THE LARGEST KNOWN PRIMES (The 5,000 largest known primes) (selected smaller primes which have comments are included) Originally Compiled by Samuel Yates -- Continued by Chris Caldwell and now maintained by Reginald McLean (Sat Apr 26 01:37:36 UTC 2025) So that I can maintain this database of the 5,000 largest known primes (plus selected smaller primes with 1,000 or more digits), please send any new primes (that are large enough) to: https://t5k.org/bios/submission.php This list in a searchable form (plus information such as how to find large primes and how to prove primality) is available at the interactive web site: https://t5k.org/primes/ See the last pages for information about the provers. The letters after the rank refer to when the prime was submitted. 'a' is this month, 'b' last month... ----- ------------------------------- -------- ----- ---- -------------- rank description digits who year comment ----- ------------------------------- -------- ----- ---- -------------- 1 2^136279841-1 41024320 MP1 2024 Mersenne 52?? 2 2^82589933-1 24862048 G16 2018 Mersenne 51? 3 2^77232917-1 23249425 G15 2018 Mersenne 50? 4 2^74207281-1 22338618 G14 2016 Mersenne 49? 5 2^57885161-1 17425170 G13 2013 Mersenne 48 6 2^43112609-1 12978189 G10 2008 Mersenne 47 7 2^42643801-1 12837064 G12 2009 Mersenne 46 8 516693^2097152-516693^1048576+1 11981518 L4561 2023 Generalized unique 9 465859^2097152-465859^1048576+1 11887192 L4561 2023 Generalized unique 10 2^37156667-1 11185272 G11 2008 Mersenne 45 11 2^32582657-1 9808358 G9 2006 Mersenne 44 12 10223*2^31172165+1 9383761 SB12 2016 13 2^30402457-1 9152052 G9 2005 Mersenne 43 14 4*5^11786358+1 8238312 A2 2024 Generalized Fermat 15 2^25964951-1 7816230 G8 2005 Mersenne 42 16 69*2^24612729-1 7409172 A2 2024 17 2^24036583-1 7235733 G7 2004 Mersenne 41 18 107347*2^23427517-1 7052391 A2 2024 19e 3843236^1048576+1 6904556 L6094 2024 Generalized Fermat 20 3*2^22103376-1 6653780 L6075 2024 21 1963736^1048576+1 6598776 L4245 2022 Generalized Fermat 22 1951734^1048576+1 6595985 L5583 2022 Generalized Fermat 23 202705*2^21320516+1 6418121 L5181 2021 24 2^20996011-1 6320430 G6 2003 Mersenne 40 25 1059094^1048576+1 6317602 L4720 2018 Generalized Fermat 26 3*2^20928756-1 6300184 L5799 2023 27 919444^1048576+1 6253210 L4286 2017 Generalized Fermat 28 81*2^20498148+1 6170560 L4965 2023 Generalized Fermat 29 7*2^20267500+1 6101127 L4965 2022 Divides GF(20267499,12) [GG] 30 4*5^8431178+1 5893142 A2 2024 Generalized Fermat 31 168451*2^19375200+1 5832522 L4676 2017 32 69*2^19374980-1 5832452 L4965 2022 33 3*2^18924988-1 5696990 L5530 2022 34 69*2^18831865-1 5668959 L4965 2021 35 2*3^11879700+1 5668058 A2 2024 36 97139*2^18397548-1 5538219 L4965 2023 37 7*2^18233956+1 5488969 L4965 2020 Divides Fermat F(18233954) 38 3*2^18196595-1 5477722 L5461 2022 39 4*3^11279466+1 5381674 A2 2024 Generalized Fermat 40 3*2^17748034-1 5342692 L5404 2021 41 123447^1048576-123447^524288+1 5338805 L4561 2017 Generalized unique 42 3622*5^7558139-1 5282917 L4965 2022 43 7*6^6772401+1 5269954 L4965 2019 44 2*3^10852677+1 5178044 L4965 2023 Divides phi 45 8508301*2^17016603-1 5122515 L4784 2018 Woodall 46 8*10^5112847-1 5112848 A19 2024 Near-repdigit 47 13*2^16828072+1 5065756 A2 2023 48 3*2^16819291-1 5063112 L5230 2021 49f 5287180*3^10574360-1 5045259 A20 2024 Generalized Woodall 50 3*2^16408818+1 4939547 L5171 2020 Divides GF(16408814,3), GF(16408817,5) 51 2329989*2^16309923-1 4909783 A20 2024 Generalized Woodall 52 69*2^15866556-1 4776312 L4965 2021 53 2036*3^10009192+1 4775602 A2 2024 54 2525532*73^2525532+1 4705888 L5402 2021 Generalized Cullen 55 1419499*2^15614489-1 4700436 A20 2024 Generalized Woodall 56 11*2^15502315+1 4666663 L4965 2023 Divides GF(15502313,10) [GG] 57 (10^2332974+1)^2-2 4665949 p405 2024 58 37*2^15474010+1 4658143 L4965 2022 59 93839*2^15337656-1 4617100 L4965 2022 60 2^15317227+2^7658614+1 4610945 L5123 2020 Gaussian Mersenne norm 41?, generalized unique 61 13*2^15294536+1 4604116 A2 2023 62 6*5^6546983+1 4576146 L4965 2020 63 4788920*3^9577840-1 4569798 A20 2024 Generalized Woodall 64c 31*2^15145093-1 4559129 A2 2025 65 69*2^14977631-1 4508719 L4965 2021 66 192971*2^14773498-1 4447272 L4965 2021 67 4*3^9214845+1 4396600 A2 2024 68 9145334*3^9145334+1 4363441 A6 2023 Generalized Cullen 69 4*5^6181673-1 4320805 L4965 2022 70 396101*2^14259638-1 4292585 A20 2024 Generalized Woodall 71 6962*31^2863120-1 4269952 L5410 2020 72 37*2^14166940+1 4264676 L4965 2022 73 99739*2^14019102+1 4220176 L5008 2019 74 69*2^13832885-1 4164116 L4965 2022 75 404849*2^13764867+1 4143644 L4976 2021 Generalized Cullen 76 25*2^13719266+1 4129912 L4965 2022 Generalized Fermat 77 81*2^13708272+1 4126603 L4965 2022 Generalized Fermat 78 2740879*2^13704395-1 4125441 L4976 2019 Generalized Woodall 79 479216*3^8625889-1 4115601 L4976 2019 Generalized Woodall 80c 31*2^13514933-1 4068402 A2 2025 81 143332^786432-143332^393216+1 4055114 L4506 2017 Generalized unique 82 81*2^13470584+1 4055052 L4965 2022 Generalized Fermat 83 2^13466917-1 4053946 G5 2001 Mersenne 39 84 5778486*5^5778486+1 4038996 A6 2024 Generalized Cullen 85 9*2^13334487+1 4014082 L4965 2020 Divides GF(13334485,3) 86 206039*2^13104952-1 3944989 L4965 2021 87 2805222*5^5610444+1 3921539 L4972 2019 Generalized Cullen 88e 5128*22^2919993+1 3919869 L5811 2024 89 19249*2^13018586+1 3918990 SB10 2007 90 2293*2^12918431-1 3888839 L4965 2021 91 81*2^12804541+1 3854553 L4965 2022 92a 67612*5^5501582+1 3845446 A60 2025 93 4*5^5380542+1 3760839 L4965 2023 Generalized Fermat 94c 13520762^524288+1 3738699 L6221 2025 Generalized Fermat 95b 13427472^524288+1 3737122 L5775 2025 Generalized Fermat 96 9*2^12406887+1 3734847 L4965 2020 Divides GF(12406885,3) 97d 12900356^524288+1 3728004 L5639 2025 Generalized Fermat 98d 12693488^524288+1 3724323 L6096 2025 Generalized Fermat 99 11937916^524288+1 3710349 L6080 2024 Generalized Fermat 100 7*2^12286041-1 3698468 L4965 2023 101 10913140^524288+1 3689913 L6043 2024 Generalized Fermat 102 69*2^12231580-1 3682075 L4965 2021 103 27*2^12184319+1 3667847 L4965 2021 104 9332124^524288+1 3654278 L5025 2024 Generalized Fermat 105 8630170^524288+1 3636472 L5543 2024 Generalized Fermat 106 863282*5^5179692-1 3620456 A20 2024 Generalized Woodall 107 670490*12^3352450-1 3617907 A20 2024 Generalized Woodall 108 4*3^7578378+1 3615806 A2 2024 Generalized Fermat 109 11*2^11993994-1 3610554 A2 2024 110 3761*2^11978874-1 3606004 L4965 2022 111 95*2^11954552-1 3598681 A29 2024 112 259072*5^5136295-1 3590122 A45 2024 113 3*2^11895718-1 3580969 L4159 2015 114 37*2^11855148+1 3568757 L4965 2022 115 6339004^524288+1 3566218 L1372 2023 Generalized Fermat 116 763795*6^4582771+1 3566095 A6 2023 Generalized Cullen 117 5897794^524288+1 3549792 x50 2022 Generalized Fermat 118 3*2^11731850-1 3531640 L4103 2015 119 69*2^11718455-1 3527609 L4965 2020 120 8629*2^11708579-1 3524638 A2 2024 121 41*2^11676439+1 3514960 L4965 2022 122 4896418^524288+1 3507424 L4245 2022 Generalized Fermat 123 81*2^11616017+1 3496772 L4965 2022 124 69*2^11604348-1 3493259 L4965 2020 125 4450871*6^4450871+1 3463458 L5765 2023 Generalized Cullen 126 9*2^11500843+1 3462100 L4965 2020 Divides GF(11500840,12) 127 3*2^11484018-1 3457035 L3993 2014 128 193997*2^11452891+1 3447670 L4398 2018 129 29914*5^4930904+1 3446559 A41 2024 130 3638450^524288+1 3439810 L4591 2020 Generalized Fermat 131 9221*2^11392194-1 3429397 L5267 2021 132 9*2^11366286+1 3421594 L4965 2020 Generalized Fermat 133 5*2^11355764-1 3418427 L4965 2021 134 732050*6^4392301+1 3417881 L5765 2023 Generalized Cullen 135 3214654^524288+1 3411613 L4309 2019 Generalized Fermat 136 632760!-1 3395992 A43 2024 Factorial 137 146561*2^11280802-1 3395865 L5181 2020 138 51208*5^4857576+1 3395305 A30 2024 139 2985036^524288+1 3394739 L4752 2019 Generalized Fermat 140d 4591*2^11270837-1 3392864 A2 2025 141 6929*2^11255424-1 3388225 L4965 2022 142 2877652^524288+1 3386397 L4250 2019 Generalized Fermat 143 2788032^524288+1 3379193 L4584 2019 Generalized Fermat 144 2733014^524288+1 3374655 L4929 2019 Generalized Fermat 145 9*2^11158963+1 3359184 L4965 2020 Divides GF(11158962,5) 146 9271*2^11134335-1 3351773 L4965 2021 147 136804*5^4777253-1 3339162 A23 2024 148 2312092^524288+1 3336572 L4720 2018 Generalized Fermat 149 987324*48^1974648-1 3319866 A20 2024 Generalized Woodall 150 2061748^524288+1 3310478 L4783 2018 Generalized Fermat 151 1880370^524288+1 3289511 L4201 2018 Generalized Fermat 152 27*2^10902757-1 3282059 L4965 2022 153 3*2^10829346+1 3259959 L3770 2014 Divides GF(10829343,3), GF(10829345,5) 154 11*2^10803449+1 3252164 L4965 2022 Divides GF(10803448,6) 155 11*2^10797109+1 3250255 L4965 2022 156 7*2^10612737-1 3194754 L4965 2022 157 7351117#+1 3191401 p448 2024 Primorial 158 37*2^10599476+1 3190762 L4965 2022 Divides GF(10599475,10) 159 5*2^10495620-1 3159498 L4965 2021 160 3^6608603-3^3304302+1 3153105 L5123 2023 Generalized unique 161 5*2^10349000-1 3115361 L4965 2021 162 844833^524288-844833^262144+1 3107335 L4506 2017 Generalized unique 163 52922*5^4399812-1 3075342 A1 2023 164 712012^524288-712012^262144+1 3068389 L4506 2017 Generalized unique 165 177742*5^4386703-1 3066180 L5807 2023 166 4*3^6402015+1 3054539 A2 2024 167 874208*54^1748416-1 3028951 L4976 2019 Generalized Woodall 168 475856^524288+1 2976633 L3230 2012 Generalized Fermat 169 2*3^6236772+1 2975697 L4965 2022 170 15*2^9830108+1 2959159 A2 2023 171 9*2^9778263+1 2943552 L4965 2020 172 198*558^1061348+1 2915138 A28 2024 173 1806676*41^1806676+1 2913785 L4668 2018 Generalized Cullen 174 356926^524288+1 2911151 L3209 2012 Generalized Fermat 175 341112^524288+1 2900832 L3184 2012 Generalized Fermat 176 213988*5^4138363-1 2892597 L5621 2022 177 43*2^9596983-1 2888982 L4965 2022 178 121*2^9584444+1 2885208 L5183 2020 Generalized Fermat 179 15*2^9482269-1 2854449 A2 2024 180 6533299#-1 2835864 p447 2024 Primorial 181 11*2^9381365+1 2824074 L4965 2020 Divides GF(9381364,6) 182 15*2^9312889+1 2803461 L4965 2023 183 49*2^9187790+1 2765803 L4965 2022 Generalized Fermat 184 6369619#+1 2765105 p445 2024 Primorial 185 27653*2^9167433+1 2759677 SB8 2005 186 6354977#-1 2758832 p446 2024 Primorial 187 90527*2^9162167+1 2758093 L1460 2010 188 6795*2^9144320-1 2752719 L4965 2021 189 31*2^9088085-1 2735788 A2 2024 190 75*2^9079482+1 2733199 L4965 2023 191 1323365*116^1323365+1 2732038 L4718 2018 Generalized Cullen 192 57*2^9075622-1 2732037 L4965 2022 193 10^2718281-5*10^1631138-5*10^1087142-1 2718281 p423 2024 Palindrome 194 63838*5^3887851-1 2717497 L5558 2022 195 13*2^8989858+1 2706219 L4965 2020 196 4159*2^8938471-1 2690752 L4965 2022 197 273809*2^8932416-1 2688931 L1056 2017 198 93*2^8898285+1 2678653 A2 2024 199 2*3^5570081+1 2657605 L4965 2020 Divides Phi(3^5570081,2) [g427] 200 25*2^8788628+1 2645643 L5161 2021 Generalized Fermat 201 2038*366^1028507-1 2636562 L2054 2016 202 64598*5^3769854-1 2635020 L5427 2022 203 63*2^8741225+1 2631373 A2 2024 204 8*785^900325+1 2606325 L4786 2022 205 17*2^8636199+1 2599757 L5161 2021 Divides GF(8636198,10) 206 75898^524288+1 2558647 p334 2011 Generalized Fermat 207 25*2^8456828+1 2545761 L5237 2021 Divides GF(8456827,12), generalized Fermat 208 39*2^8413422+1 2532694 L5232 2021 209 31*2^8348000+1 2513000 L5229 2021 210 27*2^8342438-1 2511326 L3483 2021 211 3687*2^8261084-1 2486838 L4965 2021 212 101*2^8152967+1 2454290 A2 2023 Divides GF(8152966,12) 213 273662*5^3493296-1 2441715 L5444 2021 214 81*2^8109236+1 2441126 L4965 2022 Generalized Fermat 215 11*2^8103463+1 2439387 L4965 2020 Divides GF(8103462,12) 216 102818*5^3440382-1 2404729 L5427 2021 217 11*2^7971110-1 2399545 L2484 2019 218 27*2^7963247+1 2397178 L5161 2021 Divides Fermat F(7963245) 219 3177*2^7954621-1 2394584 L4965 2021 220 39*2^7946769+1 2392218 L5226 2021 Divides GF(7946767,12) 221 7*6^3072198+1 2390636 L4965 2019 222 3765*2^7904593-1 2379524 L4965 2021 223 29*2^7899985+1 2378134 L5161 2021 Divides GF(7899984,6) 224 5113*2^7895471-1 2376778 L4965 2022 225 861*2^7895451-1 2376771 L4965 2021 226 75*2^7886683+1 2374131 A2 2023 227e 2661*2^7861390-1 2366518 A2 2024 228 99*2^7830910+1 2357341 A2 2024 229 28433*2^7830457+1 2357207 SB7 2004 230 2589*2^7803339-1 2349043 L4965 2022 231 59*2^7792307+1 2345720 A2 2024 232 101*2^7784453+1 2343356 A2 2024 233 95*2^7778585+1 2341590 A2 2024 234 8401*2^7767655-1 2338302 L4965 2023 235 9693*2^7767343-1 2338208 A2 2023 236 5*2^7755002-1 2334489 L4965 2021 237 2945*2^7753232-1 2333959 L4965 2022 238 2*836^798431+1 2333181 L4294 2024 239 63*2^7743186+1 2330934 A2 2024 240 2545*2^7732265-1 2327648 L4965 2021 241 5539*2^7730709-1 2327180 L4965 2021 242 4817*2^7719584-1 2323831 L4965 2021 243 183*558^842752+1 2314734 A28 2024 244 1341174*53^1341174+1 2312561 L4668 2017 Generalized Cullen 245 9467*2^7680034-1 2311925 L4965 2022 246 45*2^7661004+1 2306194 L5200 2020 247 15*2^7619838+1 2293801 L5192 2020 248 3597*2^7580693-1 2282020 L4965 2021 249 5256037#+1 2281955 p444 2024 Primorial 250 3129*2^7545557-1 2271443 L4965 2023 251 7401*2^7523295-1 2264742 L4965 2021 252 45*2^7513661+1 2261839 L5179 2020 253 558640^393216-558640^196608+1 2259865 L4506 2017 Generalized unique 254 9*2^7479919-1 2251681 L3345 2023 255 1875*2^7474308-1 2249995 L4965 2022 256 69*2^7452023+1 2243285 L4965 2023 Divides GF(7452020,3) [GG] 257 1281979*2^7447178+1 2241831 A8 2023 258 4*5^3189669-1 2229484 L4965 2022 259 29*2^7374577+1 2219971 L5169 2020 Divides GF(7374576,3) 260 2653*2^7368343-1 2218096 A2 2024 261 21555*2^7364128-1 2216828 A11 2024 262 3197*2^7359542-1 2215447 L4965 2022 263 109838*5^3168862-1 2214945 L5129 2020 264 95*2^7354869+1 2214039 A2 2023 265 101*2^7345194-1 2211126 L1884 2019 266 85*2^7333444+1 2207589 A2 2023 267 15*2^7300254+1 2197597 L5167 2020 268 422429!+1 2193027 p425 2022 Factorial 269 1759*2^7284439-1 2192838 L4965 2021 270 1909683*14^1909683+1 2188748 L5765 2023 Generalized Cullen 271 737*2^7269322-1 2188287 L4665 2017 272 6909*2^7258896-1 2185150 A2 2024 273 93*2^7241494+1 2179909 A2 2023 274 118568*5^3112069+1 2175248 L690 2020 275e 4215*2^7221386-1 2173858 A2 2024 276 40*257^901632+1 2172875 A11 2024 277a 1685*2^7213108-1 2171366 A2 2025 278 580633*2^7208783-1 2170066 A11 2024 279 6039*2^7207973-1 2169820 L4965 2021 280 502573*2^7181987-1 2162000 L3964 2014 281 402539*2^7173024-1 2159301 L3961 2014 282 3343*2^7166019-1 2157191 L1884 2016 283a 4137*2^7132569-1 2147121 A2 2025 284 161041*2^7107964+1 2139716 L4034 2015 285 294*213^918952-1 2139672 L5811 2023 286 27*2^7046834+1 2121310 L3483 2018 287 1759*2^7046791-1 2121299 L4965 2021 288 327*2^7044001-1 2120459 L4965 2021 289 5*2^7037188-1 2118406 L4965 2021 290 3*2^7033641+1 2117338 L2233 2011 Divides GF(7033639,3) 291 625783*2^7031319-1 2116644 A11 2024 292 33661*2^7031232+1 2116617 SB11 2007 293 237804^393216-237804^196608+1 2114016 L4506 2017 Generalized unique 294 207494*5^3017502-1 2109149 L5083 2020 295 15*2^6993631-1 2105294 L4965 2021 296 8943501*2^6972593-1 2098967 L466 2022 297 6020095*2^6972593-1 2098967 L466 2022 298 2^6972593-1 2098960 G4 1999 Mersenne 38 299 273*2^6963847-1 2096330 L4965 2022 300 6219*2^6958945-1 2094855 L4965 2021 301 51*2^6945567+1 2090826 L4965 2020 Divides GF(6945564,12) [p286] 302 3323*2^6921196-1 2083492 A2 2024 303 238694*5^2979422-1 2082532 L5081 2020 304 4*72^1119849-1 2079933 L4444 2016 305 33*2^6894190-1 2075360 L4965 2021 306 4778027#-1 2073926 p442 2024 Primorial 307 2345*2^6882320-1 2071789 L4965 2022 308 57*2^6857990+1 2064463 A2 2023 309 146264*5^2953282-1 2064261 L1056 2020 310 69*2^6838971-1 2058738 L5037 2020 311 35816*5^2945294-1 2058677 L5076 2020 312 127*2^6836153-1 2057890 L1862 2018 313 19*2^6833086+1 2056966 L5166 2020 314 65*2^6810465+1 2050157 A2 2023 315 40597*2^6808509-1 2049571 L3749 2013 316 283*2^6804731-1 2048431 L2484 2020 317 1861709*2^6789999+1 2044000 L5191 2020 318 5781*2^6789459-1 2043835 L4965 2021 319 8435*2^6786180-1 2042848 L4965 2021 320a 61238184^262144+1 2041322 L5526 2025 Generalized Fermat 321b 59145944^262144+1 2037364 L4591 2025 Generalized Fermat 322b 58936230^262144+1 2036960 L5465 2025 Generalized Fermat 323b 58870004^262144+1 2036832 L6238 2025 Generalized Fermat 324b 58846688^262144+1 2036787 L4591 2025 Generalized Fermat 325b 58333324^262144+1 2035789 L4591 2025 Generalized Fermat 326b 58288282^262144+1 2035701 L4526 2025 Generalized Fermat 327b 57643582^262144+1 2034435 L4772 2025 Generalized Fermat 328b 57594478^262144+1 2034338 L5464 2025 Generalized Fermat 329b 57478518^262144+1 2034108 L6085 2025 Generalized Fermat 330b 57429230^262144+1 2034011 L5639 2025 Generalized Fermat 331 51*2^6753404+1 2032979 L4965 2020 332 93*2^6750726+1 2032173 A2 2023 333b 56303352^262144+1 2031757 L4920 2025 Generalized Fermat 334b 56295176^262144+1 2031740 L5378 2025 Generalized Fermat 335b 55952434^262144+1 2031045 L5586 2025 Generalized Fermat 336b 55892864^262144+1 2030923 L5948 2025 Generalized Fermat 337 69*2^6745775+1 2030683 L4965 2023 338b 55702322^262144+1 2030535 L4772 2025 Generalized Fermat 339b 55695224^262144+1 2030520 L4387 2025 Generalized Fermat 340b 55169618^262144+1 2029441 L6236 2025 Generalized Fermat 341b 55007338^262144+1 2029105 L4201 2025 Generalized Fermat 342b 54852328^262144+1 2028784 L5375 2025 Generalized Fermat 343b 54528918^262144+1 2028111 L5375 2025 Generalized Fermat 344b 54044092^262144+1 2027094 L5069 2025 Generalized Fermat 345b 53903472^262144+1 2026797 L5543 2025 Generalized Fermat 346b 53750036^262144+1 2026473 L4309 2025 Generalized Fermat 347b 53616962^262144+1 2026191 L4889 2025 Generalized Fermat 348b 53311612^262144+1 2025540 L6235 2025 Generalized Fermat 349b 53008094^262144+1 2024890 L6036 2025 Generalized Fermat 350b 52648144^262144+1 2024115 L5088 2025 Generalized Fermat 351b 52599274^262144+1 2024009 L4776 2025 Generalized Fermat 352b 52592976^262144+1 2023995 L5543 2025 Generalized Fermat 353b 51992174^262144+1 2022687 L5639 2025 Generalized Fermat 354b 51852794^262144+1 2022382 L4387 2025 Generalized Fermat 355b 51714136^262144+1 2022077 L4591 2025 Generalized Fermat 356b 51283286^262144+1 2021124 L4884 2025 Generalized Fermat 357b 51125138^262144+1 2020773 L5543 2025 Generalized Fermat 358 9995*2^6711008-1 2020219 L4965 2021 359b 50454356^262144+1 2019269 L5543 2025 Generalized Fermat 360b 50449664^262144+1 2019259 L5586 2025 Generalized Fermat 361b 50366208^262144+1 2019070 L5275 2025 Generalized Fermat 362c 50121532^262144+1 2018516 L4904 2025 Generalized Fermat 363c 49536902^262144+1 2017180 L5639 2025 Generalized Fermat 364c 49235348^262144+1 2016485 L5543 2025 Generalized Fermat 365c 49209090^262144+1 2016424 L5275 2025 Generalized Fermat 366c 48055302^262144+1 2013723 L5069 2025 Generalized Fermat 367c 47707672^262144+1 2012896 L4939 2025 Generalized Fermat 368 39*2^6684941+1 2012370 L5162 2020 369c 47351862^262144+1 2012044 L6204 2025 Generalized Fermat 370c 47281922^262144+1 2011876 L5974 2025 Generalized Fermat 371c 47255958^262144+1 2011813 L5948 2025 Generalized Fermat 372 6679881*2^6679881+1 2010852 L917 2009 Cullen 373c 46831458^262144+1 2010786 L4456 2025 Generalized Fermat 374c 46378776^262144+1 2009680 L6178 2025 Generalized Fermat 375d 45073202^262144+1 2006429 L6129 2025 Generalized Fermat 376d 45007104^262144+1 2006262 L5639 2025 Generalized Fermat 377d 44819108^262144+1 2005786 L5632 2025 Generalized Fermat 378d 44666524^262144+1 2005397 L5775 2025 Generalized Fermat 379 37*2^6660841-1 2005115 L3933 2014 380e 44144624^262144+1 2004059 L5974 2024 Generalized Fermat 381e 44030166^262144+1 2003764 L5974 2024 Generalized Fermat 382e 43330794^262144+1 2001941 L5588 2024 Generalized Fermat 383 39*2^6648997+1 2001550 L5161 2020 384f 42781592^262144+1 2000489 L5460 2024 Generalized Fermat 385 10^2000007-10^1127194-10^872812-1 2000007 p423 2024 Palindrome 386 10^2000005-10^1051046-10^948958-1 2000005 p423 2024 Palindrome 387 304207*2^6643565-1 1999918 L3547 2013 388e 42474318^262144+1 1999668 L5416 2024 Generalized Fermat 389 69*2^6639971-1 1998833 L5037 2020 390 42006214^262144+1 1998406 L5512 2024 Generalized Fermat 391 6471*2^6631137-1 1996175 L4965 2021 392 40460760^262144+1 1994139 L5460 2024 Generalized Fermat 393 39896728^262144+1 1992541 L6047 2024 Generalized Fermat 394 39164812^262144+1 1990433 L6038 2024 Generalized Fermat 395 38786786^262144+1 1989328 L6035 2024 Generalized Fermat 396 38786700^262144+1 1989328 L4245 2024 Generalized Fermat 397 38738332^262144+1 1989186 L6033 2024 Generalized Fermat 398 9935*2^6603610-1 1987889 L4965 2023 399 38214850^262144+1 1987637 L5412 2024 Generalized Fermat 400 38108804^262144+1 1987321 L4764 2024 Generalized Fermat 401 37986650^262144+1 1986955 L6027 2024 Generalized Fermat 402 37787006^262144+1 1986355 L4622 2024 Generalized Fermat 403 37700936^262144+1 1986096 L5416 2024 Generalized Fermat 404 37689944^262144+1 1986063 L5416 2024 Generalized Fermat 405 37349040^262144+1 1985028 L5543 2024 Generalized Fermat 406 37047448^262144+1 1984105 L5746 2024 Generalized Fermat 407 36778106^262144+1 1983274 L5998 2024 Generalized Fermat 408 36748386^262144+1 1983182 L5998 2024 Generalized Fermat 409 36717890^262144+1 1983088 L4760 2024 Generalized Fermat 410 36210400^262144+1 1981503 L6006 2024 Generalized Fermat 411 35196086^262144+1 1978269 L5543 2024 Generalized Fermat 412 34443124^262144+1 1975807 L5639 2024 Generalized Fermat 413 33798406^262144+1 1973655 L4656 2024 Generalized Fermat 414 33491530^262144+1 1972617 L5030 2024 Generalized Fermat 415 33061466^262144+1 1971146 L5275 2024 Generalized Fermat 416 32497152^262144+1 1969186 L5586 2024 Generalized Fermat 417 32171198^262144+1 1968038 L4892 2024 Generalized Fermat 418 32067848^262144+1 1967672 L4684 2024 Generalized Fermat 419 31371484^262144+1 1965172 L5847 2024 Generalized Fermat 420 30941436^262144+1 1963601 L4362 2024 Generalized Fermat 421 554051*2^6517658-1 1962017 L5811 2023 422a 115*2^6515714+1 1961428 L5161 2025 423 29645358^262144+1 1958729 L5024 2023 Generalized Fermat 424 29614286^262144+1 1958610 L5870 2023 Generalized Fermat 425 1319*2^6506224-1 1958572 L4965 2021 426 3163*2^6504943-1 1958187 L4965 2023 427 29445800^262144+1 1957960 L4726 2023 Generalized Fermat 428 322498*5^2800819-1 1957694 L4954 2019 429 29353924^262144+1 1957604 L4387 2023 Generalized Fermat 430 99*2^6502814+1 1957545 A2 2023 431 29333122^262144+1 1957524 L5869 2023 Generalized Fermat 432 88444*5^2799269-1 1956611 L3523 2019 433 29097000^262144+1 1956604 L5375 2023 Generalized Fermat 434 28342134^262144+1 1953611 L5864 2023 Generalized Fermat 435 28259150^262144+1 1953277 L4898 2023 Generalized Fermat 436 28004468^262144+1 1952246 L5586 2023 Generalized Fermat 437 27789002^262144+1 1951367 L5860 2023 Generalized Fermat 438 13*2^6481780+1 1951212 L4965 2020 439 27615064^262144+1 1950652 L4201 2023 Generalized Fermat 440 21*2^6468257-1 1947141 L4965 2021 441 26640150^262144+1 1946560 L5839 2023 Generalized Fermat 442 26128000^262144+1 1944350 L5821 2023 Generalized Fermat 443 25875054^262144+1 1943243 L5070 2023 Generalized Fermat 444 25690360^262144+1 1942427 L5809 2023 Generalized Fermat 445 25635940^262144+1 1942186 L4307 2023 Generalized Fermat 446 25461468^262144+1 1941408 L4210 2023 Generalized Fermat 447 25333402^262144+1 1940834 L5802 2023 Generalized Fermat 448 24678636^262144+1 1937853 L5586 2023 Generalized Fermat 449 138514*5^2771922+1 1937496 L4937 2019 450 24429706^262144+1 1936699 L4670 2023 Generalized Fermat 451 33*2^6432160-1 1936275 L4965 2022 452 15*2^6429089-1 1935350 L4965 2021 453 23591460^262144+1 1932724 L5720 2023 Generalized Fermat 454 23479122^262144+1 1932181 L5773 2023 Generalized Fermat 455 398023*2^6418059-1 1932034 L3659 2013 456 22984886^262144+1 1929758 L4928 2023 Generalized Fermat 457 3^4043119+3^2021560+1 1929059 L5123 2023 Generalized unique 458 22790808^262144+1 1928793 L5047 2023 Generalized Fermat 459a 141*2^6406088+1 1928427 L5783 2025 Divides GF(6406084,6) 460 22480000^262144+1 1927230 L4307 2023 Generalized Fermat 461 22479752^262144+1 1927229 L5159 2023 Generalized Fermat 462 22470828^262144+1 1927183 L4201 2023 Generalized Fermat 463 55*2^6395254+1 1925166 A2 2023 464 20866766^262144+1 1918752 L4245 2023 Generalized Fermat 465 4*3^4020126+1 1918089 A2 2024 Generalized Fermat 466 20710506^262144+1 1917896 L5676 2023 Generalized Fermat 467 20543682^262144+1 1916975 L5663 2023 Generalized Fermat 468 20105956^262144+1 1914523 L5005 2023 Generalized Fermat 469 631*2^6359347-1 1914357 L4965 2021 470 4965*2^6356707-1 1913564 L4965 2022 471 19859450^262144+1 1913119 L5025 2023 Generalized Fermat 472 19527922^262144+1 1911202 L4745 2023 Generalized Fermat 473 19322744^262144+1 1910000 L4775 2023 Generalized Fermat 474 1995*2^6333396-1 1906546 L4965 2021 475 1582137*2^6328550+1 1905090 L801 2009 Cullen 476 18395930^262144+1 1904404 x50 2022 Generalized Fermat 477 17191822^262144+1 1896697 x50 2022 Generalized Fermat 478 87*2^6293522+1 1894541 A2 2023 479 16769618^262144+1 1893866 L4677 2022 Generalized Fermat 480b 141*2^6286573+1 1892450 L5178 2025 481 16048460^262144+1 1888862 L5127 2022 Generalized Fermat 482 10^1888529-10^944264-1 1888529 p423 2021 Near-repdigit, palindrome 483 15913772^262144+1 1887902 L4387 2022 Generalized Fermat 484 15859176^262144+1 1887511 L5544 2022 Generalized Fermat 485 3303*2^6264946-1 1885941 L4965 2021 486 15417192^262144+1 1884293 L5051 2022 Generalized Fermat 487 14741470^262144+1 1879190 L4204 2022 Generalized Fermat 488 4328927#+1 1878843 p442 2024 Primorial 489b 165*2^6237224+1 1877594 L5178 2025 490 14399216^262144+1 1876516 L4745 2021 Generalized Fermat 491 1344935*2^6231985+1 1876021 L161 2023 492 14103144^262144+1 1874151 L5254 2021 Generalized Fermat 493 13911580^262144+1 1872594 L5068 2021 Generalized Fermat 494b 165*2^6213489+1 1870449 L5517 2025 495 13640376^262144+1 1870352 L4307 2021 Generalized Fermat 496 13553882^262144+1 1869628 L4307 2021 Generalized Fermat 497 8825*2^6199424-1 1866217 A2 2023 498 13039868^262144+1 1865227 L5273 2021 Generalized Fermat 499 7*6^2396573+1 1864898 L4965 2019 500 12959788^262144+1 1864525 L4591 2021 Generalized Fermat 501 69*2^6186659+1 1862372 L4965 2023 502 12582496^262144+1 1861162 L5202 2021 Generalized Fermat 503 12529818^262144+1 1860684 L4871 2020 Generalized Fermat 504c 141*2^6175704+1 1859075 L5969 2025 505 12304152^262144+1 1858615 L4591 2020 Generalized Fermat 506 12189878^262144+1 1857553 L4905 2020 Generalized Fermat 507 39*2^6164630+1 1855741 L4087 2020 Divides GF(6164629,5) 508c 119*2^6150335+1 1851438 L5178 2025 509 11081688^262144+1 1846702 L5051 2020 Generalized Fermat 510 10979776^262144+1 1845650 L5088 2020 Generalized Fermat 511 10829576^262144+1 1844082 L4677 2020 Generalized Fermat 512 194368*5^2638045-1 1843920 L690 2018 513 10793312^262144+1 1843700 L4905 2020 Generalized Fermat 514 10627360^262144+1 1841936 L4956 2020 Generalized Fermat 515 10578478^262144+1 1841411 L4307 2020 Generalized Fermat 516 66916*5^2628609-1 1837324 L690 2018 517 521921*2^6101122-1 1836627 L5811 2023 518 3*2^6090515-1 1833429 L1353 2010 519 9812766^262144+1 1832857 L4245 2020 Generalized Fermat 520 9750938^262144+1 1832137 L4309 2020 Generalized Fermat 521 8349*2^6082397-1 1830988 L4965 2021 522 9450844^262144+1 1828578 L5020 2020 Generalized Fermat 523 71*2^6070943+1 1827538 L4965 2023 524 32*470^683151+1 1825448 L4064 2021 525 9125820^262144+1 1824594 L5002 2019 Generalized Fermat 526 8883864^262144+1 1821535 L4715 2019 Generalized Fermat 527 21*2^6048861+1 1820890 L5106 2020 Divides GF(6048860,5) 528 9999*2^6037057-1 1817340 L4965 2021 529 8521794^262144+1 1816798 L4289 2019 Generalized Fermat 530e 6285*2^6027986-1 1814609 A2 2024 531 33*2^6019138-1 1811943 L4965 2022 532 67*2^6018626+1 1811789 L4965 2023 533 122*123^865890+1 1809631 L4294 2024 534 1583*2^5989282-1 1802957 L4036 2015 535c 55*2^5982526+1 1800922 L5554 2025 Divides GF(5982524,10) 536 101806*15^1527091-1 1796004 L5765 2023 Generalized Woodall 537c 91*2^5960816+1 1794387 L5969 2025 538c 163*2^5945098+1 1789656 L5554 2025 539c 189*2^5932506+1 1785865 L5995 2025 540 6291332^262144+1 1782250 L4864 2018 Generalized Fermat 541 6287774^262144+1 1782186 L4726 2018 Generalized Fermat 542b 32*402^683113-1 1778983 A11 2025 543 327926*5^2542838-1 1777374 L4807 2018 544 81556*5^2539960+1 1775361 L4809 2018 545c 179*2^5894939+1 1774556 L5261 2025 546 5828034^262144+1 1773542 L4720 2018 Generalized Fermat 547 993*10^1768283-1 1768286 L4879 2019 Near-repdigit 548c 135*2^5854694+1 1762441 L5997 2025 549 9*10^1762063-1 1762064 L4879 2020 Near-repdigit 550 93606^354294+93606^177147+1 1761304 p437 2023 Generalized unique 551 5205422^262144+1 1760679 L4201 2018 Generalized Fermat 552 5152128^262144+1 1759508 L4720 2018 Generalized Fermat 553d 195*2^5841059+1 1758337 L5178 2025 554d 183*2^5814122+1 1750228 L5612 2025 555d 205*2^5805562+1 1747651 L5261 2025 556d 99*2^5798449+1 1745510 L5517 2025 Divides Fermat F(5798447) 557 4489246^262144+1 1743828 L4591 2018 Generalized Fermat 558 2240501*6^2240501+1 1743456 L5765 2023 Generalized Cullen 559d 57*2^5785428+1 1741590 L5302 2025 560 2*3^3648969+1 1741001 L5043 2020 Divides Phi(3^3648964,2) [g427] 561 7*2^5775996+1 1738749 L3325 2012 562d 101*2^5774879+1 1738414 L5537 2025 563 4246258^262144+1 1737493 L4720 2018 Generalized Fermat 564d 57*2^5759943+1 1733918 L5517 2025 565 3933508^262144+1 1728783 L4309 2018 Generalized Fermat 566 3853792^262144+1 1726452 L4715 2018 Generalized Fermat 567 3673932^262144+1 1721010 L4649 2017 Generalized Fermat 568 (10^859669-1)^2-2 1719338 p405 2022 Near-repdigit 569 3596074^262144+1 1718572 L4689 2017 Generalized Fermat 570 3547726^262144+1 1717031 L4201 2017 Generalized Fermat 571 8*10^1715905-1 1715906 L4879 2020 Near-repdigit 572 1243*2^5686715-1 1711875 L1828 2016 573e 65*2^5671355+1 1707250 L5294 2024 574 25*2^5658915-1 1703505 L1884 2021 575 1486287*14^1486287+1 1703482 L5765 2023 Generalized Cullen 576 41*2^5651731+1 1701343 L1204 2020 577 3060772^262144+1 1700222 L4649 2017 Generalized Fermat 578 9*2^5642513+1 1698567 L3432 2013 579e 165*2^5633373+1 1695817 L5178 2024 580 10*3^3550446+1 1693995 L4965 2020 581 2622*11^1621920-1 1689060 L2054 2015 582f 141*2^5600116+1 1685806 L6089 2024 583 81*2^5600028+1 1685779 L4965 2022 Generalized Fermat 584 2676404^262144+1 1684945 L4591 2017 Generalized Fermat 585 301562*5^2408646-1 1683577 L4675 2017 586 2611294^262144+1 1682141 L4250 2017 Generalized Fermat 587 55599^354294+55599^177147+1 1681149 p437 2023 Generalized unique 588 171362*5^2400996-1 1678230 L4669 2017 589 2514168^262144+1 1677825 L4564 2017 Generalized Fermat 590 31*2^5560820+1 1673976 L1204 2020 Divides GF(5560819,6) 591f 163*2^5550632+1 1670909 L5517 2024 592f 205*2^5532904+1 1665573 L5517 2024 593f 191*2^5531015+1 1665004 L5517 2024 594 13*2^5523860+1 1662849 L1204 2020 Divides Fermat F(5523858) 595f 89*2^5519481+1 1661532 L5178 2024 596 252191*2^5497878-1 1655032 L3183 2012 597 2042774^262144+1 1654187 L4499 2016 Generalized Fermat 598 247*2^5477512+1 1648898 L5373 2024 599 129*2^5453363+1 1641628 L6083 2024 600 1828858^262144+1 1641593 L4200 2016 Generalized Fermat 601 258317*2^5450519+1 1640776 g414 2008 602 7*6^2104746+1 1637812 L4965 2019 603 91*2^5435752+1 1636327 L5214 2024 604 159*2^5432226+1 1635266 L6082 2024 605 193*2^5431414+1 1635021 L5214 2024 606 5*2^5429494-1 1634442 L3345 2017 607 77*2^5422903+1 1632459 A2 2024 Divides GF(5422902,12) 608 165*2^5416628+1 1630570 L5537 2024 609 147*2^5410159+1 1628623 L5517 2024 610 285*2^5408709+1 1628187 L5178 2024 611 43*2^5408183-1 1628027 L1884 2018 612 8*815^559138-1 1627740 A26 2024 613 1615588^262144+1 1627477 L4200 2016 Generalized Fermat 614 245*2^5404089+1 1626796 L5282 2024 615 2*296598^296598-1 1623035 L4965 2022 616 127*2^5391378+1 1622969 L5178 2024 617 1349*2^5385004-1 1621051 L1828 2017 618 1488256^262144+1 1618131 L4249 2016 Generalized Fermat 619 153*2^5369765+1 1616463 L5969 2024 620 1415198^262144+1 1612400 L4308 2016 Generalized Fermat 621 84*730^560037+1 1603569 A12 2024 622 93*2^5323466+1 1602525 L5537 2024 623 237*2^5315983+1 1600273 L6064 2024 624 45*2^5308037+1 1597881 L4761 2019 625 5468*70^864479-1 1595053 L5410 2022 626 131*2^5298475+1 1595003 L5517 2024 627 237*2^5291999+1 1593053 L5532 2024 628 221*2^5284643+1 1590839 L5517 2024 629 92*10^1585996-1 1585998 L4789 2023 Near-repdigit 630 1082083^262144-1082083^131072+1 1581846 L4506 2017 Generalized unique 631 247*2^5254234+1 1581685 L5923 2024 632 273*2^5242597+1 1578182 L5192 2024 633 7*2^5229669-1 1574289 L4965 2021 634 180062*5^2249192-1 1572123 L4435 2016 635 124125*6^2018254+1 1570512 L4001 2019 636 27*2^5213635+1 1569462 L3760 2015 637 227*2^5213195+1 1569331 L5517 2024 638 9992*10^1567410-1 1567414 L4879 2020 Near-repdigit 639 27*252^652196+1 1566186 A21 2024 640 149*2^5196375+1 1564267 L5174 2024 641 277*2^5185268+1 1560924 L5888 2024 642 308084!+1 1557176 p425 2022 Factorial 643 843575^262144-843575^131072+1 1553498 L4506 2017 Generalized unique 644 25*2^5152151-1 1550954 L1884 2020 645 125*2^5149981+1 1550301 L6042 2024 646 147*2^5146964+1 1549393 L5559 2024 647 53546*5^2216664-1 1549387 L4398 2016 648 773620^262144+1 1543643 L3118 2012 Generalized Fermat 649 39*2^5119458+1 1541113 L1204 2019 650 607*26^1089034+1 1540957 L5410 2021 651 81*2^5115131+1 1539810 L4965 2022 Divides GF(5115128,12) [GG] 652 223*2^5105835-1 1537012 L2484 2019 653 99*10^1536527-1 1536529 L4879 2019 Near-repdigit 654 81*2^5100331+1 1535355 L4965 2022 Divides GF(5100327,6) [GG] 655 992*10^1533933-1 1533936 L4879 2019 Near-repdigit 656 51*2^5085142-1 1530782 L760 2014 657 3*2^5082306+1 1529928 L780 2009 Divides GF(5082303,3), GF(5082305,5) 658 676754^262144+1 1528413 L2975 2012 Generalized Fermat 659 296024*5^2185270-1 1527444 L671 2016 660 181*2^5057960+1 1522600 L5178 2024 661 5359*2^5054502+1 1521561 SB6 2003 662 175*2^5049344+1 1520007 L5178 2024 663 183*2^5042357+1 1517903 L5178 2024 664 1405486*12^1405486-1 1516781 L5765 2023 Generalized Woodall 665 53*2^5019181+1 1510926 L4965 2023 666 131*2^5013361+1 1509175 L5178 2024 667 13*2^4998362+1 1504659 L3917 2014 668 525094^262144+1 1499526 p338 2012 Generalized Fermat 669 92158*5^2145024+1 1499313 L4348 2016 670 499238*10^1497714-1 1497720 L4976 2019 Generalized Woodall 671 357*2^4972628+1 1496913 L5783 2024 672 77072*5^2139921+1 1495746 L4340 2016 673 175*2^4965756+1 1494844 L5888 2024 674 221*2^4960867+1 1493373 L5178 2024 675 375*2^4950021+1 1490108 L5178 2024 676 2*3^3123036+1 1490068 L5043 2020 677 75*2^4940218+1 1487156 L5517 2024 Divides GF(4940214,12) 678 95*2^4929067+1 1483799 L5172 2024 679 161*2^4928111+1 1483512 L5961 2024 680 51*2^4923905+1 1482245 L4965 2023 681 289*2^4911870+1 1478623 L5178 2024 Generalized Fermat 682 519397*2^4908893-1 1477730 L5410 2022 683 306398*5^2112410-1 1476517 L4274 2016 684 183*2^4894125+1 1473281 L5961 2024 Divides GF(4894123,3), GF(4894124,5) 685 39*684^519468-1 1472723 L5410 2023 686 195*2^4887935+1 1471418 L5261 2024 687 281*2^4886723+1 1471053 L5971 2024 688 281*2^4879761+1 1468957 L5961 2024 689 96*789^506568+1 1467569 A14 2024 690 243*2^4872108+1 1466654 L5178 2024 691 213*2^4865126+1 1464552 L5803 2024 692 265711*2^4858008+1 1462412 g414 2008 693 154222*5^2091432+1 1461854 L3523 2015 694 1271*2^4850526-1 1460157 L1828 2012 695 333*2^4846958-1 1459083 L5546 2022 696 357*2^4843507+1 1458044 L5178 2024 697 156*532^534754-1 1457695 L5410 2023 698 362978^262144-362978^131072+1 1457490 p379 2015 Generalized unique 699 361658^262144+1 1457075 p332 2011 Generalized Fermat 700 231*2^4836124+1 1455821 L5517 2024 701 7*10^1454508+1 1454509 p439 2024 702 303*2^4829593+1 1453855 L5706 2024 703 100186*5^2079747-1 1453686 L4197 2015 704 375*2^4824253+1 1452248 L5625 2024 705 288465!+1 1449771 p3 2022 Factorial 706 15*2^4800315+1 1445040 L1754 2019 Divides GF(4800313,3), GF(4800310,5) 707 235*2^4799708+1 1444859 L5971 2024 708 347*2^4798851+1 1444601 L5554 2024 709 239*2^4795541+1 1443605 L5995 2024 710 2^4792057-2^2396029+1 1442553 L3839 2014 Gaussian Mersenne norm 40, generalized unique 711 92*10^1439761-1 1439763 L4789 2020 Near-repdigit 712 269*2^4777025+1 1438031 L5683 2024 713 653*10^1435026-1 1435029 p355 2014 714 197*2^4765318-1 1434506 L5175 2021 715 1401*2^4759435-1 1432736 L4965 2023 716 2169*2^4754343-1 1431204 L4965 2023 717 188*468^535963+1 1431156 L4832 2019 718 1809*2^4752792-1 1430737 L4965 2022 719 61*2^4749928+1 1429873 L5285 2024 720 2427*2^4749044-1 1429609 L4965 2022 721 303*2^4748019-1 1429299 L5545 2023 722 2259*2^4746735-1 1428913 L4965 2022 723 309*2^4745713-1 1428605 L5545 2023 724 183*2^4740056+1 1426902 L5945 2024 725 2223*2^4729304-1 1423666 L4965 2022 726 1851*2^4727663-1 1423172 L4965 2022 727 1725*2^4727375-1 1423085 L4965 2022 728 1611*2^4724014-1 1422074 L4965 2022 729 1383*2^4719270-1 1420645 L4965 2022 730 1749*2^4717431-1 1420092 L4965 2022 731 321*2^4715725+1 1419578 L5178 2024 732 371*2^4715211+1 1419423 L5527 2024 733 2325*2^4713991-1 1419057 L4965 2022 734 3267113#-1 1418398 p301 2021 Primorial 735 291*2^4708553+1 1417419 L5308 2024 736 100*406^543228+1 1417027 L5410 2020 Generalized Fermat 737 2337*2^4705660-1 1416549 L4965 2022 738 1229*2^4703492-1 1415896 L1828 2018 739 303*2^4694937+1 1413320 L5977 2024 740 3719*30^956044-1 1412197 L5410 2023 741 6*894^478421-1 1411983 L4294 2023 742 263*2^4688269+1 1411313 L5904 2024 743 155*2^4687127+1 1410969 L5969 2024 744 144052*5^2018290+1 1410730 L4146 2015 745 195*2^4685711-1 1410542 L5175 2021 746 9*2^4683555-1 1409892 L1828 2012 747 31*2^4673544+1 1406879 L4990 2019 748 34*993^469245+1 1406305 L4806 2018 749 197*2^4666979+1 1404903 L5233 2024 750 79*2^4658115-1 1402235 L1884 2018 751 39*2^4657951+1 1402185 L1823 2019 752 4*650^498101-1 1401116 L4294 2021 753 11*2^4643238-1 1397755 L2484 2014 754 884411*38^884411+1 1397184 L5765 2023 Generalized Cullen 755 68*995^465908-1 1396712 L4001 2017 756 7*6^1793775+1 1395830 L4965 2019 757 269*2^4636583+1 1395753 L5509 2024 758 117*2^4632990+1 1394672 L5960 2024 759 213*2^4625484+1 1392412 L5956 2024 760c 2*914^469757+1 1390926 A11 2025 761f 1425*2^4618342+1 1390263 L1134 2024 762 4*7^1640811+1 1386647 A2 2024 763 192098^262144-192098^131072+1 1385044 p379 2015 Generalized unique 764 339*2^4592225+1 1382401 L5302 2024 765 6*10^1380098+1 1380099 L5009 2023 766 27*2^4583717-1 1379838 L2992 2014 767 221*2^4578577+1 1378292 L5710 2024 768 359*2^4578161+1 1378167 L5894 2024 769 3^2888387-3^1444194+1 1378111 L5123 2023 Generalized unique 770 1198433*14^1198433+1 1373564 L5765 2023 Generalized Cullen 771 67*2^4561350+1 1373105 L5614 2024 772 121*2^4553899-1 1370863 L3023 2012 773 231*2^4552115+1 1370326 L5302 2024 774 223*2^4549924+1 1369666 L5904 2024 775 9473*2^4543680-1 1367788 L5037 2022 776 27*2^4542344-1 1367384 L1204 2014 777 29*2^4532463+1 1364409 L4988 2019 778 4*797^468702+1 1359920 L4548 2017 Generalized Fermat 779 145310^262144+1 1353265 p314 2011 Generalized Fermat 780 2*3^2834778-1 1352534 A2 2024 781 479*2^4492481+1 1352375 L5882 2024 782 373*2^4487274+1 1350807 L5320 2024 783 527*2^4486247+1 1350498 L5178 2024 784 25*2^4481024+1 1348925 L4364 2019 Generalized Fermat 785 83*2^4479409+1 1348439 L5178 2024 786 417*2^4473466+1 1346651 L5178 2024 787 81*536^493229+1 1346106 p431 2023 788 303*2^4471002-1 1345909 L5545 2022 789 1425*2^4469783+1 1345542 L1134 2023 790 2*1283^432757+1 1345108 L4879 2019 Divides Phi(1283^432757,2) 791 1-V(-2,-2,3074821)-2^3074821 1342125 p437 2024 792 447*2^4457132+1 1341734 L5875 2024 793 36772*6^1723287-1 1340983 L1301 2014 794 583854*14^1167708-1 1338349 L4976 2019 Generalized Woodall 795 20*634^476756-1 1335915 L4975 2023 796 297*2^4432947+1 1334453 L5178 2023 797 85*2^4432870+1 1334429 L4965 2023 798 151*2^4424321-1 1331856 L1884 2016 799 231*2^4422227+1 1331226 L5192 2023 800 131*2^4421071+1 1330878 L5178 2023 801 225*2^4419349+1 1330359 L5866 2023 802 1485*2^4416137+1 1329393 L1134 2024 803 469*2^4414802+1 1328991 L5830 2023 804 549*2^4411029+1 1327855 L5862 2023 805 445*2^4410256+1 1327622 L5537 2023 806 259*2^4395550+1 1323195 L5858 2023 807 219*2^4394846+1 1322983 L5517 2023 808 165*2^4379097+1 1318242 L5852 2023 809 183*2^4379002+1 1318214 L5476 2023 810 1455*2^4376470+1 1317452 L1134 2023 811 165*2^4375458+1 1317147 L5851 2023 812 195*2^4373994-1 1316706 L5175 2020 813 381*2^4373129+1 1316446 L5421 2023 814d 2008551*2^4371904+1 1316081 g431 2025 815 (10^657559-1)^2-2 1315118 p405 2022 Near-repdigit 816 49*2^4365175-1 1314051 L1959 2017 817 49*2^4360869-1 1312755 L1959 2017 818 253*2^4358512+1 1312046 L875 2023 819 219*2^4354805+1 1310930 L5848 2023 820 249*2^4351621+1 1309971 L5260 2023 821 159*2^4348734+1 1309102 L5421 2023 822 115*2^4347620+1 1308767 L5178 2023 823 533*2^4338237+1 1305943 L5260 2023 824 141*2^4337804+1 1305812 L5178 2023 825 363*2^4334518+1 1304823 L5261 2023 826 299*2^4333939+1 1304649 L5517 2023 827 13*2^4333087-1 1304391 L1862 2018 828 353159*2^4331116-1 1303802 L2408 2011 829 195*2^4330189+1 1303520 L5178 2023 830 145*2^4327756+1 1302787 L5517 2023 831a 31*980^433853-1 1297754 A11 2025 832 9959*2^4308760-1 1297071 L5037 2022 833 195*2^4304861+1 1295895 L5178 2023 834 23*2^4300741+1 1294654 L4147 2019 835 682156*79^682156+1 1294484 L4472 2016 Generalized Cullen 836 141941*2^4299438-1 1294265 L689 2011 837 87*2^4297718+1 1293744 L4965 2023 838 22*905^437285-1 1292900 L5342 2024 839 435*2^4292968+1 1292315 L5783 2023 840 993149*20^993149+1 1292123 L5765 2023 Generalized Cullen 841 415*2^4280864+1 1288672 L5818 2023 842 79*2^4279006+1 1288112 L4965 2023 843 205*2^4270310+1 1285494 L5517 2023 844 483*2^4270112+1 1285435 L5178 2023 845 123*2^4266441+1 1284329 L5178 2023 846 612749*2^4254500-1 1280738 L5410 2022 847a 3883403*2^4254462-1 1280728 L5327 2025 848 223*2^4252660+1 1280181 L5178 2023 849 1644731*6^1644731+1 1279856 L5765 2023 Generalized Cullen 850 38*380^495986-1 1279539 L5410 2023 851 2*1151^417747+1 1278756 L4879 2019 Divides Phi(1151^417747,2) 852 15*2^4246384+1 1278291 L3432 2013 Divides GF(4246381,6) 853 3*2^4235414-1 1274988 L606 2008 854 2*1259^411259+1 1274914 L4879 2020 Divides Phi(1259^411259,2) 855 93*2^4232892+1 1274230 L4965 2023 856 131*2^4227493+1 1272605 L5226 2023 857 45*436^481613+1 1271213 L5410 2020 858 109208*5^1816285+1 1269534 L3523 2014 859 435*2^4216447+1 1269280 L5178 2023 860 1091*2^4215518-1 1269001 L1828 2018 861 191*2^4203426-1 1265360 L2484 2012 862 269*2^4198809+1 1263970 L5226 2023 863 545*2^4198333+1 1263827 L5804 2023 864 53*2^4197093+1 1263453 L5563 2023 865 1259*2^4196028-1 1263134 L1828 2016 866 329*2^4193199+1 1262282 L5226 2023 867 141*2^4192911+1 1262195 L5226 2023 Divides Fermat F(4192909) 868 325918*5^1803339-1 1260486 L3567 2014 869c 1160*745^438053-1 1258160 L4189 2025 870d 16723*820^431579+1 1257546 A11 2025 871 345*2^4173969+1 1256493 L5226 2023 872 161*2^4164267+1 1253572 L5178 2023 873 135*2^4162529+1 1253049 L5178 2023 Divides GF(4162525,10) 874 177*2^4162494+1 1253038 L5796 2023 875 237*2^4153348+1 1250285 L5178 2023 876 69*2^4151165+1 1249628 L4965 2023 877 133778*5^1785689+1 1248149 L3903 2014 878 201*2^4146003+1 1248074 L5161 2023 879 329*2^4136019+1 1245069 L5178 2023 880 81*2^4131975+1 1243851 L4965 2022 881 459*2^4129577+1 1243130 L5226 2023 882 551*2^4126303+1 1242144 L5226 2023 883 363*2^4119017+1 1239951 L5226 2023 884 105*2^4113039+1 1238151 L5178 2023 885 204*532^454080-1 1237785 L5410 2023 886 41*684^436354+1 1237090 L4444 2023 887 17*2^4107544-1 1236496 L4113 2015 888 261*2^4106385+1 1236148 L5178 2023 889 24032*5^1768249+1 1235958 L3925 2014 890 172*159^561319-1 1235689 L4001 2017 891 10^1234567-20342924302*10^617278-1 1234567 p423 2021 Palindrome 892 10^1234567-1927633367291*10^617277-1 1234567 p423 2023 Palindrome 893 10^1234567-3626840486263*10^617277-1 1234567 p423 2021 Palindrome 894 10^1234567-4708229228074*10^617277-1 1234567 p423 2021 Palindrome 895 67*2^4100746+1 1234450 L5178 2023 896 191*2^4099097+1 1233954 L5563 2023 897 325*2^4097700+1 1233534 L5226 2023 898 519*2^4095491+1 1232869 L5226 2023 899 111*2^4091044+1 1231530 L5783 2023 Divides GF(4091041,3) 900 1182072*11^1182072-1 1231008 L5765 2023 Generalized Woodall 901 64*425^467857-1 1229712 p268 2021 902 8*558^447047+1 1227876 A28 2024 903 163*778^424575+1 1227440 A11 2024 904 381*2^4069617+1 1225080 L5226 2023 905 97*2^4066717-1 1224206 L2484 2019 906 95*2^4063895+1 1223357 L5226 2023 907 79*2^4062818+1 1223032 L5178 2023 908 1031*2^4054974-1 1220672 L1828 2017 909 309*2^4054114+1 1220413 L5178 2023 910 2022202116^131072+1 1219734 L4704 2022 Generalized Fermat 911 37*2^4046360+1 1218078 L2086 2019 912 141*2^4043116+1 1217102 L5517 2023 913b 172*360^474814+1 1213771 A28 2025 914 39653*430^460397-1 1212446 L4187 2016 915 1777034894^131072+1 1212377 L4704 2022 Generalized Fermat 916 141*2^4024411+1 1211471 L5226 2023 917 515*2^4021165+1 1210494 L5174 2023 918 73*2^4016912+1 1209213 L5226 2023 919 40734^262144+1 1208473 p309 2011 Generalized Fermat 920 235*2^4013398+1 1208156 L5178 2023 921 9*2^4005979-1 1205921 L1828 2012 922 417*2^4003224+1 1205094 L5764 2023 923 12*68^656921+1 1203815 L4001 2016 924 67*688^423893+1 1202836 L4001 2017 925 221*2^3992723+1 1201932 L5178 2023 926 213*2^3990702+1 1201324 L5216 2023 927 1993191*2^3986382-1 1200027 L3532 2015 Generalized Woodall 928 163*2^3984604+1 1199488 L5756 2023 929 725*2^3983355+1 1199113 L5706 2023 930 (146^276995+1)^2-2 1199030 p405 2022 931 455*2^3981067+1 1198424 L5724 2023 932 138172*5^1714207-1 1198185 L3904 2014 933 50*383^463313+1 1196832 L2012 2021 934 339*2^3974295+1 1196385 L5178 2023 935 699*2^3974045+1 1196310 L5750 2023 936 1202113^196608-1202113^98304+1 1195366 L4506 2016 Generalized unique 937 29*2^3964697+1 1193495 L1204 2019 938 599*2^3963655+1 1193182 L5226 2023 939 683*2^3962937+1 1192966 L5226 2023 940 39*2^3961129+1 1192421 L1486 2019 941 165*2^3960664+1 1192281 L5178 2023 942 79*2^3957238+1 1191250 L5745 2023 943 687*2^3955918+1 1190853 L5554 2023 Divides GF(3955915,6) 944 163*2^3954818+1 1190522 L5178 2023 945 431*2^3953647+1 1190169 L5554 2023 946 1110815^196608-1110815^98304+1 1188622 L4506 2016 Generalized unique 947 341*2^3938565+1 1185629 L5554 2023 948 503*2^3936845+1 1185112 L5706 2023 949 717*2^3934760+1 1184484 L5285 2023 950 493*2^3929192+1 1182808 L5161 2023 951 273*2^3929128+1 1182788 L5554 2023 952 609*2^3928682+1 1182654 L5178 2023 953 609*2^3928441+1 1182582 L5527 2023 954 281*2^3926467+1 1181987 L5174 2023 955 153*2^3922478+1 1180786 L5554 2023 956 69*2^3920863+1 1180300 L5554 2023 957 273*2^3919321+1 1179836 L5706 2023 958 531*2^3918985+1 1179735 L5706 2023 959 1000032472^131072+1 1179650 L4704 2022 Generalized Fermat 960 555*2^3916875+1 1179100 L5302 2023 961 571*2^3910616+1 1177216 L5178 2023 962 421*2^3905144+1 1175569 L5600 2023 963 P1174253 1174253 p414 2022 964 567*2^3897588+1 1173294 L5600 2023 965 417*2^3895404+1 1172637 L5600 2023 966 539*2^3894953+1 1172501 L5285 2023 967 645*2^3893849+1 1172169 L5600 2023 968 818764*3^2456293-1 1171956 L4965 2023 Generalized Woodall 969 22478*5^1675150-1 1170884 L3903 2014 970 1199*2^3889576-1 1170883 L1828 2018 971 298989*2^3886857+1 1170067 L2777 2014 Generalized Cullen 972 93*10^1170023-1 1170025 L4789 2022 Near-repdigit 973 711*2^3886480+1 1169950 L5320 2023 974 375*2^3884634+1 1169394 L5600 2023 975c 445583*2^3883406-1 1169028 L5327 2025 976 94*872^397354+1 1168428 L5410 2019 977 269*2^3877485+1 1167242 L5649 2023 978 163*2^3874556+1 1166360 L5646 2023 Divides GF(3874552,5) 979 1365*2^3872811+1 1165836 L1134 2023 980 313*2^3869536+1 1164849 L5600 2023 981 159*2^3860863+1 1162238 L5226 2023 982 445*2^3860780+1 1162214 L5640 2023 983 397*2^3859450+1 1161813 L5226 2023 984 685*2^3856790+1 1161013 L5226 2023 985 27*2^3855094-1 1160501 L3033 2012 986 537*2^3853860+1 1160131 L5636 2022 987 164*978^387920-1 1160015 L4700 2018 988 175*2^3850344+1 1159072 L5226 2022 989 685*2^3847268+1 1158146 L5226 2022 990 655*2^3846352+1 1157871 L5282 2022 991 583*2^3846196+1 1157824 L5226 2022 992 615*2^3844151+1 1157208 L5226 2022 993 14772*241^485468-1 1156398 L5410 2022 994 525*2^3840963+1 1156248 L5613 2022 995 313*2^3837304+1 1155147 L5298 2022 996 49*2^3837090+1 1155081 L4979 2019 Generalized Fermat 997 431*2^3835247+1 1154528 L5161 2022 998 97*2^3833722+1 1154068 L5226 2022 999 2*839^394257+1 1152714 L4879 2019 Divides Phi(839^394257,2) 1000 125*392^444161+1 1151839 L4832 2022 1001 255*2^3824348+1 1151246 L5226 2022 1002 30*514^424652-1 1151218 L4001 2017 1003 569*2^3823191+1 1150898 L5226 2022 1004 24518^262144+1 1150678 g413 2008 Generalized Fermat 1005 563*2^3819237+1 1149708 L5178 2022 1006 345*2^3817949+1 1149320 L5373 2022 1007 700219^196608-700219^98304+1 1149220 L4506 2016 Generalized unique 1008 241*2^3815727-1 1148651 L2484 2019 1009 351*2^3815467+1 1148573 L5226 2022 1010 109*980^383669-1 1147643 L4001 2018 1011 427*2^3811610+1 1147412 L5614 2022 1012 569*2^3810475+1 1147071 L5610 2022 1013 213*2^3807864+1 1146284 L5609 2022 1014 87*2^3806438+1 1145854 L5607 2022 1015 369*2^3805321+1 1145519 L5541 2022 1016 123547*2^3804809-1 1145367 L2371 2011 1017 2564*75^610753+1 1145203 L3610 2014 1018 539*2^3801705+1 1144430 L5161 2022 1019 159*2^3801463+1 1144357 L5197 2022 1020 235*2^3801284+1 1144303 L5608 2022 1021 660955^196608-660955^98304+1 1144293 L4506 2016 Generalized unique 1022 519*2^3800625+1 1144105 L5315 2022 1023 281*2^3798465+1 1143455 L5178 2022 1024 166*443^432000+1 1143249 L5410 2020 1025 85*2^3797698+1 1143223 L5161 2022 1026 326834*5^1634978-1 1142807 L3523 2014 1027 459*2^3795969+1 1142704 L5161 2022 1028 105*298^461505-1 1141866 L5841 2023 1029 447*2^3780151+1 1137942 L5596 2022 1030 345*2^3779921+1 1137873 L5557 2022 1031 477*2^3779871+1 1137858 L5197 2022 1032 251*2^3774587+1 1136267 L5592 2022 1033 439*2^3773958+1 1136078 L5557 2022 1034 43*182^502611-1 1135939 L4064 2020 1035 415267*2^3771929-1 1135470 L2373 2011 1036 11*2^3771821+1 1135433 p286 2013 1037 427*2^3768104+1 1134315 L5192 2022 1038 1455*2^3768024-1 1134292 L1134 2022 1039 711*2^3767492+1 1134131 L5161 2022 1040 265*2^3765189-1 1133438 L2484 2018 1041 297*2^3765140+1 1133423 L5197 2022 1042 381*2^3764189+1 1133137 L5589 2022 1043 115*2^3763650+1 1132974 L5554 2022 1044 411*2^3759067+1 1131595 L5589 2022 1045 405*2^3757192+1 1131031 L5590 2022 1046d 1981*2^3754984+1 1130367 A24 2025 1047 938237*2^3752950-1 1129757 L521 2007 Woodall 1048 399866798^131072+1 1127471 L4964 2019 Generalized Fermat 1049 701*2^3744713+1 1127274 L5554 2022 1050 207394*5^1612573-1 1127146 L3869 2014 1051 684*10^1127118+1 1127121 L4036 2017 1052 535386^196608-535386^98304+1 1126302 L4506 2016 Generalized unique 1053 104944*5^1610735-1 1125861 L3849 2014 1054 23451*2^3739388+1 1125673 L591 2015 1055 78*622^402915-1 1125662 L5645 2023 1056 615*2^3738023+1 1125260 L5161 2022 1057 347*2^3737875+1 1125216 L5178 2022 1058 163*2^3735726+1 1124568 L5477 2022 Divides GF(3735725,6) 1059 375*2^3733510+1 1123902 L5584 2022 1060 25*2^3733144+1 1123790 L2125 2019 Generalized Fermat 1061 629*2^3731479+1 1123290 L5283 2022 1062 113*2^3728113+1 1122276 L5161 2022 1063 303*2^3725438+1 1121472 L5161 2022 1064 187*2^3723972+1 1121030 L5178 2022 1065 2*1103^368361+1 1120767 L4879 2019 Divides Phi(1103^368361,2) 1066 105*2^3720512+1 1119988 L5493 2022 1067 447*2^3719024+1 1119541 L5493 2022 1068 177*2^3717746+1 1119156 L5279 2022 1069 2*131^528469+1 1118913 L4879 2019 Divides Phi(131^528469,2) 1070 123*2^3716758+1 1118858 L5563 2022 1071 313*2^3716716+1 1118846 L5237 2022 1072 367*2^3712952+1 1117713 L5264 2022 1073 53*2^3709297+1 1116612 L5197 2022 1074a 328110906^131072+1 1116212 L4387 2025 Generalized Fermat 1075a 328036906^131072+1 1116200 L4201 2025 Generalized Fermat 1076a 327703514^131072+1 1116142 L5974 2025 Generalized Fermat 1077a 327549800^131072+1 1116115 L6129 2025 Generalized Fermat 1078a 327476480^131072+1 1116102 L4201 2025 Generalized Fermat 1079a 327239720^131072+1 1116061 L4984 2025 Generalized Fermat 1080a 326302488^131072+1 1115898 L5722 2025 Generalized Fermat 1081a 326104126^131072+1 1115863 L4684 2025 Generalized Fermat 1082a 325957720^131072+1 1115838 L5186 2025 Generalized Fermat 1083a 325927678^131072+1 1115832 L6245 2025 Generalized Fermat 1084a 325913944^131072+1 1115830 L4387 2025 Generalized Fermat 1085a 325084378^131072+1 1115685 L4201 2025 Generalized Fermat 1086a 325043708^131072+1 1115678 L4201 2025 Generalized Fermat 1087a 324844530^131072+1 1115643 L4939 2025 Generalized Fermat 1088a 324830528^131072+1 1115640 L4599 2025 Generalized Fermat 1089a 324563740^131072+1 1115594 L5639 2025 Generalized Fermat 1090a 324342882^131072+1 1115555 L4201 2025 Generalized Fermat 1091a 323718292^131072+1 1115445 L4201 2025 Generalized Fermat 1092a 323626506^131072+1 1115429 L4201 2025 Generalized Fermat 1093b 323033558^131072+1 1115325 L6073 2025 Generalized Fermat 1094b 322955442^131072+1 1115311 L5767 2025 Generalized Fermat 1095b 322525546^131072+1 1115235 L4201 2025 Generalized Fermat 1096b 322451080^131072+1 1115222 L5452 2025 Generalized Fermat 1097b 322434876^131072+1 1115219 L4201 2025 Generalized Fermat 1098b 322396080^131072+1 1115212 L6237 2025 Generalized Fermat 1099b 322011364^131072+1 1115144 L4201 2025 Generalized Fermat 1100b 321847328^131072+1 1115115 L4387 2025 Generalized Fermat 1101b 321745654^131072+1 1115097 L4201 2025 Generalized Fermat 1102b 321738090^131072+1 1115096 L4760 2025 Generalized Fermat 1103b 321725062^131072+1 1115094 L6090 2025 Generalized Fermat 1104b 321586916^131072+1 1115069 L4201 2025 Generalized Fermat 1105 2^3704053+2^1852027+1 1115032 L3839 2014 Gaussian Mersenne norm 39, generalized unique 1106b 321054002^131072+1 1114975 L6092 2025 Generalized Fermat 1107b 320959460^131072+1 1114958 L4774 2025 Generalized Fermat 1108b 320925816^131072+1 1114952 L6229 2025 Generalized Fermat 1109b 320693846^131072+1 1114911 L6230 2025 Generalized Fermat 1110b 320244692^131072+1 1114831 L6227 2025 Generalized Fermat 1111b 319727682^131072+1 1114739 L4477 2025 Generalized Fermat 1112b 319569620^131072+1 1114711 L5156 2025 Generalized Fermat 1113b 319473204^131072+1 1114694 L6085 2025 Generalized Fermat 1114b 319461008^131072+1 1114692 L4760 2025 Generalized Fermat 1115b 317844906^131072+1 1114403 L5069 2025 Generalized Fermat 1116b 317488260^131072+1 1114339 L5069 2025 Generalized Fermat 1117 395*2^3701693+1 1114324 L5536 2022 1118c 317365236^131072+1 1114317 L6036 2025 Generalized Fermat 1119b 317303160^131072+1 1114306 L5707 2025 Generalized Fermat 1120c 317185514^131072+1 1114285 L4201 2025 Generalized Fermat 1121c 317005818^131072+1 1114252 L5069 2025 Generalized Fermat 1122c 316699096^131072+1 1114197 L5234 2025 Generalized Fermat 1123c 316650634^131072+1 1114189 L5698 2025 Generalized Fermat 1124c 316586358^131072+1 1114177 L4747 2025 Generalized Fermat 1125c 316525620^131072+1 1114166 L4835 2025 Generalized Fermat 1126c 316291718^131072+1 1114124 L4835 2025 Generalized Fermat 1127c 315974676^131072+1 1114067 L5069 2025 Generalized Fermat 1128c 315889316^131072+1 1114052 L5234 2025 Generalized Fermat 1129c 315747878^131072+1 1114026 L5989 2025 Generalized Fermat 1130b 315608702^131072+1 1114001 L5577 2025 Generalized Fermat 1131c 315329034^131072+1 1113950 L5378 2025 Generalized Fermat 1132c 315314084^131072+1 1113948 L5718 2025 Generalized Fermat 1133c 315134738^131072+1 1113915 L5697 2025 Generalized Fermat 1134c 314548296^131072+1 1113809 L4774 2025 Generalized Fermat 1135c 314518672^131072+1 1113804 L5720 2025 Generalized Fermat 1136 589*2^3699954+1 1113800 L5576 2022 1137c 314283852^131072+1 1113761 L6220 2025 Generalized Fermat 1138 314187728^131072+1 1113744 L4704 2019 Generalized Fermat 1139c 313957156^131072+1 1113702 L4201 2025 Generalized Fermat 1140b 313807832^131072+1 1113675 L4309 2025 Generalized Fermat 1141c 313698494^131072+1 1113655 L4791 2025 Generalized Fermat 1142c 313043470^131072+1 1113536 L4870 2025 Generalized Fermat 1143c 312959344^131072+1 1113521 L5989 2025 Generalized Fermat 1144c 312907040^131072+1 1113512 L4835 2025 Generalized Fermat 1145c 312372774^131072+1 1113414 L5732 2025 Generalized Fermat 1146c 312306760^131072+1 1113402 L5782 2025 Generalized Fermat 1147 119*2^3698412-1 1113336 L2484 2018 1148c 311769070^131072+1 1113304 L5378 2025 Generalized Fermat 1149c 311345600^131072+1 1113227 L4201 2025 Generalized Fermat 1150c 311340274^131072+1 1113226 L5234 2025 Generalized Fermat 1151c 311041040^131072+1 1113171 L5974 2025 Generalized Fermat 1152c 310877094^131072+1 1113141 L5378 2025 Generalized Fermat 1153c 310324620^131072+1 1113040 L5069 2025 Generalized Fermat 1154c 310092052^131072+1 1112997 L4201 2025 Generalized Fermat 1155c 310040910^131072+1 1112988 L5989 2025 Generalized Fermat 1156c 310039364^131072+1 1112987 L5452 2025 Generalized Fermat 1157c 309765652^131072+1 1112937 L5069 2025 Generalized Fermat 1158c 309739652^131072+1 1112932 L4201 2025 Generalized Fermat 1159c 309664690^131072+1 1112919 L4904 2025 Generalized Fermat 1160c 309512820^131072+1 1112891 L4672 2025 Generalized Fermat 1161c 309489574^131072+1 1112886 L4285 2025 Generalized Fermat 1162c 309442124^131072+1 1112878 L4763 2025 Generalized Fermat 1163c 309322056^131072+1 1112856 L5763 2025 Generalized Fermat 1164c 309290162^131072+1 1112850 L4984 2025 Generalized Fermat 1165c 309274552^131072+1 1112847 L4870 2025 Generalized Fermat 1166c 309198216^131072+1 1112833 L6220 2025 Generalized Fermat 1167c 309023380^131072+1 1112801 L5586 2025 Generalized Fermat 1168c 308604278^131072+1 1112723 L5814 2025 Generalized Fermat 1169c 308406372^131072+1 1112687 L5069 2025 Generalized Fermat 1170c 308191838^131072+1 1112647 L4411 2025 Generalized Fermat 1171c 308154186^131072+1 1112640 L4672 2025 Generalized Fermat 1172c 308065536^131072+1 1112624 L5617 2025 Generalized Fermat 1173c 307819786^131072+1 1112579 L4733 2025 Generalized Fermat 1174c 307711366^131072+1 1112558 L5375 2025 Generalized Fermat 1175c 307525070^131072+1 1112524 L5234 2025 Generalized Fermat 1176c 307305996^131072+1 1112483 L5871 2025 Generalized Fermat 1177c 307211976^131072+1 1112466 L5234 2025 Generalized Fermat 1178c 306999614^131072+1 1112427 L6215 2025 Generalized Fermat 1179c 306293130^131072+1 1112295 L4252 2025 Generalized Fermat 1180c 306021044^131072+1 1112245 L5029 2025 Generalized Fermat 1181c 305985812^131072+1 1112238 L4672 2025 Generalized Fermat 1182c 305909498^131072+1 1112224 L5869 2025 Generalized Fermat 1183c 305710338^131072+1 1112187 L5155 2025 Generalized Fermat 1184c 305485026^131072+1 1112145 L6217 2025 Generalized Fermat 1185c 305470708^131072+1 1112142 L4245 2025 Generalized Fermat 1186c 305377046^131072+1 1112125 L4775 2025 Generalized Fermat 1187c 305014830^131072+1 1112057 L5041 2025 Generalized Fermat 1188c 304591806^131072+1 1111978 L5069 2025 Generalized Fermat 1189 391*2^3693728+1 1111926 L5493 2022 1190c 303660042^131072+1 1111804 L5548 2025 Generalized Fermat 1191c 303569754^131072+1 1111787 L5041 2025 Generalized Fermat 1192c 303297636^131072+1 1111736 L5069 2025 Generalized Fermat 1193c 303057534^131072+1 1111691 L5797 2025 Generalized Fermat 1194c 302824086^131072+1 1111647 L4252 2025 Generalized Fermat 1195c 302491876^131072+1 1111585 L5273 2025 Generalized Fermat 1196c 302240442^131072+1 1111537 L5375 2025 Generalized Fermat 1197c 302186970^131072+1 1111527 L5030 2025 Generalized Fermat 1198c 302150100^131072+1 1111520 L5586 2025 Generalized Fermat 1199c 301715144^131072+1 1111438 L5234 2025 Generalized Fermat 1200c 301702734^131072+1 1111436 L6205 2025 Generalized Fermat 1201c 301006780^131072+1 1111304 L5375 2025 Generalized Fermat 1202c 300951448^131072+1 1111294 L6092 2025 Generalized Fermat 1203c 300789064^131072+1 1111263 L5041 2025 Generalized Fermat 1204c 300359914^131072+1 1111182 L6207 2025 Generalized Fermat 1205e 1089049*2^3691010+1 1111111 A51 2024 1206c 299617962^131072+1 1111041 L6170 2025 Generalized Fermat 1207c 299465954^131072+1 1111012 L5378 2025 Generalized Fermat 1208c 299453316^131072+1 1111010 L6207 2025 Generalized Fermat 1209c 299319324^131072+1 1110984 L5378 2025 Generalized Fermat 1210c 298464340^131072+1 1110822 L5019 2025 Generalized Fermat 1211c 298459970^131072+1 1110821 L4477 2025 Generalized Fermat 1212c 297844594^131072+1 1110703 L5029 2025 Generalized Fermat 1213c 297797756^131072+1 1110694 L6096 2025 Generalized Fermat 1214c 297561734^131072+1 1110649 L5070 2025 Generalized Fermat 1215c 297347764^131072+1 1110608 L4201 2025 Generalized Fermat 1216c 297200042^131072+1 1110580 L5143 2025 Generalized Fermat 1217c 296855808^131072+1 1110514 L6205 2025 Generalized Fermat 1218c 296366230^131072+1 1110420 L6019 2025 Generalized Fermat 1219c 296322752^131072+1 1110412 L5462 2025 Generalized Fermat 1220c 296139756^131072+1 1110377 L5696 2025 Generalized Fermat 1221c 296013472^131072+1 1110352 L5156 2025 Generalized Fermat 1222c 295817758^131072+1 1110315 L5974 2025 Generalized Fermat 1223 485*2^3688111+1 1110235 L5237 2022 1224c 295265516^131072+1 1110208 L5391 2025 Generalized Fermat 1225c 295158064^131072+1 1110188 L4201 2025 Generalized Fermat 1226c 295116084^131072+1 1110179 L6202 2025 Generalized Fermat 1227c 295038452^131072+1 1110164 L6201 2025 Generalized Fermat 1228c 294901286^131072+1 1110138 L5880 2025 Generalized Fermat 1229c 294581562^131072+1 1110076 L4933 2025 Generalized Fermat 1230c 294287308^131072+1 1110019 L5029 2025 Generalized Fermat 1231c 294282868^131072+1 1110018 L5069 2025 Generalized Fermat 1232c 293950920^131072+1 1109954 L5019 2025 Generalized Fermat 1233c 293846126^131072+1 1109934 L4387 2025 Generalized Fermat 1234c 293634610^131072+1 1109893 L4659 2025 Generalized Fermat 1235c 293593596^131072+1 1109885 L5457 2025 Generalized Fermat 1236c 293229954^131072+1 1109814 L5069 2025 Generalized Fermat 1237 341*2^3686613+1 1109784 L5573 2022 1238 87*2^3686558+1 1109767 L5573 2022 1239c 292906440^131072+1 1109752 L5069 2025 Generalized Fermat 1240c 292462072^131072+1 1109665 L5586 2025 Generalized Fermat 1241c 291939158^131072+1 1109563 L5586 2025 Generalized Fermat 1242c 291644784^131072+1 1109506 L4201 2025 Generalized Fermat 1243c 291616626^131072+1 1109500 L5676 2025 Generalized Fermat 1244c 291515852^131072+1 1109481 L5697 2025 Generalized Fermat 1245c 291463322^131072+1 1109470 L5025 2025 Generalized Fermat 1246c 291165334^131072+1 1109412 L5637 2025 Generalized Fermat 1247c 290922092^131072+1 1109365 L5069 2025 Generalized Fermat 1248c 290470932^131072+1 1109276 L5069 2025 Generalized Fermat 1249c 290470146^131072+1 1109276 L5069 2025 Generalized Fermat 1250c 290289574^131072+1 1109241 L5586 2025 Generalized Fermat 1251c 290289300^131072+1 1109241 L5491 2025 Generalized Fermat 1252c 290203860^131072+1 1109224 L4835 2025 Generalized Fermat 1253c 290075834^131072+1 1109199 L5234 2025 Generalized Fermat 1254c 289805958^131072+1 1109146 L5234 2025 Generalized Fermat 1255c 289390778^131072+1 1109064 L5639 2025 Generalized Fermat 1256c 289176522^131072+1 1109022 L5041 2025 Generalized Fermat 1257c 288601570^131072+1 1108909 L6189 2025 Generalized Fermat 1258c 288168976^131072+1 1108823 L6187 2025 Generalized Fermat 1259c 287625360^131072+1 1108716 L4747 2025 Generalized Fermat 1260 675*2^3682616+1 1108581 L5231 2022 1261c 286460772^131072+1 1108485 L5069 2025 Generalized Fermat 1262c 286434328^131072+1 1108480 L4904 2025 Generalized Fermat 1263 569*2^3682167+1 1108446 L5488 2022 1264c 285803202^131072+1 1108354 L5473 2025 Generalized Fermat 1265c 285447574^131072+1 1108283 L5586 2025 Generalized Fermat 1266c 285446536^131072+1 1108283 L5687 2025 Generalized Fermat 1267c 284918308^131072+1 1108178 L4201 2025 Generalized Fermat 1268c 284831742^131072+1 1108160 L6085 2025 Generalized Fermat 1269c 284805838^131072+1 1108155 L5025 2025 Generalized Fermat 1270c 284753240^131072+1 1108145 L6185 2025 Generalized Fermat 1271c 284745724^131072+1 1108143 L5869 2025 Generalized Fermat 1272c 284001924^131072+1 1107994 L5416 2025 Generalized Fermat 1273c 283824490^131072+1 1107959 L5470 2025 Generalized Fermat 1274c 283699626^131072+1 1107934 L5234 2025 Generalized Fermat 1275c 283216606^131072+1 1107837 L5711 2025 Generalized Fermat 1276c 282839136^131072+1 1107761 L4756 2025 Generalized Fermat 1277c 281755198^131072+1 1107542 L5234 2025 Generalized Fermat 1278c 281635050^131072+1 1107518 L5697 2025 Generalized Fermat 1279 330286*5^1584399-1 1107453 L3523 2014 1280c 281238556^131072+1 1107438 L5041 2025 Generalized Fermat 1281c 281131678^131072+1 1107416 L4584 2025 Generalized Fermat 1282 34*951^371834-1 1107391 L5410 2019 1283c 280984376^131072+1 1107386 L5844 2025 Generalized Fermat 1284c 280877312^131072+1 1107364 L6178 2025 Generalized Fermat 1285c 280515348^131072+1 1107291 L5029 2025 Generalized Fermat 1286c 280391126^131072+1 1107266 L5011 2025 Generalized Fermat 1287c 280207586^131072+1 1107229 L5322 2025 Generalized Fermat 1288c 279991058^131072+1 1107185 L5526 2025 Generalized Fermat 1289c 279987304^131072+1 1107184 L5974 2025 Generalized Fermat 1290c 279919024^131072+1 1107170 L4672 2025 Generalized Fermat 1291 45*2^3677787+1 1107126 L1204 2019 1292c 279594222^131072+1 1107104 L5814 2025 Generalized Fermat 1293c 279533226^131072+1 1107091 L6176 2025 Generalized Fermat 1294c 279393398^131072+1 1107063 L5637 2025 Generalized Fermat 1295c 279257150^131072+1 1107035 L6177 2025 Generalized Fermat 1296c 278715552^131072+1 1106925 L6129 2025 Generalized Fermat 1297c 278620322^131072+1 1106905 L5069 2025 Generalized Fermat 1298c 278619282^131072+1 1106905 L5378 2025 Generalized Fermat 1299c 278524906^131072+1 1106886 L4249 2025 Generalized Fermat 1300c 278507178^131072+1 1106882 L5682 2025 Generalized Fermat 1301c 278237250^131072+1 1106827 L6182 2025 Generalized Fermat 1302c 278204564^131072+1 1106820 L5948 2025 Generalized Fermat 1303c 278190840^131072+1 1106817 L6183 2025 Generalized Fermat 1304c 277919980^131072+1 1106762 L5974 2025 Generalized Fermat 1305 625*2^3676300+1 1106680 L5302 2022 Generalized Fermat 1306c 277256590^131072+1 1106626 L6170 2025 Generalized Fermat 1307c 277085600^131072+1 1106591 L5974 2025 Generalized Fermat 1308c 276836574^131072+1 1106540 L4760 2025 Generalized Fermat 1309c 276775868^131072+1 1106527 L5549 2025 Generalized Fermat 1310c 276740330^131072+1 1106520 L6166 2025 Generalized Fermat 1311c 276607388^131072+1 1106492 L5782 2025 Generalized Fermat 1312c 276446036^131072+1 1106459 L5011 2025 Generalized Fermat 1313c 276329786^131072+1 1106435 L5718 2025 Generalized Fermat 1314 13*2^3675223-1 1106354 L1862 2016 1315c 275170262^131072+1 1106196 L5378 2025 Generalized Fermat 1316c 274919976^131072+1 1106144 L5378 2025 Generalized Fermat 1317c 274816000^131072+1 1106123 L6163 2025 Generalized Fermat 1318c 274753140^131072+1 1106110 L5974 2025 Generalized Fermat 1319c 274535798^131072+1 1106065 L5816 2025 Generalized Fermat 1320c 274280236^131072+1 1106012 L5070 2025 Generalized Fermat 1321c 273579644^131072+1 1105866 L6129 2025 Generalized Fermat 1322c 273503630^131072+1 1105850 L4309 2025 Generalized Fermat 1323c 273438512^131072+1 1105837 L5718 2025 Generalized Fermat 1324c 273327598^131072+1 1105813 L5512 2025 Generalized Fermat 1325c 273306974^131072+1 1105809 L4892 2025 Generalized Fermat 1326c 273272188^131072+1 1105802 L5543 2025 Generalized Fermat 1327c 273237906^131072+1 1105795 L6159 2025 Generalized Fermat 1328c 273140040^131072+1 1105774 L4210 2025 Generalized Fermat 1329c 273036074^131072+1 1105753 L5069 2025 Generalized Fermat 1330c 272998912^131072+1 1105745 L4245 2025 Generalized Fermat 1331c 272788310^131072+1 1105701 L4720 2025 Generalized Fermat 1332c 272041540^131072+1 1105545 L5069 2025 Generalized Fermat 1333 271643232^131072+1 1105462 L4704 2019 Generalized Fermat 1334c 271370312^131072+1 1105404 L4591 2025 Generalized Fermat 1335c 271135152^131072+1 1105355 L5718 2025 Generalized Fermat 1336c 270979532^131072+1 1105322 L5639 2025 Generalized Fermat 1337c 270832760^131072+1 1105292 L5027 2025 Generalized Fermat 1338c 270822160^131072+1 1105289 L4726 2025 Generalized Fermat 1339c 270789102^131072+1 1105282 L5051 2025 Generalized Fermat 1340c 270682284^131072+1 1105260 L6129 2025 Generalized Fermat 1341c 270581690^131072+1 1105239 L4870 2025 Generalized Fermat 1342c 270284868^131072+1 1105176 L5027 2025 Generalized Fermat 1343 463*2^3671262+1 1105163 L5524 2022 1344c 269993492^131072+1 1105115 L6129 2025 Generalized Fermat 1345 735*2^3670991+1 1105082 L5575 2022 1346c 269812742^131072+1 1105077 L6129 2025 Generalized Fermat 1347c 268685690^131072+1 1104838 L4898 2025 Generalized Fermat 1348 475*2^3670046+1 1104797 L5524 2022 1349c 267783532^131072+1 1104647 L5974 2025 Generalized Fermat 1350c 267768162^131072+1 1104644 L5974 2025 Generalized Fermat 1351d 267416848^131072+1 1104569 L5707 2025 Generalized Fermat 1352d 267414744^131072+1 1104569 L5771 2025 Generalized Fermat 1353d 266639610^131072+1 1104403 L5069 2025 Generalized Fermat 1354d 266330322^131072+1 1104337 L5707 2025 Generalized Fermat 1355d 266249522^131072+1 1104320 L5069 2025 Generalized Fermat 1356 15*2^3668194-1 1104238 L3665 2013 1357d 265866252^131072+1 1104238 L4591 2025 Generalized Fermat 1358d 265837862^131072+1 1104232 L5069 2025 Generalized Fermat 1359d 265643056^131072+1 1104190 L5069 2025 Generalized Fermat 1360d 265621592^131072+1 1104186 L4201 2025 Generalized Fermat 1361d 265478490^131072+1 1104155 L5069 2025 Generalized Fermat 1362d 264860372^131072+1 1104022 L5639 2025 Generalized Fermat 1363c 264624458^131072+1 1103971 L5416 2025 Generalized Fermat 1364d 264541844^131072+1 1103954 L5332 2025 Generalized Fermat 1365d 264360218^131072+1 1103915 L4875 2025 Generalized Fermat 1366d 264269230^131072+1 1103895 L5526 2025 Generalized Fermat 1367d 263861882^131072+1 1103807 L5639 2025 Generalized Fermat 1368d 263506158^131072+1 1103730 L6102 2025 Generalized Fermat 1369d 262824942^131072+1 1103583 L5586 2025 Generalized Fermat 1370d 262754910^131072+1 1103568 L4774 2025 Generalized Fermat 1371d 262470710^131072+1 1103506 L5974 2025 Generalized Fermat 1372 273*2^3665736+1 1103499 L5192 2022 1373d 262298138^131072+1 1103469 L5864 2025 Generalized Fermat 1374d 262041482^131072+1 1103413 L5457 2025 Generalized Fermat 1375d 262005898^131072+1 1103405 L4774 2025 Generalized Fermat 1376d 261858724^131072+1 1103373 L5639 2025 Generalized Fermat 1377d 261114224^131072+1 1103211 L4939 2025 Generalized Fermat 1378 13*2^3664703-1 1103187 L1862 2016 1379 1486*165^497431+1 1103049 A11 2024 1380e 260265300^131072+1 1103026 L5586 2024 Generalized Fermat 1381e 260050122^131072+1 1102979 L5586 2024 Generalized Fermat 1382e 259881684^131072+1 1102942 L4245 2024 Generalized Fermat 1383e 259576262^131072+1 1102875 L4672 2024 Generalized Fermat 1384 406515^196608-406515^98304+1 1102790 L4506 2016 Generalized unique 1385e 259130312^131072+1 1102777 L5156 2024 Generalized Fermat 1386e 259042144^131072+1 1102758 L5457 2024 Generalized Fermat 1387 609*2^3662931+1 1102655 L5573 2022 1388e 258337266^131072+1 1102603 L5457 2024 Generalized Fermat 1389e 258336436^131072+1 1102602 L5586 2024 Generalized Fermat 1390e 258197916^131072+1 1102572 L5473 2024 Generalized Fermat 1391e 258109576^131072+1 1102552 L4672 2024 Generalized Fermat 1392e 257401382^131072+1 1102396 L5586 2024 Generalized Fermat 1393e 257047620^131072+1 1102318 L4892 2024 Generalized Fermat 1394e 256963326^131072+1 1102299 L6093 2024 Generalized Fermat 1395e 256943534^131072+1 1102295 L4892 2024 Generalized Fermat 1396e 256089378^131072+1 1102105 L4892 2024 Generalized Fermat 1397e 255856074^131072+1 1102053 L4747 2024 Generalized Fermat 1398e 255812078^131072+1 1102044 L6091 2024 Generalized Fermat 1399e 255666546^131072+1 1102011 L6092 2024 Generalized Fermat 1400e 255648100^131072+1 1102007 L4245 2024 Generalized Fermat 1401e 255555468^131072+1 1101986 L5639 2024 Generalized Fermat 1402e 255339392^131072+1 1101938 L5707 2024 Generalized Fermat 1403e 255189240^131072+1 1101905 L5782 2024 Generalized Fermat 1404e 254954350^131072+1 1101852 L5467 2024 Generalized Fermat 1405e 254731916^131072+1 1101803 L6090 2024 Generalized Fermat 1406e 254713668^131072+1 1101799 L5782 2024 Generalized Fermat 1407e 254450722^131072+1 1101740 L5620 2024 Generalized Fermat 1408e 254193678^131072+1 1101682 L5634 2024 Generalized Fermat 1409e 253875014^131072+1 1101611 L5707 2024 Generalized Fermat 1410e 253866454^131072+1 1101609 L5457 2024 Generalized Fermat 1411f 253210808^131072+1 1101462 L4968 2024 Generalized Fermat 1412f 252934920^131072+1 1101400 L6036 2024 Generalized Fermat 1413f 252637312^131072+1 1101333 L5526 2024 Generalized Fermat 1414f 252545864^131072+1 1101312 L5467 2024 Generalized Fermat 1415f 252369374^131072+1 1101272 L5452 2024 Generalized Fermat 1416f 252171992^131072+1 1101228 L5639 2024 Generalized Fermat 1417f 251361006^131072+1 1101044 L5127 2024 Generalized Fermat 1418f 251085988^131072+1 1100982 L4201 2024 Generalized Fermat 1419f 250775680^131072+1 1100912 L6073 2024 Generalized Fermat 1420f 249754922^131072+1 1100679 L4898 2024 Generalized Fermat 1421f 249751100^131072+1 1100679 L6088 2024 Generalized Fermat 1422f 249735514^131072+1 1100675 L4201 2024 Generalized Fermat 1423f 249634320^131072+1 1100652 L6087 2024 Generalized Fermat 1424 118*892^373012+1 1100524 L5071 2020 1425 248934378^131072+1 1100492 L5974 2024 Generalized Fermat 1426 248857694^131072+1 1100475 L6086 2024 Generalized Fermat 1427 248820272^131072+1 1100466 L5768 2024 Generalized Fermat 1428 248632632^131072+1 1100423 L5416 2024 Generalized Fermat 1429 248621940^131072+1 1100421 L5051 2024 Generalized Fermat 1430 248617468^131072+1 1100420 L5416 2024 Generalized Fermat 1431 33300*430^417849-1 1100397 L4393 2016 1432 247389350^131072+1 1100138 L6085 2024 Generalized Fermat 1433 247342010^131072+1 1100127 L6073 2024 Generalized Fermat 1434 247145256^131072+1 1100082 L4939 2024 Generalized Fermat 1435 246980946^131072+1 1100044 L4249 2024 Generalized Fermat 1436 246952054^131072+1 1100037 L6084 2024 Generalized Fermat 1437 246943520^131072+1 1100035 L5746 2024 Generalized Fermat 1438 (2^2976221-1)*(10^204068-1172064)+1 1100000 p449 2024 1439 246677978^131072+1 1099974 L5512 2024 Generalized Fermat 1440 246634478^131072+1 1099964 L5117 2024 Generalized Fermat 1441 246394910^131072+1 1099908 L6038 2024 Generalized Fermat 1442 246207020^131072+1 1099865 L5606 2024 Generalized Fermat 1443 246012578^131072+1 1099820 L5606 2024 Generalized Fermat 1444 245507802^131072+1 1099703 L5606 2024 Generalized Fermat 1445 245461196^131072+1 1099692 L6078 2024 Generalized Fermat 1446 655*2^3653008+1 1099668 L5574 2022 1447 244873604^131072+1 1099556 L6076 2024 Generalized Fermat 1448 244660242^131072+1 1099506 L6038 2024 Generalized Fermat 1449 244342390^131072+1 1099432 L5416 2024 Generalized Fermat 1450 244202408^131072+1 1099400 L4371 2024 Generalized Fermat 1451 291*268^452750-1 1099341 L5410 2022 1452 243786926^131072+1 1099303 L6073 2024 Generalized Fermat 1453 243427990^131072+1 1099219 L4892 2024 Generalized Fermat 1454 242973858^131072+1 1099113 L6072 2024 Generalized Fermat 1455 242950108^131072+1 1099107 L4387 2024 Generalized Fermat 1456 242933064^131072+1 1099103 L5782 2024 Generalized Fermat 1457 242926826^131072+1 1099102 L5826 2024 Generalized Fermat 1458 242855212^131072+1 1099085 L4591 2024 Generalized Fermat 1459 242494358^131072+1 1099000 L5416 2024 Generalized Fermat 1460 242295536^131072+1 1098953 L5205 2024 Generalized Fermat 1461 242161196^131072+1 1098922 L6070 2024 Generalized Fermat 1462 241765100^131072+1 1098829 L6067 2024 Generalized Fermat 1463 241550882^131072+1 1098778 L6065 2024 Generalized Fermat 1464 241438172^131072+1 1098752 L4591 2024 Generalized Fermat 1465 241338084^131072+1 1098728 L4591 2024 Generalized Fermat 1466 241249426^131072+1 1098707 L5526 2024 Generalized Fermat 1467 33*2^3649810+1 1098704 L4958 2019 1468 241151312^131072+1 1098684 L4387 2024 Generalized Fermat 1469 241000970^131072+1 1098648 L5707 2024 Generalized Fermat 1470 240966866^131072+1 1098640 L4559 2024 Generalized Fermat 1471 240965802^131072+1 1098640 L6058 2024 Generalized Fermat 1472 240910640^131072+1 1098627 L5101 2024 Generalized Fermat 1473 240856112^131072+1 1098614 L4875 2024 Generalized Fermat 1474 240307734^131072+1 1098484 L4249 2024 Generalized Fermat 1475 240190808^131072+1 1098457 L5056 2024 Generalized Fermat 1476 239927858^131072+1 1098394 L4477 2024 Generalized Fermat 1477 239545562^131072+1 1098304 L4591 2024 Generalized Fermat 1478 239520486^131072+1 1098298 L5634 2024 Generalized Fermat 1479 238968056^131072+1 1098166 L4477 2024 Generalized Fermat 1480 238871106^131072+1 1098143 L6058 2024 Generalized Fermat 1481 238852190^131072+1 1098139 L5526 2024 Generalized Fermat 1482 238698190^131072+1 1098102 L5077 2024 Generalized Fermat 1483 238653710^131072+1 1098091 L6057 2024 Generalized Fermat 1484 238627390^131072+1 1098085 L5871 2024 Generalized Fermat 1485 238438430^131072+1 1098040 L5707 2024 Generalized Fermat 1486 238381768^131072+1 1098026 L5707 2024 Generalized Fermat 1487 238193230^131072+1 1097981 L4201 2024 Generalized Fermat 1488 238168282^131072+1 1097975 L4201 2024 Generalized Fermat 1489 238109742^131072+1 1097961 L4559 2024 Generalized Fermat 1490 237601644^131072+1 1097840 L5782 2024 Generalized Fermat 1491 237260908^131072+1 1097758 L4201 2024 Generalized Fermat 1492 237185928^131072+1 1097740 L5755 2024 Generalized Fermat 1493 237108488^131072+1 1097722 L5639 2024 Generalized Fermat 1494 236924362^131072+1 1097677 L5639 2024 Generalized Fermat 1495 236602468^131072+1 1097600 L6038 2024 Generalized Fermat 1496 236500052^131072+1 1097575 L5198 2024 Generalized Fermat 1497 236417078^131072+1 1097555 L5588 2024 Generalized Fermat 1498 236278180^131072+1 1097522 L5416 2024 Generalized Fermat 1499 236240868^131072+1 1097513 L6038 2024 Generalized Fermat 1500 235947986^131072+1 1097442 L4201 2024 Generalized Fermat 1501 235577802^131072+1 1097353 L5077 2024 Generalized Fermat 1502 235566676^131072+1 1097350 L5416 2024 Generalized Fermat 1503 235108160^131072+1 1097239 L4898 2024 Generalized Fermat 1504 234962380^131072+1 1097204 L4201 2024 Generalized Fermat 1505 234806100^131072+1 1097166 L5088 2024 Generalized Fermat 1506 234661134^131072+1 1097131 L5416 2024 Generalized Fermat 1507 234566344^131072+1 1097108 L5974 2024 Generalized Fermat 1508 234523400^131072+1 1097098 L4201 2024 Generalized Fermat 1509 234385314^131072+1 1097064 L4285 2024 Generalized Fermat 1510 234307964^131072+1 1097045 L4559 2024 Generalized Fermat 1511 234291722^131072+1 1097041 L4999 2024 Generalized Fermat 1512 233937376^131072+1 1096955 L6044 2024 Generalized Fermat 1513 233903532^131072+1 1096947 L4559 2024 Generalized Fermat 1514 233559012^131072+1 1096863 L5416 2024 Generalized Fermat 1515 233447012^131072+1 1096836 L4477 2024 Generalized Fermat 1516 233349574^131072+1 1096812 L5432 2024 Generalized Fermat 1517 233034976^131072+1 1096735 L5101 2024 Generalized Fermat 1518 232796676^131072+1 1096677 L6040 2024 Generalized Fermat 1519 232485778^131072+1 1096601 L4477 2024 Generalized Fermat 1520 232050760^131072+1 1096494 L5782 2024 Generalized Fermat 1521 295*2^3642206+1 1096416 L5161 2022 1522 231583998^131072+1 1096380 L4477 2024 Generalized Fermat 1523 231295516^131072+1 1096309 L5634 2024 Generalized Fermat 1524 230663736^131072+1 1096153 L4774 2024 Generalized Fermat 1525 230655072^131072+1 1096151 L5526 2024 Generalized Fermat 1526 230396424^131072+1 1096087 L4928 2024 Generalized Fermat 1527 230275166^131072+1 1096057 L6011 2024 Generalized Fermat 1528 230267830^131072+1 1096055 L6036 2024 Generalized Fermat 1529 989*2^3640585+1 1095929 L5115 2020 1530 567*2^3639287+1 1095538 L4959 2019 1531 227669832^131072+1 1095409 L5707 2024 Generalized Fermat 1532 227406222^131072+1 1095343 L4371 2024 Generalized Fermat 1533 227239620^131072+1 1095302 L4559 2024 Generalized Fermat 1534 227135580^131072+1 1095276 L5974 2024 Generalized Fermat 1535 227009830^131072+1 1095244 L4359 2024 Generalized Fermat 1536 226881840^131072+1 1095212 L5784 2024 Generalized Fermat 1537 226782570^131072+1 1095187 L6026 2024 Generalized Fermat 1538 226710488^131072+1 1095169 L5588 2024 Generalized Fermat 1539 226639300^131072+1 1095151 L5634 2024 Generalized Fermat 1540 226453444^131072+1 1095104 L4559 2024 Generalized Fermat 1541 226341130^131072+1 1095076 L4341 2024 Generalized Fermat 1542 226249042^131072+1 1095053 L5370 2024 Generalized Fermat 1543 226100602^131072+1 1095016 L4429 2024 Generalized Fermat 1544 225580118^131072+1 1094884 L5056 2024 Generalized Fermat 1545 225124888^131072+1 1094769 L4591 2024 Generalized Fermat 1546 224635814^131072+1 1094646 L4875 2024 Generalized Fermat 1547 224347630^131072+1 1094572 L5512 2024 Generalized Fermat 1548 224330804^131072+1 1094568 L6019 2024 Generalized Fermat 1549 224249932^131072+1 1094548 L4371 2024 Generalized Fermat 1550 224072278^131072+1 1094503 L5974 2024 Generalized Fermat 1551 639*2^3635707+1 1094460 L1823 2019 1552 223490796^131072+1 1094355 L5332 2024 Generalized Fermat 1553 223074802^131072+1 1094249 L5416 2024 Generalized Fermat 1554 223010262^131072+1 1094232 L6015 2024 Generalized Fermat 1555 222996490^131072+1 1094229 L5731 2024 Generalized Fermat 1556 222888506^131072+1 1094201 L5974 2024 Generalized Fermat 1557 222593516^131072+1 1094126 L6011 2024 Generalized Fermat 1558 222486400^131072+1 1094098 L5332 2024 Generalized Fermat 1559 221636362^131072+1 1093880 L4904 2024 Generalized Fermat 1560 221528336^131072+1 1093853 L5721 2024 Generalized Fermat 1561 221330854^131072+1 1093802 L6010 2024 Generalized Fermat 1562 221325712^131072+1 1093801 L4201 2024 Generalized Fermat 1563 221174400^131072+1 1093762 L4201 2024 Generalized Fermat 1564 221008432^131072+1 1093719 L5974 2024 Generalized Fermat 1565 220956326^131072+1 1093705 L5731 2024 Generalized Fermat 1566 220838206^131072+1 1093675 L5974 2024 Generalized Fermat 1567 220325976^131072+1 1093543 L5690 2024 Generalized Fermat 1568 220317996^131072+1 1093541 L5989 2024 Generalized Fermat 1569 220288248^131072+1 1093533 L5721 2024 Generalized Fermat 1570 219984494^131072+1 1093455 L6005 2024 Generalized Fermat 1571 219556482^131072+1 1093344 L5721 2024 Generalized Fermat 1572 219525472^131072+1 1093336 L4898 2024 Generalized Fermat 1573 219447698^131072+1 1093315 L4933 2024 Generalized Fermat 1574 219430370^131072+1 1093311 L4774 2024 Generalized Fermat 1575 219331584^131072+1 1093285 L5746 2024 Generalized Fermat 1576 753*2^3631472+1 1093185 L1823 2019 1577 2*205731^205731-1 1093111 L4965 2022 1578 218012734^131072+1 1092942 L4928 2024 Generalized Fermat 1579 217820568^131072+1 1092892 L5690 2024 Generalized Fermat 1580 217559364^131072+1 1092823 L4898 2024 Generalized Fermat 1581 217458668^131072+1 1092797 L5989 2024 Generalized Fermat 1582 217423702^131072+1 1092788 L5998 2024 Generalized Fermat 1583 217176690^131072+1 1092723 L5637 2024 Generalized Fermat 1584 217170570^131072+1 1092722 L4371 2024 Generalized Fermat 1585 65531*2^3629342-1 1092546 L2269 2011 1586 1121*2^3629201+1 1092502 L4761 2019 1587 216307766^131072+1 1092495 L4387 2024 Generalized Fermat 1588 216084296^131072+1 1092436 L4201 2024 Generalized Fermat 1589 215*2^3628962-1 1092429 L2484 2018 1590 216039994^131072+1 1092425 L5880 2024 Generalized Fermat 1591 216027436^131072+1 1092421 L5277 2024 Generalized Fermat 1592 216018002^131072+1 1092419 L5586 2024 Generalized Fermat 1593 215949788^131072+1 1092401 L4537 2024 Generalized Fermat 1594 215945398^131072+1 1092400 L4245 2024 Generalized Fermat 1595 215783788^131072+1 1092357 L5711 2024 Generalized Fermat 1596 215717854^131072+1 1092340 L4245 2024 Generalized Fermat 1597 215462154^131072+1 1092272 L4387 2024 Generalized Fermat 1598 215237318^131072+1 1092213 L5693 2024 Generalized Fermat 1599 215004526^131072+1 1092151 L4928 2024 Generalized Fermat 1600 113*2^3628034-1 1092150 L2484 2014 1601 214992758^131072+1 1092148 L5974 2024 Generalized Fermat 1602d 1009*2^3627911-1 1092114 A46 2025 1603 214814516^131072+1 1092101 L5746 2024 Generalized Fermat 1604 1175*2^3627541+1 1092002 L4840 2019 1605 214403112^131072+1 1091992 L4905 2024 Generalized Fermat 1606 214321816^131072+1 1091970 L5989 2024 Generalized Fermat 1607 214134178^131072+1 1091920 L5297 2024 Generalized Fermat 1608 214059556^131072+1 1091900 L4362 2024 Generalized Fermat 1609 2*431^414457+1 1091878 L4879 2019 Divides Phi(431^414457,2) 1610 213879170^131072+1 1091852 L5986 2024 Generalized Fermat 1611 19116*24^791057-1 1091831 A44 2024 1612 213736552^131072+1 1091814 L4289 2024 Generalized Fermat 1613 213656000^131072+1 1091793 L4892 2024 Generalized Fermat 1614 213580840^131072+1 1091773 L4201 2024 Generalized Fermat 1615 213425082^131072+1 1091731 L4892 2024 Generalized Fermat 1616 213162592^131072+1 1091661 L4549 2024 Generalized Fermat 1617 213151104^131072+1 1091658 L4763 2024 Generalized Fermat 1618 212912634^131072+1 1091595 L5639 2024 Generalized Fermat 1619 212894100^131072+1 1091590 L5470 2024 Generalized Fermat 1620 212865234^131072+1 1091582 L5782 2024 Generalized Fermat 1621 212862096^131072+1 1091581 L4870 2024 Generalized Fermat 1622 212838152^131072+1 1091575 L5718 2024 Generalized Fermat 1623 212497738^131072+1 1091483 L5051 2024 Generalized Fermat 1624 212121206^131072+1 1091383 L4774 2024 Generalized Fermat 1625 211719438^131072+1 1091275 L4775 2024 Generalized Fermat 1626 211448294^131072+1 1091202 L5929 2024 Generalized Fermat 1627 211407740^131072+1 1091191 L4341 2024 Generalized Fermat 1628 211326826^131072+1 1091169 L5143 2024 Generalized Fermat 1629 210908700^131072+1 1091056 L5639 2024 Generalized Fermat 1630 210564358^131072+1 1090963 L5639 2024 Generalized Fermat 1631 210434680^131072+1 1090928 L4380 2024 Generalized Fermat 1632 210397166^131072+1 1090918 L4870 2024 Generalized Fermat 1633 210160342^131072+1 1090854 L5974 2024 Generalized Fermat 1634 210088618^131072+1 1090834 L5041 2024 Generalized Fermat 1635 209917216^131072+1 1090788 L5755 2024 Generalized Fermat 1636 209839940^131072+1 1090767 L5639 2024 Generalized Fermat 1637 209637998^131072+1 1090712 L4544 2024 Generalized Fermat 1638 951*2^3623185+1 1090691 L1823 2019 1639 209494470^131072+1 1090673 L5869 2024 Generalized Fermat 1640 209385420^131072+1 1090644 L5720 2024 Generalized Fermat 1641 209108558^131072+1 1090568 L5460 2024 Generalized Fermat 1642 209101202^131072+1 1090566 L5011 2024 Generalized Fermat 1643 208565926^131072+1 1090420 L5016 2024 Generalized Fermat 1644 208497360^131072+1 1090402 L5234 2024 Generalized Fermat 1645 208392300^131072+1 1090373 L5030 2024 Generalized Fermat 1646 208374066^131072+1 1090368 L5869 2024 Generalized Fermat 1647 208352366^131072+1 1090362 L5044 2024 Generalized Fermat 1648 208236434^131072+1 1090330 L5984 2024 Generalized Fermat 1649 208003690^131072+1 1090267 L5639 2024 Generalized Fermat 1650 207985150^131072+1 1090262 L5791 2024 Generalized Fermat 1651 207753480^131072+1 1090198 L5974 2024 Generalized Fermat 1652 207514736^131072+1 1090133 L4477 2024 Generalized Fermat 1653 207445740^131072+1 1090114 L5273 2024 Generalized Fermat 1654 29*920^367810-1 1090113 L4064 2015 1655 207296788^131072+1 1090073 L5234 2024 Generalized Fermat 1656 207264358^131072+1 1090064 L5758 2024 Generalized Fermat 1657 207213640^131072+1 1090050 L5077 2024 Generalized Fermat 1658 206709064^131072+1 1089911 L5639 2024 Generalized Fermat 1659 206640054^131072+1 1089892 L5288 2024 Generalized Fermat 1660 206594738^131072+1 1089880 L5707 2024 Generalized Fermat 1661 206585726^131072+1 1089877 L5667 2024 Generalized Fermat 1662 206473754^131072+1 1089846 L5855 2024 Generalized Fermat 1663 206230080^131072+1 1089779 L5143 2024 Generalized Fermat 1664 206021166^131072+1 1089722 L5639 2024 Generalized Fermat 1665 205990406^131072+1 1089713 L4755 2024 Generalized Fermat 1666 205963322^131072+1 1089706 L5844 2024 Generalized Fermat 1667 205339678^131072+1 1089533 L4905 2024 Generalized Fermat 1668 205160722^131072+1 1089483 L5639 2024 Generalized Fermat 1669 205150506^131072+1 1089480 L5543 2024 Generalized Fermat 1670 205010004^131072+1 1089441 L5025 2024 Generalized Fermat 1671 14641*2^3618876+1 1089395 L181 2018 Generalized Fermat 1672 204695540^131072+1 1089354 L4905 2024 Generalized Fermat 1673 485*2^3618563+1 1089299 L3924 2019 1674 204382086^131072+1 1089267 L4477 2024 Generalized Fermat 1675 204079052^131072+1 1089182 L4763 2024 Generalized Fermat 1676 204016062^131072+1 1089165 L5712 2024 Generalized Fermat 1677 203275588^131072+1 1088958 L5041 2024 Generalized Fermat 1678 203250558^131072+1 1088951 L4210 2024 Generalized Fermat 1679 203238918^131072+1 1088948 L5586 2024 Generalized Fermat 1680 202515696^131072+1 1088745 L4549 2024 Generalized Fermat 1681 202391964^131072+1 1088710 L4835 2024 Generalized Fermat 1682 202251688^131072+1 1088670 L5288 2024 Generalized Fermat 1683 202114688^131072+1 1088632 L5711 2024 Generalized Fermat 1684 202045732^131072+1 1088612 L4537 2024 Generalized Fermat 1685 201593074^131072+1 1088485 L5027 2024 Generalized Fermat 1686 201536524^131072+1 1088469 L5769 2024 Generalized Fermat 1687 201389466^131072+1 1088427 L4537 2024 Generalized Fermat 1688 201249512^131072+1 1088388 L5234 2024 Generalized Fermat 1689 201239624^131072+1 1088385 L5732 2024 Generalized Fermat 1690 200519642^131072+1 1088181 L5712 2024 Generalized Fermat 1691 200459670^131072+1 1088164 L5948 2024 Generalized Fermat 1692 200433382^131072+1 1088156 L5948 2024 Generalized Fermat 1693 200280100^131072+1 1088113 L4892 2024 Generalized Fermat 1694 200053318^131072+1 1088048 L5586 2024 Generalized Fermat 1695 199971120^131072+1 1088025 L5030 2024 Generalized Fermat 1696 95*2^3614033+1 1087935 L1474 2019 1697 199502780^131072+1 1087891 L5878 2024 Generalized Fermat 1698 198402358^131072+1 1087577 L5606 2024 Generalized Fermat 1699 198320982^131072+1 1087553 L5938 2024 Generalized Fermat 1700 198319118^131072+1 1087553 L4737 2024 Generalized Fermat 1701 1005*2^3612300+1 1087414 L1823 2019 1702 197752702^131072+1 1087390 L5355 2024 Generalized Fermat 1703 197607368^131072+1 1087348 L5041 2024 Generalized Fermat 1704 197352408^131072+1 1087275 L4861 2024 Generalized Fermat 1705 861*2^3611815+1 1087268 L1745 2019 1706 197230100^131072+1 1087239 L4753 2024 Generalized Fermat 1707 197212998^131072+1 1087234 L6123 2024 Generalized Fermat 1708 197197506^131072+1 1087230 L4753 2024 Generalized Fermat 1709 197018872^131072+1 1087178 L4884 2024 Generalized Fermat 1710 1087*2^3611476+1 1087166 L4834 2019 1711 196722548^131072+1 1087093 L5782 2024 Generalized Fermat 1712 196703802^131072+1 1087087 L4742 2024 Generalized Fermat 1713 196687752^131072+1 1087082 L5051 2024 Generalized Fermat 1714 195950620^131072+1 1086869 L5929 2024 Generalized Fermat 1715 195834796^131072+1 1086835 L5070 2024 Generalized Fermat 1716 195048992^131072+1 1086606 L5143 2024 Generalized Fermat 1717 194911702^131072+1 1086566 L5948 2024 Generalized Fermat 1718 194819864^131072+1 1086539 L5690 2024 Generalized Fermat 1719 485767*2^3609357-1 1086531 L622 2008 1720 194730404^131072+1 1086513 L5782 2024 Generalized Fermat 1721 194644872^131072+1 1086488 L4720 2024 Generalized Fermat 1722 194584114^131072+1 1086470 L4201 2024 Generalized Fermat 1723 194263106^131072+1 1086376 L4892 2024 Generalized Fermat 1724 194202254^131072+1 1086359 L4835 2024 Generalized Fermat 1725 194159546^131072+1 1086346 L4387 2024 Generalized Fermat 1726 193935716^131072+1 1086280 L4835 2024 Generalized Fermat 1727 193247784^131072+1 1086078 L5234 2024 Generalized Fermat 1728 192866222^131072+1 1085966 L5913 2024 Generalized Fermat 1729 192651588^131072+1 1085902 L5880 2024 Generalized Fermat 1730 192606308^131072+1 1085889 L4476 2024 Generalized Fermat 1731 675*2^3606447+1 1085652 L3278 2019 1732 191678526^131072+1 1085614 L5234 2024 Generalized Fermat 1733 669*2^3606266+1 1085598 L1675 2019 1734 191567332^131072+1 1085581 L4309 2024 Generalized Fermat 1735 65077*2^3605944+1 1085503 L4685 2020 1736 191194450^131072+1 1085470 L4245 2024 Generalized Fermat 1737 1365*2^3605491+1 1085365 L1134 2022 1738 190810274^131072+1 1085356 L5460 2024 Generalized Fermat 1739 190309640^131072+1 1085206 L5880 2024 Generalized Fermat 1740 190187176^131072+1 1085169 L5470 2024 Generalized Fermat 1741 190144032^131072+1 1085156 L4341 2024 Generalized Fermat 1742 851*2^3604395+1 1085034 L2125 2019 1743 189411830^131072+1 1084937 L5578 2024 Generalized Fermat 1744 189240324^131072+1 1084885 L4892 2024 Generalized Fermat 1745 188766416^131072+1 1084743 L5639 2024 Generalized Fermat 1746 188655374^131072+1 1084709 L5842 2024 Generalized Fermat 1747 188646712^131072+1 1084706 L4905 2024 Generalized Fermat 1748 187961358^131072+1 1084499 L5881 2024 Generalized Fermat 1749 1143*2^3602429+1 1084443 L4754 2019 1750 187731580^131072+1 1084430 L5847 2024 Generalized Fermat 1751 187643362^131072+1 1084403 L5707 2024 Generalized Fermat 1752 187584550^131072+1 1084385 L5526 2024 Generalized Fermat 1753 187330820^131072+1 1084308 L5879 2024 Generalized Fermat 1754 1183*2^3601898+1 1084283 L1823 2019 1755 187231212^131072+1 1084278 L4550 2024 Generalized Fermat 1756 187184006^131072+1 1084263 L5051 2024 Generalized Fermat 1757 187007398^131072+1 1084210 L5604 2024 Generalized Fermat 1758 185411044^131072+1 1083722 L5044 2023 Generalized Fermat 1759 185248324^131072+1 1083672 L4371 2023 Generalized Fermat 1760 185110536^131072+1 1083629 L4559 2023 Generalized Fermat 1761 185015722^131072+1 1083600 L5723 2023 Generalized Fermat 1762 184855564^131072+1 1083551 L5748 2023 Generalized Fermat 1763 184835362^131072+1 1083545 L5416 2024 Generalized Fermat 1764 184814078^131072+1 1083538 L4559 2023 Generalized Fermat 1765 184653266^131072+1 1083488 L5606 2023 Generalized Fermat 1766 184523024^131072+1 1083448 L4550 2023 Generalized Fermat 1767 184317182^131072+1 1083385 L5863 2023 Generalized Fermat 1768 184310672^131072+1 1083383 L5863 2023 Generalized Fermat 1769 184119204^131072+1 1083324 L5863 2023 Generalized Fermat 1770 183839694^131072+1 1083237 L5865 2023 Generalized Fermat 1771 183591732^131072+1 1083160 L5586 2023 Generalized Fermat 1772 183392536^131072+1 1083098 L5044 2023 Generalized Fermat 1773 183383118^131072+1 1083096 L4371 2023 Generalized Fermat 1774 183157240^131072+1 1083025 L5853 2023 Generalized Fermat 1775 182252536^131072+1 1082744 L5854 2023 Generalized Fermat 1776 182166824^131072+1 1082717 L5854 2023 Generalized Fermat 1777 181969816^131072+1 1082655 L4591 2023 Generalized Fermat 1778 181913260^131072+1 1082637 L5853 2023 Generalized Fermat 1779 189*2^3596375+1 1082620 L3760 2016 1780 181302244^131072+1 1082446 L4550 2023 Generalized Fermat 1781 180680920^131072+1 1082251 L5639 2023 Generalized Fermat 1782 180455838^131072+1 1082180 L5847 2023 Generalized Fermat 1783 180111908^131072+1 1082071 L5844 2023 Generalized Fermat 1784 180084608^131072+1 1082062 L5056 2023 Generalized Fermat 1785 180045220^131072+1 1082050 L4550 2023 Generalized Fermat 1786 180002474^131072+1 1082036 L5361 2023 Generalized Fermat 1787 179913814^131072+1 1082008 L4875 2023 Generalized Fermat 1788 1089*2^3593267+1 1081685 L3035 2019 1789 178743858^131072+1 1081637 L5051 2023 Generalized Fermat 1790 178437884^131072+1 1081539 L4591 2023 Generalized Fermat 1791 178435022^131072+1 1081538 L5639 2023 Generalized Fermat 1792 178311240^131072+1 1081499 L5369 2023 Generalized Fermat 1793 178086108^131072+1 1081427 L4939 2023 Generalized Fermat 1794 178045832^131072+1 1081414 L5836 2023 Generalized Fermat 1795 177796222^131072+1 1081334 L5834 2023 Generalized Fermat 1796 177775606^131072+1 1081328 L5794 2023 Generalized Fermat 1797 177648552^131072+1 1081287 L5782 2023 Generalized Fermat 1798 177398652^131072+1 1081207 L4559 2023 Generalized Fermat 1799 177319028^131072+1 1081181 L5526 2023 Generalized Fermat 1800 177296064^131072+1 1081174 L5831 2023 Generalized Fermat 1801 177129922^131072+1 1081121 L4559 2023 Generalized Fermat 1802 176799404^131072+1 1081014 L4775 2023 Generalized Fermat 1803 176207346^131072+1 1080823 L5805 2023 Generalized Fermat 1804 176085282^131072+1 1080784 L5805 2023 Generalized Fermat 1805 175482140^131072+1 1080589 L5639 2023 Generalized Fermat 1806 175271418^131072+1 1080520 L5051 2023 Generalized Fermat 1807 19581121*2^3589357-1 1080512 p49 2022 1808 175200596^131072+1 1080497 L5817 2023 Generalized Fermat 1809 1101*2^3589103+1 1080431 L1823 2019 1810 174728608^131072+1 1080344 L5416 2023 Generalized Fermat 1811 174697724^131072+1 1080334 L4747 2023 Generalized Fermat 1812 174534362^131072+1 1080280 L5814 2023 Generalized Fermat 1813 174142738^131072+1 1080152 L4249 2023 Generalized Fermat 1814 174103532^131072+1 1080140 L4249 2023 Generalized Fermat 1815 173962482^131072+1 1080093 L4249 2023 Generalized Fermat 1816 35*2^3587843+1 1080050 L1979 2014 Divides GF(3587841,5) 1817 173717408^131072+1 1080013 L5634 2023 Generalized Fermat 1818 173561300^131072+1 1079962 L4249 2023 Generalized Fermat 1819 173343810^131072+1 1079891 L4249 2023 Generalized Fermat 1820 172026454^131072+1 1079456 L4737 2023 Generalized Fermat 1821 172004036^131072+1 1079449 L5512 2023 Generalized Fermat 1822 275*2^3585539+1 1079358 L3803 2016 1823 171677924^131072+1 1079341 L5512 2023 Generalized Fermat 1824 171610156^131072+1 1079319 L4249 2023 Generalized Fermat 1825 171518672^131072+1 1079288 L5586 2023 Generalized Fermat 1826 171128300^131072+1 1079158 L4249 2023 Generalized Fermat 1827 170982934^131072+1 1079110 L4201 2023 Generalized Fermat 1828 170626040^131072+1 1078991 L5748 2023 Generalized Fermat 1829 169929578^131072+1 1078758 L5748 2023 Generalized Fermat 1830 169369502^131072+1 1078570 L4410 2023 Generalized Fermat 1831 169299904^131072+1 1078547 L4559 2023 Generalized Fermat 1832 169059224^131072+1 1078466 L5746 2023 Generalized Fermat 1833 168885632^131072+1 1078408 L5793 2023 Generalized Fermat 1834 168602250^131072+1 1078312 L5782 2023 Generalized Fermat 1835 168576546^131072+1 1078303 L5639 2023 Generalized Fermat 1836 167845698^131072+1 1078056 L5735 2023 Generalized Fermat 1837 167604930^131072+1 1077974 L4859 2023 Generalized Fermat 1838 2*59^608685+1 1077892 g427 2014 Divides Phi(59^608685,2) 1839 167206862^131072+1 1077839 L5641 2023 Generalized Fermat 1840 166964502^131072+1 1077756 L5627 2023 Generalized Fermat 1841 651*2^3579843+1 1077643 L3035 2018 1842 166609122^131072+1 1077635 L5782 2023 Generalized Fermat 1843 166397330^131072+1 1077563 L5578 2023 Generalized Fermat 1844 166393356^131072+1 1077561 L5782 2023 Generalized Fermat 1845 166288612^131072+1 1077525 L4672 2023 Generalized Fermat 1846 166277052^131072+1 1077521 L5755 2023 Generalized Fermat 1847 166052226^131072+1 1077444 L4670 2023 Generalized Fermat 1848 165430644^131072+1 1077231 L4672 2023 Generalized Fermat 1849 165427494^131072+1 1077230 L4249 2023 Generalized Fermat 1850 583*2^3578402+1 1077210 L3035 2018 1851 165361824^131072+1 1077207 L5586 2023 Generalized Fermat 1852 165258594^131072+1 1077172 L4884 2023 Generalized Fermat 1853 165036358^131072+1 1077095 L5156 2023 Generalized Fermat 1854 164922680^131072+1 1077056 L4249 2023 Generalized Fermat 1855 164800594^131072+1 1077014 L5775 2023 Generalized Fermat 1856 164660428^131072+1 1076965 L4249 2023 Generalized Fermat 1857 309*2^3577339+1 1076889 L4406 2016 1858 164440734^131072+1 1076889 L5485 2023 Generalized Fermat 1859 163871194^131072+1 1076692 L5772 2023 Generalized Fermat 1860 163838506^131072+1 1076680 L5758 2023 Generalized Fermat 1861 163821336^131072+1 1076674 L5544 2023 Generalized Fermat 1862 163820256^131072+1 1076674 L5452 2023 Generalized Fermat 1863 163666380^131072+1 1076621 L5030 2023 Generalized Fermat 1864 163585288^131072+1 1076592 L4928 2023 Generalized Fermat 1865 163359994^131072+1 1076514 L5769 2023 Generalized Fermat 1866 163214942^131072+1 1076463 L4933 2023 Generalized Fermat 1867 163193584^131072+1 1076456 L5595 2023 Generalized Fermat 1868 163152818^131072+1 1076442 L5639 2023 Generalized Fermat 1869 163044252^131072+1 1076404 L5775 2023 Generalized Fermat 1870 162950466^131072+1 1076371 L5694 2023 Generalized Fermat 1871 162874590^131072+1 1076345 L5586 2023 Generalized Fermat 1872 162850104^131072+1 1076336 L5769 2023 Generalized Fermat 1873 162817576^131072+1 1076325 L5772 2023 Generalized Fermat 1874 1185*2^3574583+1 1076060 L4851 2018 1875 251*2^3574535+1 1076045 L3035 2016 1876 1485*2^3574333+1 1075985 L1134 2022 1877 161706626^131072+1 1075935 L4870 2023 Generalized Fermat 1878 161619620^131072+1 1075904 L5586 2023 Generalized Fermat 1879 161588716^131072+1 1075893 L4928 2023 Generalized Fermat 1880 161571504^131072+1 1075887 L5030 2023 Generalized Fermat 1881 161569668^131072+1 1075887 L5639 2023 Generalized Fermat 1882 160998114^131072+1 1075685 L5586 2023 Generalized Fermat 1883 160607310^131072+1 1075547 L5763 2023 Generalized Fermat 1884 160325616^131072+1 1075447 L5586 2023 Generalized Fermat 1885 160228242^131072+1 1075412 L5632 2023 Generalized Fermat 1886 160146172^131072+1 1075383 L4773 2023 Generalized Fermat 1887 159800918^131072+1 1075260 L5586 2023 Generalized Fermat 1888 159794566^131072+1 1075258 L4249 2023 Generalized Fermat 1889 159784836^131072+1 1075254 L5639 2023 Generalized Fermat 1890 159784822^131072+1 1075254 L5637 2023 Generalized Fermat 1891 1019*2^3571635+1 1075173 L1823 2018 1892 159509138^131072+1 1075156 L5637 2023 Generalized Fermat 1893 119*2^3571416-1 1075106 L2484 2018 1894 159214418^131072+1 1075051 L5755 2023 Generalized Fermat 1895 158831096^131072+1 1074914 L5022 2023 Generalized Fermat 1896 35*2^3570777+1 1074913 L2891 2014 1897 158696888^131072+1 1074865 L5030 2023 Generalized Fermat 1898 158472238^131072+1 1074785 L5586 2023 Generalized Fermat 1899 33*2^3570132+1 1074719 L2552 2014 1900 157923226^131072+1 1074587 L4249 2023 Generalized Fermat 1901 157541220^131072+1 1074449 L5416 2023 Generalized Fermat 1902 5*2^3569154-1 1074424 L503 2009 1903 157374268^131072+1 1074389 L5578 2023 Generalized Fermat 1904 81*492^399095-1 1074352 L4001 2015 1905 156978838^131072+1 1074246 L5332 2023 Generalized Fermat 1906 156789840^131072+1 1074177 L4747 2023 Generalized Fermat 1907 156756400^131072+1 1074165 L4249 2023 Generalized Fermat 1908 22934*5^1536762-1 1074155 L3789 2014 1909 156625064^131072+1 1074117 L5694 2023 Generalized Fermat 1910 156519708^131072+1 1074079 L5746 2023 Generalized Fermat 1911 156468140^131072+1 1074060 L4249 2023 Generalized Fermat 1912 156203340^131072+1 1073964 L5578 2023 Generalized Fermat 1913 156171526^131072+1 1073952 L5698 2023 Generalized Fermat 1914 155778562^131072+1 1073809 L4309 2023 Generalized Fermat 1915 155650426^131072+1 1073762 L5668 2023 Generalized Fermat 1916 155536474^131072+1 1073720 L4249 2023 Generalized Fermat 1917 155339878^131072+1 1073648 L5206 2023 Generalized Fermat 1918 155305266^131072+1 1073636 L5549 2023 Generalized Fermat 1919 155006218^131072+1 1073526 L4742 2023 Generalized Fermat 1920 154553092^131072+1 1073359 L4920 2023 Generalized Fermat 1921 154492166^131072+1 1073337 L4326 2023 Generalized Fermat 1922 154478286^131072+1 1073332 L4544 2023 Generalized Fermat 1923 154368914^131072+1 1073291 L5738 2023 Generalized Fermat 1924 153966766^131072+1 1073143 L5732 2023 Generalized Fermat 1925 3437687*2^3564664-1 1073078 L5327 2024 1926 265*2^3564373-1 1072986 L2484 2018 1927 153485148^131072+1 1072965 L5736 2023 Generalized Fermat 1928 153432848^131072+1 1072945 L5030 2023 Generalized Fermat 1929 153413432^131072+1 1072938 L4835 2023 Generalized Fermat 1930 771*2^3564109+1 1072907 L2125 2018 1931e 17665*820^368211+1 1072903 A11 2024 1932 381*2^3563676+1 1072776 L4190 2016 1933 152966530^131072+1 1072772 L5070 2023 Generalized Fermat 1934 555*2^3563328+1 1072672 L4850 2018 1935 152542626^131072+1 1072614 L5460 2023 Generalized Fermat 1936 151999396^131072+1 1072411 L5586 2023 Generalized Fermat 1937 151609814^131072+1 1072265 L5663 2023 Generalized Fermat 1938 151218242^131072+1 1072118 L5588 2023 Generalized Fermat 1939 151108236^131072+1 1072076 L4672 2023 Generalized Fermat 1940 151044622^131072+1 1072052 L5544 2023 Generalized Fermat 1941 151030068^131072+1 1072047 L4774 2023 Generalized Fermat 1942 150908454^131072+1 1072001 L4758 2023 Generalized Fermat 1943 150863054^131072+1 1071984 L5720 2023 Generalized Fermat 1944 1183*2^3560584+1 1071846 L1823 2018 1945 150014492^131072+1 1071663 L4476 2023 Generalized Fermat 1946 149972788^131072+1 1071647 L4559 2023 Generalized Fermat 1947 415*2^3559614+1 1071554 L3035 2016 1948 149665588^131072+1 1071530 L4892 2023 Generalized Fermat 1949 149142686^131072+1 1071331 L4684 2023 Generalized Fermat 1950 149057554^131072+1 1071298 L4933 2023 Generalized Fermat 1951 148598024^131072+1 1071123 L4476 2023 Generalized Fermat 1952 1103*2^3558177-503*2^1092022-1 1071122 p423 2022 Arithmetic progression (3,d=1103*2^3558176-503*2^1092022) 1953 1103*2^3558176-1 1071121 L1828 2018 1954 148592576^131072+1 1071121 L4476 2023 Generalized Fermat 1955 148425726^131072+1 1071057 L4289 2023 Generalized Fermat 1956 148154288^131072+1 1070952 L5714 2023 Generalized Fermat 1957 148093952^131072+1 1070929 L4720 2023 Generalized Fermat 1958 148070542^131072+1 1070920 L5155 2023 Generalized Fermat 1959 147988292^131072+1 1070889 L5155 2023 Generalized Fermat 1960 147816036^131072+1 1070822 L5634 2023 Generalized Fermat 1961 1379*2^3557072-1 1070789 L1828 2018 1962 147539992^131072+1 1070716 L4917 2023 Generalized Fermat 1963 147433824^131072+1 1070675 L4753 2023 Generalized Fermat 1964 147310498^131072+1 1070627 L5403 2023 Generalized Fermat 1965 147265916^131072+1 1070610 L5543 2023 Generalized Fermat 1966 146994540^131072+1 1070505 L5634 2023 Generalized Fermat 1967 146520528^131072+1 1070321 L6123 2023 Generalized Fermat 1968 146465338^131072+1 1070300 L5704 2023 Generalized Fermat 1969 146031082^131072+1 1070131 L4697 2023 Generalized Fermat 1970 145949782^131072+1 1070099 L5029 2023 Generalized Fermat 1971 145728478^131072+1 1070013 L5543 2023 Generalized Fermat 1972 145245346^131072+1 1069824 L5586 2023 Generalized Fermat 1973 145137270^131072+1 1069781 L4742 2023 Generalized Fermat 1974 145132288^131072+1 1069779 L4774 2023 Generalized Fermat 1975 144926960^131072+1 1069699 L5036 2023 Generalized Fermat 1976 144810806^131072+1 1069653 L5543 2023 Generalized Fermat 1977 681*2^3553141+1 1069605 L3035 2018 1978 144602744^131072+1 1069571 L5543 2023 Generalized Fermat 1979 143844356^131072+1 1069272 L5693 2023 Generalized Fermat 1980 599*2^3551793+1 1069200 L3824 2018 1981 143421820^131072+1 1069104 L4904 2023 Generalized Fermat 1982 621*2^3551472+1 1069103 L4687 2018 1983 143416574^131072+1 1069102 L4591 2023 Generalized Fermat 1984 143126384^131072+1 1068987 L5288 2023 Generalized Fermat 1985 142589776^131072+1 1068773 L4201 2023 Generalized Fermat 1986 773*2^3550373+1 1068772 L1808 2018 1987 142527792^131072+1 1068748 L4387 2023 Generalized Fermat 1988 142207386^131072+1 1068620 L5694 2023 Generalized Fermat 1989 142195844^131072+1 1068616 L5548 2023 Generalized Fermat 1990 141636602^131072+1 1068391 L5639 2023 Generalized Fermat 1991 141554190^131072+1 1068358 L4956 2023 Generalized Fermat 1992 1199*2^3548380-1 1068172 L1828 2018 1993 140928044^131072+1 1068106 L4870 2023 Generalized Fermat 1994 191*2^3548117+1 1068092 L4203 2015 1995 140859866^131072+1 1068078 L5011 2023 Generalized Fermat 1996 140824516^131072+1 1068064 L4760 2023 Generalized Fermat 1997 140649396^131072+1 1067993 L5578 2023 Generalized Fermat 1998 867*2^3547711+1 1067971 L4155 2018 1999 140473436^131072+1 1067922 L4210 2023 Generalized Fermat 2000 140237690^131072+1 1067826 L5051 2023 Generalized Fermat 2001 139941370^131072+1 1067706 L5671 2023 Generalized Fermat 2002 3^2237561+3^1118781+1 1067588 L3839 2014 Generalized unique 2003 139352402^131072+1 1067466 L5663 2023 Generalized Fermat 2004 351*2^3545752+1 1067381 L4082 2016 2005 138896860^131072+1 1067279 L4745 2023 Generalized Fermat 2006 138894074^131072+1 1067278 L5041 2023 Generalized Fermat 2007 138830036^131072+1 1067252 L5662 2023 Generalized Fermat 2008 138626864^131072+1 1067169 L5663 2023 Generalized Fermat 2009 138527284^131072+1 1067128 L5663 2023 Generalized Fermat 2010 93*2^3544744+1 1067077 L1728 2014 2011 138000006^131072+1 1066911 L5051 2023 Generalized Fermat 2012 137900696^131072+1 1066870 L4249 2023 Generalized Fermat 2013 137878102^131072+1 1066860 L5051 2023 Generalized Fermat 2014 1159*2^3543702+1 1066764 L1823 2018 2015 137521726^131072+1 1066713 L4672 2023 Generalized Fermat 2016 137486564^131072+1 1066699 L5586 2023 Generalized Fermat 2017 136227118^131072+1 1066175 L5416 2023 Generalized Fermat 2018 136192168^131072+1 1066160 L5556 2023 Generalized Fermat 2019 136124076^131072+1 1066132 L5041 2023 Generalized Fermat 2020 136122686^131072+1 1066131 L5375 2023 Generalized Fermat 2021 2*3^2234430-1 1066095 A2 2023 2022 178658*5^1525224-1 1066092 L3789 2014 2023 135744154^131072+1 1065973 L5068 2023 Generalized Fermat 2024 135695350^131072+1 1065952 L4249 2023 Generalized Fermat 2025 135623220^131072+1 1065922 L5657 2023 Generalized Fermat 2026 135513092^131072+1 1065876 L5656 2023 Generalized Fermat 2027 135497678^131072+1 1065869 L4387 2023 Generalized Fermat 2028 135458028^131072+1 1065852 L5051 2023 Generalized Fermat 2029 135332960^131072+1 1065800 L5655 2023 Generalized Fermat 2030 135135930^131072+1 1065717 L4387 2023 Generalized Fermat 2031 1085*2^3539671+1 1065551 L3035 2018 2032 134706086^131072+1 1065536 L5378 2023 Generalized Fermat 2033 134459616^131072+1 1065431 L5658 2023 Generalized Fermat 2034 134447516^131072+1 1065426 L4387 2023 Generalized Fermat 2035 134322272^131072+1 1065373 L4387 2023 Generalized Fermat 2036 134206304^131072+1 1065324 L4684 2023 Generalized Fermat 2037 134176868^131072+1 1065311 L5375 2023 Generalized Fermat 2038 133954018^131072+1 1065217 L5088 2023 Generalized Fermat 2039 133676500^131072+1 1065099 L4387 2023 Generalized Fermat 2040 133569020^131072+1 1065053 L5277 2023 Generalized Fermat 2041 133345154^131072+1 1064958 L4210 2023 Generalized Fermat 2042 133180238^131072+1 1064887 L5586 2023 Generalized Fermat 2043 133096042^131072+1 1064851 L4755 2023 Generalized Fermat 2044 465*2^3536871+1 1064707 L4459 2016 2045 1019*2^3536312-1 1064539 L1828 2012 2046 131820886^131072+1 1064303 L5069 2023 Generalized Fermat 2047 131412078^131072+1 1064126 L5653 2023 Generalized Fermat 2048 131370186^131072+1 1064108 L5036 2023 Generalized Fermat 2049 131309874^131072+1 1064082 L5069 2023 Generalized Fermat 2050 131112524^131072+1 1063996 L4245 2023 Generalized Fermat 2051 1179*2^3534450+1 1063979 L3035 2018 2052 130907540^131072+1 1063907 L4526 2023 Generalized Fermat 2053 130593462^131072+1 1063771 L4559 2023 Generalized Fermat 2054 447*2^3533656+1 1063740 L4457 2016 2055 130518578^131072+1 1063738 L5029 2023 Generalized Fermat 2056 1059*2^3533550+1 1063708 L1823 2018 2057 130198372^131072+1 1063598 L5416 2023 Generalized Fermat 2058 130148002^131072+1 1063576 L4387 2023 Generalized Fermat 2059 130128232^131072+1 1063567 L5029 2023 Generalized Fermat 2060 130051980^131072+1 1063534 L5416 2023 Generalized Fermat 2061 130048816^131072+1 1063533 L4245 2023 Generalized Fermat 2062 345*2^3532957+1 1063529 L4314 2016 2063 553*2^3532758+1 1063469 L1823 2018 2064 129292212^131072+1 1063201 L4285 2023 Generalized Fermat 2065 129159632^131072+1 1063142 L5051 2023 Generalized Fermat 2066 128558886^131072+1 1062877 L5518 2023 Generalized Fermat 2067 128520182^131072+1 1062860 L4745 2023 Generalized Fermat 2068 543131*2^3529754-1 1062568 L4925 2022 2069 127720948^131072+1 1062504 L5378 2023 Generalized Fermat 2070 141*2^3529287+1 1062424 L4185 2015 2071 127093036^131072+1 1062224 L4591 2023 Generalized Fermat 2072 24950*745^369781-1 1062074 L4189 2024 2073 126611934^131072+1 1062008 L4776 2023 Generalized Fermat 2074 126423276^131072+1 1061923 L4201 2023 Generalized Fermat 2075 126334514^131072+1 1061883 L4249 2023 Generalized Fermat 2076 13*2^3527315-1 1061829 L1862 2016 2077 126199098^131072+1 1061822 L4591 2023 Generalized Fermat 2078 126189358^131072+1 1061818 L4704 2023 Generalized Fermat 2079 125966884^131072+1 1061717 L4747 2023 Generalized Fermat 2080 125714084^131072+1 1061603 L4745 2023 Generalized Fermat 2081 125141096^131072+1 1061343 L4559 2023 Generalized Fermat 2082 1393*2^3525571-1 1061306 L1828 2017 2083 125006494^131072+1 1061282 L5639 2023 Generalized Fermat 2084 124877454^131072+1 1061223 L4245 2023 Generalized Fermat 2085 124875502^131072+1 1061222 L4591 2023 Generalized Fermat 2086 124749274^131072+1 1061164 L4591 2023 Generalized Fermat 2087 124586054^131072+1 1061090 L4249 2023 Generalized Fermat 2088 124582356^131072+1 1061088 L5606 2023 Generalized Fermat 2089 124543852^131072+1 1061071 L4249 2023 Generalized Fermat 2090 124393514^131072+1 1061002 L4774 2023 Generalized Fermat 2091 124219534^131072+1 1060922 L4249 2023 Generalized Fermat 2092 124133348^131072+1 1060883 L5088 2023 Generalized Fermat 2093 124080788^131072+1 1060859 L5639 2023 Generalized Fermat 2094 1071*2^3523944+1 1060816 L1675 2018 2095 123910270^131072+1 1060780 L4249 2023 Generalized Fermat 2096 123856592^131072+1 1060756 L4201 2023 Generalized Fermat 2097 123338660^131072+1 1060517 L4905 2022 Generalized Fermat 2098 123306230^131072+1 1060502 L5638 2023 Generalized Fermat 2099 123195196^131072+1 1060451 L5029 2022 Generalized Fermat 2100 122941512^131072+1 1060333 L4559 2022 Generalized Fermat 2101 122869094^131072+1 1060300 L4939 2022 Generalized Fermat 2102 122481106^131072+1 1060120 L4704 2022 Generalized Fermat 2103 122414564^131072+1 1060089 L5627 2022 Generalized Fermat 2104 122372192^131072+1 1060069 L5099 2022 Generalized Fermat 2105 121854624^131072+1 1059828 L5051 2022 Generalized Fermat 2106 121462664^131072+1 1059645 L5632 2022 Generalized Fermat 2107 121158848^131072+1 1059502 L4774 2022 Generalized Fermat 2108 2220172*3^2220172+1 1059298 p137 2023 Generalized Cullen 2109 329*2^3518451+1 1059162 L1823 2016 2110 135*2^3518338+1 1059128 L4045 2015 2111 120106930^131072+1 1059006 L4249 2022 Generalized Fermat 2112 2*10^1059002-1 1059003 L3432 2013 Near-repdigit 2113 119744014^131072+1 1058833 L4249 2022 Generalized Fermat 2114 64*10^1058794+1 1058796 L4036 2017 Generalized Fermat 2115 119604848^131072+1 1058767 L4201 2022 Generalized Fermat 2116 119541900^131072+1 1058737 L4747 2022 Generalized Fermat 2117 119510296^131072+1 1058722 L4201 2022 Generalized Fermat 2118 119246256^131072+1 1058596 L4249 2022 Generalized Fermat 2119 119137704^131072+1 1058544 L4201 2022 Generalized Fermat 2120 118888350^131072+1 1058425 L4999 2022 Generalized Fermat 2121 599*2^3515959+1 1058412 L1823 2018 2122 118583824^131072+1 1058279 L4210 2022 Generalized Fermat 2123 118109876^131072+1 1058051 L4550 2022 Generalized Fermat 2124 117906758^131072+1 1057953 L4249 2022 Generalized Fermat 2125 117687318^131072+1 1057847 L4245 2022 Generalized Fermat 2126 117375862^131072+1 1057696 L4774 2022 Generalized Fermat 2127 117345018^131072+1 1057681 L4848 2022 Generalized Fermat 2128 117196584^131072+1 1057609 L4559 2022 Generalized Fermat 2129 117153716^131072+1 1057588 L4774 2022 Generalized Fermat 2130 117088740^131072+1 1057557 L4559 2022 Generalized Fermat 2131 116936156^131072+1 1057483 L5332 2022 Generalized Fermat 2132 116402336^131072+1 1057222 L4760 2022 Generalized Fermat 2133 7*2^3511774+1 1057151 p236 2008 Divides GF(3511773,6) 2134 116036228^131072+1 1057043 L4773 2022 Generalized Fermat 2135 116017862^131072+1 1057034 L4559 2022 Generalized Fermat 2136 115992582^131072+1 1057021 L4835 2022 Generalized Fermat 2137 115873312^131072+1 1056963 L4677 2022 Generalized Fermat 2138 1135*2^3510890+1 1056887 L1823 2018 2139 115704568^131072+1 1056880 L4559 2022 Generalized Fermat 2140 115479166^131072+1 1056769 L4774 2022 Generalized Fermat 2141 115409608^131072+1 1056735 L4774 2022 Generalized Fermat 2142 115256562^131072+1 1056659 L4559 2022 Generalized Fermat 2143 114687250^131072+1 1056377 L5007 2022 Generalized Fermat 2144 114643510^131072+1 1056356 L4659 2022 Generalized Fermat 2145 114340846^131072+1 1056205 L4559 2022 Generalized Fermat 2146 114159720^131072+1 1056115 L4787 2022 Generalized Fermat 2147 114055498^131072+1 1056063 L4387 2022 Generalized Fermat 2148 114009952^131072+1 1056040 L4387 2022 Generalized Fermat 2149 113904214^131072+1 1055987 L4559 2022 Generalized Fermat 2150 113807058^131072+1 1055939 L5157 2022 Generalized Fermat 2151 113550956^131072+1 1055810 L5578 2022 Generalized Fermat 2152 113521888^131072+1 1055796 L4387 2022 Generalized Fermat 2153 113431922^131072+1 1055751 L4559 2022 Generalized Fermat 2154 113328940^131072+1 1055699 L4787 2022 Generalized Fermat 2155 113327472^131072+1 1055698 L5467 2022 Generalized Fermat 2156 113325850^131072+1 1055698 L4559 2022 Generalized Fermat 2157 113313172^131072+1 1055691 L5005 2022 Generalized Fermat 2158 113191714^131072+1 1055630 L5056 2022 Generalized Fermat 2159 113170004^131072+1 1055619 L4584 2022 Generalized Fermat 2160 428639*2^3506452-1 1055553 L2046 2011 2161 112996304^131072+1 1055532 L5544 2022 Generalized Fermat 2162 112958834^131072+1 1055513 L5512 2022 Generalized Fermat 2163 112852910^131072+1 1055459 L5157 2022 Generalized Fermat 2164 112719374^131072+1 1055392 L4793 2022 Generalized Fermat 2165 112580428^131072+1 1055322 L5512 2022 Generalized Fermat 2166 112248096^131072+1 1055154 L5359 2022 Generalized Fermat 2167 112053266^131072+1 1055055 L5359 2022 Generalized Fermat 2168 112023072^131072+1 1055039 L5156 2022 Generalized Fermat 2169 111673524^131072+1 1054861 L5548 2022 Generalized Fermat 2170 111181588^131072+1 1054610 L4550 2022 Generalized Fermat 2171 104*383^408249+1 1054591 L2012 2021 2172 110866802^131072+1 1054449 L5547 2022 Generalized Fermat 2173 555*2^3502765+1 1054441 L1823 2018 2174 110824714^131072+1 1054427 L4201 2022 Generalized Fermat 2175 8300*171^472170+1 1054358 L5780 2023 2176 110428380^131072+1 1054223 L5543 2022 Generalized Fermat 2177 110406480^131072+1 1054212 L5051 2022 Generalized Fermat 2178 643*2^3501974+1 1054203 L1823 2018 2179 2*23^774109+1 1054127 g427 2014 Divides Phi(23^774109,2) 2180 1159*2^3501490+1 1054057 L2125 2018 2181f 1001*2^3501038-1 1053921 A46 2024 2182 109678642^131072+1 1053835 L4559 2022 Generalized Fermat 2183 109654098^131072+1 1053823 L5143 2022 Generalized Fermat 2184 109142690^131072+1 1053557 L4201 2022 Generalized Fermat 2185 109082020^131072+1 1053525 L4773 2022 Generalized Fermat 2186 1189*2^3499042+1 1053320 L4724 2018 2187 108584736^131072+1 1053265 L5057 2022 Generalized Fermat 2188 108581414^131072+1 1053263 L5088 2022 Generalized Fermat 2189 108195632^131072+1 1053060 L5025 2022 Generalized Fermat 2190 108161744^131072+1 1053043 L4945 2022 Generalized Fermat 2191 108080390^131072+1 1053000 L4945 2022 Generalized Fermat 2192 107979316^131072+1 1052947 L4559 2022 Generalized Fermat 2193 107922308^131072+1 1052916 L5025 2022 Generalized Fermat 2194 609*2^3497474+1 1052848 L1823 2018 2195 9*2^3497442+1 1052836 L1780 2012 Generalized Fermat, divides GF(3497441,10) 2196 107732730^131072+1 1052816 L5518 2022 Generalized Fermat 2197 107627678^131072+1 1052761 L5025 2022 Generalized Fermat 2198 107492880^131072+1 1052689 L4550 2022 Generalized Fermat 2199 107420312^131072+1 1052651 L4550 2022 Generalized Fermat 2200 107404768^131072+1 1052643 L4267 2022 Generalized Fermat 2201 107222132^131072+1 1052546 L5019 2022 Generalized Fermat 2202 107126228^131072+1 1052495 L5025 2022 Generalized Fermat 2203 87*2^3496188+1 1052460 L1576 2014 2204 106901434^131072+1 1052375 L4760 2022 Generalized Fermat 2205 106508704^131072+1 1052166 L5505 2022 Generalized Fermat 2206 106440698^131072+1 1052130 L4245 2022 Generalized Fermat 2207 106019242^131072+1 1051904 L5025 2022 Generalized Fermat 2208 105937832^131072+1 1051860 L4745 2022 Generalized Fermat 2209 783*2^3494129+1 1051841 L3824 2018 2210 105861526^131072+1 1051819 L5500 2022 Generalized Fermat 2211 105850338^131072+1 1051813 L5504 2022 Generalized Fermat 2212 105534478^131072+1 1051643 L5025 2022 Generalized Fermat 2213 105058710^131072+1 1051386 L5499 2022 Generalized Fermat 2214 104907548^131072+1 1051304 L4245 2022 Generalized Fermat 2215 104808996^131072+1 1051250 L4591 2022 Generalized Fermat 2216 104641854^131072+1 1051159 L4245 2022 Generalized Fermat 2217 51*2^3490971+1 1050889 L1823 2014 2218 1485*2^3490746+1 1050823 L1134 2021 2219 103828182^131072+1 1050715 L5072 2022 Generalized Fermat 2220 103605376^131072+1 1050593 L5056 2022 Generalized Fermat 2221 103289324^131072+1 1050419 L5044 2022 Generalized Fermat 2222 103280694^131072+1 1050414 L4745 2022 Generalized Fermat 2223 103209792^131072+1 1050375 L5025 2022 Generalized Fermat 2224 103094212^131072+1 1050311 L4245 2022 Generalized Fermat 2225 103013294^131072+1 1050266 L4745 2022 Generalized Fermat 2226 753*2^3488818+1 1050242 L1823 2018 2227 102507732^131072+1 1049986 L4245 2022 Generalized Fermat 2228 102469684^131072+1 1049965 L4245 2022 Generalized Fermat 2229 102397132^131072+1 1049925 L4720 2022 Generalized Fermat 2230 102257714^131072+1 1049847 L4245 2022 Generalized Fermat 2231 699*2^3487253+1 1049771 L1204 2018 2232 102050324^131072+1 1049732 L5036 2022 Generalized Fermat 2233 102021074^131072+1 1049716 L4245 2022 Generalized Fermat 2234 101915106^131072+1 1049656 L6123 2022 Generalized Fermat 2235 101856256^131072+1 1049623 L4774 2022 Generalized Fermat 2236 1001*2^3486566-1 1049564 L4518 2024 2237 249*2^3486411+1 1049517 L4045 2015 2238 195*2^3486379+1 1049507 L4108 2015 2239 101607438^131072+1 1049484 L4591 2022 Generalized Fermat 2240 4687*2^3485926+1 1049372 L5302 2023 2241 2691*2^3485924+1 1049372 L5302 2023 2242 6083*2^3485877+1 1049358 L5837 2023 2243 101328382^131072+1 1049328 L4591 2022 Generalized Fermat 2244 101270816^131072+1 1049295 L4245 2022 Generalized Fermat 2245 9757*2^3485666+1 1049295 L5284 2023 2246 8859*2^3484982+1 1049089 L5833 2023 2247 100865034^131072+1 1049067 L4387 2022 Generalized Fermat 2248 59912*5^1500861+1 1049062 L3772 2014 2249 495*2^3484656+1 1048989 L3035 2016 2250 100719472^131072+1 1048985 L5270 2022 Generalized Fermat 2251 100534258^131072+1 1048880 L4245 2022 Generalized Fermat 2252 100520930^131072+1 1048872 L4201 2022 Generalized Fermat 2253 4467*2^3484204+1 1048854 L5189 2023 2254 4873*2^3484142+1 1048835 L5710 2023 2255 100441116^131072+1 1048827 L4309 2022 Generalized Fermat 2256 (3*2^1742059)^2-3*2^1742059+1 1048825 A3 2023 Generalized unique 2257 3891*2^3484099+1 1048822 L5260 2023 2258 7833*2^3484060+1 1048811 L5830 2023 2259 100382228^131072+1 1048794 L4308 2022 Generalized Fermat 2260 100369508^131072+1 1048786 L5157 2022 Generalized Fermat 2261 100324226^131072+1 1048761 L4201 2022 Generalized Fermat 2262 3097*2^3483800+1 1048732 L5829 2023 2263 5873*2^3483573+1 1048664 L5710 2023 2264 2895*2^3483455+1 1048628 L5480 2023 2265 9029*2^3483337+1 1048593 L5393 2023 2266 100010426^131072+1 1048582 L5375 2022 Generalized Fermat 2267 5531*2^3483263+1 1048571 L5825 2023 2268 323*2^3482789+1 1048427 L1204 2016 2269 3801*2^3482723+1 1048408 L5517 2023 2270 99665972^131072+1 1048386 L4201 2022 Generalized Fermat 2271 99650934^131072+1 1048377 L5375 2022 Generalized Fermat 2272 99557826^131072+1 1048324 L5466 2022 Generalized Fermat 2273 8235*2^3482277+1 1048274 L5820 2023 2274 9155*2^3482129+1 1048230 L5226 2023 2275 99351950^131072+1 1048206 L5143 2022 Generalized Fermat 2276 4325*2^3481969+1 1048181 L5434 2023 2277 99189780^131072+1 1048113 L4201 2022 Generalized Fermat 2278 1149*2^3481694+1 1048098 L1823 2018 2279 98978354^131072+1 1047992 L5465 2022 Generalized Fermat 2280 6127*2^3481244+1 1047963 L5226 2023 2281 98922946^131072+1 1047960 L5453 2022 Generalized Fermat 2282 8903*2^3481217+1 1047955 L5226 2023 2283 3595*2^3481178+1 1047943 L5214 2023 2284 3799*2^3480810+1 1047832 L5226 2023 2285 6101*2^3480801+1 1047830 L5226 2023 2286 98652282^131072+1 1047804 L4201 2022 Generalized Fermat 2287 1740349*2^3480698+1 1047801 L5765 2023 Generalized Cullen 2288 98557818^131072+1 1047750 L5464 2022 Generalized Fermat 2289 98518362^131072+1 1047727 L5460 2022 Generalized Fermat 2290 5397*2^3480379+1 1047703 L5226 2023 2291 5845*2^3479972+1 1047580 L5517 2023 2292 98240694^131072+1 1047566 L4720 2022 Generalized Fermat 2293 98200338^131072+1 1047543 L4559 2022 Generalized Fermat 2294 701*2^3479779+1 1047521 L2125 2018 2295 98137862^131072+1 1047507 L4525 2022 Generalized Fermat 2296 813*2^3479728+1 1047506 L4724 2018 2297 7125*2^3479509+1 1047441 L5812 2023 2298 1971*2^3479061+1 1047306 L5226 2023 2299 1215*2^3478543+1 1047149 L5226 2023 2300 97512766^131072+1 1047143 L5460 2022 Generalized Fermat 2301 5985*2^3478217+1 1047052 L5387 2023 2302 3093*2^3478148+1 1047031 L5261 2023 2303 2145*2^3478095+1 1047015 L5387 2023 2304 6685*2^3478086+1 1047013 L5237 2023 2305 9603*2^3478084+1 1047012 L5178 2023 2306 1315*2^3477718+1 1046901 L5316 2023 2307 97046574^131072+1 1046870 L4956 2022 Generalized Fermat 2308 197*2^3477399+1 1046804 L2125 2015 2309 8303*2^3477201+1 1046746 L5387 2023 2310 96821302^131072+1 1046738 L5453 2022 Generalized Fermat 2311 5925*2^3477009+1 1046688 L5810 2023 2312 96734274^131072+1 1046686 L5297 2022 Generalized Fermat 2313 7825*2^3476524+1 1046542 L5174 2023 2314 96475576^131072+1 1046534 L4424 2022 Generalized Fermat 2315 8197*2^3476332+1 1046485 L5174 2023 2316 8529*2^3476111+1 1046418 L5387 2023 2317 8411*2^3476055+1 1046401 L5783 2023 2318 4319*2^3475955+1 1046371 L5803 2023 2319 96111850^131072+1 1046319 L4245 2022 Generalized Fermat 2320 95940796^131072+1 1046218 L4591 2022 Generalized Fermat 2321 6423*2^3475393+1 1046202 L5174 2023 2322 2281*2^3475340+1 1046185 L5302 2023 2323 7379*2^3474983+1 1046078 L5798 2023 2324 4*5^1496566+1 1046056 L4965 2023 Generalized Fermat 2325 95635202^131072+1 1046036 L5452 2021 Generalized Fermat 2326 95596816^131072+1 1046013 L4591 2021 Generalized Fermat 2327 4737*2^3474562+1 1045952 L5302 2023 2328 2407*2^3474406+1 1045904 L5557 2023 2329 95308284^131072+1 1045841 L4584 2021 Generalized Fermat 2330 491*2^3473837+1 1045732 L4343 2016 2331 2693*2^3473721+1 1045698 L5174 2023 2332 94978760^131072+1 1045644 L4201 2021 Generalized Fermat 2333 3375*2^3473210+1 1045544 L5294 2023 2334 8835*2^3472666+1 1045381 L5178 2023 2335 5615*2^3472377+1 1045294 L5174 2023 2336 1785*2^3472229+1 1045249 L875 2023 2337 8997*2^3472036+1 1045191 L5302 2023 2338 9473*2^3471885+1 1045146 L5294 2023 2339 7897*2^3471568+1 1045050 L5294 2023 2340 93950924^131072+1 1045025 L5425 2021 Generalized Fermat 2341 93886318^131072+1 1044985 L5433 2021 Generalized Fermat 2342 1061*2^3471354-1 1044985 L1828 2017 2343 1913*2^3471177+1 1044932 L5189 2023 2344 93773904^131072+1 1044917 L4939 2021 Generalized Fermat 2345 7723*2^3471074+1 1044902 L5189 2023 2346 4195*2^3470952+1 1044865 L5294 2023 2347 93514592^131072+1 1044760 L4591 2021 Generalized Fermat 2348 5593*2^3470520+1 1044735 L5387 2023 2349 3665*2^3469955+1 1044565 L5189 2023 2350 3301*2^3469708+1 1044490 L5261 2023 2351 6387*2^3469634+1 1044468 L5192 2023 2352 93035888^131072+1 1044467 L4245 2021 Generalized Fermat 2353 8605*2^3469570+1 1044449 L5387 2023 2354 1359*2^3468725+1 1044194 L5197 2023 2355 92460588^131072+1 1044114 L5254 2021 Generalized Fermat 2356 7585*2^3468338+1 1044078 L5197 2023 2357 1781*2^3468335+1 1044077 L5387 2023 2358 6885*2^3468181+1 1044031 L5197 2023 2359 4372*30^706773-1 1043994 L4955 2023 2360 7287*2^3467938+1 1043958 L5776 2023 2361 92198216^131072+1 1043953 L4738 2021 Generalized Fermat 2362 3163*2^3467710+1 1043889 L5517 2023 2363 6099*2^3467689+1 1043883 L5197 2023 2364 6665*2^3467627+1 1043864 L5174 2023 2365 4099*2^3467462+1 1043814 L5774 2023 2366 5285*2^3467445+1 1043809 L5189 2023 2367 1001*2^3467258-1 1043752 L4518 2024 2368 91767880^131072+1 1043686 L5051 2021 Generalized Fermat 2369 91707732^131072+1 1043649 L4591 2021 Generalized Fermat 2370 5935*2^3466880+1 1043639 L5197 2023 2371 91689894^131072+1 1043638 L4591 2021 Generalized Fermat 2372 91685784^131072+1 1043635 L4591 2021 Generalized Fermat 2373 8937*2^3466822+1 1043622 L5174 2023 2374 91655310^131072+1 1043616 L4659 2021 Generalized Fermat 2375 8347*2^3466736+1 1043596 L5770 2023 2376 8863*2^3465780+1 1043308 L5766 2023 2377 3895*2^3465744+1 1043297 L5640 2023 2378 91069366^131072+1 1043251 L5277 2021 Generalized Fermat 2379 91049202^131072+1 1043239 L4591 2021 Generalized Fermat 2380 91033554^131072+1 1043229 L4591 2021 Generalized Fermat 2381 8561*2^3465371+1 1043185 L5197 2023 2382 90942952^131072+1 1043172 L4387 2021 Generalized Fermat 2383 90938686^131072+1 1043170 L4387 2021 Generalized Fermat 2384 9971*2^3465233+1 1043144 L5488 2023 2385 90857490^131072+1 1043119 L4591 2021 Generalized Fermat 2386 3801*2^3464980+1 1043067 L5197 2023 2387 3099*2^3464739+1 1042994 L5284 2023 2388 90382348^131072+1 1042820 L4267 2021 Generalized Fermat 2389 641*2^3464061+1 1042790 L1444 2018 2390 6717*2^3463735+1 1042692 L5754 2023 2391 6015*2^3463561+1 1042640 L5387 2023 2392 90006846^131072+1 1042583 L4773 2021 Generalized Fermat 2393 1667*2^3463355+1 1042577 L5226 2023 2394 2871*2^3463313+1 1042565 L5189 2023 2395 89977312^131072+1 1042565 L5070 2021 Generalized Fermat 2396 6007*2^3463048+1 1042486 L5226 2023 2397 89790434^131072+1 1042446 L5007 2021 Generalized Fermat 2398 9777*2^3462742+1 1042394 L5197 2023 2399 5215*2^3462740+1 1042393 L5174 2023 2400 8365*2^3462722+1 1042388 L5320 2023 2401 3597*2^3462056+1 1042187 L5174 2023 2402 2413*2^3461890+1 1042137 L5197 2023 2403 89285798^131072+1 1042125 L5157 2021 Generalized Fermat 2404 453*2^3461688+1 1042075 L3035 2016 2405 89113896^131072+1 1042016 L5338 2021 Generalized Fermat 2406 4401*2^3461476+1 1042012 L5197 2023 2407 9471*2^3461305+1 1041961 L5594 2023 2408 7245*2^3461070+1 1041890 L5449 2023 2409 3969*2^3460942+1 1041851 L5471 2023 Generalized Fermat 2410 4365*2^3460914+1 1041843 L5197 2023 2411 4613*2^3460861+1 1041827 L5614 2023 2412 88760062^131072+1 1041789 L4903 2021 Generalized Fermat 2413 5169*2^3460553+1 1041734 L5742 2023 2414 8395*2^3460530+1 1041728 L5284 2023 2415 5835*2^3460515+1 1041723 L5740 2023 2416 8059*2^3460246+1 1041642 L5350 2023 2417 571*2^3460216+1 1041632 L3035 2018 2418 6065*2^3460205+1 1041630 L5683 2023 2419 88243020^131072+1 1041457 L4774 2021 Generalized Fermat 2420 88166868^131072+1 1041408 L5277 2021 Generalized Fermat 2421 6237*2^3459386+1 1041383 L5509 2023 2422 88068088^131072+1 1041344 L4933 2021 Generalized Fermat 2423 4029*2^3459062+1 1041286 L5727 2023 2424 87920992^131072+1 1041249 L4249 2021 Generalized Fermat 2425 7055*2^3458909+1 1041240 L5509 2023 2426 7297*2^3458768+1 1041197 L5726 2023 2427 2421*2^3458432+1 1041096 L5725 2023 2428 7907*2^3458207+1 1041028 L5509 2023 2429 87547832^131072+1 1041006 L4591 2021 Generalized Fermat 2430 87454694^131072+1 1040946 L4672 2021 Generalized Fermat 2431 7839*2^3457846+1 1040920 L5231 2023 2432 87370574^131072+1 1040891 L5297 2021 Generalized Fermat 2433 87352356^131072+1 1040879 L4387 2021 Generalized Fermat 2434 87268788^131072+1 1040825 L4917 2021 Generalized Fermat 2435 87192538^131072+1 1040775 L4861 2021 Generalized Fermat 2436 5327*2^3457363+1 1040774 L5715 2023 2437 87116452^131072+1 1040725 L5297 2021 Generalized Fermat 2438 87039658^131072+1 1040675 L5297 2021 Generalized Fermat 2439 6059*2^3457001+1 1040665 L5197 2023 2440 8953*2^3456938+1 1040646 L5724 2023 2441 8669*2^3456759+1 1040593 L5710 2023 2442 86829162^131072+1 1040537 L5265 2021 Generalized Fermat 2443 4745*2^3456167+1 1040414 L5705 2023 2444 8213*2^3456141+1 1040407 L5703 2023 2445 86413544^131072+1 1040264 L4914 2021 Generalized Fermat 2446 86347638^131072+1 1040221 L4848 2021 Generalized Fermat 2447 86295564^131072+1 1040186 L5030 2021 Generalized Fermat 2448 1155*2^3455254+1 1040139 L4711 2017 2449 37292*5^1487989+1 1040065 L3553 2013 2450 86060696^131072+1 1040031 L5057 2021 Generalized Fermat 2451 5525*2^3454069+1 1039783 L5651 2023 2452 4235*2^3453573+1 1039633 L5650 2023 2453 6441*2^3453227+1 1039529 L5683 2023 2454 4407*2^3453195+1 1039519 L5650 2023 2455 9867*2^3453039+1 1039473 L5686 2023 2456 85115888^131072+1 1039403 L4909 2021 Generalized Fermat 2457 4857*2^3452675+1 1039363 L5600 2023 2458 8339*2^3452667+1 1039361 L5651 2023 2459 84924212^131072+1 1039275 L4309 2021 Generalized Fermat 2460 7079*2^3452367+1 1039270 L5650 2023 2461 5527*2^3452342+1 1039263 L5679 2023 2462 84817722^131072+1 1039203 L4726 2021 Generalized Fermat 2463 84765338^131072+1 1039168 L4245 2021 Generalized Fermat 2464 84757790^131072+1 1039163 L5051 2021 Generalized Fermat 2465 84723284^131072+1 1039140 L5051 2021 Generalized Fermat 2466 84715930^131072+1 1039135 L4963 2021 Generalized Fermat 2467 84679936^131072+1 1039111 L4864 2021 Generalized Fermat 2468 3719*2^3451667+1 1039059 L5294 2023 2469 6725*2^3451455+1 1038996 L5685 2023 2470 8407*2^3451334+1 1038959 L5524 2023 2471 84445014^131072+1 1038952 L4909 2021 Generalized Fermat 2472 84384358^131072+1 1038912 L4622 2021 Generalized Fermat 2473 4*10^1038890+1 1038891 L4789 2024 Generalized Fermat 2474 1623*2^3451109+1 1038891 L5308 2023 2475 8895*2^3450982+1 1038854 L5666 2023 2476 84149050^131072+1 1038753 L5033 2021 Generalized Fermat 2477 2899*2^3450542+1 1038721 L5600 2023 2478 6337*2^3449506+1 1038409 L5197 2023 2479 4381*2^3449456+1 1038394 L5392 2023 2480 2727*2^3449326+1 1038355 L5421 2023 2481 2877*2^3449311+1 1038350 L5517 2023 2482 7507*2^3448920+1 1038233 L5284 2023 2483 3629*2^3448919+1 1038232 L5192 2023 2484 83364886^131072+1 1038220 L4591 2021 Generalized Fermat 2485 83328182^131072+1 1038195 L5051 2021 Generalized Fermat 2486 1273*2^3448551-1 1038121 L1828 2012 2487 1461*2^3448423+1 1038082 L4944 2023 2488 3235*2^3448352+1 1038061 L5571 2023 2489 4755*2^3448344+1 1038059 L5524 2023 2490 5655*2^3448288+1 1038042 L5651 2023 2491 4873*2^3448176+1 1038009 L5524 2023 2492 83003850^131072+1 1037973 L4963 2021 Generalized Fermat 2493 8139*2^3447967+1 1037946 L5652 2023 2494 1065*2^3447906+1 1037927 L4664 2017 2495 1717*2^3446756+1 1037581 L5517 2023 2496 6357*2^3446434+1 1037484 L5284 2023 2497 1155*2^3446253+1 1037429 L3035 2017 2498 9075*2^3446090+1 1037381 L5648 2023 2499 82008736^131072+1 1037286 L4963 2021 Generalized Fermat 2500 82003030^131072+1 1037282 L4410 2021 Generalized Fermat 2501 1483*2^3445724+1 1037270 L5650 2023 2502 81976506^131072+1 1037264 L4249 2021 Generalized Fermat 2503 2223*2^3445682+1 1037257 L5647 2023 2504 8517*2^3445488+1 1037200 L5302 2023 2505 2391*2^3445281+1 1037137 L5596 2023 2506 6883*2^3444784+1 1036988 L5264 2023 2507 81477176^131072+1 1036916 L4245 2020 Generalized Fermat 2508 81444036^131072+1 1036893 L4245 2020 Generalized Fermat 2509 8037*2^3443920+1 1036728 L5626 2023 2510 1375*2^3443850+1 1036706 L5192 2023 2511 81096098^131072+1 1036649 L4249 2020 Generalized Fermat 2512 27288429267119080686...(1036580 other digits)...83679577406643267931 1036620 p384 2015 2513 943*2^3442990+1 1036447 L4687 2017 2514 7743*2^3442814+1 1036395 L5514 2023 2515 5511*2^3442468+1 1036290 L5514 2022 2516 80284312^131072+1 1036076 L5051 2020 Generalized Fermat 2517 6329*2^3441717+1 1036064 L5631 2022 2518 3957*2^3441568+1 1036019 L5476 2022 2519 80146408^131072+1 1035978 L5051 2020 Generalized Fermat 2520 4191*2^3441427+1 1035977 L5189 2022 2521 2459*2^3441331+1 1035948 L5514 2022 2522 4335*2^3441306+1 1035940 L5178 2022 2523 2331*2^3441249+1 1035923 L5626 2022 2524 79912550^131072+1 1035812 L5186 2020 Generalized Fermat 2525 79801426^131072+1 1035733 L4245 2020 Generalized Fermat 2526 79789806^131072+1 1035725 L4658 2020 Generalized Fermat 2527 2363*2^3440385+1 1035663 L5625 2022 2528 5265*2^3440332+1 1035647 L5421 2022 2529 6023*2^3440241+1 1035620 L5517 2022 2530 943*2^3440196+1 1035606 L1448 2017 2531 6663*2^3439901+1 1035518 L5624 2022 2532 79485098^131072+1 1035507 L5130 2020 Generalized Fermat 2533 79428414^131072+1 1035466 L4793 2020 Generalized Fermat 2534 79383608^131072+1 1035434 L4387 2020 Generalized Fermat 2535 5745*2^3439450+1 1035382 L5178 2022 2536 79201682^131072+1 1035303 L5051 2020 Generalized Fermat 2537 5109*2^3439090+1 1035273 L5594 2022 2538 543*2^3438810+1 1035188 L3035 2017 2539 625*2^3438572+1 1035117 L1355 2017 Generalized Fermat 2540 3325*2^3438506+1 1035097 L5619 2022 2541 78910032^131072+1 1035093 L5051 2020 Generalized Fermat 2542 78880690^131072+1 1035072 L5159 2020 Generalized Fermat 2543 78851276^131072+1 1035051 L4928 2020 Generalized Fermat 2544 4775*2^3438217+1 1035011 L5618 2022 2545 78714954^131072+1 1034953 L5130 2020 Generalized Fermat 2546 6963*2^3437988+1 1034942 L5616 2022 2547 74*941^348034-1 1034913 L5410 2020 2548 7423*2^3437856+1 1034902 L5192 2022 2549 6701*2^3437801+1 1034886 L5615 2022 2550 5741*2^3437773+1 1034877 L5517 2022 2551 488639*2^3437688-1 1034853 L5327 2024 2552 78439440^131072+1 1034753 L5051 2020 Generalized Fermat 2553 5601*2^3437259+1 1034722 L5612 2022 2554 7737*2^3437192+1 1034702 L5611 2022 2555 113*2^3437145+1 1034686 L4045 2015 2556 78240016^131072+1 1034608 L4245 2020 Generalized Fermat 2557 6387*2^3436719+1 1034560 L5613 2022 2558 78089172^131072+1 1034498 L4245 2020 Generalized Fermat 2559 2921*2^3436299+1 1034433 L5231 2022 2560 9739*2^3436242+1 1034416 L5178 2022 2561 77924964^131072+1 1034378 L5051 2020 Generalized Fermat 2562 77918854^131072+1 1034374 L4760 2020 Generalized Fermat 2563 1147*2^3435970+1 1034334 L3035 2017 2564 4589*2^3435707+1 1034255 L5174 2022 2565 7479*2^3435683+1 1034248 L5421 2022 2566 2863*2^3435616+1 1034227 L5197 2022 2567 77469882^131072+1 1034045 L4591 2020 Generalized Fermat 2568 9863*2^3434697+1 1033951 L5189 2022 2569 4065*2^3434623+1 1033929 L5197 2022 2570 77281404^131072+1 1033906 L4963 2020 Generalized Fermat 2571 9187*2^3434126+1 1033779 L5600 2022 2572 9531*2^3434103+1 1033772 L5601 2022 2573 1757*2^3433547+1 1033604 L5594 2022 2574 1421*2^3433099+1 1033469 L5237 2022 2575 3969*2^3433007+1 1033442 L5189 2022 2576 6557*2^3433003+1 1033441 L5261 2022 2577 7335*2^3432982+1 1033435 L5231 2022 2578 7125*2^3432836+1 1033391 L5594 2022 2579 2517*2^3432734+1 1033360 L5231 2022 2580 911*2^3432643+1 1033332 L1355 2017 2581 5413*2^3432626+1 1033328 L5231 2022 2582 76416048^131072+1 1033265 L4672 2020 Generalized Fermat 2583 3753*2^3432413+1 1033263 L5261 2022 2584 2691*2^3432191+1 1033196 L5585 2022 2585 3933*2^3432125+1 1033177 L5387 2022 2586 76026988^131072+1 1032975 L5094 2020 Generalized Fermat 2587 76018874^131072+1 1032969 L4774 2020 Generalized Fermat 2588 1435*2^3431284+1 1032923 L5587 2022 2589 75861530^131072+1 1032851 L5053 2020 Generalized Fermat 2590 6783*2^3430781+1 1032772 L5261 2022 2591 8079*2^3430683+1 1032743 L5585 2022 2592 75647276^131072+1 1032690 L4677 2020 Generalized Fermat 2593 75521414^131072+1 1032595 L4584 2020 Generalized Fermat 2594 6605*2^3430187+1 1032593 L5463 2022 2595 3761*2^3430057+1 1032554 L5582 2022 2596 6873*2^3429937+1 1032518 L5294 2022 2597 8067*2^3429891+1 1032504 L5581 2022 2598 3965*2^3429719+1 1032452 L5579 2022 2599 3577*2^3428812+1 1032179 L5401 2022 2600 8747*2^3428755+1 1032163 L5493 2022 2601 9147*2^3428638+1 1032127 L5493 2022 2602 3899*2^3428535+1 1032096 L5174 2022 2603 74833516^131072+1 1032074 L5102 2020 Generalized Fermat 2604 74817490^131072+1 1032062 L4591 2020 Generalized Fermat 2605 8891*2^3428303+1 1032026 L5532 2022 2606 793181*20^793181+1 1031959 L5765 2023 Generalized Cullen 2607 2147*2^3427371+1 1031745 L5189 2022 2608 74396818^131072+1 1031741 L4791 2020 Generalized Fermat 2609 74381296^131072+1 1031729 L4550 2020 Generalized Fermat 2610 74363146^131072+1 1031715 L4898 2020 Generalized Fermat 2611 1127*2^3427219+1 1031699 L3035 2017 2612 74325990^131072+1 1031687 L5024 2020 Generalized Fermat 2613 3021*2^3427059+1 1031652 L5554 2022 2614 3255*2^3426983+1 1031629 L5231 2022 2615 1733*2^3426753+1 1031559 L5565 2022 2616 2339*2^3426599+1 1031513 L5237 2022 2617 4729*2^3426558+1 1031501 L5493 2022 2618 73839292^131072+1 1031313 L4550 2020 Generalized Fermat 2619 5445*2^3425839+1 1031285 L5237 2022 2620 159*2^3425766+1 1031261 L4045 2015 2621 73690464^131072+1 1031198 L4884 2020 Generalized Fermat 2622 3405*2^3425045+1 1031045 L5261 2022 2623 73404316^131072+1 1030976 L5011 2020 Generalized Fermat 2624 1695*2^3424517+1 1030886 L5387 2022 2625 4715*2^3424433+1 1030861 L5557 2022 2626 5525*2^3424423+1 1030858 L5387 2022 2627 8615*2^3424231+1 1030801 L5261 2022 2628 5805*2^3424200+1 1030791 L5237 2022 2629 73160610^131072+1 1030787 L4550 2020 Generalized Fermat 2630 73132228^131072+1 1030765 L4905 2020 Generalized Fermat 2631 73099962^131072+1 1030740 L5068 2020 Generalized Fermat 2632 2109*2^3423798-3027*2^988658+1 1030670 CH13 2023 Arithmetic progression (3,d=2109*2^3423797-3027*2^988658) 2633 2109*2^3423797+1 1030669 L5197 2022 2634 4929*2^3423494+1 1030579 L5554 2022 2635 2987*2^3422911+1 1030403 L5226 2022 2636 72602370^131072+1 1030351 L4201 2020 Generalized Fermat 2637 4843*2^3422644+1 1030323 L5553 2022 2638 5559*2^3422566+1 1030299 L5555 2022 2639 7583*2^3422501+1 1030280 L5421 2022 2640 1119*2^3422189+1 1030185 L1355 2017 2641 2895*2^3422031-143157*2^2144728+1 1030138 p423 2023 Arithmetic progression (3,d=2895*2^3422030-143157*2^2144728) 2642 2895*2^3422030+1 1030138 L5237 2022 2643 2835*2^3421697+1 1030037 L5387 2022 2644 3363*2^3421353+1 1029934 L5226 2022 2645 72070092^131072+1 1029932 L4201 2020 Generalized Fermat 2646 9147*2^3421264+1 1029908 L5237 2022 2647 9705*2^3420915+1 1029803 L5540 2022 2648 1005*2^3420846+1 1029781 L2714 2017 Divides GF(3420844,10) 2649 8919*2^3420758+1 1029755 L5226 2022 2650 71732900^131072+1 1029665 L5053 2020 Generalized Fermat 2651 71679108^131072+1 1029623 L5072 2020 Generalized Fermat 2652 5489*2^3420137+1 1029568 L5174 2022 2653 9957*2^3420098+1 1029557 L5237 2022 2654 93*10^1029523-1 1029525 L4789 2019 Near-repdigit 2655 71450224^131072+1 1029440 L5029 2020 Generalized Fermat 2656 7213*2^3419370+1 1029337 L5421 2022 2657 7293*2^3419264+1 1029305 L5192 2022 2658 975*2^3419230+1 1029294 L3545 2017 2659 4191*2^3419227+1 1029294 L5421 2022 2660 28080*745^358350-1 1029242 L4189 2024 2661 2393*2^3418921+1 1029202 L5197 2022 2662 999*2^3418885+1 1029190 L3035 2017 2663 2925*2^3418543+1 1029088 L5174 2022 2664 70960658^131072+1 1029049 L5039 2020 Generalized Fermat 2665 70948704^131072+1 1029039 L4660 2020 Generalized Fermat 2666 70934282^131072+1 1029028 L5067 2020 Generalized Fermat 2667 7383*2^3418297+1 1029014 L5189 2022 2668 70893680^131072+1 1028995 L5063 2020 Generalized Fermat 2669 907*2^3417890+1 1028891 L3035 2017 2670 5071*2^3417884+1 1028890 L5237 2022 2671 3473*2^3417741+1 1028847 L5541 2022 2672 191249*2^3417696-1 1028835 L1949 2010 2673 70658696^131072+1 1028806 L5051 2020 Generalized Fermat 2674 3299*2^3417329+1 1028723 L5421 2022 2675 6947*2^3416979+1 1028618 L5540 2022 2676 70421038^131072+1 1028615 L4984 2020 Generalized Fermat 2677 8727*2^3416652+1 1028519 L5226 2022 2678 8789*2^3416543+1 1028486 L5197 2022 2679 70050828^131072+1 1028315 L5021 2020 Generalized Fermat 2680 7917*2^3415947+1 1028307 L5537 2022 2681 70022042^131072+1 1028291 L4201 2020 Generalized Fermat 2682 2055*2^3415873+1 1028284 L5535 2022 2683 4731*2^3415712+1 1028236 L5192 2022 2684 2219*2^3415687+1 1028228 L5178 2022 2685 69915032^131072+1 1028204 L4591 2020 Generalized Fermat 2686 5877*2^3415419+1 1028148 L5532 2022 2687 3551*2^3415275+1 1028104 L5231 2022 2688 69742382^131072+1 1028063 L5053 2020 Generalized Fermat 2689 2313*2^3415046+1 1028035 L5226 2022 2690 69689592^131072+1 1028020 L4387 2020 Generalized Fermat 2691 7637*2^3414875+1 1027984 L5507 2022 2692 2141*2^3414821+1 1027967 L5226 2022 2693 69622572^131072+1 1027965 L4909 2020 Generalized Fermat 2694 3667*2^3414686+1 1027927 L5226 2022 2695 69565722^131072+1 1027919 L4387 2020 Generalized Fermat 2696 6159*2^3414623+1 1027908 L5226 2022 2697 69534788^131072+1 1027894 L5029 2020 Generalized Fermat 2698 4577*2^3413539+1 1027582 L5387 2022 2699 5137*2^3413524+1 1027577 L5261 2022 2700 8937*2^3413364+1 1027529 L5527 2022 2701 8829*2^3413339+1 1027522 L5531 2022 2702 7617*2^3413315+1 1027515 L5197 2022 2703 68999820^131072+1 1027454 L5044 2020 Generalized Fermat 2704 3141*2^3413112+1 1027453 L5463 2022 2705 8831*2^3412931+1 1027399 L5310 2022 2706 68924112^131072+1 1027391 L4745 2020 Generalized Fermat 2707 68918852^131072+1 1027387 L5021 2020 Generalized Fermat 2708 5421*2^3412877+1 1027383 L5310 2022 2709 9187*2^3412700+1 1027330 L5337 2022 2710 68811158^131072+1 1027298 L4245 2020 Generalized Fermat 2711 8243*2^3412577+1 1027292 L5524 2022 2712 1751*2^3412565+1 1027288 L5523 2022 2713 9585*2^3412318+1 1027215 L5197 2022 2714 9647*2^3412247+1 1027193 L5178 2022 2715 3207*2^3412108+1 1027151 L5189 2022 2716 479*2^3411975+1 1027110 L2873 2016 2717 245*2^3411973+1 1027109 L1935 2015 2718 177*2^3411847+1 1027071 L4031 2015 2719 68536972^131072+1 1027071 L5027 2020 Generalized Fermat 2720 9963*2^3411566+1 1026988 L5237 2022 2721 68372810^131072+1 1026934 L4956 2020 Generalized Fermat 2722 9785*2^3411223+1 1026885 L5189 2022 2723 5401*2^3411136+1 1026858 L5261 2022 2724 68275006^131072+1 1026853 L4963 2020 Generalized Fermat 2725 9431*2^3411105+1 1026849 L5237 2022 2726 8227*2^3410878+1 1026781 L5316 2022 2727 4735*2^3410724+1 1026734 L5226 2022 2728 9515*2^3410707+1 1026730 L5237 2022 2729 6783*2^3410690+1 1026724 L5434 2022 2730 8773*2^3410558+1 1026685 L5261 2022 2731 4629*2^3410321+1 1026613 L5517 2022 2732 67894288^131072+1 1026535 L5025 2020 Generalized Fermat 2733 113*2^3409934-1 1026495 L2484 2014 2734 5721*2^3409839+1 1026468 L5226 2022 2735 67725850^131072+1 1026393 L5029 2020 Generalized Fermat 2736 6069*2^3409493+1 1026364 L5237 2022 2737 1981*910^346850+1 1026347 L1141 2021 2738 5317*2^3409236+1 1026287 L5471 2022 2739 7511*2^3408985+1 1026211 L5514 2022 2740 7851*2^3408909+1 1026188 L5176 2022 2741 67371416^131072+1 1026094 L4550 2020 Generalized Fermat 2742 6027*2^3408444+1 1026048 L5239 2022 2743 59*2^3408416-1 1026038 L426 2010 2744 2153*2^3408333+1 1026014 L5237 2022 2745 9831*2^3408056+1 1025932 L5233 2022 2746 3615*2^3408035+1 1025925 L5217 2022 2747 6343*2^3407950+1 1025899 L5226 2022 2748 8611*2^3407516+1 1025769 L5509 2022 2749 66982940^131072+1 1025765 L4249 2020 Generalized Fermat 2750 7111*2^3407452+1 1025750 L5508 2022 2751 66901180^131072+1 1025696 L5018 2020 Generalized Fermat 2752 6945*2^3407256+1 1025691 L5507 2022 2753 6465*2^3407229+1 1025682 L5301 2022 2754 1873*2^3407156+1 1025660 L5440 2022 2755 7133*2^3406377+1 1025426 L5279 2022 2756 7063*2^3406122+1 1025349 L5178 2022 2757 3105*2^3405800+1 1025252 L5502 2022 2758 953*2^3405729+1 1025230 L3035 2017 2759 66272848^131072+1 1025159 L5013 2020 Generalized Fermat 2760 66131722^131072+1 1025037 L4530 2020 Generalized Fermat 2761 373*2^3404702+1 1024921 L3924 2016 2762 7221*2^3404507+1 1024863 L5231 2022 2763 6641*2^3404259+1 1024788 L5501 2022 2764 9225*2^3404209+1 1024773 L5250 2022 2765 65791182^131072+1 1024743 L4623 2019 Generalized Fermat 2766 833*2^3403765+1 1024639 L3035 2017 2767 65569854^131072+1 1024552 L4210 2019 Generalized Fermat 2768 2601*2^3403459+1 1024547 L5350 2022 2769 8835*2^3403266+1 1024490 L5161 2022 2770 7755*2^3403010+1 1024412 L5161 2022 2771 3123*2^3402834+1 1024359 L5260 2022 2772 65305572^131072+1 1024322 L5001 2019 Generalized Fermat 2773 65200798^131072+1 1024230 L4999 2019 Generalized Fermat 2774 1417*2^3402246+1 1024182 L5497 2022 2775 5279*2^3402241+1 1024181 L5250 2022 2776 6651*2^3402137+1 1024150 L5476 2022 2777 1779*2^3401715+1 1024022 L5493 2022 2778 64911056^131072+1 1023977 L4870 2019 Generalized Fermat 2779 8397*2^3401502+1 1023959 L5476 2022 2780 4057*2^3401472+1 1023949 L5492 2022 2781 64791668^131072+1 1023872 L4905 2019 Generalized Fermat 2782 4095*2^3401174+1 1023860 L5418 2022 2783 5149*2^3400970+1 1023798 L5176 2022 2784 4665*2^3400922+1 1023784 L5308 2022 2785 24*414^391179+1 1023717 L4273 2016 2786 64568930^131072+1 1023676 L4977 2019 Generalized Fermat 2787 64506894^131072+1 1023621 L4977 2019 Generalized Fermat 2788 1725*2^3400371+1 1023617 L5197 2022 2789 64476916^131072+1 1023595 L4997 2019 Generalized Fermat 2790 9399*2^3400243+1 1023580 L5488 2022 2791 1241*2^3400127+1 1023544 L5279 2022 2792 1263*2^3399876+1 1023468 L5174 2022 2793 1167*2^3399748+1 1023430 L3545 2017 2794 64024604^131072+1 1023194 L4591 2019 Generalized Fermat 2795 7679*2^3398569+1 1023076 L5295 2022 2796 6447*2^3398499+1 1023054 L5302 2022 2797 63823568^131072+1 1023015 L4585 2019 Generalized Fermat 2798 2785*2^3398332+1 1023004 L5250 2022 2799 611*2^3398273+1 1022985 L3035 2017 2800 2145*2^3398034+1 1022914 L5302 2022 2801 3385*2^3397254+1 1022679 L5161 2022 2802 4*3^2143374+1 1022650 L4965 2020 Generalized Fermat 2803 4463*2^3396657+1 1022500 L5476 2022 2804 2889*2^3396450+1 1022437 L5178 2022 2805 8523*2^3396448+1 1022437 L5231 2022 2806 63168480^131072+1 1022428 L4861 2019 Generalized Fermat 2807 63165756^131072+1 1022425 L4987 2019 Generalized Fermat 2808 3349*2^3396326+1 1022400 L5480 2022 2809 63112418^131072+1 1022377 L4201 2019 Generalized Fermat 2810 4477*2^3395786+1 1022238 L5161 2022 2811 3853*2^3395762+1 1022230 L5302 2022 2812 2693*2^3395725+1 1022219 L5284 2022 2813 8201*2^3395673+1 1022204 L5178 2022 2814 255*2^3395661+1 1022199 L3898 2014 2815 1049*2^3395647+1 1022195 L3035 2017 2816 9027*2^3395623+1 1022189 L5263 2022 2817 2523*2^3395549+1 1022166 L5472 2022 2818 3199*2^3395402+1 1022122 L5264 2022 2819 342924651*2^3394939-1 1021988 L4166 2017 2820 3825*2^3394947+1 1021985 L5471 2022 2821 1895*2^3394731+1 1021920 L5174 2022 2822 62276102^131072+1 1021618 L4715 2019 Generalized Fermat 2823 555*2^3393389+1 1021515 L2549 2017 2824 1865*2^3393387+1 1021515 L5237 2022 2825 4911*2^3393373+1 1021511 L5231 2022 2826 62146946^131072+1 1021500 L4720 2019 Generalized Fermat 2827 5229*2^3392587+1 1021275 L5463 2022 2828 61837354^131072+1 1021215 L4656 2019 Generalized Fermat 2829 609*2^3392301+1 1021188 L3035 2017 2830 9787*2^3392236+1 1021169 L5350 2022 2831 303*2^3391977+1 1021090 L2602 2016 2832 805*2^3391818+1 1021042 L4609 2017 2833 6475*2^3391496+1 1020946 L5174 2022 2834 67*2^3391385-1 1020911 L1959 2014 2835 61267078^131072+1 1020688 L4923 2019 Generalized Fermat 2836 4639*2^3390634+1 1020687 L5189 2022 2837 5265*2^3390581+1 1020671 L5456 2022 2838 663*2^3390469+1 1020636 L4316 2017 2839 6945*2^3390340+1 1020598 L5174 2022 2840 5871*2^3390268+1 1020577 L5231 2022 2841 7443*2^3390141+1 1020539 L5226 2022 2842 5383*2^3389924+1 1020473 L5350 2021 2843 61030988^131072+1 1020468 L4898 2019 Generalized Fermat 2844 9627*2^3389331+1 1020295 L5231 2021 2845 60642326^131072+1 1020104 L4591 2019 Generalized Fermat 2846 8253*2^3388624+1 1020082 L5226 2021 2847 3329*2^3388472-1 1020036 L4841 2020 2848 4695*2^3388393+1 1020012 L5237 2021 2849 60540024^131072+1 1020008 L4591 2019 Generalized Fermat 2850 7177*2^3388144+1 1019937 L5174 2021 2851 60455792^131072+1 1019929 L4760 2019 Generalized Fermat 2852 9611*2^3388059+1 1019912 L5435 2021 2853 1833*2^3387760+1 1019821 L5226 2021 2854 9003*2^3387528+1 1019752 L5189 2021 2855 3161*2^3387141+1 1019635 L5226 2021 2856 7585*2^3387110+1 1019626 L5189 2021 2857 60133106^131072+1 1019624 L4942 2019 Generalized Fermat 2858 453*2^3387048+1 1019606 L2602 2016 2859 5177*2^3386919+1 1019568 L5226 2021 2860 8739*2^3386813+1 1019537 L5226 2021 2861 2875*2^3386638+1 1019484 L5226 2021 2862 7197*2^3386526+1 1019450 L5178 2021 2863 1605*2^3386229+1 1019360 L5226 2021 2864 8615*2^3386181+1 1019346 L5442 2021 2865 3765*2^3386141+1 1019334 L5174 2021 2866 5379*2^3385806+1 1019233 L5237 2021 2867 59720358^131072+1 1019232 L4656 2019 Generalized Fermat 2868 59692546^131072+1 1019206 L4747 2019 Generalized Fermat 2869 59515830^131072+1 1019037 L4737 2019 Generalized Fermat 2870 173198*5^1457792-1 1018959 L3720 2013 2871 59405420^131072+1 1018931 L4645 2019 Generalized Fermat 2872 2109*2^3384733+1 1018910 L5261 2021 2873 7067*2^3384667+1 1018891 L5439 2021 2874 59362002^131072+1 1018890 L4249 2019 Generalized Fermat 2875 59305348^131072+1 1018835 L4932 2019 Generalized Fermat 2876 2077*2^3384472+1 1018831 L5237 2021 2877 59210784^131072+1 1018745 L4926 2019 Generalized Fermat 2878 59161754^131072+1 1018697 L4928 2019 Generalized Fermat 2879 9165*2^3383917+1 1018665 L5435 2021 2880 5579*2^3383209+1 1018452 L5434 2021 2881 8241*2^3383131+1 1018428 L5387 2021 2882 7409*2^3382869+1 1018349 L5161 2021 2883 4883*2^3382813+1 1018332 L5161 2021 2884 9783*2^3382792+1 1018326 L5189 2021 2885 58589880^131072+1 1018145 L4923 2019 Generalized Fermat 2886 58523466^131072+1 1018080 L4802 2019 Generalized Fermat 2887 8877*2^3381936+1 1018069 L5429 2021 2888 58447816^131072+1 1018006 L4591 2019 Generalized Fermat 2889 58447642^131072+1 1018006 L4591 2019 Generalized Fermat 2890 6675*2^3381688+1 1017994 L5197 2021 2891 2445*2^3381129+1 1017825 L5231 2021 2892 58247118^131072+1 1017811 L4309 2019 Generalized Fermat 2893 3381*2^3380585+1 1017662 L5237 2021 2894 7899*2^3380459+1 1017624 L5421 2021 2895 5945*2^3379933+1 1017465 L5418 2021 2896 1425*2^3379921+1 1017461 L1134 2020 2897 4975*2^3379420+1 1017311 L5161 2021 2898 57704312^131072+1 1017278 L4591 2019 Generalized Fermat 2899 57694224^131072+1 1017268 L4656 2019 Generalized Fermat 2900 57594734^131072+1 1017169 L4656 2019 Generalized Fermat 2901 9065*2^3378851+1 1017140 L5414 2021 2902 2369*2^3378761+1 1017112 L5197 2021 2903 57438404^131072+1 1017015 L4745 2019 Generalized Fermat 2904 621*2^3378148+1 1016927 L3035 2017 2905 7035*2^3378141+1 1016926 L5408 2021 2906 2067*2^3378115+1 1016918 L5405 2021 2907 1093*2^3378000+1 1016883 L4583 2017 2908 9577*2^3377612+1 1016767 L5406 2021 2909 861*2^3377601+1 1016763 L4582 2017 2910 5811*2^3377016+1 1016587 L5261 2021 2911 2285*2^3376911+1 1016555 L5261 2021 2912 4199*2^3376903+1 1016553 L5174 2021 2913 6405*2^3376890+1 1016549 L5269 2021 2914 1783*2^3376810+1 1016525 L5261 2021 2915 5401*2^3376768+1 1016513 L5174 2021 2916 56917336^131072+1 1016496 L4729 2019 Generalized Fermat 2917 2941*2^3376536+1 1016443 L5174 2021 2918 1841*2^3376379+1 1016395 L5401 2021 2919 6731*2^3376133+1 1016322 L5261 2021 2920 56735576^131072+1 1016314 L4760 2019 Generalized Fermat 2921 8121*2^3375933+1 1016262 L5356 2021 2922 5505*2^3375777+1 1016214 L5174 2021 2923 56584816^131072+1 1016162 L4289 2019 Generalized Fermat 2924 3207*2^3375314+1 1016075 L5237 2021 2925 56459558^131072+1 1016036 L4892 2019 Generalized Fermat 2926 5307*2^3374939+1 1015962 L5392 2021 2927 56383242^131072+1 1015959 L4889 2019 Generalized Fermat 2928 56307420^131072+1 1015883 L4843 2019 Generalized Fermat 2929 208003!-1 1015843 p394 2016 Factorial 2930 6219*2^3374198+1 1015739 L5393 2021 2931 3777*2^3374072+1 1015701 L5261 2021 2932 9347*2^3374055+1 1015696 L5387 2021 2933 1461*2^3373383+1 1015493 L5384 2021 2934 6395*2^3373135+1 1015419 L5382 2021 2935 7869*2^3373021+1 1015385 L5381 2021 2936 55645700^131072+1 1015210 L4745 2019 Generalized Fermat 2937 4905*2^3372216+1 1015142 L5261 2021 2938 55579418^131072+1 1015142 L4745 2019 Generalized Fermat 2939 2839*2^3372034+1 1015087 L5174 2021 2940 7347*2^3371803+1 1015018 L5217 2021 2941 9799*2^3371378+1 1014890 L5261 2021 2942 4329*2^3371201+1 1014837 L5197 2021 2943 3657*2^3371183+1 1014831 L5360 2021 2944 55268442^131072+1 1014822 L4525 2019 Generalized Fermat 2945 179*2^3371145+1 1014819 L3763 2014 2946 5155*2^3371016+1 1014781 L5237 2021 2947 7575*2^3371010+1 1014780 L5237 2021 2948 55184170^131072+1 1014736 L4871 2018 Generalized Fermat 2949 9195*2^3370798+1 1014716 L5178 2021 2950 1749*2^3370786+1 1014711 L5362 2021 2951 8421*2^3370599+1 1014656 L5174 2021 2952 55015050^131072+1 1014561 L4205 2018 Generalized Fermat 2953 4357*2^3369572+1 1014346 L5231 2021 2954 6073*2^3369544+1 1014338 L5358 2021 2955 839*2^3369383+1 1014289 L2891 2017 2956 65*2^3369359+1 1014280 L5236 2021 2957 8023*2^3369228+1 1014243 L5356 2021 2958 677*2^3369115+1 1014208 L2103 2017 2959 1437*2^3369083+1 1014199 L5282 2021 2960 9509*2^3368705+1 1014086 L5237 2021 2961 54548788^131072+1 1014076 L4726 2018 Generalized Fermat 2962 4851*2^3368668+1 1014074 L5307 2021 2963 7221*2^3368448+1 1014008 L5353 2021 2964 5549*2^3368437+1 1014005 L5217 2021 2965 715*2^3368210+1 1013936 L4527 2017 2966 617*2^3368119+1 1013908 L4552 2017 2967 54361742^131072+1 1013881 L4210 2018 Generalized Fermat 2968 1847*2^3367999+1 1013872 L5352 2021 2969 54334044^131072+1 1013852 L4745 2018 Generalized Fermat 2970 6497*2^3367743+1 1013796 L5285 2021 2971 2533*2^3367666+1 1013772 L5326 2021 2972 6001*2^3367552+1 1013738 L5350 2021 2973 54212352^131072+1 1013724 L4307 2018 Generalized Fermat 2974 54206254^131072+1 1013718 L4249 2018 Generalized Fermat 2975 777*2^3367372+1 1013683 L4408 2017 2976 9609*2^3367351+1 1013678 L5285 2021 2977 54161106^131072+1 1013670 L4307 2018 Generalized Fermat 2978 2529*2^3367317+1 1013667 L5237 2021 2979 5941*2^3366960+1 1013560 L5189 2021 2980 5845*2^3366956+1 1013559 L5197 2021 2981 54032538^131072+1 1013535 L4591 2018 Generalized Fermat 2982 9853*2^3366608+1 1013454 L5178 2021 2983 61*2^3366033-1 1013279 L4405 2017 2984 7665*2^3365896+1 1013240 L5345 2021 2985 8557*2^3365648+1 1013165 L5346 2021 2986 369*2^3365614+1 1013154 L4364 2016 2987 53659976^131072+1 1013141 L4823 2018 Generalized Fermat 2988 8201*2^3365283+1 1013056 L5345 2021 2989 9885*2^3365151+1 1013016 L5344 2021 2990 5173*2^3365096+1 1012999 L5285 2021 2991 8523*2^3364918+1 1012946 L5237 2021 2992 3985*2^3364776+1 1012903 L5178 2021 2993 9711*2^3364452+1 1012805 L5192 2021 2994 7003*2^3364172+1 1012721 L5217 2021 2995 6703*2^3364088+1 1012696 L5337 2021 2996 7187*2^3364011+1 1012673 L5217 2021 2997 53161266^131072+1 1012610 L4307 2018 Generalized Fermat 2998 53078434^131072+1 1012521 L4835 2018 Generalized Fermat 2999 2345*2^3363157+1 1012415 L5336 2021 3000 6527*2^3363135+1 1012409 L5167 2021 3001 9387*2^3363088+1 1012395 L5161 2021 3002 8989*2^3362986+1 1012364 L5161 2021 3003 533*2^3362857+1 1012324 L3171 2017 3004 619*2^3362814+1 1012311 L4527 2017 3005 2289*2^3362723+1 1012284 L5161 2021 3006 7529*2^3362565+1 1012237 L5161 2021 3007 7377*2^3362366+1 1012177 L5161 2021 3008 4509*2^3362311+1 1012161 L5324 2021 3009 7021*2^3362208+1 1012130 L5178 2021 3010 52712138^131072+1 1012127 L4819 2018 Generalized Fermat 3011 104*873^344135-1 1012108 L4700 2018 3012 4953*2^3362054+1 1012083 L5323 2021 3013 8575*2^3361798+1 1012006 L5237 2021 3014 2139*2^3361706+1 1011978 L5174 2021 3015 6939*2^3361203+1 1011827 L5217 2021 3016 52412612^131072+1 1011802 L4289 2018 Generalized Fermat 3017 3^2120580-3^623816-1 1011774 CH9 2019 3018 8185*2^3360896+1 1011735 L5189 2021 3019 2389*2^3360882+1 1011730 L5317 2021 3020 2787*2^3360631+1 1011655 L5197 2021 3021 6619*2^3360606+1 1011648 L5316 2021 3022 2755*2^3360526+1 1011623 L5174 2021 3023 1445*2^3360099+1 1011494 L5261 2021 3024 2846*67^553905-1 1011476 L4955 2023 3025 8757*2^3359788+1 1011401 L5197 2021 3026 52043532^131072+1 1011400 L4810 2018 Generalized Fermat 3027 5085*2^3359696+1 1011373 L5261 2021 3028 51954384^131072+1 1011303 L4720 2018 Generalized Fermat 3029 6459*2^3359457+1 1011302 L5310 2021 3030 51872628^131072+1 1011213 L4591 2018 Generalized Fermat 3031 6115*2^3358998+1 1011163 L5309 2021 3032 7605*2^3358929+1 1011143 L5308 2021 3033 2315*2^3358899+1 1011133 L5197 2021 3034 6603*2^3358525+1 1011021 L5307 2021 3035 51580416^131072+1 1010891 L4765 2018 Generalized Fermat 3036 51570250^131072+1 1010880 L4591 2018 Generalized Fermat 3037 51567684^131072+1 1010877 L4800 2018 Generalized Fermat 3038 5893*2^3357490+1 1010709 L5285 2021 3039 6947*2^3357075+1 1010585 L5302 2021 3040 4621*2^3357068+1 1010582 L5301 2021 3041 51269192^131072+1 1010547 L4795 2018 Generalized Fermat 3042 1479*2^3356275+1 1010343 L5178 2021 3043 3645*2^3356232+1 1010331 L5296 2021 3044 1259*2^3356215+1 1010325 L5298 2021 3045 2075*2^3356057+1 1010278 L5174 2021 3046 4281*2^3356051+1 1010276 L5295 2021 3047 1275*2^3356045+1 1010274 L5294 2021 3048 50963598^131072+1 1010206 L4726 2018 Generalized Fermat 3049 4365*2^3355770+1 1010192 L5261 2021 3050 50844724^131072+1 1010074 L4656 2018 Generalized Fermat 3051 2183*2^3355297+1 1010049 L5266 2021 3052 3087*2^3355000+1 1009960 L5226 2021 3053 8673*2^3354760+1 1009888 L5233 2021 3054 50495632^131072+1 1009681 L4591 2018 Generalized Fermat 3055 3015*2^3353943+1 1009641 L5290 2021 3056 6819*2^3353877+1 1009622 L5174 2021 3057 9*10^1009567-1 1009568 L3735 2016 Near-repdigit 3058 6393*2^3353366+1 1009468 L5287 2021 3059 3573*2^3353273+1 1009440 L5161 2021 3060 4047*2^3353222+1 1009425 L5286 2021 3061 1473*2^3353114+1 1009392 L5161 2021 3062 1183*2^3353058+1 1009375 L3824 2017 3063 50217306^131072+1 1009367 L4720 2018 Generalized Fermat 3064 81*2^3352924+1 1009333 L1728 2012 Generalized Fermat 3065 50110436^131072+1 1009245 L4591 2018 Generalized Fermat 3066 50055102^131072+1 1009183 L4309 2018 Generalized Fermat 3067 7123*2^3352180+1 1009111 L5161 2021 3068 2757*2^3352180+1 1009111 L5285 2021 3069 9307*2^3352014+1 1009061 L5284 2021 3070 2217*2^3351732+1 1008976 L5283 2021 3071 543*2^3351686+1 1008961 L4198 2017 3072 4419*2^3351666+1 1008956 L5279 2021 3073 49817700^131072+1 1008912 L4760 2018 Generalized Fermat 3074 3059*2^3351379+1 1008870 L5278 2021 3075 7789*2^3351046+1 1008770 L5276 2021 3076 9501*2^3350668+1 1008656 L5272 2021 3077 49530004^131072+1 1008582 L4591 2018 Generalized Fermat 3078 9691*2^3349952+1 1008441 L5242 2021 3079 49397682^131072+1 1008430 L4764 2018 Generalized Fermat 3080 3209*2^3349719+1 1008370 L5269 2021 3081 49331672^131072+1 1008354 L4763 2018 Generalized Fermat 3082 393*2^3349525+1 1008311 L3101 2016 3083 49243622^131072+1 1008252 L4741 2018 Generalized Fermat 3084 5487*2^3349303+1 1008245 L5266 2021 3085 49225986^131072+1 1008232 L4757 2018 Generalized Fermat 3086 2511*2^3349104+1 1008185 L5264 2021 3087 1005*2^3349046-1 1008167 L4518 2021 3088 7659*2^3348894+1 1008122 L5263 2021 3089 9703*2^3348872+1 1008115 L5262 2021 3090 49090656^131072+1 1008075 L4752 2018 Generalized Fermat 3091 7935*2^3348578+1 1008027 L5161 2021 3092 49038514^131072+1 1008015 L4743 2018 Generalized Fermat 3093 7821*2^3348400+1 1007973 L5260 2021 3094 7911*2^3347532+1 1007712 L5250 2021 3095 8295*2^3347031+1 1007561 L5249 2021 3096 48643706^131072+1 1007554 L4691 2018 Generalized Fermat 3097 4029*2^3346729+1 1007470 L5239 2021 3098 9007*2^3346716+1 1007466 L5161 2021 3099 8865*2^3346499+1 1007401 L5238 2021 3100 6171*2^3346480+1 1007395 L5174 2021 3101 6815*2^3346045+1 1007264 L5235 2021 3102 5*326^400785+1 1007261 L4786 2019 3103 5951*2^3345977+1 1007244 L5233 2021 3104 48370248^131072+1 1007234 L4701 2018 Generalized Fermat 3105 1257*2^3345843+1 1007203 L5192 2021 3106 4701*2^3345815+1 1007195 L5192 2021 3107 48273828^131072+1 1007120 L4456 2018 Generalized Fermat 3108 7545*2^3345355+1 1007057 L5231 2021 3109 5559*2^3344826+1 1006897 L5223 2021 3110 6823*2^3344692+1 1006857 L5223 2021 3111 4839*2^3344453+1 1006785 L5188 2021 3112 7527*2^3344332+1 1006749 L5220 2021 3113 7555*2^3344240+1 1006721 L5188 2021 3114 6265*2^3344080+1 1006673 L5197 2021 3115 1299*2^3343943+1 1006631 L5217 2021 3116 2815*2^3343754+1 1006574 L5216 2021 3117 5349*2^3343734+1 1006568 L5174 2021 3118 2863*2^3342920+1 1006323 L5179 2020 3119 7387*2^3342848+1 1006302 L5208 2020 3120 9731*2^3342447+1 1006181 L5203 2020 3121 7725*2^3341708+1 1005959 L5195 2020 3122 7703*2^3341625+1 1005934 L5178 2020 3123 7047*2^3341482+1 1005891 L5194 2020 3124 4839*2^3341309+1 1005838 L5192 2020 3125 47179704^131072+1 1005815 L4673 2017 Generalized Fermat 3126 47090246^131072+1 1005707 L4654 2017 Generalized Fermat 3127 8989*2^3340866+1 1005705 L5189 2020 3128 6631*2^3340808+1 1005688 L5188 2020 3129 1341*2^3340681+1 1005649 L5188 2020 3130 733*2^3340464+1 1005583 L3035 2016 3131 2636*138^469911+1 1005557 L5410 2021 3132 3679815*2^3340001+1 1005448 L4922 2019 3133 57*2^3339932-1 1005422 L3519 2015 3134 46776558^131072+1 1005326 L4659 2017 Generalized Fermat 3135 46736070^131072+1 1005277 L4245 2017 Generalized Fermat 3136 46730280^131072+1 1005270 L4656 2017 Generalized Fermat 3137 3651*2^3339341+1 1005246 L5177 2020 3138 3853*2^3339296+1 1005232 L5178 2020 3139 8015*2^3339267+1 1005224 L5176 2020 3140 3027*2^3339182+1 1005198 L5174 2020 3141 9517*2^3339002+1 1005144 L5172 2020 3142 4003*2^3338588+1 1005019 L3035 2020 3143 6841*2^3338336+1 1004944 L1474 2020 3144 2189*2^3338209+1 1004905 L5031 2020 3145 46413358^131072+1 1004883 L4626 2017 Generalized Fermat 3146 46385310^131072+1 1004848 L4622 2017 Generalized Fermat 3147 46371508^131072+1 1004831 L4620 2017 Generalized Fermat 3148 2957*2^3337667+1 1004742 L5144 2020 3149 1515*2^3337389+1 1004658 L1474 2020 3150 7933*2^3337270+1 1004623 L4666 2020 3151 1251*2^3337116+1 1004576 L4893 2020 3152 651*2^3337101+1 1004571 L3260 2016 3153 46077492^131072+1 1004469 L4595 2017 Generalized Fermat 3154 8397*2^3336654+1 1004437 L5125 2020 3155 8145*2^3336474+1 1004383 L5110 2020 3156 1087*2^3336385-1 1004355 L1828 2012 3157 5325*2^3336120+1 1004276 L2125 2020 3158 849*2^3335669+1 1004140 L3035 2016 3159 8913*2^3335216+1 1004005 L5079 2020 3160 7725*2^3335213+1 1004004 L3035 2020 3161 611*2^3334875+1 1003901 L3813 2016 3162 45570624^131072+1 1003840 L4295 2017 Generalized Fermat 3163 403*2^3334410+1 1003761 L4293 2016 3164 5491*2^3334392+1 1003756 L4815 2020 3165 6035*2^3334341+1 1003741 L2125 2020 3166 1725*2^3334341+1 1003740 L2125 2020 3167 4001*2^3334031+1 1003647 L1203 2020 3168 2315*2^3333969+1 1003629 L2125 2020 3169 6219*2^3333810+1 1003581 L4582 2020 3170 8063*2^3333721+1 1003554 L1823 2020 3171 9051*2^3333677+1 1003541 L3924 2020 3172 45315256^131072+1 1003520 L4562 2017 Generalized Fermat 3173 4091*2^3333153+1 1003383 L1474 2020 3174 9949*2^3332750+1 1003262 L5090 2020 3175 3509*2^3332649+1 1003231 L5085 2020 3176 3781*2^3332436+1 1003167 L1823 2020 3177 4425*2^3332394+1 1003155 L3431 2020 3178 6459*2^3332086+1 1003062 L2629 2020 3179 44919410^131072+1 1003020 L4295 2017 Generalized Fermat 3180 5257*2^3331758+1 1002963 L1188 2020 3181 2939*2^3331393+1 1002853 L1823 2020 3182 6959*2^3331365+1 1002845 L1675 2020 3183 8815*2^3330748+1 1002660 L3329 2020 3184 4303*2^3330652+1 1002630 L4730 2020 3185 8595*2^3330649+1 1002630 L4723 2020 3186 673*2^3330436+1 1002564 L3035 2016 3187 8163*2^3330042+1 1002447 L3278 2020 3188 44438760^131072+1 1002408 L4505 2016 Generalized Fermat 3189 193*2^3329782+1 1002367 L3460 2014 Divides Fermat F(3329780) 3190 44330870^131072+1 1002270 L4501 2016 Generalized Fermat 3191 2829*2^3329061+1 1002151 L4343 2020 3192 5775*2^3329034+1 1002143 L1188 2020 3193 7101*2^3328905+1 1002105 L4568 2020 3194 7667*2^3328807+1 1002075 L4087 2020 3195 129*2^3328805+1 1002073 L3859 2014 3196 7261*2^3328740+1 1002055 L2914 2020 3197 4395*2^3328588+1 1002009 L3924 2020 3198 44085096^131072+1 1001953 L4482 2016 Generalized Fermat 3199 143183*2^3328297+1 1001923 L4504 2017 3200 44049878^131072+1 1001908 L4466 2016 Generalized Fermat 3201 9681*2^3327987+1 1001828 L1204 2020 3202 2945*2^3327987+1 1001828 L2158 2020 3203 5085*2^3327789+1 1001769 L1823 2020 3204 8319*2^3327650+1 1001727 L1204 2020 3205 4581*2^3327644+1 1001725 L2142 2020 3206 655*2^3327518+1 1001686 L4490 2016 3207 8863*2^3327406+1 1001653 L1675 2020 3208 659*2^3327371+1 1001642 L3502 2016 3209 3411*2^3327343+1 1001634 L1675 2020 3210 4987*2^3327294+1 1001619 L3924 2020 3211 821*2^3327003+1 1001531 L3035 2016 3212 2435*2^3326969+1 1001521 L3035 2020 3213 1931*2^3326850-1 1001485 L4113 2022 3214 2277*2^3326794+1 1001469 L5014 2020 3215 6779*2^3326639+1 1001422 L3924 2020 3216 31*2^3326149-1 1001273 L1862 2024 3217 6195*2^3325993+1 1001228 L1474 2019 3218 555*2^3325925+1 1001206 L4414 2016 3219 9041*2^3325643+1 1001123 L3924 2019 3220 1965*2^3325639-1 1001121 L4113 2022 3221 1993*2^3325302+1 1001019 L3662 2019 3222 6179*2^3325027+1 1000937 L3048 2019 3223 4485*2^3324900+1 1000899 L1355 2019 3224 3559*2^3324650+1 1000823 L3035 2019 3225 12512*13^898392-1 1000762 L2425 2024 3226 43165206^131072+1 1000753 L4309 2016 Generalized Fermat 3227 43163894^131072+1 1000751 L4334 2016 Generalized Fermat 3228 6927*2^3324387+1 1000745 L3091 2019 3229 9575*2^3324287+1 1000715 L3824 2019 3230 1797*2^3324259+1 1000705 L3895 2019 3231 4483*2^3324048+1 1000642 L3035 2019 3232 791*2^3323995+1 1000626 L3035 2016 3233 6987*2^3323926+1 1000606 L4973 2019 3234 3937*2^3323886+1 1000593 L3035 2019 3235 2121*2^3323852+1 1000583 L1823 2019 3236 1571*2^3323493+1 1000475 L3035 2019 3237 2319*2^3323402+1 1000448 L4699 2019 3238 2829*2^3323341+1 1000429 L4754 2019 3239 4335*2^3323323+1 1000424 L1823 2019 3240 8485*2^3322938+1 1000308 L4858 2019 3241 6505*2^3322916+1 1000302 L4858 2019 3242 597*2^3322871+1 1000287 L3035 2016 3243 9485*2^3322811+1 1000270 L2603 2019 3244 8619*2^3322774+1 1000259 L3035 2019 3245 387*2^3322763+1 1000254 L1455 2016 3246 1965*2^3322579-1 1000200 L4113 2022 3247 42654182^131072+1 1000075 L4208 2015 Generalized Fermat 3248 6366*745^348190-1 1000060 L4189 2022 3249 13841792445*2^3322000-1 1000032 L5827 2023 3250 5553507*2^3322000+1 1000029 p391 2016 3251 5029159647*2^3321910-1 1000005 L4960 2021 3252 5009522505*2^3321910-1 1000005 L4960 2021 3253 4766298357*2^3321910-1 1000005 L4960 2021 3254 4759383915*2^3321910-1 1000005 L4960 2021 3255 4635733263*2^3321910-1 1000005 L4960 2021 3256 4603393047*2^3321910-1 1000005 L4960 2021 3257 4550053935*2^3321910-1 1000005 L4960 2021 3258 4288198767*2^3321910-1 1000005 L4960 2021 3259 4229494557*2^3321910-1 1000005 L4960 2021 3260 4110178197*2^3321910-1 1000005 L4960 2021 3261 4022490843*2^3321910-1 1000005 L4960 2021 3262 3936623697*2^3321910-1 1000005 L4960 2021 3263 3751145343*2^3321910-1 1000005 L4960 2021 3264 3715773735*2^3321910-1 1000005 L4960 2021 3265 3698976057*2^3321910-1 1000005 L4960 2021 3266 3659465685*2^3321910-1 1000005 L4960 2020 3267 3652932033*2^3321910-1 1000005 L4960 2020 3268 3603204333*2^3321910-1 1000005 L4960 2020 3269 3543733545*2^3321910-1 1000005 L4960 2020 3270 3191900133*2^3321910-1 1000005 L4960 2020 3271 3174957723*2^3321910-1 1000005 L4960 2020 3272 2973510903*2^3321910-1 1000005 L4960 2019 3273 2848144257*2^3321910-1 1000005 L4960 2019 3274 2820058827*2^3321910-1 1000005 L4960 2019 3275 2611553775*2^3321910-1 1000004 L4960 2020 3276 2601087525*2^3321910-1 1000004 L4960 2019 3277 2386538565*2^3321910-1 1000004 L4960 2019 3278 2272291887*2^3321910-1 1000004 L4960 2019 3279 2167709265*2^3321910-1 1000004 L4960 2019 3280 2087077797*2^3321910-1 1000004 L4960 2019 3281 1848133623*2^3321910-1 1000004 L4960 2019 3282 1825072257*2^3321910-1 1000004 L4960 2019 3283 1633473837*2^3321910-1 1000004 L4960 2019 3284 1228267623*2^3321910-1 1000004 L4808 2019 3285 1148781333*2^3321910-1 1000004 L4808 2019 3286 1065440787*2^3321910-1 1000004 L4808 2019 3287 1055109357*2^3321910-1 1000004 L4960 2019 3288 992309607*2^3321910-1 1000004 L4808 2019 3289 926102325*2^3321910-1 1000004 L4808 2019 3290 892610007*2^3321910-1 1000004 L4960 2019 3291 763076757*2^3321910-1 1000004 L4960 2019 3292 607766997*2^3321910-1 1000004 L4808 2019 3293 539679177*2^3321910-1 1000004 L4808 2019 3294 425521077*2^3321910-1 1000004 L4808 2019 3295 132940575*2^3321910-1 1000003 L4808 2019 3296 239378138685*2^3321891+1 1000001 L5104 2020 3297 464253*2^3321908-1 1000000 L466 2013 3298 3^2095902+3^647322-1 1000000 x44 2018 3299 191273*2^3321908-1 1000000 L466 2013 3300 1814570322984178^65536+1 1000000 L5080 2020 Generalized Fermat 3301 1814570322977518^65536+1 1000000 L5080 2020 Generalized Fermat 3302 3292665455999520712131952624640^32768+1 1000000 L5749 2023 Generalized Fermat 3303 3292665455999520712131951642528^32768+1 1000000 L5120 2020 Generalized Fermat 3304 3292665455999520712131951625894^32768+1 1000000 L5122 2020 Generalized Fermat 3305 10841645805132531666786792405311319418846637043199917731999190^16384+1 1000000 L5749 2023 Generalized Fermat 3306 10841645805132531666786792405311319418846637043199917731311876^16384+1 1000000 L5207 2020 Generalized Fermat 3307 10841645805132531666786792405311319418846637043199917731150000^16384+1 1000000 L5122 2020 Generalized Fermat 3308 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729599864^8192+1 1000000 L5749 2023 Generalized Fermat 3309 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729375350^8192+1 1000000 p417 2021 Generalized Fermat 3310 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729240092^8192+1 1000000 p419 2021 Generalized Fermat 3311 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729154678^8192+1 1000000 p418 2021 Generalized Fermat 3312 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729122666^8192+1 1000000 p417 2021 Generalized Fermat 3313 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729023786^8192+1 1000000 p416 2021 Generalized Fermat 3314 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097875144^4096+1 1000000 p421 2021 Generalized Fermat 3315 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097840702^4096+1 1000000 p417 2021 Generalized Fermat 3316c ((sqrtnint(10^999999,2048)+2)+7748134)^2048+1 1000000 A55 2025 Generalized Fermat 3317 ((sqrtnint(10^999999,2048)+2)+364176)^2048+1 1000000 p417 2022 Generalized Fermat 3318 10^999999+10^840885+10^333333+1 1000000 p436 2023 3319 10^999999+308267*10^292000+1 1000000 CH10 2021 3320 10^999999-1022306*10^287000-1 999999 CH13 2021 3321 10^999999-1087604*10^287000-1 999999 CH13 2021 3322 531631540026641*6^1285077+1 999999 L3494 2021 3323 3139*2^3321905-1 999997 L185 2008 3324 702*507^369680+1 999991 A28 2024 3325 42550702^131072+1 999937 L4309 2022 Generalized Fermat 3326 42414020^131072+1 999753 L5030 2022 Generalized Fermat 3327 4847*2^3321063+1 999744 SB9 2005 3328 42254832^131072+1 999539 L5375 2022 Generalized Fermat 3329 42243204^131072+1 999524 L4898 2022 Generalized Fermat 3330 42230406^131072+1 999506 L5453 2022 Generalized Fermat 3331 42168978^131072+1 999424 L5462 2022 Generalized Fermat 3332 439*2^3318318+1 998916 L5573 2022 3333f 201382*5^1428998+1 998833 A11 2024 3334 41688706^131072+1 998772 L5270 2022 Generalized Fermat 3335 41364744^131072+1 998327 L5453 2022 Generalized Fermat 3336 41237116^131072+1 998152 L5459 2022 Generalized Fermat 3337 47714*17^811139+1 998070 L5765 2023 Generalized Cullen 3338 41102236^131072+1 997965 L4245 2022 Generalized Fermat 3339 41007562^131072+1 997834 L4210 2022 Generalized Fermat 3340 41001148^131072+1 997825 L4210 2022 Generalized Fermat 3341 975*2^3312951+1 997301 L5231 2022 3342 40550398^131072+1 997196 L4245 2022 Generalized Fermat 3343 11796*46^599707+1 997172 L5670 2023 3344 40463598^131072+1 997074 L4591 2022 Generalized Fermat 3345 689*2^3311423+1 996841 L5226 2022 3346 40151896^131072+1 996633 L4245 2022 Generalized Fermat 3347 593*2^3309333+1 996212 L5572 2022 3348 383*2^3309321+1 996208 L5570 2022 3349 49*2^3309087-1 996137 L1959 2013 3350 39746366^131072+1 996056 L4201 2022 Generalized Fermat 3351 139413*6^1279992+1 996033 L4001 2015 3352 1274*67^545368-1 995886 L5410 2023 3353 51*2^3308171+1 995861 L2840 2015 3354 719*2^3308127+1 995849 L5192 2022 3355 39597790^131072+1 995842 L4737 2022 Generalized Fermat 3356 39502358^131072+1 995705 L5453 2022 Generalized Fermat 3357 39324372^131072+1 995448 L5202 2022 Generalized Fermat 3358 245114*5^1424104-1 995412 L3686 2013 3359 39100746^131072+1 995123 L5441 2022 Generalized Fermat 3360 38824296^131072+1 994719 L4245 2022 Generalized Fermat 3361 38734748^131072+1 994588 L4249 2021 Generalized Fermat 3362 175124*5^1422646-1 994393 L3686 2013 3363 453*2^3303073+1 994327 L5568 2022 3364 856*75^530221-1 994200 A11 2024 3365 38310998^131072+1 993962 L4737 2021 Generalized Fermat 3366 531*2^3301693+1 993912 L5226 2022 3367 38196496^131072+1 993791 L4861 2021 Generalized Fermat 3368 38152876^131072+1 993726 L4245 2021 Generalized Fermat 3369 195*2^3301018+1 993708 L5569 2022 3370 341*2^3300789+1 993640 L5192 2022 3371 37909914^131072+1 993363 L4249 2021 Generalized Fermat 3372 849*2^3296427+1 992327 L5571 2022 3373 1611*22^738988+1 992038 L4139 2015 3374 36531196^131072+1 991254 L4249 2021 Generalized Fermat 3375 2017*2^3292325-1 991092 L3345 2017 3376 36422846^131072+1 991085 L4245 2021 Generalized Fermat 3377 36416848^131072+1 991076 L5202 2021 Generalized Fermat 3378 885*2^3290927+1 990671 L5161 2022 3379 36038176^131072+1 990481 L4245 2021 Generalized Fermat 3380 35997532^131072+1 990416 L4245 2021 Generalized Fermat 3381 35957420^131072+1 990353 L4245 2021 Generalized Fermat 3382 107970^196608-107970^98304+1 989588 L4506 2016 Generalized unique 3383 35391288^131072+1 989449 L5070 2021 Generalized Fermat 3384 35372304^131072+1 989419 L5443 2021 Generalized Fermat 3385 219*2^3286614+1 989372 L5567 2022 3386 61*2^3286535-1 989348 L4405 2016 3387 35327718^131072+1 989347 L4591 2021 Generalized Fermat 3388 35282096^131072+1 989274 L4245 2021 Generalized Fermat 3389 35141602^131072+1 989046 L4729 2021 Generalized Fermat 3390 35139782^131072+1 989043 L4245 2021 Generalized Fermat 3391 35047222^131072+1 988893 L4249 2021 Generalized Fermat 3392 531*2^3284944+1 988870 L5536 2022 3393 34957136^131072+1 988747 L5321 2021 Generalized Fermat 3394 301*2^3284232+1 988655 L5564 2022 3395 34871942^131072+1 988608 L4245 2021 Generalized Fermat 3396 34763644^131072+1 988431 L4737 2021 Generalized Fermat 3397 34585314^131072+1 988138 L4201 2021 Generalized Fermat 3398 311*2^3282455+1 988120 L5568 2022 3399 34530386^131072+1 988048 L5070 2021 Generalized Fermat 3400 833*2^3282181+1 988038 L5564 2022 3401 561*2^3281889+1 987950 L5477 2022 3402 34087952^131072+1 987314 L4764 2021 Generalized Fermat 3403 87*2^3279368+1 987191 L3458 2015 3404 965*2^3279151+1 987126 L5564 2022 3405 33732746^131072+1 986717 L4359 2021 Generalized Fermat 3406 33474284^131072+1 986279 L5051 2021 Generalized Fermat 3407 33395198^131072+1 986145 L4658 2021 Generalized Fermat 3408 427*2^3275606+1 986059 L5566 2022 3409 33191418^131072+1 985796 L4201 2021 Generalized Fermat 3410 337*2^3274106+1 985607 L5564 2022 3411 357*2^3273543+1 985438 L5237 2022 Divides GF(3273542,10) 3412 1045*2^3273488+1 985422 L5192 2022 3413 32869172^131072+1 985241 L4285 2021 Generalized Fermat 3414 32792696^131072+1 985108 L5198 2021 Generalized Fermat 3415 1047*2^3272351+1 985079 L5563 2022 3416 32704348^131072+1 984955 L5312 2021 Generalized Fermat 3417 6781*24^713573-1 984886 A11 2024 3418 32608738^131072+1 984788 L5395 2021 Generalized Fermat 3419 75*2^3271125-1 984709 A38 2024 3420 933*2^3270993+1 984670 L5562 2022 3421 311*2^3270759+1 984600 L5560 2022 3422 32430486^131072+1 984476 L4245 2021 Generalized Fermat 3423 32417420^131072+1 984453 L4245 2021 Generalized Fermat 3424 65*2^3270127+1 984409 L3924 2015 3425 32348894^131072+1 984333 L4245 2021 Generalized Fermat 3426 579*2^3269850+1 984326 L5226 2022 3427 32286660^131072+1 984223 L5400 2021 Generalized Fermat 3428 32200644^131072+1 984071 L4387 2021 Generalized Fermat 3429 32137342^131072+1 983959 L4559 2021 Generalized Fermat 3430 32096608^131072+1 983887 L4559 2021 Generalized Fermat 3431 32055422^131072+1 983814 L4559 2021 Generalized Fermat 3432 31821360^131072+1 983397 L4861 2021 Generalized Fermat 3433 31768014^131072+1 983301 L4252 2021 Generalized Fermat 3434 335*2^3266237+1 983238 L5559 2022 3435 1031*2^3265915+1 983142 L5364 2022 3436 31469984^131072+1 982765 L5078 2021 Generalized Fermat 3437 5*2^3264650-1 982759 L384 2013 3438 223*2^3264459-1 982703 L1884 2012 3439 1101*2^3264400+1 982686 L5231 2022 3440 483*2^3264181+1 982620 L5174 2022 3441 525*2^3263227+1 982332 L5231 2022 3442 31145080^131072+1 982174 L4201 2021 Generalized Fermat 3443 622*48^584089+1 981998 L5629 2023 3444 31044982^131072+1 981991 L5041 2021 Generalized Fermat 3445 683*2^3262037+1 981974 L5192 2022 3446 923*2^3261401+1 981783 L5477 2022 3447 30844300^131072+1 981622 L5102 2021 Generalized Fermat 3448 30819256^131072+1 981575 L4201 2021 Generalized Fermat 3449 9*2^3259381-1 981173 L1828 2011 3450 31*2^3259185-1 981114 L1862 2024 3451 1059*2^3258751+1 980985 L5231 2022 3452 6*5^1403337+1 980892 L4965 2020 3453 30318724^131072+1 980643 L4309 2021 Generalized Fermat 3454 30315072^131072+1 980636 L5375 2021 Generalized Fermat 3455 30300414^131072+1 980609 L4755 2021 Generalized Fermat 3456 30225714^131072+1 980468 L4201 2021 Generalized Fermat 3457 875*2^3256589+1 980334 L5550 2022 3458 30059800^131072+1 980155 L4928 2021 Generalized Fermat 3459 30022816^131072+1 980085 L5273 2021 Generalized Fermat 3460 29959190^131072+1 979964 L4905 2021 Generalized Fermat 3461 968*75^522276-1 979303 A11 2024 3462 29607314^131072+1 979292 L5378 2021 Generalized Fermat 3463 779*2^3253063+1 979273 L5192 2022 3464 29505368^131072+1 979095 L5378 2021 Generalized Fermat 3465 163*2^3250978+1 978645 L5161 2022 Divides GF(3250977,6) 3466 29169314^131072+1 978443 L5380 2021 Generalized Fermat 3467 417*2^3248255+1 977825 L5178 2022 3468 28497098^131072+1 977116 L4308 2021 Generalized Fermat 3469 28398204^131072+1 976918 L5379 2021 Generalized Fermat 3470 28294666^131072+1 976710 L5375 2021 Generalized Fermat 3471 28175634^131072+1 976470 L5378 2021 Generalized Fermat 3472 33*2^3242126-1 975979 L3345 2014 3473 27822108^131072+1 975752 L4760 2021 Generalized Fermat 3474 39*2^3240990+1 975637 L3432 2014 3475 27758510^131072+1 975621 L4289 2021 Generalized Fermat 3476 3706*103^484644+1 975514 A11 2024 3477 27557876^131072+1 975208 L4245 2021 Generalized Fermat 3478 27544748^131072+1 975181 L4387 2021 Generalized Fermat 3479 27408050^131072+1 974898 L4210 2021 Generalized Fermat 3480 14275*60^548133-1 974668 x51 2024 3481 225*2^3236967+1 974427 L5529 2022 3482 27022768^131072+1 974092 L4309 2021 Generalized Fermat 3483 26896670^131072+1 973826 L5376 2021 Generalized Fermat 3484 1075*2^3234606+1 973717 L5192 2022 3485 26757382^131072+1 973530 L5375 2021 Generalized Fermat 3486 26599558^131072+1 973194 L4245 2021 Generalized Fermat 3487 6*5^1392287+1 973168 L4965 2020 3488 26500832^131072+1 972982 L4956 2021 Generalized Fermat 3489 325*2^3231474+1 972774 L5536 2022 3490 933*2^3231438+1 972763 L5197 2022 3491 123*2^3230548+1 972494 L5178 2022 Divides GF(3230546,12) 3492 26172278^131072+1 972272 L4245 2021 Generalized Fermat 3493 697*2^3229518+1 972185 L5534 2022 3494 22598*745^338354-1 971810 L4189 2022 3495 385*2^3226814+1 971371 L5178 2022 3496 211195*2^3224974+1 970820 L2121 2013 3497 1173*2^3223546+1 970388 L5178 2022 3498 7*6^1246814+1 970211 L4965 2019 3499 25128150^131072+1 969954 L4738 2021 Generalized Fermat 3500 25124378^131072+1 969946 L5102 2021 Generalized Fermat 3501 1089*2^3221691+1 969829 L5178 2022 3502 35*832^332073-1 969696 L4001 2019 3503 600921*2^3219922-1 969299 g337 2018 3504 939*2^3219319+1 969115 L5178 2022 3505 24734116^131072+1 969055 L5070 2021 Generalized Fermat 3506 76896*5^1386360+1 969029 A42 2024 3507 24644826^131072+1 968849 L5070 2021 Generalized Fermat 3508 24642712^131072+1 968844 L5070 2021 Generalized Fermat 3509 24641166^131072+1 968840 L5070 2021 Generalized Fermat 3510 129*2^3218214+1 968782 L5529 2022 3511 24522386^131072+1 968565 L5070 2021 Generalized Fermat 3512 24486806^131072+1 968483 L4737 2021 Generalized Fermat 3513 811*2^3216944+1 968400 L5233 2022 3514 24297936^131072+1 968042 L4201 2021 Generalized Fermat 3515 1023*2^3214745+1 967738 L5178 2022 3516 187*2^3212152+1 966957 L5178 2022 3517 301*2^3211281-1 966695 L5545 2022 3518 6*409^369832+1 965900 L4001 2015 3519 23363426^131072+1 965809 L5033 2021 Generalized Fermat 3520 1165*2^3207702+1 965618 L5178 2022 3521 94373*2^3206717+1 965323 L2785 2013 3522 2751*2^3206569-1 965277 L4036 2015 3523 761*2^3206341+1 965208 L5178 2022 3524 23045178^131072+1 965029 L5023 2021 Generalized Fermat 3525 23011666^131072+1 964946 L5273 2021 Generalized Fermat 3526 911*2^3205225+1 964872 L5364 2022 3527 22980158^131072+1 964868 L4201 2021 Generalized Fermat 3528 22901508^131072+1 964673 L4743 2021 Generalized Fermat 3529 22808110^131072+1 964440 L5248 2021 Generalized Fermat 3530 22718284^131072+1 964215 L5254 2021 Generalized Fermat 3531 22705306^131072+1 964183 L5248 2021 Generalized Fermat 3532 113983*2^3201175-1 963655 L613 2008 3533 34*888^326732-1 963343 L4001 2017 3534 899*2^3198219+1 962763 L5503 2022 3535 22007146^131072+1 962405 L4245 2020 Generalized Fermat 3536 4*3^2016951+1 962331 L4965 2020 3537 21917442^131072+1 962173 L4622 2020 Generalized Fermat 3538 987*2^3195883+1 962060 L5282 2022 3539 21869554^131072+1 962048 L5061 2020 Generalized Fermat 3540 21757066^131072+1 961754 L4773 2020 Generalized Fermat 3541 21582550^131072+1 961296 L5068 2020 Generalized Fermat 3542 21517658^131072+1 961125 L5126 2020 Generalized Fermat 3543 20968936^131072+1 959654 L4245 2020 Generalized Fermat 3544 671*2^3185411+1 958908 L5315 2022 3545 20674450^131072+1 958849 L4245 2020 Generalized Fermat 3546 1027*2^3184540+1 958646 L5174 2022 3547 789*2^3183463+1 958321 L5482 2022 3548 855*2^3183158+1 958229 L5161 2022 3549 20234282^131072+1 957624 L4942 2020 Generalized Fermat 3550 20227142^131072+1 957604 L4677 2020 Generalized Fermat 3551 625*2^3180780+1 957513 L5178 2022 Generalized Fermat 3552 20185276^131072+1 957486 L4201 2020 Generalized Fermat 3553 935*2^3180599+1 957459 L5477 2022 3554 573*2^3179293+1 957066 L5226 2022 3555 33*2^3176269+1 956154 L3432 2013 3556 81*2^3174353-1 955578 L3887 2022 3557 19464034^131072+1 955415 L4956 2020 Generalized Fermat 3558 600921*2^3173683-1 955380 g337 2018 3559 587*2^3173567+1 955342 L5301 2022 3560 19216648^131072+1 954687 L5024 2020 Generalized Fermat 3561 1414*95^482691-1 954633 L4877 2019 3562 305*2^3171039+1 954581 L5301 2022 3563 755*2^3170701+1 954479 L5302 2022 3564 775*2^3170580+1 954443 L5449 2022 3565 78*236^402022-1 953965 L5410 2020 3566 18968126^131072+1 953946 L5011 2020 Generalized Fermat 3567 18813106^131072+1 953479 L4201 2020 Generalized Fermat 3568 18608780^131072+1 952857 L4488 2020 Generalized Fermat 3569 1087*2^3164677-1 952666 L1828 2012 3570 18509226^131072+1 952552 L4884 2020 Generalized Fermat 3571 18501600^131072+1 952528 L4875 2020 Generalized Fermat 3572 459*2^3163175+1 952214 L5178 2022 3573 15*2^3162659+1 952057 p286 2012 3574 18309468^131072+1 951934 L4928 2020 Generalized Fermat 3575 18298534^131072+1 951900 L4201 2020 Generalized Fermat 3576 849*2^3161727+1 951778 L5178 2022 3577 67*2^3161450+1 951694 L3223 2015 3578 119*2^3161195+1 951617 L5320 2022 3579 1759*2^3160863-1 951518 L4965 2021 3580 58*117^460033+1 951436 L5410 2020 3581 417*2^3160443+1 951391 L5302 2022 3582 9231*70^515544+1 951234 L5410 2021 3583 671*2^3159523+1 951115 L5188 2022 3584 17958952^131072+1 950834 L4201 2020 Generalized Fermat 3585 1001*2^3158422-1 950783 L4518 2023 3586 17814792^131072+1 950375 L4752 2020 Generalized Fermat 3587 17643330^131072+1 949824 L4201 2020 Generalized Fermat 3588 19*2^3155009-1 949754 L1828 2012 3589 281*2^3151457+1 948686 L5316 2022 3590 179*2^3150265+1 948327 L5302 2022 3591 17141888^131072+1 948183 L4963 2019 Generalized Fermat 3592 17138628^131072+1 948172 L4963 2019 Generalized Fermat 3593 17119936^131072+1 948110 L4963 2019 Generalized Fermat 3594 17052490^131072+1 947885 L4715 2019 Generalized Fermat 3595 17025822^131072+1 947796 L4870 2019 Generalized Fermat 3596 16985784^131072+1 947662 L4295 2019 Generalized Fermat 3597 865*2^3147482+1 947490 L5178 2021 3598 963*2^3145753+1 946969 L5451 2021 3599 16741226^131072+1 946837 L4201 2019 Generalized Fermat 3600 387*2^3144483+1 946587 L5450 2021 3601 1035*2^3144236+1 946513 L5449 2021 3602 1065*2^3143667+1 946342 L4944 2021 3603b 1598*187^416536-1 946308 A11 2025 3604 193*2^3142150+1 945884 L5178 2021 3605 915*2^3141942+1 945822 L5448 2021 3606 939*2^3141397+1 945658 L5320 2021 3607 1063*2^3141350+1 945644 L5178 2021 3608 16329572^131072+1 945420 L4201 2019 Generalized Fermat 3609 69*2^3140225-1 945304 L3764 2014 3610 3*2^3136255-1 944108 L256 2007 3611 417*2^3136187+1 944089 L5178 2021 3612 15731520^131072+1 943296 L4245 2019 Generalized Fermat 3613 62721^196608-62721^98304+1 943210 L4506 2016 Generalized unique 3614 15667716^131072+1 943064 L4387 2019 Generalized Fermat 3615 15567144^131072+1 942698 L4918 2019 Generalized Fermat 3616 299*2^3130621+1 942414 L5178 2021 3617 15342502^131072+1 941870 L4245 2019 Generalized Fermat 3618 15237960^131072+1 941481 L4898 2019 Generalized Fermat 3619 571*2^3127388+1 941441 L5440 2021 3620 107*2^3126660-1 941221 A38 2024 3621 15147290^131072+1 941141 L4861 2019 Generalized Fermat 3622 197*2^3126343+1 941126 L5178 2021 3623 15091270^131072+1 940930 L4760 2019 Generalized Fermat 3624 1097*2^3124455+1 940558 L5178 2021 3625 3125*2^3124079+1 940445 L1160 2019 3626 495*2^3123624+1 940308 L5438 2021 3627 14790404^131072+1 939784 L4871 2019 Generalized Fermat 3628 1041*2^3120649+1 939412 L5437 2021 3629 14613898^131072+1 939101 L4926 2019 Generalized Fermat 3630 3317*2^3117162-1 938363 L5399 2021 3631 763*2^3115684+1 937918 L4944 2021 3632 25*746^326451-1 937810 A28 2024 3633 581*2^3114611+1 937595 L5178 2021 3634 14217182^131072+1 937534 L4387 2019 Generalized Fermat 3635 134*864^319246-1 937473 L5410 2020 3636 700057*2^3113753-1 937339 L5410 2022 3637 5*6^1204077-1 936955 A2 2023 3638 1197*2^3111838+1 936760 L5178 2021 3639 14020004^131072+1 936739 L4249 2019 Generalized Fermat 3640 27777*2^3111027+1 936517 L2777 2014 Generalized Cullen 3641 755*2^3110759+1 936435 L5320 2021 3642 13800346^131072+1 935840 L4880 2019 Generalized Fermat 3643 866981*12^866981-1 935636 L5765 2023 Generalized Woodall 3644 313*2^3107219-1 935369 L5819 2024 3645 13613070^131072+1 935062 L4245 2019 Generalized Fermat 3646 628*80^491322+1 935033 L5410 2021 3647 761*2^3105087+1 934728 L5197 2021 3648 13433028^131072+1 934305 L4868 2018 Generalized Fermat 3649 1019*2^3103680-1 934304 L1828 2012 3650 12*978^312346+1 934022 L4294 2023 3651 579*2^3102639+1 933991 L5315 2021 3652 99*2^3102401-1 933918 L1862 2017 3653 256612*5^1335485-1 933470 L1056 2013 3654 13083418^131072+1 932803 L4747 2018 Generalized Fermat 3655 882*1017^310074+1 932495 A10 2024 3656 69*2^3097340-1 932395 L3764 2014 3657 153*2^3097277+1 932376 L4944 2021 3658 12978952^131072+1 932347 L4849 2018 Generalized Fermat 3659 12961862^131072+1 932272 L4245 2018 Generalized Fermat 3660 207*2^3095391+1 931808 L5178 2021 3661 12851074^131072+1 931783 L4670 2018 Generalized Fermat 3662 45*2^3094632-1 931579 L1862 2018 3663 259*2^3094582+1 931565 L5214 2021 3664 553*2^3094072+1 931412 L4944 2021 3665 57*2^3093440-1 931220 L2484 2020 3666 12687374^131072+1 931054 L4289 2018 Generalized Fermat 3667 513*2^3092705+1 931000 L4329 2016 3668 12661786^131072+1 930939 L4819 2018 Generalized Fermat 3669 933*2^3091825+1 930736 L5178 2021 3670 38*875^316292-1 930536 L4001 2019 3671 5*2^3090860-1 930443 L1862 2012 3672 12512992^131072+1 930266 L4814 2018 Generalized Fermat 3673 4*5^1330541-1 930009 L4965 2022 3674 12357518^131072+1 929554 L4295 2018 Generalized Fermat 3675 12343130^131072+1 929488 L4720 2018 Generalized Fermat 3676 297*2^3087543+1 929446 L5326 2021 3677 1149*2^3087514+1 929438 L5407 2021 3678 745*2^3087428+1 929412 L5178 2021 3679 373*520^342177+1 929357 L3610 2014 3680 19401*2^3086450-1 929119 L541 2015 3681 75*2^3086355+1 929088 L3760 2015 3682 65*2^3080952-1 927461 L2484 2020 3683 11876066^131072+1 927292 L4737 2018 Generalized Fermat 3684 1139*2^3079783+1 927111 L5174 2021 3685 271*2^3079189-1 926931 L2484 2018 3686 766*33^610412+1 926923 L4001 2016 3687 11778792^131072+1 926824 L4672 2018 Generalized Fermat 3688 555*2^3078792+1 926812 L5226 2021 3689 31*332^367560+1 926672 L4294 2018 3690 167*2^3077568-1 926443 L1862 2020 3691 10001*2^3075602-1 925853 L4405 2019 3692 116*107^455562-1 924513 L4064 2021 3693 11292782^131072+1 924425 L4672 2018 Generalized Fermat 3694 14844*430^350980-1 924299 L4001 2016 3695 11267296^131072+1 924297 L4654 2017 Generalized Fermat 3696 4*3^1936890+1 924132 L4965 2020 Generalized Fermat 3697 1105*2^3069884+1 924131 L5314 2021 3698 319*2^3069362+1 923973 L5377 2021 3699 11195602^131072+1 923933 L4706 2017 Generalized Fermat 3700 973*2^3069092+1 923892 L5214 2021 3701 765*2^3068511+1 923717 L5174 2021 3702 60849*2^3067914+1 923539 L591 2014 3703 674*249^385359+1 923400 L5410 2019 3704 499*2^3066970+1 923253 L5373 2021 3705 553*2^3066838+1 923213 L5368 2021 3706 629*2^3066827+1 923210 L5226 2021 3707 11036888^131072+1 923120 L4660 2017 Generalized Fermat 3708 261*2^3066009+1 922964 L5197 2021 3709 10994460^131072+1 922901 L4704 2017 Generalized Fermat 3710 214916*3^1934246-1 922876 L4965 2023 Generalized Woodall 3711 21*2^3065701+1 922870 p286 2012 3712 10962066^131072+1 922733 L4702 2017 Generalized Fermat 3713 10921162^131072+1 922520 L4559 2017 Generalized Fermat 3714 875*2^3063847+1 922313 L5364 2021 3715 43*2^3063674+1 922260 L3432 2013 3716 677*2^3063403+1 922180 L5346 2021 3717 8460*241^387047-1 921957 L5410 2019 3718 10765720^131072+1 921704 L4695 2017 Generalized Fermat 3719 111*2^3060238-1 921226 L2484 2020 3720 1165*2^3060228+1 921224 L5360 2021 3721 5*2^3059698-1 921062 L503 2008 3722 10453790^131072+1 920031 L4694 2017 Generalized Fermat 3723 453*2^3056181+1 920005 L5320 2021 3724 791*2^3055695+1 919859 L5177 2021 3725 10368632^131072+1 919565 L4692 2017 Generalized Fermat 3726 582971*2^3053414-1 919175 L5410 2022 3727 123*2^3049038+1 917854 L4119 2015 3728 10037266^131072+1 917716 L4691 2017 Generalized Fermat 3729 400*95^463883-1 917435 L4001 2019 3730 9907326^131072+1 916975 L4690 2017 Generalized Fermat 3731 454*383^354814+1 916558 L2012 2020 3732 9785844^131072+1 916272 L4326 2017 Generalized Fermat 3733 435*2^3041954+1 915723 L5320 2021 3734 639*2^3040438+1 915266 L5320 2021 3735 13822*115^443832+1 914608 A11 2024 3736 1045*2^3037988+1 914529 L5178 2021 3737 291*2^3037904+1 914503 L3545 2015 3738 311*2^3037565+1 914401 L5178 2021 3739 373*2^3036746+1 914155 L5178 2021 3740 9419976^131072+1 914103 L4591 2017 Generalized Fermat 3741 5706*162^413708+1 914098 A14 2024 3742 341*2^3036506-1 914082 p435 2023 3743 801*2^3036045+1 913944 L5348 2021 3744 915*2^3033775+1 913261 L5178 2021 3745 38804*3^1913975+1 913203 L5410 2021 3746 9240606^131072+1 913009 L4591 2017 Generalized Fermat 3747 869*2^3030655+1 912322 L5260 2021 3748 643*2^3030650+1 912320 L5320 2021 3749 99*2^3029959-1 912111 L1862 2020 3750 417*2^3029342+1 911926 L5178 2021 3751 345*2^3027769+1 911452 L5343 2021 3752 26*3^1910099+1 911351 L4799 2020 3753 355*2^3027372+1 911333 L5174 2021 3754 99*2^3026660-1 911118 L1862 2020 3755 417*2^3026492+1 911068 L5197 2021 3756 1065*2^3025527+1 910778 L5208 2021 3757 34202*3^1908800+1 910734 L5410 2021 3758 8343*42^560662+1 910099 L4444 2020 3759 699*2^3023263+1 910096 L5335 2021 3760 8770526^131072+1 910037 L4245 2017 Generalized Fermat 3761 8704114^131072+1 909604 L4670 2017 Generalized Fermat 3762 383731*2^3021377-1 909531 L466 2011 3763 46821*2^3021380-374567 909531 p363 2013 3764 2^3021377-1 909526 G3 1998 Mersenne 37 3765b 255*2^3021196-1 909474 L3994 2025 3766 615*2^3019445+1 908947 L5260 2021 3767 389*2^3019025+1 908820 L5178 2021 3768 875*2^3018175+1 908565 L5334 2021 3769 375*2^3016803-1 908151 L2235 2023 3770 555*2^3016352+1 908016 L5178 2021 3771 7*2^3015762+1 907836 g279 2008 3772 759*2^3015314+1 907703 L5178 2021 3773 32582*3^1901790+1 907389 L5372 2021 3774 75*2^3012342+1 906808 L3941 2015 3775 459*2^3011814+1 906650 L5178 2021 3776b 171*2^3010938-1 906385 A27 2025 3777 991*2^3010036+1 906115 L5326 2021 3778 583*2^3009698+1 906013 L5325 2021 3779 8150484^131072+1 905863 L4249 2017 Generalized Fermat 3780 593*2^3006969+1 905191 L5178 2021 3781 327*2^3006540-1 905062 L2257 2023 3782 75*2^3006235-1 904969 A38 2024 3783 367*2^3004536+1 904459 L5178 2021 3784 7926326^131072+1 904276 L4249 2017 Generalized Fermat 3785 1003*2^3003756+1 904224 L5320 2021 3786 626*1017^300576+1 903932 A9 2024 3787 573*2^3002662+1 903895 L5319 2021 3788 7858180^131072+1 903784 L4201 2017 Generalized Fermat 3789 329*2^3002295+1 903784 L5318 2021 3790 4*5^1292915-1 903710 L4965 2022 3791 7832704^131072+1 903599 L4249 2017 Generalized Fermat 3792 268514*5^1292240-1 903243 L3562 2013 3793 7*10^902708+1 902709 p342 2013 3794 435*2^2997453+1 902326 L5167 2021 3795 583*2^2996526+1 902047 L5174 2021 3796 1037*2^2995695+1 901798 L5178 2021 3797 717*2^2995326+1 901686 L5178 2021 3798 885*2^2995274+1 901671 L5178 2021 3799 43*2^2994958+1 901574 L3222 2013 3800 1065*2^2994154+1 901334 L5315 2021 3801 561*2^2994132+1 901327 L5314 2021 3802b 147*2^2993165-1 901035 L1817 2025 3803 1095*2^2992587-1 900862 L1828 2011 3804 519*2^2991849+1 900640 L5311 2021 3805 7379442^131072+1 900206 L4201 2017 Generalized Fermat 3806 459*2^2990134+1 900123 L5197 2021 3807 15*2^2988834+1 899730 p286 2012 3808 29*564^326765+1 899024 L4001 2017 3809e 5129*24^650539+1 897885 A11 2024 3810 971*2^2982525+1 897833 L5197 2021 3811 1033*2^2980962+1 897362 L5305 2021 3812 357*2^2980540-1 897235 L2257 2023 3813 367*2^2979033-1 896781 L2257 2023 3814 39*2^2978894+1 896739 L2719 2013 3815 38*977^299737+1 896184 L5410 2021 3816 4348099*2^2976221-1 895939 L466 2008 3817 205833*2^2976222-411665 895938 L4667 2017 3818 593*2^2976226-18975 895937 p373 2014 3819 2^2976221-1 895932 G2 1997 Mersenne 36 3820 1024*3^1877301+1 895704 p378 2014 3821 1065*2^2975442+1 895701 L5300 2021 Divides GF(2975440,3) 3822 24704*3^1877135+1 895626 L5410 2021 3823 591*2^2975069+1 895588 L5299 2021 3824 249*2^2975002+1 895568 L2322 2015 3825e 18431*82^467690-1 895076 A14 2024 3826 195*2^2972947+1 894949 L3234 2015 3827 6705932^131072+1 894758 L4201 2017 Generalized Fermat 3828 391*2^2971600+1 894544 L5242 2021 3829 46425*2^2971203+1 894426 L2777 2014 Generalized Cullen 3830 625*2^2970336+1 894164 L5233 2021 Generalized Fermat 3831 369*2^2968175-1 893513 L2257 2023 3832 493*72^480933+1 893256 L3610 2014 3833 561*2^2964753+1 892483 L5161 2021 3834 1185*2^2964350+1 892362 L5161 2021 3835 6403134^131072+1 892128 L4510 2016 Generalized Fermat 3836 6391936^131072+1 892028 L4511 2016 Generalized Fermat 3837b 1964*991^297652-1 891791 A11 2025 3838 395*2^2961370-1 891464 L2257 2023 3839 21*2^2959789-1 890987 L5313 2021 3840 627*2^2959098+1 890781 L5197 2021 3841 45*2^2958002-1 890449 L1862 2017 3842 729*2^2955389+1 889664 L5282 2021 3843 706*1017^295508+1 888691 p433 2023 3844 198677*2^2950515+1 888199 L2121 2012 3845 88*985^296644+1 887987 L5410 2020 3846 303*2^2949403-1 887862 L1817 2022 3847 5877582^131072+1 887253 L4245 2016 Generalized Fermat 3848 321*2^2946654-1 887034 L1817 2022 3849 17*2^2946584-1 887012 L3519 2013 3850 489*2^2944673+1 886438 L5167 2021 3851 141*2^2943065+1 885953 L3719 2015 3852 757*2^2942742+1 885857 L5261 2021 3853 5734100^131072+1 885846 L4477 2016 Generalized Fermat 3854 33*2^2939064-5606879602425*2^1290000-1 884748 p423 2021 Arithmetic progression (3,d=33*2^2939063-5606879602425*2^1290000) 3855 33*2^2939063-1 884748 L3345 2013 3856 5903*2^2938744-1 884654 L4036 2015 3857 717*2^2937963+1 884418 L5256 2021 3858 5586416^131072+1 884361 L4454 2016 Generalized Fermat 3859d 297*2^2937584-1 884304 L1817 2025 3860 243*2^2937316+1 884223 L4114 2015 3861 973*2^2937046+1 884142 L5253 2021 3862 61*2^2936967-1 884117 L2484 2017 3863d 203*2^2935338-1 883628 L1817 2025 3864 903*2^2934602+1 883407 L5246 2021 3865 5471814^131072+1 883181 L4362 2016 Generalized Fermat 3866 188*228^374503+1 883056 L4786 2020 3867 53*248^368775+1 883016 L5196 2020 3868e 13613*82^461323-1 882891 A11 2024 3869 5400728^131072+1 882436 L4201 2016 Generalized Fermat 3870 17*326^350899+1 881887 L4786 2019 3871 855*2^2929550+1 881886 L5200 2021 3872 5326454^131072+1 881648 L4201 2016 Generalized Fermat 3873 839*2^2928551+1 881585 L5242 2021 3874 7019*10^881309-1 881313 L3564 2013 3875 25*2^2927222+1 881184 L1935 2013 Generalized Fermat 3876 391*2^2925759-1 880744 L2257 2023 3877 577*2^2925602+1 880697 L5201 2021 3878 97366*5^1259955-1 880676 L3567 2013 3879 19861029*2^2924096-1 880248 A31 2024 3880 973*2^2923062+1 879933 L5228 2021 3881 1126*177^391360+1 879770 L4955 2020 3882 243944*5^1258576-1 879713 L3566 2013 3883 693*2^2921528+1 879471 L5201 2021 3884 6*10^879313+1 879314 L5009 2019 3885 269*2^2918105+1 878440 L2715 2015 3886 331*2^2917844+1 878362 L5210 2021 3887 169*2^2917805-1 878350 L2484 2018 3888 1085*2^2916967+1 878098 L5174 2020 3889 389*2^2916499+1 877957 L5215 2020 3890 431*2^2916429+1 877936 L5214 2020 3891 1189*2^2916406+1 877929 L5174 2020 3892 1011*2^2916119-1 877843 L4518 2023 3893 7*2^2915954+1 877791 g279 2008 Divides GF(2915953,12) [g322] 3894 4974408^131072+1 877756 L4380 2016 Generalized Fermat 3895 465*2^2914079+1 877228 L5210 2020 3896 427194*113^427194+1 877069 p310 2012 Generalized Cullen 3897b 322*952^294414+1 876955 A11 2025 3898 4893072^131072+1 876817 L4303 2016 Generalized Fermat 3899 493*2^2912552+1 876769 L5192 2021 3900 379*2^2911423-1 876429 L2257 2023 3901 143157*2^2911403+1 876425 L4504 2017 3902 567*2^2910402+1 876122 L5201 2020 3903a 4098*1003^291860+1 875964 A14 2025 3904 683*2^2909217+1 875765 L5199 2020 3905 674*249^365445+1 875682 L5410 2019 3906 475*2^2908802+1 875640 L5192 2021 3907e 2351*24^634318+1 875497 A11 2024 3908d 117*2^2908312-1 875492 A27 2025 3909 371*2^2907377+1 875211 L5197 2020 3910e 8161*24^633274+1 874056 A11 2024 3911 207*2^2903535+1 874054 L3173 2015 3912 851*2^2902731+1 873813 L5177 2020 3913e 267*2^2902469-1 873733 A27 2024 3914 777*2^2901907+1 873564 L5192 2020 3915 717*2^2900775+1 873224 L5185 2020 3916 99*2^2899303-1 872780 L1862 2017 3917 63*2^2898957+1 872675 L3262 2013 3918e 173*2^2897448-1 872221 A27 2024 3919 11*2^2897409+1 872209 L2973 2013 Divides GF(2897408,3) 3920e 187*2^2896841-1 872039 L3994 2024 3921e 29601*24^631722+1 871915 A11 2024 3922 747*2^2895307+1 871578 L5178 2020 3923 403*2^2894566+1 871354 L5180 2020 3924 629*2^2892961+1 870871 L5173 2020 3925 627*2^2891514+1 870436 L5168 2020 3926 325*2^2890955-1 870267 L5545 2022 3927 363*2^2890208+1 870042 L3261 2020 3928 471*2^2890148+1 870024 L5158 2020 3929 4329134^131072+1 869847 L4395 2016 Generalized Fermat 3930 583*2^2889248+1 869754 L5139 2020 3931 353*2^2888332-1 869478 L2257 2023 3932 955*2^2887934+1 869358 L4958 2020 3933 8300*171^389286+1 869279 L5410 2023 3934 303*2^2887603-1 869258 L5184 2022 3935 937*2^2887130+1 869116 L5134 2020 3936 885*2^2886389+1 868893 L3924 2020 3937 763*2^2885928+1 868754 L2125 2020 3938 1071*2^2884844+1 868428 L3593 2020 3939 1181*2^2883981+1 868168 L3593 2020 3940 327*2^2881349-1 867375 L5545 2022 3941 51*2^2881227+1 867338 L3512 2013 3942 933*2^2879973+1 866962 L4951 2020 3943 261*2^2879941+1 866952 L4119 2015 3944 4085818^131072+1 866554 L4201 2016 Generalized Fermat 3945 65*2^2876718-1 865981 L2484 2016 3946 21*948^290747-1 865500 L4985 2019 3947 4013*2^2873250-1 864939 L1959 2014 3948 41*2^2872058-1 864578 L2484 2013 3949 359*2^2870935+1 864241 L1300 2020 3950 165*2^2870868+1 864220 L4119 2015 3951 961*2^2870596+1 864139 L1300 2020 Generalized Fermat 3952 665*2^2869847+1 863913 L2885 2020 3953a 12*753^300293+1 863883 A59 2025 3954 283*2^2868750+1 863583 L3877 2015 3955 663703*20^663703-1 863504 L5765 2023 Generalized Woodall 3956 845*2^2868291+1 863445 L5100 2020 3957 3125*2^2867399+1 863177 L1754 2019 3958 701*2^2867141+1 863099 L1422 2020 3959 9*10^862868+1 862869 L4789 2024 Generalized Fermat 3960 3814944^131072+1 862649 L4201 2016 Generalized Fermat 3961 81030*91^440109-1 862197 A11 2024 3962 119*954^289255+1 861852 L5410 2022 3963 307*2^2862962+1 861840 L4740 2020 3964 147*2^2862651+1 861746 L1741 2015 3965 1207*2^2861901-1 861522 L1828 2011 3966 231*2^2860725+1 861167 L2873 2015 3967 193*2^2858812+1 860591 L2997 2015 3968 629*2^2857891+1 860314 L3035 2020 3969 493*2^2857856+1 860304 L5087 2020 3970 241*2^2857313-1 860140 L2484 2018 3971 707*2^2856331+1 859845 L5084 2020 3972 3615210^131072+1 859588 L4201 2016 Generalized Fermat 3973 949*2^2854946+1 859428 L2366 2020 3974 222361*2^2854840+1 859398 g403 2006 3975 725*2^2854661+1 859342 L5031 2020 3976 178972*5^1228284+1 858539 A42 2024 3977 399*2^2851994+1 858539 L4099 2020 3978 225*2^2851959+1 858528 L3941 2015 3979 247*2^2851602+1 858421 L3865 2015 3980 183*2^2850321+1 858035 L2117 2015 3981 1191*2^2849315+1 857733 L1188 2020 3982 717*2^2848598+1 857517 L1204 2020 3983 795*2^2848360+1 857445 L4099 2020 3984 4242104*15^728840-1 857189 L5410 2023 3985c 2*647^304931+1 857133 L550 2025 3986 3450080^131072+1 856927 L4201 2016 Generalized Fermat 3987 705*2^2846638+1 856927 L1808 2020 3988 369*2^2846547+1 856899 L4099 2020 3989 233*2^2846392-1 856852 L2484 2021 3990 223952*91^437353-1 856798 A11 2024 3991 955*2^2844974+1 856426 L1188 2020 3992 753*2^2844700+1 856343 L1204 2020 3993 11138*745^297992-1 855884 L4189 2019 3994 111*2^2841992+1 855527 L1792 2015 3995 44*744^297912-1 855478 L5410 2021 3996 649*2^2841318+1 855325 L4732 2020 3997 228*912^288954-1 855305 L5410 2022 3998 305*2^2840155+1 854975 L4907 2020 3999 914*871^290787-1 854923 L5787 2023 4000 1149*2^2839622+1 854815 L2042 2020 4001 95*2^2837909+1 854298 L3539 2013 4002 199*2^2835667-1 853624 L2484 2019 4003 595*2^2833406+1 852943 L4343 2020 4004 1101*2^2832061+1 852539 L4930 2020 4005 813*2^2831757+1 852447 L4951 2020 4006 435*2^2831709+1 852432 L4951 2020 4007 38*500^315752-1 852207 A21 2024 4008e 13613*82^445251-1 852132 A11 2024 4009 393*2^2828738-1 851538 L2257 2023 4010 543*2^2828217+1 851381 L4746 2019 4011 68*1010^283267+1 851027 L5778 2023 4012 704*249^354745+1 850043 L5410 2019 4013 1001*2^2822037+1 849521 L1209 2019 4014 84466*5^1215373-1 849515 L3562 2013 4015 97*2^2820650+1 849103 L2163 2013 4016 381*2^2820157-1 848955 L2257 2023 4017 43814*91^433332-1 848920 A32 2024 4018 107*2^2819922-1 848884 L2484 2013 4019 84256*3^1778899+1 848756 L4789 2018 4020 45472*3^1778899-1 848756 L4789 2018 4021 495*2^2819449-1 848742 L3994 2024 4022 14804*3^1778530+1 848579 L4064 2021 4023 497*2^2818787+1 848543 L4842 2019 4024 97*2^2818306+1 848397 L3262 2013 4025 313*2^2817751-1 848231 L802 2021 4026 177*2^2816050+1 847718 L129 2012 4027 585*2^2816000-1 847704 L5819 2024 4028 553*2^2815596+1 847582 L4980 2019 4029 1071*2^2814469+1 847243 L3035 2019 4030 105*2^2813000+1 846800 L3200 2015 4031 1115*2^2812911+1 846774 L1125 2019 4032 96*10^846519-1 846521 L2425 2011 Near-repdigit 4033 763*2^2811726+1 846417 L3919 2019 4034 1125*2^2811598+1 846379 L4981 2019 4035 891*2^2810100+1 845928 L4981 2019 4036 441*2^2809881+1 845862 L4980 2019 4037 499*2^2809261-1 845675 L5516 2024 4038 711*2^2808473+1 845438 L1502 2019 4039 1089*2^2808231+1 845365 L4687 2019 4040 63*2^2807130+1 845033 L3262 2013 4041 1083*2^2806536+1 844855 L3035 2019 4042 675*2^2805669+1 844594 L1932 2019 4043 819*2^2805389+1 844510 L3372 2019 4044 1027*2^2805222+1 844459 L3035 2019 4045 437*2^2803775+1 844024 L3168 2019 4046e 29113*820^289614+1 843886 A50 2024 4047 381*2^2801281-1 843273 L2257 2023 4048 4431*372^327835-1 842718 L5410 2019 4049 150344*5^1205508-1 842620 L3547 2013 4050 311*2^2798459+1 842423 L4970 2019 4051 81*2^2797443-1 842117 L3887 2021 4052 400254*127^400254+1 842062 g407 2013 Generalized Cullen 4053 2639850^131072+1 841690 L4249 2016 Generalized Fermat 4054 43*2^2795582+1 841556 L2842 2013 4055 1001*2^2794357+1 841189 L1675 2019 4056 117*2^2794014+1 841085 L1741 2015 4057 1057*2^2792700+1 840690 L1675 2019 4058 345*2^2792269+1 840560 L1754 2019 4059f 267*2^2792074-1 840501 L1817 2024 4060 711*2^2792072+1 840501 L4256 2019 4061f 293*2^2791482-1 840323 A27 2024 4062 315*2^2791414-1 840302 L2235 2021 4063 973*2^2789516+1 839731 L3372 2019 4064 27602*3^1759590+1 839543 L4064 2021 4065 2187*2^2786802+1 838915 L1745 2019 4066 15*2^2785940+1 838653 p286 2012 4067 333*2^2785626-1 838560 L802 2021 4068 1337*2^2785444-1 838506 L4518 2017 4069 711*2^2784213+1 838135 L4687 2019 4070 58582*91^427818+1 838118 L5410 2020 4071 923*2^2783153+1 837816 L1675 2019 4072 1103*2^2783149+1 837815 L3784 2019 4073e 20708*82^437279-1 836875 A48 2024 4074f 297*2^2778276-1 836347 A27 2024 4075 485*2^2778151+1 836310 L1745 2019 4076 600921*2^2776014-1 835670 g337 2017 4077 1129*2^2774934+1 835342 L1774 2019 4078 750*1017^277556-1 834703 L4955 2021 4079 8700*241^350384-1 834625 L5410 2019 4080 1023*2^2772512+1 834613 L4724 2019 4081 656*249^348030+1 833953 L5410 2019 4082 92*10^833852-1 833854 L4789 2018 Near-repdigit 4083 437*2^2769299+1 833645 L3760 2019 4084 967*2^2768408+1 833377 L3760 2019 4085 2280466^131072+1 833359 L4201 2016 Generalized Fermat 4086 1171*2^2768112+1 833288 L2676 2019 4087 57*2^2765963+1 832640 L3262 2013 4088 1323*2^2764024+1 832058 L1115 2019 4089f 189*2^2762731-1 831668 A27 2024 4090 471*2^2762718-1 831664 L5516 2023 4091f 115*2^2762111-1 831481 A27 2024 4092 77*2^2762047+1 831461 L3430 2013 4093 745*2^2761514+1 831302 L1204 2019 4094 2194180^131072+1 831164 L4276 2016 Generalized Fermat 4095 543*2^2760224-1 830913 L5516 2023 4096 7*10^830865+1 830866 p342 2014 4097 893*2^2758841+1 830497 L4826 2019 4098 593*2^2757554-1 830110 L5516 2023 4099 557*2^2757276-1 830026 L5516 2023 4100 537*2^2755164+1 829390 L3035 2019 4101 225*370^322863-1 829180 A14 2024 4102 579*2^2754370+1 829151 L1823 2019 4103 441*2^2754188+1 829096 L2564 2019 Generalized Fermat 4104 455*2^2754132-1 829080 L5516 2023 4105 139*2^2751839-1 828389 A27 2024 4106 677*792^285769-1 828369 L541 2023 4107 215*2^2751022-1 828143 L2484 2018 4108 337*2^2750860+1 828094 L4854 2019 4109 701*2^2750267+1 827916 L3784 2019 4110 467*2^2749195+1 827593 L1745 2019 4111 245*2^2748663+1 827433 L3173 2015 4112 591*2^2748315+1 827329 L3029 2019 4113 205*2^2747571-1 827104 L1817 2024 4114 57*2^2747499+1 827082 L3514 2013 Divides Fermat F(2747497) 4115 1007*2^2747268-1 827014 L4518 2022 4116 1089*2^2746155+1 826679 L2583 2019 4117 707*2^2745815+1 826576 L3760 2019 4118 525*2^2743252-1 825804 L5516 2023 4119 459*2^2742310+1 825521 L4582 2019 4120 777*2^2742196+1 825487 L3919 2019 4121 609*2^2741078+1 825150 L3091 2019 4122 684*157^375674+1 824946 L5112 2022 4123 639*2^2740186+1 824881 L4958 2019 4124 905*2^2739805+1 824767 L4958 2019 4125 119*954^276761+1 824625 L5410 2022 4126 1955556^131072+1 824610 L4250 2015 Generalized Fermat 4127 777*2^2737282+1 824007 L1823 2019 4128b 224*938^277168-1 823802 A11 2025 4129 765*2^2735232+1 823390 L1823 2019 4130 609*2^2735031+1 823330 L1823 2019 4131 9*10^823037+1 823038 L4789 2024 4132 305*2^2733989+1 823016 L1823 2019 4133 165*2^2732983+1 822713 L1741 2015 4134 1133*2^2731993+1 822415 L4687 2019 4135 251*2^2730917+1 822091 L3924 2015 4136 189*2^2730633-1 822005 A27 2024 4137 1185*2^2730620+1 822002 L4948 2019 4138 (10^410997+1)^2-2 821995 p405 2022 4139 173*2^2729905+1 821786 L3895 2015 4140 285*2^2728979-1 821507 A27 2024 4141 1981*2^2728877-1 821478 L1134 2018 4142 693*2^2728537+1 821375 L3035 2019 4143 501*2^2728224+1 821280 L3035 2019 4144 763*2^2727928+1 821192 L3924 2019 4145 553*2^2727583-1 821088 L5516 2023 4146e 5292*820^281664+1 820721 A11 2024 4147 465*2^2726085-1 820637 L5516 2023 4148 291*2^2725533-1 820470 L1817 2024 4149 10*743^285478+1 819606 L4955 2019 4150 17*2^2721830-1 819354 p279 2010 4151 1006*639^291952+1 819075 L4444 2021 4152 1101*2^2720091+1 818833 L4935 2019 4153 1766192^131072+1 818812 L4231 2015 Generalized Fermat 4154 555*2^2719105-1 818535 L5516 2023 4155 165*2^2717378-1 818015 L2055 2012 4156 495*2^2717011-1 817905 L5516 2023 4157 68633*2^2715609+1 817485 L5105 2020 4158 1722230^131072+1 817377 L4210 2015 Generalized Fermat 4159 9574*5^1169232+1 817263 L5410 2021 4160 1717162^131072+1 817210 L4226 2015 Generalized Fermat 4161 133*2^2713410+1 816820 L3223 2015 4162 9022*96^411931-1 816563 L5410 2023 4163 45*2^2711732+1 816315 L1349 2012 4164 569*2^2711451+1 816231 L4568 2019 4165 567*2^2710898-1 816065 L5516 2023 4166 12830*3^1709456+1 815622 L5410 2021 4167 335*2^2708958-1 815481 L2235 2020 4168 93*2^2708718-1 815408 L1862 2016 4169 1660830^131072+1 815311 L4207 2015 Generalized Fermat 4170 837*2^2708160+1 815241 L4314 2019 4171 261*2^2707551-1 815057 A27 2024 4172 1005*2^2707268+1 814972 L4687 2019 4173 13*458^306196+1 814748 L3610 2015 4174 253*2^2705844+1 814543 L4083 2015 4175 657*2^2705620+1 814476 L4907 2019 4176 39*2^2705367+1 814399 L1576 2013 Divides GF(2705360,3) 4177 405*2^2704471-1 814130 L5516 2023 4178 303*2^2703864+1 813947 L1204 2019 4179 141*2^2702160+1 813434 L1741 2015 4180 753*2^2701925+1 813364 L4314 2019 4181 133*2^2701452+1 813221 L3173 2015 4182 58434*5^1162930+1 812858 A11 2024 4183 521*2^2700095+1 812813 L4854 2019 4184 393*2^2698956+1 812470 L1823 2019 4185 417*2^2698652+1 812378 L3035 2019 4186 525*2^2698118+1 812218 L1823 2019 4187 3125*2^2697651+1 812078 L3924 2019 4188 287*2^2697536-1 812042 A27 2024 4189 153*2^2697173+1 811933 L3865 2015 4190 1560730^131072+1 811772 L4201 2015 Generalized Fermat 4191 26*3^1700041+1 811128 L4799 2020 4192 1538654^131072-1538654^65536+1 810961 L4561 2017 Generalized unique 4193 11*2^2691961+1 810363 p286 2013 Divides GF(2691960,12) 4194 555*2^2691334-1 810176 L5516 2023 4195 58*536^296735-1 809841 L5410 2021 4196 33016*3^1696980+1 809670 L5366 2021 4197 7335*2^2689080-1 809498 L4036 2015 4198 1049*2^2688749+1 809398 L4869 2018 4199 120*957^271487-1 809281 L541 2023 4200 329*2^2688221+1 809238 L3035 2018 4201 1578*37^515979-1 809163 p443 2024 4202 865*2^2687434+1 809002 L4844 2018 4203 989*2^2686591+1 808748 L2805 2018 4204 136*904^273532+1 808609 L5410 2020 4205 243*2^2685873+1 808531 L3865 2015 4206 909*2^2685019+1 808275 L3431 2018 4207 1455*2^2683954-6325241166627*2^1290000-1 807954 p423 2021 Arithmetic progression (3,d=1455*2^2683953-6325241166627*2^1290000) 4208 1455*2^2683953-1 807954 L1134 2020 4209 11210*241^339153-1 807873 L5410 2019 4210 1456746^131072-1456746^65536+1 807848 L4561 2017 Generalized unique 4211 975*2^2681840+1 807318 L4155 2018 4212 999*2^2681353-1 807171 L4518 2022 4213 295*2^2680932+1 807044 L1741 2015 4214 275*2^2679936-1 806744 A27 2024 4215 1427604^131072-1427604^65536+1 806697 L4561 2017 Generalized unique 4216 575*2^2679711+1 806677 L2125 2018 4217 2386*52^469972+1 806477 L4955 2019 4218 2778*991^269162+1 806433 p433 2023 4219 10*80^423715-1 806369 p247 2023 4220 219*2^2676229+1 805628 L1792 2015 4221 637*2^2675976+1 805552 L3035 2018 4222 1395583^131072-1395583^65536+1 805406 L4561 2017 Generalized unique 4223 951*2^2674564+1 805127 L1885 2018 4224 531*2^2673250-1 804732 L5516 2023 4225 1372930^131072+1 804474 g236 2003 Generalized Fermat 4226 662*1009^267747-1 804286 L5410 2020 4227 261*2^2671677+1 804258 L3035 2015 4228 895*2^2671520+1 804211 L3035 2018 4229 1361244^131072+1 803988 g236 2004 Generalized Fermat 4230 789*2^2670409+1 803877 L3035 2018 4231 256*11^771408+1 803342 L3802 2014 Generalized Fermat 4232 503*2^2668529+1 803310 L4844 2018 4233 255*2^2668448+1 803286 L1129 2015 4234 4189*2^2666639-1 802742 L1959 2017 4235 539*2^2664603+1 802129 L4717 2018 4236 3^1681130+3^445781+1 802103 CH9 2022 4237 26036*745^279261-1 802086 L4189 2020 4238 295*2^2663855-1 801903 A27 2024 4239 1396*5^1146713-1 801522 L3547 2013 4240 676*687^282491-1 801418 L5426 2023 4241 267*2^2662090+1 801372 L3234 2015 Divides Fermat F(2662088) 4242 51*892^271541+1 801147 L5410 2019 4243e 1851*24^580404+1 801084 A49 2024 4244c 12124*477^299035-1 800975 A11 2025 4245 297*2^2660048+1 800757 L3865 2015 4246 133*2^2658587-1 800317 L1817 2024 4247 99*2^2658496-1 800290 L1862 2021 4248 851*2^2656411+1 799663 L4717 2018 4249 487*2^2655008+1 799240 L3760 2018 4250 153*2^2654686-1 799143 A27 2024 4251 441*2^2652807-1 798578 L5516 2023 4252 371*2^2651663+1 798233 L3760 2018 4253 69*2^2649939-1 797713 L3764 2014 4254 207*2^2649810+1 797675 L1204 2015 4255 505*2^2649496+1 797581 L3760 2018 4256 993*2^2649256+1 797509 L3760 2018 4257e 225*718^279185-1 797390 A11 2024 4258 517*2^2648698+1 797341 L3760 2018 4259 340*703^280035+1 797250 L4001 2018 4260 441*2^2648307+1 797223 L3760 2018 4261 1129*2^2646590+1 796707 L3760 2018 4262 128*518^293315+1 796156 L4001 2019 4263 211*744^277219-1 796057 L5410 2021 4264 1181782^131072-1181782^65536+1 795940 L4142 2015 Generalized unique 4265 1176694^131072+1 795695 g236 2003 Generalized Fermat 4266 13*2^2642943-1 795607 L1862 2012 4267 119*410^304307+1 795091 L4294 2019 4268 501*2^2641052+1 795039 L3035 2018 4269 267*2^2640554-1 794889 A27 2024 4270 879*2^2639962+1 794711 L3760 2018 4271 57*2^2639528-1 794579 L2484 2016 4272 342673*2^2639439-1 794556 L53 2007 4273 813*2^2639092+1 794449 L2158 2018 4274 1147980^131072-1147980^65536+1 794288 L4142 2015 Generalized unique 4275 197*972^265841-1 794247 L4955 2022 4276 1027*2^2638186+1 794177 L3760 2018 4277 889*2^2637834+1 794071 L3545 2018 4278 175*2^2637399-1 793939 A27 2024 4279 421*2^2636975-1 793812 L5516 2023 4280 92182*5^1135262+1 793520 L3547 2013 4281 5608*70^429979+1 793358 L5390 2021 4282 741*2^2634385+1 793032 L1204 2018 4283 465*2^2630496+1 791861 L1444 2018 4284 189*2^2630487+1 791858 L3035 2015 4285 87*2^2630468+1 791852 L3262 2013 4286 123454321*2^2630208+1 791780 L6049 2024 Generalized Fermat 4287 4*5^1132659-1 791696 L4965 2022 4288 1131*2^2629345+1 791515 L4826 2018 4289 967*2^2629344+1 791515 L3760 2018 4290 267*2^2629210+1 791474 L3035 2015 4291 154*883^268602+1 791294 L5410 2020 4292 237*2^2627713-1 791023 L1817 2024 4293 819*2^2627529+1 790968 L1387 2018 4294 183*2^2626880-1 790772 L1817 2024 4295 17152*5^1131205-1 790683 L3552 2013 4296 183*2^2626442+1 790641 L3035 2015 4297 137*2^2626238-1 790579 A27 2024 4298 813*2^2626224+1 790576 L4830 2018 4299b 66*952^265412+1 790568 A52 2025 4300 807*2^2625044+1 790220 L1412 2018 4301 557*2^2624952-1 790193 L5516 2023 4302 4*10^789955+1 789956 L4789 2024 4303 1063730^131072+1 789949 g260 2013 Generalized Fermat 4304 1243*2^2623707-1 789818 L1828 2011 4305 693*2^2623557+1 789773 L3278 2018 4306 981*2^2622032+1 789314 L1448 2018 4307 145*2^2621020+1 789008 L3035 2015 4308 963*792^271959-1 788338 L5410 2021 4309 1798*165^354958+1 787117 p365 2024 4310 541*2^2614676+1 787099 L4824 2018 4311 545*2^2614294-1 786984 L5516 2023 4312 (10^393063-1)^2-2 786126 p405 2022 Near-repdigit 4313 1061*268^323645-1 785857 L5410 2019 4314 1662*483^292719-1 785646 L5410 2022 4315 984522^131072-984522^65536+1 785545 p379 2015 Generalized unique 4316 1071*2^2609316+1 785486 L3760 2018 4317 87*2^2609046+1 785404 L2520 2013 4318 18922*111^383954+1 785315 L4927 2021 4319 543*2^2608129+1 785128 L4822 2018 4320 377*2^2607856-1 785046 L2257 2023 4321 329584*5^1122935-1 784904 L3553 2013 4322 10*311^314806+1 784737 L3610 2014 4323 1019*2^2606525+1 784646 L1201 2018 4324 977*2^2606211+1 784551 L4746 2018 4325 13*2^2606075-1 784508 L1862 2011 4326 693*2^2605905+1 784459 L4821 2018 4327c 6984*507^289940-1 784294 A54 2025 4328 147*2^2604275+1 783968 L1741 2015 4329 105*2^2603631+1 783774 L3459 2015 4330 93*2^2602483-1 783428 L1862 2016 4331 155*2^2602213+1 783347 L2719 2015 4332 545*2^2602018-1 783289 L5516 2023 4333 303*2^2601525+1 783140 L4816 2018 4334 711*2^2600535+1 782842 L4815 2018 4335 1133*2^2599345+1 782484 L4796 2018 4336 397*2^2598796+1 782319 L3877 2018 4337 421*2^2597273-1 781860 L5516 2023 4338 585*2^2596523-1 781635 L5819 2023 4339 203*2^2595752-1 781402 A27 2024 4340 1536*177^347600+1 781399 L5410 2020 4341 1171*2^2595736+1 781398 L3035 2018 4342 (146^180482+1)^2-2 781254 p405 2022 4343 579*2^2595159-1 781224 L5516 2023 4344 543*2^2594975-1 781169 L5516 2023 4345 909548^131072+1 781036 p387 2015 Generalized Fermat 4346e 7386*82^408082-1 780997 A11 2024 4347 2*218^333925+1 780870 L4683 2017 4348 15690*29^533930+1 780823 L5787 2023 4349 1149*2^2593359+1 780682 L1125 2018 4350 225*2^2592918+1 780549 L1792 2015 Generalized Fermat 4351 495*2^2592802-1 780514 L5516 2023 4352 333*2^2591874-1 780235 L2017 2019 4353 883969^131072-883969^65536+1 779412 p379 2015 Generalized unique 4354 2154*687^274573-1 778956 L5752 2023 4355 872989^131072-872989^65536+1 778700 p379 2015 Generalized unique 4356 703*2^2586728+1 778686 L4256 2018 4357 2642*372^302825-1 778429 L5410 2019 4358 120*825^266904+1 778416 L4001 2018 4359 337*2^2585660+1 778364 L2873 2018 4360 31*2^2585311-1 778258 L4521 2022 4361 393*2^2584957+1 778153 L4600 2018 4362 151*2^2584480+1 778009 L4043 2015 4363 862325^131072-862325^65536+1 778001 p379 2015 Generalized unique 4364 385*2^2584280+1 777949 L4600 2018 4365 861088^131072-861088^65536+1 777919 p379 2015 Generalized unique 4366 65*2^2583720-1 777780 L2484 2015 4367 25*2^2583690+1 777770 L3249 2013 Generalized Fermat 4368 82*920^262409-1 777727 L4064 2015 4369 123*2^2583362-1 777672 L1817 2024 4370 1041*2^2582112+1 777297 L1456 2018 4371 153*2^2581916-1 777237 L1817 2024 4372 334310*211^334310-1 777037 p350 2012 Generalized Woodall 4373 229*2^2581111-1 776995 L1862 2017 4374 61*2^2580689-1 776867 L2484 2015 4375 1113*2^2580205+1 776723 L4724 2018 4376 51*2^2578652+1 776254 L3262 2013 4377 173*2^2578197+1 776117 L3035 2015 4378 833*2^2578029+1 776067 L4724 2018 4379 80*394^298731-1 775358 L541 2020 4380 302*423^295123-1 775096 L5413 2021 4381 460*628^276994+1 775021 L5410 2020 4382 459*2^2573899+1 774824 L1204 2018 4383 593*2^2572634-1 774443 L5516 2023 4384 806883^131072-806883^65536+1 774218 p379 2015 Generalized unique 4385 3*2^2571360-3*2^1285680+1 774057 A3 2023 Generalized unique 4386 181*2^2570921-1 773927 A27 2024 4387 285*2^2570839-1 773903 A27 2024 4388 357*2^2568110-1 773081 L2257 2023 4389 627*2^2567718+1 772963 L3803 2018 4390 933*2^2567598+1 772927 L4724 2018 4391 757*2^2566468+1 772587 L2606 2018 4392 471*2^2566323-1 772543 L5516 2023 4393 231*2^2565263+1 772224 L3035 2015 4394 4*737^269302+1 772216 L4294 2016 Generalized Fermat 4395 941*2^2564867+1 772105 L4724 2018 4396 923*2^2563709+1 771757 L1823 2018 4397 151*596^278054+1 771671 L4876 2019 4398 770202^131072-770202^65536+1 771570 p379 2015 Generalized unique 4399 303*2^2562423-1 771369 L2017 2018 4400 75*2^2562382-1 771356 L2055 2011 4401 147559*2^2562218+1 771310 L764 2012 4402 117*412^294963+1 771300 p268 2021 4403 829*2^2561730+1 771161 L1823 2018 4404 404*12^714558+1 771141 L1471 2011 4405 5*308^309755+1 770842 L4294 2024 4406 757576^131072-757576^65536+1 770629 p379 2015 Generalized unique 4407 295*80^404886+1 770537 L5410 2021 4408 1193*2^2559453+1 770476 L2030 2018 4409 205*2^2559417-1 770464 A27 2024 4410 19*984^257291+1 770072 L5410 2020 4411 116*950^258458-1 769619 L5410 2021 4412 147314*91^392798-1 769513 A11 2024 4413 612497*18^612497+1 768857 L5765 2023 Generalized Cullen 4414e 19861029*2^2553830+1 768787 A31 2024 4415 175*2^2553699-1 768743 A27 2024 4416 731582^131072-731582^65536+1 768641 p379 2015 Generalized unique 4417 479*2^2553152-1 768579 L5516 2023 4418 65*752^267180-1 768470 L5410 2020 4419 120312*91^392238-1 768416 A15 2024 4420 419*2^2552363+1 768341 L4713 2018 4421 369*2^2551955-1 768218 L2257 2023 4422 34*759^266676-1 768093 L4001 2019 4423 315*2^2550412+1 767754 L4712 2017 4424 415*2^2549590+1 767506 L4710 2017 4425 1152*792^264617-1 767056 L4955 2021 4426 693*2^2547752+1 766953 L4600 2017 4427 673*2^2547226+1 766795 L2873 2017 4428 169*2^2545526+1 766282 L2125 2015 Divides GF(2545525,10), generalized Fermat 4429 196*814^263256+1 766242 L5410 2021 Generalized Fermat 4430 183*2^2545116+1 766159 L3035 2015 4431 311*2^2544778-1 766058 L2017 2018 4432 9*2^2543551+1 765687 L1204 2011 Divides Fermat F(2543548), GF(2543549,3), GF(2543549,6), GF(2543549,12) 4433 67*446^288982+1 765612 L4273 2020 4434 663*2^2542990+1 765520 L4703 2017 4435 705*2^2542464+1 765361 L2873 2017 4436 689186^131072+1 765243 g429 2013 Generalized Fermat 4437 745*2^2540726+1 764838 L4696 2017 4438 682504^131072-682504^65536+1 764688 p379 2015 Generalized unique 4439 64*177^340147-1 764644 L3610 2015 4440 421*2^2539336+1 764419 L4148 2017 4441 (2^64-189)*10^764330+1 764350 p439 2024 4442 123287*2^2538167+1 764070 L3054 2012 4443 305716*5^1093095-1 764047 L3547 2013 4444 223*2^2538080+1 764041 L2125 2015 4445 83*2^2537641+1 763908 L1300 2013 4446 543539*2^2536028-1 763427 L4187 2022 4447 473*2^2533376-1 762625 L5516 2023 4448 645*2^2532811+1 762455 L4600 2017 4449 953*2^2531601+1 762091 L4404 2017 4450 694*567^276568-1 761556 L4444 2021 4451 545*2^2528179+1 761061 L1502 2017 4452 517*2^2527857-1 760964 L5516 2023 4453 203*2^2526505+1 760557 L3910 2015 4454 967*2^2526276+1 760488 L1204 2017 4455 3317*2^2523366-1 759613 L5399 2021 4456 241*2^2522801-1 759442 L2484 2018 4457 153*2^2522271-1 759282 A27 2024 4458 360307*6^975466-1 759066 p255 2017 4459 326*80^398799+1 758953 L4444 2021 4460 749*2^2519457+1 758436 L1823 2017 4461 199*2^2518871-1 758259 L2484 2018 4462 6*10^758068+1 758069 L5009 2019 4463 87*2^2518122-1 758033 L2484 2014 4464 515*2^2517626-1 757884 L5516 2023 4465 605347^131072-605347^65536+1 757859 p379 2015 Generalized unique 4466 711*2^2516187+1 757451 L3035 2017 4467 967*2^2514698+1 757003 L4600 2017 4468 33*2^2513872-1 756753 L3345 2013 4469 1-V(-3,-3,1307101)-3^1307101 756533 p437 2024 4470 973*2^2511920+1 756167 L1823 2017 4471 679*2^2511814+1 756135 L4598 2017 4472 1093*2^2511384+1 756005 L1823 2017 4473 38*875^256892-1 755780 L4001 2019 4474 209*2^2510308-1 755681 A27 2024 4475 45*2^2507894+1 754953 L1349 2012 4476 130484*5^1080012-1 754902 L3547 2013 4477 572186^131072+1 754652 g0 2004 Generalized Fermat 4478 242*501^279492-1 754586 L4911 2019 4479 883*2^2506382+1 754500 L1823 2017 4480d 9702*871^256606+1 754431 A44 2025 4481 77*2^2505854-1 754340 A27 2024 4482 847*2^2505540+1 754246 L4600 2017 4483 39768*5^1079005+1 754197 A11 2024 4484 175604*91^384974-1 754186 A16 2024 4485 191*2^2504121+1 753818 L3035 2015 4486 783*2^2500912+1 752853 L1823 2017 4487 133*488^279973-1 752688 L541 2023 4488 165*2^2500130-1 752617 L2055 2011 4489 33*2^2499883-1 752542 L3345 2013 4490 319*2^2498685-1 752182 L2017 2018 4491 215206*5^1076031-1 752119 L20 2023 Generalized Woodall 4492 477*2^2496685-1 751580 L5516 2023 4493 321*2^2496594-1 751553 L2235 2018 4494 531*2^2495930-1 751353 L5516 2023 4495 365*2^2494991+1 751070 L3035 2017 4496 91*2^2494467-1 750912 L1817 2024 4497 213*2^2493004-1 750472 L1863 2017 4498 777*2^2492560+1 750339 L3035 2017 4499 57*2^2492031+1 750178 L1230 2013 4500 879*2^2491342+1 749972 L4600 2017 4501 14*152^343720-1 749945 L3610 2015 4502 231*2^2489083+1 749292 L3035 2015 4503 255*2^2488562+1 749135 L3035 2015 4504 483*2^2488154-1 749012 L5516 2023 4505 708*48^445477-1 748958 L5410 2022 4506 221*780^258841-1 748596 L4001 2018 4507 303*2^2486629+1 748553 L3035 2017 4508 6*433^283918-1 748548 L3610 2015 4509 413*2^2486596-1 748543 L5516 2023 4510 617*2^2485919+1 748339 L1885 2017 4511f 4118*82^390928-1 748168 A11 2024 4512 515*2^2484885+1 748028 L3035 2017 4513 1095*2^2484828+1 748011 L3035 2017 4514 1113*2^2484125+1 747800 L3035 2017 4515 607*2^2483616+1 747646 L3035 2017 4516 625*2^2483272+1 747543 L2487 2017 Generalized Fermat 4517 527*2^2482876-1 747423 L5516 2023 4518 723*2^2482064+1 747179 L3035 2017 4519 2154*687^263317-1 747023 L5410 2023 4520 26*3^1565545+1 746957 L4799 2020 4521 14336*3^1563960+1 746203 L5410 2021 4522 3*2^2478785+1 746190 g245 2003 Divides Fermat F(2478782), GF(2478782,3), GF(2478776,6), GF(2478782,12) 4523 483*2^2478266-1 746036 L5516 2023 4524 429*2^2478139-1 745997 L5516 2023 4525 33324*5^1067123+1 745892 A11 2024 4526 1071*2^2477584+1 745831 L3035 2017 4527 22*30^504814-1 745673 p355 2014 4528 2074*483^277812-1 745637 L5410 2022 4529 11*2^2476839+1 745604 L2691 2011 4530 95977*6^957680-1 745225 L4521 2024 4531 825*2^2474996+1 745051 L1300 2017 4532 1061*2^2474282-1 744837 L1828 2012 4533 435*2^2473905+1 744723 L3035 2017 4534 1005*2^2473724-1 744669 L4518 2021 4535 1121*2^2473401+1 744571 L3924 2017 4536 325*2^2473267-1 744531 L2017 2018 4537 400*639^265307-1 744322 L5410 2022 4538 11996*3^1559395+1 744025 L5410 2021 4539 889*2^2471082+1 743873 L1300 2017 4540 529*2^2470514+1 743702 L3924 2017 Generalized Fermat 4541 561*2^2469713-1 743461 L5516 2023 4542 883*2^2469268+1 743327 L4593 2017 4543 5754*313^297824-1 743237 L5089 2020 4544 81*2^2468789+1 743182 g418 2009 4545 55154*5^1063213+1 743159 L3543 2013 4546 119*2^2468556-1 743112 L2484 2018 4547 2136*396^285974+1 742877 L5410 2021 4548 525*2^2467658+1 742842 L3035 2017 4549 465*2^2467625-1 742832 L5516 2023 4550 715*2^2465640+1 742235 L3035 2017 4551 26773*2^2465343-1 742147 L197 2006 4552 581*550^270707-1 741839 L5410 2020 4553 993*2^2464082+1 741766 L3035 2017 4554 295*2^2463785-1 741676 L1817 2024 4555 1179*2^2463746+1 741665 L3035 2017 4556 857*2^2463411+1 741564 L3662 2017 4557 227*2^2462914-1 741414 L1817 2024 4558 103*2^2462567-1 741309 L2484 2014 4559 12587*2^2462524-1 741298 L2012 2017 4560c 6962*507^273940-1 741014 A11 2025 4561 15592*67^405715+1 740871 A11 2024 4562 5*2^2460482-1 740680 L503 2008 4563 763*2^2458592+1 740113 L1823 2017 4564 453*2^2458461+1 740074 L3035 2017 4565 519*2^2458058+1 739952 L3803 2017 4566 373*2^2457859-1 739892 L2257 2023 4567 545*2^2457692-1 739842 L5516 2023 4568 137*2^2457639+1 739826 L4021 2014 4569 411*2^2457241-1 739706 L5516 2023 4570 41676*7^875197-1 739632 L2777 2012 Generalized Woodall 4571 2688*991^246849+1 739582 L5410 2021 4572f 6143*82^386291-1 739293 A11 2024 4573 133*2^2455666+1 739232 L2322 2014 4574 99*2^2455541-1 739194 L1862 2015 4575 115*2^2454363-1 738839 L1817 2024 4576f 14855*82^385937-1 738616 A11 2024 4577 129*2^2452892-1 738397 L1817 2024 4578 377*2^2452639+1 738321 L3035 2017 4579 2189*138^345010+1 738284 L5410 2020 4580 1129*2^2452294+1 738218 L3035 2017 4581 1103*2^2451133+1 737868 L4531 2017 4582 65*2^2450614-1 737711 L2074 2014 4583 549*2^2450523+1 737684 L3035 2017 4584 4*789^254595+1 737582 L4955 2019 4585 3942*55^423771-1 737519 L4955 2019 4586 441*2^2449825-1 737474 L5516 2023 4587 (3*2^1224895)^2-3*2^1224895+1 737462 A3 2023 Generalized unique 4588 2166*483^274670-1 737204 L5410 2022 4589 765*2^2448660+1 737123 L4412 2017 4590 77*2^2448152-1 736970 L5819 2024 4591 607*2^2447836+1 736875 L4523 2017 4592 1261*988^246031+1 736807 L5342 2021 4593 1005*2^2446722+1 736540 L4522 2017 4594 703*2^2446472+1 736465 L2805 2017 4595 75*2^2446050+1 736337 L3035 2013 4596 115*26^520277-1 736181 L1471 2014 4597 114986*5^1052966-1 735997 L3528 2013 4598 1029*2^2444707+1 735934 L3035 2017 4599 4*5^1052422+1 735613 L4965 2023 Generalized Fermat 4600 1035*2^2443369+1 735531 L3173 2017 4601 1052072*5^1052072-1 735373 L20 2023 Generalized Woodall 4602 1017*2^2442723+1 735336 L4417 2017 4603 489*2^2442281-1 735203 L5516 2023 4604 962*3^1540432+1 734976 L5410 2021 4605 1065*2^2441132+1 734857 L1823 2017 4606 210060*91^374955-1 734558 A10 2024 4607 369*2^2436949-1 733598 L2257 2023 4608 393*2^2436849+1 733568 L3035 2016 4609 1425*2^2435607-1 733194 L1134 2020 4610 183*2^2433172-1 732461 L1817 2024 4611 386892^131072+1 732377 p259 2009 Generalized Fermat 4612 465*2^2431455+1 731944 L3035 2016 4613 905*2^2430509+1 731660 L4408 2016 4614 223*2^2430490+1 731653 L4016 2014 4615 8*410^279991+1 731557 L4700 2019 4616d 962*333^289821+1 731061 A52 2025 4617 69*2^2428251-1 730979 L384 2014 4618 6070*466^273937+1 730974 L5410 2021 4619 541*2^2427667-1 730804 L5516 2023 4620 233*2^2426512-1 730456 L2484 2020 4621 645*2^2426494+1 730451 L3035 2016 4622 665*2^2425789+1 730239 L3173 2016 4623 539*2^2425704-1 730213 L5516 2023 4624 23*2^2425641+1 730193 L2675 2011 4625 527*2^2424868-1 729961 L5516 2023 4626 361*2^2424232+1 729770 L3035 2016 Generalized Fermat 4627 433*2^2423839-1 729651 L5516 2023 4628 753*2^2422914+1 729373 L3035 2016 4629 5619*52^424922+1 729172 L5410 2019 4630 105*2^2422105+1 729129 L2520 2014 4631 62*962^244403+1 729099 L5409 2021 4632 3338*396^280633+1 729003 L5410 2021 4633 539*2^2421556-1 728964 L5516 2023 4634 201*2^2421514-1 728951 L1862 2016 4635 1084*7^862557+1 728949 L5211 2021 4636 239*2^2421404-1 728918 L2484 2018 4637 577*2^2420868+1 728757 L4489 2016 4638f 3156*82^380339-1 727902 A11 2024 4639 929*2^2417767+1 727824 L3924 2016 4640 4075*2^2417579-1 727768 L1959 2017 4641 303*2^2417452-1 727729 L2235 2018 4642 895*2^2417396+1 727712 L3035 2016 4643 113*1010^242194-1 727631 L5789 2023 4644 1764*327^289322+1 727518 L5410 2020 Generalized Fermat 4645 3317*2^2415998-1 727292 L5399 2021 4646a 43406*52^423786-1 727223 A11 2025 4647 115*2^2415271-1 727072 A27 2024 4648 5724*313^291243-1 726814 L4444 2020 4649 1081*2^2412780+1 726323 L1203 2016 4650 333*2^2412735-1 726309 L2017 2018 4651 6891*52^423132+1 726100 L5410 2019 4652 83*2^2411962-1 726075 L1959 2018 4653 69*2^2410035-1 725495 L2074 2013 4654 12362*1027^240890-1 725462 L4444 2018 4655 143157*2^2409056+1 725204 L4504 2016 4656 340594^131072-340594^65536+1 725122 p379 2015 Generalized unique 4657 339*2^2408337+1 724985 L3029 2016 4658 811*2^2408096+1 724913 L2526 2016 4659 157*2^2407958+1 724870 L1741 2014 4660 243686*5^1036954-1 724806 L3549 2013 4661 91*2^2407249-1 724657 A27 2024 4662 3660*163^327506+1 724509 L4955 2019 4663 303*2^2406433+1 724411 L4425 2016 4664 345*2^2405701+1 724191 L3035 2016 4665 921*2^2405056+1 723997 L2805 2016 4666 970*323^288448+1 723778 A11 2024 4667 673*2^2403606+1 723561 L3035 2016 4668 475*2^2403220+1 723444 L4445 2016 4669 837*2^2402798+1 723318 L3372 2016 4670 329886^131072-329886^65536+1 723303 p379 2015 Generalized unique 4671 231*2^2402748+1 723302 L3995 2014 4672 375*2^2401881+1 723041 L2805 2016 4673 511*2^2401795-1 723016 L5516 2023 4674 107*2^2401731+1 722996 L3998 2014 4675 419*2^2401672-1 722978 L5516 2023 4676 143*2^2400710-1 722688 L5819 2024 4677 1023*2^2398601+1 722054 L4414 2016 4678 539*2^2398227+1 721941 L4061 2016 4679 659*2^2397567+1 721743 L4441 2016 4680 40*844^246524+1 721416 L4001 2017 4681 453*2^2395836-1 721222 L5516 2023 4682 465*2^2395133+1 721010 L4088 2016 4683 56*318^288096+1 720941 L1471 2019 4684 667*2^2394430+1 720799 L4408 2016 4685 15*2^2393365+1 720476 L1349 2010 4686 1642*273^295670+1 720304 L5410 2019 4687 8*908^243439+1 720115 L5410 2021 4688 427*2^2391685-1 719972 L5516 2023 4689 633*2^2391222+1 719833 L3743 2016 4690 9*10^719055+1 719056 L4789 2024 4691 273*2^2388104+1 718894 L3668 2014 4692 118*558^261698+1 718791 L4877 2019 4693 77*2^2387116-1 718596 L1817 2024 4694 1485*2^2386037-1 718272 L1134 2017 4695 399*2^2384115+1 717693 L4412 2016 4696 99*2^2383846+1 717612 L1780 2013 4697 737*2^2382804-1 717299 L191 2007 4698 111*2^2382772+1 717288 L3810 2014 4699 423*2^2382134-1 717097 L2519 2023 4700 61*2^2381887-1 717022 L2432 2012 4701 202*249^299162+1 716855 L5410 2019 4702b 170*938^240974-1 716226 A11 2025 4703 321*2^2378535-1 716013 L2017 2018 4704 435*2^2378522+1 716010 L1218 2016 4705 829*672^253221+1 715953 p433 2023 4706 4*3^1499606+1 715495 L4962 2020 Generalized Fermat 4707 147*2^2375995+1 715248 L1130 2014 4708 915*2^2375923+1 715228 L1741 2016 4709 1981*2^2375591-1 715128 L1134 2017 4710 81*2^2375447-1 715083 L3887 2021 4711 1129*2^2374562+1 714818 L3035 2016 4712 97*2^2374485-1 714794 L2484 2018 4713 1117*2^2373977-1 714642 L1828 2012 4714 161*2^2373286-1 714433 L1817 2024 4715 949*2^2372902+1 714318 L4408 2016 4716 1005*2^2372754-1 714274 L4518 2021 4717 659*2^2372657+1 714244 L3035 2016 4718 1365*2^2372586+1 714223 L1134 2016 4719 509*2^2370721+1 713661 L1792 2016 4720 99*2^2370390+1 713561 L1204 2013 4721 959*2^2370077+1 713468 L1502 2016 4722f 21683*82^372763-1 713404 A11 2024 4723 1135*2^2369808+1 713387 L2520 2016 4724 125*2^2369461+1 713281 L3035 2014 4725 475*2^2369411-1 713267 L5516 2023 4726 1183953*2^2367907-1 712818 L447 2007 Woodall 4727 57671892869766803925...(712708 other digits)...06520121133805600769 712748 p360 2013 4728 119878*5^1019645-1 712707 L3528 2013 4729 453*2^2367388+1 712658 L3035 2016 4730 150209!+1 712355 p3 2011 Factorial 4731 77*2^2363352-1 711442 L1817 2024 4732 281*2^2363327+1 711435 L1741 2014 4733 225408*5^1017214-1 711008 A11 2024 4734 2683*2^2360743-1 710658 L1959 2012 4735 16132*67^389127+1 710580 A11 2024 4736d 411522!3-1 710578 x46 2025 Multifactorial 4737 409*2^2360166+1 710484 L1199 2016 4738 465*2^2360088-1 710460 L5516 2023 4739 561*2^2359543-1 710296 L5516 2023 4740 305*2^2358854-1 710089 L2017 2018 4741 1706*123^339764+1 710078 L5410 2021 4742 169324*5^1015854+1 710057 A36 2024 4743 403*2^2357572+1 709703 L3029 2016 4744 155*2^2357111+1 709564 L3975 2014 4745 523*2^2356047-1 709244 L2519 2023 4746 365*2^2355607+1 709111 L2117 2016 4747 33706*6^910462+1 708482 L587 2014 4748 423*2^2353447-1 708461 L5516 2023 4749 1087*2^2352830+1 708276 L1492 2016 4750 152*1002^235971+1 708120 L5410 2019 4751 179*2^2352291+1 708113 L1741 2014 4752 85*2^2352083-1 708050 L1817 2024 4753 559*2^2351894+1 707994 L3924 2016 4754 24573*2^2350824+1 707673 p168 2018 4755 1035*2^2350388+1 707541 L2526 2016 4756 51306*5^1011671-1 707133 A34 2024 4757 513*2^2348508-1 706975 L5516 2023 4758 433*2^2348252+1 706897 L2322 2016 4759 329*2^2348105+1 706853 L3029 2016 4760 45*2^2347187+1 706576 L1349 2012 4761 7675*46^424840+1 706410 L5410 2019 4762 127*2^2346377-1 706332 L282 2009 4763 933*2^2345893+1 706188 L3035 2016 4764 903*2^2345013+1 705923 L2006 2016 4765 33*2^2345001+1 705918 L2322 2013 4766b 704*733^246349-1 705819 A56 2025 4767 242079^131072-242079^65536+1 705687 p379 2015 Generalized unique 4768 495*2^2343641-1 705509 L5516 2023 4769 627*2^2343140+1 705359 L3125 2016 4770 83*2^2342345+1 705119 L2626 2013 4771 914*871^239796-1 705008 L5410 2023 4772 61*380^273136+1 704634 L5410 2019 4773 277*2^2340182+1 704468 L1158 2014 4774 159*2^2339566+1 704282 L3035 2014 4775 335*2^2338972-1 704104 L2235 2017 4776 535*2^2338971-1 704104 L2519 2023 4777 22*422^268038+1 703685 L4955 2019 4778 9602*241^295318-1 703457 L5410 2019 4779 1149*2^2336638+1 703402 L4388 2016 4780 339*2^2336421-1 703336 L2519 2017 4781 231*2^2335281-1 702992 L1862 2019 4782 275293*2^2335007-1 702913 L193 2006 4783 105*2^2334755-1 702834 L1959 2018 4784 228188^131072+1 702323 g124 2010 Generalized Fermat 4785 809*2^2333017+1 702312 L2675 2016 4786 795*2^2332488+1 702152 L3029 2016 4787 3^1471170-3^529291+1 701927 p269 2019 4788 351*2^2331311-1 701798 L2257 2023 4789 229*2^2331017-1 701709 L1862 2021 4790 118*761^243458+1 701499 L5410 2019 4791 435*2^2329948+1 701387 L2322 2016 4792 205906*5^1003382+1 701340 A39 2024 4793 585*2^2329350+1 701207 L2707 2016 4794 213*2^2328530-1 700960 L1863 2017 4795 1482*327^278686+1 700773 L5410 2020 4796 26472*91^357645+1 700646 L5410 2020 4797 1107*2^2327472+1 700642 L3601 2016 4798 435*2^2327152+1 700546 L2337 2016 4799 413*2^2327048-1 700514 L5516 2023 4800 4161*2^2326875-1 700463 L1959 2016 4801 427*2^2326288+1 700286 L2719 2016 4802 438*19^547574-1 700215 L5410 2020 4803a 12778*58^397058+1 700188 A62 2025 4804 147855!-1 700177 p362 2013 Factorial 4805 5872*3^1467401+1 700132 L4444 2021 4806 421*2^2324375-1 699710 L5516 2023 4807 451*2^2323952+1 699582 L3173 2016 4808 431*2^2323633+1 699486 L3260 2016 4809 3084*871^237917-1 699484 L5790 2023 4810 228*912^236298-1 699444 L5366 2022 4811 1085*2^2323291+1 699384 L1209 2016 4812b 3338*187^307843-1 699375 A57 2025 4813 15*2^2323205-1 699356 L2484 2011 4814 7566*46^420563+1 699299 L5410 2019 4815 1131*2^2322167+1 699045 L1823 2016 4816 385*2^2321502+1 698845 L1129 2016 4817 8348*3^1464571+1 698782 L5367 2021 4818 645*2^2320231+1 698462 L3377 2016 4819 51306*5^999035-1 698301 A28 2024 4820 1942*877^237267+1 698280 L5410 2022 4821 165*2^2319575+1 698264 L2627 2014 4822 809*2^2319373+1 698204 L3924 2016 4823 10*11^670128+1 697868 A2 2024 4824 125098*6^896696+1 697771 L587 2014 4825 65536*5^997872+1 697488 L3802 2014 Generalized Fermat 4826 381*2^2314743+1 696810 L4358 2016 4827 120*825^238890+1 696714 L4837 2018 4828 3375*2^2314297+1 696677 L1745 2019 4829a 759*2^2314104-1 696618 A58 2025 4830 4063*2^2313843-1 696540 L1959 2016 4831 345*2^2313720-1 696502 L2017 2017 4832 74*830^238594-1 696477 L5410 2020 4833 495*2^2313462-1 696425 L5545 2023 4834 926*639^248221-1 696388 L4444 2022 4835 361*2^2312832+1 696235 L3415 2016 Generalized Fermat 4836 1983*366^271591-1 696222 L2054 2012 4837 3*2^2312734-1 696203 L158 2005 4838 46188*5^995988-1 696171 A11 2024 4839 2643996*7^823543-1 695981 p396 2021 4840 53653*2^2311848+1 695941 L2012 2017 4841 873*2^2311086+1 695710 L2526 2016 4842 1033*2^2310976+1 695677 L4352 2016 4843 4063*2^2310187-1 695440 L1959 2016 4844 4063*2^2309263-1 695162 L1959 2016 4845 565*2^2308984+1 695077 L2322 2016 4846 447*2^2308104-1 694812 L5516 2023 4847a 691*2^2307933-1 694760 L2257 2025 4848 450457*2^2307905-1 694755 L172 2006 4849 1018*3^1455600+1 694501 L5410 2021 4850 553*2^2306343-1 694282 L5516 2023 4851 1185*2^2306324+1 694276 L4347 2016 4852e 702*718^243032-1 694133 A11 2024 4853 3267*2^2305266+1 693958 L1204 2019 4854 107*770^240408-1 693938 L4955 2020 4855 467*2^2304298-1 693666 L5516 2023 4856 537*2^2304115+1 693611 L3267 2016 4857 842*1017^230634-1 693594 L4001 2017 4858 729*2^2303162+1 693324 L1204 2016 Generalized Fermat 4859 641*2^2302879+1 693239 L2051 2016 4860a 939*2^2301535-1 692835 A27 2025 4861 729*2^2300290+1 692460 L1204 2016 Generalized Fermat 4862 189*2^2299959+1 692359 L2627 2014 4863 2582*111^338032-1 691389 L4786 2021 4864 659*2^2294393+1 690684 L3378 2016 4865 1087*2^2293345-1 690369 L1828 2011 4866 97768*5^987383-1 690157 L1016 2013 4867 4761657101009*2^2292504-1 690126 L257 2019 4868 12061*60^388015-1 689954 A11 2024 4869 3*2^2291610+1 689844 L753 2008 Divides GF(2291607,3), GF(2291609,5) 4870 319*2^2290722+1 689579 L1792 2015 4871 3066*697^242498-1 689482 L5410 2023 4872 779*2^2290273+1 689444 L3034 2016 4873 22356*24^499418+1 689307 A11 2024 4874a 983*2^2289772-1 689294 L3994 2025 4875 1001*2^2289438-1 689193 L4518 2020 4876 971*2^2289135+1 689102 L4198 2016 4877 399*2^2288691+1 688968 L1990 2015 4878 1425*2^2288483-1 688906 L1134 2021 4879 180139^131072-180139^65536+1 688864 p379 2015 Generalized unique 4880 74270*151^315734-1 687982 L4001 2018 4881 23902*52^400831+1 687832 L5410 2019 4882 391581*2^2284871-1 687821 A2 2024 4883 417*2^2284402+1 687677 L2322 2015 4884b 699*2^2284224-1 687623 L1817 2025 4885b 765*2^2283475-1 687398 L1817 2025 4886 130*686^242244+1 687085 L4064 2018 4887 427*2^2282080+1 686978 L3260 2015 4888 109*2^2280194+1 686409 L2520 2014 4889 105*2^2280078-1 686374 L2444 2014 4890 1019*2^2278467+1 685890 L4323 2016 4891 213*2^2277870-1 685710 L1863 2017 4892b 979*2^2277627-1 685638 A27 2025 4893 904*957^229937-1 685425 L5410 2022 4894 547*2^2276648+1 685343 L3260 2015 4895 26*3^1435875+1 685088 L4799 2020 4896 7913*2^2275664-1 685048 L4036 2015 4897 5*6^880336+1 685036 p420 2023 4898b 717*2^2275606-1 685029 A58 2025 4899 651*2^2275040+1 684859 L4082 2016 4900 155877*2^2273465-1 684387 L541 2014 4901 16*710^240014+1 684344 L5410 2019 Generalized Fermat 4902 739*2^2272938+1 684226 L1209 2016 4903 279*798^235749-1 684147 L541 2021 4904b 717*2^2272597-1 684123 L5819 2025 4905 4821*396^263301+1 683980 L5410 2021 4906 (362^133647+1)^2-2 683928 p403 2019 4907 943*2^2269594+1 683219 L1823 2016 4908 493*2^2269427-1 683169 L5516 2023 4909a 8661*2^2269244+1 683115 L6233 2025 4910a 5285*2^2269037+1 683052 L6247 2025 4911a 9185*2^2268975+1 683034 L5434 2025 4912a 9033*2^2268801+1 682982 L6246 2025 4913a 8093*2^2268761+1 682970 L5887 2025 4914 182*792^235539+1 682766 L4837 2019 4915 1286*603^245567+1 682758 L4444 2019 4916a 3531*2^2267889+1 682707 L6012 2025 4917b 1896*795^235375-1 682678 A11 2025 4918 50*893^231310-1 682564 L4975 2019 4919a 6659*2^2267067+1 682459 L5888 2025 4920a 4767*2^2266968+1 682430 L6110 2025 4921a 6903*2^2266902+1 682410 L5434 2025 4922a 4611*2^2266863+1 682398 L5829 2025 4923a 5019*2^2266755+1 682365 L5958 2025 4924 329*2^2266631+1 682327 L4109 2015 4925 739*2^2266602+1 682319 L2520 2016 4926a 6885*2^2266339+1 682240 L6244 2025 4927a 3791*2^2266333+1 682238 L6219 2025 4928a 8537*2^2266263+1 682218 L6173 2025 4929a 3087*2^2265911+1 682111 L5766 2025 4930 19683*2^2265896+1 682107 L2914 2019 4931 1151*2^2265761+1 682066 L1823 2016 4932 851*2^2265691+1 682044 L3173 2016 4933a 2219*2^2265665+1 682037 L6184 2025 4934 977*2^2265655+1 682034 L2413 2016 4935a 1617*2^2265264+1 681916 L6184 2025 4936a 1533*2^2265258+1 681914 L6001 2025 4937a 1871*2^2265219+1 681903 L6151 2025 4938a 9405*2^2265071+1 681859 L6151 2025 4939a 1859*2^2265029+1 681845 L6110 2025 4940 2*11171^168429+1 681817 g427 2014 Divides Phi(11171^168429,2) 4941a 3455*2^2264921+1 681813 L6014 2025 4942 185*2^2264906-1 681807 L2484 2022 4943a 1575*2^2264898+1 681806 L5517 2025 4944a 3577*2^2264760+1 681765 L5382 2025 4945a 6225*2^2264695+1 681745 L6127 2025 4946a 1561*2^2264696+1 681745 L6243 2025 4947 31924*3^1428855+1 681742 L5410 2021 4948 217*2^2264546+1 681699 L3179 2014 4949b 961*2^2264499-1 681686 L5819 2025 4950a 3623*2^2264465+1 681676 L5888 2025 4951 178*821^233901-1 681671 L5410 2022 4952 841*2^2264184+1 681591 L1823 2016 Generalized Fermat 4953a 7397*2^2264127+1 681575 L6242 2025 4954a 9865*2^2264090+1 681563 L5517 2025 4955a 3797*2^2264075+1 681559 L6110 2025 4956a 2211*2^2264056+1 681553 L5501 2025 4957a 5727*2^2263980+1 681530 L5501 2025 4958a 6861*2^2263944+1 681519 L6241 2025 4959 93*2^2263894+1 681502 L2826 2013 4960a 8751*2^2263861+1 681495 L6014 2025 4961a 4055*2^2263601+1 681416 L6239 2025 4962a 1391*2^2263549+1 681400 L6110 2025 4963a 7467*2^2263515+1 681390 L6110 2025 4964a 2565*2^2263436+1 681366 L6162 2025 4965a 6371*2^2263357+1 681343 L5888 2025 4966a 5451*2^2263107+1 681267 L6110 2025 4967a 9639*2^2262866+1 681195 L6002 2025 4968 34*912^230098+1 681091 L5410 2022 4969b 6637*2^2262094+1 680962 L6240 2025 4970 377*2^2262094-1 680961 L2257 2023 4971b 957*2^2261990-1 680930 L2257 2025 4972 74*932^229308-1 680913 L4444 2021 4973 217499*28^470508-1 680905 p366 2013 4974a 8137*2^2261708+1 680846 L6002 2025 4975b 3217*2^2261376+1 680746 L5192 2025 4976 963*2^2261357+1 680740 L1300 2016 4977b 6823*2^2261292+1 680721 L6190 2025 4978b 1613*2^2261265+1 680712 L5192 2025 4979 2138*3^1426626+1 680677 L5410 2021 4980b 2595*2^2260296+1 680421 L6013 2025 4981b 7749*2^2260277+1 680416 L5916 2025 4982 43926*5^973444-1 680413 A11 2024 4983 1065*2^2260193+1 680389 L1204 2016 4984b 1373*2^2259953+1 680317 L5233 2025 4985b 6727*2^2259820+1 680278 L6184 2025 4986b 5711*2^2259805+1 680273 L5575 2025 4987b 2277*2^2259740+1 680253 L5192 2025 4988b 5361*2^2259515+1 680186 L6173 2025 4989 837*2^2259470+1 680172 L1823 2016 4990b 9069*2^2259334+1 680132 L5575 2025 4991b 3503*2^2259317+1 680126 L5226 2025 4992 11*2^2230369+1 671410 L2561 2011 Divides GF(2230368,3) 4993 (10^334568-1)^2-2 669136 p405 2022 Near-repdigit 4994 2*179^294739+1 664004 g424 2011 Divides Phi(179^294739,2) 4995c 2717*2^2196891+1 661334 L5239 2025 Divides GF(2196890,12) 4996 2*10271^164621+1 660397 g427 2014 Divides Phi(10271^164621,2) 4997 2*659^233973+1 659544 g424 2015 Divides Phi(659^233973,2) 4998 2*191^287901+1 656713 g424 2015 Divides Phi(191^287901,2) 4999 7*2^2167800+1 652574 g279 2007 Divides Fermat F(2167797), GF(2167799,5), GF(2167799,10) 5000 1179*2^2158475+1 649769 L3035 2014 Divides GF(2158470,6) 5001 3*2^2145353+1 645817 g245 2003 Divides Fermat F(2145351), GF(2145351,3), GF(2145352,5), GF(2145348,6), GF(2145352,10), GF(2145351,12) 5002 753*2^2143388+1 645227 L2583 2014 Divides GF(2143383,3) 5003 25*2^2141884+1 644773 L1741 2011 Divides Fermat F(2141872), GF(2141871,5), GF(2141872,10); generalized Fermat 5004 7*2^2139912+1 644179 g279 2007 Divides GF(2139911,12) 5005 189*2^2115473+1 636824 L3784 2014 Divides GF(2115468,6) 5006 107*2^2081775+1 626679 L3432 2013 Divides GF(2081774,6) 5007d 2167*2^2050616+1 617301 L6095 2025 Divides GF(2050615,5) 5008 45*2^2014557+1 606444 L1349 2012 Divides GF(2014552,10) 5009 251749*2^2013995-1 606279 L436 2007 Woodall 5010 657*2^1998854+1 601718 L2520 2013 Divides GF(1998852,10) 5011 101*2^1988279+1 598534 L3141 2013 Divides GF(1988278,12) 5012 175*2^1962288+1 590710 L2137 2013 Divides GF(1962284,10) 5013 225*2^1960083+1 590047 L3548 2013 Divides GF(1960078,6) 5014 2*47^346759+1 579816 g424 2011 Divides Phi(47^346759,2) 5015 4401*2^1925824+1 579735 L5309 2024 Divides GF(1925823,5) 5016 71*2^1873569+1 564003 L1223 2011 Divides GF(1873568,5) 5017 13*2^1861732+1 560439 g267 2005 Divides GF(1861731,6) 5018 3*2^1832496+1 551637 p189 2007 Divides GF(1832490,3), GF(1832494,5) 5019 39*2^1824871+1 549343 L2664 2011 Divides GF(1824867,6) 5020 45*2^1779971+1 535827 L1223 2011 Divides GF(1779969,5) 5021 5*2^1777515+1 535087 p148 2005 Divides GF(1777511,5), GF(1777514,6) 5022 129*2^1774709+1 534243 L2526 2013 Divides GF(1774705,12) 5023 2*191^232149+1 529540 g424 2011 Divides Phi(191^232149,2) 5024 183*2^1747660+1 526101 L2163 2013 Divides Fermat F(1747656) 5025 110059!+1 507082 p312 2011 Factorial 5026 2^1667321-2^833661+1 501914 L137 2011 Gaussian Mersenne norm 38, generalized unique 5027 2*359^192871+1 492804 g424 2014 Divides Phi(359^192871,2) 5028e 10^490030+10^309648+12345678987654321*10^245007+10^180382+1 490031 p363 2024 Palindrome 5029 10^490000+3*(10^7383-1)/9*10^241309+1 490001 p413 2021 Palindrome 5030 1098133#-1 476311 p346 2012 Primorial 5031 10^474500+999*10^237249+1 474501 p363 2014 Palindrome 5032 103040!-1 471794 p301 2010 Factorial 5033 135*2^1515894+1 456332 L1129 2013 Divides GF(1515890,10) 5034 2*839^155785+1 455479 g424 2014 Divides Phi(839^155785,2) 5035 131*2^1494099+1 449771 L2959 2012 Divides Fermat F(1494096) 5036 1467763*2^1467763-1 441847 L381 2007 Woodall 5037 4125*2^1445205-1 435054 L1959 2014 Arithmetic progression (2,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5038 94550!-1 429390 p290 2010 Factorial 5039 2415*2^1413627-1 425548 L1959 2014 Arithmetic progression (2,d=2415*2^1413627-1489088842587*2^1290000) [p199] 5040 2985*2^1404274-1 422733 L1959 2014 Arithmetic progression (2,d=2985*2^1404274-770527213395*2^1290000) [p199] 5041 2^1398269-1 420921 G1 1996 Mersenne 35 5042 17*2^1388355+1 417938 g267 2005 Divides GF(1388354,10) 5043 338707*2^1354830+1 407850 L124 2005 Cullen 5044 107*2^1337019+1 402485 L2659 2012 Divides GF(1337018,10) 5045 1389*2^1335434+1 402009 L1209 2015 Divides GF(1335433,10) 5046 10^400000+4*(10^102381-1)/9*10^148810+1 400001 p413 2021 Palindrome 5047 10^390636+999*10^195317+1 390637 p363 2014 Palindrome 5048 6325241166627*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=1455*2^2683953-6325241166627*2^1290000) 5049 5606879602425*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=33*2^2939063-5606879602425*2^1290000) 5050 2618163402417*2^1290001-1 388342 L927 2016 Sophie Germain (2p+1) 5051 4966510140375*2^1290000-1 388342 L3573 2020 Arithmetic progression (2,d=2227792035315*2^1290001) 5052 2996863034895*2^1290000+1 388342 L2035 2016 Twin (p+2) 5053 2996863034895*2^1290000-1 388342 L2035 2016 Twin (p) 5054 2723880039837*2^1290000-1 388342 L3829 2016 Arithmetic progression (1,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5055 2618163402417*2^1290000-1 388342 L927 2016 Sophie Germain (p) 5056 2060323099527*2^1290000-1 388342 L3606 2015 Arithmetic progression (2,d=69718264533*2^1290002) [p199] 5057 1938662032575*2^1290000-1 388341 L927 2015 Arithmetic progression (1,d=10032831585*2^1290001) [p199] 5058 1781450041395*2^1290000-1 388341 L3203 2015 Arithmetic progression (1,d=69718264533*2^1290002) [p199] 5059 15*2^1276177+1 384169 g279 2006 Divides GF(1276174,3), GF(1276174,10) 5060 1268979*2^1268979-1 382007 L201 2007 Woodall 5061 2^1257787-1 378632 SG 1996 Mersenne 34 5062 329*2^1246017+1 375092 L2085 2012 Divides Fermat F(1246013) 5063 843301#-1 365851 p302 2010 Primorial 5064 10^362600+666*10^181299+1 362601 p363 2014 Palindrome 5065 2^1203793-2^601897+1 362378 L192 2006 Gaussian Mersenne norm 37, generalized unique 5066 1195203*2^1195203-1 359799 L124 2005 Woodall 5067 2145*2^1099064+1 330855 L1792 2013 Divides Fermat F(1099061) 5068 10^320236+10^160118+1+(137*10^160119+731*10^159275)*(10^843-1)/999 320237 p44 2014 Palindrome 5069 10^320096+10^160048+1+(137*10^160049+731*10^157453)*(10^2595-1)/999 320097 p44 2014 Palindrome 5070 10^314727-8*10^157363-1 314727 p235 2013 Near-repdigit, palindrome 5071e 10^300010+10^204235+12345678987654321*10^149997+10^95775+1 300011 x45 2024 Palindrome 5072 10^300000+5*(10^48153-1)/9*10^125924+1 300001 p413 2021 Palindrome 5073 10^300000+10^158172+11011*10^149998+10^141828+1 300001 p409 2024 Palindrome 5074 2^991961-2^495981+1 298611 x28 2005 Gaussian Mersenne norm 36, generalized unique 5075 11*2^960901+1 289262 g277 2005 Divides Fermat F(960897) 5076 1705*2^906110+1 272770 L3174 2012 Divides Fermat F(906108) 5077 2^859433-1 258716 SG 1994 Mersenne 33 5078 13243*2^699764+1 210655 L5808 2023 Divides Fermat F(699760) 5079 667071*2^667071-1 200815 g55 2000 Woodall 5080 18543637900515*2^666668-1 200701 L2429 2012 Sophie Germain (2p+1) 5081 18543637900515*2^666667-1 200701 L2429 2012 Sophie Germain (p) 5082 3756801695685*2^666669+1 200700 L1921 2011 Twin (p+2) 5083 3756801695685*2^666669-1 200700 L1921 2011 Twin (p) 5084 392113#+1 169966 p16 2001 Primorial 5085 213778324725*2^561418+1 169015 p430 2023 Cunningham chain 2nd kind (2p-1) 5086 213778324725*2^561417+1 169015 p430 2023 Cunningham chain 2nd kind (p) 5087 366439#+1 158936 p16 2001 Primorial 5088 2*893962950^16384+1 146659 p428 2023 Cunningham chain 2nd kind (2p-1) 5089 893962950^16384+1 146659 p427 2023 Cunningham chain 2nd kind (p), generalized Fermat 5090 481899*2^481899+1 145072 gm 1998 Cullen 5091 669821552^16384-669821552^8192+1 144605 A18 2024 Twin (p+2), generalized unique 5092 669821552^16384-669821552^8192-1 144605 A18 2024 Twin (p) 5093 34790!-1 142891 p85 2002 Factorial 5094 (124750^27751-1)/124749 141416 p441 2024 Generalized repunit 5095 222710306^16384-222710306^8192+1 136770 A13 2024 Twin (p+2), generalized unique 5096 222710306^16384-222710306^8192-1 136770 A13 2024 Twin (p) 5097 (92365^24691-1)/92364 122599 CH14 2024 Generalized repunit 5098a 9955858992*11^111111+1 115721 A25 2025 Twin (p+2) 5099a 9955858992*11^111111-1 115721 A25 2025 Twin (p) 5100 (102936^21961-1)/102935 110076 CH14 2023 Generalized repunit 5101 2^364289-2^182145+1 109662 p58 2001 Gaussian Mersenne norm 35, generalized unique 5102 361275*2^361275+1 108761 DS 1998 Cullen 5103 26951!+1 107707 p65 2002 Factorial 5104 47356235323005*2^333444-1 100391 L6077 2024 Sophie Germain (2p+1) 5105 47356235323005*2^333443-1 100391 L6077 2024 Sophie Germain (p) 5106 21480284945595*2^333444-1 100390 L6029 2024 Sophie Germain (2p+1) 5107 21480284945595*2^333443-1 100390 L6029 2024 Sophie Germain (p) 5108 65516468355*2^333333+1 100355 L923 2009 Twin (p+2) 5109 65516468355*2^333333-1 100355 L923 2009 Twin (p) 5110a 954589277*(2^332267-2^110758)+2^221511+1 100032 p408 2025 Consecutive primes arithmetic progression (2,d=4) 5111a 954589277*(2^332267-2^110758)+2^221511-3 100032 p408 2025 Consecutive primes arithmetic progression (1,d=4) 5112c 8797170843*(2^317583+2^190552)+2^127033+3 95612 p408 2025 Consecutive primes arithmetic progression (2,d=4) 5113c 8797170843*(2^317583+2^190552)+2^127033-1 95612 p408 2025 Consecutive primes arithmetic progression (1,d=4) 5114 (7176^24691-1)/7175 95202 CH2 2017 Generalized repunit 5115 R(86453) 86453 E3 2023 Repunit, ECPP, unique 5116e (84741735735*(2^190738-1)+4)*2^95369+5 86138 p408 2024 Consecutive primes arithmetic progression (2,d=6) 5117e (84741735735*(2^190738-1)+4)*2^95369-1 86138 p408 2024 Consecutive primes arithmetic progression (1,d=6) 5118e (74018908351*(2^190738-1)+4)*2^95369+3 86138 p408 2024 Consecutive primes arithmetic progression (2,d=4) 5119e (74018908351*(2^190738-1)+4)*2^95369-1 86138 p408 2024 Consecutive primes arithmetic progression (1,d=4) 5120e (29571282950*(2^190738-1)+4)*2^95369+3 86138 p408 2024 Consecutive primes arithmetic progression (2,d=4) 5121e (29571282950*(2^190738-1)+4)*2^95369-1 86138 p408 2024 Consecutive primes arithmetic progression (1,d=4) 5122 21480!-1 83727 p65 2001 Factorial 5123 (74968^17107-1)/74967 83390 p441 2024 Generalized repunit 5124 201926367*2^266668+1 80284 A25 2024 Twin (p+2) 5125 201926367*2^266668-1 80284 A25 2024 Twin (p) 5126 107928275961*2^265876+1 80048 p364 2023 Cunningham chain 2nd kind (2p-1) 5127 107928275961*2^265875+1 80048 p364 2023 Cunningham chain 2nd kind (p) 5128 22942396995*2^265777-1 80018 L3494 2023 Sophie Germain (2p+1) 5129 22942396995*2^265776-1 80017 L3494 2023 Sophie Germain (p) 5130 183027*2^265441-1 79911 L983 2010 Sophie Germain (2p+1) 5131 183027*2^265440-1 79911 L983 2010 Sophie Germain (p) 5132 262419*2^262419+1 79002 DS 1998 Cullen 5133 160204065*2^262148+1 78923 L5115 2021 Twin (p+2) 5134 160204065*2^262148-1 78923 L5115 2021 Twin (p) 5135 3622179275715*2^256003+1 77078 x47 2020 Cunningham chain 2nd kind (2p-1) 5136 3622179275715*2^256002+1 77077 x47 2020 Cunningham chain 2nd kind (p) 5137 648621027630345*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5138 620366307356565*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5139 648621027630345*2^253824-1 76424 x24 2009 Sophie Germain (p) 5140 620366307356565*2^253824-1 76424 x24 2009 Sophie Germain (p) 5141 2570606397*2^252763+1 76099 p364 2020 Cunningham chain 2nd kind (2p-1) 5142 2570606397*2^252762+1 76099 p364 2020 Cunningham chain 2nd kind (p) 5143 1893611985^8192-1893611985^4096+1 76000 A13 2024 Twin (p+2), generalized unique 5144 1893611985^8192-1893611985^4096-1 76000 A13 2024 Twin (p) 5145 1589173270^8192-1589173270^4096+1 75376 A22 2024 Twin (p+2), generalized unique 5146 1589173270^8192-1589173270^4096-1 75376 A22 2024 Twin (p) 5147 (40734^16111-1)/40733 74267 CH2 2015 Generalized repunit 5148 (64758^15373-1)/64757 73960 p170 2018 Generalized repunit 5149 996094234^8192-996094234^4096+1 73715 A18 2024 Twin (p+2), generalized unique 5150 996094234^8192-996094234^4096-1 73715 A18 2024 Twin (p) 5151 895721531^8192-895721531^4096+1 73337 A7 2024 Twin (p+2), generalized unique 5152 895721531^8192-895721531^4096-1 73337 A7 2024 Twin (p) 5153 5^104824+104824^5 73269 E4 2023 ECPP 5154 795507696^8192-795507696^4096+1 72915 A5 2024 Twin (p+2), generalized unique 5155 795507696^8192-795507696^4096-1 72915 A5 2024 Twin (p) 5156 primV(111534,1,27000) 72683 x25 2013 Generalized Lucas primitive part 5157 691595760^8192-691595760^4096+1 72417 A13 2024 Twin (p+2), generalized unique 5158 691595760^8192-691595760^4096-1 72417 A13 2024 Twin (p) 5159 647020826^8192-647020826^4096+1 72180 A5 2024 Twin (p+2), generalized unique 5160 647020826^8192-647020826^4096-1 72180 A5 2024 Twin (p) 5161 629813654^8192-629813654^4096+1 72084 A5 2024 Twin (p+2), generalized unique 5162 629813654^8192-629813654^4096-1 72084 A5 2024 Twin (p) 5163 (58729^15091-1)/58728 71962 CH2 2017 Generalized repunit 5164 504983334^8192-504983334^4096+1 71298 A7 2024 Twin (p+2), generalized unique 5165 504983334^8192-504983334^4096-1 71298 A7 2024 Twin (p) 5166 314305725^8192-314305725^4096+1 69611 A7 2023 Twin (p+2), generalized unique 5167 314305725^8192-314305725^4096-1 69611 A7 2023 Twin (p) 5168 (27987^15313-1)/27986 68092 CH12 2020 Generalized repunit 5169 184534086^8192-184534086^4096+1 67716 A5 2023 Twin (p+2), generalized unique 5170 184534086^8192-184534086^4096-1 67716 A5 2023 Twin (p) 5171 (23340^15439-1)/23339 67435 p170 2020 Generalized repunit 5172 10957126745325*2^222334-1 66943 L5843 2023 Sophie Germain (2p+1) 5173 20690306380455*2^222333-1 66943 L5843 2023 Sophie Germain (2p+1) 5174 10030004436315*2^222334-1 66943 L5843 2023 Sophie Germain (2p+1) 5175 8964472847055*2^222334-1 66943 L5843 2023 Sophie Germain (2p+1) 5176 14279340881715*2^222333+1 66943 L5843 2023 Twin (p+2) 5177 14279340881715*2^222333-1 66943 L5843 2023 Twin (p) 5178 10957126745325*2^222333-1 66942 L5843 2023 Sophie Germain (p) 5179 20690306380455*2^222332-1 66942 L5843 2023 Sophie Germain (p) 5180 10030004436315*2^222333-1 66942 L5843 2023 Sophie Germain (p) 5181 8964472847055*2^222333-1 66942 L5843 2023 Sophie Germain (p) 5182 (2^221509-1)/292391881 66673 E12 2023 Mersenne cofactor, ECPP 5183 (24741^15073-1)/24740 66218 p170 2020 Generalized repunit 5184 (63847^13339-1)/63846 64091 p170 2013 Generalized repunit 5185 1068669447*2^211089-1 63554 L4166 2020 Sophie Germain (2p+1) 5186 1068669447*2^211088-1 63553 L4166 2020 Sophie Germain (p) 5187 145823#+1 63142 p21 2000 Primorial 5188 U(15694,1,14700)+U(15694,1,14699) 61674 x45 2019 Lehmer number 5189 (28507^13831-1)/28506 61612 CH12 2020 Generalized repunit 5190 2^203789+2^101895+1 61347 O 2000 Gaussian Mersenne norm 34, generalized unique 5191 (26371^13681-1)/26370 60482 p170 2012 Generalized repunit 5192 U(24,-25,43201) 60391 CH12 2020 Generalized Lucas number 5193 99064503957*2^200009-1 60220 L95 2016 Sophie Germain (2p+1) 5194 99064503957*2^200008-1 60220 L95 2016 Sophie Germain (p) 5195 (4529^16381-1)/4528 59886 CH2 2012 Generalized repunit 5196 3^125330+1968634623437000 59798 E4 2022 ECPP 5197 (9082^15091-1)/9081 59729 CH2 2014 Generalized repunit 5198 primV(27655,1,19926) 57566 x25 2013 Generalized Lucas primitive part 5199 Ramanujan tau function at 199^4518 57125 E3 2022 ECPP 5200 (43326^12041-1)/43325 55827 p170 2017 Generalized repunit 5201 12443794755*2^184517-1 55556 L3494 2021 Sophie Germain (2p+1) 5202 21749869755*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 5203 14901867165*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 5204 12443794755*2^184516-1 55555 L3494 2021 Sophie Germain (p) 5205 21749869755*2^184515-1 55555 L3494 2021 Sophie Germain (p) 5206 14901867165*2^184515-1 55555 L3494 2021 Sophie Germain (p) 5207 607095*2^176312-1 53081 L983 2009 Sophie Germain (2p+1) 5208 607095*2^176311-1 53081 L983 2009 Sophie Germain (p) 5209 (38284^11491-1)/38283 52659 CH2 2013 Generalized repunit 5210 (2^174533-1)/193594572654550537/91917886778031629891960890057 52494 E5 2022 Mersenne cofactor, ECPP 5211d (940^17581-1)/939 52268 E2 2025 ECPP generalized repunit 5212 48047305725*2^172404-1 51910 L99 2007 Sophie Germain (2p+1) 5213 48047305725*2^172403-1 51910 L99 2007 Sophie Germain (p) 5214 137211941292195*2^171961-1 51780 x24 2006 Sophie Germain (2p+1) 5215 137211941292195*2^171960-1 51780 x24 2006 Sophie Germain (p) 5216 (34120^11311-1)/34119 51269 CH2 2011 Generalized repunit 5217 U(809,1,17325)-U(809,1,17324) 50378 x45 2019 Lehmer number 5218 10^50000+65859 50001 E3 2022 ECPP 5219 R(49081) 49081 c70 2022 Repunit, unique, ECPP 5220 2^160423-2^80212+1 48293 O 2000 Gaussian Mersenne norm 33, generalized unique 5221 U(67,-1,26161) 47773 x45 2019 Generalized Lucas number 5222 primV(40395,-1,15588) 47759 x23 2007 Generalized Lucas primitive part 5223 primV(53394,-1,15264) 47200 CH4 2007 Generalized Lucas primitive part 5224 151023*2^151023-1 45468 g25 1998 Woodall 5225a 24157096*104561#+1 45260 p364 2025 Arithmetic progression (4,d=6519272*104561#) 5226a 17637824*104561#+1 45259 p364 2025 Arithmetic progression (3,d=6519272*104561#) 5227a 11118552*104561#+1 45259 p364 2025 Arithmetic progression (2,d=6519272*104561#) 5228a 4599280*104561#+1 45259 p364 2025 Arithmetic progression (1,d=6519272*104561#) 5229e 2^148227+60443 44621 E11 2024 ECPP 5230 U(52245,1,9241)+U(52245,1,9240) 43595 x45 2019 Lehmer number 5231 71509*2^143019-1 43058 g23 1998 Woodall, arithmetic progression (2,d=(143018*2^83969-80047)*2^59049) [x12] 5232 U(2449,-1,12671) 42939 x45 2018 Generalized Lucas number, cyclotomy 5233 V(202667) 42355 E4 2023 Lucas number, ECPP 5234 2^139964+35461 42134 E11 2024 ECPP 5235 U(201107) 42029 E11 2023 Fibonacci number, ECPP 5236 (2^138937+1)/3 41824 E12 2023 Wagstaff, ECPP, generalized Lucas number 5237 E(11848)/7910215 40792 E8 2022 Euler irregular, ECPP 5238 V(193201) 40377 E4 2023 Lucas number, ECPP 5239 10^40000+14253 40001 E3 2022 ECPP 5240 p(1289844341) 40000 c84 2020 Partitions, ECPP 5241 primV(4836,1,16704) 39616 x25 2013 Generalized Lucas primitive part 5242 (2^130439-1)/260879 39261 E9 2023 Mersenne cofactor, ECPP 5243 U(21041,-1,9059) 39159 x45 2018 Generalized Lucas number, cyclotomy 5244 tau(47^4176) 38404 E3 2022 ECPP 5245 V(183089) 38264 E4 2023 Lucas number, ECPP 5246 (2^127031+1)/3 38240 E5 2023 Wagstaff, ECPP, generalized Lucas number 5247 U(5617,-1,9539) 35763 x45 2019 Generalized Lucas number, cyclotomy 5248 (2^117239+1)/3 35292 E2 2022 Wagstaff, ECPP, generalized Lucas number 5249 p(1000007396) 35219 E4 2022 Partitions, ECPP 5250 (V(60145,1,7317)-1)/(V(60145,1,27)-1) 34841 x45 2019 Lehmer primitive part 5251 primV(38513,-1,11502) 34668 x23 2006 Generalized Lucas primitive part 5252 E(10168)/1097239206089665 34323 E10 2023 Euler irregular, ECPP 5253 primV(9008,1,16200) 34168 x23 2005 Generalized Lucas primitive part 5254 (V(28138,1,7587)-1)/(V(28138,1,27)-1) 33637 x45 2019 Lehmer primitive part 5255 V(159521) 33338 E4 2023 Lucas number, ECPP 5256 U(35896,1,7260)+U(35896,1,7259) 33066 x45 2019 Lehmer number 5257 primV(6586,1,16200) 32993 x25 2013 Generalized Lucas primitive part 5258 U(1624,-1,10169) 32646 x45 2018 Generalized Lucas number, cyclotomy 5259 (V(48395,1,6921)-1)/(V(48395,1,9)-1) 32382 x45 2019 Lehmer primitive part 5260a 7300751*74719#-1 32315 p364 2025 Arithmetic progression (4,d=1475275*74719#) 5261a 5825476*74719#-1 32314 p364 2025 Arithmetic progression (3,d=1475275*74719#) 5262a 4350201*74719#-1 32314 p364 2025 Arithmetic progression (2,d=1475275*74719#) 5263a 2874926*74719#-1 32314 p364 2025 Arithmetic progression (1,d=1475275*74719#) 5264 2^106693+2^53347+1 32118 O 2000 Gaussian Mersenne norm 32, generalized unique 5265 primV(28875,1,13500) 32116 x25 2016 Generalized Lucas primitive part 5266 (2^106391-1)/286105171290931103 32010 c95 2022 Mersenne cofactor, ECPP 5267 (2^105269-1)/308568703561/44450301591671/36340288035156065237111970871\ /304727251426107823036749303510161 31603 E17 2024 Mersenne cofactor, ECPP 5268 (V(77786,1,6453)+1)/(V(77786,1,27)+1) 31429 x25 2012 Lehmer primitive part 5269 primV(10987,1,14400) 31034 x25 2005 Generalized Lucas primitive part 5270 V(148091) 30950 c81 2015 Lucas number, ECPP 5271 U(148091) 30949 x49 2021 Fibonacci number, ECPP 5272 -E(9266)/2129452307358569777 30900 E10 2023 Euler irregular, ECPP 5273 Phi(11589,-10000) 30897 E1 2022 Unique,ECPP 5274 (V(73570,1,6309)-1)/(V(73570,1,9)-1) 30661 x25 2016 Lehmer primitive part 5275 V(145703)/179214691 30442 E4 2023 Lucas cofactor, ECPP 5276 V(145193)/38621339 30336 E4 2023 Lucas cofactor, ECPP 5277 1524633857*2^99902-1 30083 p364 2022 Arithmetic progression (4,d=928724769*2^99901) 5278 2120542945*2^99901-1 30083 p364 2022 Arithmetic progression (3,d=928724769*2^99901) 5279 18622159*2^99907-1 30083 p364 2022 Arithmetic progression (2,d=928724769*2^99901) 5280 263093407*2^99901-1 30082 p364 2022 Arithmetic progression (1,d=928724769*2^99901) 5281 Phi(36547,-10) 29832 E1 2022 Unique, ECPP 5282 49363*2^98727-1 29725 Y 1997 Woodall 5283 U(2341,-1,8819) 29712 x25 2008 Generalized Lucas number 5284 primV(24127,-1,6718) 29433 CH3 2005 Generalized Lucas primitive part 5285 primV(12215,-1,13500) 29426 x25 2016 Generalized Lucas primitive part 5286 V(140057) 29271 c76 2014 Lucas number,ECPP 5287 U(1404,-1,9209) 28981 CH10 2018 Generalized Lucas number, cyclotomy 5288 U(23396,1,6615)+U(23396,1,6614) 28898 x45 2019 Lehmer number 5289 (2^95369+1)/3 28709 x49 2021 Generalized Lucas number, Wagstaff, ECPP 5290 primV(45922,1,11520) 28644 x25 2011 Generalized Lucas primitive part 5291 primV(205011) 28552 x39 2009 Lucas primitive part 5292 -30*Bern(10264)/262578313564364605963 28506 c94 2021 Irregular, ECPP 5293 U(16531,1,6721)-U(16531,1,6720) 28347 x36 2007 Lehmer number 5294 (V(28286,1,6309)+1)/(V(28286,1,9)+1) 28045 x25 2016 Lehmer primitive part 5295 U(5092,1,7561)+U(5092,1,7560) 28025 x25 2014 Lehmer number 5296 U(132409)/2882138154561602271737 27651 E16 2024 Fibonacci cofactor, ECPP 5297 90825*2^90825+1 27347 Y 1997 Cullen 5298 U(5239,1,7350)-U(5239,1,7349) 27333 CH10 2017 Lehmer number 5299 U(130021) 27173 x48 2021 Fibonacci number, ECPP 5300 primV(5673,1,13500) 27028 CH3 2005 Generalized Lucas primitive part 5301 primV(44368,1,9504) 26768 CH3 2005 Generalized Lucas primitive part 5302 546351925018076058*Bern(9702)/129255048976106804786904258880518941 26709 c77 2021 Irregular, ECPP 5303 22359307*60919#+1 26383 p364 2022 Arithmetic progression (4,d=5210718*60919#) 5304 17148589*60919#+1 26383 p364 2022 Arithmetic progression (3,d=5210718*60919#) 5305 17029817*60919#+1 26383 p364 2022 Arithmetic progression (4,d=1809778*60919#) 5306 15220039*60919#+1 26383 p364 2022 Arithmetic progression (3,d=1809778*60919#) 5307 13410261*60919#+1 26383 p364 2022 Arithmetic progression (2,d=1809778*60919#) 5308 11937871*60919#+1 26382 p364 2022 Arithmetic progression (2,d=5210718*60919#) 5309 11600483*60919#+1 26382 p364 2022 Arithmetic progression (1,d=1809778*60919#) 5310 6727153*60919#+1 26382 p364 2022 Arithmetic progression (1,d=5210718*60919#) 5311 (2^87691-1)/806957040167570408395443233 26371 E1 2022 Mersenne cofactor, ECPP 5312 primV(10986,-1,9756) 26185 x23 2005 Generalized Lucas primitive part 5313 (2^86371-1)/41681512921035887 25984 E2 2022 Mersenne cofactor, ECPP 5314 (2^86137-1)/2584111/7747937967916174363624460881 25896 c84 2022 Mersenne cofactor, ECPP 5315 primV(11076,-1,12000) 25885 x25 2005 Generalized Lucas primitive part 5316 -E(7894)/19 25790 E10 2023 Euler irregular, ECPP 5317 2^85237+2^42619+1 25659 x16 2000 Gaussian Mersenne norm 31, generalized unique 5318 V(122869)/40546771/1243743094029841 25656 E1 2024 Lucas cofactor, ECPP 5319 primU(183537) 25571 E1 2024 Fibonacci primitive part, ECPP 5320 primV(17505,1,11250) 25459 x25 2011 Generalized Lucas primitive part 5321 U(2325,-1,7561) 25451 x20 2013 Generalized Lucas number 5322 U(13084,-13085,6151) 25319 x45 2018 Generalized Lucas number, cyclotomy 5323 (2^84211-1)/1347377/31358793176711980763958121/33146416760423478241695\ 91561 25291 c95 2020 Mersenne cofactor, ECPP 5324 U(120937)/241873/13689853218820385381 25250 E1 2024 Fibonacci cofactor, ECPP 5325 primV(42,-1,23376) 25249 x23 2007 Generalized Lucas primitive part 5326 U(1064,-1065,8311) 25158 CH10 2018 Generalized Lucas number, cyclotomy 5327 primV(7577,-1,10692) 25140 x33 2007 Generalized Lucas primitive part 5328 (2^83339+1)/3 25088 c54 2014 ECPP, generalized Lucas number, Wagstaff 5329 (2^82939-1)/883323903012540278033571819073 24938 c84 2021 Mersenne cofactor, ECPP 5330 primV(194181) 24908 E1 2024 Lucas primitive part, ECPP 5331 primV(119162) 24903 E1 2024 Lucas primitive part, ECPP 5332 -E(7634)/1559 24828 E10 2023 Euler irregular, ECPP 5333 primU(118319) 24553 E1 2024 Fibonacci primitive part, ECPP 5334 U(1766,1,7561)-U(1766,1,7560) 24548 x25 2013 Lehmer number 5335 U(117167)/17658707237 24476 E1 2024 Fibonacci cofactor, ECPP 5336 V(116593)/120790349 24359 E4 2023 Lucas cofactor, ECPP 5337 primV(214470) 23895 E1 2024 Lucas primitive part, ECPP 5338 primU(115373) 23875 E1 2024 Fibonacci primitive part, ECPP 5339 U(1383,1,7561)+U(1383,1,7560) 23745 x25 2013 Lehmer number 5340 798*Bern(8766)/14670751334144820770719 23743 c94 2021 Irregular, ECPP 5341 Phi(11867,-100) 23732 c47 2021 Unique, ECPP 5342 primU(135421) 23725 E1 2024 Fibonacci primitive part, ECPP 5343 primV(143234) 23654 E1 2024 Lucas primitive part, ECPP 5344 (2^78737-1)/1590296767505866614563328548192658003295567890593 23654 E2 2022 Mersenne cofactor, ECPP 5345 Phi(35421,-10) 23613 c77 2021 Unique, ECPP 5346 6917!-1 23560 g1 1998 Factorial 5347 primU(164185) 23524 E1 2024 Fibonacci primitive part, ECPP 5348 2^77291+2^38646+1 23267 O 2000 Gaussian Mersenne norm 30, generalized unique 5349 primU(166737) 23231 E1 2024 Fibonacci primitive part, ECPP 5350 (V(59936,1,4863)+1)/(V(59936,1,3)+1) 23220 x25 2013 Lehmer primitive part 5351 U(1118,1,7561)-U(1118,1,7560) 23047 x25 2013 Lehmer number 5352 primA(275285) 23012 E1 2024 Lucas Aurifeuillian primitive part, ECPP 5353 primV(110723) 22997 E1 2024 Lucas primitive part, ECPP 5354 primV(180906) 22905 E1 2024 Lucas primitive part, ECPP 5355 (V(45366,1,4857)+1)/(V(45366,1,3)+1) 22604 x25 2013 Lehmer primitive part 5356 U(106663)/35892566541651557 22275 E1 2024 Fibonacci cofactor, ECPP 5357 348054*Bern(8286)/1570865077944473903275073668721 22234 E1 2022 Irregular, ECPP 5358 p(398256632) 22223 E1 2022 Partitions, ECPP 5359 U(105509)/144118801533126010445795676378394340544227572822879081 21997 E1 2022 Fibonacci cofactor, ECPP 5360 U(104911) 21925 c82 2015 Fibonacci number, ECPP 5361 primB(282035) 21758 E1 2023 Lucas Aurifeuillian primitive part, ECPP 5362 primA(276335) 21736 E1 2024 Lucas Aurifeuillian primitive part, ECPP 5363 Phi(1203,10^27) 21600 c47 2021 Unique, ECPP 5364 U(19258,-1,5039) 21586 x23 2007 Generalized Lucas number 5365 6380!+1 21507 g1 1998 Factorial 5366 primV(154281) 21495 E4 2023 Lucas primitive part, ECPP 5367 U(43100,1,4620)+U(43100,1,4619) 21407 x25 2016 Lehmer number 5368 -E(6658)/85079 21257 c77 2020 Euler irregular, ECPP 5369 Phi(39855,-10) 21248 c95 2020 Unique, ECPP 5370 (V(23354,1,4869)-1)/(V(23354,1,9)-1) 21231 x25 2013 Lehmer primitive part 5371 primA(296695) 21137 E1 2023 Lucas Aurifeuillian primitive part, ECPP 5372 U(15631,1,5040)-U(15631,1,5039) 21134 x25 2003 Lehmer number 5373 primA(413205) 21127 E1 2023 Lucas Aurifeuillian primitive part, ECPP 5374 U(35759,1,4620)+U(35759,1,4619) 21033 x25 2016 Lehmer number 5375 p(355646102) 21000 E1 2022 Partitions, ECPP 5376 V(100417)/713042903779101607511808799053206435494854433884796747437071\ 9436805470448849 20911 E1 2024 Lucas cofactor, ECPP 5377 p(350199893) 20838 E7 2022 Partitions, ECPP 5378 U(31321,1,4620)-U(31321,1,4619) 20767 x25 2016 Lehmer number 5379 primU(102689) 20715 E1 2024 Fibonacci primitive part, ECPP 5380 primU(105821) 20598 E1 2022 Fibonacci primitive part, ECPP 5381 primU(172179) 20540 E1 2022 Fibonacci primitive part, ECPP 5382 V(98081)/31189759/611955609270431/6902594225498651/641303018340927841 20442 E1 2024 Lucas cofactor, ECPP 5383 U(11200,-1,5039) 20400 x25 2004 Generalized Lucas number, cyclotomy 5384 4404139952163*2^67002+1 20183 p408 2024 Triplet (3) 5385 4404139952163*2^67002-1 20183 p408 2024 Triplet (2) 5386 4404139952163*2^67002-5 20183 E15 2024 Triplet (1), ECPP 5387 Phi(23749,-10) 20160 c47 2014 Unique, ECPP 5388 U(22098,1,4620)+U(22098,1,4619) 20067 x25 2016 Lehmer number 5389 primV(112028) 20063 E1 2022 Lucas primitive part, ECPP 5390 1128330746865*2^66441-1 20013 p158 2020 Cunningham chain (4p+3) 5391 1128330746865*2^66440-1 20013 p158 2020 Cunningham chain (2p+1) 5392 1128330746865*2^66439-1 20013 p158 2020 Cunningham chain (p) 5393 4111286921397*2^66420+5 20008 c88 2019 Triplet (3) 5394 4111286921397*2^66420+1 20008 L4808 2019 Triplet (2) 5395 4111286921397*2^66420-1 20008 L4808 2019 Triplet (1) 5396 U(21412,1,4620)-U(21412,1,4619) 20004 x25 2016 Lehmer number 5397 p(322610098) 20000 E1 2022 Partitions, ECPP 5398 primV(151521) 19863 E1 2022 Lucas primitive part, ECPP 5399 V(94823) 19817 c73 2014 Lucas number, ECPP 5400 U(19361,1,4620)+U(19361,1,4619) 19802 x25 2016 Lehmer number 5401 U(8454,-1,5039) 19785 x25 2013 Generalized Lucas number 5402 (2^64381-1)/1825231878561264571177401910928543898820492254252817499611\ 8699181907547497 19308 E13 2024 Mersenne cofactor, ECPP 5403 U(6584,-1,5039) 19238 x23 2007 Generalized Lucas number 5404 V(91943)/551659/2390519/9687119153094919 19187 E1 2022 Lucas cofactor, ECPP 5405 (V(428,1,8019)-1)/(V(428,1,729)-1) 19184 E1 2022 Lehmer primitive part, ECPP 5406 V(91873)/3674921/193484539/167745030829 19175 E1 2022 Lucas cofactor, ECPP 5407 (2^63703-1)/42808417 19169 c59 2014 Mersenne cofactor, ECPP 5408 primU(137439) 19148 E1 2022 Fibonacci primitive part, ECPP 5409 primU(107779) 18980 E1 2022 Fibonacci primitive part, ECPP 5410 (U(162,1,8581)+U(162,1,8580))/(U(162,1,66)+U(162,1,65)) 18814 E1 2022 Lehmer primitive part, ECPP 5411 V(89849) 18778 c70 2014 Lucas number, ECPP 5412 primV(145353) 18689 c69 2013 ECPP, Lucas primitive part 5413 Phi(14943,-100) 18688 c47 2014 Unique, ECPP 5414 (U(859,1,6385)-U(859,1,6384))/(U(859,1,57)-U(859,1,56)) 18567 E1 2022 Lehmer primitive part, ECPP 5415 Phi(18827,10) 18480 c47 2014 Unique, ECPP 5416 primB(220895) 18465 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5417 primV(153279) 18283 E1 2022 Lucas primitive part, ECPP 5418 42209#+1 18241 p8 1999 Primorial 5419 (V(46662,1,3879)-1)/(V(46662,1,9)-1) 18069 x25 2012 Lehmer primitive part 5420 V(86477)/1042112515940998434071039 18049 c77 2020 Lucas cofactor, ECPP 5421 7457*2^59659+1 17964 Y 1997 Cullen 5422 primB(235015) 17856 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5423 primV(148197) 17696 E1 2022 Lucas primitive part, ECPP 5424 (V(447,1,6723)+1)/(V(447,1,81)+1) 17604 E1 2022 Lehmer primitive part, ECPP 5425 (2^58199-1)/237604901713907577052391 17497 c59 2015 Mersenne cofactor, ECPP 5426 Phi(26031,-10) 17353 c47 2014 Unique, ECPP 5427 primV(169830) 17335 E1 2022 Lucas primitive part, ECPP 5428 (V(561,1,6309)+1)/(V(561,1,9)+1) 17319 x25 2016 Lehmer primitive part 5429 U(9657,1,4321)-U(9657,1,4320) 17215 x23 2005 Lehmer number 5430 (2^57131-1)/61481396117165983261035042726614288722959856631 17152 c59 2015 Mersenne cofactor, ECPP 5431 U(81839) 17103 p54 2001 Fibonacci number 5432 (V(1578,1,5589)+1)/(V(1578,1,243)+1) 17098 E1 2022 Lehmer primitive part, ECPP 5433 V(81671) 17069 c66 2013 Lucas number, ECPP 5434 primV(101510) 16970 E1 2022 Lucas primitive part, ECPP 5435 primV(86756) 16920 c74 2015 Lucas primitive part, ECPP 5436 V(80761)/570100885555095451 16861 c77 2020 Lucas cofactor, ECPP 5437 6521953289619*2^55555+1 16737 p296 2013 Triplet (3) 5438 6521953289619*2^55555-1 16737 p296 2013 Triplet (2) 5439 6521953289619*2^55555-5 16737 c58 2013 Triplet (1), ECPP 5440 primV(122754) 16653 c77 2021 Lucas primitive part, ECPP 5441 U(15823,1,3960)-U(15823,1,3959) 16625 x25 2002 Lehmer number, cyclotomy 5442 p(221444161) 16569 c77 2017 Partitions, ECPP 5443 (V(1240,1,5589)-1)/(V(1240,1,243)-1) 16538 E1 2022 Lehmer primitive part, ECPP 5444 primA(201485) 16535 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5445 U(78919)/15574900936381642440917 16471 c77 2020 Fibonacci cofactor, ECPP 5446 (U(800,1,5725)-U(800,1,5724))/(U(800,1,54)-U(800,1,53)) 16464 E1 2022 Lehmer primitive part, ECPP 5447 17484430616589*2^54201+5 16330 E14 2024 Consecutive primes arithmetic progression (3,d=6), ECPP 5448 17484430616589*2^54201-1 16330 p440 2024 Consecutive primes arithmetic progression (2,d=6) 5449 17484430616589*2^54201-7 16330 E14 2024 Consecutive primes arithmetic progression (1,d=6), ECPP 5450 (V(21151,1,3777)-1)/(V(21151,1,3)-1) 16324 x25 2011 Lehmer primitive part 5451 primV(123573) 16198 c77 2019 Lucas primitive part, ECPP 5452 primB(225785) 16176 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5453 V(77417)/313991497376559420151 16159 c77 2020 Lucas cofactor, ECPP 5454 (2^53381-1)/15588960193/38922536168186976769/1559912715971690629450336\ 68006103 16008 c84 2017 Mersenne cofactor, ECPP 5455 -E(5186)/295970922359784619239409649676896529941379763 15954 c63 2018 Euler irregular, ECPP 5456 primV(121227) 15890 c77 2019 Lucas primitive part, ECPP 5457 Phi(2949,-100000000) 15713 c47 2013 Unique, ECPP 5458 primU(131481) 15695 c77 2019 Fibonacci primitive part, ECPP 5459 primV(120258) 15649 c77 2019 Lucas primitive part, ECPP 5460 (U(9275,1,3961)+U(9275,1,3960))/(U(9275,1,45)+U(9275,1,44)) 15537 x38 2009 Lehmer primitive part 5461 (2^51487-1)/57410994232247/17292148963401772464767849635553 15455 c77 2018 Mersenne cofactor, ECPP 5462 primB(183835) 15368 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5463 primU(77387) 15319 c77 2019 Fibonacci primitive part, ECPP 5464 primB(181705) 15189 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5465 U(71983)/5614673/363946049 15028 c77 2018 Fibonacci cofactor, ECPP 5466 2494779036241*2^49800+13 15004 c93 2022 Consecutive primes arithmetic progression (3,d=6) 5467 2494779036241*2^49800+7 15004 c93 2022 Consecutive primes arithmetic progression (2,d=6) 5468 2494779036241*2^49800+1 15004 p408 2022 Consecutive primes arithmetic progression (1,d=6) 5469 primB(268665) 14972 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5470 Phi(5015,-10000) 14848 c47 2013 Unique, ECPP 5471 2^49207-2^24604+1 14813 x16 2000 Gaussian Mersenne norm 29, generalized unique 5472d 214923707595*2^49073+1 14784 p364 2025 Cunningham chain 2nd kind (4p-3) 5473 primA(284895) 14626 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5474 U(69239)/1384781 14464 c77 2018 Fibonacci cofactor, ECPP 5475 primA(170575) 14258 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5476 V(68213)/7290202116115634431 14237 c77 2018 Lucas cofactor, ECPP 5477 p(158375386) 14011 E1 2022 Partitions, ECPP 5478 p(158295265) 14007 E1 2022 Partitions, ECPP 5479 p(158221457) 14004 E1 2022 Partitions, ECPP 5480 primU(67703) 13954 c77 2018 Fibonacci primitive part, ECPP 5481 U(66947)/12485272838388758877279873712131648167413 13951 c77 2017 Fibonacci cofactor, ECPP 5482 V(66533)/2128184670585621839884209100279 13875 c77 2018 Lucas cofactor, ECPP 5483 6*Bern(5534)/226840561549600012633271691723599339 13862 c71 2014 Irregular, ECPP 5484 4410546*Bern(5526)/9712202742835546740714595866405369616019 13840 c63 2018 Irregular,ECPP 5485a 191279029*32003#+1 13773 p364 2025 Arithmetic progression (5,d=20571563*32003#) 5486a 170707466*32003#+1 13773 p364 2025 Arithmetic progression (4,d=20571563*32003#) 5487a 150135903*32003#+1 13773 p364 2025 Arithmetic progression (3,d=20571563*32003#) 5488a 129564340*32003#+1 13773 p364 2025 Arithmetic progression (2,d=20571563*32003#) 5489a 108992777*32003#+1 13773 p364 2025 Arithmetic progression (1,d=20571563*32003#) 5490 primB(163595) 13675 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5491 6*Bern(5462)/23238026668982614152809832227 13657 c64 2013 Irregular, ECPP 5492 56667641271*2^44441+5 13389 c99 2022 Triplet (3), ECPP 5493 56667641271*2^44441+1 13389 p426 2022 Triplet (2) 5494 56667641271*2^44441-1 13389 p426 2022 Triplet (1) 5495 V(64063)/464426465381142115542697818362662865912299 13347 E1 2024 Lucas cofactor, ECPP 5496 512792361*30941#+1 13338 p364 2022 Arithmetic progression (5,d=18195056*30941#) 5497 494597305*30941#+1 13338 p364 2022 Arithmetic progression (4,d=18195056*30941#) 5498 476402249*30941#+1 13338 p364 2022 Arithmetic progression (3,d=18195056*30941#) 5499 458207193*30941#+1 13338 p364 2022 Arithmetic progression (2,d=18195056*30941#) 5500 440012137*30941#+1 13338 p364 2022 Arithmetic progression (1,d=18195056*30941#) 5501 1815615642825*2^44046-1 13272 p395 2016 Cunningham chain (4p+3) 5502 1815615642825*2^44045-1 13272 p395 2016 Cunningham chain (2p+1) 5503 1815615642825*2^44044-1 13271 p395 2016 Cunningham chain (p) 5504 p(141528106) 13244 E6 2022 Partitions, ECPP 5505 p(141513546) 13244 E6 2022 Partitions, ECPP 5506 p(141512238) 13244 E6 2022 Partitions, ECPP 5507 p(141255053) 13232 E6 2022 Partitions, ECPP 5508 p(141150528) 13227 E6 2022 Partitions, ECPP 5509 p(141112026) 13225 E6 2022 Partitions, ECPP 5510 p(141111278) 13225 E6 2022 Partitions, ECPP 5511 p(140859260) 13213 E6 2022 Partitions, ECPP 5512 p(140807155) 13211 E6 2022 Partitions, ECPP 5513 p(140791396) 13210 E6 2022 Partitions, ECPP 5514 primU(94551) 13174 c77 2018 Fibonacci primitive part, ECPP 5515 primB(242295) 13014 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5516 U(61813)/594517433/3761274442997 12897 c77 2018 Fibonacci cofactor, ECPP 5517 (2^42737+1)/3 12865 M 2007 ECPP, generalized Lucas number, Wagstaff 5518 primU(62771) 12791 c77 2018 Fibonacci primitive part, ECPP 5519 primA(154415) 12728 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5520 primA(263865) 12570 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5521 6*Bern(5078)/643283455240626084534218914061 12533 c63 2013 Irregular, ECPP 5522 (2^41681-1)/1052945423/16647332713153/2853686272534246492102086015457 12495 c77 2015 Mersenne cofactor, ECPP 5523 (2^41521-1)/41602235382028197528613357724450752065089 12459 c54 2012 Mersenne cofactor, ECPP 5524 (2^41263-1)/1379707143199991617049286121 12395 c59 2012 Mersenne cofactor, ECPP 5525 U(59369)/2442423669148466039458303756169988568809269383644075940757020\ 9763004757 12337 c79 2015 Fibonacci cofactor, ECPP 5526 742478255901*2^40069+1 12074 p395 2016 Cunningham chain 2nd kind (4p-3) 5527 996824343*2^40074+1 12073 p395 2016 Cunningham chain 2nd kind (4p-3) 5528 664342014133*2^39840+1 12005 p408 2020 Consecutive primes arithmetic progression (3,d=30) 5529 664342014133*2^39840-29 12005 c93 2020 Consecutive primes arithmetic progression (2,d=30), ECPP 5530 664342014133*2^39840-59 12005 c93 2020 Consecutive primes arithmetic progression (1,d=30), ECPP 5531 V(56003) 11704 p193 2006 Lucas number 5532 primA(143705) 11703 c77 2017 Lucas Aurifeuillian primitive part, ECPP 5533 4207993863*2^38624+5 11637 L5354 2021 Triplet (3), ECPP 5534 4207993863*2^38624+1 11637 L5354 2021 Triplet (2) 5535 4207993863*2^38624-1 11637 L5354 2021 Triplet (1) 5536 primU(73025) 11587 c77 2015 Fibonacci primitive part, ECPP 5537 primU(67781) 11587 c77 2015 Fibonacci primitive part, ECPP 5538 primB(219165) 11557 c77 2015 Lucas Aurifeuillian primitive part, ECPP 5539 198429723072*11^11005+1 11472 L3323 2016 Cunningham chain 2nd kind (4p-3) 5540 U(54799)/4661437953906084533621577211561 11422 c8 2015 Fibonacci cofactor, ECPP 5541 U(54521)/6403194135342743624071073 11370 c8 2015 Fibonacci cofactor, ECPP 5542 primU(67825) 11336 x23 2007 Fibonacci primitive part 5543 3610!-1 11277 C 1993 Factorial 5544 U(53189)/69431662887136064191105625570683133711989 11075 c8 2014 Fibonacci cofactor, ECPP 5545 primU(61733) 11058 c77 2015 Fibonacci primitive part, ECPP 5546 778965587811*2^36627-1 11038 p395 2016 Cunningham chain (4p+3) 5547 778965587811*2^36626-1 11038 p395 2016 Cunningham chain (2p+1) 5548 778965587811*2^36625-1 11038 p395 2016 Cunningham chain (p) 5549 272879344275*2^36622-1 11036 p395 2016 Cunningham chain (4p+3) 5550 272879344275*2^36621-1 11036 p395 2016 Cunningham chain (2p+1) 5551 272879344275*2^36620-1 11036 p395 2016 Cunningham chain (p) 5552 V(52859)/1124137922466041911 11029 c8 2014 Lucas cofactor, ECPP 5553 3507!-1 10912 C 1992 Factorial 5554 V(52201)/70585804042896975505694709575919458733851279868446609 10857 c8 2015 Lucas cofactor, ECPP 5555 V(52009)/39772636393178951550299332730909 10838 c8 2015 Lucas cofactor, ECPP 5556 V(51941)/2808052157610902114547210696868337380250300924116591143641642\ 866931 10789 c8 2015 Lucas cofactor, ECPP 5557 1258566*Bern(4462)/6610083971965402783802518108033 10763 c64 2013 Irregular, ECPP 5558 3428602715439*2^35678+13 10753 c93 2020 Consecutive primes arithmetic progression (3,d=6), ECPP 5559 3428602715439*2^35678+7 10753 c93 2020 Consecutive primes arithmetic progression (2,d=6), ECPP 5560 3428602715439*2^35678+1 10753 p408 2020 Consecutive primes arithmetic progression (1,d=6) 5561 333645655005*2^35549-1 10713 p364 2015 Cunningham chain (4p+3) 5562 333645655005*2^35548-1 10713 p364 2015 Cunningham chain (2p+1) 5563 333645655005*2^35547-1 10713 p364 2015 Cunningham chain (p) 5564 V(51349)/224417260052884218046541 10708 c8 2014 Lucas cofactor, ECPP 5565 V(51169) 10694 p54 2001 Lucas number 5566 U(51031)/95846689435051369 10648 c8 2014 Fibonacci cofactor, ECPP 5567 V(50989)/69818796119453411 10640 c8 2014 Lucas cofactor, ECPP 5568 Phi(13285,-10) 10625 c47 2012 Unique, ECPP 5569 U(50833) 10624 CH4 2005 Fibonacci number 5570 2683143625525*2^35176+13 10602 c92 2019 Consecutive primes arithmetic progression (3,d=6),ECPP 5571 2683143625525*2^35176+7 10602 c92 2019 Consecutive primes arithmetic progression (2,d=6),ECPP 5572 2683143625525*2^35176+1 10602 p407 2019 Consecutive primes arithmetic progression (1,d=6) 5573 3020616601*24499#+1 10593 p422 2021 Arithmetic progression (6,d=56497325*24499#) 5574 2964119276*24499#+1 10593 p422 2021 Arithmetic progression (5,d=56497325*24499#) 5575 2907621951*24499#+1 10593 p422 2021 Arithmetic progression (4,d=56497325*24499#) 5576 2851124626*24499#+1 10593 p422 2021 Arithmetic progression (3,d=56497325*24499#) 5577 2794627301*24499#+1 10593 p422 2021 Arithmetic progression (2,d=56497325*24499#) 5578 2738129976*24499#+1 10593 p422 2021 Arithmetic progression (1,d=56497325*24499#) 5579 24029#+1 10387 C 1993 Primorial 5580 400791048*24001#+1 10378 p155 2018 Arithmetic progression (5,d=59874860*24001#) 5581 393142614*24001#+1 10378 p155 2018 Arithmetic progression (5,d=54840724*24001#) 5582 340916188*24001#+1 10378 p155 2018 Arithmetic progression (4,d=59874860*24001#) 5583 338301890*24001#+1 10378 p155 2018 Arithmetic progression (4,d=54840724*24001#) 5584 283461166*24001#+1 10377 p155 2018 Arithmetic progression (3,d=54840724*24001#) 5585 281041328*24001#+1 10377 p155 2018 Arithmetic progression (3,d=59874860*24001#) 5586 228620442*24001#+1 10377 p155 2018 Arithmetic progression (2,d=54840724*24001#) 5587 221488788*24001#+1 10377 p155 2018 Arithmetic progression (5,d=22703701*24001#) 5588 221166468*24001#+1 10377 p155 2018 Arithmetic progression (2,d=59874860*24001#) 5589 198785087*24001#+1 10377 p155 2018 Arithmetic progression (4,d=22703701*24001#) 5590 176081386*24001#+1 10377 p155 2018 Arithmetic progression (3,d=22703701*24001#) 5591 173779718*24001#+1 10377 p155 2018 Arithmetic progression (1,d=54840724*24001#) 5592 163456812*24001#+1 10377 p155 2018 Arithmetic progression (2,d=10601738*24001#) 5593 161291608*24001#+1 10377 p155 2018 Arithmetic progression (1,d=59874860*24001#) 5594 152855074*24001#+1 10377 p155 2018 Arithmetic progression (1,d=10601738*24001#) 5595 6*Bern(4306)/2153 10342 FE8 2009 Irregular, ECPP 5596 23801#+1 10273 C 1993 Primorial 5597 667674063382677*2^33608+7 10132 c88 2019 Quadruplet (4), ECPP 5598 667674063382677*2^33608+5 10132 c88 2019 Quadruplet (3), ECPP 5599 667674063382677*2^33608+1 10132 L4808 2019 Quadruplet (2) 5600 667674063382677*2^33608-1 10132 L4808 2019 Quadruplet (1) 5601 Phi(427,-10^28) 10081 FE9 2009 Unique, ECPP 5602 9649755890145*2^33335+1 10048 p364 2015 Cunningham chain 2nd kind (4p-3) 5603 32469*2^32469+1 9779 MM 1997 Cullen 5604 8073*2^32294+1 9726 MM 1997 Cullen 5605 E(3308)/39308792292493140803643373186476368389461245 9516 c8 2014 Euler irregular, ECPP 5606 Phi(5161,-100) 9505 c47 2012 Unique, ECPP 5607 V(44507) 9302 CH3 2005 Lucas number 5608 U(43399)/470400609575881344601538056264109423291827366228494341196421 9010 c8 2013 Fibonacci cofactor, ECPP 5609 U(42829)/107130175995197969243646842778153077 8916 c8 2014 Fibonacci cofactor, ECPP 5610 U(42043)/1681721 8780 c56 2012 Fibonacci cofactor, ECPP 5611 Phi(6105,-1000) 8641 c47 2010 Unique, ECPP 5612 Phi(4667,-100) 8593 c47 2009 Unique, ECPP 5613 U(40763)/643247084652261620737 8498 c8 2013 Fibonacci cofactor, ECPP 5614 2^27529-2^13765+1 8288 O 2000 Gaussian Mersenne norm 28, generalized unique 5615 18523#+1 8002 D 1989 Primorial 5616 6*Bern(3458)/28329084584758278770932715893606309 7945 c8 2013 Irregular, ECPP 5617 U(37987)/1832721858208455887947958246414213 7906 c39 2012 Fibonacci cofactor, ECPP 5618 U(37511) 7839 x13 2005 Fibonacci number 5619 -E(2762)/2670541 7760 c11 2004 Euler irregular, ECPP 5620 V(36779) 7687 CH3 2005 Lucas number 5621 U(35999) 7523 p54 2001 Fibonacci number, cyclotomy 5622 Phi(4029,-1000) 7488 c47 2009 Unique, ECPP 5623 V(35449) 7409 p12 2001 Lucas number 5624 -30*Bern(3176)/6689693100056872989386833739813089720559189736259127537\ 0617658634396391181 7138 c63 2016 Irregular, ECPP 5625 2154675239*16301#+1 7036 p155 2018 Arithmetic progression (6,d=141836149*16301#) 5626 2012839090*16301#+1 7036 p155 2018 Arithmetic progression (5,d=141836149*16301#) 5627 1871002941*16301#+1 7036 p155 2018 Arithmetic progression (4,d=141836149*16301#) 5628 1729166792*16301#+1 7036 p155 2018 Arithmetic progression (3,d=141836149*16301#) 5629 1587330643*16301#+1 7035 p155 2018 Arithmetic progression (2,d=141836149*16301#) 5630 1445494494*16301#+1 7035 p155 2018 Arithmetic progression (1,d=141836149*16301#) 5631 -10365630*Bern(3100)/1670366116112864481699585217650438278080436881373\ 643007997602585219667 6943 c63 2016 Irregular ECPP 5632 23005*2^23005-1 6930 Y 1997 Woodall 5633 22971*2^22971-1 6920 Y 1997 Woodall 5634 15877#-1 6845 CD 1992 Primorial 5635 6*Bern(2974)/19622040971147542470479091157507 6637 c8 2013 Irregular, ECPP 5636 U(30757) 6428 p54 2001 Fibonacci number, cyclotomy 5637 E(2220)/392431891068600713525 6011 c8 2013 Euler irregular, ECPP 5638 -E(2202)/53781055550934778283104432814129020709 5938 c8 2013 Euler irregular, ECPP 5639 13649#+1 5862 D 1987 Primorial 5640 274386*Bern(2622)/8518594882415401157891061256276973722693 5701 c8 2013 Irregular, ECPP 5641 18885*2^18885-1 5690 K 1987 Woodall 5642 1963!-1 5614 CD 1992 Factorial 5643 13033#-1 5610 CD 1992 Primorial 5644 289*2^18502+1 5573 K 1984 Cullen, generalized Fermat 5645 E(2028)/11246153954845684745 5412 c55 2011 Euler irregular, ECPP 5646 -30*Bern(2504)/1248230090315232335602406373438221652417581490266755814\ 38903418303340323897 5354 c63 2013 Irregular ECPP 5647 U(25561) 5342 p54 2001 Fibonacci number 5648 -E(1990)/8338208577950624722417016286765473477033741642105671913 5258 c8 2013 Euler irregular, ECPP 5649 33957462*Bern(2370)/40685 5083 c11 2003 Irregular, ECPP 5650 4122429552750669*2^16567+7 5003 c83 2016 Quadruplet (4), ECPP 5651 4122429552750669*2^16567+5 5003 c83 2016 Quadruplet (3), ECPP 5652 4122429552750669*2^16567+1 5003 L4342 2016 Quadruplet (2) 5653 4122429552750669*2^16567-1 5003 L4342 2016 Quadruplet (1) 5654 35734184537*11677#/3+9 5002 c98 2024 Consecutive primes arithmetic progression (4,d=6), ECPP 5655 35734184537*11677#/3+3 5002 c98 2024 Consecutive primes arithmetic progression (3,d=6), ECPP 5656 35734184537*11677#/3-3 5002 c98 2024 Consecutive primes arithmetic progression (2,d=6), ECPP 5657 35734184537*11677#/3-9 5002 c98 2024 Consecutive primes arithmetic progression (1,d=6), ECPP 5658 E(1840)/31237282053878368942060412182384934425 4812 c4 2011 Euler irregular, ECPP 5659 7911*2^15823-1 4768 K 1987 Woodall 5660 E(1736)/13510337079405137518589526468536905 4498 c4 2004 Euler irregular, ECPP 5661 2^14699+2^7350+1 4425 O 2000 Gaussian Mersenne norm 27, generalized unique 5662c 744029027072*10111#-1 4362 p364 2025 Cunningham chain (8p+7) 5663 (2^14479+1)/3 4359 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5664 62399583639*9923#-3399421517 4285 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5665 62399583639*9923#-3399421547 4285 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5666 62399583639*9923#-3399421577 4285 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5667 62399583639*9923#-3399421607 4285 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5668 49325406476*9811#*8+1 4234 p382 2019 Cunningham chain 2nd kind (8p-7) 5669 276474*Bern(2030)/469951697500688159155 4200 c8 2003 Irregular, ECPP 5670 V(19469) 4069 x25 2002 Lucas number, cyclotomy, APR-CL assisted 5671 1477!+1 4042 D 1984 Factorial 5672 -2730*Bern(1884)/100983617849 3844 c8 2003 Irregular, ECPP 5673 2840178*Bern(1870)/85 3821 c8 2003 Irregular, ECPP 5674 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+9 3753 c101 2023 Quadruplet (4),ECPP 5675 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+7 3753 c101 2023 Quadruplet (3),ECPP 5676 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+3 3753 c101 2023 Quadruplet (2),ECPP 5677 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+1 3753 c101 2023 Quadruplet (1),ECPP 5678 12379*2^12379-1 3731 K 1984 Woodall 5679 (2^12391+1)/3 3730 M 1996 Generalized Lucas number, Wagstaff 5680 -E(1466)/167900532276654417372106952612534399239 3682 c8 2013 Euler irregular, ECPP 5681 E(1468)/12330876589623053882799895025030461658552339028064108285 3671 c4 2003 Euler irregular, ECPP 5682 1268118079424*8501#-1 3640 p434 2023 Cunningham chain (8p+7) 5683 101406820312263*2^12042+7 3640 c67 2018 Quadruplet (4) 5684 101406820312263*2^12042+5 3640 c67 2018 Quadruplet (3) 5685 101406820312263*2^12042+1 3640 p364 2018 Quadruplet (2) 5686 101406820312263*2^12042-1 3640 p364 2018 Quadruplet (1) 5687 2673092556681*15^3048+4 3598 c67 2015 Quadruplet (4) 5688 2673092556681*15^3048+2 3598 c67 2015 Quadruplet (3) 5689 2673092556681*15^3048-2 3598 c67 2015 Quadruplet (2) 5690 2673092556681*15^3048-4 3598 c67 2015 Quadruplet (1) 5691 6016459977*7927#-1 3407 p364 2022 Arithmetic progression (7,d=577051223*7927#) 5692 5439408754*7927#-1 3407 p364 2022 Arithmetic progression (6,d=577051223*7927#) 5693 4862357531*7927#-1 3407 p364 2022 Arithmetic progression (5,d=577051223*7927#) 5694 4285306308*7927#-1 3407 p364 2022 Arithmetic progression (4,d=577051223*7927#) 5695 3708255085*7927#-1 3407 p364 2022 Arithmetic progression (3,d=577051223*7927#) 5696 3131203862*7927#-1 3407 p364 2022 Arithmetic progression (2,d=577051223*7927#) 5697 2554152639*7927#-1 3407 p364 2022 Arithmetic progression (1,d=577051223*7927#) 5698 62753735335*7919#+3399421667 3404 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5699 62753735335*7919#+3399421637 3404 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5700 62753735335*7919#+3399421607 3404 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5701 62753735335*7919#+3399421577 3404 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5702 (2^11279+1)/3 3395 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 5703 109766820328*7877#-1 3385 p395 2016 Cunningham chain (8p+7) 5704 585150568069684836*7757#/85085+17 3344 c88 2022 Quintuplet (5), ECPP 5705 585150568069684836*7757#/85085+13 3344 c88 2022 Quintuplet (4), ECPP 5706 585150568069684836*7757#/85085+11 3344 c88 2022 Quintuplet (3), ECPP 5707 585150568069684836*7757#/85085+7 3344 c88 2022 Quintuplet (2), ECPP 5708 585150568069684836*7757#/85085+5 3344 c88 2022 Quintuplet (1), ECPP 5709 104052837*7759#-1 3343 p398 2017 Arithmetic progression (6,d=12009836*7759#) 5710 92043001*7759#-1 3343 p398 2017 Arithmetic progression (5,d=12009836*7759#) 5711 80033165*7759#-1 3343 p398 2017 Arithmetic progression (4,d=12009836*7759#) 5712 68023329*7759#-1 3343 p398 2017 Arithmetic progression (3,d=12009836*7759#) 5713 56013493*7759#-1 3343 p398 2017 Arithmetic progression (2,d=12009836*7759#) 5714 44003657*7759#-1 3343 p398 2017 Arithmetic progression (1,d=12009836*7759#) 5715 2072453060816*7699#+1 3316 p364 2019 Cunningham chain 2nd kind (8p-7) 5716 (2^10691+1)/3 3218 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5717 231692481512*7517#-1 3218 p395 2016 Cunningham chain (8p+7) 5718 (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+19 3207 c100 2023 Consecutive primes arithmetic progression (4,d=6),ECPP 5719 (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+13 3207 c100 2023 Consecutive primes arithmetic progression (3,d=6),ECPP 5720 (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+7 3207 c100 2023 Consecutive primes arithmetic progression (2,d=6),ECPP 5721 (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+1 3207 c100 2023 Consecutive primes arithmetic progression (1,d=6),ECPP 5722 (2^10501+1)/3 3161 M 1996 Generalized Lucas number, Wagstaff 5723 2^10141+2^5071+1 3053 O 2000 Gaussian Mersenne norm 26, generalized unique 5724 121152729080*7019#/1729+19 3025 c92 2019 Consecutive primes arithmetic progression (4,d=6), ECPP 5725 121152729080*7019#/1729+13 3025 c92 2019 Consecutive primes arithmetic progression (3,d=6), ECPP 5726 121152729080*7019#/1729+7 3025 c92 2019 Consecutive primes arithmetic progression (2,d=6), ECPP 5727 121152729080*7019#/1729+1 3025 p407 2019 Consecutive primes arithmetic progression (1,d=6) 5728 V(14449) 3020 DK 1995 Lucas number 5729 3124777373*7001#+1 3019 p155 2012 Arithmetic progression (7,d=481789017*7001#) 5730 2996180304*7001#+1 3019 p155 2012 Arithmetic progression (6,d=46793757*7001#) 5731 2949386547*7001#+1 3019 p155 2012 Arithmetic progression (5,d=46793757*7001#) 5732 2946259686*7001#+1 3019 p155 2012 Arithmetic progression (6,d=313558156*7001#) 5733 2911906960*7001#+1 3019 p155 2012 Arithmetic progression (5,d=3093612*7001#) 5734 2908813348*7001#+1 3019 p155 2012 Arithmetic progression (4,d=3093612*7001#) 5735 2905719736*7001#+1 3019 p155 2012 Arithmetic progression (3,d=3093612*7001#) 5736 2902626124*7001#+1 3019 p155 2012 Arithmetic progression (2,d=3093612*7001#) 5737 2902592790*7001#+1 3019 p155 2012 Arithmetic progression (4,d=46793757*7001#) 5738 2899532512*7001#+1 3019 p155 2012 Arithmetic progression (1,d=3093612*7001#) 5739 2855799033*7001#+1 3019 p155 2012 Arithmetic progression (3,d=46793757*7001#) 5740 2809005276*7001#+1 3019 p155 2012 Arithmetic progression (2,d=46793757*7001#) 5741 2762211519*7001#+1 3019 p155 2012 Arithmetic progression (1,d=46793757*7001#) 5742 2642988356*7001#+1 3019 p155 2012 Arithmetic progression (6,d=481789017*7001#) 5743 2161199339*7001#+1 3019 p155 2012 Arithmetic progression (5,d=481789017*7001#) 5744 1679410322*7001#+1 3019 p155 2012 Arithmetic progression (4,d=481789017*7001#) 5745 1197621305*7001#+1 3019 p155 2012 Arithmetic progression (3,d=481789017*7001#) 5746 715832288*7001#+1 3019 p155 2012 Arithmetic progression (2,d=481789017*7001#) 5747 234043271*7001#+1 3018 p155 2012 Arithmetic progression (1,d=481789017*7001#) 5748 U(14431) 3016 p54 2001 Fibonacci number 5749 138281163736*6977#+1 3006 p395 2016 Cunningham chain 2nd kind (8p-7) 5750 375967981369*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5751 V(13963) 2919 c11 2002 Lucas number, ECPP 5752 284787490256*6701#+1 2879 p364 2015 Cunningham chain 2nd kind (8p-7) 5753 9531*2^9531-1 2874 K 1984 Woodall 5754 -E(1174)/50550511342697072710795058639332351763 2829 c8 2013 Euler irregular, ECPP 5755 -E(1142)/6233437695283865492412648122953349079446935570718422828539863\ 59013986902240869 2697 c77 2015 Euler irregular, ECPP 5756 -E(1078)/361898544439043 2578 c4 2002 Euler irregular, ECPP 5757 V(12251) 2561 p54 2001 Lucas number 5758 974!-1 2490 CD 1992 Factorial 5759 7755*2^7755-1 2339 K 1984 Woodall 5760 772463767240*5303#+1 2272 p308 2019 Cunningham chain 2nd kind (8p-7) 5761 116814018316*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10892863626*5303#) 5762 116746086504*5303#+1 2271 p406 2019 Arithmetic progression (7,d=9726011684*5303#) 5763 116242725347*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10388428124*5303#) 5764 107020074820*5303#+1 2271 p406 2019 Arithmetic progression (6,d=9726011684*5303#) 5765 105921154690*5303#+1 2271 p406 2019 Arithmetic progression (6,d=10892863626*5303#) 5766 105854297223*5303#+1 2271 p406 2019 Arithmetic progression (6,d=10388428124*5303#) 5767 97867278281*5303#+1 2271 p406 2019 Arithmetic progression (5,d=2972005888*5303#) 5768 97348096836*5303#+1 2271 p406 2019 Arithmetic progression (5,d=5447332033*5303#) 5769 97294063136*5303#+1 2271 p406 2019 Arithmetic progression (5,d=9726011684*5303#) 5770 96461651937*5303#+1 2271 p406 2019 Arithmetic progression (4,d=435232416*5303#) 5771 96026419521*5303#+1 2271 p406 2019 Arithmetic progression (3,d=435232416*5303#) 5772 95664304943*5303#+1 2271 p406 2019 Arithmetic progression (4,d=817534485*5303#) 5773 95591187105*5303#+1 2271 p406 2019 Arithmetic progression (2,d=435232416*5303#) 5774 95155954689*5303#+1 2271 p406 2019 Arithmetic progression (1,d=435232416*5303#) 5775 94895272393*5303#+1 2271 p406 2019 Arithmetic progression (4,d=2972005888*5303#) 5776 94846770458*5303#+1 2271 p406 2019 Arithmetic progression (3,d=817534485*5303#) 5777 94029235973*5303#+1 2271 p406 2019 Arithmetic progression (2,d=817534485*5303#) 5778 93984538785*5303#+1 2271 p406 2019 Arithmetic progression (3,d=387018369*5303#) 5779 93597520416*5303#+1 2271 p406 2019 Arithmetic progression (2,d=387018369*5303#) 5780 93211701488*5303#+1 2271 p406 2019 Arithmetic progression (1,d=817534485*5303#) 5781 93210502047*5303#+1 2271 p406 2019 Arithmetic progression (1,d=387018369*5303#) 5782 69285767989*5303#+1 2271 p406 2019 Arithmetic progression (8,d=3026809034*5303#) 5783 66258958955*5303#+1 2271 p406 2019 Arithmetic progression (7,d=3026809034*5303#) 5784 63232149921*5303#+1 2271 p406 2019 Arithmetic progression (6,d=3026809034*5303#) 5785 60205340887*5303#+1 2271 p406 2019 Arithmetic progression (5,d=3026809034*5303#) 5786 57178531853*5303#+1 2271 p406 2019 Arithmetic progression (4,d=3026809034*5303#) 5787 54151722819*5303#+1 2271 p406 2019 Arithmetic progression (3,d=3026809034*5303#) 5788 51124913785*5303#+1 2271 p406 2019 Arithmetic progression (2,d=3026809034*5303#) 5789 48098104751*5303#+1 2270 p406 2019 Arithmetic progression (1,d=3026809034*5303#) 5790 V(10691) 2235 DK 1995 Lucas number 5791 566761969187*4733#/2+4 2034 c67 2020 Quintuplet (5) 5792 566761969187*4733#/2+2 2034 c67 2020 Quintuplet (4) 5793 566761969187*4733#/2-2 2034 c67 2020 Quintuplet (3) 5794 566761969187*4733#/2-4 2034 c67 2020 Quintuplet (2) 5795 566761969187*4733#/2-8 2034 c67 2020 Quintuplet (1) 5796 U(9677) 2023 c2 2000 Fibonacci number, ECPP 5797 7610828704751636272*4679#-1 2020 p151 2024 Cunningham chain (16p+15) 5798 126831252923413*4657#/273+13 2002 c88 2020 Quintuplet (5) 5799 126831252923413*4657#/273+9 2002 c88 2020 Quintuplet (4) 5800 126831252923413*4657#/273+7 2002 c88 2020 Quintuplet (3) 5801 126831252923413*4657#/273+3 2002 c88 2020 Quintuplet (2) 5802 126831252923413*4657#/273+1 2002 c88 2020 Quintuplet (1) 5803 6611*2^6611+1 1994 K 1984 Cullen 5804 U(9311) 1946 DK 1995 Fibonacci number 5805 2738129459017*4211#+3399421637 1805 c98 2022 Consecutive primes arithmetic progression (5,d=30) 5806 2738129459017*4211#+3399421607 1805 c98 2022 Consecutive primes arithmetic progression (4,d=30) 5807 2738129459017*4211#+3399421577 1805 c98 2022 Consecutive primes arithmetic progression (3,d=30) 5808 2738129459017*4211#+3399421547 1805 c98 2022 Consecutive primes arithmetic progression (2,d=30) 5809 2738129459017*4211#+3399421517 1805 c98 2022 Consecutive primes arithmetic progression (1,d=30) 5810 V(8467) 1770 c2 2000 Lucas number, ECPP 5811 5795*2^5795+1 1749 K 1984 Cullen 5812 (2^5807+1)/3 1748 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 5813 54201838768*3917#-1 1681 p395 2016 Cunningham chain (16p+15) 5814 102619722624*3797#+1 1631 p395 2016 Cunningham chain 2nd kind (16p-15) 5815 394254311495*3733#/2+4 1606 c67 2017 Quintuplet (5) 5816 394254311495*3733#/2+2 1606 c67 2017 Quintuplet (4) 5817 394254311495*3733#/2-2 1606 c67 2017 Quintuplet (3) 5818 394254311495*3733#/2-4 1606 c67 2017 Quintuplet (2) 5819 394254311495*3733#/2-8 1606 c67 2017 Quintuplet (1) 5820 83*2^5318-1 1603 K 1984 Woodall 5821 2316765173284*3593#+16073 1543 c18 2016 Quintuplet (5), ECPP 5822 2316765173284*3593#+16069 1543 c18 2016 Quintuplet (4), ECPP 5823 2316765173284*3593#+16067 1543 c18 2016 Quintuplet (3), ECPP 5824 2316765173284*3593#+16063 1543 c18 2016 Quintuplet (2), ECPP 5825 2316765173284*3593#+16061 1543 c18 2016 Quintuplet (1), ECPP 5826 652229318541*3527#+3399421637 1504 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5827 652229318541*3527#+3399421607 1504 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5828 652229318541*3527#+3399421577 1504 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5829 652229318541*3527#+3399421547 1504 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5830 652229318541*3527#+3399421517 1504 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5831 3199190962192*3499#-1 1494 p382 2016 Cunningham chain (16p+15) 5832 4713*2^4713+1 1423 K 1984 Cullen 5833 449209457832*3307#+1633050403 1408 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5834 449209457832*3307#+1633050373 1408 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5835 449209457832*3307#+1633050343 1408 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5836 449209457832*3307#+1633050313 1408 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5837 449209457832*3307#+1633050283 1408 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5838 5780736564512*3023#-1 1301 p364 2015 Cunningham chain (16p+15) 5839 2746496109133*3001#+27011 1290 c97 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5840 2746496109133*3001#+26981 1290 c97 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5841 2746496109133*3001#+26951 1290 c97 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5842 2746496109133*3001#+26921 1290 c97 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5843 2746496109133*3001#+26891 1290 c97 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5844 898966996992*3001#+1 1289 p364 2015 Cunningham chain 2nd kind (16p-15) 5845 42530119784448*2969#+1 1281 p382 2017 Cunningham chain 2nd kind (16p-15) 5846 22623218234368*2969#+1 1280 p382 2017 Cunningham chain 2nd kind (16p-15) 5847 1542946580224*2851#-1 1231 p364 2023 Cunningham chain (16p+15) 5848 406463527990*2801#+1633050403 1209 x38 2013 Consecutive primes arithmetic progression (5,d=30) 5849 406463527990*2801#+1633050373 1209 x38 2013 Consecutive primes arithmetic progression (4,d=30) 5850 406463527990*2801#+1633050343 1209 x38 2013 Consecutive primes arithmetic progression (3,d=30) 5851 406463527990*2801#+1633050313 1209 x38 2013 Consecutive primes arithmetic progression (2,d=30) 5852 406463527990*2801#+1633050283 1209 x38 2013 Consecutive primes arithmetic progression (1,d=30) 5853 1290733709840*2677#+1 1141 p295 2011 Cunningham chain 2nd kind (16p-15) 5854 U(5387) 1126 WM 1990 Fibonacci number 5855 1176100079*2591#+1 1101 p252 2019 Arithmetic progression (8,d=60355670*2591#) 5856 1115744409*2591#+1 1101 p252 2019 Arithmetic progression (7,d=60355670*2591#) 5857 1055388739*2591#+1 1100 p252 2019 Arithmetic progression (6,d=60355670*2591#) 5858 995033069*2591#+1 1100 p252 2019 Arithmetic progression (5,d=60355670*2591#) 5859 934677399*2591#+1 1100 p252 2019 Arithmetic progression (4,d=60355670*2591#) 5860 874321729*2591#+1 1100 p252 2019 Arithmetic progression (3,d=60355670*2591#) 5861 813966059*2591#+1 1100 p252 2019 Arithmetic progression (2,d=60355670*2591#) 5862 753610389*2591#+1 1100 p252 2019 Arithmetic progression (1,d=60355670*2591#) 5863 (2^3539+1)/3 1065 M 1989 First titanic by ECPP, generalized Lucas number, Wagstaff 5864 2968802755*2459#+1 1057 p155 2009 Arithmetic progression (8,d=359463429*2459#) 5865 2609339326*2459#+1 1057 p155 2009 Arithmetic progression (7,d=359463429*2459#) 5866 2249875897*2459#+1 1057 p155 2009 Arithmetic progression (6,d=359463429*2459#) 5867 1890412468*2459#+1 1056 p155 2009 Arithmetic progression (5,d=359463429*2459#) 5868 1530949039*2459#+1 1056 p155 2009 Arithmetic progression (4,d=359463429*2459#) 5869 1171485610*2459#+1 1056 p155 2009 Arithmetic progression (3,d=359463429*2459#) 5870 812022181*2459#+1 1056 p155 2009 Arithmetic progression (2,d=359463429*2459#) 5871 452558752*2459#+1 1056 p155 2009 Arithmetic progression (1,d=359463429*2459#) 5872b 5963982717*2417#-1 1040 p364 2025 Arithmetic progression (8,d=108526765*2417#) 5873b 5855455952*2417#-1 1040 p364 2025 Arithmetic progression (7,d=108526765*2417#) 5874b 5746929187*2417#-1 1040 p364 2025 Arithmetic progression (6,d=108526765*2417#) 5875b 5638402422*2417#-1 1040 p364 2025 Arithmetic progression (5,d=108526765*2417#) 5876b 5529875657*2417#-1 1040 p364 2025 Arithmetic progression (4,d=108526765*2417#) 5877b 5421348892*2417#-1 1040 p364 2025 Arithmetic progression (3,d=108526765*2417#) 5878b 5312822127*2417#-1 1040 p364 2025 Arithmetic progression (2,d=108526765*2417#) 5879b 5204295362*2417#-1 1040 p364 2025 Arithmetic progression (1,d=108526765*2417#) 5880b 4692090369*2417#-1 1040 p364 2025 Arithmetic progression (8,d=370899838*2417#) 5881b 4321190531*2417#-1 1040 p364 2025 Arithmetic progression (7,d=370899838*2417#) 5882b 3950290693*2417#-1 1040 p364 2025 Arithmetic progression (6,d=370899838*2417#) 5883b 3579390855*2417#-1 1040 p364 2025 Arithmetic progression (5,d=370899838*2417#) 5884b 3208491017*2417#-1 1040 p364 2025 Arithmetic progression (4,d=370899838*2417#) 5885b 2837591179*2417#-1 1040 p364 2025 Arithmetic progression (3,d=370899838*2417#) 5886b 2466691341*2417#-1 1040 p364 2025 Arithmetic progression (2,d=370899838*2417#) 5887b 2095791503*2417#-1 1040 p364 2025 Arithmetic progression (1,d=370899838*2417#) 5888 28993093368077*2399#+19433 1037 c18 2016 Sextuplet (6), ECPP 5889 28993093368077*2399#+19429 1037 c18 2016 Sextuplet (5), ECPP 5890 28993093368077*2399#+19427 1037 c18 2016 Sextuplet (4), ECPP 5891 28993093368077*2399#+19423 1037 c18 2016 Sextuplet (3), ECPP 5892 28993093368077*2399#+19421 1037 c18 2016 Sextuplet (2), ECPP 5893 28993093368077*2399#+19417 1037 c18 2016 Sextuplet (1), ECPP 5894 R(1031) 1031 WD 1985 Repunit 5895 89595955370432*2371#-1 1017 p364 2015 Cunningham chain (32p+31) 5896 116040452086*2371#+1 1014 p308 2012 Arithmetic progression (9,d=6317280828*2371#) 5897 109723171258*2371#+1 1014 p308 2012 Arithmetic progression (8,d=6317280828*2371#) 5898 103405890430*2371#+1 1014 p308 2012 Arithmetic progression (7,d=6317280828*2371#) 5899 97336164242*2371#+1 1014 p308 2013 Arithmetic progression (9,d=6350457699*2371#) 5900 97088609602*2371#+1 1014 p308 2012 Arithmetic progression (6,d=6317280828*2371#) 5901 93537753980*2371#+1 1014 p308 2013 Arithmetic progression (9,d=3388165411*2371#) 5902 92836168856*2371#+1 1014 p308 2013 Arithmetic progression (9,d=127155673*2371#) 5903 92709013183*2371#+1 1014 p308 2013 Arithmetic progression (8,d=127155673*2371#) 5904 92581857510*2371#+1 1014 p308 2013 Arithmetic progression (7,d=127155673*2371#) 5905 92454701837*2371#+1 1014 p308 2013 Arithmetic progression (6,d=127155673*2371#) 5906 92327546164*2371#+1 1014 p308 2013 Arithmetic progression (5,d=127155673*2371#) 5907 92200390491*2371#+1 1014 p308 2013 Arithmetic progression (4,d=127155673*2371#) 5908 92073234818*2371#+1 1014 p308 2013 Arithmetic progression (3,d=127155673*2371#) 5909 91946079145*2371#+1 1014 p308 2013 Arithmetic progression (2,d=127155673*2371#) 5910 91818923472*2371#+1 1014 p308 2013 Arithmetic progression (1,d=127155673*2371#) 5911 90985706543*2371#+1 1014 p308 2013 Arithmetic progression (8,d=6350457699*2371#) 5912 90771328774*2371#+1 1014 p308 2012 Arithmetic progression (5,d=6317280828*2371#) 5913 90149588569*2371#+1 1014 p308 2013 Arithmetic progression (8,d=3388165411*2371#) 5914 86761423158*2371#+1 1014 p308 2013 Arithmetic progression (7,d=3388165411*2371#) 5915 84635248844*2371#+1 1014 p308 2013 Arithmetic progression (7,d=6350457699*2371#) 5916 84454047946*2371#+1 1014 p308 2012 Arithmetic progression (4,d=6317280828*2371#) 5917 83373257747*2371#+1 1014 p308 2013 Arithmetic progression (6,d=3388165411*2371#) 5918 79985092336*2371#+1 1014 p308 2013 Arithmetic progression (5,d=3388165411*2371#) 5919 78284791145*2371#+1 1014 p308 2013 Arithmetic progression (6,d=6350457699*2371#) 5920 78136767118*2371#+1 1014 p308 2012 Arithmetic progression (3,d=6317280828*2371#) 5921 76596926925*2371#+1 1014 p308 2013 Arithmetic progression (4,d=3388165411*2371#) 5922 73208761514*2371#+1 1014 p308 2013 Arithmetic progression (3,d=3388165411*2371#) 5923 71934333446*2371#+1 1014 p308 2013 Arithmetic progression (5,d=6350457699*2371#) 5924 71819486290*2371#+1 1014 p308 2012 Arithmetic progression (2,d=6317280828*2371#) 5925 69820596103*2371#+1 1014 p308 2013 Arithmetic progression (2,d=3388165411*2371#) 5926 69318339141*2371#+1 1014 p308 2011 Arithmetic progression (9,d=1298717501*2371#) 5927 68019621640*2371#+1 1014 p308 2011 Arithmetic progression (8,d=1298717501*2371#) 5928 66720904139*2371#+1 1014 p308 2011 Arithmetic progression (7,d=1298717501*2371#) 5929 66432430692*2371#+1 1014 p308 2013 Arithmetic progression (1,d=3388165411*2371#) 5930 65583875747*2371#+1 1014 p308 2013 Arithmetic progression (4,d=6350457699*2371#) 5931 65502205462*2371#+1 1014 p308 2012 Arithmetic progression (1,d=6317280828*2371#) 5932 65422186638*2371#+1 1014 p308 2011 Arithmetic progression (6,d=1298717501*2371#) 5933 64123469137*2371#+1 1014 p308 2011 Arithmetic progression (5,d=1298717501*2371#) 5934 62824751636*2371#+1 1014 p308 2011 Arithmetic progression (4,d=1298717501*2371#) 5935 61526034135*2371#+1 1014 p308 2011 Arithmetic progression (3,d=1298717501*2371#) 5936 60227316634*2371#+1 1014 p308 2011 Arithmetic progression (2,d=1298717501*2371#) 5937 59233418048*2371#+1 1014 p308 2013 Arithmetic progression (3,d=6350457699*2371#) 5938 58928599133*2371#+1 1014 p308 2011 Arithmetic progression (1,d=1298717501*2371#) 5939 52882960349*2371#+1 1014 p308 2013 Arithmetic progression (2,d=6350457699*2371#) 5940 46532502650*2371#+1 1014 p308 2013 Arithmetic progression (1,d=6350457699*2371#) 5941 533098369554*2357#+3399421667 1012 c98 2021 Consecutive primes arithmetic progression (6,d=30), ECPP 5942 533098369554*2357#+3399421637 1012 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5943 533098369554*2357#+3399421607 1012 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5944 533098369554*2357#+3399421577 1012 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5945 533098369554*2357#+3399421547 1012 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5946 533098369554*2357#+3399421517 1012 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5947 113225039190926127209*2339#/57057+21 1002 c88 2021 Septuplet (7) 5948 113225039190926127209*2339#/57057+19 1002 c88 2021 Septuplet (6) 5949 113225039190926127209*2339#/57057+13 1002 c88 2021 Septuplet (5) 5950 113225039190926127209*2339#/57057+9 1002 c88 2021 Septuplet (4) 5951 113225039190926127209*2339#/57057+7 1002 c88 2021 Septuplet (3) 5952d 1184490310627008*2339#+1 1001 p364 2025 Cunningham chain 2nd kind (32p-31) ----- ------------------------------- -------- ----- ---- -------------- KEY TO PROOF-CODES (primality provers): A1 Propper, Srsieve, PrimeGrid, PRST A2 Propper, Srsieve, PRST A3 Atnashev, PRST A5 Gahan, Cyclo, PRST A6 Propper, Gcwsieve, PRST A7 Baur, Cyclo, PRST A8 Baur1, Srsieve, PRST A9 Wright1, Srsieve, CRUS, PRST A10 Grosvenor, Srsieve, CRUS, PRST A11 Anonymous, Srsieve, CRUS, PRST A12 Kruse, Srsieve, CRUS, PRST A13 Marler, Cyclo, PRST A14 Thompson5, Srsieve, CRUS, PRST A15 Sielemann, Srsieve, CRUS, PRST A16 Broer, Srsieve, CRUS, PRST A18 Trunov, Cyclo, PRST A19 Propper, Batalov, Srsieve, PRST A20 Propper, Batalov, Gcwsieve, PRST A21 Piesker, Srsieve, CRUS, PRST A22 Doornink, Cyclo, PRST A23 Brown1, Srsieve, PrimeGrid, PRST A24 Ogawa, MultiSieve, NewPGen, PRST A25 Schmidt2, NewPGen, PRST A26 VISCAPI, Srsieve, CRUS, PRST A27 Piesker, PSieve, Srsieve, NPLB, PRST A28 Gingrich1, Srsieve, CRUS, PRST A29 Kelava1, Srsieve, Prime95, PRST A30 Silva2, Srsieve, PrimeGrid, PRST A31 Dinkel, MultiSieve, PRST A32 Cedric, Srsieve, CRUS, PRST A34 Verhaagen, Srsieve, CRUS, PRST A36 Glotzbach, Srsieve, CRUS, PRST A38 Batalov, PSieve, Srsieve, PRST A39 Majors, Srsieve, CRUS, PRST A41 Gmirkin, Srsieve, PrimeGrid, PRST A42 Dadocad72, Srsieve, CRUS, PRST A43 Propper, MultiSieve, PRST A44 Smith12, Srsieve, CRUS, PRST A45 Kaczala, Srsieve, PrimeGrid, PRST A46 Primecrunch.com, Hedges, Srsieve, PRST A48 Peteri, Srsieve, CRUS, PRST A49 Swerczek, Srsieve, CRUS, PRST A50 Bird2, Srsieve, CRUS, PRST A51 Gahan, NewPGen, PRST A52 Schumacher, Srsieve, CRUS, PRST A54 Lynch, Srsieve, CRUS, PRST A55 Nielsen1, Gahan, PRST A56 Loebmann, Srsieve, CRUS, PRST A57 Busler, Srsieve, CRUS, PRST A58 Schmidt2, PSieve, Srsieve, NPLB, PRST A59 Straleger, Srsieve, CRUS, PRST A60 Presler, Srsieve, PrimeGrid, PRST A62 Gehrke, Srsieve, CRUS, PRST C Caldwell, Cruncher c2 Water, Primo c4 Broadhurst, Primo c8 Broadhurst, Water, Primo c11 Oakes, Primo c18 Luhn, Primo c39 Minovic, OpenPFGW, Primo c47 Chandler, Primo c54 Wu_T, Primo c55 Gramolin, Primo c56 Soule, Minovic, OpenPFGW, Primo c58 Kaiser1, NewPGen, OpenPFGW, Primo c59 Metcalfe, OpenPFGW, Primo c63 Ritschel, TOPS, Primo c64 Metcalfe, Minovic, Ritschel, TOPS, Primo c66 Steine, Primo c67 Batalov, NewPGen, OpenPFGW, Primo c69 Jacobsen, Primo c70 Underwood, Dubner, Primo c71 Metcalfe, Ritschel, Andersen, TOPS, Primo c73 Underwood, Lifchitz, Primo c74 Lasher, Dubner, Primo c76 Kaiser1, Water, Underwood, Primo c77 Batalov, Primo c79 Batalov, Broadhurst, Water, Primo c81 Water, Underwood, Primo c82 Steine, Water, Primo c83 Kaiser1, PolySieve, NewPGen, Primo c84 Underwood, Primo c88 Kaiser1, PolySieve, Primo c92 Lamprecht, Luhn, Primo c93 Batalov, PolySieve, Primo c94 Gelhar, Ritschel, TOPS, Primo c95 Gelhar, Primo c97 Lamprecht, Luhn, APSieve, OpenPFGW, Primo c98 Batalov, EMsieve, Primo c99 Kruse, Schoeler, Primo c100 DavisK, APTreeSieve, NewPGen, OpenPFGW, Primo c101 DavisK, APTreeSieve, OpenPFGW, Primo CD Caldwell, Dubner, Cruncher CH10 Batalov, OpenPFGW, Primo, CHG CH12 Propper, Batalov, OpenPFGW, Primo, CHG CH13 Propper, Batalov, EMsieve, OpenPFGW, CHG CH14 Wu_T, CM, OpenPFGW, CHG CH2 Wu_T, OpenPFGW, Primo, CHG CH3 Broadhurst, Water, OpenPFGW, Primo, CHG CH4 Irvine, Broadhurst, Water, OpenPFGW, Primo, CHG CH9 Zhou, OpenPFGW, CHG D Dubner, Cruncher DK Dubner, Keller, Cruncher DS Smith_Darren, Proth.exe E1 Batalov, CM E2 Propper, CM E3 Enge, CM E4 Childers, CM E5 Underwood, CM E6 Lasher, Broadhurst, Underwood, CM E7 Lasher, CM E8 Broadhurst, Underwood, CM E9 Mock, CM E10 Doornink, CM E11 Karpovich, CM E12 Enge, Underwood, CM E13 Batalov, Masser, CM E14 Batalov, EMsieve, CM E15 Batalov, PolySieve, CM E16 Propper, Batalov, CM E17 Foreman, Batalov, CM FE8 Oakes, Broadhurst, Water, Morain, FastECPP FE9 Broadhurst, Water, Morain, FastECPP g0 Gallot, Proth.exe G1 Armengaud, GIMPS, Prime95 g1 Caldwell, Proth.exe G2 Spence, GIMPS, Prime95 G3 Clarkson, Kurowski, GIMPS, Prime95 G4 Hajratwala, Kurowski, GIMPS, Prime95 G5 Cameron, Kurowski, GIMPS, Prime95 G6 Shafer, GIMPS, Prime95 G7 Findley_J, GIMPS, Prime95 G8 Nowak, GIMPS, Prime95 G9 Boone, Cooper, GIMPS, Prime95 G10 Smith_E, GIMPS, Prime95 G11 Elvenich, GIMPS, Prime95 G12 Strindmo, GIMPS, Prime95 G13 Cooper, GIMPS, Prime95 G14 Cooper, GIMPS, Prime95 G15 Pace, GIMPS, Prime95 G16 Laroche, GIMPS, Prime95 g23 Ballinger, Proth.exe g25 OHare, Proth.exe g55 Toplic, Proth.exe g124 Crickman, Proth.exe g236 Heuer, GFN17Sieve, GFNSearch, Proth.exe g245 Cosgrave, NewPGen, PRP, Proth.exe g260 AYENI, Proth.exe g267 Grobstich, NewPGen, PRP, Proth.exe g277 Eaton, NewPGen, PRP, Proth.exe g279 Cooper, NewPGen, PRP, Proth.exe g337 Hsieh, NewPGen, PRP, Proth.exe g403 Yoshimura, ProthSieve, PrimeSierpinski, LLR, Proth.exe g407 HermleGC, MultiSieve, PRP, Proth.exe g413 Scott, AthGFNSieve, Proth.exe g414 Gilvey, Srsieve, PrimeGrid, PrimeSierpinski, LLR, Proth.exe g418 Taura, NewPGen, PRP, Proth.exe g424 Broadhurst, NewPGen, OpenPFGW, Proth.exe g427 Batalov, Srsieve, LLR, Proth.exe g429 Underbakke, GenefX64, AthGFNSieve, PrimeGrid, Proth.exe g431 Shenton, Srsieve, Proth.exe gm Morii, Proth.exe K Keller L20 Kapek, LLR L53 Zaveri, ProthSieve, RieselSieve, PRP, LLR L95 Urushi, LLR L99 Underbakke, TwinGen, LLR L124 Rodenkirch, MultiSieve, LLR L129 Snyder, LLR L137 Jaworski, Rieselprime, LLR L158 Underwood, NewPGen, 321search, LLR L161 Schafer, NewPGen, LLR L172 Smith, ProthSieve, RieselSieve, LLR L181 Siegert, LLR L185 Hassler, NewPGen, LLR L191 Banka, NewPGen, LLR L192 Jaworski, LLR L193 Rosink, ProthSieve, RieselSieve, LLR L197 DaltonJ, ProthSieve, RieselSieve, LLR L201 Siemelink, LLR L256 Underwood, Srsieve, NewPGen, 321search, LLR L257 Ritschel, Srsieve, Rieselprime, LLR L282 Curtis, Srsieve, Rieselprime, LLR L381 Mate, Siemelink, Rodenkirch, MultiSieve, LLR L384 Pinho, Srsieve, Rieselprime, LLR L426 Jaworski, Srsieve, Rieselprime, LLR L436 Andersen2, Gcwsieve, MultiSieve, PrimeGrid, LLR L447 Kohlman, Gcwsieve, MultiSieve, PrimeGrid, LLR L466 Zhou, NewPGen, LLR L503 Benson, Srsieve, LLR L521 Thompson1, Gcwsieve, MultiSieve, PrimeGrid, LLR L541 Barnes, Srsieve, CRUS, LLR L550 Bonath, Srsieve, CRUS, LLR L587 Dettweiler, Srsieve, CRUS, LLR L591 Penne, Srsieve, CRUS, LLR L606 Bennett, Srsieve, NewPGen, PrimeGrid, 321search, LLR L613 Keogh, Srsieve, ProthSieve, RieselSieve, LLR L622 Cardall, Srsieve, ProthSieve, RieselSieve, LLR L671 Wong, Srsieve, PrimeGrid, LLR L689 Brown1, Srsieve, PrimeGrid, LLR L690 Cholt, Srsieve, PrimeGrid, LLR L753 Wolfram, Srsieve, PrimeGrid, LLR L760 Riesen, Srsieve, Rieselprime, LLR L764 Ewing, Srsieve, PrimeGrid, LLR L780 Brady, Srsieve, PrimeGrid, LLR L801 Gesker, Gcwsieve, MultiSieve, PrimeGrid, LLR L802 Zachariassen, Srsieve, NPLB, LLR L875 Hatland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L917 Bergman1, Gcwsieve, MultiSieve, PrimeGrid, LLR L923 Kaiser1, Klahn, NewPGen, PrimeGrid, TPS, SunGard, LLR L927 Brown1, TwinGen, PrimeGrid, LLR L983 Wu_T, LLR L1016 Hartel, Srsieve, PrimeGrid, LLR L1056 Schwieger, Srsieve, PrimeGrid, LLR L1115 Splain, PSieve, Srsieve, PrimeGrid, LLR L1125 Laluk, PSieve, Srsieve, PrimeGrid, LLR L1129 Slomma, PSieve, Srsieve, PrimeGrid, LLR L1130 Adolfsson, PSieve, Srsieve, PrimeGrid, LLR L1134 Ogawa, Srsieve, NewPGen, LLR L1141 Ogawa, NewPGen, LLR L1158 Vogel, PSieve, Srsieve, PrimeGrid, LLR L1160 Sunderland, PSieve, Srsieve, PrimeGrid, LLR L1188 Faith, PSieve, Srsieve, PrimeGrid, LLR L1199 DeRidder, PSieve, Srsieve, PrimeGrid, LLR L1201 Carpenter1, PSieve, Srsieve, PrimeGrid, LLR L1203 Mauno, PSieve, Srsieve, PrimeGrid, LLR L1204 Brown1, PSieve, Srsieve, PrimeGrid, LLR L1209 Wong, PSieve, Srsieve, PrimeGrid, LLR L1218 Winslow, PSieve, Srsieve, PrimeGrid, LLR L1223 Courty, PSieve, Srsieve, PrimeGrid, LLR L1230 Yooil1, PSieve, Srsieve, PrimeGrid, LLR L1300 Yama, PSieve, Srsieve, PrimeGrid, LLR L1301 Sorbera, Srsieve, CRUS, LLR L1349 Wallace, Srsieve, NewPGen, PrimeGrid, LLR L1353 Mumper, Srsieve, PrimeGrid, LLR L1355 Beck, PSieve, Srsieve, PrimeGrid, LLR L1372 Glennie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L1387 Anonymous, PSieve, Srsieve, PrimeGrid, LLR L1412 Jones_M, PSieve, Srsieve, PrimeGrid, LLR L1422 Steichen, PSieve, Srsieve, PrimeGrid, LLR L1444 Davies, PSieve, Srsieve, PrimeGrid, LLR L1448 Hron, PSieve, Srsieve, PrimeGrid, LLR L1455 Heikkila, PSieve, Srsieve, PrimeGrid, LLR L1456 Webster, PSieve, Srsieve, PrimeGrid, LLR L1460 Salah, Srsieve, PrimeGrid, PrimeSierpinski, LLR L1471 Gunn, Srsieve, CRUS, LLR L1474 Brown6, PSieve, Srsieve, PrimeGrid, LLR L1486 Dinkel, PSieve, Srsieve, PrimeGrid, LLR L1492 Eiterig, PSieve, Srsieve, PrimeGrid, LLR L1502 Champ, PSieve, Srsieve, PrimeGrid, LLR L1576 Craig, PSieve, Srsieve, PrimeGrid, LLR L1675 Schwieger, PSieve, Srsieve, PrimeGrid, LLR L1728 Gasewicz, PSieve, Srsieve, PrimeGrid, LLR L1741 Granowski, PSieve, Srsieve, PrimeGrid, LLR L1745 Cholt, PSieve, Srsieve, PrimeGrid, LLR L1754 Hubbard, PSieve, Srsieve, PrimeGrid, LLR L1774 Schoefer, PSieve, Srsieve, PrimeGrid, LLR L1780 Ming, PSieve, Srsieve, PrimeGrid, LLR L1792 Tang, PSieve, Srsieve, PrimeGrid, LLR L1808 Reynolds1, PSieve, Srsieve, PrimeGrid, LLR L1817 Barnes, PSieve, Srsieve, NPLB, LLR L1823 Larsson, PSieve, Srsieve, PrimeGrid, LLR L1828 Benson, PSieve, Srsieve, Rieselprime, LLR L1862 Curtis, PSieve, Srsieve, Rieselprime, LLR L1863 Wozny, PSieve, Srsieve, Rieselprime, LLR L1884 Jaworski, PSieve, Srsieve, Rieselprime, LLR L1885 Ostaszewski, PSieve, Srsieve, PrimeGrid, LLR L1921 Winslow, TwinGen, PrimeGrid, LLR L1932 Dragnev, PSieve, Srsieve, PrimeGrid, LLR L1935 Channing, PSieve, Srsieve, PrimeGrid, LLR L1949 Pritchard, Srsieve, PrimeGrid, RieselSieve, LLR L1959 Metcalfe, PSieve, Srsieve, Rieselprime, LLR L1979 Tibbott, PSieve, Srsieve, PrimeGrid, LLR L1990 Makowski, PSieve, Srsieve, PrimeGrid, LLR L2006 Rix, PSieve, Srsieve, PrimeGrid, LLR L2012 Pedersen_K, Srsieve, CRUS, OpenPFGW, LLR L2017 Hubbard, PSieve, Srsieve, NPLB, LLR L2030 Tonner, PSieve, Srsieve, PrimeGrid, LLR L2035 Greer, TwinGen, PrimeGrid, LLR L2042 Lachance, PSieve, Srsieve, PrimeGrid, LLR L2046 Melvold, Srsieve, PrimeGrid, LLR L2051 Reich, PSieve, Srsieve, PrimeGrid, LLR L2054 Kaiser1, Srsieve, CRUS, LLR L2055 Soule, PSieve, Srsieve, Rieselprime, LLR L2074 Minovic, PSieve, Srsieve, Rieselprime, LLR L2085 Dodson1, PSieve, Srsieve, PrimeGrid, LLR L2086 Sveen, PSieve, Srsieve, PrimeGrid, LLR L2103 Schmidt1, PSieve, Srsieve, PrimeGrid, LLR L2117 Karlsteen, PSieve, Srsieve, PrimeGrid, LLR L2121 VanRangelrooij, PSieve, Srsieve, PrimeGrid, LLR L2125 Greer, PSieve, Srsieve, PrimeGrid, LLR L2137 Hayashi1, PSieve, Srsieve, PrimeGrid, LLR L2142 Hajek, PSieve, Srsieve, PrimeGrid, LLR L2158 Krauss, PSieve, Srsieve, PrimeGrid, LLR L2163 VanRooijen1, PSieve, Srsieve, PrimeGrid, LLR L2233 Herder, Srsieve, PrimeGrid, LLR L2235 Mullage, PSieve, Srsieve, NPLB, LLR L2257 Dettweiler, PSieve, Srsieve, NPLB, LLR L2269 Schori, Srsieve, PrimeGrid, LLR L2322 Szafranski, PSieve, Srsieve, PrimeGrid, LLR L2337 Schmalen, PSieve, Srsieve, PrimeGrid, LLR L2366 Satoh, PSieve, Srsieve, PrimeGrid, LLR L2371 Luszczek, Srsieve, PrimeGrid, LLR L2373 Tarasov1, Srsieve, PrimeGrid, LLR L2408 Reinman, Srsieve, PrimeGrid, LLR L2413 Blyth, PSieve, Srsieve, PrimeGrid, LLR L2425 DallOsto, LLR L2429 Bliedung, TwinGen, PrimeGrid, LLR L2432 Sutton1, PSieve, Srsieve, Rieselprime, LLR L2444 Batalov, PSieve, Srsieve, Rieselprime, LLR L2484 Ritschel, PSieve, Srsieve, Rieselprime, LLR L2487 Liao, PSieve, Srsieve, PrimeGrid, LLR L2519 Schmidt2, PSieve, Srsieve, NPLB, LLR L2520 Mamanakis, PSieve, Srsieve, PrimeGrid, LLR L2526 Martinik, PSieve, Srsieve, PrimeGrid, LLR L2549 McKay, PSieve, Srsieve, PrimeGrid, LLR L2552 Foulher, PSieve, Srsieve, PrimeGrid, LLR L2561 Vinklat, PSieve, Srsieve, PrimeGrid, LLR L2564 Bravin, PSieve, Srsieve, PrimeGrid, LLR L2583 Nakamura, PSieve, Srsieve, PrimeGrid, LLR L2602 Mueller4, PSieve, Srsieve, PrimeGrid, LLR L2603 Hoffman, PSieve, Srsieve, PrimeGrid, LLR L2606 Slakans, PSieve, Srsieve, PrimeGrid, LLR L2626 DeKlerk, PSieve, Srsieve, PrimeGrid, LLR L2627 Graham2, PSieve, Srsieve, PrimeGrid, LLR L2629 Becker2, PSieve, Srsieve, PrimeGrid, LLR L2659 Reber, PSieve, Srsieve, PrimeGrid, LLR L2664 Koluvere, PSieve, Srsieve, PrimeGrid, LLR L2675 Ling, PSieve, Srsieve, PrimeGrid, LLR L2676 Cox2, PSieve, Srsieve, PrimeGrid, LLR L2691 Pettersen, PSieve, Srsieve, PrimeGrid, LLR L2707 Out, PSieve, Srsieve, PrimeGrid, LLR L2714 Piotrowski, PSieve, Srsieve, PrimeGrid, LLR L2715 Donovan, PSieve, Srsieve, PrimeGrid, LLR L2719 Yost, PSieve, Srsieve, PrimeGrid, LLR L2777 Ritschel, Gcwsieve, TOPS, LLR L2785 Meili, PSieve, Srsieve, PrimeGrid, LLR L2805 Barr, PSieve, Srsieve, PrimeGrid, LLR L2826 Jeudy, PSieve, Srsieve, PrimeGrid, LLR L2840 Santana, PSieve, Srsieve, PrimeGrid, LLR L2842 English1, PSieve, Srsieve, PrimeGrid, LLR L2873 Jurach, PSieve, Srsieve, PrimeGrid, LLR L2885 Busacker, PSieve, Srsieve, PrimeGrid, LLR L2891 Lacroix, PSieve, Srsieve, PrimeGrid, LLR L2914 Merrylees, PSieve, Srsieve, PrimeGrid, LLR L2959 Derrera, PSieve, Srsieve, PrimeGrid, LLR L2973 Kurtovic, Srsieve, PrimeGrid, LLR L2975 Loureiro, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L2992 Boehm, PSieve, Srsieve, PrimeGrid, LLR L2997 Williams2, PSieve, Srsieve, PrimeGrid, LLR L3023 Winslow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3029 Walsh, PSieve, Srsieve, PrimeGrid, LLR L3033 Snow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3034 Wakolbinger, PSieve, Srsieve, PrimeGrid, LLR L3035 Scalise, PSieve, Srsieve, PrimeGrid, LLR L3048 Breslin, PSieve, Srsieve, PrimeGrid, LLR L3054 Winslow, Srsieve, PrimeGrid, LLR L3091 Ridgway, PSieve, Srsieve, PrimeGrid, LLR L3101 Reichard, PSieve, Srsieve, PrimeGrid, LLR L3118 Yama, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3125 Rizman, PSieve, Srsieve, PrimeGrid, LLR L3141 Kus, PSieve, Srsieve, PrimeGrid, LLR L3168 Schwegler, PSieve, Srsieve, PrimeGrid, LLR L3171 Bergelt, PSieve, Srsieve, PrimeGrid, LLR L3173 Zhou2, PSieve, Srsieve, PrimeGrid, LLR L3174 Boniecki, PSieve, Srsieve, PrimeGrid, LLR L3179 Hamada, PSieve, Srsieve, PrimeGrid, LLR L3183 Haller, Srsieve, PrimeGrid, LLR L3184 Hayslette, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3200 Athanas, PSieve, Srsieve, PrimeGrid, LLR L3203 Scalise, TwinGen, PrimeGrid, LLR L3209 McArdle, GenefX64, AthGFNSieve, PrimeGrid, LLR L3222 Yamamoto, PSieve, Srsieve, PrimeGrid, LLR L3223 Yurgandzhiev, PSieve, Srsieve, PrimeGrid, LLR L3230 Kumagai, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3234 Parangalan, PSieve, Srsieve, PrimeGrid, LLR L3249 Lind, PSieve, Srsieve, PrimeGrid, LLR L3260 Stanko, PSieve, Srsieve, PrimeGrid, LLR L3261 Batalov, PSieve, Srsieve, PrimeGrid, LLR L3262 Molder, PSieve, Srsieve, PrimeGrid, LLR L3267 Cain, PSieve, Srsieve, PrimeGrid, LLR L3278 Fischer1, PSieve, Srsieve, PrimeGrid, LLR L3323 Ritschel, NewPGen, TOPS, LLR L3325 Elvy, PSieve, Srsieve, PrimeGrid, LLR L3329 Tatearka, PSieve, Srsieve, PrimeGrid, LLR L3345 Domanov1, PSieve, Rieselprime, LLR L3372 Ryan, PSieve, Srsieve, PrimeGrid, LLR L3377 Ollivier, PSieve, Srsieve, PrimeGrid, LLR L3378 Glasgow, PSieve, Srsieve, PrimeGrid, LLR L3415 Johnston1, PSieve, Srsieve, PrimeGrid, LLR L3430 Durstewitz, PSieve, Srsieve, PrimeGrid, LLR L3431 Gahan, PSieve, Srsieve, PrimeGrid, LLR L3432 Batalov, Srsieve, LLR L3458 Jia, PSieve, Srsieve, PrimeGrid, LLR L3459 Boruvka, PSieve, Srsieve, PrimeGrid, LLR L3460 Ottusch, PSieve, Srsieve, PrimeGrid, LLR L3483 Farrow, PSieve, Srsieve, PrimeGrid, LLR L3494 Batalov, NewPGen, LLR L3502 Ristic, PSieve, Srsieve, PrimeGrid, LLR L3512 Tsuji, PSieve, Srsieve, PrimeGrid, LLR L3514 Bishop1, PSieve, Srsieve, PrimeGrid, OpenPFGW, LLR L3519 Kurtovic, PSieve, Srsieve, Rieselprime, LLR L3523 Brown1, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3528 Batalov, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3532 Batalov, Gcwsieve, LLR L3539 Jacobs, PSieve, Srsieve, PrimeGrid, LLR L3543 Yama, PrimeGrid, LLR L3545 Eskam1, PSieve, Srsieve, PrimeGrid, LLR L3547 Ready, Srsieve, PrimeGrid, LLR L3548 Ready, PSieve, Srsieve, PrimeGrid, LLR L3549 Hirai, Srsieve, PrimeGrid, LLR L3552 Benson2, Srsieve, PrimeGrid, LLR L3553 Cilliers, Srsieve, PrimeGrid, LLR L3562 Schouten, Srsieve, PrimeGrid, LLR L3564 Jaworski, Srsieve, CRUS, LLR L3566 Slakans, Srsieve, PrimeGrid, LLR L3567 Meili, Srsieve, PrimeGrid, LLR L3573 Batalov, TwinGen, PrimeGrid, LLR L3593 Veit, PSieve, Srsieve, PrimeGrid, LLR L3601 Jablonski1, PSieve, Srsieve, PrimeGrid, LLR L3606 Sander, TwinGen, PrimeGrid, LLR L3610 Batalov, Srsieve, CRUS, LLR L3659 Volynsky, Srsieve, PrimeGrid, LLR L3662 Schawe, PSieve, Srsieve, PrimeGrid, LLR L3665 Kelava1, PSieve, Srsieve, Rieselprime, LLR L3668 Prokopchuk, PSieve, Srsieve, PrimeGrid, LLR L3686 Yost, Srsieve, PrimeGrid, LLR L3719 Skinner, PSieve, Srsieve, PrimeGrid, LLR L3720 Ohno, Srsieve, PrimeGrid, LLR L3735 Kurtovic, Srsieve, LLR L3743 Parker1, PSieve, Srsieve, PrimeGrid, LLR L3749 Meador, Srsieve, PrimeGrid, LLR L3760 Okazaki, PSieve, Srsieve, PrimeGrid, LLR L3763 Martin4, PSieve, Srsieve, PrimeGrid, LLR L3764 Diepeveen, PSieve, Srsieve, Rieselprime, LLR L3770 Tang, Srsieve, PrimeGrid, LLR L3772 Ottusch, Srsieve, PrimeGrid, LLR L3784 Cavnaugh, PSieve, Srsieve, PrimeGrid, LLR L3789 Toda, Srsieve, PrimeGrid, LLR L3802 Aggarwal, Srsieve, LLR L3803 Bredl, PSieve, Srsieve, PrimeGrid, LLR L3810 Radle, PSieve, Srsieve, PrimeGrid, LLR L3813 Chambers2, PSieve, Srsieve, PrimeGrid, LLR L3824 Mazzucato, PSieve, Srsieve, PrimeGrid, LLR L3829 Abrahmi, TwinGen, PrimeGrid, LLR L3839 Batalov, EMsieve, LLR L3849 Smith10, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3859 Clifton, PSieve, Srsieve, PrimeGrid, LLR L3865 Silva, PSieve, Srsieve, PrimeGrid, LLR L3869 Cholt, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3877 Jarne, PSieve, Srsieve, PrimeGrid, LLR L3887 Byerly, PSieve, Rieselprime, LLR L3895 Englehard, PSieve, Srsieve, PrimeGrid, LLR L3898 Christy, PSieve, Srsieve, PrimeGrid, LLR L3903 Miao, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3904 Darimont, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3910 Bischof, PSieve, Srsieve, PrimeGrid, LLR L3917 Rodenkirch, PSieve, Srsieve, LLR L3919 Pickering, PSieve, Srsieve, PrimeGrid, LLR L3924 Kim5, PSieve, Srsieve, PrimeGrid, LLR L3925 Okazaki, Srsieve, PrimeGrid, LLR L3933 Batalov, PSieve, Srsieve, CRUS, Rieselprime, LLR L3941 Lee8, PSieve, Srsieve, PrimeGrid, LLR L3961 Darimont, Srsieve, PrimeGrid, LLR L3964 Iakovlev, Srsieve, PrimeGrid, LLR L3975 Hou, PSieve, Srsieve, PrimeGrid, LLR L3993 Gushchak, Srsieve, PrimeGrid, LLR L3994 Domanov1, PSieve, Srsieve, NPLB, LLR L3995 Unbekannt, PSieve, Srsieve, PrimeGrid, LLR L3998 Rossman, PSieve, Srsieve, PrimeGrid, LLR L4001 Willig, Srsieve, CRUS, LLR L4016 Bedenbaugh, PSieve, Srsieve, PrimeGrid, LLR L4021 Busse, PSieve, Srsieve, PrimeGrid, LLR L4031 Darney, PSieve, Srsieve, PrimeGrid, LLR L4034 Vanc, Srsieve, PrimeGrid, LLR L4036 Domanov1, PSieve, Srsieve, CRUS, LLR L4043 Niedbala, PSieve, Srsieve, PrimeGrid, LLR L4045 Chew, PSieve, Srsieve, PrimeGrid, LLR L4061 Lee, PSieve, Srsieve, PrimeGrid, LLR L4064 Davies, Srsieve, CRUS, LLR L4082 Zimmerman, PSieve, Srsieve, PrimeGrid, LLR L4083 Charrondiere, PSieve, Srsieve, PrimeGrid, LLR L4087 Kecic, PSieve, Srsieve, PrimeGrid, LLR L4088 Graeber, PSieve, Srsieve, PrimeGrid, LLR L4099 Nietering, PSieve, Srsieve, PrimeGrid, LLR L4103 Klopffleisch, Srsieve, PrimeGrid, LLR L4108 Yoshioka, PSieve, Srsieve, PrimeGrid, LLR L4109 Palmer1, PSieve, Srsieve, PrimeGrid, LLR L4113 Batalov, PSieve, Srsieve, LLR L4114 Bubloski, PSieve, Srsieve, PrimeGrid, LLR L4119 Nelson3, PSieve, Srsieve, PrimeGrid, LLR L4139 Hawker, Srsieve, CRUS, LLR L4142 Batalov, CycloSv, EMsieve, PIES, LLR L4146 Schmidt1, Srsieve, PrimeGrid, LLR L4147 Mohacsy, PSieve, Srsieve, PrimeGrid, LLR L4148 Glatte, PSieve, Srsieve, PrimeGrid, LLR L4155 Jones4, PSieve, Srsieve, PrimeGrid, LLR L4159 Schulz5, Srsieve, PrimeGrid, LLR L4166 Kwok, PSieve, LLR L4185 Hoefliger, PSieve, Srsieve, PrimeGrid, LLR L4187 Schmidt2, Srsieve, CRUS, LLR L4189 Lawrence, Powell, Srsieve, CRUS, LLR L4190 Fnasek, PSieve, Srsieve, PrimeGrid, LLR L4197 Kumagai1, Srsieve, PrimeGrid, LLR L4198 Rawles, PSieve, Srsieve, PrimeGrid, LLR L4200 Harste, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4201 Brown1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4203 Azarenko, PSieve, Srsieve, PrimeGrid, LLR L4204 Winslow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4205 Bischof, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4207 Jaamann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4208 Farrow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4210 Cholt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4226 Heath, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4231 Schneider1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4245 Greer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4249 Larsson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4250 Vogt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4252 Nietering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4256 Gniesmer, PSieve, Srsieve, PrimeGrid, LLR L4267 Batalov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4273 Rangelrooij, Srsieve, CRUS, LLR L4274 AhlforsDahl, Srsieve, PrimeGrid, LLR L4276 Borbely, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4285 Bravin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4286 Zimmerman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4289 Ito2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4293 Trunov, PSieve, Srsieve, PrimeGrid, LLR L4294 Kurtovic, Srsieve, CRUS, Prime95, LLR L4295 Splain, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4303 Thorson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4307 Keller1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4308 Matillek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4309 Kecic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4314 DeThomas, PSieve, Srsieve, PrimeGrid, LLR L4316 Nilsson1, PSieve, Srsieve, PrimeGrid, LLR L4323 Seisums, PSieve, Srsieve, PrimeGrid, LLR L4326 Steel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4329 Okon, Srsieve, LLR L4334 Miller5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4340 Becker4, Srsieve, PrimeGrid, LLR L4341 Goetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4342 Kaiser1, PolySieve, NewPGen, LLR L4343 Norton, PSieve, Srsieve, PrimeGrid, LLR L4347 Schaeffer, PSieve, Srsieve, PrimeGrid, LLR L4348 Burridge, Srsieve, PrimeGrid, LLR L4352 Fahlenkamp1, PSieve, Srsieve, PrimeGrid, LLR L4358 Tesarz, PSieve, Srsieve, PrimeGrid, LLR L4359 Andou, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4362 Mochizuki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4364 Steinbach, PSieve, Srsieve, PrimeGrid, LLR L4371 Schmidt2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4380 Rix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4387 Davies, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4388 Mena, PSieve, Srsieve, PrimeGrid, LLR L4393 Veit1, Srsieve, CRUS, LLR L4395 Nilsson1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4398 Greer, Srsieve, PrimeGrid, LLR L4404 Stepnicka, PSieve, Srsieve, PrimeGrid, LLR L4405 Eckhard, Srsieve, LLR L4406 Mathers, PSieve, Srsieve, PrimeGrid, LLR L4408 Fricke, PSieve, Srsieve, PrimeGrid, LLR L4410 Andresson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4411 Leudesdorff, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4412 Simpson3, PSieve, Srsieve, PrimeGrid, LLR L4414 Falk, PSieve, Srsieve, PrimeGrid, LLR L4417 Rasp, PSieve, Srsieve, PrimeGrid, LLR L4424 Miyauchi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4425 Weber1, PSieve, Srsieve, PrimeGrid, LLR L4429 Lacroix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4435 Larsson, Srsieve, PrimeGrid, LLR L4441 Miyauchi, PSieve, Srsieve, PrimeGrid, LLR L4444 Terber, Srsieve, CRUS, LLR L4445 Leudesdorff, PSieve, Srsieve, PrimeGrid, LLR L4454 Clark5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4456 Chambers2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4457 Geiger, PSieve, Srsieve, PrimeGrid, LLR L4459 Biscop, PSieve, Srsieve, PrimeGrid, LLR L4466 Falk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4472 Harvanek, Gcwsieve, MultiSieve, PrimeGrid, LLR L4476 Shane, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4477 Tennant, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4482 Mena, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4488 Vrontakis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4489 Szreter, PSieve, Srsieve, PrimeGrid, LLR L4490 Mazumdar, PSieve, Srsieve, PrimeGrid, LLR L4499 Ohsugi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4501 Eskam1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4504 Sesok, NewPGen, LLR L4505 Lind, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4506 Propper, Batalov, CycloSv, EMsieve, PIES, Prime95, LLR L4510 Ming, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4511 Donovan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4518 Primecrunch.com, Hedges, Srsieve, LLR L4521 Curtis, Srsieve, CRUS, LLR L4522 Lorsung, PSieve, Srsieve, PrimeGrid, LLR L4523 Mull, PSieve, Srsieve, PrimeGrid, LLR L4525 Kong1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4526 Schoefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4527 Fruzynski, PSieve, Srsieve, PrimeGrid, LLR L4530 Reynolds1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4531 Butez, PSieve, Srsieve, PrimeGrid, LLR L4537 Mayer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4544 Krauss, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4548 Sydekum, Srsieve, CRUS, Prime95, LLR L4549 Schick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4550 Terry, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4552 Koski, PSieve, Srsieve, PrimeGrid, LLR L4559 Okazaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4561 Propper, Batalov, CycloSv, Cyclo, EMsieve, PIES, LLR L4562 Donovan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4564 DeThomas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4568 Vrontakis, PSieve, Srsieve, PrimeGrid, LLR L4582 Kinney, PSieve, Srsieve, PrimeGrid, LLR L4583 Rohmann, PSieve, Srsieve, PrimeGrid, LLR L4584 Goforth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4585 Schawe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4591 Schwieger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4593 Mangio, PSieve, Srsieve, PrimeGrid, LLR L4595 Mangio, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4598 Connaughty, PSieve, Srsieve, PrimeGrid, LLR L4599 Loureiro, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4600 Simbarsky, PSieve, Srsieve, PrimeGrid, LLR L4609 Elgetz, PSieve, Srsieve, PrimeGrid, LLR L4620 Kinney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4622 Jurach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4623 Dugger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4626 Iltus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4645 McKibbon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4649 Humphries, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4654 Voskoboynikov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4656 Beck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4658 Maguin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4659 AverayJones, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4660 Snow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4664 Toledo, PSieve, Srsieve, PrimeGrid, LLR L4665 Szeluga, Kupidura, Banka, LLR L4666 Slade, PSieve, Srsieve, PrimeGrid, LLR L4667 Morelli, LLR L4668 Okazaki, Gcwsieve, MultiSieve, PrimeGrid, LLR L4669 Schwegler, Srsieve, PrimeGrid, LLR L4670 Drumm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4672 Slade, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4673 Okhrimouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4675 Lind, Srsieve, PrimeGrid, LLR L4676 Maloney, Srsieve, PrimeGrid, PrimeSierpinski, LLR L4677 Provencher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4683 Bird2, Srsieve, CRUS, LLR L4684 Sveen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4685 Masser, Srsieve, CRUS, LLR L4687 Campbell1, PSieve, Srsieve, PrimeGrid, LLR L4689 Gordon2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4690 Brandt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4691 Fruzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4692 Hajek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4694 Schapendonk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4695 Goudie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4696 Plottel, PSieve, Srsieve, PrimeGrid, LLR L4697 Sellsted, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4699 Parsonnet, PSieve, Srsieve, PrimeGrid, LLR L4700 Liu4, Srsieve, CRUS, LLR L4701 Kalus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4702 Charette, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4703 Pacini, PSieve, Srsieve, PrimeGrid, LLR L4704 Kurtovic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4706 Kraemer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4710 Wiedemann, PSieve, Srsieve, PrimeGrid, LLR L4711 Closs, PSieve, Srsieve, PrimeGrid, LLR L4712 Gravemeyer, PSieve, Srsieve, PrimeGrid, LLR L4713 Post, PSieve, Srsieve, PrimeGrid, LLR L4715 Skinner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4717 Wypych, PSieve, Srsieve, PrimeGrid, LLR L4718 Brown1, Gcwsieve, MultiSieve, PrimeGrid, LLR L4720 Gahan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4723 Lexut, PSieve, Srsieve, PrimeGrid, LLR L4724 Thonon, PSieve, Srsieve, PrimeGrid, LLR L4726 Miller7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4729 Wimmer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4730 Bowe, PSieve, Srsieve, PrimeGrid, LLR L4732 Miller7, PSieve, Srsieve, PrimeGrid, LLR L4733 Brazier, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4737 Reinhardt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4738 Gelhar, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4740 Silva1, PSieve, Srsieve, PrimeGrid, LLR L4741 Wong, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4742 Schlereth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4743 Plsak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4745 Cavnaugh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4746 Brech, PSieve, Srsieve, PrimeGrid, LLR L4747 Brech, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4752 Harvey2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4753 Riemann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4754 Calvin, PSieve, Srsieve, PrimeGrid, LLR L4755 Glatte, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4756 Dumange, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4757 Johnson9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4758 Walling, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4760 Sipes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4761 Romaidis, PSieve, Srsieve, PrimeGrid, LLR L4763 Guilleminot, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4764 McLean2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4765 Kumsta, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4772 Bird1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4773 Tohmola, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4774 Boehm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4775 Steinbach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4776 Lee7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4783 Marini, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4784 Bertolotti, Gcwsieve, MultiSieve, PrimeGrid, LLR L4786 Sydekum, Srsieve, CRUS, LLR L4787 Sunderland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4789 Kurtovic, Srsieve, Prime95, LLR L4791 Vaisanen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4793 Koski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4795 Lawson2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4796 White2, PSieve, Srsieve, PrimeGrid, LLR L4799 Vanderveen1, LLR L4800 Doenges, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4802 Jones5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4806 Rajala, Srsieve, CRUS, LLR L4807 Tsuji, Srsieve, PrimeGrid, LLR L4808 Kaiser1, PolySieve, LLR L4809 Bocan, Srsieve, PrimeGrid, LLR L4810 Dhuyvetters, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4814 Telesz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4815 Kozisek, PSieve, Srsieve, PrimeGrid, LLR L4816 Doenges, PSieve, Srsieve, PrimeGrid, LLR L4819 Inci, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4821 Svantner, PSieve, Srsieve, PrimeGrid, LLR L4822 Magklaras, PSieve, Srsieve, PrimeGrid, LLR L4823 Helm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4824 Allivato, PSieve, Srsieve, PrimeGrid, LLR L4826 Soraku, PSieve, Srsieve, PrimeGrid, LLR L4830 Eisler1, PSieve, Srsieve, PrimeGrid, LLR L4832 Meekins, Srsieve, CRUS, LLR L4834 Helm, PSieve, Srsieve, PrimeGrid, LLR L4835 Katzur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4837 Hines, Srsieve, CRUS, LLR L4840 Ylijoki, PSieve, Srsieve, PrimeGrid, LLR L4841 Baur, PSieve, Srsieve, PrimeGrid, LLR L4842 Smith11, PSieve, Srsieve, PrimeGrid, LLR L4843 Hutchins, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4844 Valentino, PSieve, Srsieve, PrimeGrid, LLR L4848 Adamec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4849 Burt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4850 Jones5, PSieve, Srsieve, PrimeGrid, LLR L4851 Schioler, PSieve, Srsieve, PrimeGrid, LLR L4854 Gory, PSieve, Srsieve, PrimeGrid, LLR L4858 Koriabine, PSieve, Srsieve, PrimeGrid, LLR L4859 Wang4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4861 Thonon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4864 Freihube, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4868 Bergmann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4869 Ogata, PSieve, Srsieve, PrimeGrid, LLR L4870 Wharton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4871 Gory, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4875 Parsonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4876 Tennant, Srsieve, CRUS, LLR L4877 Cherenkov, Srsieve, CRUS, LLR L4879 Propper, Batalov, Srsieve, LLR L4880 Goossens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4884 Somer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4889 Hundhausen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4892 Hewitt1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4893 Little, PSieve, Srsieve, PrimeGrid, LLR L4898 Kozisek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4903 Laurent1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4904 Dunchouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4905 Niegocki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4907 Reinhardt, PSieve, Srsieve, PrimeGrid, LLR L4909 Hall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4911 Calveley, Srsieve, CRUS, LLR L4914 Bishop_D, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4917 Corlatti, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4918 Weiss1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4920 Walsh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4922 Bulba, Sesok, LLR L4923 Koriabine, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4925 Korolev, Srsieve, CRUS, LLR L4926 Shenton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4927 Smith12, Srsieve, SRBase, CRUS, LLR L4928 Doornink, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4929 Givoni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4930 Shintani, PSieve, Srsieve, PrimeGrid, LLR L4932 Schroeder2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4933 Jacques, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4935 Simard, PSieve, Srsieve, PrimeGrid, LLR L4937 Ito2, Srsieve, PrimeGrid, LLR L4939 Coscia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4942 Matheis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4944 Schori, LLR2, PSieve, Srsieve, PrimeGrid, LLR L4945 Meili, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4948 SchwartzLowe, PSieve, Srsieve, PrimeGrid, LLR L4951 Niegocki, PSieve, Srsieve, PrimeGrid, LLR L4954 Romaidis, Srsieve, PrimeGrid, LLR L4955 Grosvenor, Srsieve, CRUS, LLR L4956 Merrylees, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4958 Shenton, PSieve, Srsieve, PrimeGrid, LLR L4959 Deakin, PSieve, Srsieve, PrimeGrid, LLR L4960 Kaiser1, NewPGen, TPS, LLR L4962 Baur, Srsieve, NewPGen, LLR L4963 Mortimore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4964 Doescher, GFNSvCUDA, GeneFer, LLR L4965 Propper, LLR L4968 Kaczala, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4970 Michael, PSieve, Srsieve, PrimeGrid, LLR L4972 Greer, Gcwsieve, MultiSieve, PrimeGrid, LLR L4973 Landrum, PSieve, Srsieve, PrimeGrid, LLR L4975 Thompson5, Srsieve, CRUS, LLR L4976 Propper, Batalov, Gcwsieve, LLR L4977 Miller8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4979 Matheis, PSieve, Srsieve, PrimeGrid, LLR L4980 Poon1, PSieve, Srsieve, PrimeGrid, LLR L4981 MartinezCucalon, PSieve, Srsieve, PrimeGrid, LLR L4984 Hemsley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4985 Veit, Srsieve, CRUS, LLR L4987 Canossi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4988 Harris3, PSieve, Srsieve, PrimeGrid, LLR L4990 Heindl, PSieve, Srsieve, PrimeGrid, LLR L4997 Gardner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4999 Andrews1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5001 Mamonov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5002 Kato, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5005 Hass, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5007 Faith, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5008 Niegocki, Srsieve, PrimeGrid, LLR L5009 Jungmann, Srsieve, LLR L5011 Strajt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5013 Wypych, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5014 Strokov, PSieve, Srsieve, PrimeGrid, LLR L5016 NebredaJunghans, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5018 Nielsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5019 Ayiomamitis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5020 Eikelenboom, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5021 Svantner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5022 Manz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5023 Schulz6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5024 Schumacher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5025 Lexut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5027 Moudy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5029 Krompolc, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5030 Calvin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5031 Schumacher, PSieve, Srsieve, PrimeGrid, LLR L5033 Ni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5036 Jung2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5037 Diepeveen, Underwood, PSieve, Srsieve, Rieselprime, LLR L5039 Gilliland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5041 Wallbaum, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5043 Vanderveen1, Propper, LLR L5044 Bergelt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5047 Little, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5051 Veit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5053 Yoshigoe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5056 Chu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5057 Hauhia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5061 Cooper5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5063 Wendelboe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5067 Tirkkonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5068 Silva1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5069 Friedrichsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5070 Millerick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5071 McLean2, Srsieve, CRUS, LLR L5072 Romaidis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5076 Atnashev, Srsieve, PrimeGrid, LLR L5077 Martinelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5078 McDonald4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5079 Meditz, PSieve, Srsieve, PrimeGrid, LLR L5080 Gahan, GFNSvCUDA, PrivGfnServer, LLR L5081 Howell, Srsieve, PrimeGrid, LLR L5083 Pickering, Srsieve, PrimeGrid, LLR L5084 Yagi, PSieve, Srsieve, PrimeGrid, LLR L5085 Strajt, PSieve, Srsieve, PrimeGrid, LLR L5087 Coscia, PSieve, Srsieve, PrimeGrid, LLR L5088 Hall1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5089 MARSIN, Srsieve, CRUS, LLR L5090 Jourdan, PSieve, Srsieve, PrimeGrid, LLR L5094 Th�mmler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5099 Lobring, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5100 Stephens, PSieve, Srsieve, PrimeGrid, LLR L5101 Candido, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5102 Liu6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5104 Gahan, LLR2, NewPGen, LLR L5105 Helm, LLR2, Srsieve, PrivGfnServer, LLR L5106 Glennie, PSieve, Srsieve, PrimeGrid, LLR L5110 Provencher, PSieve, Srsieve, PrimeGrid, LLR L5112 Vanderveen1, Srsieve, CRUS, LLR L5115 Doescher, LLR L5117 Trunov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5120 Greer, LLR2, PrivGfnServer, LLR L5122 Tennant, LLR2, PrivGfnServer, LLR L5123 Propper, Batalov, EMsieve, LLR L5125 Tirkkonen, PSieve, Srsieve, PrimeGrid, LLR L5126 Warach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5127 Kemenes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5129 Veit, Srsieve, PrimeGrid, LLR L5130 Jourdan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5134 Cooper5, PSieve, Srsieve, PrimeGrid, LLR L5139 Belozersky, PSieve, Srsieve, PrimeGrid, LLR L5143 Dickinson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5144 McNary, PSieve, Srsieve, PrimeGrid, LLR L5155 Harju, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5156 Dinkel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5157 Asano, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5158 Zuschlag, PSieve, Srsieve, PrimeGrid, LLR L5159 Huetter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5161 Greer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5162 Th�mmler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5166 Jaros1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5167 Gelhar, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5168 Hawkinson, PSieve, Srsieve, PrimeGrid, LLR L5169 Atnashev, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5171 Brown1, LLR2, Srsieve, PrimeGrid, LLR L5172 McNary, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5173 Bishop_D, PSieve, Srsieve, PrimeGrid, LLR L5174 Scalise, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5175 Liiv, PSieve, Srsieve, Rieselprime, LLR L5176 Early, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5177 Tapper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5178 Larsson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5179 Okazaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5180 Laluk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5181 Atnashev, LLR2, Srsieve, PrimeGrid, LLR L5183 Winskill1, PSieve, Srsieve, PrimeGrid, 12121search, LLR L5184 Byerly, PSieve, Srsieve, NPLB, LLR L5185 Elgetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5186 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, United, PrimeGrid, LLR L5188 Wong, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5189 Jackson1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5191 Kaiser1, NewPGen, LLR L5192 Anonymous, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5194 Jonas, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5195 Ridgway, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5196 Sielemann, Srsieve, CRUS, LLR L5197 Propper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5198 Elgetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5199 Romaidis, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5200 Terry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5201 Ford, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5202 Molne, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5203 Topham, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5205 Zuschlag, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5206 Wiseler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5207 Atnashev, LLR2, PrivGfnServer, LLR L5208 Schnur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5210 Brech, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5211 Orpen1, Srsieve, CRUS, LLR L5214 Dinkel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5215 Hawkinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5216 Brazier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5217 Wiseler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5220 Jones4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5223 Vera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5226 Brown1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5228 Jacques, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5229 Karpenko, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5230 Tapper, LLR2, Srsieve, PrimeGrid, LLR L5231 Veit, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5232 Bliedung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5233 Sipes, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5234 Greeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5235 Karpinski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5236 Shenton, LLR2, PSieve, Srsieve, PrivGfnServer, PrimeGrid, LLR L5237 Schwieger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5238 Jourdan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5239 Strajt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5242 Krompolc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5246 Vaisanen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5248 Delgado, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5249 Racanelli, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5250 Nakamura, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5253 Burt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5254 Gerstenberger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5256 Snow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5260 Ostaszewski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5261 Kim5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5262 Clark5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5263 Ito2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5264 Cholt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5265 Fleischman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5266 Sheridan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5267 Schnur, LLR2, Srsieve, PrimeGrid, LLR L5269 Clemence, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5270 Hennebert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5272 Conner, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5273 McGonegal, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5275 Templin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5276 Schawe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5277 McDevitt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5278 Nose, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5279 Schick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5282 Somer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5283 Hua, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5284 Fischer1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5285 Merrylees, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5286 Reynolds1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5287 Thonon, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5288 Heindl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5290 Cooper5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5294 Hewitt1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5295 Gilliland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5296 Piaive, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5297 Nakamura, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5298 Kaczmarek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5299 Corlatti, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5300 Hajek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5301 Harju, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5302 Davies, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5305 Thanry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5307 Bauer2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5308 Krauss, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5309 Bishop_D, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5310 Hubbard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5311 Reich, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5312 Tyndall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5313 Barnes, PSieve, Srsieve, Rieselprime, LLR L5314 Satoh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5315 Dec, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5316 Walsh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5317 Freeze, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5318 Ruber, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5319 Abbey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5320 Niegocki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5321 Dark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5322 Monnin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5323 Chan1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5324 Boehm, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5325 Drager, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5326 Deakin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5327 Shenton, LLR2, Srsieve, LLR L5332 Mizusawa, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5334 Jones6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5335 Harvey1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5336 Leblanc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5337 Kawamura1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5338 Deakin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5342 Rodenkirch, Srsieve, CRUS, LLR L5343 Tajika, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5344 Lowe1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5345 Johnson8, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5346 Polansky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5348 Adam, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5350 McDevitt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5352 Eklof, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5353 Belolipetskiy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5354 Doornink, NewPGen, OpenPFGW, LLR L5355 Henriksson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5356 Hsu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5358 Gmirkin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5359 Ridgway, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5360 Leitch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5361 Schneider6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5362 Domanov1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5364 Blyth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5366 Michael, Srsieve, CRUS, LLR L5367 Hsu2, Srsieve, CRUS, LLR L5368 Valentino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5369 Schnur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5370 Piotrowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5372 Vitiello, Srsieve, CRUS, LLR L5373 Baranchikov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5375 Blanchard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5376 Ranch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5377 Yasuhisa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5378 Seeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5379 Smith4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5380 Campulka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5381 Meppiel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5382 Bulanov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5384 Riemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5387 Johns, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5390 Lemkau, Srsieve, CRUS, LLR L5391 Black1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5392 McDonald4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5393 Lu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5395 Early, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5399 Kolesov, LLR L5400 Hefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5401 Champ, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5402 Greer, LLR2, Gcwsieve, MultiSieve, PrimeGrid, LLR L5403 Slade1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5404 Wiseler, LLR2, Srsieve, PrimeGrid, LLR L5405 Gerstenberger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5406 Jaros, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5407 Mahnken, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5408 Kreth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5409 Lu, Srsieve, CRUS, LLR L5410 Anonymous, Srsieve, CRUS, LLR L5412 Poon1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5413 David1, Srsieve, CRUS, LLR L5414 Mollerus, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5416 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5418 Pollak, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5421 Iwasaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5425 Lichtenwimmer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5426 Gilliland, Srsieve, CRUS, LLR L5427 Hewitt1, LLR2, Srsieve, PrimeGrid, LLR L5429 Meditz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5432 Tatsianenka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5433 Hatanaka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5434 Parsonnet, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5435 Murphy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5437 Rijfers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5438 Tang, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5439 Batalov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5440 McGonegal, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5441 Cherenkov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5442 Moreira, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5443 Venjakob, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5444 Platz, LLR2, Srsieve, PrimeGrid, LLR L5448 Rubin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5449 Reinhardt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5450 Mizusawa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5451 Wilkins, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5452 Morera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5453 Slaets, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5456 Gundermann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5457 Iwasaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5459 Sekanina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5460 Headrick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5461 Anonymous, LLR2, Srsieve, PrimeGrid, LLR L5462 Raimist, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5463 Goforth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5464 Pickering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5465 Hubbard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5466 Furushima, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5467 Tamai1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5470 Latge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5471 Dunchouk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5472 Ready, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5473 StPierre, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5476 Steinbach, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5477 Meador, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5480 Boddener, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5482 Raimist, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5485 Mahnken, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5488 Kecic, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5491 Piaive, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5492 Slaets, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5493 Liu6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5497 Goetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5499 Osada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5500 Racanelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5501 Seeley, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5502 Floyd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5503 Soule, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5504 Cerny, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5505 Chovanec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5507 Brandt2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5508 Gauch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5509 Nietering, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5512 Akesson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5514 Cavnaugh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5516 Piesker, PSieve, Srsieve, NPLB, LLR L5517 Cavecchia, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5518 Eisler1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5523 Sekanina, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5524 Matillek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5526 Kickler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5527 Doornink, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5529 Baur1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5530 Matillek, LLR2, Srsieve, PrimeGrid, LLR L5531 Koci, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5532 Morera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5534 Cervelle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5535 Skahill, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5536 Bennett1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5537 Schafer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5540 Brown6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5541 Parker, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5543 Lucendo, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5544 Byerly, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5545 Kruse, PSieve, Srsieve, NPLB, LLR L5546 Steinwedel, PSieve, Srsieve, NPLB, LLR L5547 Hoonoki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5548 Steinberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5549 Zhang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5550 Provencher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5553 DAmico, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5554 Lucendo, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5555 Parangalan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5556 Javens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5557 Drake, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5558 Lee7, LLR2, Srsieve, PrimeGrid, LLR L5559 Roberts, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5560 Amberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5562 Cheung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5563 Akesson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5564 Lee7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5565 Bailey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5566 Latge, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5567 Marshall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5568 Schioler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5569 Michael, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5570 Arnold, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5571 Williams7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5572 Sveen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5573 Friedrichsen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5574 Laboisne, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5575 Blanchard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5576 Amorim, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5577 Utebaev, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5578 Jablonski1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5579 Cox2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5581 Pickles, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5582 Einvik, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5583 Tanaka3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5584 Barr, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5585 Faith, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5586 Vultur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5587 AverayJones, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5588 Shi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5589 Kupka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5590 Schumacher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5592 Shintani, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5594 Brown7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5595 Hyvonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5596 Kozisek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5600 Steinberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5601 Sato1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5604 Takahashi2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5606 Clark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5607 Rodermond, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5608 Pieritz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5609 Sielemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5610 Katzur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5611 Smith13, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5612 Lugowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5613 Delisle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5614 Becker2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5615 Dodd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5616 Miller7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5617 Sliwicki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5618 Wilson4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5619 Piotrowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5620 He, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5621 Millerick, LLR2, Srsieve, PrimeGrid, LLR L5624 Farrow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5625 Sellsted, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5626 Clark, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5627 Bulanov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5629 Dickinson, Srsieve, CRUS, LLR L5631 Mittelstadt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5632 Marler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5634 Gao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5636 Santosa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5637 Bestor, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5638 Piskun, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5639 Cavecchia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5640 Xu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5641 Kwok, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5645 Orpen1, SRBase, LLR L5646 Dickey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5647 Soraku, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5648 York, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5649 Dietsch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5650 Ketamino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5651 Lexut, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5652 Wilson5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5653 Beck1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5655 Hoffman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5656 McAdams, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5657 Alden, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5658 Sloan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5662 OMalley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5663 Li5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5666 Wendelboe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5667 Totty, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5668 Finn, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5670 Heindl1, Srsieve, CRUS, LLR L5671 Rauh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5676 Fnasek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5679 Shane, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5682 Floyd, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5683 Glatte, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5685 Bestor, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5686 Pistorius, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5687 Wellck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5690 Eldred, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5693 Huan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5694 Petersen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5696 Earle, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5697 Black2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5698 Stenschke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5703 Koudelka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5704 Hampicke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5705 Wharton, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5706 Wallbaum, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5707 Johns, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5710 Hass, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5711 Gingrich1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5712 Stahl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5714 Loucks, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5715 Calvin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5718 Ketamino, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5720 Trigueiro, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5721 Fischer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5722 Rickard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5723 Fergusson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5724 Pilz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5725 Gingrich1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5726 Noxe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5727 Headrick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5731 Michael, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5732 Monroe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5735 Kobrzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5736 Riva, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5738 Schaeffer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5740 Chu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5742 Steinmetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5745 Saladin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5746 Meister1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5748 Norbert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5749 Gahan, LLR2, LLR L5750 Shi, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5752 Wissel, LLR L5754 Abad, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5755 Kwiatkowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5756 Wei, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5758 Bishop1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5763 Williams7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5764 Tirkkonen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5765 Propper, Gcwsieve, LLR L5766 Takahashi2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5767 Xu2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5768 Lewis2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5769 Welsh1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5770 Silva1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5771 Becker-Bergemann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5772 Tarson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5773 Lugowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5774 Chambers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5775 Garambois, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5776 Anonymous, LLR2, PSieve, Srsieve, United, PrimeGrid, LLR L5778 Sarok, Srsieve, CRUS, LLR L5780 Blanchard, Srsieve, CRUS, LLR L5782 Kang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5783 Bishop1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5784 Coplin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5787 Johnson10, Srsieve, CRUS, LLR L5789 Williams8, LLR L5790 Kolencik, Srsieve, CRUS, LLR L5791 Rindahl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5793 Wang5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5794 Morgan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5796 Hall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5797 Ivanovski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5798 Schoeberl, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5799 Lehmann1, LLR2, Srsieve, PrimeGrid, LLR L5802 Borgerding, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5803 Kwok, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5804 Bowe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5805 Belozersky, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5807 Krauss, Srsieve, PrimeGrid, PRST, LLR L5808 Propper, Batalov, PSieve, Srsieve, LLR L5809 Zhao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5810 Meister1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5811 Dettweiler, LLR2, Srsieve, CRUS, LLR L5812 Song, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5814 Chodzinski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5816 Guenter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5817 Kilstromer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5818 Belozersky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5819 Schmidt2, LLR2, PSieve, Srsieve, NPLB, LLR L5820 Hoonoki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5821 Elmore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5825 Norton, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5826 Morávek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5827 Yasuhisa, TwinGen, NewPGen, TPS, LLR L5829 Dickinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5830 McLean2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5831 Chapman2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5833 Russell2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5834 Roberts, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5836 Becker2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5837 Lin1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5839 Stewart1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5841 Yarham, Srsieve, CRUS, LLR L5842 Steenerson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5843 Vink, Kruse, Kwok, TwinGen, NewPGen, TPS, LLR L5844 Kadowaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5847 Eldredge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5848 Bressani, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5851 Liskay, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5852 Kwiatkowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5853 Simard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5854 Lehmann1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5855 Williams9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5858 GervaisLavoie, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5860 Joseph, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5862 Oppliger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5863 Duvinage, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5864 Amberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5865 Mendrik1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5866 Kim3, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5869 Arnold, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5870 Bodlina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5871 Yakubchak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5875 Monroe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5878 Klinkenberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5879 Sanner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5880 Gehrke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5881 Medcalf, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5882 Basil, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5887 DeRidder, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5888 Presler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5894 Tamai1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5904 Rix, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5913 Burtner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5916 Gao, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5923 Ryabchikov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5929 Bauer2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5938 Philip, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5945 Bush, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5948 Meuler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5956 Garnier1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5958 Myers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5960 Jayaputera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5961 Carlier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5969 Kang, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5971 Da_Mota, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5974 Presler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5977 Brockerhoff, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5984 Desbonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5986 Wolfe1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5989 Williams10, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5995 Lee10, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5997 Smith15, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5998 Da_Mota, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6001 Simbarsky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6002 Hauhia, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6005 Overstreet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6006 Propper, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6010 Chaney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6011 Mehner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6012 Tarson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6013 Preston1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6014 Greeley, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6015 Uehara1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6019 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, Rechenkraft, PrimeGrid, LLR L6026 Bruner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6027 Johnson10, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6029 Schmidt2, Kwok, LLR2, TwinGen, NewPGen, TPS, LLR L6033 Tang3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6035 Garrison1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6036 Hogan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6038 Schafer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6040 Garland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6042 Fink, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6043 Podsada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6044 Chesnut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6047 Wheeler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6049 Chen4, LLR L6057 Kim7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6058 StGeorge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6064 Adrian, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6065 Yakubchak1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6067 O’Hara, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6070 Mumper, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6072 Lundström, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6073 Rojas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6075 Chodzinski, LLR2, Srsieve, PrimeGrid, LLR L6076 Yakubchak2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6077 Vink, Schmidt2, Kwok, TwinGen, NewPGen, TPS, LLR L6078 Zhaozheng, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6080 Sondergard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6082 Mckinley, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6083 Yagi, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6084 Criswell, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6085 Granowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6086 Pastierik, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6087 Osaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6088 Abad, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6089 Lynch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6090 Champ, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6091 Paniczko, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6092 Boerner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6093 Wagner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6094 Skendelis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6095 Stach, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6096 Biggs, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6102 Yakubchak3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6110 Perek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6123 Mukanos, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6127 Natividad, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6129 Slade2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6151 Li6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6159 Weinberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6162 Earle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6163 Drozd, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6166 Carquillat, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6170 Liang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6173 Penning, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6176 Shriner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6177 Mostad, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6178 Hua, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6182 Jans, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6183 Lack, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6184 Michaud, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6185 Abromeit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6187 Deram, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6189 Mohacsy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6190 Wen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6201 Lein, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6202 Stach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6204 Probst, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6205 McDonald3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6207 Allen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6215 Vykouril, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6217 Keskitalo, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6219 Roy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6220 Sandhop, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6221 Wu2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6227 Zhao1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6229 Dean1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6230 Gnann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6233 Zhong, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6235 Rosick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6236 Neujahr, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6237 Steffens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6238 Pabsch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6239 Andrews1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6240 Christensen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6241 Haberer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6242 Nolan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6243 Baker2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6244 Desprez, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6245 Perek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6246 Slade, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6247 Slade2, LLR2, PSieve, Srsieve, PrimeGrid, LLR M Morain MM Morii MP1 Durant, GIMPS, GpuOwl O Oakes p3 Dohmen, OpenPFGW p8 Caldwell, OpenPFGW p12 Water, OpenPFGW p16 Heuer, OpenPFGW p21 Anderson, Robinson, OpenPFGW p44 Broadhurst, OpenPFGW p49 Berg, OpenPFGW p54 Broadhurst, Water, OpenPFGW p58 Glover, Oakes, OpenPFGW p65 DavisK, Kuosa, OpenPFGW p85 Marchal, Carmody, Kuosa, OpenPFGW p137 Rodenkirch, MultiSieve, OpenPFGW p148 Yama, Noda, Nohara, NewPGen, MatGFN, PRP, OpenPFGW p151 Kubota, NewPGen, OpenPFGW p155 DavisK, NewPGen, OpenPFGW p158 Paridon, NewPGen, OpenPFGW p168 Cami, OpenPFGW p170 Wu_T, Primo, OpenPFGW p189 Bohanon, LLR, OpenPFGW p193 Irvine, Broadhurst, Primo, OpenPFGW p235 Bedwell, OpenPFGW p236 Cooper, NewPGen, PRP, OpenPFGW p247 Bonath, Srsieve, CRUS, LLR, OpenPFGW p252 Oakes, NewPGen, OpenPFGW p255 Siemelink, Srsieve, CRUS, OpenPFGW p259 Underbakke, GenefX64, AthGFNSieve, OpenPFGW p268 Rodenkirch, Srsieve, CRUS, OpenPFGW p269 Zhou, OpenPFGW p279 Domanov1, Srsieve, Rieselprime, Prime95, OpenPFGW p286 Batalov, Srsieve, OpenPFGW p290 Domanov1, Fpsieve, PrimeGrid, OpenPFGW p295 Angel, NewPGen, OpenPFGW p296 Kaiser1, Srsieve, LLR, OpenPFGW p301 Winskill1, Fpsieve, PrimeGrid, OpenPFGW p302 Gasewicz, Fpsieve, PrimeGrid, OpenPFGW p308 DavisK, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p309 Yama, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p310 Hubbard, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p312 Doggart, Fpsieve, PrimeGrid, OpenPFGW p314 Hubbard, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p332 Johnson6, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p334 Goetz, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p338 Tomecko, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p342 Trice, OpenPFGW p346 Burt, Fpsieve, PrimeGrid, OpenPFGW p350 Koen, Gcwsieve, GenWoodall, OpenPFGW p355 Domanov1, Srsieve, CRUS, OpenPFGW p360 Kinne, Exoo, OpenPFGW p362 Snow, Fpsieve, PrimeGrid, OpenPFGW p363 Batalov, OpenPFGW p364 Batalov, NewPGen, OpenPFGW p365 Poplin, Srsieve, CRUS, OpenPFGW p366 Demeyer, Siemelink, Srsieve, CRUS, OpenPFGW p373 Morelli, OpenPFGW p378 Batalov, Srsieve, CRUS, LLR, OpenPFGW p379 Batalov, CycloSv, Cyclo, EMsieve, PIES, OpenPFGW p382 Oestlin, NewPGen, OpenPFGW p384 Booker, OpenPFGW p387 Zimmerman, GeneFer, AthGFNSieve, PrimeGrid, OpenPFGW p391 Keiser, NewPGen, OpenPFGW p394 Fukui, MultiSieve, OpenPFGW p395 Angel, Augustin, NewPGen, OpenPFGW p396 Ikisugi, OpenPFGW p398 Stocker, OpenPFGW p403 Bonath, Cksieve, OpenPFGW p405 Propper, Cksieve, OpenPFGW p406 DavisK, Luhn, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p407 Lamprecht, Luhn, OpenPFGW p408 Batalov, PolySieve, OpenPFGW p409 Nielsen1, OpenPFGW p413 Morimoto, OpenPFGW p414 Naimi, OpenPFGW p416 Monnin, LLR2, PrivGfnServer, OpenPFGW p417 Tennant, LLR2, PrivGfnServer, OpenPFGW p418 Sielemann, LLR2, PrivGfnServer, OpenPFGW p419 Bird1, LLR2, PrivGfnServer, OpenPFGW p420 Alex, OpenPFGW p421 Gahan, LLR2, PrivGfnServer, OpenPFGW p422 Kaiser1, PolySieve, OpenPFGW p423 Propper, Batalov, EMsieve, OpenPFGW p425 Propper, MultiSieve, OpenPFGW p426 Schoeler, NewPGen, OpenPFGW p427 Niegocki, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p428 Trunov, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p430 Propper, Batalov, NewPGen, OpenPFGW p431 Piesker, Srsieve, CRUS, OpenPFGW p433 Dettweiler, LLR2, Srsieve, CRUS, OpenPFGW p434 Doornink, MultiSieve, OpenPFGW p435 Dettweiler, LLR2, PSieve, Srsieve, NPLB, OpenPFGW p436 Schwieger, OpenPFGW p437 Propper, Batalov, EMsieve, PIES, OpenPFGW p439 Trice, MultiSieve, OpenPFGW p440 Batalov, EMsieve, OpenPFGW p441 Wu_T, CM, OpenPFGW p442 Presler, MultiSieve, PrimeGrid, PRST, OpenPFGW p443 Brochtrup, Srsieve, CRUS, OpenPFGW p444 Kadowaki, MultiSieve, PrimeGrid, PRST, OpenPFGW p445 Merrylees, MultiSieve, PrimeGrid, PRST, OpenPFGW p446 Greer, MultiSieve, PrimeGrid, PRST, OpenPFGW p447 Wallbaum, MultiSieve, PrimeGrid, PRST, OpenPFGW p448 Little, MultiSieve, PrimeGrid, PRST, OpenPFGW p449 Rodriguez2, OpenPFGW PM Mihailescu SB10 Agafonov, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB11 Sunde, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB12 Szabolcs, Srsieve, SoBSieve, ProthSieve, Ksieve, PrimeGrid, LLR, SB SB6 Sundquist, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB7 Team_Prime_Rib, SoBSieve, ProthSieve, Ksieve, PRP, SB SB8 Gordon, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB9 Hassler, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SG Slowinski, Gage WD Williams, Dubner, Cruncher WM Morain, Williams x13 Renze x16 Doumen, Beelen, Unknown x20 Irvine, Broadhurst, Water x23 Broadhurst, Water, Renze, OpenPFGW, Primo x24 Jarai_Z, Farkas, Csajbok, Kasza, Jarai, Unknown x25 Broadhurst, Water, OpenPFGW, Primo x28 Iskra x33 Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x36 Irvine, Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x38 Broadhurst, OpenPFGW, Primo x39 Broadhurst, Dubner, Keller, OpenPFGW, Primo x44 Zhou, Unknown x45 Batalov, OpenPFGW, Primo, Unknown x46 Otremba, Fpsieve, OpenPFGW, Unknown x47 Szekeres, Magyar, Gevay, Farkas, Jarai, Unknown x48 Asuncion, Allombert, Unknown x49 Facq, Asuncion, Allombert, Unknown x50 Propper, GFNSvCUDA, GeneFer, Unknown x51 Lexut1, Srsieve, CRUS, Unknown Y Young