672882 L3432 2013 4510 185*2^2235003+1 672806 L2322 2014 4511d 47028*5^962410-1 672701 A33 2024 4512 103*2^2234536+1 672665 L3865 2014 4513 885*2^2234318+1 672600 L3125 2016 4514 963*2^2234249+1 672579 L1823 2016 4515d 49002*5^962035+1 672439 A35 2024 4516 305*2^2233655+1 672400 L4118 2015 4517 267*2^2233376+1 672316 L1792 2014 4518 221*994^224221-1 672080 L5410 2020 4519 103*2^2232551-1 672067 L2484 2013 4520 889*2^2231034+1 671612 L2526 2016 4521 1779*88^345359+1 671548 L5410 2020 4522 907*2^2230776+1 671534 L4269 2016 4523 11*2^2230369+1 671410 L2561 2011 Divides GF(2230368,3) 4524 1425*2^2229009+1 671002 L1134 2016 4525 747*2^2228814+1 670943 L2526 2016 4526 9760*3^1406070+1 670870 L4444 2021 4527 969*2^2228379+1 670812 L4262 2016 4528 887*2^2228179+1 670752 L2840 2015 4529 130816^131072+1 670651 g308 2003 Generalized Fermat 4530 235*2^2227565-1 670567 A27 2024 4531 1123*2^2227338+1 670499 L3924 2015 4532d 230998*5^959172+1 670438 A11 2024 4533a 831*2^2226903-1 670368 L5819 2024 4534 3478*378^260076+1 670348 L4955 2021 4535 213*2^2226329+1 670195 L2125 2014 4536 10072*67^367000+1 670174 A11 2024 4537b 957*2^2226209-1 670159 L5819 2024 4538b 813*2^2225840-1 670048 L5819 2024 4539f 1054*198^291719-1 669984 L4444 2024 4540 505*2^2225296+1 669884 L4111 2015 4541b 693*2^2225272-1 669877 L5819 2024 4542 11*878^227481+1 669591 L5410 2019 4543 271*2^2223601-1 669374 L2484 2018 4544 325*2^2223243-1 669266 L2235 2016 4545b 827*2^2223014-1 669197 L5819 2024 4546 (10^334568-1)^2-2 669136 p405 2022 Near-repdigit 4547 203*2^2222744-1 669115 A27 2024 4548 84363*2^2222321+1 668991 L541 2014 4549 2516745*2^2222222+1 668962 p396 2017 4550b 931*2^2222099-1 668922 L5819 2024 4551b 993*2^2221991-1 668889 L5819 2024 4552 7043*48^397817-1 668831 p255 2016 4553 27700*96^337306-1 668637 L5410 2023 4554 1137*2^2221062+1 668610 L4040 2015 4555 471*2^2220478-1 668434 L5516 2023 4556 152*806^229984-1 668413 L4001 2018 4557 1425*2^2219664-1 668189 L1134 2021 4558 1031*2^2218785+1 667924 L1204 2015 4559 911*2^2218151+1 667733 L3260 2015 4560 27*2^2218064+1 667706 L690 2009 4561 587*2^2217355+1 667494 L4109 2015 4562e 391581*2^2217203-1 667451 A2 2024 4563c 861*2^2216533-1 667246 L5819 2024 4564 547*2^2216110+1 667119 L2322 2015 4565 67*2^2215581-1 666959 L268 2010 4566 33*2^2215291-1 666871 L3345 2013 4567 157533*2^2214598-1 666666 L3494 2013 4568 1105*2^2213846+1 666438 L2321 2015 4569 33*2^2212971-1 666173 L3345 2013 4570 101*2^2212769+1 666112 L1741 2014 4571 207*2^2212517-1 666037 L1817 2024 4572 3*10^665829+1 665830 p300 2012 4573 4207801666259*2^2211084-1 665616 L257 2019 4574 298*912^224846+1 665546 L5410 2022 4575 631*2^2210260+1 665358 L2322 2015 4576 479*2^2209541+1 665141 L4106 2015 4577c 13548*5^951176+1 664848 A40 2024 4578 165*2^2207550-1 664541 L2055 2011 4579 819*2^2206370+1 664187 L2526 2015 4580 19*2^2206266+1 664154 p189 2006 4581 10072*67^363671+1 664095 A16 2024 4582 45*2^2205977-1 664067 L1862 2015 4583 1323*2^2205832+1 664025 L4893 2019 4584 2*179^294739+1 664004 g424 2011 Divides Phi(179^294739,2) 4585 73*416^253392+1 663660 L3610 2015 4586d 923*2^2204400-1 663594 L5819 2024 4587d 997*2^2204317-1 663569 L5819 2024 4588 531*2^2203439-1 663304 L5516 2022 4589 790*821^227461-1 662903 L5410 2022 4590 (3*2^1100957)^2+3*2^1100957+1 662844 A3 2023 Generalized unique 4591 16159^157464-16159^78732+1 662674 p294 2014 Generalized unique 4592d 699*2^2201267-1 662651 L5819 2024 4593 1041*2^2201196+1 662630 L3719 2015 4594 481*2^2201148+1 662615 L1741 2015 4595 1344*73^355570+1 662545 L3610 2014 4596 551*2^2200462-1 662408 L5516 2022 4597 783*2^2200256+1 662346 L3924 2015 4598 969*2^2200223+1 662337 L1209 2015 4599 173*2^2199301+1 662058 L1204 2014 4600 5077*2^2198565-1 661838 L251 2008 4601 114487*2^2198389-1 661787 L179 2006 4602e 629*2^2197736-1 661588 L5819 2024 4603 1035*2^2197489+1 661514 L2517 2014 4604 903*2^2197294+1 661455 L2322 2014 4605 287*2^2197108-1 661398 L1817 2024 4606 404882*43^404882-1 661368 p310 2011 Generalized Woodall 4607 638*520^243506-1 661366 L4877 2019 4608 537*2^2196693-1 661274 L5516 2022 4609 12192710656^65536+1 661003 L5218 2021 Generalized Fermat 4610 256*3^1384608+1 660629 L3802 2014 Generalized Fermat 4611 2*10271^164621+1 660397 g427 2014 Divides Phi(10271^164621,2) 4612 10880*151^302997-1 660228 L4001 2018 4613 1073*2^2193069+1 660183 L2487 2014 4614 169*2^2193049-1 660176 L2484 2018 4615 26040*421^251428+1 659823 L5410 2021 4616 202064*151^302700-1 659582 L4001 2018 4617 2*659^233973+1 659544 g424 2015 Divides Phi(659^233973,2) 4618 819*2^2190853+1 659516 L3234 2014 4619 591*2^2190433-1 659389 L5516 2022 4620 1179*2^2189870+1 659220 L2517 2014 4621 385*2^2189441-1 659091 L2235 2022 4622 269*2^2189235+1 659028 L1204 2014 4623f 761*2^2189078-1 658982 L5819 2024 4624 39*2^2188855+1 658913 p286 2013 4625 433*2^2188076+1 658680 L3855 2014 4626 1323*2^2186806+1 658298 L4974 2019 4627 815*2^2185439+1 657886 L3035 2014 4628 249*2^2185003+1 657754 L1300 2014 4629 585*2^2184510+1 657606 L3838 2014 4630 1033*2^2183858+1 657410 L3865 2014 4631 1035*2^2183770+1 657384 L3514 2014 4632 193020*151^301686-1 657373 L4001 2018 4633 353938*7^777777+1 657304 L4789 2020 4634 1179*2^2182691+1 657059 L2163 2014 4635 839*2^2181920-1 656827 L5819 2024 4636 2*191^287901+1 656713 g424 2015 Divides Phi(191^287901,2) 4637 23902*52^382687+1 656697 L4876 2019 4638 975*2^2181258-1 656628 L5819 2024 4639 525*2^2180848+1 656504 L3797 2014 4640 135*2^2180256-1 656325 L1959 2019 4641 1107*2^2180142+1 656292 L1741 2014 4642 447*2^2180102+1 656279 L3760 2014 4643 315*2^2179612-1 656132 L2235 2015 4644 1423*2^2179023-1 655955 L3887 2015 4645 995*2^2178819+1 655893 L1741 2014 4646 219*2^2178673-1 655849 L5313 2021 4647 1423*2^2178363-1 655756 L3887 2015 4648 196597*2^2178109-1 655682 L175 2006 4649 6*10^655642+1 655643 L5009 2019 4650 879*2^2177186+1 655402 L2981 2014 4651 573*2^2176326-1 655143 L5516 2022 4652 67*410^250678+1 654970 L4444 2019 4653 587*2^2175602-1 654925 L5516 2022 4654 70082*5^936972-1 654921 L3523 2013 4655 699*2^2175031+1 654753 L3865 2014 4656 1260*991^218477+1 654577 L5410 2021 4657 69*2^2174213-1 654506 L2055 2012 4658 1069*2^2174122+1 654479 L3865 2014 4659 793*2^2173720+1 654358 L2322 2014 4660 723*2^2173710-1 654355 L5819 2024 4661 3267*2^2173170+1 654193 L1204 2019 4662 651*2^2173159+1 654189 L3864 2014 4663 187*2^2172693-1 654049 L1959 2019 4664 10001*2^2172615+1 654027 L4405 2018 4665 859*2^2172477-1 653984 L5819 2024 4666 1011*2^2172063+1 653860 L2826 2014 4667 1105*2^2171956+1 653827 L3035 2014 4668 4165*2^2171145-1 653584 L1959 2017 4669 96873^131072-96873^65536+1 653552 L4026 2014 Generalized unique 4670 739*2^2170786+1 653475 L2121 2014 4671 134*937^219783-1 653140 L5410 2021 4672 701*2^2169041+1 652950 L3863 2014 4673 1779*88^335783+1 652928 L5410 2020 4674a 7884*82^341092-1 652791 A11 2024 4675 295*2^2168448+1 652771 L1935 2014 4676 7*2^2167800+1 652574 g279 2007 Divides Fermat F(2167797), GF(2167799,5), GF(2167799,10) 4677 134940*91^333030-1 652425 A11 2024 4678 717*2^2166366-1 652145 L5819 2024 4679 741*2^2166363-1 652144 L5819 2024 4680 359*2^2165551+1 651899 L3838 2014 4681 453*2^2165267-1 651813 L5516 2022 4682 983*2^2164206-1 651494 p435 2024 4683 1059*2^2164149+1 651477 L2322 2014 4684 329*2^2163717+1 651347 L2117 2014 4685 559*2^2163382+1 651246 L1741 2014 4686 235*2^2163273-1 651213 L5313 2021 4687 775*2^2162344+1 650934 L3588 2014 4688 21*2^2160479-1 650371 L2074 2012 4689 399*2^2160379-1 650342 L5545 2022 4690 210060*91^331939-1 650288 A11 2024 4691 102976*5^929801-1 649909 L3313 2013 4692 1007*2^2158720-1 649843 L4518 2021 4693 1179*2^2158475+1 649769 L3035 2014 Divides GF(2158470,6) 4694 617*2^2156699+1 649234 L1675 2014 4695 827*2^2156678-1 649228 L5819 2024 4696 65536*3^1360576+1 649165 L3802 2014 Generalized Fermat 4697 773*2^2156280-1 649108 L5819 2024 4698 551878*15^551878+1 649065 L5765 2023 Generalized Cullen 4699 57*572^235362+1 648989 L4444 2021 4700 2*3^1360104-1 648935 p390 2015 4701 483*2^2155456+1 648860 L3760 2014 4702 105*2^2155392+1 648840 L3580 2014 4703 621*2^2154597-1 648602 L5819 2024 4704 40*1017^215605+1 648396 L4927 2018 4705 1005*2^2153712-1 648335 L4518 2021 4706 31340*6^833096+1 648280 p271 2013 4707 537*2^2153392-1 648239 L5516 2022 4708 415*2^2153341-1 648223 L5516 2022 4709 427*2^2153306+1 648213 L3838 2014 4710 834*709^227380-1 648183 L5410 2021 4711 395*2^2152816-1 648065 L5598 2022 4712 261*2^2152805+1 648062 L1125 2014 4713 405*2^2152377-1 647933 L1862 2022 4714 371*2^2150871+1 647480 L2545 2014 4715 111*2^2150802-1 647458 L2484 2013 4716 675*2^2149214-1 646981 L5819 2024 4717 645*2^2148587-1 646792 L5819 2023 4718 357*2^2148518+1 646771 L1741 2014 4719 993*2^2148205+1 646678 L1741 2014 4720 67*2^2148060+1 646633 L3276 2013 4721 243*2^2147387-1 646431 L2444 2014 4722 693*2^2147024+1 646322 L3862 2014 4723 567*2^2146332-1 646114 L5516 2022 4724 3*2^2145353+1 645817 g245 2003 Divides Fermat F(2145351), GF(2145351,3), GF(2145352,5), GF(2145348,6), GF(2145352,10), GF(2145351,12) 4725 143157*2^2144728+1 645633 L4504 2016 4726 509*2^2144181+1 645466 L3035 2014 4727 735*2^2143451-1 645246 L5819 2023 4728 753*2^2143388+1 645227 L2583 2014 Divides GF(2143383,3) 4729 161*2^2142431+1 644939 L3105 2014 4730 587*2^2142136-1 644850 L5516 2022 4731 25*2^2141884+1 644773 L1741 2011 Divides Fermat F(2141872), GF(2141871,5), GF(2141872,10); generalized Fermat 4732 571*2^2141727-1 644727 L5516 2022 4733 23*2^2141626-1 644696 L545 2008 4734 519*2^2140311+1 644301 L2659 2014 4735 7*2^2139912+1 644179 g279 2007 Divides GF(2139911,12) 4736 315*2^2139665+1 644106 L3838 2014 4737 193*2^2139400+1 644026 L3538 2014 4738 1113*2^2139060+1 643925 L3914 2014 4739 292402*159^292402+1 643699 g407 2012 Generalized Cullen 4740 285*2^2138174-1 643657 A27 2024 4741 307*2^2137553-1 643471 L2235 2015 4742 1051*2^2137440+1 643437 L3865 2014 4743 1185*2^2137344+1 643408 L3877 2014 4744 405*2^2137280-1 643388 L1862 2016 4745e 21639*24^466074-1 643285 A11 2024 4746 483*2^2136414-1 643128 L5516 2022 4747 513*2^2135642+1 642896 L3843 2014 4748 241*2^2135279-1 642786 L2484 2018 4749 915*2^2135151+1 642748 L2322 2014 4750b 1099*24^465679+1 642739 A11 2024 4751 61*2^2134577-1 642574 L2055 2011 4752 911*2^2134558-1 642569 p435 2023 4753 2*3^1346542+1 642465 L5043 2020 4754a 3293*82^335630-1 642337 A14 2024 4755 93*10^642225-1 642227 L4789 2020 Near-repdigit 4756 26362*421^244658+1 642057 L5388 2021 4757 5428*378^249058+1 641949 L5410 2021 4758 711*2^2132477+1 641943 L2125 2014 4759 81*984^214452+1 641856 L5410 2020 Generalized Fermat 4760 215*2^2131988-1 641795 L2484 2018 4761 473*2^2130944-1 641481 L5516 2022 4762 319*2^2130729-1 641416 L1817 2015 4763 78792*151^294324-1 641331 L4001 2018 4764 75*2^2130432-1 641326 L2055 2011 4765 1145*2^2130307+1 641290 L3909 2014 4766 813*2^2129567-1 641067 L5819 2023 4767 110488*5^917100+1 641031 L3354 2013 4768 37*2^2128328+1 640693 L3422 2013 4769 103*2^2128242+1 640667 L3787 2014 4770 185*2^2127966-1 640584 L1959 2019 4771 3762*70^347127+1 640487 L4876 2019 4772 253*2^2126968+1 640284 L1935 2014 4773 583*2^2126166+1 640043 L1741 2014 4774 999*2^2125575+1 639865 L1741 2014 4775 7*848^218439-1 639677 L5410 2020 4776 587*2^2124947+1 639676 L3838 2014 4777 451*2^2124636+1 639582 L1741 2014 4778 887*2^2124027+1 639399 L3865 2014 4779d 75666*5^914754+1 639391 A11 2024 4780 721751*2^2123838-1 639345 L4001 2022 4781 545*2^2122250-1 638864 L5516 2022 4782 745*2^2121591-1 638666 L2519 2023 4783 693*2^2121393+1 638606 L3278 2014 4784 118*107^314663-1 638575 L5227 2021 4785 8331405*2^2120345-1 638295 L2055 2013 4786 975*2^2119209+1 637949 L1158 2014 4787 33*2^2118570-1 637755 L3345 2013 4788 11088*103^316819+1 637710 A11 2024 4789 289*2^2118129-1 637623 L5819 2024 4790 117*2^2117600-1 637464 L1959 2019 4791 254*5^911506-1 637118 p292 2010 4792 579*2^2116044-1 636996 L5516 2022 4793 1139*2^2115949+1 636968 L3865 2014 4794 771*2^2115741+1 636905 L1675 2014 4795 411*2^2115559+1 636850 L2840 2014 4796 34*3^1334729+1 636830 L4799 2021 4797 189*2^2115473+1 636824 L3784 2014 Divides GF(2115468,6) 4798 929*2^2114679+1 636585 L3035 2014 4799 571*2^2113491-1 636227 L5516 2022 4800 1065*2^2113463+1 636219 L2826 2014 4801 753*2^2112554-1 635945 L1817 2023 4802 609179*2^2111132-1 635520 L5410 2022 4803 591*2^2111001+1 635478 L1360 2014 4804 285*2^2110099-1 635206 L1817 2024 4805 357*2^2109585-1 635051 L5546 2022 4806 1051*2^2109344+1 634979 L3035 2014 4807 433*2^2109146+1 634919 L1935 2014 4808 519*2^2108910+1 634848 L1356 2014 4809 1047*2^2108751+1 634801 L3824 2014 4810 257*2^2108554-1 634741 L5313 2021 4811 3261*46^381439+1 634245 L5000 2019 4812e 25046*24^459407-1 634084 A11 2024 4813 765*2^2106027+1 633981 L3838 2014 4814 503*2^2106013+1 633976 L1741 2014 4815 316903*10^633806+1 633812 L3532 2014 Generalized Cullen 4816 113*2^2104825+1 633618 L3785 2014 4817d 15588*5^906460+1 633593 A11 2024 4818 981*2^2104657-1 633568 L2257 2023 4819 381*2^2103999+1 633370 L2322 2014 4820 1246461300659*2^2103424-1 633206 L2484 2015 4821 57*2^2103370-1 633180 L2055 2011 4822 2508*103^314463+1 632967 A11 2024 4823 539*2^2102167+1 632819 L3125 2014 4824 1425*2^2101260-1 632546 L1134 2020 4825 1001*2^2101062-1 632486 L4518 2020 4826 179*894^214290-1 632445 L5209 2020 4827 633*2^2100738-1 632388 L2257 2023 4828 687*2^2100243+1 632239 L3867 2014 4829 329*2^2099771+1 632097 L2507 2014 4830 35*2^2099769+1 632095 L3432 2013 4831 405*2^2099716+1 632081 L3154 2014 4832 575*2^2098483+1 631710 L3168 2014 4833 523*2^2098043-1 631577 L5516 2022 4834 1005*2^2097683-1 631469 L4518 2021 4835 919*2^2097543-1 631427 L1817 2023 4836 729*2^2097449-1 631398 L2257 2023 4837 2509589*2^2097152-1 631313 L466 2022 4838 522335*2^2097154-1 631312 L466 2022 4839 695265*2^2097153-1 631312 L466 2020 4840 208703*2^2097153+1 631312 L466 2018 4841 28401*2^2097152+1 631311 L4547 2017 4842 399*2^2096857-1 631220 L5546 2022 4843 907*2^2095896+1 630931 L1129 2014 4844 815730721*2^2095440+1 630800 L466 2019 Generalized Fermat 4845 2503*2^2094587-1 630537 L4113 2017 4846 14641*2^2093384+1 630176 L181 2017 Generalized Fermat 4847 103*2^2093350+1 630164 L3432 2013 4848 4001*2^2093286-1 630146 L1959 2014 4849 14172*1027^209226-1 630103 L4001 2018 4850 369*2^2093022+1 630065 L3514 2014 4851 217*2^2092673-1 629960 L2484 2018 4852 2188*253^262084+1 629823 L5410 2020 4853 68*920^212407+1 629532 L4001 2017 4854 165*2^2090645+1 629350 L1209 2014 4855 1119*2^2090509+1 629309 L2520 2014 4856 941*2^2090243+1 629229 L1356 2014 4857 435*2^2089948-1 629140 L5516 2022 4858 615*2^2089329-1 628954 L2257 2023 4859 62722^131072+1 628808 g308 2003 Generalized Fermat 4860 401*2^2088713+1 628768 L3035 2014 4861 1702*1021^208948+1 628734 L5410 2021 4862 819*2^2088423+1 628681 L3890 2014 4863 363*2^2088182-1 628608 L5545 2022 4864 423*2^2088102-1 628584 L5516 2022 4865 1009*2^2087690+1 628461 L3728 2014 4866 85*2^2087651-1 628448 L2338 2013 4867 4996*67^343869+1 627935 A11 2024 4868 467*2^2085835+1 627902 L3625 2014 4869 563528*13^563528-1 627745 p262 2009 Generalized Woodall 4870 55*2^2084305-1 627441 L3887 2021 4871 (146^144882-1)^2-2 627152 p405 2022 4872 437960*3^1313880+1 626886 L2777 2012 Generalized Cullen 4873 18*984^209436-1 626843 L5410 2019 4874 247*2^2082202+1 626808 L3294 2014 4875 107*2^2081775+1 626679 L3432 2013 Divides GF(2081774,6) 4876 159*2^2081069-1 626467 L1959 2019 4877 27*634^223550+1 626409 L4001 2018 4878 399*2^2080579-1 626320 L5546 2022 4879 655*2^2080562+1 626315 L3859 2014 4880 201*2^2080464+1 626285 L1741 2014 4881 269328*211^269328+1 626000 p354 2012 Generalized Cullen 4882 153*2^2079401+1 625965 L3601 2014 4883 279*2^2079167+1 625895 L2413 2014 4884 692*95^316400-1 625755 L4444 2019 4885 643*2^2078306+1 625636 L3035 2014 4886 79*2^2078162+1 625591 L2117 2013 4887e 948*499^231758+1 625310 A11 2024 4888 1485*2^2077172+1 625295 L1134 2015 4889 777*2^2076841-1 625195 L2257 2023 4890 405*2^2076673-1 625144 L5516 2022 4891 239*2^2076663+1 625141 L2413 2014 4892 1003*2^2076535-1 625103 L51 2008 4893 2186*7^739474-1 624932 p258 2011 4894 73*2^2075936+1 624921 L3464 2013 4895 825*2^2075800-1 624881 L2257 2023 4896 807*2^2075519+1 624797 L3555 2014 4897 585*2^2075384-1 624756 L5516 2022 4898 1425*2^2075382+1 624756 L1134 2015 4899 1308596*3^1308596+1 624366 p137 2023 Generalized Cullen 4900 65*2^2073229+1 624106 L1480 2013 4901 693*2^2072564+1 623907 L3290 2014 4902 55*552^227540-1 623903 L4786 2019 4903 867*2^2072142-1 623780 L2257 2023 4904 375*2^2071598+1 623616 L2413 2014 4905 73*2^2071592+1 623614 L1480 2013 4906 125*2^2071555+1 623603 L3432 2013 4907 1107*2^2071480+1 623581 L2520 2014 4908 291*2^2071142-1 623479 L1817 2024 4909 6207*28^430803-1 623444 L1471 2014 4910 299*2^2070979+1 623430 L1741 2014 4911 99*2^2070908-1 623408 L1862 2015 4912 831*2^2070622-1 623323 L5545 2023 4913 19062*1027^206877-1 623029 L4444 2018 4914 891*2^2069024+1 622842 L2520 2014 4915 943*2^2068944+1 622818 L1741 2014 4916 579*2^2068647+1 622728 L2967 2014 4917 911*2^2068497+1 622683 L1741 2014 4918 501*2^2067915-1 622508 L5551 2022 4919 1005*2^2067272+1 622314 L3895 2014 4920 441*2^2067233-1 622302 L5516 2022 4921 3474*5^890253+1 622264 L5410 2021 4922 393*2^2066540+1 622094 L3700 2014 4923 44*950^208860-1 621929 L4187 2021 4924 951*2^2065180+1 621685 L1403 2014 4925a 6122*82^324769-1 621552 A11 2024 4926 915*2^2064663+1 621529 L3035 2014 4927 213*2^2064426-1 621457 L1863 2017 4928 29*468^232718+1 621416 L4832 2018 4929 1455*2^2064103-1 621361 L1134 2016 4930 983*2^2064020-1 621335 L2257 2023 4931 824*423^236540-1 621238 L5410 2021 4932 447*2^2063218-1 621094 L5551 2022 4933 9756404*15^527590-1 620501 L5630 2022 4934 9*2^2060941-1 620407 L503 2008 4935 813*2^2060392-1 620243 L2257 2023 4936 24126*45^375069+1 620074 A11 2024 4937 1455*2^2059553+1 619991 L1134 2015 4938 659*2^2058623+1 619711 L3860 2014 4939 128448*151^284308-1 619506 L4001 2018 4940 477*2^2057225-1 619290 L5516 2022 4941 909*2^2056937-1 619203 L2257 2023 4942a 21453*82^323487-1 619099 A11 2024 4943 575*2^2056081+1 618945 L1935 2014 4944 1095*2^2055975+1 618914 L3518 2014 4945 589*2^2055877-1 618884 L5516 2022 4946 3*10^618853+1 618854 p300 2012 4947 225*2^2055433-1 618750 L2484 2022 4948 287*2^2054534-1 618479 L1817 2024 4949 819*2^2054470+1 618461 L2826 2014 4950 969*2^2054054+1 618335 L3668 2014 4951 3394*28^427262+1 618320 p385 2015 4952 318564*151^283711-1 618206 L4444 2018 4953 675*2^2053578+1 618192 L1792 2014 4954 178998*151^283702-1 618186 L4001 2018 4955 551*2^2051922-1 617693 L5516 2022 4956 281*2^2051865+1 617676 L5519 2022 4957 5916*277^252878-1 617654 L5410 2020 4958 739*2^2051658+1 617614 L3838 2014 4959 71*2^2051313+1 617509 L1480 2013 4960 265*2^2051155-1 617462 L2484 2018 4961 779*2^2050881+1 617380 L3453 2014 4962 75*2^2050637-1 617306 L2055 2011 4963 377*2^2050148-1 617159 L2235 2022 4964 935*2^2050113+1 617149 L3696 2014 4965 847*2^2049400+1 616934 L2322 2014 4966 4998*235^260170-1 616885 L5410 2019 4967 541*2^2049193-1 616872 L5516 2022 4968 73*2^2048754+1 616739 L3432 2013 4969 30*712^215913+1 615889 L4444 2022 4970 527*2^2045751+1 615836 L4123 2014 4971 785*2^2045419+1 615736 L3861 2014 4972 3*2^2045208-3*2^1022604+1 615670 A3 2023 Generalized unique 4973 195*2^2044789+1 615546 L3744 2014 4974 537*2^2044162+1 615357 L1741 2014 4975 413*2^2043829+1 615257 L1300 2014 4976 1682*655^218457-1 615231 L4925 2022 4977 431*2^2043666-1 615208 L5516 2022 4978 1334*567^223344-1 615000 L5410 2021 4979 345*2^2042295+1 614795 L2562 2014 4980 777*2^2041710-1 614619 L2257 2023 4981 216848*151^282017-1 614514 L4700 2018 4982 104*579^222402-1 614428 L4001 2018 4983 57257*2^2040062-1 614125 L4812 2019 4984 1069*2^2039562+1 613973 L1741 2014 4985 625*2^2039416+1 613929 L1741 2014 Generalized Fermat 4986 7188*313^245886-1 613624 L5410 2020 4987 1085*2^2038005+1 613504 L2520 2014 4988 125*2^2037752-1 613427 L2444 2014 4989 1069*2^2036902+1 613172 L3876 2014 4990 10020*171^274566+1 613109 L5410 2019 4991 417*2^2036482+1 613045 L1847 2014 4992 701*2^2035955+1 612887 L2823 2014 4993 1025*2^2034405+1 612420 L1741 2014 4994 651*2^2034352+1 612404 L3459 2014 4995 121*2^2033941-1 612280 L162 2006 4996 19683*2^2033900+1 612270 L1823 2019 4997 57*2^2033643+1 612190 L3432 2013 4998 4175*2^2032552-1 611863 L1959 2017 4999 45*2^2014557+1 606444 L1349 2012 Divides GF(2014552,10) 5000 251749*2^2013995-1 606279 L436 2007 Woodall 5001 657*2^1998854+1 601718 L2520 2013 Divides GF(1998852,10) 5002 101*2^1988279+1 598534 L3141 2013 Divides GF(1988278,12) 5003 175*2^1962288+1 590710 L2137 2013 Divides GF(1962284,10) 5004 225*2^1960083+1 590047 L3548 2013 Divides GF(1960078,6) 5005 2*47^346759+1 579816 g424 2011 Divides Phi(47^346759,2) 5006 4401*2^1925824+1 579735 L5309 2024 Divides GF(1925823,5) 5007 71*2^1873569+1 564003 L1223 2011 Divides GF(1873568,5) 5008 13*2^1861732+1 560439 g267 2005 Divides GF(1861731,6) 5009 3*2^1832496+1 551637 p189 2007 Divides GF(1832490,3), GF(1832494,5) 5010 39*2^1824871+1 549343 L2664 2011 Divides GF(1824867,6) 5011 45*2^1779971+1 535827 L1223 2011 Divides GF(1779969,5) 5012 5*2^1777515+1 535087 p148 2005 Divides GF(1777511,5), GF(1777514,6) 5013 129*2^1774709+1 534243 L2526 2013 Divides GF(1774705,12) 5014 2*191^232149+1 529540 g424 2011 Divides Phi(191^232149,2) 5015 183*2^1747660+1 526101 L2163 2013 Divides Fermat F(1747656) 5016 63*2^1686050+1 507554 L2085 2011 Divides GF(1686047,12) 5017 110059!+1 507082 p312 2011 Factorial 5018 2^1667321-2^833661+1 501914 L137 2011 Gaussian Mersenne norm 38, generalized unique 5019 2*359^192871+1 492804 g424 2014 Divides Phi(359^192871,2) 5020 10^490000+3*(10^7383-1)/9*10^241309+1 490001 p413 2021 Palindrome 5021 1098133#-1 476311 p346 2012 Primorial 5022 10^474500+999*10^237249+1 474501 p363 2014 Palindrome 5023 103040!-1 471794 p301 2010 Factorial 5024 3803*2^1553013+1 467508 L1957 2020 Divides GF(1553012,5) 5025 135*2^1515894+1 456332 L1129 2013 Divides GF(1515890,10) 5026 2*839^155785+1 455479 g424 2014 Divides Phi(839^155785,2) 5027 131*2^1494099+1 449771 L2959 2012 Divides Fermat F(1494096) 5028 1467763*2^1467763-1 441847 L381 2007 Woodall 5029 4125*2^1445205-1 435054 L1959 2014 Arithmetic progression (2,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5030 94550!-1 429390 p290 2010 Factorial 5031 2415*2^1413627-1 425548 L1959 2014 Arithmetic progression (2,d=2415*2^1413627-1489088842587*2^1290000) [p199] 5032 2985*2^1404274-1 422733 L1959 2014 Arithmetic progression (2,d=2985*2^1404274-770527213395*2^1290000) [p199] 5033 2^1398269-1 420921 G1 1996 Mersenne 35 5034 17*2^1388355+1 417938 g267 2005 Divides GF(1388354,10) 5035 338707*2^1354830+1 407850 L124 2005 Cullen 5036 107*2^1337019+1 402485 L2659 2012 Divides GF(1337018,10) 5037 1389*2^1335434+1 402009 L1209 2015 Divides GF(1335433,10) 5038 10^400000+4*(10^102381-1)/9*10^148810+1 400001 p413 2021 Palindrome 5039 10^390636+999*10^195317+1 390637 p363 2014 Palindrome 5040 6325241166627*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=1455*2^2683953-6325241166627*2^1290000) 5041 5606879602425*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=33*2^2939063-5606879602425*2^1290000) 5042 2618163402417*2^1290001-1 388342 L927 2016 Sophie Germain (2p+1) 5043 4966510140375*2^1290000-1 388342 L3573 2020 Arithmetic progression (2,d=2227792035315*2^1290001) 5044 2996863034895*2^1290000+1 388342 L2035 2016 Twin (p+2) 5045 2996863034895*2^1290000-1 388342 L2035 2016 Twin (p) 5046 2723880039837*2^1290000-1 388342 L3829 2016 Arithmetic progression (1,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5047 2618163402417*2^1290000-1 388342 L927 2016 Sophie Germain (p) 5048 2060323099527*2^1290000-1 388342 L3606 2015 Arithmetic progression (2,d=69718264533*2^1290002) [p199] 5049 1938662032575*2^1290000-1 388341 L927 2015 Arithmetic progression (1,d=10032831585*2^1290001) [p199] 5050 1781450041395*2^1290000-1 388341 L3203 2015 Arithmetic progression (1,d=69718264533*2^1290002) [p199] 5051 15*2^1276177+1 384169 g279 2006 Divides GF(1276174,3), GF(1276174,10) 5052 1268979*2^1268979-1 382007 L201 2007 Woodall 5053 2^1257787-1 378632 SG 1996 Mersenne 34 5054 329*2^1246017+1 375092 L2085 2012 Divides Fermat F(1246013) 5055 843301#-1 365851 p302 2010 Primorial 5056 10^362600+666*10^181299+1 362601 p363 2014 Palindrome 5057 2^1203793-2^601897+1 362378 L192 2006 Gaussian Mersenne norm 37, generalized unique 5058 1195203*2^1195203-1 359799 L124 2005 Woodall 5059 29*2^1152765+1 347019 g300 2005 Divides GF(1152760,10) 5060 2145*2^1099064+1 330855 L1792 2013 Divides Fermat F(1099061) 5061 10^320236+10^160118+1+(137*10^160119+731*10^159275)*(10^843-1)/999 320237 p44 2014 Palindrome 5062 10^320096+10^160048+1+(137*10^160049+731*10^157453)*(10^2595-1)/999 320097 p44 2014 Palindrome 5063 10^314727-8*10^157363-1 314727 p235 2013 Near-repdigit, palindrome 5064 10^300000+5*(10^48153-1)/9*10^125924+1 300001 p413 2021 Palindrome 5065c 10^300000+10^158172+11011*10^149998+10^141828+1 300001 p409 2024 Palindrome 5066 2^991961-2^495981+1 298611 x28 2005 Gaussian Mersenne norm 36, generalized unique 5067 10^290253-2*10^145126-1 290253 p235 2012 Near-repdigit, Palindrome 5068 11*2^960901+1 289262 g277 2005 Divides Fermat F(960897) 5069 10^283355-737*10^141676-1 283355 p399 2020 Palindrome 5070 1705*2^906110+1 272770 L3174 2012 Divides Fermat F(906108) 5071 2^859433-1 258716 SG 1994 Mersenne 33 5072 13243*2^699764+1 210655 L5808 2023 Divides Fermat F(699760) 5073 27*2^672007+1 202296 g279 2005 Divides Fermat F(672005) 5074 667071*2^667071-1 200815 g55 2000 Woodall 5075 18543637900515*2^666668-1 200701 L2429 2012 Sophie Germain (2p+1) 5076 18543637900515*2^666667-1 200701 L2429 2012 Sophie Germain (p) 5077 3756801695685*2^666669+1 200700 L1921 2011 Twin (p+2) 5078 3756801695685*2^666669-1 200700 L1921 2011 Twin (p) 5079 392113#+1 169966 p16 2001 Primorial 5080 213778324725*2^561418+1 169015 p430 2023 Cunningham chain 2nd kind (2p-1) 5081 213778324725*2^561417+1 169015 p430 2023 Cunningham chain 2nd kind (p) 5082 366439#+1 158936 p16 2001 Primorial 5083 2*893962950^16384+1 146659 p428 2023 Cunningham chain 2nd kind (2p-1) 5084 893962950^16384+1 146659 p427 2023 Cunningham chain 2nd kind (p), generalized Fermat 5085 481899*2^481899+1 145072 gm 1998 Cullen 5086 669821552^16384-669821552^8192+1 144605 A18 2024 Twin (p+2), generalized unique 5087 669821552^16384-669821552^8192-1 144605 A18 2024 Twin (p) 5088 34790!-1 142891 p85 2002 Factorial 5089c (124750^27751-1)/124749 141416 p441 2024 Generalized repunit 5090 222710306^16384-222710306^8192+1 136770 A13 2024 Twin (p+2), generalized unique 5091 222710306^16384-222710306^8192-1 136770 A13 2024 Twin (p) 5092 (92365^24691-1)/92364 122599 CH14 2024 Generalized repunit 5093 (102936^21961-1)/102935 110076 CH14 2023 Generalized repunit 5094 2^364289-2^182145+1 109662 p58 2001 Gaussian Mersenne norm 35, generalized unique 5095 361275*2^361275+1 108761 DS 1998 Cullen 5096 26951!+1 107707 p65 2002 Factorial 5097b 47356235323005*2^333444-1 100391 L6077 2024 Sophie Germain (2p+1) 5098b 47356235323005*2^333443-1 100391 L6077 2024 Sophie Germain (p) 5099 21480284945595*2^333444-1 100390 L6029 2024 Sophie Germain (2p+1) 5100 21480284945595*2^333443-1 100390 L6029 2024 Sophie Germain (p) 5101 65516468355*2^333333+1 100355 L923 2009 Twin (p+2) 5102 65516468355*2^333333-1 100355 L923 2009 Twin (p) 5103 (7176^24691-1)/7175 95202 CH2 2017 Generalized repunit 5104 R(86453) 86453 E3 2023 Repunit, ECPP, unique 5105 21480!-1 83727 p65 2001 Factorial 5106e (74968^17107-1)/74967 83390 p441 2024 Generalized repunit 5107 201926367*2^266668+1 80284 A25 2024 Twin (p+2) 5108 201926367*2^266668-1 80284 A25 2024 Twin (p) 5109 107928275961*2^265876+1 80048 p364 2023 Cunningham chain 2nd kind (2p-1) 5110 107928275961*2^265875+1 80048 p364 2023 Cunningham chain 2nd kind (p) 5111 22942396995*2^265777-1 80018 L3494 2023 Sophie Germain (2p+1) 5112 22942396995*2^265776-1 80017 L3494 2023 Sophie Germain (p) 5113 183027*2^265441-1 79911 L983 2010 Sophie Germain (2p+1) 5114 183027*2^265440-1 79911 L983 2010 Sophie Germain (p) 5115 262419*2^262419+1 79002 DS 1998 Cullen 5116 160204065*2^262148+1 78923 L5115 2021 Twin (p+2) 5117 160204065*2^262148-1 78923 L5115 2021 Twin (p) 5118 3622179275715*2^256003+1 77078 x47 2020 Cunningham chain 2nd kind (2p-1) 5119 3622179275715*2^256002+1 77077 x47 2020 Cunningham chain 2nd kind (p) 5120 648621027630345*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5121 620366307356565*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5122 648621027630345*2^253824-1 76424 x24 2009 Sophie Germain (p) 5123 620366307356565*2^253824-1 76424 x24 2009 Sophie Germain (p) 5124 2570606397*2^252763+1 76099 p364 2020 Cunningham chain 2nd kind (2p-1) 5125 2570606397*2^252762+1 76099 p364 2020 Cunningham chain 2nd kind (p) 5126 1893611985^8192-1893611985^4096+1 76000 A13 2024 Twin (p+2), generalized unique 5127 1893611985^8192-1893611985^4096-1 76000 A13 2024 Twin (p) 5128 1589173270^8192-1589173270^4096+1 75376 A22 2024 Twin (p+2), generalized unique 5129 1589173270^8192-1589173270^4096-1 75376 A22 2024 Twin (p) 5130 (40734^16111-1)/40733 74267 CH2 2015 Generalized repunit 5131 (64758^15373-1)/64757 73960 p170 2018 Generalized repunit 5132 996094234^8192-996094234^4096+1 73715 A18 2024 Twin (p+2), generalized unique 5133 996094234^8192-996094234^4096-1 73715 A18 2024 Twin (p) 5134 895721531^8192-895721531^4096+1 73337 A7 2024 Twin (p+2), generalized unique 5135 895721531^8192-895721531^4096-1 73337 A7 2024 Twin (p) 5136 5^104824+104824^5 73269 E4 2023 ECPP 5137 795507696^8192-795507696^4096+1 72915 A5 2024 Twin (p+2), generalized unique 5138 795507696^8192-795507696^4096-1 72915 A5 2024 Twin (p) 5139 primV(111534,1,27000) 72683 x25 2013 Generalized Lucas primitive part 5140 691595760^8192-691595760^4096+1 72417 A13 2024 Twin (p+2), generalized unique 5141 691595760^8192-691595760^4096-1 72417 A13 2024 Twin (p) 5142 647020826^8192-647020826^4096+1 72180 A5 2024 Twin (p+2), generalized unique 5143 647020826^8192-647020826^4096-1 72180 A5 2024 Twin (p) 5144 629813654^8192-629813654^4096+1 72084 A5 2024 Twin (p+2), generalized unique 5145 629813654^8192-629813654^4096-1 72084 A5 2024 Twin (p) 5146 (58729^15091-1)/58728 71962 CH2 2017 Generalized repunit 5147 504983334^8192-504983334^4096+1 71298 A7 2024 Twin (p+2), generalized unique 5148 504983334^8192-504983334^4096-1 71298 A7 2024 Twin (p) 5149 314305725^8192-314305725^4096+1 69611 A7 2023 Twin (p+2), generalized unique 5150 314305725^8192-314305725^4096-1 69611 A7 2023 Twin (p) 5151 (27987^15313-1)/27986 68092 CH12 2020 Generalized repunit 5152 184534086^8192-184534086^4096+1 67716 A5 2023 Twin (p+2), generalized unique 5153 184534086^8192-184534086^4096-1 67716 A5 2023 Twin (p) 5154 (23340^15439-1)/23339 67435 p170 2020 Generalized repunit 5155 10957126745325*2^222334-1 66943 L5843 2023 Sophie Germain (2p+1) 5156 20690306380455*2^222333-1 66943 L5843 2023 Sophie Germain (2p+1) 5157 10030004436315*2^222334-1 66943 L5843 2023 Sophie Germain (2p+1) 5158 8964472847055*2^222334-1 66943 L5843 2023 Sophie Germain (2p+1) 5159 14279340881715*2^222333+1 66943 L5843 2023 Twin (p+2) 5160 14279340881715*2^222333-1 66943 L5843 2023 Twin (p) 5161 10957126745325*2^222333-1 66942 L5843 2023 Sophie Germain (p) 5162 20690306380455*2^222332-1 66942 L5843 2023 Sophie Germain (p) 5163 10030004436315*2^222333-1 66942 L5843 2023 Sophie Germain (p) 5164 8964472847055*2^222333-1 66942 L5843 2023 Sophie Germain (p) 5165 12770275971*2^222225+1 66907 L527 2017 Twin (p+2) 5166 12770275971*2^222225-1 66907 L527 2017 Twin (p) 5167 (2^221509-1)/292391881 66673 E12 2023 Mersenne cofactor, ECPP 5168a (50573264686*(2^110503-1)+1)*2^110505+1 66541 p408 2024 Consecutive primes arithmetic progression (2,d=6) 5169a (50573264686*(2^110503-1)+1)*2^110505-5 66541 p408 2024 Consecutive primes arithmetic progression (1,d=6) 5170a (90704749637*(2^110503-1)+2)*2^110504+1 66541 p408 2024 Consecutive primes arithmetic progression (2,d=4) 5171a (90704749637*(2^110503-1)+2)*2^110504-3 66541 p408 2024 Consecutive primes arithmetic progression (1,d=4) 5172a (42550837315*(2^110503-1)+1)*2^110505+1 66541 p408 2024 Consecutive primes arithmetic progression (2,d=4) 5173a (42550837315*(2^110503-1)+1)*2^110505-3 66541 p408 2024 Consecutive primes arithmetic progression (1,d=4) 5174 (24741^15073-1)/24740 66218 p170 2020 Generalized repunit 5175 (63847^13339-1)/63846 64091 p170 2013 Generalized repunit 5176 1068669447*2^211089-1 63554 L4166 2020 Sophie Germain (2p+1) 5177 1068669447*2^211088-1 63553 L4166 2020 Sophie Germain (p) 5178 145823#+1 63142 p21 2000 Primorial 5179 U(15694,1,14700)+U(15694,1,14699) 61674 x45 2019 Lehmer number 5180 (28507^13831-1)/28506 61612 CH12 2020 Generalized repunit 5181 2^203789+2^101895+1 61347 O 2000 Gaussian Mersenne norm 34, generalized unique 5182 (26371^13681-1)/26370 60482 p170 2012 Generalized repunit 5183 U(24,-25,43201) 60391 CH12 2020 Generalized Lucas number 5184 99064503957*2^200009-1 60220 L95 2016 Sophie Germain (2p+1) 5185 99064503957*2^200008-1 60220 L95 2016 Sophie Germain (p) 5186 (4529^16381-1)/4528 59886 CH2 2012 Generalized repunit 5187 3^125330+1968634623437000 59798 E4 2022 ECPP 5188 (9082^15091-1)/9081 59729 CH2 2014 Generalized repunit 5189 primV(27655,1,19926) 57566 x25 2013 Generalized Lucas primitive part 5190 Ramanujan tau function at 199^4518 57125 E3 2022 ECPP 5191 (43326^12041-1)/43325 55827 p170 2017 Generalized repunit 5192 12443794755*2^184517-1 55556 L3494 2021 Sophie Germain (2p+1) 5193 21749869755*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 5194 14901867165*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 5195 12443794755*2^184516-1 55555 L3494 2021 Sophie Germain (p) 5196 21749869755*2^184515-1 55555 L3494 2021 Sophie Germain (p) 5197 14901867165*2^184515-1 55555 L3494 2021 Sophie Germain (p) 5198 607095*2^176312-1 53081 L983 2009 Sophie Germain (2p+1) 5199 607095*2^176311-1 53081 L983 2009 Sophie Germain (p) 5200 (38284^11491-1)/38283 52659 CH2 2013 Generalized repunit 5201 (2^174533-1)/193594572654550537/91917886778031629891960890057 52494 E5 2022 Mersenne cofactor, ECPP 5202 29055814795*(2^172486-2^86243)+2^86245+1 51934 p408 2022 Consecutive primes arithmetic progression (2,d=4) 5203 29055814795*(2^172486-2^86243)+2^86245-3 51934 p408 2022 Consecutive primes arithmetic progression (1,d=4) 5204 11922002779*(2^172486-2^86243)+2^86245+1 51934 p408 2022 Consecutive primes arithmetic progression (2,d=6) 5205 11922002779*(2^172486-2^86243)+2^86245-5 51934 p408 2022 Consecutive primes arithmetic progression (1,d=6) 5206 48047305725*2^172404-1 51910 L99 2007 Sophie Germain (2p+1) 5207 48047305725*2^172403-1 51910 L99 2007 Sophie Germain (p) 5208 137211941292195*2^171961-1 51780 x24 2006 Sophie Germain (2p+1) 5209 137211941292195*2^171960-1 51780 x24 2006 Sophie Germain (p) 5210 (34120^11311-1)/34119 51269 CH2 2011 Generalized repunit 5211 U(809,1,17325)-U(809,1,17324) 50378 x45 2019 Lehmer number 5212 10^50000+65859 50001 E3 2022 ECPP 5213 R(49081) 49081 c70 2022 Repunit, unique, ECPP 5214 (50091^10357-1)/50090 48671 p170 2016 Generalized repunit 5215 2^160423-2^80212+1 48293 O 2000 Gaussian Mersenne norm 33, generalized unique 5216 U(67,-1,26161) 47773 x45 2019 Generalized Lucas number 5217 primV(40395,-1,15588) 47759 x23 2007 Generalized Lucas primitive part 5218 primV(53394,-1,15264) 47200 CH4 2007 Generalized Lucas primitive part 5219 151023*2^151023-1 45468 g25 1998 Woodall 5220 U(52245,1,9241)+U(52245,1,9240) 43595 x45 2019 Lehmer number 5221 71509*2^143019-1 43058 g23 1998 Woodall, arithmetic progression (2,d=(143018*2^83969-80047)*2^59049) [x12] 5222 U(2449,-1,12671) 42939 x45 2018 Generalized Lucas number, cyclotomy 5223 V(202667) 42355 E4 2023 Lucas number, ECPP 5224b 2^139964+35461 42134 E11 2024 ECPP 5225 U(201107) 42029 E11 2023 Fibonacci number, ECPP 5226 (2^138937+1)/3 41824 E12 2023 Wagstaff, ECPP, generalized Lucas number 5227 E(11848)/7910215 40792 E8 2022 Euler irregular, ECPP 5228 V(193201) 40377 E4 2023 Lucas number, ECPP 5229 10^40000+14253 40001 E3 2022 ECPP 5230 p(1289844341) 40000 c84 2020 Partitions, ECPP 5231 primV(4836,1,16704) 39616 x25 2013 Generalized Lucas primitive part 5232 (2^130439-1)/260879 39261 E9 2023 Mersenne cofactor, ECPP 5233 U(21041,-1,9059) 39159 x45 2018 Generalized Lucas number, cyclotomy 5234 tau(47^4176) 38404 E3 2022 ECPP 5235 V(183089) 38264 E4 2023 Lucas number, ECPP 5236 (2^127031+1)/3 38240 E5 2023 Wagstaff, ECPP, generalized Lucas number 5237 U(5617,-1,9539) 35763 x45 2019 Generalized Lucas number, cyclotomy 5238 (2^117239+1)/3 35292 E2 2022 Wagstaff, ECPP, generalized Lucas number 5239 p(1000007396) 35219 E4 2022 Partitions, ECPP 5240 (V(60145,1,7317)-1)/(V(60145,1,27)-1) 34841 x45 2019 Lehmer primitive part 5241 primV(38513,-1,11502) 34668 x23 2006 Generalized Lucas primitive part 5242 E(10168)/1097239206089665 34323 E10 2023 Euler irregular, ECPP 5243 primV(9008,1,16200) 34168 x23 2005 Generalized Lucas primitive part 5244 (V(28138,1,7587)-1)/(V(28138,1,27)-1) 33637 x45 2019 Lehmer primitive part 5245 V(159521) 33338 E4 2023 Lucas number, ECPP 5246 U(35896,1,7260)+U(35896,1,7259) 33066 x45 2019 Lehmer number 5247 primV(6586,1,16200) 32993 x25 2013 Generalized Lucas primitive part 5248 U(1624,-1,10169) 32646 x45 2018 Generalized Lucas number, cyclotomy 5249 (V(48395,1,6921)-1)/(V(48395,1,9)-1) 32382 x45 2019 Lehmer primitive part 5250 2^106693+2^53347+1 32118 O 2000 Gaussian Mersenne norm 32, generalized unique 5251 primV(28875,1,13500) 32116 x25 2016 Generalized Lucas primitive part 5252 (2^106391-1)/286105171290931103 32010 c95 2022 Mersenne cofactor, ECPP 5253c (2^105269-1)/308568703561/44450301591671/36340288035156065237111970871\ /304727251426107823036749303510161 31603 E17 2024 Mersenne cofactor, ECPP 5254 (V(77786,1,6453)+1)/(V(77786,1,27)+1) 31429 x25 2012 Lehmer primitive part 5255 primV(10987,1,14400) 31034 x25 2005 Generalized Lucas primitive part 5256 V(148091) 30950 c81 2015 Lucas number, ECPP 5257 U(148091) 30949 x49 2021 Fibonacci number, ECPP 5258 -E(9266)/2129452307358569777 30900 E10 2023 Euler irregular, ECPP 5259 Phi(11589,-10000) 30897 E1 2022 Unique,ECPP 5260 (V(73570,1,6309)-1)/(V(73570,1,9)-1) 30661 x25 2016 Lehmer primitive part 5261 V(145703)/179214691 30442 E4 2023 Lucas cofactor, ECPP 5262 V(145193)/38621339 30336 E4 2023 Lucas cofactor, ECPP 5263 1524633857*2^99902-1 30083 p364 2022 Arithmetic progression (4,d=928724769*2^99901) 5264 Phi(36547,-10) 29832 E1 2022 Unique, ECPP 5265 49363*2^98727-1 29725 Y 1997 Woodall 5266 U(2341,-1,8819) 29712 x25 2008 Generalized Lucas number 5267 primV(24127,-1,6718) 29433 CH3 2005 Generalized Lucas primitive part 5268 primV(12215,-1,13500) 29426 x25 2016 Generalized Lucas primitive part 5269 V(140057) 29271 c76 2014 Lucas number,ECPP 5270 U(1404,-1,9209) 28981 CH10 2018 Generalized Lucas number, cyclotomy 5271 U(23396,1,6615)+U(23396,1,6614) 28898 x45 2019 Lehmer number 5272 (2^95369+1)/3 28709 x49 2021 Generalized Lucas number, Wagstaff, ECPP 5273 primV(45922,1,11520) 28644 x25 2011 Generalized Lucas primitive part 5274 primV(205011) 28552 x39 2009 Lucas primitive part 5275 -30*Bern(10264)/262578313564364605963 28506 c94 2021 Irregular, ECPP 5276 U(16531,1,6721)-U(16531,1,6720) 28347 x36 2007 Lehmer number 5277 (V(28286,1,6309)+1)/(V(28286,1,9)+1) 28045 x25 2016 Lehmer primitive part 5278 U(5092,1,7561)+U(5092,1,7560) 28025 x25 2014 Lehmer number 5279e U(132409)/2882138154561602271737 27651 E16 2024 Fibonacci cofactor, ECPP 5280 90825*2^90825+1 27347 Y 1997 Cullen 5281 U(5239,1,7350)-U(5239,1,7349) 27333 CH10 2017 Lehmer number 5282 U(130021) 27173 x48 2021 Fibonacci number, ECPP 5283 primV(5673,1,13500) 27028 CH3 2005 Generalized Lucas primitive part 5284 primV(44368,1,9504) 26768 CH3 2005 Generalized Lucas primitive part 5285 546351925018076058*Bern(9702)/129255048976106804786904258880518941 26709 c77 2021 Irregular, ECPP 5286 22359307*60919#+1 26383 p364 2022 Arithmetic progression (4,d=5210718*60919#) 5287 17029817*60919#+1 26383 p364 2022 Arithmetic progression (4,d=1809778*60919#) 5288 (2^87691-1)/806957040167570408395443233 26371 E1 2022 Mersenne cofactor, ECPP 5289 primV(10986,-1,9756) 26185 x23 2005 Generalized Lucas primitive part 5290 1043945909*60013#+1 25992 p155 2019 Arithmetic progression (4,d=7399459*60013#) 5291 1041073153*60013#+1 25992 p155 2019 Arithmetic progression (4,d=10142823*60013#) 5292 (2^86371-1)/41681512921035887 25984 E2 2022 Mersenne cofactor, ECPP 5293 (2^86137-1)/2584111/7747937967916174363624460881 25896 c84 2022 Mersenne cofactor, ECPP 5294 primV(11076,-1,12000) 25885 x25 2005 Generalized Lucas primitive part 5295 -E(7894)/19 25790 E10 2023 Euler irregular, ECPP 5296 2^85237+2^42619+1 25659 x16 2000 Gaussian Mersenne norm 31, generalized unique 5297 V(122869)/40546771/1243743094029841 25656 E1 2024 Lucas cofactor, ECPP 5298b primU(183537) 25571 E1 2024 Fibonacci primitive part, ECPP 5299 primV(17505,1,11250) 25459 x25 2011 Generalized Lucas primitive part 5300 U(2325,-1,7561) 25451 x20 2013 Generalized Lucas number 5301 U(13084,-13085,6151) 25319 x45 2018 Generalized Lucas number, cyclotomy 5302 (2^84211-1)/1347377/31358793176711980763958121/33146416760423478241695\ 91561 25291 c95 2020 Mersenne cofactor, ECPP 5303 U(120937)/241873/13689853218820385381 25250 E1 2024 Fibonacci cofactor, ECPP 5304 primV(42,-1,23376) 25249 x23 2007 Generalized Lucas primitive part 5305 U(1064,-1065,8311) 25158 CH10 2018 Generalized Lucas number, cyclotomy 5306 primV(7577,-1,10692) 25140 x33 2007 Generalized Lucas primitive part 5307 (2^83339+1)/3 25088 c54 2014 ECPP, generalized Lucas number, Wagstaff 5308 (2^82939-1)/883323903012540278033571819073 24938 c84 2021 Mersenne cofactor, ECPP 5309b primV(194181) 24908 E1 2024 Lucas primitive part, ECPP 5310b primV(119162) 24903 E1 2024 Lucas primitive part, ECPP 5311 -E(7634)/1559 24828 E10 2023 Euler irregular, ECPP 5312b primU(118319) 24553 E1 2024 Fibonacci primitive part, ECPP 5313 U(1766,1,7561)-U(1766,1,7560) 24548 x25 2013 Lehmer number 5314 U(117167)/17658707237 24476 E1 2024 Fibonacci cofactor, ECPP 5315 V(116593)/120790349 24359 E4 2023 Lucas cofactor, ECPP 5316b primV(214470) 23895 E1 2024 Lucas primitive part, ECPP 5317b primU(115373) 23875 E1 2024 Fibonacci primitive part, ECPP 5318 U(1383,1,7561)+U(1383,1,7560) 23745 x25 2013 Lehmer number 5319 798*Bern(8766)/14670751334144820770719 23743 c94 2021 Irregular, ECPP 5320 Phi(11867,-100) 23732 c47 2021 Unique, ECPP 5321b primU(135421) 23725 E1 2024 Fibonacci primitive part, ECPP 5322b primV(143234) 23654 E1 2024 Lucas primitive part, ECPP 5323 (2^78737-1)/1590296767505866614563328548192658003295567890593 23654 E2 2022 Mersenne cofactor, ECPP 5324 Phi(35421,-10) 23613 c77 2021 Unique, ECPP 5325 6917!-1 23560 g1 1998 Factorial 5326b primU(164185) 23524 E1 2024 Fibonacci primitive part, ECPP 5327 2^77291+2^38646+1 23267 O 2000 Gaussian Mersenne norm 30, generalized unique 5328b primU(166737) 23231 E1 2024 Fibonacci primitive part, ECPP 5329 (V(59936,1,4863)+1)/(V(59936,1,3)+1) 23220 x25 2013 Lehmer primitive part 5330 U(1118,1,7561)-U(1118,1,7560) 23047 x25 2013 Lehmer number 5331 primA(275285) 23012 E1 2024 Lucas Aurifeuillian primitive part, ECPP 5332b primV(110723) 22997 E1 2024 Lucas primitive part, ECPP 5333c primV(180906) 22905 E1 2024 Lucas primitive part, ECPP 5334 (V(45366,1,4857)+1)/(V(45366,1,3)+1) 22604 x25 2013 Lehmer primitive part 5335 U(106663)/35892566541651557 22275 E1 2024 Fibonacci cofactor, ECPP 5336 348054*Bern(8286)/1570865077944473903275073668721 22234 E1 2022 Irregular, ECPP 5337 p(398256632) 22223 E1 2022 Partitions, ECPP 5338 U(105509)/144118801533126010445795676378394340544227572822879081 21997 E1 2022 Fibonacci cofactor, ECPP 5339 U(104911) 21925 c82 2015 Fibonacci number, ECPP 5340 primB(282035) 21758 E1 2023 Lucas Aurifeuillian primitive part, ECPP 5341 primA(276335) 21736 E1 2024 Lucas Aurifeuillian primitive part, ECPP 5342 Phi(1203,10^27) 21600 c47 2021 Unique, ECPP 5343 U(19258,-1,5039) 21586 x23 2007 Generalized Lucas number 5344 6380!+1 21507 g1 1998 Factorial 5345 primV(154281) 21495 E4 2023 Lucas primitive part, ECPP 5346 U(43100,1,4620)+U(43100,1,4619) 21407 x25 2016 Lehmer number 5347 -E(6658)/85079 21257 c77 2020 Euler irregular, ECPP 5348 Phi(39855,-10) 21248 c95 2020 Unique, ECPP 5349 (V(23354,1,4869)-1)/(V(23354,1,9)-1) 21231 x25 2013 Lehmer primitive part 5350 primA(296695) 21137 E1 2023 Lucas Aurifeuillian primitive part, ECPP 5351 U(15631,1,5040)-U(15631,1,5039) 21134 x25 2003 Lehmer number 5352 primA(413205) 21127 E1 2023 Lucas Aurifeuillian primitive part, ECPP 5353 U(35759,1,4620)+U(35759,1,4619) 21033 x25 2016 Lehmer number 5354 p(355646102) 21000 E1 2022 Partitions, ECPP 5355 V(100417)/713042903779101607511808799053206435494854433884796747437071\ 9436805470448849 20911 E1 2024 Lucas cofactor, ECPP 5356 p(350199893) 20838 E7 2022 Partitions, ECPP 5357 U(31321,1,4620)-U(31321,1,4619) 20767 x25 2016 Lehmer number 5358c primU(102689) 20715 E1 2024 Fibonacci primitive part, ECPP 5359 primU(105821) 20598 E1 2022 Fibonacci primitive part, ECPP 5360 primU(172179) 20540 E1 2022 Fibonacci primitive part, ECPP 5361 V(98081)/31189759/611955609270431/6902594225498651/641303018340927841 20442 E1 2024 Lucas cofactor, ECPP 5362 U(11200,-1,5039) 20400 x25 2004 Generalized Lucas number, cyclotomy 5363e 4404139952163*2^67002+1 20183 p408 2024 Triplet (3) 5364e 4404139952163*2^67002-1 20183 p408 2024 Triplet (2) 5365e 4404139952163*2^67002-5 20183 E15 2024 Triplet (1), ECPP 5366 Phi(23749,-10) 20160 c47 2014 Unique, ECPP 5367 U(22098,1,4620)+U(22098,1,4619) 20067 x25 2016 Lehmer number 5368 primV(112028) 20063 E1 2022 Lucas primitive part, ECPP 5369 1128330746865*2^66441-1 20013 p158 2020 Cunningham chain (4p+3) 5370 1128330746865*2^66440-1 20013 p158 2020 Cunningham chain (2p+1) 5371 1128330746865*2^66439-1 20013 p158 2020 Cunningham chain (p) 5372 4111286921397*2^66420+5 20008 c88 2019 Triplet (3) 5373 4111286921397*2^66420+1 20008 L4808 2019 Triplet (2) 5374 4111286921397*2^66420-1 20008 L4808 2019 Triplet (1) 5375 U(21412,1,4620)-U(21412,1,4619) 20004 x25 2016 Lehmer number 5376 p(322610098) 20000 E1 2022 Partitions, ECPP 5377 primV(151521) 19863 E1 2022 Lucas primitive part, ECPP 5378 V(94823) 19817 c73 2014 Lucas number, ECPP 5379 U(19361,1,4620)+U(19361,1,4619) 19802 x25 2016 Lehmer number 5380 U(8454,-1,5039) 19785 x25 2013 Generalized Lucas number 5381 (2^64381-1)/1825231878561264571177401910928543898820492254252817499611\ 8699181907547497 19308 E13 2024 Mersenne cofactor, ECPP 5382 U(6584,-1,5039) 19238 x23 2007 Generalized Lucas number 5383 V(91943)/551659/2390519/9687119153094919 19187 E1 2022 Lucas cofactor, ECPP 5384 (V(428,1,8019)-1)/(V(428,1,729)-1) 19184 E1 2022 Lehmer primitive part, ECPP 5385 V(91873)/3674921/193484539/167745030829 19175 E1 2022 Lucas cofactor, ECPP 5386 (2^63703-1)/42808417 19169 c59 2014 Mersenne cofactor, ECPP 5387 primU(137439) 19148 E1 2022 Fibonacci primitive part, ECPP 5388 primU(107779) 18980 E1 2022 Fibonacci primitive part, ECPP 5389 (U(162,1,8581)+U(162,1,8580))/(U(162,1,66)+U(162,1,65)) 18814 E1 2022 Lehmer primitive part, ECPP 5390 V(89849) 18778 c70 2014 Lucas number, ECPP 5391 primV(145353) 18689 c69 2013 ECPP, Lucas primitive part 5392 Phi(14943,-100) 18688 c47 2014 Unique, ECPP 5393 (U(859,1,6385)-U(859,1,6384))/(U(859,1,57)-U(859,1,56)) 18567 E1 2022 Lehmer primitive part, ECPP 5394 Phi(18827,10) 18480 c47 2014 Unique, ECPP 5395 primB(220895) 18465 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5396 primV(153279) 18283 E1 2022 Lucas primitive part, ECPP 5397 42209#+1 18241 p8 1999 Primorial 5398 (V(46662,1,3879)-1)/(V(46662,1,9)-1) 18069 x25 2012 Lehmer primitive part 5399 V(86477)/1042112515940998434071039 18049 c77 2020 Lucas cofactor, ECPP 5400 7457*2^59659+1 17964 Y 1997 Cullen 5401 primB(235015) 17856 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5402 primV(148197) 17696 E1 2022 Lucas primitive part, ECPP 5403 (V(447,1,6723)+1)/(V(447,1,81)+1) 17604 E1 2022 Lehmer primitive part, ECPP 5404 (2^58199-1)/237604901713907577052391 17497 c59 2015 Mersenne cofactor, ECPP 5405 Phi(26031,-10) 17353 c47 2014 Unique, ECPP 5406 primV(169830) 17335 E1 2022 Lucas primitive part, ECPP 5407 (V(561,1,6309)+1)/(V(561,1,9)+1) 17319 x25 2016 Lehmer primitive part 5408 U(9657,1,4321)-U(9657,1,4320) 17215 x23 2005 Lehmer number 5409 (2^57131-1)/61481396117165983261035042726614288722959856631 17152 c59 2015 Mersenne cofactor, ECPP 5410 U(81839) 17103 p54 2001 Fibonacci number 5411 (V(1578,1,5589)+1)/(V(1578,1,243)+1) 17098 E1 2022 Lehmer primitive part, ECPP 5412 V(81671) 17069 c66 2013 Lucas number, ECPP 5413 primV(101510) 16970 E1 2022 Lucas primitive part, ECPP 5414 primV(86756) 16920 c74 2015 Lucas primitive part, ECPP 5415 V(80761)/570100885555095451 16861 c77 2020 Lucas cofactor, ECPP 5416 6521953289619*2^55555+1 16737 p296 2013 Triplet (3) 5417 6521953289619*2^55555-1 16737 p296 2013 Triplet (2) 5418 6521953289619*2^55555-5 16737 c58 2013 Triplet (1), ECPP 5419 primV(122754) 16653 c77 2021 Lucas primitive part, ECPP 5420 U(15823,1,3960)-U(15823,1,3959) 16625 x25 2002 Lehmer number, cyclotomy 5421 p(221444161) 16569 c77 2017 Partitions, ECPP 5422 (V(1240,1,5589)-1)/(V(1240,1,243)-1) 16538 E1 2022 Lehmer primitive part, ECPP 5423 primA(201485) 16535 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5424 U(78919)/15574900936381642440917 16471 c77 2020 Fibonacci cofactor, ECPP 5425 (U(800,1,5725)-U(800,1,5724))/(U(800,1,54)-U(800,1,53)) 16464 E1 2022 Lehmer primitive part, ECPP 5426f 17484430616589*2^54201+5 16330 E14 2024 Consecutive primes arithmetic progression (3,d=6), ECPP 5427 (V(21151,1,3777)-1)/(V(21151,1,3)-1) 16324 x25 2011 Lehmer primitive part 5428 primV(123573) 16198 c77 2019 Lucas primitive part, ECPP 5429 primB(225785) 16176 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5430 V(77417)/313991497376559420151 16159 c77 2020 Lucas cofactor, ECPP 5431 (2^53381-1)/15588960193/38922536168186976769/1559912715971690629450336\ 68006103 16008 c84 2017 Mersenne cofactor, ECPP 5432 -E(5186)/295970922359784619239409649676896529941379763 15954 c63 2018 Euler irregular, ECPP 5433 primV(121227) 15890 c77 2019 Lucas primitive part, ECPP 5434 Phi(2949,-100000000) 15713 c47 2013 Unique, ECPP 5435 primU(131481) 15695 c77 2019 Fibonacci primitive part, ECPP 5436 primV(120258) 15649 c77 2019 Lucas primitive part, ECPP 5437 (U(9275,1,3961)+U(9275,1,3960))/(U(9275,1,45)+U(9275,1,44)) 15537 x38 2009 Lehmer primitive part 5438 (2^51487-1)/57410994232247/17292148963401772464767849635553 15455 c77 2018 Mersenne cofactor, ECPP 5439 primB(183835) 15368 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5440 primU(77387) 15319 c77 2019 Fibonacci primitive part, ECPP 5441 primB(181705) 15189 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5442 U(71983)/5614673/363946049 15028 c77 2018 Fibonacci cofactor, ECPP 5443 2494779036241*2^49800+13 15004 c93 2022 Consecutive primes arithmetic progression (3,d=6) 5444 primB(268665) 14972 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5445 Phi(5015,-10000) 14848 c47 2013 Unique, ECPP 5446 2^49207-2^24604+1 14813 x16 2000 Gaussian Mersenne norm 29, generalized unique 5447 primA(284895) 14626 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5448 U(69239)/1384781 14464 c77 2018 Fibonacci cofactor, ECPP 5449 primA(170575) 14258 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5450 V(68213)/7290202116115634431 14237 c77 2018 Lucas cofactor, ECPP 5451 p(158375386) 14011 E1 2022 Partitions, ECPP 5452 p(158295265) 14007 E1 2022 Partitions, ECPP 5453 p(158221457) 14004 E1 2022 Partitions, ECPP 5454 primU(67703) 13954 c77 2018 Fibonacci primitive part, ECPP 5455 U(66947)/12485272838388758877279873712131648167413 13951 c77 2017 Fibonacci cofactor, ECPP 5456 V(66533)/2128184670585621839884209100279 13875 c77 2018 Lucas cofactor, ECPP 5457 6*Bern(5534)/226840561549600012633271691723599339 13862 c71 2014 Irregular, ECPP 5458 4410546*Bern(5526)/9712202742835546740714595866405369616019 13840 c63 2018 Irregular,ECPP 5459 primB(163595) 13675 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5460 6*Bern(5462)/23238026668982614152809832227 13657 c64 2013 Irregular, ECPP 5461 56667641271*2^44441+5 13389 c99 2022 Triplet (3), ECPP 5462 56667641271*2^44441+1 13389 p426 2022 Triplet (2) 5463 56667641271*2^44441-1 13389 p426 2022 Triplet (1) 5464d V(64063)/464426465381142115542697818362662865912299 13347 E1 2024 Lucas cofactor, ECPP 5465 512792361*30941#+1 13338 p364 2022 Arithmetic progression (5,d=18195056*30941#) 5466 1815615642825*2^44046-1 13272 p395 2016 Cunningham chain (4p+3) 5467 1815615642825*2^44045-1 13272 p395 2016 Cunningham chain (2p+1) 5468 1815615642825*2^44044-1 13271 p395 2016 Cunningham chain (p) 5469 p(141528106) 13244 E6 2022 Partitions, ECPP 5470 p(141513546) 13244 E6 2022 Partitions, ECPP 5471 p(141512238) 13244 E6 2022 Partitions, ECPP 5472 p(141255053) 13232 E6 2022 Partitions, ECPP 5473 p(141150528) 13227 E6 2022 Partitions, ECPP 5474 p(141112026) 13225 E6 2022 Partitions, ECPP 5475 p(141111278) 13225 E6 2022 Partitions, ECPP 5476 p(140859260) 13213 E6 2022 Partitions, ECPP 5477 p(140807155) 13211 E6 2022 Partitions, ECPP 5478 p(140791396) 13210 E6 2022 Partitions, ECPP 5479 primU(94551) 13174 c77 2018 Fibonacci primitive part, ECPP 5480 primB(242295) 13014 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5481 U(61813)/594517433/3761274442997 12897 c77 2018 Fibonacci cofactor, ECPP 5482 (2^42737+1)/3 12865 M 2007 ECPP, generalized Lucas number, Wagstaff 5483 primU(62771) 12791 c77 2018 Fibonacci primitive part, ECPP 5484 primA(154415) 12728 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5485 primA(263865) 12570 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5486 6*Bern(5078)/643283455240626084534218914061 12533 c63 2013 Irregular, ECPP 5487 (2^41681-1)/1052945423/16647332713153/2853686272534246492102086015457 12495 c77 2015 Mersenne cofactor, ECPP 5488 (2^41521-1)/41602235382028197528613357724450752065089 12459 c54 2012 Mersenne cofactor, ECPP 5489 (2^41263-1)/1379707143199991617049286121 12395 c59 2012 Mersenne cofactor, ECPP 5490 U(59369)/2442423669148466039458303756169988568809269383644075940757020\ 9763004757 12337 c79 2015 Fibonacci cofactor, ECPP 5491 742478255901*2^40069+1 12074 p395 2016 Cunningham chain 2nd kind (4p-3) 5492 996824343*2^40074+1 12073 p395 2016 Cunningham chain 2nd kind (4p-3) 5493 664342014133*2^39840+1 12005 p408 2020 Consecutive primes arithmetic progression (3,d=30) 5494 V(56003) 11704 p193 2006 Lucas number 5495 primA(143705) 11703 c77 2017 Lucas Aurifeuillian primitive part, ECPP 5496 4207993863*2^38624+5 11637 L5354 2021 Triplet (3), ECPP 5497 4207993863*2^38624+1 11637 L5354 2021 Triplet (2) 5498 4207993863*2^38624-1 11637 L5354 2021 Triplet (1) 5499 primU(73025) 11587 c77 2015 Fibonacci primitive part, ECPP 5500 primU(67781) 11587 c77 2015 Fibonacci primitive part, ECPP 5501 primB(219165) 11557 c77 2015 Lucas Aurifeuillian primitive part, ECPP 5502 198429723072*11^11005+1 11472 L3323 2016 Cunningham chain 2nd kind (4p-3) 5503 U(54799)/4661437953906084533621577211561 11422 c8 2015 Fibonacci cofactor, ECPP 5504 U(54521)/6403194135342743624071073 11370 c8 2015 Fibonacci cofactor, ECPP 5505 primU(67825) 11336 x23 2007 Fibonacci primitive part 5506 3610!-1 11277 C 1993 Factorial 5507 U(53189)/69431662887136064191105625570683133711989 11075 c8 2014 Fibonacci cofactor, ECPP 5508 primU(61733) 11058 c77 2015 Fibonacci primitive part, ECPP 5509 778965587811*2^36627-1 11038 p395 2016 Cunningham chain (4p+3) 5510 778965587811*2^36626-1 11038 p395 2016 Cunningham chain (2p+1) 5511 778965587811*2^36625-1 11038 p395 2016 Cunningham chain (p) 5512 272879344275*2^36622-1 11036 p395 2016 Cunningham chain (4p+3) 5513 272879344275*2^36621-1 11036 p395 2016 Cunningham chain (2p+1) 5514 272879344275*2^36620-1 11036 p395 2016 Cunningham chain (p) 5515 V(52859)/1124137922466041911 11029 c8 2014 Lucas cofactor, ECPP 5516 3507!-1 10912 C 1992 Factorial 5517 V(52201)/70585804042896975505694709575919458733851279868446609 10857 c8 2015 Lucas cofactor, ECPP 5518 V(52009)/39772636393178951550299332730909 10838 c8 2015 Lucas cofactor, ECPP 5519 V(51941)/2808052157610902114547210696868337380250300924116591143641642\ 866931 10789 c8 2015 Lucas cofactor, ECPP 5520 1258566*Bern(4462)/6610083971965402783802518108033 10763 c64 2013 Irregular, ECPP 5521 3428602715439*2^35678+13 10753 c93 2020 Consecutive primes arithmetic progression (3,d=6), ECPP 5522 333645655005*2^35549-1 10713 p364 2015 Cunningham chain (4p+3) 5523 333645655005*2^35548-1 10713 p364 2015 Cunningham chain (2p+1) 5524 333645655005*2^35547-1 10713 p364 2015 Cunningham chain (p) 5525 V(51349)/224417260052884218046541 10708 c8 2014 Lucas cofactor, ECPP 5526 V(51169) 10694 p54 2001 Lucas number 5527 U(51031)/95846689435051369 10648 c8 2014 Fibonacci cofactor, ECPP 5528 V(50989)/69818796119453411 10640 c8 2014 Lucas cofactor, ECPP 5529 Phi(13285,-10) 10625 c47 2012 Unique, ECPP 5530 U(50833) 10624 CH4 2005 Fibonacci number 5531 2683143625525*2^35176+13 10602 c92 2019 Consecutive primes arithmetic progression (3,d=6),ECPP 5532 3020616601*24499#+1 10593 p422 2021 Arithmetic progression (6,d=56497325*24499#) 5533 2964119276*24499#+1 10593 p422 2021 Arithmetic progression (5,d=56497325*24499#) 5534 24029#+1 10387 C 1993 Primorial 5535 400791048*24001#+1 10378 p155 2018 Arithmetic progression (5,d=59874860*24001#) 5536 393142614*24001#+1 10378 p155 2018 Arithmetic progression (5,d=54840724*24001#) 5537 221488788*24001#+1 10377 p155 2018 Arithmetic progression (5,d=22703701*24001#) 5538 6*Bern(4306)/2153 10342 FE8 2009 Irregular, ECPP 5539 23801#+1 10273 C 1993 Primorial 5540 667674063382677*2^33608+7 10132 c88 2019 Quadruplet (4), ECPP 5541 667674063382677*2^33608+5 10132 c88 2019 Quadruplet (3), ECPP 5542 667674063382677*2^33608+1 10132 L4808 2019 Quadruplet (2) 5543 667674063382677*2^33608-1 10132 L4808 2019 Quadruplet (1) 5544 Phi(427,-10^28) 10081 FE9 2009 Unique, ECPP 5545 9649755890145*2^33335+1 10048 p364 2015 Cunningham chain 2nd kind (4p-3) 5546 15162914750865*2^33219+1 10014 p364 2015 Cunningham chain 2nd kind (4p-3) 5547 32469*2^32469+1 9779 MM 1997 Cullen 5548 8073*2^32294+1 9726 MM 1997 Cullen 5549 E(3308)/39308792292493140803643373186476368389461245 9516 c8 2014 Euler irregular, ECPP 5550 Phi(5161,-100) 9505 c47 2012 Unique, ECPP 5551 V(44507) 9302 CH3 2005 Lucas number 5552 U(43399)/470400609575881344601538056264109423291827366228494341196421 9010 c8 2013 Fibonacci cofactor, ECPP 5553 U(42829)/107130175995197969243646842778153077 8916 c8 2014 Fibonacci cofactor, ECPP 5554 U(42043)/1681721 8780 c56 2012 Fibonacci cofactor, ECPP 5555 Phi(6105,-1000) 8641 c47 2010 Unique, ECPP 5556 Phi(4667,-100) 8593 c47 2009 Unique, ECPP 5557 U(40763)/643247084652261620737 8498 c8 2013 Fibonacci cofactor, ECPP 5558 2^27529-2^13765+1 8288 O 2000 Gaussian Mersenne norm 28, generalized unique 5559 18523#+1 8002 D 1989 Primorial 5560 6*Bern(3458)/28329084584758278770932715893606309 7945 c8 2013 Irregular, ECPP 5561 U(37987)/1832721858208455887947958246414213 7906 c39 2012 Fibonacci cofactor, ECPP 5562 U(37511) 7839 x13 2005 Fibonacci number 5563 -E(2762)/2670541 7760 c11 2004 Euler irregular, ECPP 5564 V(36779) 7687 CH3 2005 Lucas number 5565 U(35999) 7523 p54 2001 Fibonacci number, cyclotomy 5566 Phi(4029,-1000) 7488 c47 2009 Unique, ECPP 5567 V(35449) 7409 p12 2001 Lucas number 5568 -30*Bern(3176)/6689693100056872989386833739813089720559189736259127537\ 0617658634396391181 7138 c63 2016 Irregular, ECPP 5569 2154675239*16301#+1 7036 p155 2018 Arithmetic progression (6,d=141836149*16301#) 5570 -10365630*Bern(3100)/1670366116112864481699585217650438278080436881373\ 643007997602585219667 6943 c63 2016 Irregular ECPP 5571 23005*2^23005-1 6930 Y 1997 Woodall 5572 22971*2^22971-1 6920 Y 1997 Woodall 5573 15877#-1 6845 CD 1992 Primorial 5574 6*Bern(2974)/19622040971147542470479091157507 6637 c8 2013 Irregular, ECPP 5575 U(30757) 6428 p54 2001 Fibonacci number, cyclotomy 5576 E(2220)/392431891068600713525 6011 c8 2013 Euler irregular, ECPP 5577 -E(2202)/53781055550934778283104432814129020709 5938 c8 2013 Euler irregular, ECPP 5578 13649#+1 5862 D 1987 Primorial 5579 274386*Bern(2622)/8518594882415401157891061256276973722693 5701 c8 2013 Irregular, ECPP 5580 18885*2^18885-1 5690 K 1987 Woodall 5581 1963!-1 5614 CD 1992 Factorial 5582 13033#-1 5610 CD 1992 Primorial 5583 289*2^18502+1 5573 K 1984 Cullen, generalized Fermat 5584 E(2028)/11246153954845684745 5412 c55 2011 Euler irregular, ECPP 5585 -30*Bern(2504)/1248230090315232335602406373438221652417581490266755814\ 38903418303340323897 5354 c63 2013 Irregular ECPP 5586 U(25561) 5342 p54 2001 Fibonacci number 5587 -E(1990)/8338208577950624722417016286765473477033741642105671913 5258 c8 2013 Euler irregular, ECPP 5588 33957462*Bern(2370)/40685 5083 c11 2003 Irregular, ECPP 5589 4122429552750669*2^16567+7 5003 c83 2016 Quadruplet (4), ECPP 5590 4122429552750669*2^16567+5 5003 c83 2016 Quadruplet (3), ECPP 5591 4122429552750669*2^16567+1 5003 L4342 2016 Quadruplet (2) 5592 4122429552750669*2^16567-1 5003 L4342 2016 Quadruplet (1) 5593f 35734184537*11677#/3+9 5002 c98 2024 Consecutive primes arithmetic progression (4,d=6), ECPP 5594 11549#+1 4951 D 1986 Primorial 5595 E(1840)/31237282053878368942060412182384934425 4812 c4 2011 Euler irregular, ECPP 5596 7911*2^15823-1 4768 K 1987 Woodall 5597 E(1736)/13510337079405137518589526468536905 4498 c4 2004 Euler irregular, ECPP 5598 2^14699+2^7350+1 4425 O 2000 Gaussian Mersenne norm 27, generalized unique 5599 (2^14479+1)/3 4359 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5600 62399583639*9923#-3399421517 4285 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5601 49325406476*9811#*8+1 4234 p382 2019 Cunningham chain 2nd kind (8p-7) 5602 276474*Bern(2030)/469951697500688159155 4200 c8 2003 Irregular, ECPP 5603 V(19469) 4069 x25 2002 Lucas number, cyclotomy, APR-CL assisted 5604 1477!+1 4042 D 1984 Factorial 5605 -2730*Bern(1884)/100983617849 3844 c8 2003 Irregular, ECPP 5606 2840178*Bern(1870)/85 3821 c8 2003 Irregular, ECPP 5607 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+9 3753 c101 2023 Quadruplet (4),ECPP 5608 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+7 3753 c101 2023 Quadruplet (3),ECPP 5609 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+3 3753 c101 2023 Quadruplet (2),ECPP 5610 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+1 3753 c101 2023 Quadruplet (1),ECPP 5611 12379*2^12379-1 3731 K 1984 Woodall 5612 (2^12391+1)/3 3730 M 1996 Generalized Lucas number, Wagstaff 5613 -E(1466)/167900532276654417372106952612534399239 3682 c8 2013 Euler irregular, ECPP 5614 E(1468)/12330876589623053882799895025030461658552339028064108285 3671 c4 2003 Euler irregular, ECPP 5615 1268118079424*8501#-1 3640 p434 2023 Cunningham chain (8p+7) 5616 101406820312263*2^12042+7 3640 c67 2018 Quadruplet (4) 5617 101406820312263*2^12042+5 3640 c67 2018 Quadruplet (3) 5618 101406820312263*2^12042+1 3640 p364 2018 Quadruplet (2) 5619 101406820312263*2^12042-1 3640 p364 2018 Quadruplet (1) 5620 2673092556681*15^3048+4 3598 c67 2015 Quadruplet (4) 5621 2673092556681*15^3048+2 3598 c67 2015 Quadruplet (3) 5622 2673092556681*15^3048-2 3598 c67 2015 Quadruplet (2) 5623 2673092556681*15^3048-4 3598 c67 2015 Quadruplet (1) 5624 6016459977*7927#-1 3407 p364 2022 Arithmetic progression (7,d=577051223*7927#) 5625 5439408754*7927#-1 3407 p364 2022 Arithmetic progression (6,d=577051223*7927#) 5626 62753735335*7919#+3399421667 3404 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5627 (2^11279+1)/3 3395 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 5628 109766820328*7877#-1 3385 p395 2016 Cunningham chain (8p+7) 5629 585150568069684836*7757#/85085+17 3344 c88 2022 Quintuplet (5), ECPP 5630 585150568069684836*7757#/85085+13 3344 c88 2022 Quintuplet (4), ECPP 5631 585150568069684836*7757#/85085+11 3344 c88 2022 Quintuplet (3), ECPP 5632 585150568069684836*7757#/85085+7 3344 c88 2022 Quintuplet (2), ECPP 5633 585150568069684836*7757#/85085+5 3344 c88 2022 Quintuplet (1), ECPP 5634 104052837*7759#-1 3343 p398 2017 Arithmetic progression (6,d=12009836*7759#) 5635 2072453060816*7699#+1 3316 p364 2019 Cunningham chain 2nd kind (8p-7) 5636 (2^10691+1)/3 3218 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5637 231692481512*7517#-1 3218 p395 2016 Cunningham chain (8p+7) 5638 (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+19 3207 c100 2023 Consecutive primes arithmetic progression (4,d=6),ECPP 5639 (2^10501+1)/3 3161 M 1996 Generalized Lucas number, Wagstaff 5640 2^10141+2^5071+1 3053 O 2000 Gaussian Mersenne norm 26, generalized unique 5641 121152729080*7019#/1729+19 3025 c92 2019 Consecutive primes arithmetic progression (4,d=6), ECPP 5642 V(14449) 3020 DK 1995 Lucas number 5643 3124777373*7001#+1 3019 p155 2012 Arithmetic progression (7,d=481789017*7001#) 5644 2996180304*7001#+1 3019 p155 2012 Arithmetic progression (6,d=46793757*7001#) 5645 U(14431) 3016 p54 2001 Fibonacci number 5646 138281163736*6977#+1 3006 p395 2016 Cunningham chain 2nd kind (8p-7) 5647 375967981369*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5648 354362289656*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5649 V(13963) 2919 c11 2002 Lucas number, ECPP 5650 284787490256*6701#+1 2879 p364 2015 Cunningham chain 2nd kind (8p-7) 5651 9531*2^9531-1 2874 K 1984 Woodall 5652 -E(1174)/50550511342697072710795058639332351763 2829 c8 2013 Euler irregular, ECPP 5653 -E(1142)/6233437695283865492412648122953349079446935570718422828539863\ 59013986902240869 2697 c77 2015 Euler irregular, ECPP 5654 -E(1078)/361898544439043 2578 c4 2002 Euler irregular, ECPP 5655 V(12251) 2561 p54 2001 Lucas number 5656 974!-1 2490 CD 1992 Factorial 5657 7755*2^7755-1 2339 K 1984 Woodall 5658 772463767240*5303#+1 2272 p308 2019 Cunningham chain 2nd kind (8p-7) 5659 116814018316*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10892863626*5303#) 5660 116746086504*5303#+1 2271 p406 2019 Arithmetic progression (7,d=9726011684*5303#) 5661 116242725347*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10388428124*5303#) 5662 69285767989*5303#+1 2271 p406 2019 Arithmetic progression (8,d=3026809034*5303#) 5663 V(10691) 2235 DK 1995 Lucas number 5664 872!+1 2188 D 1983 Factorial 5665 566761969187*4733#/2+4 2034 c67 2020 Quintuplet (5) 5666 566761969187*4733#/2+2 2034 c67 2020 Quintuplet (4) 5667 566761969187*4733#/2-2 2034 c67 2020 Quintuplet (3) 5668 566761969187*4733#/2-4 2034 c67 2020 Quintuplet (2) 5669 566761969187*4733#/2-8 2034 c67 2020 Quintuplet (1) 5670 U(9677) 2023 c2 2000 Fibonacci number, ECPP 5671 7610828704751636272*4679#-1 2020 p151 2024 Cunningham chain (16p+15) 5672 126831252923413*4657#/273+13 2002 c88 2020 Quintuplet (5) 5673 126831252923413*4657#/273+9 2002 c88 2020 Quintuplet (4) 5674 126831252923413*4657#/273+7 2002 c88 2020 Quintuplet (3) 5675 126831252923413*4657#/273+3 2002 c88 2020 Quintuplet (2) 5676 126831252923413*4657#/273+1 2002 c88 2020 Quintuplet (1) 5677 6611*2^6611+1 1994 K 1984 Cullen 5678 U(9311) 1946 DK 1995 Fibonacci number 5679 2738129459017*4211#+3399421637 1805 c98 2022 Consecutive primes arithmetic progression (5,d=30) 5680 V(8467) 1770 c2 2000 Lucas number, ECPP 5681 5795*2^5795+1 1749 K 1984 Cullen 5682 (2^5807+1)/3 1748 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 5683 54201838768*3917#-1 1681 p395 2016 Cunningham chain (16p+15) 5684 102619722624*3797#+1 1631 p395 2016 Cunningham chain 2nd kind (16p-15) 5685 394254311495*3733#/2+4 1606 c67 2017 Quintuplet (5) 5686 394254311495*3733#/2+2 1606 c67 2017 Quintuplet (4) 5687 394254311495*3733#/2-2 1606 c67 2017 Quintuplet (3) 5688 394254311495*3733#/2-4 1606 c67 2017 Quintuplet (2) 5689 394254311495*3733#/2-8 1606 c67 2017 Quintuplet (1) 5690 83*2^5318-1 1603 K 1984 Woodall 5691 2316765173284*3593#+16073 1543 c18 2016 Quintuplet (5), ECPP 5692 2316765173284*3593#+16069 1543 c18 2016 Quintuplet (4), ECPP 5693 2316765173284*3593#+16067 1543 c18 2016 Quintuplet (3), ECPP 5694 2316765173284*3593#+16063 1543 c18 2016 Quintuplet (2), ECPP 5695 2316765173284*3593#+16061 1543 c18 2016 Quintuplet (1), ECPP 5696 652229318541*3527#+3399421637 1504 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5697 3199190962192*3499#-1 1494 p382 2016 Cunningham chain (16p+15) 5698 4713*2^4713+1 1423 K 1984 Cullen 5699 449209457832*3307#+1633050403 1408 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5700 5780736564512*3023#-1 1301 p364 2015 Cunningham chain (16p+15) 5701 2746496109133*3001#+27011 1290 c97 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5702 898966996992*3001#+1 1289 p364 2015 Cunningham chain 2nd kind (16p-15) 5703 42530119784448*2969#+1 1281 p382 2017 Cunningham chain 2nd kind (16p-15) 5704 22623218234368*2969#+1 1280 p382 2017 Cunningham chain 2nd kind (16p-15) 5705 1542946580224*2851#-1 1231 p364 2023 Cunningham chain (16p+15) 5706 406463527990*2801#+1633050403 1209 x38 2013 Consecutive primes arithmetic progression (5,d=30) 5707 1290733709840*2677#+1 1141 p295 2011 Cunningham chain 2nd kind (16p-15) 5708 U(5387) 1126 WM 1990 Fibonacci number 5709 1176100079*2591#+1 1101 p252 2019 Arithmetic progression (8,d=60355670*2591#) 5710 (2^3539+1)/3 1065 M 1989 First titanic by ECPP, generalized Lucas number, Wagstaff 5711 2968802755*2459#+1 1057 p155 2009 Arithmetic progression (8,d=359463429*2459#) 5712 28993093368077*2399#+19433 1037 c18 2016 Sextuplet (6), ECPP 5713 28993093368077*2399#+19429 1037 c18 2016 Sextuplet (5), ECPP 5714 28993093368077*2399#+19427 1037 c18 2016 Sextuplet (4), ECPP 5715 28993093368077*2399#+19423 1037 c18 2016 Sextuplet (3), ECPP 5716 28993093368077*2399#+19421 1037 c18 2016 Sextuplet (2), ECPP 5717 6179783529*2411#+1 1037 p102 2003 Arithmetic progression (8,d=176836494*2411#) 5718 R(1031) 1031 WD 1985 Repunit 5719 89595955370432*2371#-1 1017 p364 2015 Cunningham chain (32p+31) 5720 116040452086*2371#+1 1014 p308 2012 Arithmetic progression (9,d=6317280828*2371#) 5721 115248484057*2371#+1 1014 p308 2013 Arithmetic progression (8,d=7327002535*2371#) 5722 97336164242*2371#+1 1014 p308 2013 Arithmetic progression (9,d=6350457699*2371#) 5723 93537753980*2371#+1 1014 p308 2013 Arithmetic progression (9,d=3388165411*2371#) 5724 92836168856*2371#+1 1014 p308 2013 Arithmetic progression (9,d=127155673*2371#) 5725 69318339141*2371#+1 1014 p308 2011 Arithmetic progression (9,d=1298717501*2371#) 5726 533098369554*2357#+3399421667 1012 c98 2021 Consecutive primes arithmetic progression (6,d=30), ECPP 5727 113225039190926127209*2339#/57057+21 1002 c88 2021 Septuplet (7) 5728 113225039190926127209*2339#/57057+19 1002 c88 2021 Septuplet (6) 5729 113225039190926127209*2339#/57057+13 1002 c88 2021 Septuplet (5) 5730 113225039190926127209*2339#/57057+9 1002 c88 2021 Septuplet (4) 5731 113225039190926127209*2339#/57057+7 1002 c88 2021 Septuplet (3) ----- ------------------------------- -------- ----- ---- -------------- KEY TO PROOF-CODES (primality provers): A1 Propper, Srsieve, PrimeGrid, PRST A2 Propper, Srsieve, PRST A3 Atnashev, PRST A5 Gahan, Cyclo, PRST A6 Propper, Gcwsieve, PRST A7 Baur, Cyclo, PRST A8 Baur1, Srsieve, PRST A9 Wright1, Srsieve, CRUS, PRST A10 Grosvenor, Srsieve, CRUS, PRST A11 Anonymous, Srsieve, CRUS, PRST A12 Kruse, Srsieve, CRUS, PRST A13 Marler, Cyclo, PRST A14 Thompson5, Srsieve, CRUS, PRST A15 Sielemann, Srsieve, CRUS, PRST A16 Broer, Srsieve, CRUS, PRST A18 Trunov, Cyclo, PRST A19 Propper, Batalov, Srsieve, PRST A20 Propper, Batalov, Gcwsieve, PRST A21 Piesker, Srsieve, CRUS, PRST A22 Doornink, Cyclo, PRST A23 Brown1, Srsieve, PrimeGrid, PRST A25 Schmidt2, NewPGen, PRST A26 VISCAPI, Srsieve, CRUS, PRST A27 Piesker, PSieve, Srsieve, NPLB, PRST A28 Gingrich1, Srsieve, CRUS, PRST A29 Kelava1, Srsieve, Prime95, PRST A30 Silva2, Srsieve, PrimeGrid, PRST A31 Dinkel, MultiSieve, PRST A32 Cedric, Srsieve, CRUS, PRST A33 Przystawik, Srsieve, CRUS, PRST A34 Verhaagen, Srsieve, CRUS, PRST A35 RIVA1, Srsieve, CRUS, PRST A36 Glotzbach, Srsieve, CRUS, PRST A37 Sturman, Srsieve, CRUS, PRST A38 Batalov, PSieve, Srsieve, PRST A39 Majors, Srsieve, CRUS, PRST A40 Jones1, Srsieve, CRUS, PRST A41 Gmirkin, Srsieve, PrimeGrid, PRST A42 Dadocad72, Srsieve, CRUS, PRST A44 Smith12, Srsieve, CRUS, PRST A45 Kaczala, Srsieve, PrimeGrid, PRST A46 Primecrunch.com, Hedges, Srsieve, PRST C Caldwell, Cruncher c2 Water, Primo c4 Broadhurst, Primo c8 Broadhurst, Water, Primo c11 Oakes, Primo c18 Luhn, Primo c39 Minovic, OpenPFGW, Primo c47 Chandler, Primo c54 Wu_T, Primo c55 Gramolin, Primo c56 Soule, Minovic, OpenPFGW, Primo c58 Kaiser1, NewPGen, OpenPFGW, Primo c59 Metcalfe, OpenPFGW, Primo c63 Ritschel, TOPS, Primo c64 Metcalfe, Minovic, Ritschel, TOPS, Primo c66 Steine, Primo c67 Batalov, NewPGen, OpenPFGW, Primo c69 Jacobsen, Primo c70 Underwood, Dubner, Primo c71 Metcalfe, Ritschel, Andersen, TOPS, Primo c73 Underwood, Lifchitz, Primo c74 Lasher, Dubner, Primo c76 Kaiser1, Water, Underwood, Primo c77 Batalov, Primo c79 Batalov, Broadhurst, Water, Primo c81 Water, Underwood, Primo c82 Steine, Water, Primo c83 Kaiser1, PolySieve, NewPGen, Primo c84 Underwood, Primo c88 Kaiser1, PolySieve, Primo c92 Lamprecht, Luhn, Primo c93 Batalov, PolySieve, Primo c94 Gelhar, Ritschel, TOPS, Primo c95 Gelhar, Primo c97 Lamprecht, Luhn, APSieve, OpenPFGW, Primo c98 Batalov, EMsieve, Primo c99 Kruse, Schoeler, Primo c100 DavisK, APTreeSieve, NewPGen, OpenPFGW, Primo c101 DavisK, APTreeSieve, OpenPFGW, Primo CD Caldwell, Dubner, Cruncher CH10 Batalov, OpenPFGW, Primo, CHG CH12 Propper, Batalov, OpenPFGW, Primo, CHG CH13 Propper, Batalov, EMsieve, OpenPFGW, CHG CH14 Wu_T, CM, OpenPFGW, CHG CH2 Wu_T, OpenPFGW, Primo, CHG CH3 Broadhurst, Water, OpenPFGW, Primo, CHG CH4 Irvine, Broadhurst, Water, OpenPFGW, Primo, CHG CH9 Zhou, OpenPFGW, CHG D Dubner, Cruncher DK Dubner, Keller, Cruncher DS Smith_Darren, Proth.exe E1 Batalov, CM E2 Propper, CM E3 Enge, CM E4 Childers, CM E5 Underwood, CM E6 Lasher, Broadhurst, Underwood, CM E7 Lasher, CM E8 Broadhurst, Underwood, CM E9 Mock, CM E10 Doornink, CM E11 Karpovich, CM E12 Enge, Underwood, CM E13 Batalov, Masser, CM E14 Batalov, EMsieve, CM E15 Batalov, PolySieve, CM E16 Propper, Batalov, CM E17 Foreman, Batalov, CM FE8 Oakes, Broadhurst, Water, Morain, FastECPP FE9 Broadhurst, Water, Morain, FastECPP g0 Gallot, Proth.exe G1 Armengaud, GIMPS, Prime95 g1 Caldwell, Proth.exe G2 Spence, GIMPS, Prime95 G3 Clarkson, Kurowski, GIMPS, Prime95 G4 Hajratwala, Kurowski, GIMPS, Prime95 G5 Cameron, Kurowski, GIMPS, Prime95 G6 Shafer, GIMPS, Prime95 G7 Findley_J, GIMPS, Prime95 G8 Nowak, GIMPS, Prime95 G9 Boone, Cooper, GIMPS, Prime95 G10 Smith_E, GIMPS, Prime95 G11 Elvenich, GIMPS, Prime95 G12 Strindmo, GIMPS, Prime95 G13 Cooper, GIMPS, Prime95 G14 Cooper, GIMPS, Prime95 G15 Pace, GIMPS, Prime95 G16 Laroche, GIMPS, Prime95 g23 Ballinger, Proth.exe g25 OHare, Proth.exe g55 Toplic, Proth.exe g124 Crickman, Proth.exe g236 Heuer, GFN17Sieve, GFNSearch, Proth.exe g245 Cosgrave, NewPGen, PRP, Proth.exe g260 AYENI, Proth.exe g267 Grobstich, NewPGen, PRP, Proth.exe g277 Eaton, NewPGen, PRP, Proth.exe g279 Cooper, NewPGen, PRP, Proth.exe g300 Zilmer, Proth.exe g308 Angel, GFN17Sieve, GFNSearch, Proth.exe g337 Hsieh, NewPGen, PRP, Proth.exe g403 Yoshimura, ProthSieve, PrimeSierpinski, LLR, Proth.exe g407 HermleGC, MultiSieve, PRP, Proth.exe g413 Scott, AthGFNSieve, Proth.exe g414 Gilvey, Srsieve, PrimeGrid, PrimeSierpinski, LLR, Proth.exe g418 Taura, NewPGen, PRP, Proth.exe g424 Broadhurst, NewPGen, OpenPFGW, Proth.exe g427 Batalov, Srsieve, LLR, Proth.exe g429 Underbakke, GenefX64, AthGFNSieve, PrimeGrid, Proth.exe gm Morii, Proth.exe K Keller L20 Kapek, LLR L51 Hedges, NewPGen, PRP, LLR L53 Zaveri, ProthSieve, RieselSieve, PRP, LLR L95 Urushi, LLR L99 Underbakke, TwinGen, LLR L124 Rodenkirch, MultiSieve, LLR L129 Snyder, LLR L137 Jaworski, Rieselprime, LLR L158 Underwood, NewPGen, 321search, LLR L161 Schafer, NewPGen, LLR L162 Banka, NewPGen, 12121search, LLR L172 Smith, ProthSieve, RieselSieve, LLR L175 Duggan, ProthSieve, RieselSieve, LLR L177 Kwok, Rieselprime, LLR L179 White, ProthSieve, RieselSieve, LLR L181 Siegert, LLR L185 Hassler, NewPGen, LLR L191 Banka, NewPGen, LLR L192 Jaworski, LLR L193 Rosink, ProthSieve, RieselSieve, LLR L197 DaltonJ, ProthSieve, RieselSieve, LLR L201 Siemelink, LLR L251 Burt, NewPGen, Rieselprime, LLR L256 Underwood, Srsieve, NewPGen, 321search, LLR L257 Ritschel, Srsieve, Rieselprime, LLR L268 Metcalfe, Srsieve, Rieselprime, LLR L282 Curtis, Srsieve, Rieselprime, LLR L381 Mate, Siemelink, Rodenkirch, MultiSieve, LLR L384 Pinho, Srsieve, Rieselprime, LLR L426 Jaworski, Srsieve, Rieselprime, LLR L436 Andersen2, Gcwsieve, MultiSieve, PrimeGrid, LLR L447 Kohlman, Gcwsieve, MultiSieve, PrimeGrid, LLR L466 Zhou, NewPGen, LLR L503 Benson, Srsieve, LLR L521 Thompson1, Gcwsieve, MultiSieve, PrimeGrid, LLR L527 Tornberg, TwinGen, LLR L541 Barnes, Srsieve, CRUS, LLR L545 AndersonM, NewPGen, Rieselprime, LLR L587 Dettweiler, Srsieve, CRUS, LLR L591 Penne, Srsieve, CRUS, LLR L606 Bennett, Srsieve, NewPGen, PrimeGrid, 321search, LLR L613 Keogh, Srsieve, ProthSieve, RieselSieve, LLR L622 Cardall, Srsieve, ProthSieve, RieselSieve, LLR L671 Wong, Srsieve, PrimeGrid, LLR L689 Brown1, Srsieve, PrimeGrid, LLR L690 Cholt, Srsieve, PrimeGrid, LLR L753 Wolfram, Srsieve, PrimeGrid, LLR L760 Riesen, Srsieve, Rieselprime, LLR L764 Ewing, Srsieve, PrimeGrid, LLR L780 Brady, Srsieve, PrimeGrid, LLR L801 Gesker, Gcwsieve, MultiSieve, PrimeGrid, LLR L802 Zachariassen, Srsieve, NPLB, LLR L875 Hatland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L917 Bergman1, Gcwsieve, MultiSieve, PrimeGrid, LLR L923 Kaiser1, Klahn, NewPGen, PrimeGrid, TPS, SunGard, LLR L927 Brown1, TwinGen, PrimeGrid, LLR L983 Wu_T, LLR L1016 Hartel, Srsieve, PrimeGrid, LLR L1056 Schwieger, Srsieve, PrimeGrid, LLR L1115 Splain, PSieve, Srsieve, PrimeGrid, LLR L1125 Laluk, PSieve, Srsieve, PrimeGrid, LLR L1129 Slomma, PSieve, Srsieve, PrimeGrid, LLR L1130 Adolfsson, PSieve, Srsieve, PrimeGrid, LLR L1134 Ogawa, Srsieve, NewPGen, LLR L1141 Ogawa, NewPGen, LLR L1158 Vogel, PSieve, Srsieve, PrimeGrid, LLR L1160 Sunderland, PSieve, Srsieve, PrimeGrid, LLR L1188 Faith, PSieve, Srsieve, PrimeGrid, LLR L1199 DeRidder, PSieve, Srsieve, PrimeGrid, LLR L1201 Carpenter1, PSieve, Srsieve, PrimeGrid, LLR L1203 Mauno, PSieve, Srsieve, PrimeGrid, LLR L1204 Brown1, PSieve, Srsieve, PrimeGrid, LLR L1209 Wong, PSieve, Srsieve, PrimeGrid, LLR L1218 Winslow, PSieve, Srsieve, PrimeGrid, LLR L1223 Courty, PSieve, Srsieve, PrimeGrid, LLR L1230 Yooil1, PSieve, Srsieve, PrimeGrid, LLR L1300 Yama, PSieve, Srsieve, PrimeGrid, LLR L1301 Sorbera, Srsieve, CRUS, LLR L1349 Wallace, Srsieve, NewPGen, PrimeGrid, LLR L1353 Mumper, Srsieve, PrimeGrid, LLR L1355 Beck, PSieve, Srsieve, PrimeGrid, LLR L1356 Gockel, PSieve, Srsieve, PrimeGrid, LLR L1360 Tatterson, PSieve, Srsieve, PrimeGrid, LLR L1372 Glennie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L1387 Anonymous, PSieve, Srsieve, PrimeGrid, LLR L1403 Andrews1, PSieve, Srsieve, PrimeGrid, LLR L1412 Jones_M, PSieve, Srsieve, PrimeGrid, LLR L1422 Steichen, PSieve, Srsieve, PrimeGrid, LLR L1444 Davies, PSieve, Srsieve, PrimeGrid, LLR L1448 Hron, PSieve, Srsieve, PrimeGrid, LLR L1455 Heikkila, PSieve, Srsieve, PrimeGrid, LLR L1456 Webster, PSieve, Srsieve, PrimeGrid, LLR L1460 Salah, Srsieve, PrimeGrid, PrimeSierpinski, LLR L1471 Gunn, Srsieve, CRUS, LLR L1474 Brown6, PSieve, Srsieve, PrimeGrid, LLR L1480 Goudie, PSieve, Srsieve, PrimeGrid, LLR L1486 Dinkel, PSieve, Srsieve, PrimeGrid, LLR L1492 Eiterig, PSieve, Srsieve, PrimeGrid, LLR L1502 Champ, PSieve, Srsieve, PrimeGrid, LLR L1576 Craig, PSieve, Srsieve, PrimeGrid, LLR L1675 Schwieger, PSieve, Srsieve, PrimeGrid, LLR L1728 Gasewicz, PSieve, Srsieve, PrimeGrid, LLR L1741 Granowski, PSieve, Srsieve, PrimeGrid, LLR L1745 Cholt, PSieve, Srsieve, PrimeGrid, LLR L1754 Hubbard, PSieve, Srsieve, PrimeGrid, LLR L1774 Schoefer, PSieve, Srsieve, PrimeGrid, LLR L1780 Ming, PSieve, Srsieve, PrimeGrid, LLR L1792 Tang, PSieve, Srsieve, PrimeGrid, LLR L1803 Puppi, PSieve, Srsieve, PrimeGrid, LLR L1808 Reynolds1, PSieve, Srsieve, PrimeGrid, LLR L1817 Barnes, PSieve, Srsieve, NPLB, LLR L1823 Larsson, PSieve, Srsieve, PrimeGrid, LLR L1828 Benson, PSieve, Srsieve, Rieselprime, LLR L1847 Liu1, PSieve, Srsieve, PrimeGrid, LLR L1862 Curtis, PSieve, Srsieve, Rieselprime, LLR L1863 Wozny, PSieve, Srsieve, Rieselprime, LLR L1884 Jaworski, PSieve, Srsieve, Rieselprime, LLR L1885 Ostaszewski, PSieve, Srsieve, PrimeGrid, LLR L1921 Winslow, TwinGen, PrimeGrid, LLR L1932 Dragnev, PSieve, Srsieve, PrimeGrid, LLR L1935 Channing, PSieve, Srsieve, PrimeGrid, LLR L1949 Pritchard, Srsieve, PrimeGrid, RieselSieve, LLR L1957 Hemsley, PSieve, Srsieve, PrimeGrid, LLR L1959 Metcalfe, PSieve, Srsieve, Rieselprime, LLR L1979 Tibbott, PSieve, Srsieve, PrimeGrid, LLR L1990 Makowski, PSieve, Srsieve, PrimeGrid, LLR L2006 Rix, PSieve, Srsieve, PrimeGrid, LLR L2012 Pedersen_K, Srsieve, CRUS, OpenPFGW, LLR L2017 Hubbard, PSieve, Srsieve, NPLB, LLR L2030 Tonner, PSieve, Srsieve, PrimeGrid, LLR L2035 Greer, TwinGen, PrimeGrid, LLR L2042 Lachance, PSieve, Srsieve, PrimeGrid, LLR L2046 Melvold, Srsieve, PrimeGrid, LLR L2051 Reich, PSieve, Srsieve, PrimeGrid, LLR L2054 Kaiser1, Srsieve, CRUS, LLR L2055 Soule, PSieve, Srsieve, Rieselprime, LLR L2074 Minovic, PSieve, Srsieve, Rieselprime, LLR L2085 Dodson1, PSieve, Srsieve, PrimeGrid, LLR L2086 Sveen, PSieve, Srsieve, PrimeGrid, LLR L2103 Schmidt1, PSieve, Srsieve, PrimeGrid, LLR L2117 Karlsteen, PSieve, Srsieve, PrimeGrid, LLR L2121 VanRangelrooij, PSieve, Srsieve, PrimeGrid, LLR L2125 Greer, PSieve, Srsieve, PrimeGrid, LLR L2137 Hayashi1, PSieve, Srsieve, PrimeGrid, LLR L2142 Hajek, PSieve, Srsieve, PrimeGrid, LLR L2158 Krauss, PSieve, Srsieve, PrimeGrid, LLR L2163 VanRooijen1, PSieve, Srsieve, PrimeGrid, LLR L2233 Herder, Srsieve, PrimeGrid, LLR L2235 Mullage, PSieve, Srsieve, NPLB, LLR L2257 Dettweiler, PSieve, Srsieve, NPLB, LLR L2269 Schori, Srsieve, PrimeGrid, LLR L2321 Medcalf, PSieve, Srsieve, PrimeGrid, LLR L2322 Szafranski, PSieve, Srsieve, PrimeGrid, LLR L2337 Schmalen, PSieve, Srsieve, PrimeGrid, LLR L2338 Burt, PSieve, Srsieve, Rieselprime, LLR L2366 Satoh, PSieve, Srsieve, PrimeGrid, LLR L2371 Luszczek, Srsieve, PrimeGrid, LLR L2373 Tarasov1, Srsieve, PrimeGrid, LLR L2408 Reinman, Srsieve, PrimeGrid, LLR L2413 Blyth, PSieve, Srsieve, PrimeGrid, LLR L2425 DallOsto, LLR L2429 Bliedung, TwinGen, PrimeGrid, LLR L2432 Sutton1, PSieve, Srsieve, Rieselprime, LLR L2444 Batalov, PSieve, Srsieve, Rieselprime, LLR L2484 Ritschel, PSieve, Srsieve, Rieselprime, LLR L2487 Liao, PSieve, Srsieve, PrimeGrid, LLR L2507 Geis, PSieve, Srsieve, PrimeGrid, LLR L2517 McPherson, PSieve, Srsieve, PrimeGrid, LLR L2519 Schmidt2, PSieve, Srsieve, NPLB, LLR L2520 Mamanakis, PSieve, Srsieve, PrimeGrid, LLR L2526 Martinik, PSieve, Srsieve, PrimeGrid, LLR L2545 Nose, PSieve, Srsieve, PrimeGrid, LLR L2549 McKay, PSieve, Srsieve, PrimeGrid, LLR L2552 Foulher, PSieve, Srsieve, PrimeGrid, LLR L2561 Vinklat, PSieve, Srsieve, PrimeGrid, LLR L2562 Jones3, PSieve, Srsieve, PrimeGrid, LLR L2564 Bravin, PSieve, Srsieve, PrimeGrid, LLR L2583 Nakamura, PSieve, Srsieve, PrimeGrid, LLR L2602 Mueller4, PSieve, Srsieve, PrimeGrid, LLR L2603 Hoffman, PSieve, Srsieve, PrimeGrid, LLR L2606 Slakans, PSieve, Srsieve, PrimeGrid, LLR L2626 DeKlerk, PSieve, Srsieve, PrimeGrid, LLR L2627 Graham2, PSieve, Srsieve, PrimeGrid, LLR L2629 Becker2, PSieve, Srsieve, PrimeGrid, LLR L2659 Reber, PSieve, Srsieve, PrimeGrid, LLR L2664 Koluvere, PSieve, Srsieve, PrimeGrid, LLR L2675 Ling, PSieve, Srsieve, PrimeGrid, LLR L2676 Cox2, PSieve, Srsieve, PrimeGrid, LLR L2691 Pettersen, PSieve, Srsieve, PrimeGrid, LLR L2707 Out, PSieve, Srsieve, PrimeGrid, LLR L2714 Piotrowski, PSieve, Srsieve, PrimeGrid, LLR L2715 Donovan, PSieve, Srsieve, PrimeGrid, LLR L2719 Yost, PSieve, Srsieve, PrimeGrid, LLR L2742 Fluttert, PSieve, Srsieve, PrimeGrid, LLR L2777 Ritschel, Gcwsieve, TOPS, LLR L2785 Meili, PSieve, Srsieve, PrimeGrid, LLR L2805 Barr, PSieve, Srsieve, PrimeGrid, LLR L2823 Loureiro, PSieve, Srsieve, PrimeGrid, LLR L2826 Jeudy, PSieve, Srsieve, PrimeGrid, LLR L2840 Santana, PSieve, Srsieve, PrimeGrid, LLR L2842 English1, PSieve, Srsieve, PrimeGrid, LLR L2859 Keenan, PSieve, Srsieve, PrimeGrid, LLR L2873 Jurach, PSieve, Srsieve, PrimeGrid, LLR L2885 Busacker, PSieve, Srsieve, PrimeGrid, LLR L2891 Lacroix, PSieve, Srsieve, PrimeGrid, LLR L2914 Merrylees, PSieve, Srsieve, PrimeGrid, LLR L2959 Derrera, PSieve, Srsieve, PrimeGrid, LLR L2967 Ryjkov, PSieve, Srsieve, PrimeGrid, LLR L2973 Kurtovic, Srsieve, PrimeGrid, LLR L2975 Loureiro, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L2981 Yoshigoe, PSieve, Srsieve, PrimeGrid, LLR L2992 Boehm, PSieve, Srsieve, PrimeGrid, LLR L2997 Williams2, PSieve, Srsieve, PrimeGrid, LLR L3023 Winslow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3029 Walsh, PSieve, Srsieve, PrimeGrid, LLR L3033 Snow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3034 Wakolbinger, PSieve, Srsieve, PrimeGrid, LLR L3035 Scalise, PSieve, Srsieve, PrimeGrid, LLR L3037 Noltensmeier, PSieve, Srsieve, PrimeGrid, LLR L3048 Breslin, PSieve, Srsieve, PrimeGrid, LLR L3049 Tardy, PSieve, Srsieve, PrimeGrid, LLR L3054 Winslow, Srsieve, PrimeGrid, LLR L3091 Ridgway, PSieve, Srsieve, PrimeGrid, LLR L3101 Reichard, PSieve, Srsieve, PrimeGrid, LLR L3105 Eldredge, PSieve, Srsieve, PrimeGrid, LLR L3118 Yama, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3125 Rizman, PSieve, Srsieve, PrimeGrid, LLR L3141 Kus, PSieve, Srsieve, PrimeGrid, LLR L3154 Hentrich, PSieve, Srsieve, PrimeGrid, LLR L3168 Schwegler, PSieve, Srsieve, PrimeGrid, LLR L3171 Bergelt, PSieve, Srsieve, PrimeGrid, LLR L3173 Zhou2, PSieve, Srsieve, PrimeGrid, LLR L3174 Boniecki, PSieve, Srsieve, PrimeGrid, LLR L3179 Hamada, PSieve, Srsieve, PrimeGrid, LLR L3183 Haller, Srsieve, PrimeGrid, LLR L3184 Hayslette, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3200 Athanas, PSieve, Srsieve, PrimeGrid, LLR L3203 Scalise, TwinGen, PrimeGrid, LLR L3209 McArdle, GenefX64, AthGFNSieve, PrimeGrid, LLR L3222 Yamamoto, PSieve, Srsieve, PrimeGrid, LLR L3223 Yurgandzhiev, PSieve, Srsieve, PrimeGrid, LLR L3230 Kumagai, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3234 Parangalan, PSieve, Srsieve, PrimeGrid, LLR L3249 Lind, PSieve, Srsieve, PrimeGrid, LLR L3260 Stanko, PSieve, Srsieve, PrimeGrid, LLR L3261 Batalov, PSieve, Srsieve, PrimeGrid, LLR L3262 Molder, PSieve, Srsieve, PrimeGrid, LLR L3267 Cain, PSieve, Srsieve, PrimeGrid, LLR L3276 Jeka, PSieve, Srsieve, PrimeGrid, LLR L3278 Fischer1, PSieve, Srsieve, PrimeGrid, LLR L3290 Bednar1, PSieve, Srsieve, PrimeGrid, LLR L3294 Bartlett, PSieve, Srsieve, PrimeGrid, LLR L3313 Yost, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3323 Ritschel, NewPGen, TOPS, LLR L3325 Elvy, PSieve, Srsieve, PrimeGrid, LLR L3329 Tatearka, PSieve, Srsieve, PrimeGrid, LLR L3345 Domanov1, PSieve, Rieselprime, LLR L3354 Willig, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3372 Ryan, PSieve, Srsieve, PrimeGrid, LLR L3377 Ollivier, PSieve, Srsieve, PrimeGrid, LLR L3378 Glasgow, PSieve, Srsieve, PrimeGrid, LLR L3415 Johnston1, PSieve, Srsieve, PrimeGrid, LLR L3422 Micom, PSieve, Srsieve, PrimeGrid, LLR L3430 Durstewitz, PSieve, Srsieve, PrimeGrid, LLR L3431 Gahan, PSieve, Srsieve, PrimeGrid, LLR L3432 Batalov, Srsieve, LLR L3453 Benes, PSieve, Srsieve, PrimeGrid, LLR L3458 Jia, PSieve, Srsieve, PrimeGrid, LLR L3459 Boruvka, PSieve, Srsieve, PrimeGrid, LLR L3460 Ottusch, PSieve, Srsieve, PrimeGrid, LLR L3464 Ferrell, PSieve, Srsieve, PrimeGrid, LLR L3483 Farrow, PSieve, Srsieve, PrimeGrid, LLR L3487 Ziemann, PSieve, Srsieve, PrimeGrid, LLR L3494 Batalov, NewPGen, LLR L3502 Ristic, PSieve, Srsieve, PrimeGrid, LLR L3512 Tsuji, PSieve, Srsieve, PrimeGrid, LLR L3514 Bishop1, PSieve, Srsieve, PrimeGrid, OpenPFGW, LLR L3518 Papendick, PSieve, Srsieve, PrimeGrid, LLR L3519 Kurtovic, PSieve, Srsieve, Rieselprime, LLR L3523 Brown1, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3528 Batalov, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3532 Batalov, Gcwsieve, LLR L3538 Beard1, PSieve, Srsieve, PrimeGrid, LLR L3539 Jacobs, PSieve, Srsieve, PrimeGrid, LLR L3543 Yama, PrimeGrid, LLR L3545 Eskam1, PSieve, Srsieve, PrimeGrid, LLR L3547 Ready, Srsieve, PrimeGrid, LLR L3548 Ready, PSieve, Srsieve, PrimeGrid, LLR L3549 Hirai, Srsieve, PrimeGrid, LLR L3552 Benson2, Srsieve, PrimeGrid, LLR L3553 Cilliers, Srsieve, PrimeGrid, LLR L3555 Cervelle, PSieve, Srsieve, PrimeGrid, LLR L3562 Schouten, Srsieve, PrimeGrid, LLR L3564 Jaworski, Srsieve, CRUS, LLR L3566 Slakans, Srsieve, PrimeGrid, LLR L3567 Meili, Srsieve, PrimeGrid, LLR L3573 Batalov, TwinGen, PrimeGrid, LLR L3580 Nelson1, PSieve, Srsieve, PrimeGrid, LLR L3588 Matousek, PSieve, Srsieve, PrimeGrid, LLR L3593 Veit, PSieve, Srsieve, PrimeGrid, LLR L3601 Jablonski1, PSieve, Srsieve, PrimeGrid, LLR L3606 Sander, TwinGen, PrimeGrid, LLR L3610 Batalov, Srsieve, CRUS, LLR L3625 Haymoz, PSieve, Srsieve, PrimeGrid, LLR L3659 Volynsky, Srsieve, PrimeGrid, LLR L3662 Schawe, PSieve, Srsieve, PrimeGrid, LLR L3665 Kelava1, PSieve, Srsieve, Rieselprime, LLR L3668 Prokopchuk, PSieve, Srsieve, PrimeGrid, LLR L3686 Yost, Srsieve, PrimeGrid, LLR L3696 Linderson, PSieve, Srsieve, PrimeGrid, LLR L3700 Kim4, PSieve, Srsieve, PrimeGrid, LLR L3719 Skinner, PSieve, Srsieve, PrimeGrid, LLR L3720 Ohno, Srsieve, PrimeGrid, LLR L3728 Rietveld, PSieve, Srsieve, PrimeGrid, LLR L3735 Kurtovic, Srsieve, LLR L3743 Parker1, PSieve, Srsieve, PrimeGrid, LLR L3744 Green1, PSieve, Srsieve, PrimeGrid, LLR L3749 Meador, Srsieve, PrimeGrid, LLR L3760 Okazaki, PSieve, Srsieve, PrimeGrid, LLR L3763 Martin4, PSieve, Srsieve, PrimeGrid, LLR L3764 Diepeveen, PSieve, Srsieve, Rieselprime, LLR L3770 Tang, Srsieve, PrimeGrid, LLR L3772 Ottusch, Srsieve, PrimeGrid, LLR L3784 Cavnaugh, PSieve, Srsieve, PrimeGrid, LLR L3785 Reichel, PSieve, Srsieve, PrimeGrid, LLR L3787 Palumbo, PSieve, Srsieve, PrimeGrid, LLR L3789 Toda, Srsieve, PrimeGrid, LLR L3797 Schmidt3, PSieve, Srsieve, PrimeGrid, LLR L3802 Aggarwal, Srsieve, LLR L3803 Bredl, PSieve, Srsieve, PrimeGrid, LLR L3810 Radle, PSieve, Srsieve, PrimeGrid, LLR L3813 Chambers2, PSieve, Srsieve, PrimeGrid, LLR L3824 Mazzucato, PSieve, Srsieve, PrimeGrid, LLR L3829 Abrahmi, TwinGen, PrimeGrid, LLR L3838 Boyden, PSieve, Srsieve, PrimeGrid, LLR L3839 Batalov, EMsieve, LLR L3843 Whiteley, PSieve, Srsieve, PrimeGrid, LLR L3849 Smith10, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3855 Lunner, PSieve, Srsieve, PrimeGrid, LLR L3859 Clifton, PSieve, Srsieve, PrimeGrid, LLR L3860 Cimrman, PSieve, Srsieve, PrimeGrid, LLR L3861 Roemer, PSieve, Srsieve, PrimeGrid, LLR L3862 Gudenschwager, PSieve, Srsieve, PrimeGrid, LLR L3863 WaldenForrest, PSieve, Srsieve, PrimeGrid, LLR L3864 Piantoni, PSieve, Srsieve, PrimeGrid, LLR L3865 Silva, PSieve, Srsieve, PrimeGrid, LLR L3867 Traebert, PSieve, Srsieve, PrimeGrid, LLR L3869 Cholt, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3876 Apreutesei, PSieve, Srsieve, PrimeGrid, LLR L3877 Jarne, PSieve, Srsieve, PrimeGrid, LLR L3887 Byerly, PSieve, Rieselprime, LLR L3890 Beeson, PSieve, Srsieve, PrimeGrid, LLR L3895 Englehard, PSieve, Srsieve, PrimeGrid, LLR L3898 Christy, PSieve, Srsieve, PrimeGrid, LLR L3903 Miao, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3904 Darimont, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3909 Taylor2, PSieve, Srsieve, PrimeGrid, LLR L3910 Bischof, PSieve, Srsieve, PrimeGrid, LLR L3914 Matsuda, PSieve, Srsieve, PrimeGrid, LLR L3917 Rodenkirch, PSieve, Srsieve, LLR L3919 Pickering, PSieve, Srsieve, PrimeGrid, LLR L3924 Kim5, PSieve, Srsieve, PrimeGrid, LLR L3925 Okazaki, Srsieve, PrimeGrid, LLR L3933 Batalov, PSieve, Srsieve, CRUS, Rieselprime, LLR L3941 Lee8, PSieve, Srsieve, PrimeGrid, LLR L3961 Darimont, Srsieve, PrimeGrid, LLR L3964 Iakovlev, Srsieve, PrimeGrid, LLR L3975 Hou, PSieve, Srsieve, PrimeGrid, LLR L3993 Gushchak, Srsieve, PrimeGrid, LLR L3994 Domanov1, PSieve, Srsieve, NPLB, LLR L3995 Unbekannt, PSieve, Srsieve, PrimeGrid, LLR L3998 Rossman, PSieve, Srsieve, PrimeGrid, LLR L4001 Willig, Srsieve, CRUS, LLR L4016 Bedenbaugh, PSieve, Srsieve, PrimeGrid, LLR L4021 Busse, PSieve, Srsieve, PrimeGrid, LLR L4026 Batalov, Cyclo, EMsieve, PIES, LLR L4031 Darney, PSieve, Srsieve, PrimeGrid, LLR L4034 Vanc, Srsieve, PrimeGrid, LLR L4036 Domanov1, PSieve, Srsieve, CRUS, LLR L4040 Oddone, PSieve, Srsieve, PrimeGrid, LLR L4043 Niedbala, PSieve, Srsieve, PrimeGrid, LLR L4045 Chew, PSieve, Srsieve, PrimeGrid, LLR L4061 Lee, PSieve, Srsieve, PrimeGrid, LLR L4064 Davies, Srsieve, CRUS, LLR L4082 Zimmerman, PSieve, Srsieve, PrimeGrid, LLR L4083 Charrondiere, PSieve, Srsieve, PrimeGrid, LLR L4087 Kecic, PSieve, Srsieve, PrimeGrid, LLR L4088 Graeber, PSieve, Srsieve, PrimeGrid, LLR L4099 Nietering, PSieve, Srsieve, PrimeGrid, LLR L4103 Klopffleisch, Srsieve, PrimeGrid, LLR L4106 Ga, PSieve, Srsieve, PrimeGrid, LLR L4108 Yoshioka, PSieve, Srsieve, PrimeGrid, LLR L4109 Palmer1, PSieve, Srsieve, PrimeGrid, LLR L4111 Leps1, PSieve, Srsieve, PrimeGrid, LLR L4113 Batalov, PSieve, Srsieve, LLR L4114 Bubloski, PSieve, Srsieve, PrimeGrid, LLR L4118 Slegel, PSieve, Srsieve, PrimeGrid, LLR L4119 Nelson3, PSieve, Srsieve, PrimeGrid, LLR L4123 Bush, PSieve, Srsieve, PrimeGrid, LLR L4133 Ito, PSieve, Srsieve, PrimeGrid, LLR L4139 Hawker, Srsieve, CRUS, LLR L4142 Batalov, CycloSv, EMsieve, PIES, LLR L4146 Schmidt1, Srsieve, PrimeGrid, LLR L4147 Mohacsy, PSieve, Srsieve, PrimeGrid, LLR L4148 Glatte, PSieve, Srsieve, PrimeGrid, LLR L4155 Jones4, PSieve, Srsieve, PrimeGrid, LLR L4159 Schulz5, Srsieve, PrimeGrid, LLR L4166 Kwok, PSieve, LLR L4185 Hoefliger, PSieve, Srsieve, PrimeGrid, LLR L4187 Schmidt2, Srsieve, CRUS, LLR L4189 Lawrence, Powell, Srsieve, CRUS, LLR L4190 Fnasek, PSieve, Srsieve, PrimeGrid, LLR L4191 Mahan, PSieve, Srsieve, PrimeGrid, LLR L4197 Kumagai1, Srsieve, PrimeGrid, LLR L4198 Rawles, PSieve, Srsieve, PrimeGrid, LLR L4200 Harste, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4201 Brown1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4203 Azarenko, PSieve, Srsieve, PrimeGrid, LLR L4204 Winslow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4205 Bischof, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4207 Jaamann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4208 Farrow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4210 Cholt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4226 Heath, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4231 Schneider1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4245 Greer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4249 Larsson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4250 Vogt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4252 Nietering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4256 Gniesmer, PSieve, Srsieve, PrimeGrid, LLR L4262 Hutchins, PSieve, Srsieve, PrimeGrid, LLR L4267 Batalov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4269 Romanov, PSieve, Srsieve, PrimeGrid, LLR L4273 Rangelrooij, Srsieve, CRUS, LLR L4274 AhlforsDahl, Srsieve, PrimeGrid, LLR L4276 Borbely, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4283 Crawford1, PSieve, Srsieve, PrimeGrid, LLR L4285 Bravin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4286 Zimmerman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4287 Suzuki1, PSieve, Srsieve, PrimeGrid, LLR L4289 Ito2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4293 Trunov, PSieve, Srsieve, PrimeGrid, LLR L4294 Kurtovic, Srsieve, CRUS, Prime95, LLR L4295 Splain, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4303 Thorson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4307 Keller1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4308 Matillek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4309 Kecic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4314 DeThomas, PSieve, Srsieve, PrimeGrid, LLR L4316 Nilsson1, PSieve, Srsieve, PrimeGrid, LLR L4323 Seisums, PSieve, Srsieve, PrimeGrid, LLR L4326 Steel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4329 Okon, Srsieve, LLR L4334 Miller5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4340 Becker4, Srsieve, PrimeGrid, LLR L4341 Goetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4342 Kaiser1, PolySieve, NewPGen, LLR L4343 Norton, PSieve, Srsieve, PrimeGrid, LLR L4347 Schaeffer, PSieve, Srsieve, PrimeGrid, LLR L4348 Burridge, Srsieve, PrimeGrid, LLR L4352 Fahlenkamp1, PSieve, Srsieve, PrimeGrid, LLR L4358 Tesarz, PSieve, Srsieve, PrimeGrid, LLR L4359 Andou, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4362 Mochizuki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4364 Steinbach, PSieve, Srsieve, PrimeGrid, LLR L4371 Schmidt2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4380 Rix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4387 Davies, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4388 Mena, PSieve, Srsieve, PrimeGrid, LLR L4393 Veit1, Srsieve, CRUS, LLR L4395 Nilsson1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4398 Greer, Srsieve, PrimeGrid, LLR L4404 Stepnicka, PSieve, Srsieve, PrimeGrid, LLR L4405 Eckhard, Srsieve, LLR L4406 Mathers, PSieve, Srsieve, PrimeGrid, LLR L4408 Fricke, PSieve, Srsieve, PrimeGrid, LLR L4410 Andresson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4412 Simpson3, PSieve, Srsieve, PrimeGrid, LLR L4414 Falk, PSieve, Srsieve, PrimeGrid, LLR L4417 Rasp, PSieve, Srsieve, PrimeGrid, LLR L4424 Miyauchi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4425 Weber1, PSieve, Srsieve, PrimeGrid, LLR L4429 Lacroix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4435 Larsson, Srsieve, PrimeGrid, LLR L4441 Miyauchi, PSieve, Srsieve, PrimeGrid, LLR L4444 Terber, Srsieve, CRUS, LLR L4445 Leudesdorff, PSieve, Srsieve, PrimeGrid, LLR L4454 Clark5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4456 Chambers2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4457 Geiger, PSieve, Srsieve, PrimeGrid, LLR L4459 Biscop, PSieve, Srsieve, PrimeGrid, LLR L4466 Falk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4472 Harvanek, Gcwsieve, MultiSieve, PrimeGrid, LLR L4476 Shane, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4477 Tennant, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4482 Mena, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4488 Vrontakis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4489 Szreter, PSieve, Srsieve, PrimeGrid, LLR L4490 Mazumdar, PSieve, Srsieve, PrimeGrid, LLR L4499 Ohsugi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4501 Eskam1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4504 Sesok, NewPGen, LLR L4505 Lind, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4506 Propper, Batalov, CycloSv, EMsieve, PIES, Prime95, LLR L4510 Ming, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4511 Donovan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4518 Primecrunch.com, Hedges, Srsieve, LLR L4521 Curtis, Srsieve, CRUS, LLR L4522 Lorsung, PSieve, Srsieve, PrimeGrid, LLR L4523 Mull, PSieve, Srsieve, PrimeGrid, LLR L4525 Kong1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4526 Schoefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4527 Fruzynski, PSieve, Srsieve, PrimeGrid, LLR L4530 Reynolds1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4531 Butez, PSieve, Srsieve, PrimeGrid, LLR L4537 Mayer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4544 Krauss, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4547 Nair, TwinGen, NewPGen, LLR L4548 Sydekum, Srsieve, CRUS, Prime95, LLR L4549 Schick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4550 Terry, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4552 Koski, PSieve, Srsieve, PrimeGrid, LLR L4559 Okazaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4561 Propper, Batalov, CycloSv, Cyclo, EMsieve, PIES, LLR L4562 Donovan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4564 DeThomas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4568 Vrontakis, PSieve, Srsieve, PrimeGrid, LLR L4582 Kinney, PSieve, Srsieve, PrimeGrid, LLR L4583 Rohmann, PSieve, Srsieve, PrimeGrid, LLR L4584 Goforth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4585 Schawe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4591 Schwieger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4593 Mangio, PSieve, Srsieve, PrimeGrid, LLR L4595 Mangio, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4598 Connaughty, PSieve, Srsieve, PrimeGrid, LLR L4600 Simbarsky, PSieve, Srsieve, PrimeGrid, LLR L4609 Elgetz, PSieve, Srsieve, PrimeGrid, LLR L4620 Kinney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4622 Jurach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4623 Dugger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4626 Iltus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4645 McKibbon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4649 Humphries, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4654 Voskoboynikov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4656 Beck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4658 Maguin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4659 AverayJones, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4660 Snow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4664 Toledo, PSieve, Srsieve, PrimeGrid, LLR L4665 Szeluga, Kupidura, Banka, LLR L4666 Slade, PSieve, Srsieve, PrimeGrid, LLR L4667 Morelli, LLR L4668 Okazaki, Gcwsieve, MultiSieve, PrimeGrid, LLR L4669 Schwegler, Srsieve, PrimeGrid, LLR L4670 Drumm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4672 Slade, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4673 Okhrimouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4675 Lind, Srsieve, PrimeGrid, LLR L4676 Maloney, Srsieve, PrimeGrid, PrimeSierpinski, LLR L4677 Provencher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4683 Bird2, Srsieve, CRUS, LLR L4684 Sveen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4685 Masser, Srsieve, CRUS, LLR L4687 Campbell1, PSieve, Srsieve, PrimeGrid, LLR L4689 Gordon2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4690 Brandt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4691 Fruzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4692 Hajek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4694 Schapendonk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4695 Goudie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4696 Plottel, PSieve, Srsieve, PrimeGrid, LLR L4697 Sellsted, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4699 Parsonnet, PSieve, Srsieve, PrimeGrid, LLR L4700 Liu4, Srsieve, CRUS, LLR L4701 Kalus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4702 Charette, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4703 Pacini, PSieve, Srsieve, PrimeGrid, LLR L4704 Kurtovic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4706 Kraemer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4710 Wiedemann, PSieve, Srsieve, PrimeGrid, LLR L4711 Closs, PSieve, Srsieve, PrimeGrid, LLR L4712 Gravemeyer, PSieve, Srsieve, PrimeGrid, LLR L4713 Post, PSieve, Srsieve, PrimeGrid, LLR L4715 Skinner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4717 Wypych, PSieve, Srsieve, PrimeGrid, LLR L4718 Brown1, Gcwsieve, MultiSieve, PrimeGrid, LLR L4720 Gahan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4723 Lexut, PSieve, Srsieve, PrimeGrid, LLR L4724 Thonon, PSieve, Srsieve, PrimeGrid, LLR L4726 Miller7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4729 Wimmer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4730 Bowe, PSieve, Srsieve, PrimeGrid, LLR L4732 Miller7, PSieve, Srsieve, PrimeGrid, LLR L4737 Reinhardt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4738 Gelhar, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4740 Silva1, PSieve, Srsieve, PrimeGrid, LLR L4741 Wong, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4742 Schlereth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4743 Plsak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4745 Cavnaugh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4746 Brech, PSieve, Srsieve, PrimeGrid, LLR L4747 Brech, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4752 Harvey2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4753 Riemann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4754 Calvin, PSieve, Srsieve, PrimeGrid, LLR L4755 Glatte, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4757 Johnson9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4758 Walling, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4760 Sipes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4761 Romaidis, PSieve, Srsieve, PrimeGrid, LLR L4763 Guilleminot, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4764 McLean2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4765 Kumsta, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4773 Tohmola, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4774 Boehm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4775 Steinbach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4776 Lee7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4783 Marini, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4784 Bertolotti, Gcwsieve, MultiSieve, PrimeGrid, LLR L4786 Sydekum, Srsieve, CRUS, LLR L4787 Sunderland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4789 Kurtovic, Srsieve, Prime95, LLR L4791 Vaisanen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4793 Koski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4795 Lawson2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4796 White2, PSieve, Srsieve, PrimeGrid, LLR L4799 Vanderveen1, LLR L4800 Doenges, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4802 Jones5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4806 Rajala, Srsieve, CRUS, LLR L4807 Tsuji, Srsieve, PrimeGrid, LLR L4808 Kaiser1, PolySieve, LLR L4809 Bocan, Srsieve, PrimeGrid, LLR L4810 Dhuyvetters, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4812 Nezumi, LLR L4814 Telesz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4815 Kozisek, PSieve, Srsieve, PrimeGrid, LLR L4816 Doenges, PSieve, Srsieve, PrimeGrid, LLR L4819 Inci, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4821 Svantner, PSieve, Srsieve, PrimeGrid, LLR L4822 Magklaras, PSieve, Srsieve, PrimeGrid, LLR L4823 Helm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4824 Allivato, PSieve, Srsieve, PrimeGrid, LLR L4826 Soraku, PSieve, Srsieve, PrimeGrid, LLR L4830 Eisler1, PSieve, Srsieve, PrimeGrid, LLR L4832 Meekins, Srsieve, CRUS, LLR L4834 Helm, PSieve, Srsieve, PrimeGrid, LLR L4835 Katzur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4837 Hines, Srsieve, CRUS, LLR L4840 Ylijoki, PSieve, Srsieve, PrimeGrid, LLR L4841 Baur, PSieve, Srsieve, PrimeGrid, LLR L4842 Smith11, PSieve, Srsieve, PrimeGrid, LLR L4843 Hutchins, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4844 Valentino, PSieve, Srsieve, PrimeGrid, LLR L4848 Adamec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4849 Burt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4850 Jones5, PSieve, Srsieve, PrimeGrid, LLR L4851 Schioler, PSieve, Srsieve, PrimeGrid, LLR L4854 Gory, PSieve, Srsieve, PrimeGrid, LLR L4858 Koriabine, PSieve, Srsieve, PrimeGrid, LLR L4859 Wang4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4861 Thonon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4864 Freihube, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4868 Bergmann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4869 Ogata, PSieve, Srsieve, PrimeGrid, LLR L4870 Wharton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4871 Gory, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4875 Parsonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4876 Tennant, Srsieve, CRUS, LLR L4877 Cherenkov, Srsieve, CRUS, LLR L4879 Propper, Batalov, Srsieve, LLR L4880 Goossens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4884 Somer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4889 Hundhausen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4892 Hewitt1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4893 Little, PSieve, Srsieve, PrimeGrid, LLR L4898 Kozisek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4903 Laurent1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4904 Dunchouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4905 Niegocki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4907 Reinhardt, PSieve, Srsieve, PrimeGrid, LLR L4909 Hall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4911 Calveley, Srsieve, CRUS, LLR L4914 Bishop_D, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4917 Corlatti, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4918 Weiss1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4920 Walsh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4922 Bulba, Sesok, LLR L4923 Koriabine, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4925 Korolev, Srsieve, CRUS, LLR L4926 Shenton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4927 Smith12, Srsieve, SRBase, CRUS, LLR L4928 Doornink, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4929 Givoni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4930 Shintani, PSieve, Srsieve, PrimeGrid, LLR L4932 Schroeder2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4933 Jacques, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4935 Simard, PSieve, Srsieve, PrimeGrid, LLR L4937 Ito2, Srsieve, PrimeGrid, LLR L4939 Coscia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4942 Matheis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4944 Schori, LLR2, PSieve, Srsieve, PrimeGrid, LLR L4945 Meili, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4948 SchwartzLowe, PSieve, Srsieve, PrimeGrid, LLR L4951 Niegocki, PSieve, Srsieve, PrimeGrid, LLR L4954 Romaidis, Srsieve, PrimeGrid, LLR L4955 Grosvenor, Srsieve, CRUS, LLR L4956 Merrylees, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4958 Shenton, PSieve, Srsieve, PrimeGrid, LLR L4959 Deakin, PSieve, Srsieve, PrimeGrid, LLR L4960 Kaiser1, NewPGen, TPS, LLR L4962 Baur, Srsieve, NewPGen, LLR L4963 Mortimore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4964 Doescher, GFNSvCUDA, GeneFer, LLR L4965 Propper, LLR L4970 Michael, PSieve, Srsieve, PrimeGrid, LLR L4972 Greer, Gcwsieve, MultiSieve, PrimeGrid, LLR L4973 Landrum, PSieve, Srsieve, PrimeGrid, LLR L4974 Monroe, PSieve, Srsieve, PrimeGrid, LLR L4975 Thompson5, Srsieve, CRUS, LLR L4976 Propper, Batalov, Gcwsieve, LLR L4977 Miller8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4979 Matheis, PSieve, Srsieve, PrimeGrid, LLR L4980 Poon1, PSieve, Srsieve, PrimeGrid, LLR L4981 MartinezCucalon, PSieve, Srsieve, PrimeGrid, LLR L4984 Hemsley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4985 Veit, Srsieve, CRUS, LLR L4987 Canossi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4988 Harris3, PSieve, Srsieve, PrimeGrid, LLR L4990 Heindl, PSieve, Srsieve, PrimeGrid, LLR L4997 Gardner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4999 Andrews1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5000 Wimmer2, Srsieve, CRUS, LLR L5001 Mamonov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5002 Kato, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5005 Hass, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5007 Faith, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5008 Niegocki, Srsieve, PrimeGrid, LLR L5009 Jungmann, Srsieve, LLR L5011 Strajt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5013 Wypych, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5014 Strokov, PSieve, Srsieve, PrimeGrid, LLR L5016 NebredaJunghans, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5018 Nielsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5019 Ayiomamitis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5020 Eikelenboom, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5021 Svantner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5022 Manz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5023 Schulz6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5024 Schumacher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5025 Lexut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5027 Moudy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5029 Krompolc, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5030 Calvin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5031 Schumacher, PSieve, Srsieve, PrimeGrid, LLR L5033 Ni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5036 Jung2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5037 Diepeveen, Underwood, PSieve, Srsieve, Rieselprime, LLR L5039 Gilliland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5041 Wallbaum, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5043 Vanderveen1, Propper, LLR L5044 Bergelt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5047 Little, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5051 Veit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5053 Yoshigoe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5056 Chu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5057 Hauhia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5061 Cooper5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5063 Wendelboe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5067 Tirkkonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5068 Silva1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5069 Friedrichsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5070 Millerick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5071 McLean2, Srsieve, CRUS, LLR L5072 Romaidis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5076 Atnashev, Srsieve, PrimeGrid, LLR L5077 Martinelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5078 McDonald4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5079 Meditz, PSieve, Srsieve, PrimeGrid, LLR L5080 Gahan, GFNSvCUDA, PrivGfnServer, LLR L5081 Howell, Srsieve, PrimeGrid, LLR L5083 Pickering, Srsieve, PrimeGrid, LLR L5084 Yagi, PSieve, Srsieve, PrimeGrid, LLR L5085 Strajt, PSieve, Srsieve, PrimeGrid, LLR L5087 Coscia, PSieve, Srsieve, PrimeGrid, LLR L5088 Hall1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5089 MARSIN, Srsieve, CRUS, LLR L5090 Jourdan, PSieve, Srsieve, PrimeGrid, LLR L5094 Th�mmler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5099 Lobring, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5100 Stephens, PSieve, Srsieve, PrimeGrid, LLR L5101 Candido, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5102 Liu6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5104 Gahan, LLR2, NewPGen, LLR L5105 Helm, LLR2, Srsieve, PrivGfnServer, LLR L5106 Glennie, PSieve, Srsieve, PrimeGrid, LLR L5110 Provencher, PSieve, Srsieve, PrimeGrid, LLR L5112 Vanderveen1, Srsieve, CRUS, LLR L5115 Doescher, LLR L5117 Trunov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5120 Greer, LLR2, PrivGfnServer, LLR L5122 Tennant, LLR2, PrivGfnServer, LLR L5123 Propper, Batalov, EMsieve, LLR L5125 Tirkkonen, PSieve, Srsieve, PrimeGrid, LLR L5126 Warach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5127 Kemenes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5129 Veit, Srsieve, PrimeGrid, LLR L5130 Jourdan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5134 Cooper5, PSieve, Srsieve, PrimeGrid, LLR L5139 Belozersky, PSieve, Srsieve, PrimeGrid, LLR L5143 Dickinson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5144 McNary, PSieve, Srsieve, PrimeGrid, LLR L5155 Harju, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5156 Dinkel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5157 Asano, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5158 Zuschlag, PSieve, Srsieve, PrimeGrid, LLR L5159 Huetter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5161 Greer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5162 Th�mmler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5166 Jaros1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5167 Gelhar, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5168 Hawkinson, PSieve, Srsieve, PrimeGrid, LLR L5169 Atnashev, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5171 Brown1, LLR2, Srsieve, PrimeGrid, LLR L5172 McNary, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5173 Bishop_D, PSieve, Srsieve, PrimeGrid, LLR L5174 Scalise, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5175 Liiv, PSieve, Srsieve, Rieselprime, LLR L5176 Early, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5177 Tapper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5178 Larsson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5179 Okazaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5180 Laluk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5181 Atnashev, LLR2, Srsieve, PrimeGrid, LLR L5183 Winskill1, PSieve, Srsieve, PrimeGrid, 12121search, LLR L5184 Byerly, PSieve, Srsieve, NPLB, LLR L5185 Elgetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5186 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, United, PrimeGrid, LLR L5188 Wong, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5189 Jackson1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5191 Kaiser1, NewPGen, LLR L5192 Anonymous, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5194 Jonas, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5195 Ridgway, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5196 Sielemann, Srsieve, CRUS, LLR L5197 Propper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5198 Elgetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5199 Romaidis, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5200 Terry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5201 Ford, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5202 Molne, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5203 Topham, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5205 Zuschlag, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5206 Wiseler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5207 Atnashev, LLR2, PrivGfnServer, LLR L5208 Schnur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5209 Hansen1, Srsieve, CRUS, LLR L5210 Brech, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5211 Orpen1, Srsieve, CRUS, LLR L5214 Dinkel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5215 Hawkinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5216 Brazier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5217 Wiseler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5218 Atnashev, LLR2, LLR L5220 Jones4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5223 Vera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5226 Brown1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5227 Nagayama, Srsieve, CRUS, LLR L5228 Jacques, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5229 Karpenko, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5230 Tapper, LLR2, Srsieve, PrimeGrid, LLR L5231 Veit, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5232 Bliedung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5233 Sipes, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5234 Greeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5235 Karpinski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5236 Shenton, LLR2, PSieve, Srsieve, PrivGfnServer, PrimeGrid, LLR L5237 Schwieger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5238 Jourdan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5239 Strajt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5242 Krompolc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5246 Vaisanen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5248 Delgado, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5249 Racanelli, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5250 Nakamura, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5253 Burt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5254 Gerstenberger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5256 Snow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5260 Ostaszewski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5261 Kim5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5262 Clark5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5263 Ito2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5264 Cholt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5265 Fleischman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5266 Sheridan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5267 Schnur, LLR2, Srsieve, PrimeGrid, LLR L5269 Clemence, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5270 Hennebert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5272 Conner, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5273 McGonegal, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5275 Templin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5276 Schawe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5277 McDevitt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5278 Nose, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5279 Schick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5282 Somer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5283 Hua, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5284 Fischer1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5285 Merrylees, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5286 Reynolds1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5287 Thonon, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5288 Heindl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5290 Cooper5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5294 Hewitt1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5295 Gilliland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5296 Piaive, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5297 Nakamura, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5298 Kaczmarek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5299 Corlatti, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5300 Hajek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5301 Harju, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5302 Davies, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5305 Thanry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5307 Bauer2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5308 Krauss, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5309 Bishop_D, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5310 Hubbard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5311 Reich, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5312 Tyndall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5313 Barnes, PSieve, Srsieve, Rieselprime, LLR L5314 Satoh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5315 Dec, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5316 Walsh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5317 Freeze, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5318 Ruber, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5319 Abbey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5320 Niegocki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5321 Dark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5323 Chan1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5324 Boehm, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5325 Drager, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5326 Deakin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5327 Shenton, LLR2, Srsieve, LLR L5332 Mizusawa, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5334 Jones6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5335 Harvey1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5336 Leblanc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5337 Kawamura1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5338 Deakin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5342 Rodenkirch, Srsieve, CRUS, LLR L5343 Tajika, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5344 Lowe1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5345 Johnson8, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5346 Polansky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5348 Adam, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5350 McDevitt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5352 Eklof, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5353 Belolipetskiy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5354 Doornink, NewPGen, OpenPFGW, LLR L5355 Henriksson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5356 Hsu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5358 Gmirkin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5359 Ridgway, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5360 Leitch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5361 Schneider6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5362 Domanov1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5364 Blyth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5366 Michael, Srsieve, CRUS, LLR L5367 Hsu2, Srsieve, CRUS, LLR L5368 Valentino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5369 Schnur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5370 Piotrowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5372 Vitiello, Srsieve, CRUS, LLR L5373 Baranchikov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5375 Blanchard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5376 Ranch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5377 Yasuhisa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5378 Seeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5379 Smith4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5380 Campulka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5381 Meppiel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5382 Bulanov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5384 Riemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5387 Johns, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5388 Dewar, Srsieve, CRUS, LLR L5390 Lemkau, Srsieve, CRUS, LLR L5392 McDonald4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5393 Lu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5395 Early, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5399 Kolesov, LLR L5400 Hefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5401 Champ, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5402 Greer, LLR2, Gcwsieve, MultiSieve, PrimeGrid, LLR L5403 Slade1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5404 Wiseler, LLR2, Srsieve, PrimeGrid, LLR L5405 Gerstenberger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5406 Jaros, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5407 Mahnken, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5408 Kreth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5409 Lu, Srsieve, CRUS, LLR L5410 Anonymous, Srsieve, CRUS, LLR L5412 Poon1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5413 David1, Srsieve, CRUS, LLR L5414 Mollerus, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5416 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5418 Pollak, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5421 Iwasaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5425 Lichtenwimmer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5426 Gilliland, Srsieve, CRUS, LLR L5427 Hewitt1, LLR2, Srsieve, PrimeGrid, LLR L5429 Meditz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5432 Tatsianenka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5433 Hatanaka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5434 Parsonnet, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5435 Murphy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5437 Rijfers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5438 Tang, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5439 Batalov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5440 McGonegal, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5441 Cherenkov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5442 Moreira, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5443 Venjakob, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5444 Platz, LLR2, Srsieve, PrimeGrid, LLR L5448 Rubin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5449 Reinhardt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5450 Mizusawa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5451 Wilkins, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5452 Morera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5453 Slaets, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5456 Gundermann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5459 Sekanina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5460 Headrick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5461 Anonymous, LLR2, Srsieve, PrimeGrid, LLR L5462 Raimist, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5463 Goforth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5464 Pickering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5465 Hubbard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5466 Furushima, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5467 Tamai1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5469 Bishopp, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5470 Latge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5471 Dunchouk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5472 Ready, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5476 Steinbach, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5477 Meador, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5480 Boddener, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5482 Raimist, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5485 Mahnken, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5488 Kecic, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5492 Slaets, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5493 Liu6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5497 Goetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5499 Osada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5500 Racanelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5501 Seeley, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5502 Floyd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5503 Soule, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5504 Cerny, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5505 Chovanec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5507 Brandt2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5508 Gauch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5509 Nietering, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5512 Akesson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5514 Cavnaugh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5516 Piesker, PSieve, Srsieve, NPLB, LLR L5517 Cavecchia, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5518 Eisler1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5519 Atnashev, LLR2, PSieve, Srsieve, PrivGfnServer, PrimeGrid, LLR L5523 Sekanina, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5524 Matillek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5526 Kickler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5527 Doornink, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5529 Baur1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5530 Matillek, LLR2, Srsieve, PrimeGrid, LLR L5531 Koci, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5532 Morera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5534 Cervelle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5535 Skahill, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5536 Bennett1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5537 Schafer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5540 Brown6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5541 Parker, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5543 Lucendo, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5544 Byerly, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5545 Kruse, PSieve, Srsieve, NPLB, LLR L5546 Steinwedel, PSieve, Srsieve, NPLB, LLR L5547 Hoonoki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5548 Steinberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5549 Zhang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5550 Provencher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5551 Marler, PSieve, Srsieve, NPLB, LLR L5553 DAmico, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5554 Lucendo, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5555 Parangalan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5556 Javens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5557 Drake, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5558 Lee7, LLR2, Srsieve, PrimeGrid, LLR L5559 Roberts, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5560 Amberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5562 Cheung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5563 Akesson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5564 Lee7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5565 Bailey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5566 Latge, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5567 Marshall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5568 Schioler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5569 Michael, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5570 Arnold, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5571 Williams7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5572 Sveen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5573 Friedrichsen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5574 Laboisne, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5575 Blanchard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5576 Amorim, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5578 Jablonski1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5579 Cox2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5581 Pickles, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5582 Einvik, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5583 Tanaka3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5584 Barr, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5585 Faith, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5586 Vultur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5587 AverayJones, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5588 Shi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5589 Kupka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5590 Schumacher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5592 Shintani, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5594 Brown7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5595 Hyvonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5596 Kozisek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5598 Rodermond, PSieve, Srsieve, NPLB, LLR L5600 Steinberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5601 Sato1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5604 Takahashi2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5606 Clark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5607 Rodermond, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5608 Pieritz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5609 Sielemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5610 Katzur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5611 Smith13, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5612 Lugowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5613 Delisle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5614 Becker2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5615 Dodd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5616 Miller7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5618 Wilson4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5619 Piotrowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5621 Millerick, LLR2, Srsieve, PrimeGrid, LLR L5624 Farrow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5625 Sellsted, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5626 Clark, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5627 Bulanov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5629 Dickinson, Srsieve, CRUS, LLR L5630 Orpen1, LLR L5631 Mittelstadt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5632 Marler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5634 Gao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5636 Santosa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5637 Bestor, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5638 Piskun, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5639 Cavecchia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5640 Xu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5641 Kwok, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5645 Orpen1, SRBase, LLR L5646 Dickey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5647 Soraku, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5648 York, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5649 Dietsch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5650 Ketamino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5651 Lexut, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5652 Wilson5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5653 Beck1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5655 Hoffman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5656 McAdams, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5657 Alden, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5658 Sloan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5662 OMalley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5663 Li5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5666 Wendelboe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5667 Totty, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5668 Finn, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5670 Heindl1, Srsieve, CRUS, LLR L5671 Rauh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5676 Fnasek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5679 Shane, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5683 Glatte, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5685 Bestor, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5686 Pistorius, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5690 Eldred, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5693 Huan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5694 Petersen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5698 Stenschke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5703 Koudelka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5704 Hampicke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5705 Wharton, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5706 Wallbaum, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5707 Johns, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5710 Hass, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5711 Gingrich1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5712 Stahl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5714 Loucks, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5715 Calvin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5718 Ketamino, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5720 Trigueiro, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5721 Fischer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5723 Fergusson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5724 Pilz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5725 Gingrich1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5726 Noxe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5727 Headrick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5731 Michael, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5732 Monroe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5735 Kobrzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5736 Riva, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5738 Schaeffer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5740 Chu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5742 Steinmetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5745 Saladin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5746 Meister1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5748 Norbert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5749 Gahan, LLR2, LLR L5750 Shi, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5752 Wissel, LLR L5754 Abad, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5755 Kwiatkowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5756 Wei, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5758 Bishop1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5763 Williams7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5764 Tirkkonen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5765 Propper, Gcwsieve, LLR L5766 Takahashi2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5768 Lewis2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5769 Welsh1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5770 Silva1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5772 Tarson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5773 Lugowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5774 Chambers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5775 Garambois, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5776 Anonymous, LLR2, PSieve, Srsieve, United, PrimeGrid, LLR L5778 Sarok, Srsieve, CRUS, LLR L5780 Blanchard, Srsieve, CRUS, LLR L5782 Kang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5783 Bishop1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5784 Coplin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5787 Johnson10, Srsieve, CRUS, LLR L5789 Williams8, LLR L5790 Kolencik, Srsieve, CRUS, LLR L5791 Rindahl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5793 Wang5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5794 Morgan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5796 Hall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5798 Schoeberl, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5799 Lehmann1, LLR2, Srsieve, PrimeGrid, LLR L5802 Borgerding, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5803 Kwok, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5804 Bowe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5805 Belozersky, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5807 Krauss, Srsieve, PrimeGrid, PRST, LLR L5808 Propper, Batalov, PSieve, Srsieve, LLR L5809 Zhao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5810 Meister1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5811 Dettweiler, LLR2, Srsieve, CRUS, LLR L5812 Song, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5814 Chodzinski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5817 Kilstromer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5818 Belozersky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5819 Schmidt2, LLR2, PSieve, Srsieve, NPLB, LLR L5820 Hoonoki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5821 Elmore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5825 Norton, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5826 Morávek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5827 Yasuhisa, TwinGen, NewPGen, TPS, LLR L5829 Dickinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5830 McLean2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5831 Chapman2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5833 Russell2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5834 Roberts, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5836 Becker2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5837 Lin1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5839 Stewart1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5841 Yarham, Srsieve, CRUS, LLR L5842 Steenerson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5843 Vink, Kruse, Kwok, TwinGen, NewPGen, TPS, LLR L5844 Kadowaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5847 Eldredge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5848 Bressani, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5851 Liskay, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5852 Kwiatkowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5853 Simard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5854 Lehmann1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5855 Williams9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5858 GervaisLavoie, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5860 Joseph, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5862 Oppliger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5863 Duvinage, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5864 Amberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5865 Mendrik1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5866 Kim3, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5869 Arnold, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5870 Bodlina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5871 Yakubchak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5875 Monroe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5878 Klinkenberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5879 Sanner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5880 Gehrke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5881 Medcalf, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5882 Basil, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5888 Presler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5894 Tamai1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5904 Rix, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5913 Burtner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5923 Ryabchikov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5929 Bauer2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5938 Philip, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5945 Bush, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5948 Meuler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5956 Garnier1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5960 Jayaputera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5961 Carlier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5969 Kang, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5971 Da_Mota, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5974 Presler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5977 Brockerhoff, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5984 Desbonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5986 Wolfe1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5989 Williams10, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5995 Lee10, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5998 Da_Mota, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6005 Overstreet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6006 Propper, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6010 Chaney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6011 Mehner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6015 Uehara1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6019 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, Rechenkraft, PrimeGrid, LLR L6026 Bruner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6027 Johnson10, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6029 Schmidt2, Kwok, LLR2, TwinGen, NewPGen, TPS, LLR L6033 Tang3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6035 Garrison1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6036 Hogan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6038 Schafer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6040 Garland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6042 Fink, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6043 Podsada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6044 Chesnut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6047 Wheeler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6049 Chen4, LLR L6057 Kim7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6058 StGeorge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6064 Adrian, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6065 Yakubchak1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6067 O’Hara, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6070 Mumper, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6072 Lundström, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6073 Rojas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6075 Chodzinski, LLR2, Srsieve, PrimeGrid, LLR L6076 Yakubchak2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6077 Vink, Schmidt2, Kwok, TwinGen, NewPGen, TPS, LLR L6078 Zhaozheng, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6080 Sondergard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6082 Mckinley, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6083 Yagi, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6084 Criswell, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6085 Granowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6086 Pastierik, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6087 Osaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6088 Abad, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR M Morain MM Morii MP1 Durant, GIMPS, GpuOwl O Oakes p3 Dohmen, OpenPFGW p8 Caldwell, OpenPFGW p12 Water, OpenPFGW p16 Heuer, OpenPFGW p21 Anderson, Robinson, OpenPFGW p44 Broadhurst, OpenPFGW p49 Berg, OpenPFGW p54 Broadhurst, Water, OpenPFGW p58 Glover, Oakes, OpenPFGW p65 DavisK, Kuosa, OpenPFGW p85 Marchal, Carmody, Kuosa, OpenPFGW p102 Frind, Underwood, OpenPFGW p137 Rodenkirch, MultiSieve, OpenPFGW p148 Yama, Noda, Nohara, NewPGen, MatGFN, PRP, OpenPFGW p151 Kubota, NewPGen, OpenPFGW p155 DavisK, NewPGen, OpenPFGW p158 Paridon, NewPGen, OpenPFGW p168 Cami, OpenPFGW p170 Wu_T, Primo, OpenPFGW p189 Bohanon, LLR, OpenPFGW p193 Irvine, Broadhurst, Primo, OpenPFGW p235 Bedwell, OpenPFGW p236 Cooper, NewPGen, PRP, OpenPFGW p247 Bonath, Srsieve, CRUS, LLR, OpenPFGW p252 Oakes, NewPGen, OpenPFGW p255 Siemelink, Srsieve, CRUS, OpenPFGW p257 Siemelink, Srsieve, OpenPFGW p258 Batalov, Srsieve, CRUS, OpenPFGW p259 Underbakke, GenefX64, AthGFNSieve, OpenPFGW p262 Vogel, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p268 Rodenkirch, Srsieve, CRUS, OpenPFGW p269 Zhou, OpenPFGW p271 Dettweiler, Srsieve, CRUS, OpenPFGW p279 Domanov1, Srsieve, Rieselprime, Prime95, OpenPFGW p286 Batalov, Srsieve, OpenPFGW p290 Domanov1, Fpsieve, PrimeGrid, OpenPFGW p292 Dausch, Srsieve, SierpinskiRiesel, OpenPFGW p294 Batalov, EMsieve, PIES, LLR, OpenPFGW p295 Angel, NewPGen, OpenPFGW p296 Kaiser1, Srsieve, LLR, OpenPFGW p300 Gramolin, NewPGen, OpenPFGW p301 Winskill1, Fpsieve, PrimeGrid, OpenPFGW p302 Gasewicz, Fpsieve, PrimeGrid, OpenPFGW p308 DavisK, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p309 Yama, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p310 Hubbard, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p312 Doggart, Fpsieve, PrimeGrid, OpenPFGW p314 Hubbard, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p332 Johnson6, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p334 Goetz, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p338 Tomecko, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p342 Trice, OpenPFGW p346 Burt, Fpsieve, PrimeGrid, OpenPFGW p350 Koen, Gcwsieve, GenWoodall, OpenPFGW p354 Koen, Gcwsieve, OpenPFGW p355 Domanov1, Srsieve, CRUS, OpenPFGW p360 Kinne, Exoo, OpenPFGW p362 Snow, Fpsieve, PrimeGrid, OpenPFGW p363 Batalov, OpenPFGW p364 Batalov, NewPGen, OpenPFGW p365 Poplin, Srsieve, CRUS, OpenPFGW p366 Demeyer, Siemelink, Srsieve, CRUS, OpenPFGW p373 Morelli, OpenPFGW p378 Batalov, Srsieve, CRUS, LLR, OpenPFGW p379 Batalov, CycloSv, Cyclo, EMsieve, PIES, OpenPFGW p382 Oestlin, NewPGen, OpenPFGW p384 Booker, OpenPFGW p385 Rajala, Srsieve, CRUS, OpenPFGW p387 Zimmerman, GeneFer, AthGFNSieve, PrimeGrid, OpenPFGW p390 Jaworski, Srsieve, Rieselprime, Prime95, OpenPFGW p391 Keiser, NewPGen, OpenPFGW p394 Fukui, MultiSieve, OpenPFGW p395 Angel, Augustin, NewPGen, OpenPFGW p396 Ikisugi, OpenPFGW p398 Stocker, OpenPFGW p399 Kebbaj, OpenPFGW p403 Bonath, Cksieve, OpenPFGW p405 Propper, Cksieve, OpenPFGW p406 DavisK, Luhn, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p408 Batalov, PolySieve, OpenPFGW p409 Nielsen1, OpenPFGW p413 Morimoto, OpenPFGW p414 Naimi, OpenPFGW p416 Monnin, LLR2, PrivGfnServer, OpenPFGW p417 Tennant, LLR2, PrivGfnServer, OpenPFGW p418 Sielemann, LLR2, PrivGfnServer, OpenPFGW p419 Bird1, LLR2, PrivGfnServer, OpenPFGW p420 Alex, OpenPFGW p421 Gahan, LLR2, PrivGfnServer, OpenPFGW p422 Kaiser1, PolySieve, OpenPFGW p423 Propper, Batalov, EMsieve, OpenPFGW p425 Propper, MultiSieve, OpenPFGW p426 Schoeler, NewPGen, OpenPFGW p427 Niegocki, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p428 Trunov, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p430 Propper, Batalov, NewPGen, OpenPFGW p431 Piesker, Srsieve, CRUS, OpenPFGW p433 Dettweiler, LLR2, Srsieve, CRUS, OpenPFGW p434 Doornink, MultiSieve, OpenPFGW p435 Dettweiler, LLR2, PSieve, Srsieve, NPLB, OpenPFGW p436 Schwieger, OpenPFGW p437 Propper, Batalov, EMsieve, PIES, OpenPFGW p439 Trice, MultiSieve, OpenPFGW p441 Wu_T, CM, OpenPFGW p442 Presler, MultiSieve, PrimeGrid, PRST, OpenPFGW p443 Brochtrup, Srsieve, CRUS, OpenPFGW p444 Kadowaki, MultiSieve, PrimeGrid, PRST, OpenPFGW p445 Merrylees, MultiSieve, PrimeGrid, PRST, OpenPFGW p446 Greer, MultiSieve, PrimeGrid, PRST, OpenPFGW p448 Little, MultiSieve, PrimeGrid, PRST, OpenPFGW p449 Rodriguez2, OpenPFGW PM Mihailescu SB10 Agafonov, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB11 Sunde, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB12 Szabolcs, Srsieve, SoBSieve, ProthSieve, Ksieve, PrimeGrid, LLR, SB SB6 Sundquist, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB7 Team_Prime_Rib, SoBSieve, ProthSieve, Ksieve, PRP, SB SB8 Gordon, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB9 Hassler, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SG Slowinski, Gage WD Williams, Dubner, Cruncher WM Morain, Williams x13 Renze x16 Doumen, Beelen, Unknown x20 Irvine, Broadhurst, Water x23 Broadhurst, Water, Renze, OpenPFGW, Primo x24 Jarai_Z, Farkas, Csajbok, Kasza, Jarai, Unknown x25 Broadhurst, Water, OpenPFGW, Primo x28 Iskra x33 Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x36 Irvine, Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x38 Broadhurst, OpenPFGW, Primo x39 Broadhurst, Dubner, Keller, OpenPFGW, Primo x44 Zhou, Unknown x45 Batalov, OpenPFGW, Primo, Unknown x47 Szekeres, Magyar, Gevay, Farkas, Jarai, Unknown x48 Asuncion, Allombert, Unknown x49 Facq, Asuncion, Allombert, Unknown x50 Propper, GFNSvCUDA, GeneFer, Unknown x51 Lexut1, Srsieve, CRUS, Unknown Y Young