THE LARGEST KNOWN PRIMES (The 5,000 largest known primes) (selected smaller primes which have comments are included) Originally Compiled by Samuel Yates -- Continued by Chris Caldwell and now maintained by Reginald McLean (Thu Apr 3 23:37:31 UTC 2025) So that I can maintain this database of the 5,000 largest known primes (plus selected smaller primes with 1,000 or more digits), please send any new primes (that are large enough) to: https://t5k.org/bios/submission.php This list in a searchable form (plus information such as how to find large primes and how to prove primality) is available at the interactive web site: https://t5k.org/primes/ See the last pages for information about the provers. The letters after the rank refer to when the prime was submitted. 'a' is this month, 'b' last month... ----- ------------------------------- -------- ----- ---- -------------- rank description digits who year comment ----- ------------------------------- -------- ----- ---- -------------- 1 2^136279841-1 41024320 MP1 2024 Mersenne 52?? 2 2^82589933-1 24862048 G16 2018 Mersenne 51? 3 2^77232917-1 23249425 G15 2018 Mersenne 50? 4 2^74207281-1 22338618 G14 2016 Mersenne 49? 5 2^57885161-1 17425170 G13 2013 Mersenne 48 6 2^43112609-1 12978189 G10 2008 Mersenne 47 7 2^42643801-1 12837064 G12 2009 Mersenne 46 8 516693^2097152-516693^1048576+1 11981518 L4561 2023 Generalized unique 9 465859^2097152-465859^1048576+1 11887192 L4561 2023 Generalized unique 10 2^37156667-1 11185272 G11 2008 Mersenne 45 11 2^32582657-1 9808358 G9 2006 Mersenne 44 12 10223*2^31172165+1 9383761 SB12 2016 13 2^30402457-1 9152052 G9 2005 Mersenne 43 14 4*5^11786358+1 8238312 A2 2024 Generalized Fermat 15 2^25964951-1 7816230 G8 2005 Mersenne 42 16 69*2^24612729-1 7409172 A2 2024 17 2^24036583-1 7235733 G7 2004 Mersenne 41 18 107347*2^23427517-1 7052391 A2 2024 19e 3843236^1048576+1 6904556 L6094 2024 Generalized Fermat 20 3*2^22103376-1 6653780 L6075 2024 21 1963736^1048576+1 6598776 L4245 2022 Generalized Fermat 22 1951734^1048576+1 6595985 L5583 2022 Generalized Fermat 23 202705*2^21320516+1 6418121 L5181 2021 24 2^20996011-1 6320430 G6 2003 Mersenne 40 25 1059094^1048576+1 6317602 L4720 2018 Generalized Fermat 26 3*2^20928756-1 6300184 L5799 2023 27 919444^1048576+1 6253210 L4286 2017 Generalized Fermat 28 81*2^20498148+1 6170560 L4965 2023 Generalized Fermat 29 7*2^20267500+1 6101127 L4965 2022 Divides GF(20267499,12) [GG] 30 4*5^8431178+1 5893142 A2 2024 Generalized Fermat 31 168451*2^19375200+1 5832522 L4676 2017 32 69*2^19374980-1 5832452 L4965 2022 33 3*2^18924988-1 5696990 L5530 2022 34 69*2^18831865-1 5668959 L4965 2021 35 2*3^11879700+1 5668058 A2 2024 36 97139*2^18397548-1 5538219 L4965 2023 37 7*2^18233956+1 5488969 L4965 2020 Divides Fermat F(18233954) 38 3*2^18196595-1 5477722 L5461 2022 39 4*3^11279466+1 5381674 A2 2024 Generalized Fermat 40 3*2^17748034-1 5342692 L5404 2021 41 123447^1048576-123447^524288+1 5338805 L4561 2017 Generalized unique 42 3622*5^7558139-1 5282917 L4965 2022 43 7*6^6772401+1 5269954 L4965 2019 44 2*3^10852677+1 5178044 L4965 2023 Divides phi 45 8508301*2^17016603-1 5122515 L4784 2018 Woodall 46 8*10^5112847-1 5112848 A19 2024 Near-repdigit 47 13*2^16828072+1 5065756 A2 2023 48 3*2^16819291-1 5063112 L5230 2021 49f 5287180*3^10574360-1 5045259 A20 2024 Generalized Woodall 50 3*2^16408818+1 4939547 L5171 2020 Divides GF(16408814,3), GF(16408817,5) 51 2329989*2^16309923-1 4909783 A20 2024 Generalized Woodall 52 69*2^15866556-1 4776312 L4965 2021 53 2036*3^10009192+1 4775602 A2 2024 54 2525532*73^2525532+1 4705888 L5402 2021 Generalized Cullen 55 1419499*2^15614489-1 4700436 A20 2024 Generalized Woodall 56 11*2^15502315+1 4666663 L4965 2023 Divides GF(15502313,10) [GG] 57 (10^2332974+1)^2-2 4665949 p405 2024 58 37*2^15474010+1 4658143 L4965 2022 59 93839*2^15337656-1 4617100 L4965 2022 60 2^15317227+2^7658614+1 4610945 L5123 2020 Gaussian Mersenne norm 41?, generalized unique 61 13*2^15294536+1 4604116 A2 2023 62 6*5^6546983+1 4576146 L4965 2020 63 4788920*3^9577840-1 4569798 A20 2024 Generalized Woodall 64c 31*2^15145093-1 4559129 A2 2025 65 69*2^14977631-1 4508719 L4965 2021 66 192971*2^14773498-1 4447272 L4965 2021 67 4*3^9214845+1 4396600 A2 2024 68 9145334*3^9145334+1 4363441 A6 2023 Generalized Cullen 69 4*5^6181673-1 4320805 L4965 2022 70 396101*2^14259638-1 4292585 A20 2024 Generalized Woodall 71 6962*31^2863120-1 4269952 L5410 2020 72 37*2^14166940+1 4264676 L4965 2022 73 99739*2^14019102+1 4220176 L5008 2019 74 69*2^13832885-1 4164116 L4965 2022 75 404849*2^13764867+1 4143644 L4976 2021 Generalized Cullen 76 25*2^13719266+1 4129912 L4965 2022 Generalized Fermat 77 81*2^13708272+1 4126603 L4965 2022 Generalized Fermat 78 2740879*2^13704395-1 4125441 L4976 2019 Generalized Woodall 79 479216*3^8625889-1 4115601 L4976 2019 Generalized Woodall 80c 31*2^13514933-1 4068402 A2 2025 81 143332^786432-143332^393216+1 4055114 L4506 2017 Generalized unique 82 81*2^13470584+1 4055052 L4965 2022 Generalized Fermat 83 2^13466917-1 4053946 G5 2001 Mersenne 39 84 5778486*5^5778486+1 4038996 A6 2024 Generalized Cullen 85 9*2^13334487+1 4014082 L4965 2020 Divides GF(13334485,3) 86 206039*2^13104952-1 3944989 L4965 2021 87 2805222*5^5610444+1 3921539 L4972 2019 Generalized Cullen 88e 5128*22^2919993+1 3919869 L5811 2024 89 19249*2^13018586+1 3918990 SB10 2007 90 2293*2^12918431-1 3888839 L4965 2021 91 81*2^12804541+1 3854553 L4965 2022 92 4*5^5380542+1 3760839 L4965 2023 Generalized Fermat 93c 13520762^524288+1 3738699 L6221 2025 Generalized Fermat 94b 13427472^524288+1 3737122 L5775 2025 Generalized Fermat 95 9*2^12406887+1 3734847 L4965 2020 Divides GF(12406885,3) 96d 12900356^524288+1 3728004 L5639 2025 Generalized Fermat 97d 12693488^524288+1 3724323 L6096 2025 Generalized Fermat 98 11937916^524288+1 3710349 L6080 2024 Generalized Fermat 99 7*2^12286041-1 3698468 L4965 2023 100 10913140^524288+1 3689913 L6043 2024 Generalized Fermat 101 69*2^12231580-1 3682075 L4965 2021 102 27*2^12184319+1 3667847 L4965 2021 103 9332124^524288+1 3654278 L5025 2024 Generalized Fermat 104 8630170^524288+1 3636472 L5543 2024 Generalized Fermat 105 863282*5^5179692-1 3620456 A20 2024 Generalized Woodall 106 670490*12^3352450-1 3617907 A20 2024 Generalized Woodall 107 4*3^7578378+1 3615806 A2 2024 Generalized Fermat 108 11*2^11993994-1 3610554 A2 2024 109 3761*2^11978874-1 3606004 L4965 2022 110 95*2^11954552-1 3598681 A29 2024 111 259072*5^5136295-1 3590122 A45 2024 112 3*2^11895718-1 3580969 L4159 2015 113 37*2^11855148+1 3568757 L4965 2022 114 6339004^524288+1 3566218 L1372 2023 Generalized Fermat 115 763795*6^4582771+1 3566095 A6 2023 Generalized Cullen 116 5897794^524288+1 3549792 x50 2022 Generalized Fermat 117 3*2^11731850-1 3531640 L4103 2015 118 69*2^11718455-1 3527609 L4965 2020 119 8629*2^11708579-1 3524638 A2 2024 120 41*2^11676439+1 3514960 L4965 2022 121 4896418^524288+1 3507424 L4245 2022 Generalized Fermat 122 81*2^11616017+1 3496772 L4965 2022 123 69*2^11604348-1 3493259 L4965 2020 124 4450871*6^4450871+1 3463458 L5765 2023 Generalized Cullen 125 9*2^11500843+1 3462100 L4965 2020 Divides GF(11500840,12) 126 3*2^11484018-1 3457035 L3993 2014 127 193997*2^11452891+1 3447670 L4398 2018 128 29914*5^4930904+1 3446559 A41 2024 129 3638450^524288+1 3439810 L4591 2020 Generalized Fermat 130 9221*2^11392194-1 3429397 L5267 2021 131 9*2^11366286+1 3421594 L4965 2020 Generalized Fermat 132 5*2^11355764-1 3418427 L4965 2021 133 732050*6^4392301+1 3417881 L5765 2023 Generalized Cullen 134 3214654^524288+1 3411613 L4309 2019 Generalized Fermat 135 632760!-1 3395992 A43 2024 Factorial 136 146561*2^11280802-1 3395865 L5181 2020 137 51208*5^4857576+1 3395305 A30 2024 138 2985036^524288+1 3394739 L4752 2019 Generalized Fermat 139d 4591*2^11270837-1 3392864 A2 2025 140 6929*2^11255424-1 3388225 L4965 2022 141 2877652^524288+1 3386397 L4250 2019 Generalized Fermat 142 2788032^524288+1 3379193 L4584 2019 Generalized Fermat 143 2733014^524288+1 3374655 L4929 2019 Generalized Fermat 144 9*2^11158963+1 3359184 L4965 2020 Divides GF(11158962,5) 145 9271*2^11134335-1 3351773 L4965 2021 146 136804*5^4777253-1 3339162 A23 2024 147 2312092^524288+1 3336572 L4720 2018 Generalized Fermat 148 987324*48^1974648-1 3319866 A20 2024 Generalized Woodall 149 2061748^524288+1 3310478 L4783 2018 Generalized Fermat 150 1880370^524288+1 3289511 L4201 2018 Generalized Fermat 151 27*2^10902757-1 3282059 L4965 2022 152 3*2^10829346+1 3259959 L3770 2014 Divides GF(10829343,3), GF(10829345,5) 153 11*2^10803449+1 3252164 L4965 2022 Divides GF(10803448,6) 154 11*2^10797109+1 3250255 L4965 2022 155 7*2^10612737-1 3194754 L4965 2022 156 7351117#+1 3191401 p448 2024 Primorial 157 37*2^10599476+1 3190762 L4965 2022 Divides GF(10599475,10) 158 5*2^10495620-1 3159498 L4965 2021 159 3^6608603-3^3304302+1 3153105 L5123 2023 Generalized unique 160 5*2^10349000-1 3115361 L4965 2021 161 844833^524288-844833^262144+1 3107335 L4506 2017 Generalized unique 162 52922*5^4399812-1 3075342 A1 2023 163 712012^524288-712012^262144+1 3068389 L4506 2017 Generalized unique 164 177742*5^4386703-1 3066180 L5807 2023 165 4*3^6402015+1 3054539 A2 2024 166 874208*54^1748416-1 3028951 L4976 2019 Generalized Woodall 167 475856^524288+1 2976633 L3230 2012 Generalized Fermat 168 2*3^6236772+1 2975697 L4965 2022 169 15*2^9830108+1 2959159 A2 2023 170 9*2^9778263+1 2943552 L4965 2020 171 198*558^1061348+1 2915138 A28 2024 172 1806676*41^1806676+1 2913785 L4668 2018 Generalized Cullen 173 356926^524288+1 2911151 L3209 2012 Generalized Fermat 174 341112^524288+1 2900832 L3184 2012 Generalized Fermat 175 213988*5^4138363-1 2892597 L5621 2022 176 43*2^9596983-1 2888982 L4965 2022 177 121*2^9584444+1 2885208 L5183 2020 Generalized Fermat 178 15*2^9482269-1 2854449 A2 2024 179 6533299#-1 2835864 p447 2024 Primorial 180 11*2^9381365+1 2824074 L4965 2020 Divides GF(9381364,6) 181 15*2^9312889+1 2803461 L4965 2023 182 49*2^9187790+1 2765803 L4965 2022 Generalized Fermat 183 6369619#+1 2765105 p445 2024 Primorial 184 27653*2^9167433+1 2759677 SB8 2005 185 6354977#-1 2758832 p446 2024 Primorial 186 90527*2^9162167+1 2758093 L1460 2010 187 6795*2^9144320-1 2752719 L4965 2021 188 31*2^9088085-1 2735788 A2 2024 189 75*2^9079482+1 2733199 L4965 2023 190 1323365*116^1323365+1 2732038 L4718 2018 Generalized Cullen 191 57*2^9075622-1 2732037 L4965 2022 192 10^2718281-5*10^1631138-5*10^1087142-1 2718281 p423 2024 Palindrome 193 63838*5^3887851-1 2717497 L5558 2022 194 13*2^8989858+1 2706219 L4965 2020 195 4159*2^8938471-1 2690752 L4965 2022 196 273809*2^8932416-1 2688931 L1056 2017 197 93*2^8898285+1 2678653 A2 2024 198 2*3^5570081+1 2657605 L4965 2020 Divides Phi(3^5570081,2) [g427] 199 25*2^8788628+1 2645643 L5161 2021 Generalized Fermat 200 2038*366^1028507-1 2636562 L2054 2016 201 64598*5^3769854-1 2635020 L5427 2022 202 63*2^8741225+1 2631373 A2 2024 203 8*785^900325+1 2606325 L4786 2022 204 17*2^8636199+1 2599757 L5161 2021 Divides GF(8636198,10) 205 75898^524288+1 2558647 p334 2011 Generalized Fermat 206 25*2^8456828+1 2545761 L5237 2021 Divides GF(8456827,12), generalized Fermat 207 39*2^8413422+1 2532694 L5232 2021 208 31*2^8348000+1 2513000 L5229 2021 209 27*2^8342438-1 2511326 L3483 2021 210 3687*2^8261084-1 2486838 L4965 2021 211 101*2^8152967+1 2454290 A2 2023 Divides GF(8152966,12) 212 273662*5^3493296-1 2441715 L5444 2021 213 81*2^8109236+1 2441126 L4965 2022 Generalized Fermat 214 11*2^8103463+1 2439387 L4965 2020 Divides GF(8103462,12) 215 102818*5^3440382-1 2404729 L5427 2021 216 11*2^7971110-1 2399545 L2484 2019 217 27*2^7963247+1 2397178 L5161 2021 Divides Fermat F(7963245) 218 3177*2^7954621-1 2394584 L4965 2021 219 39*2^7946769+1 2392218 L5226 2021 Divides GF(7946767,12) 220 7*6^3072198+1 2390636 L4965 2019 221 3765*2^7904593-1 2379524 L4965 2021 222 29*2^7899985+1 2378134 L5161 2021 Divides GF(7899984,6) 223 5113*2^7895471-1 2376778 L4965 2022 224 861*2^7895451-1 2376771 L4965 2021 225 75*2^7886683+1 2374131 A2 2023 226e 2661*2^7861390-1 2366518 A2 2024 227 99*2^7830910+1 2357341 A2 2024 228 28433*2^7830457+1 2357207 SB7 2004 229 2589*2^7803339-1 2349043 L4965 2022 230 59*2^7792307+1 2345720 A2 2024 231 101*2^7784453+1 2343356 A2 2024 232 95*2^7778585+1 2341590 A2 2024 233 8401*2^7767655-1 2338302 L4965 2023 234 9693*2^7767343-1 2338208 A2 2023 235 5*2^7755002-1 2334489 L4965 2021 236 2945*2^7753232-1 2333959 L4965 2022 237 2*836^798431+1 2333181 L4294 2024 238 63*2^7743186+1 2330934 A2 2024 239 2545*2^7732265-1 2327648 L4965 2021 240 5539*2^7730709-1 2327180 L4965 2021 241 4817*2^7719584-1 2323831 L4965 2021 242 183*558^842752+1 2314734 A28 2024 243 1341174*53^1341174+1 2312561 L4668 2017 Generalized Cullen 244 9467*2^7680034-1 2311925 L4965 2022 245 45*2^7661004+1 2306194 L5200 2020 246 15*2^7619838+1 2293801 L5192 2020 247 3597*2^7580693-1 2282020 L4965 2021 248 5256037#+1 2281955 p444 2024 Primorial 249 3129*2^7545557-1 2271443 L4965 2023 250 7401*2^7523295-1 2264742 L4965 2021 251 45*2^7513661+1 2261839 L5179 2020 252 558640^393216-558640^196608+1 2259865 L4506 2017 Generalized unique 253 9*2^7479919-1 2251681 L3345 2023 254 1875*2^7474308-1 2249995 L4965 2022 255 69*2^7452023+1 2243285 L4965 2023 Divides GF(7452020,3) [GG] 256 1281979*2^7447178+1 2241831 A8 2023 257 4*5^3189669-1 2229484 L4965 2022 258 29*2^7374577+1 2219971 L5169 2020 Divides GF(7374576,3) 259 2653*2^7368343-1 2218096 A2 2024 260 21555*2^7364128-1 2216828 A11 2024 261 3197*2^7359542-1 2215447 L4965 2022 262 109838*5^3168862-1 2214945 L5129 2020 263 95*2^7354869+1 2214039 A2 2023 264 101*2^7345194-1 2211126 L1884 2019 265 85*2^7333444+1 2207589 A2 2023 266 15*2^7300254+1 2197597 L5167 2020 267 422429!+1 2193027 p425 2022 Factorial 268 1759*2^7284439-1 2192838 L4965 2021 269 1909683*14^1909683+1 2188748 L5765 2023 Generalized Cullen 270 737*2^7269322-1 2188287 L4665 2017 271 6909*2^7258896-1 2185150 A2 2024 272 93*2^7241494+1 2179909 A2 2023 273 118568*5^3112069+1 2175248 L690 2020 274e 4215*2^7221386-1 2173858 A2 2024 275 40*257^901632+1 2172875 A11 2024 276 580633*2^7208783-1 2170066 A11 2024 277 6039*2^7207973-1 2169820 L4965 2021 278 502573*2^7181987-1 2162000 L3964 2014 279 402539*2^7173024-1 2159301 L3961 2014 280 3343*2^7166019-1 2157191 L1884 2016 281 161041*2^7107964+1 2139716 L4034 2015 282 294*213^918952-1 2139672 L5811 2023 283 27*2^7046834+1 2121310 L3483 2018 284 1759*2^7046791-1 2121299 L4965 2021 285 327*2^7044001-1 2120459 L4965 2021 286 5*2^7037188-1 2118406 L4965 2021 287 3*2^7033641+1 2117338 L2233 2011 Divides GF(7033639,3) 288 625783*2^7031319-1 2116644 A11 2024 289 33661*2^7031232+1 2116617 SB11 2007 290 237804^393216-237804^196608+1 2114016 L4506 2017 Generalized unique 291 207494*5^3017502-1 2109149 L5083 2020 292 15*2^6993631-1 2105294 L4965 2021 293 8943501*2^6972593-1 2098967 L466 2022 294 6020095*2^6972593-1 2098967 L466 2022 295 2^6972593-1 2098960 G4 1999 Mersenne 38 296 273*2^6963847-1 2096330 L4965 2022 297 6219*2^6958945-1 2094855 L4965 2021 298 51*2^6945567+1 2090826 L4965 2020 Divides GF(6945564,12) [p286] 299 3323*2^6921196-1 2083492 A2 2024 300 238694*5^2979422-1 2082532 L5081 2020 301 4*72^1119849-1 2079933 L4444 2016 302 33*2^6894190-1 2075360 L4965 2021 303 4778027#-1 2073926 p442 2024 Primorial 304 2345*2^6882320-1 2071789 L4965 2022 305 57*2^6857990+1 2064463 A2 2023 306 146264*5^2953282-1 2064261 L1056 2020 307 69*2^6838971-1 2058738 L5037 2020 308 35816*5^2945294-1 2058677 L5076 2020 309 127*2^6836153-1 2057890 L1862 2018 310 19*2^6833086+1 2056966 L5166 2020 311 65*2^6810465+1 2050157 A2 2023 312 40597*2^6808509-1 2049571 L3749 2013 313 283*2^6804731-1 2048431 L2484 2020 314 1861709*2^6789999+1 2044000 L5191 2020 315 5781*2^6789459-1 2043835 L4965 2021 316 8435*2^6786180-1 2042848 L4965 2021 317b 59145944^262144+1 2037364 L4591 2025 Generalized Fermat 318b 58936230^262144+1 2036960 L5465 2025 Generalized Fermat 319b 58870004^262144+1 2036832 L6238 2025 Generalized Fermat 320b 58846688^262144+1 2036787 L4591 2025 Generalized Fermat 321b 58333324^262144+1 2035789 L4591 2025 Generalized Fermat 322b 58288282^262144+1 2035701 L4526 2025 Generalized Fermat 323b 57643582^262144+1 2034435 L4772 2025 Generalized Fermat 324b 57594478^262144+1 2034338 L5464 2025 Generalized Fermat 325b 57478518^262144+1 2034108 L6085 2025 Generalized Fermat 326b 57429230^262144+1 2034011 L5639 2025 Generalized Fermat 327 51*2^6753404+1 2032979 L4965 2020 328 93*2^6750726+1 2032173 A2 2023 329b 56303352^262144+1 2031757 L4920 2025 Generalized Fermat 330b 56295176^262144+1 2031740 L5378 2025 Generalized Fermat 331b 55952434^262144+1 2031045 L5586 2025 Generalized Fermat 332b 55892864^262144+1 2030923 L5948 2025 Generalized Fermat 333 69*2^6745775+1 2030683 L4965 2023 334b 55702322^262144+1 2030535 L4772 2025 Generalized Fermat 335b 55695224^262144+1 2030520 L4387 2025 Generalized Fermat 336b 55169618^262144+1 2029441 L6236 2025 Generalized Fermat 337b 55007338^262144+1 2029105 L4201 2025 Generalized Fermat 338b 54852328^262144+1 2028784 L5375 2025 Generalized Fermat 339b 54528918^262144+1 2028111 L5375 2025 Generalized Fermat 340b 54044092^262144+1 2027094 L5069 2025 Generalized Fermat 341b 53903472^262144+1 2026797 L5543 2025 Generalized Fermat 342b 53750036^262144+1 2026473 L4309 2025 Generalized Fermat 343b 53616962^262144+1 2026191 L4889 2025 Generalized Fermat 344b 53311612^262144+1 2025540 L6235 2025 Generalized Fermat 345b 53008094^262144+1 2024890 L6036 2025 Generalized Fermat 346b 52648144^262144+1 2024115 L5088 2025 Generalized Fermat 347b 52599274^262144+1 2024009 L4776 2025 Generalized Fermat 348b 52592976^262144+1 2023995 L5543 2025 Generalized Fermat 349b 51992174^262144+1 2022687 L5639 2025 Generalized Fermat 350b 51852794^262144+1 2022382 L4387 2025 Generalized Fermat 351b 51714136^262144+1 2022077 L4591 2025 Generalized Fermat 352b 51283286^262144+1 2021124 L4884 2025 Generalized Fermat 353b 51125138^262144+1 2020773 L5543 2025 Generalized Fermat 354 9995*2^6711008-1 2020219 L4965 2021 355b 50454356^262144+1 2019269 L5543 2025 Generalized Fermat 356b 50449664^262144+1 2019259 L5586 2025 Generalized Fermat 357b 50366208^262144+1 2019070 L5275 2025 Generalized Fermat 358c 50121532^262144+1 2018516 L4904 2025 Generalized Fermat 359c 49536902^262144+1 2017180 L5639 2025 Generalized Fermat 360c 49235348^262144+1 2016485 L5543 2025 Generalized Fermat 361c 49209090^262144+1 2016424 L5275 2025 Generalized Fermat 362c 48055302^262144+1 2013723 L5069 2025 Generalized Fermat 363c 47707672^262144+1 2012896 L4939 2025 Generalized Fermat 364 39*2^6684941+1 2012370 L5162 2020 365c 47351862^262144+1 2012044 L6204 2025 Generalized Fermat 366c 47281922^262144+1 2011876 L5974 2025 Generalized Fermat 367c 47255958^262144+1 2011813 L5948 2025 Generalized Fermat 368 6679881*2^6679881+1 2010852 L917 2009 Cullen 369c 46831458^262144+1 2010786 L4456 2025 Generalized Fermat 370c 46378776^262144+1 2009680 L6178 2025 Generalized Fermat 371d 45073202^262144+1 2006429 L6129 2025 Generalized Fermat 372d 45007104^262144+1 2006262 L5639 2025 Generalized Fermat 373d 44819108^262144+1 2005786 L5632 2025 Generalized Fermat 374d 44666524^262144+1 2005397 L5775 2025 Generalized Fermat 375 37*2^6660841-1 2005115 L3933 2014 376e 44144624^262144+1 2004059 L5974 2024 Generalized Fermat 377e 44030166^262144+1 2003764 L5974 2024 Generalized Fermat 378e 43330794^262144+1 2001941 L5588 2024 Generalized Fermat 379 39*2^6648997+1 2001550 L5161 2020 380f 42781592^262144+1 2000489 L5460 2024 Generalized Fermat 381 10^2000007-10^1127194-10^872812-1 2000007 p423 2024 Palindrome 382 10^2000005-10^1051046-10^948958-1 2000005 p423 2024 Palindrome 383 304207*2^6643565-1 1999918 L3547 2013 384e 42474318^262144+1 1999668 L5416 2024 Generalized Fermat 385 69*2^6639971-1 1998833 L5037 2020 386 42006214^262144+1 1998406 L5512 2024 Generalized Fermat 387 6471*2^6631137-1 1996175 L4965 2021 388 40460760^262144+1 1994139 L5460 2024 Generalized Fermat 389 39896728^262144+1 1992541 L6047 2024 Generalized Fermat 390 39164812^262144+1 1990433 L6038 2024 Generalized Fermat 391 38786786^262144+1 1989328 L6035 2024 Generalized Fermat 392 38786700^262144+1 1989328 L4245 2024 Generalized Fermat 393 38738332^262144+1 1989186 L6033 2024 Generalized Fermat 394 9935*2^6603610-1 1987889 L4965 2023 395 38214850^262144+1 1987637 L5412 2024 Generalized Fermat 396 38108804^262144+1 1987321 L4764 2024 Generalized Fermat 397 37986650^262144+1 1986955 L6027 2024 Generalized Fermat 398 37787006^262144+1 1986355 L4622 2024 Generalized Fermat 399 37700936^262144+1 1986096 L5416 2024 Generalized Fermat 400 37689944^262144+1 1986063 L5416 2024 Generalized Fermat 401 37349040^262144+1 1985028 L5543 2024 Generalized Fermat 402 37047448^262144+1 1984105 L5746 2024 Generalized Fermat 403 36778106^262144+1 1983274 L5998 2024 Generalized Fermat 404 36748386^262144+1 1983182 L5998 2024 Generalized Fermat 405 36717890^262144+1 1983088 L4760 2024 Generalized Fermat 406 36210400^262144+1 1981503 L6006 2024 Generalized Fermat 407 35196086^262144+1 1978269 L5543 2024 Generalized Fermat 408 34443124^262144+1 1975807 L5639 2024 Generalized Fermat 409 33798406^262144+1 1973655 L4656 2024 Generalized Fermat 410 33491530^262144+1 1972617 L5030 2024 Generalized Fermat 411 33061466^262144+1 1971146 L5275 2024 Generalized Fermat 412 32497152^262144+1 1969186 L5586 2024 Generalized Fermat 413 32171198^262144+1 1968038 L4892 2024 Generalized Fermat 414 32067848^262144+1 1967672 L4684 2024 Generalized Fermat 415 31371484^262144+1 1965172 L5847 2024 Generalized Fermat 416 30941436^262144+1 1963601 L4362 2024 Generalized Fermat 417 554051*2^6517658-1 1962017 L5811 2023 418 29645358^262144+1 1958729 L5024 2023 Generalized Fermat 419 29614286^262144+1 1958610 L5870 2023 Generalized Fermat 420 1319*2^6506224-1 1958572 L4965 2021 421 3163*2^6504943-1 1958187 L4965 2023 422 29445800^262144+1 1957960 L4726 2023 Generalized Fermat 423 322498*5^2800819-1 1957694 L4954 2019 424 29353924^262144+1 1957604 L4387 2023 Generalized Fermat 425 99*2^6502814+1 1957545 A2 2023 426 29333122^262144+1 1957524 L5869 2023 Generalized Fermat 427 88444*5^2799269-1 1956611 L3523 2019 428 29097000^262144+1 1956604 L5375 2023 Generalized Fermat 429 28342134^262144+1 1953611 L5864 2023 Generalized Fermat 430 28259150^262144+1 1953277 L4898 2023 Generalized Fermat 431 28004468^262144+1 1952246 L5586 2023 Generalized Fermat 432 27789002^262144+1 1951367 L5860 2023 Generalized Fermat 433 13*2^6481780+1 1951212 L4965 2020 434 27615064^262144+1 1950652 L4201 2023 Generalized Fermat 435 21*2^6468257-1 1947141 L4965 2021 436 26640150^262144+1 1946560 L5839 2023 Generalized Fermat 437 26128000^262144+1 1944350 L5821 2023 Generalized Fermat 438 25875054^262144+1 1943243 L5070 2023 Generalized Fermat 439 25690360^262144+1 1942427 L5809 2023 Generalized Fermat 440 25635940^262144+1 1942186 L4307 2023 Generalized Fermat 441 25461468^262144+1 1941408 L4210 2023 Generalized Fermat 442 25333402^262144+1 1940834 L5802 2023 Generalized Fermat 443 24678636^262144+1 1937853 L5586 2023 Generalized Fermat 444 138514*5^2771922+1 1937496 L4937 2019 445 24429706^262144+1 1936699 L4670 2023 Generalized Fermat 446 33*2^6432160-1 1936275 L4965 2022 447 15*2^6429089-1 1935350 L4965 2021 448 23591460^262144+1 1932724 L5720 2023 Generalized Fermat 449 23479122^262144+1 1932181 L5773 2023 Generalized Fermat 450 398023*2^6418059-1 1932034 L3659 2013 451 22984886^262144+1 1929758 L4928 2023 Generalized Fermat 452 3^4043119+3^2021560+1 1929059 L5123 2023 Generalized unique 453 22790808^262144+1 1928793 L5047 2023 Generalized Fermat 454 22480000^262144+1 1927230 L4307 2023 Generalized Fermat 455 22479752^262144+1 1927229 L5159 2023 Generalized Fermat 456 22470828^262144+1 1927183 L4201 2023 Generalized Fermat 457 55*2^6395254+1 1925166 A2 2023 458 20866766^262144+1 1918752 L4245 2023 Generalized Fermat 459 4*3^4020126+1 1918089 A2 2024 Generalized Fermat 460 20710506^262144+1 1917896 L5676 2023 Generalized Fermat 461 20543682^262144+1 1916975 L5663 2023 Generalized Fermat 462 20105956^262144+1 1914523 L5005 2023 Generalized Fermat 463 631*2^6359347-1 1914357 L4965 2021 464 4965*2^6356707-1 1913564 L4965 2022 465 19859450^262144+1 1913119 L5025 2023 Generalized Fermat 466 19527922^262144+1 1911202 L4745 2023 Generalized Fermat 467 19322744^262144+1 1910000 L4775 2023 Generalized Fermat 468 1995*2^6333396-1 1906546 L4965 2021 469 1582137*2^6328550+1 1905090 L801 2009 Cullen 470 18395930^262144+1 1904404 x50 2022 Generalized Fermat 471 17191822^262144+1 1896697 x50 2022 Generalized Fermat 472 87*2^6293522+1 1894541 A2 2023 473 16769618^262144+1 1893866 L4677 2022 Generalized Fermat 474b 141*2^6286573+1 1892450 L5178 2025 475 16048460^262144+1 1888862 L5127 2022 Generalized Fermat 476 10^1888529-10^944264-1 1888529 p423 2021 Near-repdigit, palindrome 477 15913772^262144+1 1887902 L4387 2022 Generalized Fermat 478 15859176^262144+1 1887511 L5544 2022 Generalized Fermat 479 3303*2^6264946-1 1885941 L4965 2021 480 15417192^262144+1 1884293 L5051 2022 Generalized Fermat 481 14741470^262144+1 1879190 L4204 2022 Generalized Fermat 482 4328927#+1 1878843 p442 2024 Primorial 483b 165*2^6237224+1 1877594 L5178 2025 484 14399216^262144+1 1876516 L4745 2021 Generalized Fermat 485 1344935*2^6231985+1 1876021 L161 2023 486 14103144^262144+1 1874151 L5254 2021 Generalized Fermat 487 13911580^262144+1 1872594 L5068 2021 Generalized Fermat 488b 165*2^6213489+1 1870449 L5517 2025 489 13640376^262144+1 1870352 L4307 2021 Generalized Fermat 490 13553882^262144+1 1869628 L4307 2021 Generalized Fermat 491 8825*2^6199424-1 1866217 A2 2023 492 13039868^262144+1 1865227 L5273 2021 Generalized Fermat 493 7*6^2396573+1 1864898 L4965 2019 494 12959788^262144+1 1864525 L4591 2021 Generalized Fermat 495 69*2^6186659+1 1862372 L4965 2023 496 12582496^262144+1 1861162 L5202 2021 Generalized Fermat 497 12529818^262144+1 1860684 L4871 2020 Generalized Fermat 498c 141*2^6175704+1 1859075 L5969 2025 499 12304152^262144+1 1858615 L4591 2020 Generalized Fermat 500 12189878^262144+1 1857553 L4905 2020 Generalized Fermat 501 39*2^6164630+1 1855741 L4087 2020 Divides GF(6164629,5) 502c 119*2^6150335+1 1851438 L5178 2025 503 11081688^262144+1 1846702 L5051 2020 Generalized Fermat 504 10979776^262144+1 1845650 L5088 2020 Generalized Fermat 505 10829576^262144+1 1844082 L4677 2020 Generalized Fermat 506 194368*5^2638045-1 1843920 L690 2018 507 10793312^262144+1 1843700 L4905 2020 Generalized Fermat 508 10627360^262144+1 1841936 L4956 2020 Generalized Fermat 509 10578478^262144+1 1841411 L4307 2020 Generalized Fermat 510 66916*5^2628609-1 1837324 L690 2018 511 521921*2^6101122-1 1836627 L5811 2023 512 3*2^6090515-1 1833429 L1353 2010 513 9812766^262144+1 1832857 L4245 2020 Generalized Fermat 514 9750938^262144+1 1832137 L4309 2020 Generalized Fermat 515 8349*2^6082397-1 1830988 L4965 2021 516 9450844^262144+1 1828578 L5020 2020 Generalized Fermat 517 71*2^6070943+1 1827538 L4965 2023 518 32*470^683151+1 1825448 L4064 2021 519 9125820^262144+1 1824594 L5002 2019 Generalized Fermat 520 8883864^262144+1 1821535 L4715 2019 Generalized Fermat 521 21*2^6048861+1 1820890 L5106 2020 Divides GF(6048860,5) 522 9999*2^6037057-1 1817340 L4965 2021 523 8521794^262144+1 1816798 L4289 2019 Generalized Fermat 524e 6285*2^6027986-1 1814609 A2 2024 525 33*2^6019138-1 1811943 L4965 2022 526 67*2^6018626+1 1811789 L4965 2023 527 122*123^865890+1 1809631 L4294 2024 528 1583*2^5989282-1 1802957 L4036 2015 529c 55*2^5982526+1 1800922 L5554 2025 Divides GF(5982524,10) 530 101806*15^1527091-1 1796004 L5765 2023 Generalized Woodall 531c 91*2^5960816+1 1794387 L5969 2025 532c 163*2^5945098+1 1789656 L5554 2025 533c 189*2^5932506+1 1785865 L5995 2025 534 6291332^262144+1 1782250 L4864 2018 Generalized Fermat 535 6287774^262144+1 1782186 L4726 2018 Generalized Fermat 536b 32*402^683113-1 1778983 A11 2025 537 327926*5^2542838-1 1777374 L4807 2018 538 81556*5^2539960+1 1775361 L4809 2018 539c 179*2^5894939+1 1774556 L5261 2025 540 5828034^262144+1 1773542 L4720 2018 Generalized Fermat 541 993*10^1768283-1 1768286 L4879 2019 Near-repdigit 542c 135*2^5854694+1 1762441 L5997 2025 543 9*10^1762063-1 1762064 L4879 2020 Near-repdigit 544 93606^354294+93606^177147+1 1761304 p437 2023 Generalized unique 545 5205422^262144+1 1760679 L4201 2018 Generalized Fermat 546 5152128^262144+1 1759508 L4720 2018 Generalized Fermat 547d 195*2^5841059+1 1758337 L5178 2025 548d 183*2^5814122+1 1750228 L5612 2025 549d 205*2^5805562+1 1747651 L5261 2025 550d 99*2^5798449+1 1745510 L5517 2025 Divides Fermat F(5798447) 551 4489246^262144+1 1743828 L4591 2018 Generalized Fermat 552 2240501*6^2240501+1 1743456 L5765 2023 Generalized Cullen 553d 57*2^5785428+1 1741590 L5302 2025 554 2*3^3648969+1 1741001 L5043 2020 Divides Phi(3^3648964,2) [g427] 555 7*2^5775996+1 1738749 L3325 2012 556d 101*2^5774879+1 1738414 L5537 2025 557 4246258^262144+1 1737493 L4720 2018 Generalized Fermat 558d 57*2^5759943+1 1733918 L5517 2025 559 3933508^262144+1 1728783 L4309 2018 Generalized Fermat 560 3853792^262144+1 1726452 L4715 2018 Generalized Fermat 561 3673932^262144+1 1721010 L4649 2017 Generalized Fermat 562 (10^859669-1)^2-2 1719338 p405 2022 Near-repdigit 563 3596074^262144+1 1718572 L4689 2017 Generalized Fermat 564 3547726^262144+1 1717031 L4201 2017 Generalized Fermat 565 8*10^1715905-1 1715906 L4879 2020 Near-repdigit 566 1243*2^5686715-1 1711875 L1828 2016 567e 65*2^5671355+1 1707250 L5294 2024 568 25*2^5658915-1 1703505 L1884 2021 569 1486287*14^1486287+1 1703482 L5765 2023 Generalized Cullen 570 41*2^5651731+1 1701343 L1204 2020 571 3060772^262144+1 1700222 L4649 2017 Generalized Fermat 572 9*2^5642513+1 1698567 L3432 2013 573e 165*2^5633373+1 1695817 L5178 2024 574 10*3^3550446+1 1693995 L4965 2020 575 2622*11^1621920-1 1689060 L2054 2015 576f 141*2^5600116+1 1685806 L6089 2024 577 81*2^5600028+1 1685779 L4965 2022 Generalized Fermat 578 2676404^262144+1 1684945 L4591 2017 Generalized Fermat 579 301562*5^2408646-1 1683577 L4675 2017 580 2611294^262144+1 1682141 L4250 2017 Generalized Fermat 581 55599^354294+55599^177147+1 1681149 p437 2023 Generalized unique 582 171362*5^2400996-1 1678230 L4669 2017 583 2514168^262144+1 1677825 L4564 2017 Generalized Fermat 584 31*2^5560820+1 1673976 L1204 2020 Divides GF(5560819,6) 585f 163*2^5550632+1 1670909 L5517 2024 586f 205*2^5532904+1 1665573 L5517 2024 587f 191*2^5531015+1 1665004 L5517 2024 588 13*2^5523860+1 1662849 L1204 2020 Divides Fermat F(5523858) 589f 89*2^5519481+1 1661532 L5178 2024 590 252191*2^5497878-1 1655032 L3183 2012 591 2042774^262144+1 1654187 L4499 2016 Generalized Fermat 592 247*2^5477512+1 1648898 L5373 2024 593 129*2^5453363+1 1641628 L6083 2024 594 1828858^262144+1 1641593 L4200 2016 Generalized Fermat 595 258317*2^5450519+1 1640776 g414 2008 596 7*6^2104746+1 1637812 L4965 2019 597 91*2^5435752+1 1636327 L5214 2024 598 159*2^5432226+1 1635266 L6082 2024 599 193*2^5431414+1 1635021 L5214 2024 600 5*2^5429494-1 1634442 L3345 2017 601 77*2^5422903+1 1632459 A2 2024 Divides GF(5422902,12) 602 165*2^5416628+1 1630570 L5537 2024 603 147*2^5410159+1 1628623 L5517 2024 604 285*2^5408709+1 1628187 L5178 2024 605 43*2^5408183-1 1628027 L1884 2018 606 8*815^559138-1 1627740 A26 2024 607 1615588^262144+1 1627477 L4200 2016 Generalized Fermat 608 245*2^5404089+1 1626796 L5282 2024 609 2*296598^296598-1 1623035 L4965 2022 610 127*2^5391378+1 1622969 L5178 2024 611 1349*2^5385004-1 1621051 L1828 2017 612 1488256^262144+1 1618131 L4249 2016 Generalized Fermat 613 153*2^5369765+1 1616463 L5969 2024 614 1415198^262144+1 1612400 L4308 2016 Generalized Fermat 615 84*730^560037+1 1603569 A12 2024 616 93*2^5323466+1 1602525 L5537 2024 617 237*2^5315983+1 1600273 L6064 2024 618 45*2^5308037+1 1597881 L4761 2019 619 5468*70^864479-1 1595053 L5410 2022 620 131*2^5298475+1 1595003 L5517 2024 621 237*2^5291999+1 1593053 L5532 2024 622 221*2^5284643+1 1590839 L5517 2024 623 92*10^1585996-1 1585998 L4789 2023 Near-repdigit 624 1082083^262144-1082083^131072+1 1581846 L4506 2017 Generalized unique 625 247*2^5254234+1 1581685 L5923 2024 626 273*2^5242597+1 1578182 L5192 2024 627 7*2^5229669-1 1574289 L4965 2021 628 180062*5^2249192-1 1572123 L4435 2016 629 124125*6^2018254+1 1570512 L4001 2019 630 27*2^5213635+1 1569462 L3760 2015 631 227*2^5213195+1 1569331 L5517 2024 632 9992*10^1567410-1 1567414 L4879 2020 Near-repdigit 633 27*252^652196+1 1566186 A21 2024 634 149*2^5196375+1 1564267 L5174 2024 635 277*2^5185268+1 1560924 L5888 2024 636 308084!+1 1557176 p425 2022 Factorial 637 843575^262144-843575^131072+1 1553498 L4506 2017 Generalized unique 638 25*2^5152151-1 1550954 L1884 2020 639 125*2^5149981+1 1550301 L6042 2024 640 147*2^5146964+1 1549393 L5559 2024 641 53546*5^2216664-1 1549387 L4398 2016 642 773620^262144+1 1543643 L3118 2012 Generalized Fermat 643 39*2^5119458+1 1541113 L1204 2019 644 607*26^1089034+1 1540957 L5410 2021 645 81*2^5115131+1 1539810 L4965 2022 Divides GF(5115128,12) [GG] 646 223*2^5105835-1 1537012 L2484 2019 647 99*10^1536527-1 1536529 L4879 2019 Near-repdigit 648 81*2^5100331+1 1535355 L4965 2022 Divides GF(5100327,6) [GG] 649 992*10^1533933-1 1533936 L4879 2019 Near-repdigit 650 51*2^5085142-1 1530782 L760 2014 651 3*2^5082306+1 1529928 L780 2009 Divides GF(5082303,3), GF(5082305,5) 652 676754^262144+1 1528413 L2975 2012 Generalized Fermat 653 296024*5^2185270-1 1527444 L671 2016 654 181*2^5057960+1 1522600 L5178 2024 655 5359*2^5054502+1 1521561 SB6 2003 656 175*2^5049344+1 1520007 L5178 2024 657 183*2^5042357+1 1517903 L5178 2024 658 1405486*12^1405486-1 1516781 L5765 2023 Generalized Woodall 659 53*2^5019181+1 1510926 L4965 2023 660 131*2^5013361+1 1509175 L5178 2024 661 13*2^4998362+1 1504659 L3917 2014 662 525094^262144+1 1499526 p338 2012 Generalized Fermat 663 92158*5^2145024+1 1499313 L4348 2016 664 499238*10^1497714-1 1497720 L4976 2019 Generalized Woodall 665 357*2^4972628+1 1496913 L5783 2024 666 77072*5^2139921+1 1495746 L4340 2016 667 175*2^4965756+1 1494844 L5888 2024 668 221*2^4960867+1 1493373 L5178 2024 669 375*2^4950021+1 1490108 L5178 2024 670 2*3^3123036+1 1490068 L5043 2020 671 75*2^4940218+1 1487156 L5517 2024 Divides GF(4940214,12) 672 95*2^4929067+1 1483799 L5172 2024 673 161*2^4928111+1 1483512 L5961 2024 674 51*2^4923905+1 1482245 L4965 2023 675 289*2^4911870+1 1478623 L5178 2024 Generalized Fermat 676 519397*2^4908893-1 1477730 L5410 2022 677 306398*5^2112410-1 1476517 L4274 2016 678 183*2^4894125+1 1473281 L5961 2024 Divides GF(4894123,3), GF(4894124,5) 679 39*684^519468-1 1472723 L5410 2023 680 195*2^4887935+1 1471418 L5261 2024 681 281*2^4886723+1 1471053 L5971 2024 682 281*2^4879761+1 1468957 L5961 2024 683 96*789^506568+1 1467569 A14 2024 684 243*2^4872108+1 1466654 L5178 2024 685 213*2^4865126+1 1464552 L5803 2024 686 265711*2^4858008+1 1462412 g414 2008 687 154222*5^2091432+1 1461854 L3523 2015 688 1271*2^4850526-1 1460157 L1828 2012 689 333*2^4846958-1 1459083 L5546 2022 690 357*2^4843507+1 1458044 L5178 2024 691 156*532^534754-1 1457695 L5410 2023 692 362978^262144-362978^131072+1 1457490 p379 2015 Generalized unique 693 361658^262144+1 1457075 p332 2011 Generalized Fermat 694 231*2^4836124+1 1455821 L5517 2024 695 7*10^1454508+1 1454509 p439 2024 696 303*2^4829593+1 1453855 L5706 2024 697 100186*5^2079747-1 1453686 L4197 2015 698 375*2^4824253+1 1452248 L5625 2024 699 288465!+1 1449771 p3 2022 Factorial 700 15*2^4800315+1 1445040 L1754 2019 Divides GF(4800313,3), GF(4800310,5) 701 235*2^4799708+1 1444859 L5971 2024 702 347*2^4798851+1 1444601 L5554 2024 703 239*2^4795541+1 1443605 L5995 2024 704 2^4792057-2^2396029+1 1442553 L3839 2014 Gaussian Mersenne norm 40, generalized unique 705 92*10^1439761-1 1439763 L4789 2020 Near-repdigit 706 269*2^4777025+1 1438031 L5683 2024 707 653*10^1435026-1 1435029 p355 2014 708 197*2^4765318-1 1434506 L5175 2021 709 1401*2^4759435-1 1432736 L4965 2023 710 2169*2^4754343-1 1431204 L4965 2023 711 188*468^535963+1 1431156 L4832 2019 712 1809*2^4752792-1 1430737 L4965 2022 713 61*2^4749928+1 1429873 L5285 2024 714 2427*2^4749044-1 1429609 L4965 2022 715 303*2^4748019-1 1429299 L5545 2023 716 2259*2^4746735-1 1428913 L4965 2022 717 309*2^4745713-1 1428605 L5545 2023 718 183*2^4740056+1 1426902 L5945 2024 719 2223*2^4729304-1 1423666 L4965 2022 720 1851*2^4727663-1 1423172 L4965 2022 721 1725*2^4727375-1 1423085 L4965 2022 722 1611*2^4724014-1 1422074 L4965 2022 723 1383*2^4719270-1 1420645 L4965 2022 724 1749*2^4717431-1 1420092 L4965 2022 725 321*2^4715725+1 1419578 L5178 2024 726 371*2^4715211+1 1419423 L5527 2024 727 2325*2^4713991-1 1419057 L4965 2022 728 3267113#-1 1418398 p301 2021 Primorial 729 291*2^4708553+1 1417419 L5308 2024 730 100*406^543228+1 1417027 L5410 2020 Generalized Fermat 731 2337*2^4705660-1 1416549 L4965 2022 732 1229*2^4703492-1 1415896 L1828 2018 733 303*2^4694937+1 1413320 L5977 2024 734 3719*30^956044-1 1412197 L5410 2023 735 6*894^478421-1 1411983 L4294 2023 736 263*2^4688269+1 1411313 L5904 2024 737 155*2^4687127+1 1410969 L5969 2024 738 144052*5^2018290+1 1410730 L4146 2015 739 195*2^4685711-1 1410542 L5175 2021 740 9*2^4683555-1 1409892 L1828 2012 741 31*2^4673544+1 1406879 L4990 2019 742 34*993^469245+1 1406305 L4806 2018 743 197*2^4666979+1 1404903 L5233 2024 744 79*2^4658115-1 1402235 L1884 2018 745 39*2^4657951+1 1402185 L1823 2019 746 4*650^498101-1 1401116 L4294 2021 747 11*2^4643238-1 1397755 L2484 2014 748 884411*38^884411+1 1397184 L5765 2023 Generalized Cullen 749 68*995^465908-1 1396712 L4001 2017 750 7*6^1793775+1 1395830 L4965 2019 751 269*2^4636583+1 1395753 L5509 2024 752 117*2^4632990+1 1394672 L5960 2024 753 213*2^4625484+1 1392412 L5956 2024 754c 2*914^469757+1 1390926 A11 2025 755f 1425*2^4618342+1 1390263 L1134 2024 756 4*7^1640811+1 1386647 A2 2024 757 192098^262144-192098^131072+1 1385044 p379 2015 Generalized unique 758 339*2^4592225+1 1382401 L5302 2024 759 6*10^1380098+1 1380099 L5009 2023 760 27*2^4583717-1 1379838 L2992 2014 761 221*2^4578577+1 1378292 L5710 2024 762 359*2^4578161+1 1378167 L5894 2024 763 3^2888387-3^1444194+1 1378111 L5123 2023 Generalized unique 764 1198433*14^1198433+1 1373564 L5765 2023 Generalized Cullen 765 67*2^4561350+1 1373105 L5614 2024 766 121*2^4553899-1 1370863 L3023 2012 767 231*2^4552115+1 1370326 L5302 2024 768 223*2^4549924+1 1369666 L5904 2024 769 9473*2^4543680-1 1367788 L5037 2022 770 27*2^4542344-1 1367384 L1204 2014 771 29*2^4532463+1 1364409 L4988 2019 772 4*797^468702+1 1359920 L4548 2017 Generalized Fermat 773 145310^262144+1 1353265 p314 2011 Generalized Fermat 774 2*3^2834778-1 1352534 A2 2024 775 479*2^4492481+1 1352375 L5882 2024 776 373*2^4487274+1 1350807 L5320 2024 777 527*2^4486247+1 1350498 L5178 2024 778 25*2^4481024+1 1348925 L4364 2019 Generalized Fermat 779 83*2^4479409+1 1348439 L5178 2024 780 417*2^4473466+1 1346651 L5178 2024 781 81*536^493229+1 1346106 p431 2023 782 303*2^4471002-1 1345909 L5545 2022 783 1425*2^4469783+1 1345542 L1134 2023 784 2*1283^432757+1 1345108 L4879 2019 Divides Phi(1283^432757,2) 785 1-V(-2,-2,3074821)-2^3074821 1342125 p437 2024 786 447*2^4457132+1 1341734 L5875 2024 787 36772*6^1723287-1 1340983 L1301 2014 788 583854*14^1167708-1 1338349 L4976 2019 Generalized Woodall 789 20*634^476756-1 1335915 L4975 2023 790 297*2^4432947+1 1334453 L5178 2023 791 85*2^4432870+1 1334429 L4965 2023 792 151*2^4424321-1 1331856 L1884 2016 793 231*2^4422227+1 1331226 L5192 2023 794 131*2^4421071+1 1330878 L5178 2023 795 225*2^4419349+1 1330359 L5866 2023 796 1485*2^4416137+1 1329393 L1134 2024 797 469*2^4414802+1 1328991 L5830 2023 798 549*2^4411029+1 1327855 L5862 2023 799 445*2^4410256+1 1327622 L5537 2023 800 259*2^4395550+1 1323195 L5858 2023 801 219*2^4394846+1 1322983 L5517 2023 802 165*2^4379097+1 1318242 L5852 2023 803 183*2^4379002+1 1318214 L5476 2023 804 1455*2^4376470+1 1317452 L1134 2023 805 165*2^4375458+1 1317147 L5851 2023 806 195*2^4373994-1 1316706 L5175 2020 807 381*2^4373129+1 1316446 L5421 2023 808d 2008551*2^4371904+1 1316081 g431 2025 809 (10^657559-1)^2-2 1315118 p405 2022 Near-repdigit 810 49*2^4365175-1 1314051 L1959 2017 811 49*2^4360869-1 1312755 L1959 2017 812 253*2^4358512+1 1312046 L875 2023 813 219*2^4354805+1 1310930 L5848 2023 814 249*2^4351621+1 1309971 L5260 2023 815 159*2^4348734+1 1309102 L5421 2023 816 115*2^4347620+1 1308767 L5178 2023 817 533*2^4338237+1 1305943 L5260 2023 818 141*2^4337804+1 1305812 L5178 2023 819 363*2^4334518+1 1304823 L5261 2023 820 299*2^4333939+1 1304649 L5517 2023 821 13*2^4333087-1 1304391 L1862 2018 822 353159*2^4331116-1 1303802 L2408 2011 823 195*2^4330189+1 1303520 L5178 2023 824 145*2^4327756+1 1302787 L5517 2023 825a 31*980^433853-1 1297754 A11 2025 826 9959*2^4308760-1 1297071 L5037 2022 827 195*2^4304861+1 1295895 L5178 2023 828 23*2^4300741+1 1294654 L4147 2019 829 682156*79^682156+1 1294484 L4472 2016 Generalized Cullen 830 141941*2^4299438-1 1294265 L689 2011 831 87*2^4297718+1 1293744 L4965 2023 832 22*905^437285-1 1292900 L5342 2024 833 435*2^4292968+1 1292315 L5783 2023 834 993149*20^993149+1 1292123 L5765 2023 Generalized Cullen 835 415*2^4280864+1 1288672 L5818 2023 836 79*2^4279006+1 1288112 L4965 2023 837 205*2^4270310+1 1285494 L5517 2023 838 483*2^4270112+1 1285435 L5178 2023 839 123*2^4266441+1 1284329 L5178 2023 840 612749*2^4254500-1 1280738 L5410 2022 841 223*2^4252660+1 1280181 L5178 2023 842 1644731*6^1644731+1 1279856 L5765 2023 Generalized Cullen 843 38*380^495986-1 1279539 L5410 2023 844 2*1151^417747+1 1278756 L4879 2019 Divides Phi(1151^417747,2) 845 15*2^4246384+1 1278291 L3432 2013 Divides GF(4246381,6) 846 3*2^4235414-1 1274988 L606 2008 847 2*1259^411259+1 1274914 L4879 2020 Divides Phi(1259^411259,2) 848 93*2^4232892+1 1274230 L4965 2023 849 131*2^4227493+1 1272605 L5226 2023 850 45*436^481613+1 1271213 L5410 2020 851 109208*5^1816285+1 1269534 L3523 2014 852 435*2^4216447+1 1269280 L5178 2023 853 1091*2^4215518-1 1269001 L1828 2018 854 191*2^4203426-1 1265360 L2484 2012 855 269*2^4198809+1 1263970 L5226 2023 856 545*2^4198333+1 1263827 L5804 2023 857 53*2^4197093+1 1263453 L5563 2023 858 1259*2^4196028-1 1263134 L1828 2016 859 329*2^4193199+1 1262282 L5226 2023 860 141*2^4192911+1 1262195 L5226 2023 Divides Fermat F(4192909) 861 325918*5^1803339-1 1260486 L3567 2014 862c 1160*745^438053-1 1258160 L4189 2025 863d 16723*820^431579+1 1257546 A11 2025 864 345*2^4173969+1 1256493 L5226 2023 865 161*2^4164267+1 1253572 L5178 2023 866 135*2^4162529+1 1253049 L5178 2023 Divides GF(4162525,10) 867 177*2^4162494+1 1253038 L5796 2023 868 237*2^4153348+1 1250285 L5178 2023 869 69*2^4151165+1 1249628 L4965 2023 870 133778*5^1785689+1 1248149 L3903 2014 871 201*2^4146003+1 1248074 L5161 2023 872 329*2^4136019+1 1245069 L5178 2023 873 81*2^4131975+1 1243851 L4965 2022 874 459*2^4129577+1 1243130 L5226 2023 875 551*2^4126303+1 1242144 L5226 2023 876 363*2^4119017+1 1239951 L5226 2023 877 105*2^4113039+1 1238151 L5178 2023 878 204*532^454080-1 1237785 L5410 2023 879 41*684^436354+1 1237090 L4444 2023 880 17*2^4107544-1 1236496 L4113 2015 881 261*2^4106385+1 1236148 L5178 2023 882 24032*5^1768249+1 1235958 L3925 2014 883 172*159^561319-1 1235689 L4001 2017 884 10^1234567-20342924302*10^617278-1 1234567 p423 2021 Palindrome 885 10^1234567-1927633367291*10^617277-1 1234567 p423 2023 Palindrome 886 10^1234567-3626840486263*10^617277-1 1234567 p423 2021 Palindrome 887 10^1234567-4708229228074*10^617277-1 1234567 p423 2021 Palindrome 888 67*2^4100746+1 1234450 L5178 2023 889 191*2^4099097+1 1233954 L5563 2023 890 325*2^4097700+1 1233534 L5226 2023 891 519*2^4095491+1 1232869 L5226 2023 892 111*2^4091044+1 1231530 L5783 2023 Divides GF(4091041,3) 893 1182072*11^1182072-1 1231008 L5765 2023 Generalized Woodall 894 64*425^467857-1 1229712 p268 2021 895 8*558^447047+1 1227876 A28 2024 896 163*778^424575+1 1227440 A11 2024 897 381*2^4069617+1 1225080 L5226 2023 898 97*2^4066717-1 1224206 L2484 2019 899 95*2^4063895+1 1223357 L5226 2023 900 79*2^4062818+1 1223032 L5178 2023 901 1031*2^4054974-1 1220672 L1828 2017 902 309*2^4054114+1 1220413 L5178 2023 903 2022202116^131072+1 1219734 L4704 2022 Generalized Fermat 904 37*2^4046360+1 1218078 L2086 2019 905 141*2^4043116+1 1217102 L5517 2023 906b 172*360^474814+1 1213771 A28 2025 907 39653*430^460397-1 1212446 L4187 2016 908 1777034894^131072+1 1212377 L4704 2022 Generalized Fermat 909 141*2^4024411+1 1211471 L5226 2023 910 515*2^4021165+1 1210494 L5174 2023 911 73*2^4016912+1 1209213 L5226 2023 912 40734^262144+1 1208473 p309 2011 Generalized Fermat 913 235*2^4013398+1 1208156 L5178 2023 914 9*2^4005979-1 1205921 L1828 2012 915 417*2^4003224+1 1205094 L5764 2023 916 12*68^656921+1 1203815 L4001 2016 917 67*688^423893+1 1202836 L4001 2017 918 221*2^3992723+1 1201932 L5178 2023 919 213*2^3990702+1 1201324 L5216 2023 920 1993191*2^3986382-1 1200027 L3532 2015 Generalized Woodall 921 163*2^3984604+1 1199488 L5756 2023 922 725*2^3983355+1 1199113 L5706 2023 923 (146^276995+1)^2-2 1199030 p405 2022 924 455*2^3981067+1 1198424 L5724 2023 925 138172*5^1714207-1 1198185 L3904 2014 926 50*383^463313+1 1196832 L2012 2021 927 339*2^3974295+1 1196385 L5178 2023 928 699*2^3974045+1 1196310 L5750 2023 929 1202113^196608-1202113^98304+1 1195366 L4506 2016 Generalized unique 930 29*2^3964697+1 1193495 L1204 2019 931 599*2^3963655+1 1193182 L5226 2023 932 683*2^3962937+1 1192966 L5226 2023 933 39*2^3961129+1 1192421 L1486 2019 934 165*2^3960664+1 1192281 L5178 2023 935 79*2^3957238+1 1191250 L5745 2023 936 687*2^3955918+1 1190853 L5554 2023 Divides GF(3955915,6) 937 163*2^3954818+1 1190522 L5178 2023 938 431*2^3953647+1 1190169 L5554 2023 939 1110815^196608-1110815^98304+1 1188622 L4506 2016 Generalized unique 940 341*2^3938565+1 1185629 L5554 2023 941 503*2^3936845+1 1185112 L5706 2023 942 717*2^3934760+1 1184484 L5285 2023 943 493*2^3929192+1 1182808 L5161 2023 944 273*2^3929128+1 1182788 L5554 2023 945 609*2^3928682+1 1182654 L5178 2023 946 609*2^3928441+1 1182582 L5527 2023 947 281*2^3926467+1 1181987 L5174 2023 948 153*2^3922478+1 1180786 L5554 2023 949 69*2^3920863+1 1180300 L5554 2023 950 273*2^3919321+1 1179836 L5706 2023 951 531*2^3918985+1 1179735 L5706 2023 952 1000032472^131072+1 1179650 L4704 2022 Generalized Fermat 953 555*2^3916875+1 1179100 L5302 2023 954 571*2^3910616+1 1177216 L5178 2023 955 421*2^3905144+1 1175569 L5600 2023 956 P1174253 1174253 p414 2022 957 567*2^3897588+1 1173294 L5600 2023 958 417*2^3895404+1 1172637 L5600 2023 959 539*2^3894953+1 1172501 L5285 2023 960 645*2^3893849+1 1172169 L5600 2023 961 818764*3^2456293-1 1171956 L4965 2023 Generalized Woodall 962 22478*5^1675150-1 1170884 L3903 2014 963 1199*2^3889576-1 1170883 L1828 2018 964 298989*2^3886857+1 1170067 L2777 2014 Generalized Cullen 965 93*10^1170023-1 1170025 L4789 2022 Near-repdigit 966 711*2^3886480+1 1169950 L5320 2023 967 375*2^3884634+1 1169394 L5600 2023 968c 445583*2^3883406-1 1169028 L5327 2025 969 94*872^397354+1 1168428 L5410 2019 970 269*2^3877485+1 1167242 L5649 2023 971 163*2^3874556+1 1166360 L5646 2023 Divides GF(3874552,5) 972 1365*2^3872811+1 1165836 L1134 2023 973 313*2^3869536+1 1164849 L5600 2023 974 159*2^3860863+1 1162238 L5226 2023 975 445*2^3860780+1 1162214 L5640 2023 976 397*2^3859450+1 1161813 L5226 2023 977 685*2^3856790+1 1161013 L5226 2023 978 27*2^3855094-1 1160501 L3033 2012 979 537*2^3853860+1 1160131 L5636 2022 980 164*978^387920-1 1160015 L4700 2018 981 175*2^3850344+1 1159072 L5226 2022 982 685*2^3847268+1 1158146 L5226 2022 983 655*2^3846352+1 1157871 L5282 2022 984 583*2^3846196+1 1157824 L5226 2022 985 615*2^3844151+1 1157208 L5226 2022 986 14772*241^485468-1 1156398 L5410 2022 987 525*2^3840963+1 1156248 L5613 2022 988 313*2^3837304+1 1155147 L5298 2022 989 49*2^3837090+1 1155081 L4979 2019 Generalized Fermat 990 431*2^3835247+1 1154528 L5161 2022 991 97*2^3833722+1 1154068 L5226 2022 992 2*839^394257+1 1152714 L4879 2019 Divides Phi(839^394257,2) 993 125*392^444161+1 1151839 L4832 2022 994 255*2^3824348+1 1151246 L5226 2022 995 30*514^424652-1 1151218 L4001 2017 996 569*2^3823191+1 1150898 L5226 2022 997 24518^262144+1 1150678 g413 2008 Generalized Fermat 998 563*2^3819237+1 1149708 L5178 2022 999 345*2^3817949+1 1149320 L5373 2022 1000 700219^196608-700219^98304+1 1149220 L4506 2016 Generalized unique 1001 241*2^3815727-1 1148651 L2484 2019 1002 351*2^3815467+1 1148573 L5226 2022 1003 109*980^383669-1 1147643 L4001 2018 1004 427*2^3811610+1 1147412 L5614 2022 1005 569*2^3810475+1 1147071 L5610 2022 1006 213*2^3807864+1 1146284 L5609 2022 1007 87*2^3806438+1 1145854 L5607 2022 1008 369*2^3805321+1 1145519 L5541 2022 1009 123547*2^3804809-1 1145367 L2371 2011 1010 2564*75^610753+1 1145203 L3610 2014 1011 539*2^3801705+1 1144430 L5161 2022 1012 159*2^3801463+1 1144357 L5197 2022 1013 235*2^3801284+1 1144303 L5608 2022 1014 660955^196608-660955^98304+1 1144293 L4506 2016 Generalized unique 1015 519*2^3800625+1 1144105 L5315 2022 1016 281*2^3798465+1 1143455 L5178 2022 1017 166*443^432000+1 1143249 L5410 2020 1018 85*2^3797698+1 1143223 L5161 2022 1019 326834*5^1634978-1 1142807 L3523 2014 1020 459*2^3795969+1 1142704 L5161 2022 1021 105*298^461505-1 1141866 L5841 2023 1022 447*2^3780151+1 1137942 L5596 2022 1023 345*2^3779921+1 1137873 L5557 2022 1024 477*2^3779871+1 1137858 L5197 2022 1025 251*2^3774587+1 1136267 L5592 2022 1026 439*2^3773958+1 1136078 L5557 2022 1027 43*182^502611-1 1135939 L4064 2020 1028 415267*2^3771929-1 1135470 L2373 2011 1029 11*2^3771821+1 1135433 p286 2013 1030 427*2^3768104+1 1134315 L5192 2022 1031 1455*2^3768024-1 1134292 L1134 2022 1032 711*2^3767492+1 1134131 L5161 2022 1033 265*2^3765189-1 1133438 L2484 2018 1034 297*2^3765140+1 1133423 L5197 2022 1035 381*2^3764189+1 1133137 L5589 2022 1036 115*2^3763650+1 1132974 L5554 2022 1037 411*2^3759067+1 1131595 L5589 2022 1038 405*2^3757192+1 1131031 L5590 2022 1039d 1981*2^3754984+1 1130367 A24 2025 1040 938237*2^3752950-1 1129757 L521 2007 Woodall 1041 399866798^131072+1 1127471 L4964 2019 Generalized Fermat 1042 701*2^3744713+1 1127274 L5554 2022 1043 207394*5^1612573-1 1127146 L3869 2014 1044 684*10^1127118+1 1127121 L4036 2017 1045 535386^196608-535386^98304+1 1126302 L4506 2016 Generalized unique 1046 104944*5^1610735-1 1125861 L3849 2014 1047 23451*2^3739388+1 1125673 L591 2015 1048 78*622^402915-1 1125662 L5645 2023 1049 615*2^3738023+1 1125260 L5161 2022 1050 347*2^3737875+1 1125216 L5178 2022 1051 163*2^3735726+1 1124568 L5477 2022 Divides GF(3735725,6) 1052 375*2^3733510+1 1123902 L5584 2022 1053 25*2^3733144+1 1123790 L2125 2019 Generalized Fermat 1054 629*2^3731479+1 1123290 L5283 2022 1055 113*2^3728113+1 1122276 L5161 2022 1056 303*2^3725438+1 1121472 L5161 2022 1057 187*2^3723972+1 1121030 L5178 2022 1058 2*1103^368361+1 1120767 L4879 2019 Divides Phi(1103^368361,2) 1059 105*2^3720512+1 1119988 L5493 2022 1060 447*2^3719024+1 1119541 L5493 2022 1061 177*2^3717746+1 1119156 L5279 2022 1062 2*131^528469+1 1118913 L4879 2019 Divides Phi(131^528469,2) 1063 123*2^3716758+1 1118858 L5563 2022 1064 313*2^3716716+1 1118846 L5237 2022 1065 367*2^3712952+1 1117713 L5264 2022 1066 53*2^3709297+1 1116612 L5197 2022 1067a 323718292^131072+1 1115445 L4201 2025 Generalized Fermat 1068b 323033558^131072+1 1115325 L6073 2025 Generalized Fermat 1069b 322955442^131072+1 1115311 L5767 2025 Generalized Fermat 1070b 322525546^131072+1 1115235 L4201 2025 Generalized Fermat 1071b 322451080^131072+1 1115222 L5452 2025 Generalized Fermat 1072b 322434876^131072+1 1115219 L4201 2025 Generalized Fermat 1073b 322396080^131072+1 1115212 L6237 2025 Generalized Fermat 1074b 322011364^131072+1 1115144 L4201 2025 Generalized Fermat 1075b 321847328^131072+1 1115115 L4387 2025 Generalized Fermat 1076b 321745654^131072+1 1115097 L4201 2025 Generalized Fermat 1077b 321738090^131072+1 1115096 L4760 2025 Generalized Fermat 1078b 321725062^131072+1 1115094 L6090 2025 Generalized Fermat 1079b 321586916^131072+1 1115069 L4201 2025 Generalized Fermat 1080 2^3704053+2^1852027+1 1115032 L3839 2014 Gaussian Mersenne norm 39, generalized unique 1081b 321054002^131072+1 1114975 L6092 2025 Generalized Fermat 1082b 320959460^131072+1 1114958 L4774 2025 Generalized Fermat 1083b 320925816^131072+1 1114952 L6229 2025 Generalized Fermat 1084b 320693846^131072+1 1114911 L6230 2025 Generalized Fermat 1085b 320244692^131072+1 1114831 L6227 2025 Generalized Fermat 1086b 319727682^131072+1 1114739 L4477 2025 Generalized Fermat 1087b 319569620^131072+1 1114711 L5156 2025 Generalized Fermat 1088b 319473204^131072+1 1114694 L6085 2025 Generalized Fermat 1089b 319461008^131072+1 1114692 L4760 2025 Generalized Fermat 1090b 317844906^131072+1 1114403 L5069 2025 Generalized Fermat 1091b 317488260^131072+1 1114339 L5069 2025 Generalized Fermat 1092 395*2^3701693+1 1114324 L5536 2022 1093c 317365236^131072+1 1114317 L6036 2025 Generalized Fermat 1094b 317303160^131072+1 1114306 L5707 2025 Generalized Fermat 1095c 317185514^131072+1 1114285 L4201 2025 Generalized Fermat 1096c 317005818^131072+1 1114252 L5069 2025 Generalized Fermat 1097c 316699096^131072+1 1114197 L5234 2025 Generalized Fermat 1098c 316650634^131072+1 1114189 L5698 2025 Generalized Fermat 1099c 316586358^131072+1 1114177 L4747 2025 Generalized Fermat 1100c 316525620^131072+1 1114166 L4835 2025 Generalized Fermat 1101c 316291718^131072+1 1114124 L4835 2025 Generalized Fermat 1102c 315974676^131072+1 1114067 L5069 2025 Generalized Fermat 1103c 315889316^131072+1 1114052 L5234 2025 Generalized Fermat 1104c 315747878^131072+1 1114026 L5989 2025 Generalized Fermat 1105b 315608702^131072+1 1114001 L5577 2025 Generalized Fermat 1106c 315329034^131072+1 1113950 L5378 2025 Generalized Fermat 1107c 315314084^131072+1 1113948 L5718 2025 Generalized Fermat 1108c 315134738^131072+1 1113915 L5697 2025 Generalized Fermat 1109c 314548296^131072+1 1113809 L4774 2025 Generalized Fermat 1110c 314518672^131072+1 1113804 L5720 2025 Generalized Fermat 1111 589*2^3699954+1 1113800 L5576 2022 1112c 314283852^131072+1 1113761 L6220 2025 Generalized Fermat 1113 314187728^131072+1 1113744 L4704 2019 Generalized Fermat 1114c 313957156^131072+1 1113702 L4201 2025 Generalized Fermat 1115b 313807832^131072+1 1113675 L4309 2025 Generalized Fermat 1116c 313698494^131072+1 1113655 L4791 2025 Generalized Fermat 1117c 313043470^131072+1 1113536 L4870 2025 Generalized Fermat 1118c 312959344^131072+1 1113521 L5989 2025 Generalized Fermat 1119c 312907040^131072+1 1113512 L4835 2025 Generalized Fermat 1120c 312372774^131072+1 1113414 L5732 2025 Generalized Fermat 1121c 312306760^131072+1 1113402 L5782 2025 Generalized Fermat 1122 119*2^3698412-1 1113336 L2484 2018 1123c 311769070^131072+1 1113304 L5378 2025 Generalized Fermat 1124c 311345600^131072+1 1113227 L4201 2025 Generalized Fermat 1125c 311340274^131072+1 1113226 L5234 2025 Generalized Fermat 1126c 311041040^131072+1 1113171 L5974 2025 Generalized Fermat 1127c 310877094^131072+1 1113141 L5378 2025 Generalized Fermat 1128c 310324620^131072+1 1113040 L5069 2025 Generalized Fermat 1129c 310092052^131072+1 1112997 L4201 2025 Generalized Fermat 1130c 310040910^131072+1 1112988 L5989 2025 Generalized Fermat 1131c 310039364^131072+1 1112987 L5452 2025 Generalized Fermat 1132c 309765652^131072+1 1112937 L5069 2025 Generalized Fermat 1133c 309739652^131072+1 1112932 L4201 2025 Generalized Fermat 1134c 309664690^131072+1 1112919 L4904 2025 Generalized Fermat 1135c 309512820^131072+1 1112891 L4672 2025 Generalized Fermat 1136c 309489574^131072+1 1112886 L4285 2025 Generalized Fermat 1137c 309442124^131072+1 1112878 L4763 2025 Generalized Fermat 1138c 309322056^131072+1 1112856 L5763 2025 Generalized Fermat 1139c 309290162^131072+1 1112850 L4984 2025 Generalized Fermat 1140c 309274552^131072+1 1112847 L4870 2025 Generalized Fermat 1141c 309198216^131072+1 1112833 L6220 2025 Generalized Fermat 1142c 309023380^131072+1 1112801 L5586 2025 Generalized Fermat 1143c 308604278^131072+1 1112723 L5814 2025 Generalized Fermat 1144c 308406372^131072+1 1112687 L5069 2025 Generalized Fermat 1145c 308191838^131072+1 1112647 L4411 2025 Generalized Fermat 1146c 308154186^131072+1 1112640 L4672 2025 Generalized Fermat 1147c 308065536^131072+1 1112624 L5617 2025 Generalized Fermat 1148c 307819786^131072+1 1112579 L4733 2025 Generalized Fermat 1149c 307711366^131072+1 1112558 L5375 2025 Generalized Fermat 1150c 307525070^131072+1 1112524 L5234 2025 Generalized Fermat 1151c 307305996^131072+1 1112483 L5871 2025 Generalized Fermat 1152c 307211976^131072+1 1112466 L5234 2025 Generalized Fermat 1153c 306999614^131072+1 1112427 L6215 2025 Generalized Fermat 1154c 306293130^131072+1 1112295 L4252 2025 Generalized Fermat 1155c 306021044^131072+1 1112245 L5029 2025 Generalized Fermat 1156c 305985812^131072+1 1112238 L4672 2025 Generalized Fermat 1157c 305909498^131072+1 1112224 L5869 2025 Generalized Fermat 1158c 305710338^131072+1 1112187 L5155 2025 Generalized Fermat 1159c 305485026^131072+1 1112145 L6217 2025 Generalized Fermat 1160c 305470708^131072+1 1112142 L4245 2025 Generalized Fermat 1161c 305377046^131072+1 1112125 L4775 2025 Generalized Fermat 1162c 305014830^131072+1 1112057 L5041 2025 Generalized Fermat 1163c 304591806^131072+1 1111978 L5069 2025 Generalized Fermat 1164 391*2^3693728+1 1111926 L5493 2022 1165c 303660042^131072+1 1111804 L5548 2025 Generalized Fermat 1166c 303569754^131072+1 1111787 L5041 2025 Generalized Fermat 1167c 303297636^131072+1 1111736 L5069 2025 Generalized Fermat 1168c 303057534^131072+1 1111691 L5797 2025 Generalized Fermat 1169c 302824086^131072+1 1111647 L4252 2025 Generalized Fermat 1170c 302491876^131072+1 1111585 L5273 2025 Generalized Fermat 1171c 302240442^131072+1 1111537 L5375 2025 Generalized Fermat 1172c 302186970^131072+1 1111527 L5030 2025 Generalized Fermat 1173c 302150100^131072+1 1111520 L5586 2025 Generalized Fermat 1174c 301715144^131072+1 1111438 L5234 2025 Generalized Fermat 1175c 301702734^131072+1 1111436 L6205 2025 Generalized Fermat 1176c 301006780^131072+1 1111304 L5375 2025 Generalized Fermat 1177c 300951448^131072+1 1111294 L6092 2025 Generalized Fermat 1178c 300789064^131072+1 1111263 L5041 2025 Generalized Fermat 1179c 300359914^131072+1 1111182 L6207 2025 Generalized Fermat 1180e 1089049*2^3691010+1 1111111 A51 2024 1181c 299617962^131072+1 1111041 L6170 2025 Generalized Fermat 1182c 299465954^131072+1 1111012 L5378 2025 Generalized Fermat 1183c 299453316^131072+1 1111010 L6207 2025 Generalized Fermat 1184c 299319324^131072+1 1110984 L5378 2025 Generalized Fermat 1185c 298464340^131072+1 1110822 L5019 2025 Generalized Fermat 1186c 298459970^131072+1 1110821 L4477 2025 Generalized Fermat 1187c 297844594^131072+1 1110703 L5029 2025 Generalized Fermat 1188c 297797756^131072+1 1110694 L6096 2025 Generalized Fermat 1189c 297561734^131072+1 1110649 L5070 2025 Generalized Fermat 1190c 297347764^131072+1 1110608 L4201 2025 Generalized Fermat 1191c 297200042^131072+1 1110580 L5143 2025 Generalized Fermat 1192c 296855808^131072+1 1110514 L6205 2025 Generalized Fermat 1193c 296366230^131072+1 1110420 L6019 2025 Generalized Fermat 1194c 296322752^131072+1 1110412 L5462 2025 Generalized Fermat 1195c 296139756^131072+1 1110377 L5696 2025 Generalized Fermat 1196c 296013472^131072+1 1110352 L5156 2025 Generalized Fermat 1197c 295817758^131072+1 1110315 L5974 2025 Generalized Fermat 1198 485*2^3688111+1 1110235 L5237 2022 1199c 295265516^131072+1 1110208 L5391 2025 Generalized Fermat 1200c 295158064^131072+1 1110188 L4201 2025 Generalized Fermat 1201c 295116084^131072+1 1110179 L6202 2025 Generalized Fermat 1202c 295038452^131072+1 1110164 L6201 2025 Generalized Fermat 1203c 294901286^131072+1 1110138 L5880 2025 Generalized Fermat 1204c 294581562^131072+1 1110076 L4933 2025 Generalized Fermat 1205c 294287308^131072+1 1110019 L5029 2025 Generalized Fermat 1206c 294282868^131072+1 1110018 L5069 2025 Generalized Fermat 1207c 293950920^131072+1 1109954 L5019 2025 Generalized Fermat 1208c 293846126^131072+1 1109934 L4387 2025 Generalized Fermat 1209c 293634610^131072+1 1109893 L4659 2025 Generalized Fermat 1210c 293593596^131072+1 1109885 L5457 2025 Generalized Fermat 1211c 293229954^131072+1 1109814 L5069 2025 Generalized Fermat 1212 341*2^3686613+1 1109784 L5573 2022 1213 87*2^3686558+1 1109767 L5573 2022 1214c 292906440^131072+1 1109752 L5069 2025 Generalized Fermat 1215c 292462072^131072+1 1109665 L5586 2025 Generalized Fermat 1216c 291939158^131072+1 1109563 L5586 2025 Generalized Fermat 1217c 291644784^131072+1 1109506 L4201 2025 Generalized Fermat 1218c 291616626^131072+1 1109500 L5676 2025 Generalized Fermat 1219c 291515852^131072+1 1109481 L5697 2025 Generalized Fermat 1220c 291463322^131072+1 1109470 L5025 2025 Generalized Fermat 1221c 291165334^131072+1 1109412 L5637 2025 Generalized Fermat 1222c 290922092^131072+1 1109365 L5069 2025 Generalized Fermat 1223c 290470932^131072+1 1109276 L5069 2025 Generalized Fermat 1224c 290470146^131072+1 1109276 L5069 2025 Generalized Fermat 1225c 290289574^131072+1 1109241 L5586 2025 Generalized Fermat 1226c 290289300^131072+1 1109241 L5491 2025 Generalized Fermat 1227c 290203860^131072+1 1109224 L4835 2025 Generalized Fermat 1228c 290075834^131072+1 1109199 L5234 2025 Generalized Fermat 1229c 289805958^131072+1 1109146 L5234 2025 Generalized Fermat 1230c 289390778^131072+1 1109064 L5639 2025 Generalized Fermat 1231c 289176522^131072+1 1109022 L5041 2025 Generalized Fermat 1232c 288601570^131072+1 1108909 L6189 2025 Generalized Fermat 1233c 288168976^131072+1 1108823 L6187 2025 Generalized Fermat 1234c 287625360^131072+1 1108716 L4747 2025 Generalized Fermat 1235 675*2^3682616+1 1108581 L5231 2022 1236c 286460772^131072+1 1108485 L5069 2025 Generalized Fermat 1237c 286434328^131072+1 1108480 L4904 2025 Generalized Fermat 1238 569*2^3682167+1 1108446 L5488 2022 1239c 285803202^131072+1 1108354 L5473 2025 Generalized Fermat 1240c 285447574^131072+1 1108283 L5586 2025 Generalized Fermat 1241c 285446536^131072+1 1108283 L5687 2025 Generalized Fermat 1242c 284918308^131072+1 1108178 L4201 2025 Generalized Fermat 1243c 284831742^131072+1 1108160 L6085 2025 Generalized Fermat 1244c 284805838^131072+1 1108155 L5025 2025 Generalized Fermat 1245c 284753240^131072+1 1108145 L6185 2025 Generalized Fermat 1246c 284745724^131072+1 1108143 L5869 2025 Generalized Fermat 1247c 284001924^131072+1 1107994 L5416 2025 Generalized Fermat 1248c 283824490^131072+1 1107959 L5470 2025 Generalized Fermat 1249c 283699626^131072+1 1107934 L5234 2025 Generalized Fermat 1250c 283216606^131072+1 1107837 L5711 2025 Generalized Fermat 1251c 282839136^131072+1 1107761 L4756 2025 Generalized Fermat 1252c 281755198^131072+1 1107542 L5234 2025 Generalized Fermat 1253c 281635050^131072+1 1107518 L5697 2025 Generalized Fermat 1254 330286*5^1584399-1 1107453 L3523 2014 1255c 281238556^131072+1 1107438 L5041 2025 Generalized Fermat 1256c 281131678^131072+1 1107416 L4584 2025 Generalized Fermat 1257 34*951^371834-1 1107391 L5410 2019 1258c 280984376^131072+1 1107386 L5844 2025 Generalized Fermat 1259c 280877312^131072+1 1107364 L6178 2025 Generalized Fermat 1260c 280515348^131072+1 1107291 L5029 2025 Generalized Fermat 1261c 280391126^131072+1 1107266 L5011 2025 Generalized Fermat 1262c 280207586^131072+1 1107229 L5322 2025 Generalized Fermat 1263c 279991058^131072+1 1107185 L5526 2025 Generalized Fermat 1264c 279987304^131072+1 1107184 L5974 2025 Generalized Fermat 1265c 279919024^131072+1 1107170 L4672 2025 Generalized Fermat 1266 45*2^3677787+1 1107126 L1204 2019 1267c 279594222^131072+1 1107104 L5814 2025 Generalized Fermat 1268c 279533226^131072+1 1107091 L6176 2025 Generalized Fermat 1269c 279393398^131072+1 1107063 L5637 2025 Generalized Fermat 1270c 279257150^131072+1 1107035 L6177 2025 Generalized Fermat 1271c 278715552^131072+1 1106925 L6129 2025 Generalized Fermat 1272c 278620322^131072+1 1106905 L5069 2025 Generalized Fermat 1273c 278619282^131072+1 1106905 L5378 2025 Generalized Fermat 1274c 278524906^131072+1 1106886 L4249 2025 Generalized Fermat 1275c 278507178^131072+1 1106882 L5682 2025 Generalized Fermat 1276c 278237250^131072+1 1106827 L6182 2025 Generalized Fermat 1277c 278204564^131072+1 1106820 L5948 2025 Generalized Fermat 1278c 278190840^131072+1 1106817 L6183 2025 Generalized Fermat 1279c 277919980^131072+1 1106762 L5974 2025 Generalized Fermat 1280 625*2^3676300+1 1106680 L5302 2022 Generalized Fermat 1281c 277256590^131072+1 1106626 L6170 2025 Generalized Fermat 1282c 277085600^131072+1 1106591 L5974 2025 Generalized Fermat 1283c 276836574^131072+1 1106540 L4760 2025 Generalized Fermat 1284c 276775868^131072+1 1106527 L5549 2025 Generalized Fermat 1285c 276740330^131072+1 1106520 L6166 2025 Generalized Fermat 1286c 276607388^131072+1 1106492 L5782 2025 Generalized Fermat 1287c 276446036^131072+1 1106459 L5011 2025 Generalized Fermat 1288c 276329786^131072+1 1106435 L5718 2025 Generalized Fermat 1289 13*2^3675223-1 1106354 L1862 2016 1290c 275170262^131072+1 1106196 L5378 2025 Generalized Fermat 1291c 274919976^131072+1 1106144 L5378 2025 Generalized Fermat 1292c 274816000^131072+1 1106123 L6163 2025 Generalized Fermat 1293c 274753140^131072+1 1106110 L5974 2025 Generalized Fermat 1294c 274535798^131072+1 1106065 L5816 2025 Generalized Fermat 1295c 274280236^131072+1 1106012 L5070 2025 Generalized Fermat 1296c 273579644^131072+1 1105866 L6129 2025 Generalized Fermat 1297c 273503630^131072+1 1105850 L4309 2025 Generalized Fermat 1298c 273438512^131072+1 1105837 L5718 2025 Generalized Fermat 1299c 273327598^131072+1 1105813 L5512 2025 Generalized Fermat 1300c 273306974^131072+1 1105809 L4892 2025 Generalized Fermat 1301c 273272188^131072+1 1105802 L5543 2025 Generalized Fermat 1302c 273237906^131072+1 1105795 L6159 2025 Generalized Fermat 1303c 273140040^131072+1 1105774 L4210 2025 Generalized Fermat 1304c 273036074^131072+1 1105753 L5069 2025 Generalized Fermat 1305c 272998912^131072+1 1105745 L4245 2025 Generalized Fermat 1306c 272788310^131072+1 1105701 L4720 2025 Generalized Fermat 1307c 272041540^131072+1 1105545 L5069 2025 Generalized Fermat 1308 271643232^131072+1 1105462 L4704 2019 Generalized Fermat 1309c 271370312^131072+1 1105404 L4591 2025 Generalized Fermat 1310c 271135152^131072+1 1105355 L5718 2025 Generalized Fermat 1311c 270979532^131072+1 1105322 L5639 2025 Generalized Fermat 1312c 270832760^131072+1 1105292 L5027 2025 Generalized Fermat 1313c 270822160^131072+1 1105289 L4726 2025 Generalized Fermat 1314c 270789102^131072+1 1105282 L5051 2025 Generalized Fermat 1315c 270682284^131072+1 1105260 L6129 2025 Generalized Fermat 1316c 270581690^131072+1 1105239 L4870 2025 Generalized Fermat 1317c 270284868^131072+1 1105176 L5027 2025 Generalized Fermat 1318 463*2^3671262+1 1105163 L5524 2022 1319c 269993492^131072+1 1105115 L6129 2025 Generalized Fermat 1320 735*2^3670991+1 1105082 L5575 2022 1321c 269812742^131072+1 1105077 L6129 2025 Generalized Fermat 1322c 268685690^131072+1 1104838 L4898 2025 Generalized Fermat 1323 475*2^3670046+1 1104797 L5524 2022 1324c 267783532^131072+1 1104647 L5974 2025 Generalized Fermat 1325c 267768162^131072+1 1104644 L5974 2025 Generalized Fermat 1326d 267416848^131072+1 1104569 L5707 2025 Generalized Fermat 1327d 267414744^131072+1 1104569 L5771 2025 Generalized Fermat 1328d 266639610^131072+1 1104403 L5069 2025 Generalized Fermat 1329d 266330322^131072+1 1104337 L5707 2025 Generalized Fermat 1330d 266249522^131072+1 1104320 L5069 2025 Generalized Fermat 1331 15*2^3668194-1 1104238 L3665 2013 1332d 265866252^131072+1 1104238 L4591 2025 Generalized Fermat 1333d 265837862^131072+1 1104232 L5069 2025 Generalized Fermat 1334d 265643056^131072+1 1104190 L5069 2025 Generalized Fermat 1335d 265621592^131072+1 1104186 L4201 2025 Generalized Fermat 1336d 265478490^131072+1 1104155 L5069 2025 Generalized Fermat 1337d 264860372^131072+1 1104022 L5639 2025 Generalized Fermat 1338c 264624458^131072+1 1103971 L5416 2025 Generalized Fermat 1339d 264541844^131072+1 1103954 L5332 2025 Generalized Fermat 1340d 264360218^131072+1 1103915 L4875 2025 Generalized Fermat 1341d 264269230^131072+1 1103895 L5526 2025 Generalized Fermat 1342d 263861882^131072+1 1103807 L5639 2025 Generalized Fermat 1343d 263506158^131072+1 1103730 L6102 2025 Generalized Fermat 1344d 262824942^131072+1 1103583 L5586 2025 Generalized Fermat 1345d 262754910^131072+1 1103568 L4774 2025 Generalized Fermat 1346d 262470710^131072+1 1103506 L5974 2025 Generalized Fermat 1347 273*2^3665736+1 1103499 L5192 2022 1348d 262298138^131072+1 1103469 L5864 2025 Generalized Fermat 1349d 262041482^131072+1 1103413 L5457 2025 Generalized Fermat 1350d 262005898^131072+1 1103405 L4774 2025 Generalized Fermat 1351d 261858724^131072+1 1103373 L5639 2025 Generalized Fermat 1352d 261114224^131072+1 1103211 L4939 2025 Generalized Fermat 1353 13*2^3664703-1 1103187 L1862 2016 1354 1486*165^497431+1 1103049 A11 2024 1355e 260265300^131072+1 1103026 L5586 2024 Generalized Fermat 1356e 260050122^131072+1 1102979 L5586 2024 Generalized Fermat 1357e 259881684^131072+1 1102942 L4245 2024 Generalized Fermat 1358e 259576262^131072+1 1102875 L4672 2024 Generalized Fermat 1359 406515^196608-406515^98304+1 1102790 L4506 2016 Generalized unique 1360e 259130312^131072+1 1102777 L5156 2024 Generalized Fermat 1361e 259042144^131072+1 1102758 L5457 2024 Generalized Fermat 1362 609*2^3662931+1 1102655 L5573 2022 1363e 258337266^131072+1 1102603 L5457 2024 Generalized Fermat 1364e 258336436^131072+1 1102602 L5586 2024 Generalized Fermat 1365e 258197916^131072+1 1102572 L5473 2024 Generalized Fermat 1366e 258109576^131072+1 1102552 L4672 2024 Generalized Fermat 1367e 257401382^131072+1 1102396 L5586 2024 Generalized Fermat 1368e 257047620^131072+1 1102318 L4892 2024 Generalized Fermat 1369e 256963326^131072+1 1102299 L6093 2024 Generalized Fermat 1370e 256943534^131072+1 1102295 L4892 2024 Generalized Fermat 1371e 256089378^131072+1 1102105 L4892 2024 Generalized Fermat 1372e 255856074^131072+1 1102053 L4747 2024 Generalized Fermat 1373e 255812078^131072+1 1102044 L6091 2024 Generalized Fermat 1374e 255666546^131072+1 1102011 L6092 2024 Generalized Fermat 1375e 255648100^131072+1 1102007 L4245 2024 Generalized Fermat 1376e 255555468^131072+1 1101986 L5639 2024 Generalized Fermat 1377e 255339392^131072+1 1101938 L5707 2024 Generalized Fermat 1378e 255189240^131072+1 1101905 L5782 2024 Generalized Fermat 1379e 254954350^131072+1 1101852 L5467 2024 Generalized Fermat 1380e 254731916^131072+1 1101803 L6090 2024 Generalized Fermat 1381e 254713668^131072+1 1101799 L5782 2024 Generalized Fermat 1382e 254450722^131072+1 1101740 L5620 2024 Generalized Fermat 1383e 254193678^131072+1 1101682 L5634 2024 Generalized Fermat 1384e 253875014^131072+1 1101611 L5707 2024 Generalized Fermat 1385e 253866454^131072+1 1101609 L5457 2024 Generalized Fermat 1386f 253210808^131072+1 1101462 L4968 2024 Generalized Fermat 1387f 252934920^131072+1 1101400 L6036 2024 Generalized Fermat 1388f 252637312^131072+1 1101333 L5526 2024 Generalized Fermat 1389f 252545864^131072+1 1101312 L5467 2024 Generalized Fermat 1390f 252369374^131072+1 1101272 L5452 2024 Generalized Fermat 1391f 252171992^131072+1 1101228 L5639 2024 Generalized Fermat 1392f 251361006^131072+1 1101044 L5127 2024 Generalized Fermat 1393f 251085988^131072+1 1100982 L4201 2024 Generalized Fermat 1394f 250775680^131072+1 1100912 L6073 2024 Generalized Fermat 1395f 249754922^131072+1 1100679 L4898 2024 Generalized Fermat 1396f 249751100^131072+1 1100679 L6088 2024 Generalized Fermat 1397f 249735514^131072+1 1100675 L4201 2024 Generalized Fermat 1398f 249634320^131072+1 1100652 L6087 2024 Generalized Fermat 1399 118*892^373012+1 1100524 L5071 2020 1400 248934378^131072+1 1100492 L5974 2024 Generalized Fermat 1401 248857694^131072+1 1100475 L6086 2024 Generalized Fermat 1402 248820272^131072+1 1100466 L5768 2024 Generalized Fermat 1403 248632632^131072+1 1100423 L5416 2024 Generalized Fermat 1404 248621940^131072+1 1100421 L5051 2024 Generalized Fermat 1405 248617468^131072+1 1100420 L5416 2024 Generalized Fermat 1406 33300*430^417849-1 1100397 L4393 2016 1407 247389350^131072+1 1100138 L6085 2024 Generalized Fermat 1408 247342010^131072+1 1100127 L6073 2024 Generalized Fermat 1409 247145256^131072+1 1100082 L4939 2024 Generalized Fermat 1410 246980946^131072+1 1100044 L4249 2024 Generalized Fermat 1411 246952054^131072+1 1100037 L6084 2024 Generalized Fermat 1412 246943520^131072+1 1100035 L5746 2024 Generalized Fermat 1413 (2^2976221-1)*(10^204068-1172064)+1 1100000 p449 2024 1414 246677978^131072+1 1099974 L5512 2024 Generalized Fermat 1415 246634478^131072+1 1099964 L5117 2024 Generalized Fermat 1416 246394910^131072+1 1099908 L6038 2024 Generalized Fermat 1417 246207020^131072+1 1099865 L5606 2024 Generalized Fermat 1418 246012578^131072+1 1099820 L5606 2024 Generalized Fermat 1419 245507802^131072+1 1099703 L5606 2024 Generalized Fermat 1420 245461196^131072+1 1099692 L6078 2024 Generalized Fermat 1421 655*2^3653008+1 1099668 L5574 2022 1422 244873604^131072+1 1099556 L6076 2024 Generalized Fermat 1423 244660242^131072+1 1099506 L6038 2024 Generalized Fermat 1424 244342390^131072+1 1099432 L5416 2024 Generalized Fermat 1425 244202408^131072+1 1099400 L4371 2024 Generalized Fermat 1426 291*268^452750-1 1099341 L5410 2022 1427 243786926^131072+1 1099303 L6073 2024 Generalized Fermat 1428 243427990^131072+1 1099219 L4892 2024 Generalized Fermat 1429 242973858^131072+1 1099113 L6072 2024 Generalized Fermat 1430 242950108^131072+1 1099107 L4387 2024 Generalized Fermat 1431 242933064^131072+1 1099103 L5782 2024 Generalized Fermat 1432 242926826^131072+1 1099102 L5826 2024 Generalized Fermat 1433 242855212^131072+1 1099085 L4591 2024 Generalized Fermat 1434 242494358^131072+1 1099000 L5416 2024 Generalized Fermat 1435 242295536^131072+1 1098953 L5205 2024 Generalized Fermat 1436 242161196^131072+1 1098922 L6070 2024 Generalized Fermat 1437 241765100^131072+1 1098829 L6067 2024 Generalized Fermat 1438 241550882^131072+1 1098778 L6065 2024 Generalized Fermat 1439 241438172^131072+1 1098752 L4591 2024 Generalized Fermat 1440 241338084^131072+1 1098728 L4591 2024 Generalized Fermat 1441 241249426^131072+1 1098707 L5526 2024 Generalized Fermat 1442 33*2^3649810+1 1098704 L4958 2019 1443 241151312^131072+1 1098684 L4387 2024 Generalized Fermat 1444 241000970^131072+1 1098648 L5707 2024 Generalized Fermat 1445 240966866^131072+1 1098640 L4559 2024 Generalized Fermat 1446 240965802^131072+1 1098640 L6058 2024 Generalized Fermat 1447 240910640^131072+1 1098627 L5101 2024 Generalized Fermat 1448 240856112^131072+1 1098614 L4875 2024 Generalized Fermat 1449 240307734^131072+1 1098484 L4249 2024 Generalized Fermat 1450 240190808^131072+1 1098457 L5056 2024 Generalized Fermat 1451 239927858^131072+1 1098394 L4477 2024 Generalized Fermat 1452 239545562^131072+1 1098304 L4591 2024 Generalized Fermat 1453 239520486^131072+1 1098298 L5634 2024 Generalized Fermat 1454 238968056^131072+1 1098166 L4477 2024 Generalized Fermat 1455 238871106^131072+1 1098143 L6058 2024 Generalized Fermat 1456 238852190^131072+1 1098139 L5526 2024 Generalized Fermat 1457 238698190^131072+1 1098102 L5077 2024 Generalized Fermat 1458 238653710^131072+1 1098091 L6057 2024 Generalized Fermat 1459 238627390^131072+1 1098085 L5871 2024 Generalized Fermat 1460 238438430^131072+1 1098040 L5707 2024 Generalized Fermat 1461 238381768^131072+1 1098026 L5707 2024 Generalized Fermat 1462 238193230^131072+1 1097981 L4201 2024 Generalized Fermat 1463 238168282^131072+1 1097975 L4201 2024 Generalized Fermat 1464 238109742^131072+1 1097961 L4559 2024 Generalized Fermat 1465 237601644^131072+1 1097840 L5782 2024 Generalized Fermat 1466 237260908^131072+1 1097758 L4201 2024 Generalized Fermat 1467 237185928^131072+1 1097740 L5755 2024 Generalized Fermat 1468 237108488^131072+1 1097722 L5639 2024 Generalized Fermat 1469 236924362^131072+1 1097677 L5639 2024 Generalized Fermat 1470 236602468^131072+1 1097600 L6038 2024 Generalized Fermat 1471 236500052^131072+1 1097575 L5198 2024 Generalized Fermat 1472 236417078^131072+1 1097555 L5588 2024 Generalized Fermat 1473 236278180^131072+1 1097522 L5416 2024 Generalized Fermat 1474 236240868^131072+1 1097513 L6038 2024 Generalized Fermat 1475 235947986^131072+1 1097442 L4201 2024 Generalized Fermat 1476 235577802^131072+1 1097353 L5077 2024 Generalized Fermat 1477 235566676^131072+1 1097350 L5416 2024 Generalized Fermat 1478 235108160^131072+1 1097239 L4898 2024 Generalized Fermat 1479 234962380^131072+1 1097204 L4201 2024 Generalized Fermat 1480 234806100^131072+1 1097166 L5088 2024 Generalized Fermat 1481 234661134^131072+1 1097131 L5416 2024 Generalized Fermat 1482 234566344^131072+1 1097108 L5974 2024 Generalized Fermat 1483 234523400^131072+1 1097098 L4201 2024 Generalized Fermat 1484 234385314^131072+1 1097064 L4285 2024 Generalized Fermat 1485 234307964^131072+1 1097045 L4559 2024 Generalized Fermat 1486 234291722^131072+1 1097041 L4999 2024 Generalized Fermat 1487 233937376^131072+1 1096955 L6044 2024 Generalized Fermat 1488 233903532^131072+1 1096947 L4559 2024 Generalized Fermat 1489 233559012^131072+1 1096863 L5416 2024 Generalized Fermat 1490 233447012^131072+1 1096836 L4477 2024 Generalized Fermat 1491 233349574^131072+1 1096812 L5432 2024 Generalized Fermat 1492 233034976^131072+1 1096735 L5101 2024 Generalized Fermat 1493 232796676^131072+1 1096677 L6040 2024 Generalized Fermat 1494 232485778^131072+1 1096601 L4477 2024 Generalized Fermat 1495 232050760^131072+1 1096494 L5782 2024 Generalized Fermat 1496 295*2^3642206+1 1096416 L5161 2022 1497 231583998^131072+1 1096380 L4477 2024 Generalized Fermat 1498 231295516^131072+1 1096309 L5634 2024 Generalized Fermat 1499 230663736^131072+1 1096153 L4774 2024 Generalized Fermat 1500 230655072^131072+1 1096151 L5526 2024 Generalized Fermat 1501 230396424^131072+1 1096087 L4928 2024 Generalized Fermat 1502 230275166^131072+1 1096057 L6011 2024 Generalized Fermat 1503 230267830^131072+1 1096055 L6036 2024 Generalized Fermat 1504 989*2^3640585+1 1095929 L5115 2020 1505 567*2^3639287+1 1095538 L4959 2019 1506 227669832^131072+1 1095409 L5707 2024 Generalized Fermat 1507 227406222^131072+1 1095343 L4371 2024 Generalized Fermat 1508 227239620^131072+1 1095302 L4559 2024 Generalized Fermat 1509 227135580^131072+1 1095276 L5974 2024 Generalized Fermat 1510 227009830^131072+1 1095244 L4359 2024 Generalized Fermat 1511 226881840^131072+1 1095212 L5784 2024 Generalized Fermat 1512 226782570^131072+1 1095187 L6026 2024 Generalized Fermat 1513 226710488^131072+1 1095169 L5588 2024 Generalized Fermat 1514 226639300^131072+1 1095151 L5634 2024 Generalized Fermat 1515 226453444^131072+1 1095104 L4559 2024 Generalized Fermat 1516 226341130^131072+1 1095076 L4341 2024 Generalized Fermat 1517 226249042^131072+1 1095053 L5370 2024 Generalized Fermat 1518 226100602^131072+1 1095016 L4429 2024 Generalized Fermat 1519 225580118^131072+1 1094884 L5056 2024 Generalized Fermat 1520 225124888^131072+1 1094769 L4591 2024 Generalized Fermat 1521 224635814^131072+1 1094646 L4875 2024 Generalized Fermat 1522 224347630^131072+1 1094572 L5512 2024 Generalized Fermat 1523 224330804^131072+1 1094568 L6019 2024 Generalized Fermat 1524 224249932^131072+1 1094548 L4371 2024 Generalized Fermat 1525 224072278^131072+1 1094503 L5974 2024 Generalized Fermat 1526 639*2^3635707+1 1094460 L1823 2019 1527 223490796^131072+1 1094355 L5332 2024 Generalized Fermat 1528 223074802^131072+1 1094249 L5416 2024 Generalized Fermat 1529 223010262^131072+1 1094232 L6015 2024 Generalized Fermat 1530 222996490^131072+1 1094229 L5731 2024 Generalized Fermat 1531 222888506^131072+1 1094201 L5974 2024 Generalized Fermat 1532 222593516^131072+1 1094126 L6011 2024 Generalized Fermat 1533 222486400^131072+1 1094098 L5332 2024 Generalized Fermat 1534 221636362^131072+1 1093880 L4904 2024 Generalized Fermat 1535 221528336^131072+1 1093853 L5721 2024 Generalized Fermat 1536 221330854^131072+1 1093802 L6010 2024 Generalized Fermat 1537 221325712^131072+1 1093801 L4201 2024 Generalized Fermat 1538 221174400^131072+1 1093762 L4201 2024 Generalized Fermat 1539 221008432^131072+1 1093719 L5974 2024 Generalized Fermat 1540 220956326^131072+1 1093705 L5731 2024 Generalized Fermat 1541 220838206^131072+1 1093675 L5974 2024 Generalized Fermat 1542 220325976^131072+1 1093543 L5690 2024 Generalized Fermat 1543 220317996^131072+1 1093541 L5989 2024 Generalized Fermat 1544 220288248^131072+1 1093533 L5721 2024 Generalized Fermat 1545 219984494^131072+1 1093455 L6005 2024 Generalized Fermat 1546 219556482^131072+1 1093344 L5721 2024 Generalized Fermat 1547 219525472^131072+1 1093336 L4898 2024 Generalized Fermat 1548 219447698^131072+1 1093315 L4933 2024 Generalized Fermat 1549 219430370^131072+1 1093311 L4774 2024 Generalized Fermat 1550 219331584^131072+1 1093285 L5746 2024 Generalized Fermat 1551 753*2^3631472+1 1093185 L1823 2019 1552 2*205731^205731-1 1093111 L4965 2022 1553 218012734^131072+1 1092942 L4928 2024 Generalized Fermat 1554 217820568^131072+1 1092892 L5690 2024 Generalized Fermat 1555 217559364^131072+1 1092823 L4898 2024 Generalized Fermat 1556 217458668^131072+1 1092797 L5989 2024 Generalized Fermat 1557 217423702^131072+1 1092788 L5998 2024 Generalized Fermat 1558 217176690^131072+1 1092723 L5637 2024 Generalized Fermat 1559 217170570^131072+1 1092722 L4371 2024 Generalized Fermat 1560 65531*2^3629342-1 1092546 L2269 2011 1561 1121*2^3629201+1 1092502 L4761 2019 1562 216307766^131072+1 1092495 L4387 2024 Generalized Fermat 1563 216084296^131072+1 1092436 L4201 2024 Generalized Fermat 1564 215*2^3628962-1 1092429 L2484 2018 1565 216039994^131072+1 1092425 L5880 2024 Generalized Fermat 1566 216027436^131072+1 1092421 L5277 2024 Generalized Fermat 1567 216018002^131072+1 1092419 L5586 2024 Generalized Fermat 1568 215949788^131072+1 1092401 L4537 2024 Generalized Fermat 1569 215945398^131072+1 1092400 L4245 2024 Generalized Fermat 1570 215783788^131072+1 1092357 L5711 2024 Generalized Fermat 1571 215717854^131072+1 1092340 L4245 2024 Generalized Fermat 1572 215462154^131072+1 1092272 L4387 2024 Generalized Fermat 1573 215237318^131072+1 1092213 L5693 2024 Generalized Fermat 1574 215004526^131072+1 1092151 L4928 2024 Generalized Fermat 1575 113*2^3628034-1 1092150 L2484 2014 1576 214992758^131072+1 1092148 L5974 2024 Generalized Fermat 1577d 1009*2^3627911-1 1092114 A46 2025 1578 214814516^131072+1 1092101 L5746 2024 Generalized Fermat 1579 1175*2^3627541+1 1092002 L4840 2019 1580 214403112^131072+1 1091992 L4905 2024 Generalized Fermat 1581 214321816^131072+1 1091970 L5989 2024 Generalized Fermat 1582 214134178^131072+1 1091920 L5297 2024 Generalized Fermat 1583 214059556^131072+1 1091900 L4362 2024 Generalized Fermat 1584 2*431^414457+1 1091878 L4879 2019 Divides Phi(431^414457,2) 1585 213879170^131072+1 1091852 L5986 2024 Generalized Fermat 1586 19116*24^791057-1 1091831 A44 2024 1587 213736552^131072+1 1091814 L4289 2024 Generalized Fermat 1588 213656000^131072+1 1091793 L4892 2024 Generalized Fermat 1589 213580840^131072+1 1091773 L4201 2024 Generalized Fermat 1590 213425082^131072+1 1091731 L4892 2024 Generalized Fermat 1591 213162592^131072+1 1091661 L4549 2024 Generalized Fermat 1592 213151104^131072+1 1091658 L4763 2024 Generalized Fermat 1593 212912634^131072+1 1091595 L5639 2024 Generalized Fermat 1594 212894100^131072+1 1091590 L5470 2024 Generalized Fermat 1595 212865234^131072+1 1091582 L5782 2024 Generalized Fermat 1596 212862096^131072+1 1091581 L4870 2024 Generalized Fermat 1597 212838152^131072+1 1091575 L5718 2024 Generalized Fermat 1598 212497738^131072+1 1091483 L5051 2024 Generalized Fermat 1599 212121206^131072+1 1091383 L4774 2024 Generalized Fermat 1600 211719438^131072+1 1091275 L4775 2024 Generalized Fermat 1601 211448294^131072+1 1091202 L5929 2024 Generalized Fermat 1602 211407740^131072+1 1091191 L4341 2024 Generalized Fermat 1603 211326826^131072+1 1091169 L5143 2024 Generalized Fermat 1604 210908700^131072+1 1091056 L5639 2024 Generalized Fermat 1605 210564358^131072+1 1090963 L5639 2024 Generalized Fermat 1606 210434680^131072+1 1090928 L4380 2024 Generalized Fermat 1607 210397166^131072+1 1090918 L4870 2024 Generalized Fermat 1608 210160342^131072+1 1090854 L5974 2024 Generalized Fermat 1609 210088618^131072+1 1090834 L5041 2024 Generalized Fermat 1610 209917216^131072+1 1090788 L5755 2024 Generalized Fermat 1611 209839940^131072+1 1090767 L5639 2024 Generalized Fermat 1612 209637998^131072+1 1090712 L4544 2024 Generalized Fermat 1613 951*2^3623185+1 1090691 L1823 2019 1614 209494470^131072+1 1090673 L5869 2024 Generalized Fermat 1615 209385420^131072+1 1090644 L5720 2024 Generalized Fermat 1616 209108558^131072+1 1090568 L5460 2024 Generalized Fermat 1617 209101202^131072+1 1090566 L5011 2024 Generalized Fermat 1618 208565926^131072+1 1090420 L5016 2024 Generalized Fermat 1619 208497360^131072+1 1090402 L5234 2024 Generalized Fermat 1620 208392300^131072+1 1090373 L5030 2024 Generalized Fermat 1621 208374066^131072+1 1090368 L5869 2024 Generalized Fermat 1622 208352366^131072+1 1090362 L5044 2024 Generalized Fermat 1623 208236434^131072+1 1090330 L5984 2024 Generalized Fermat 1624 208003690^131072+1 1090267 L5639 2024 Generalized Fermat 1625 207985150^131072+1 1090262 L5791 2024 Generalized Fermat 1626 207753480^131072+1 1090198 L5974 2024 Generalized Fermat 1627 207514736^131072+1 1090133 L4477 2024 Generalized Fermat 1628 207445740^131072+1 1090114 L5273 2024 Generalized Fermat 1629 29*920^367810-1 1090113 L4064 2015 1630 207296788^131072+1 1090073 L5234 2024 Generalized Fermat 1631 207264358^131072+1 1090064 L5758 2024 Generalized Fermat 1632 207213640^131072+1 1090050 L5077 2024 Generalized Fermat 1633 206709064^131072+1 1089911 L5639 2024 Generalized Fermat 1634 206640054^131072+1 1089892 L5288 2024 Generalized Fermat 1635 206594738^131072+1 1089880 L5707 2024 Generalized Fermat 1636 206585726^131072+1 1089877 L5667 2024 Generalized Fermat 1637 206473754^131072+1 1089846 L5855 2024 Generalized Fermat 1638 206230080^131072+1 1089779 L5143 2024 Generalized Fermat 1639 206021166^131072+1 1089722 L5639 2024 Generalized Fermat 1640 205990406^131072+1 1089713 L4755 2024 Generalized Fermat 1641 205963322^131072+1 1089706 L5844 2024 Generalized Fermat 1642 205339678^131072+1 1089533 L4905 2024 Generalized Fermat 1643 205160722^131072+1 1089483 L5639 2024 Generalized Fermat 1644 205150506^131072+1 1089480 L5543 2024 Generalized Fermat 1645 205010004^131072+1 1089441 L5025 2024 Generalized Fermat 1646 14641*2^3618876+1 1089395 L181 2018 Generalized Fermat 1647 204695540^131072+1 1089354 L4905 2024 Generalized Fermat 1648 485*2^3618563+1 1089299 L3924 2019 1649 204382086^131072+1 1089267 L4477 2024 Generalized Fermat 1650 204079052^131072+1 1089182 L4763 2024 Generalized Fermat 1651 204016062^131072+1 1089165 L5712 2024 Generalized Fermat 1652 203275588^131072+1 1088958 L5041 2024 Generalized Fermat 1653 203250558^131072+1 1088951 L4210 2024 Generalized Fermat 1654 203238918^131072+1 1088948 L5586 2024 Generalized Fermat 1655 202515696^131072+1 1088745 L4549 2024 Generalized Fermat 1656 202391964^131072+1 1088710 L4835 2024 Generalized Fermat 1657 202251688^131072+1 1088670 L5288 2024 Generalized Fermat 1658 202114688^131072+1 1088632 L5711 2024 Generalized Fermat 1659 202045732^131072+1 1088612 L4537 2024 Generalized Fermat 1660 201593074^131072+1 1088485 L5027 2024 Generalized Fermat 1661 201536524^131072+1 1088469 L5769 2024 Generalized Fermat 1662 201389466^131072+1 1088427 L4537 2024 Generalized Fermat 1663 201249512^131072+1 1088388 L5234 2024 Generalized Fermat 1664 201239624^131072+1 1088385 L5732 2024 Generalized Fermat 1665 200519642^131072+1 1088181 L5712 2024 Generalized Fermat 1666 200459670^131072+1 1088164 L5948 2024 Generalized Fermat 1667 200433382^131072+1 1088156 L5948 2024 Generalized Fermat 1668 200280100^131072+1 1088113 L4892 2024 Generalized Fermat 1669 200053318^131072+1 1088048 L5586 2024 Generalized Fermat 1670 199971120^131072+1 1088025 L5030 2024 Generalized Fermat 1671 95*2^3614033+1 1087935 L1474 2019 1672 199502780^131072+1 1087891 L5878 2024 Generalized Fermat 1673 198402358^131072+1 1087577 L5606 2024 Generalized Fermat 1674 198320982^131072+1 1087553 L5938 2024 Generalized Fermat 1675 198319118^131072+1 1087553 L4737 2024 Generalized Fermat 1676 1005*2^3612300+1 1087414 L1823 2019 1677 197752702^131072+1 1087390 L5355 2024 Generalized Fermat 1678 197607368^131072+1 1087348 L5041 2024 Generalized Fermat 1679 197352408^131072+1 1087275 L4861 2024 Generalized Fermat 1680 861*2^3611815+1 1087268 L1745 2019 1681 197230100^131072+1 1087239 L4753 2024 Generalized Fermat 1682 197212998^131072+1 1087234 L6123 2024 Generalized Fermat 1683 197197506^131072+1 1087230 L4753 2024 Generalized Fermat 1684 197018872^131072+1 1087178 L4884 2024 Generalized Fermat 1685 1087*2^3611476+1 1087166 L4834 2019 1686 196722548^131072+1 1087093 L5782 2024 Generalized Fermat 1687 196703802^131072+1 1087087 L4742 2024 Generalized Fermat 1688 196687752^131072+1 1087082 L5051 2024 Generalized Fermat 1689 195950620^131072+1 1086869 L5929 2024 Generalized Fermat 1690 195834796^131072+1 1086835 L5070 2024 Generalized Fermat 1691 195048992^131072+1 1086606 L5143 2024 Generalized Fermat 1692 194911702^131072+1 1086566 L5948 2024 Generalized Fermat 1693 194819864^131072+1 1086539 L5690 2024 Generalized Fermat 1694 485767*2^3609357-1 1086531 L622 2008 1695 194730404^131072+1 1086513 L5782 2024 Generalized Fermat 1696 194644872^131072+1 1086488 L4720 2024 Generalized Fermat 1697 194584114^131072+1 1086470 L4201 2024 Generalized Fermat 1698 194263106^131072+1 1086376 L4892 2024 Generalized Fermat 1699 194202254^131072+1 1086359 L4835 2024 Generalized Fermat 1700 194159546^131072+1 1086346 L4387 2024 Generalized Fermat 1701 193935716^131072+1 1086280 L4835 2024 Generalized Fermat 1702 193247784^131072+1 1086078 L5234 2024 Generalized Fermat 1703 192866222^131072+1 1085966 L5913 2024 Generalized Fermat 1704 192651588^131072+1 1085902 L5880 2024 Generalized Fermat 1705 192606308^131072+1 1085889 L4476 2024 Generalized Fermat 1706 675*2^3606447+1 1085652 L3278 2019 1707 191678526^131072+1 1085614 L5234 2024 Generalized Fermat 1708 669*2^3606266+1 1085598 L1675 2019 1709 191567332^131072+1 1085581 L4309 2024 Generalized Fermat 1710 65077*2^3605944+1 1085503 L4685 2020 1711 191194450^131072+1 1085470 L4245 2024 Generalized Fermat 1712 1365*2^3605491+1 1085365 L1134 2022 1713 190810274^131072+1 1085356 L5460 2024 Generalized Fermat 1714 190309640^131072+1 1085206 L5880 2024 Generalized Fermat 1715 190187176^131072+1 1085169 L5470 2024 Generalized Fermat 1716 190144032^131072+1 1085156 L4341 2024 Generalized Fermat 1717 851*2^3604395+1 1085034 L2125 2019 1718 189411830^131072+1 1084937 L5578 2024 Generalized Fermat 1719 189240324^131072+1 1084885 L4892 2024 Generalized Fermat 1720 188766416^131072+1 1084743 L5639 2024 Generalized Fermat 1721 188655374^131072+1 1084709 L5842 2024 Generalized Fermat 1722 188646712^131072+1 1084706 L4905 2024 Generalized Fermat 1723 187961358^131072+1 1084499 L5881 2024 Generalized Fermat 1724 1143*2^3602429+1 1084443 L4754 2019 1725 187731580^131072+1 1084430 L5847 2024 Generalized Fermat 1726 187643362^131072+1 1084403 L5707 2024 Generalized Fermat 1727 187584550^131072+1 1084385 L5526 2024 Generalized Fermat 1728 187330820^131072+1 1084308 L5879 2024 Generalized Fermat 1729 1183*2^3601898+1 1084283 L1823 2019 1730 187231212^131072+1 1084278 L4550 2024 Generalized Fermat 1731 187184006^131072+1 1084263 L5051 2024 Generalized Fermat 1732 187007398^131072+1 1084210 L5604 2024 Generalized Fermat 1733 185411044^131072+1 1083722 L5044 2023 Generalized Fermat 1734 185248324^131072+1 1083672 L4371 2023 Generalized Fermat 1735 185110536^131072+1 1083629 L4559 2023 Generalized Fermat 1736 185015722^131072+1 1083600 L5723 2023 Generalized Fermat 1737 184855564^131072+1 1083551 L5748 2023 Generalized Fermat 1738 184835362^131072+1 1083545 L5416 2024 Generalized Fermat 1739 184814078^131072+1 1083538 L4559 2023 Generalized Fermat 1740 184653266^131072+1 1083488 L5606 2023 Generalized Fermat 1741 184523024^131072+1 1083448 L4550 2023 Generalized Fermat 1742 184317182^131072+1 1083385 L5863 2023 Generalized Fermat 1743 184310672^131072+1 1083383 L5863 2023 Generalized Fermat 1744 184119204^131072+1 1083324 L5863 2023 Generalized Fermat 1745 183839694^131072+1 1083237 L5865 2023 Generalized Fermat 1746 183591732^131072+1 1083160 L5586 2023 Generalized Fermat 1747 183392536^131072+1 1083098 L5044 2023 Generalized Fermat 1748 183383118^131072+1 1083096 L4371 2023 Generalized Fermat 1749 183157240^131072+1 1083025 L5853 2023 Generalized Fermat 1750 182252536^131072+1 1082744 L5854 2023 Generalized Fermat 1751 182166824^131072+1 1082717 L5854 2023 Generalized Fermat 1752 181969816^131072+1 1082655 L4591 2023 Generalized Fermat 1753 181913260^131072+1 1082637 L5853 2023 Generalized Fermat 1754 189*2^3596375+1 1082620 L3760 2016 1755 181302244^131072+1 1082446 L4550 2023 Generalized Fermat 1756 180680920^131072+1 1082251 L5639 2023 Generalized Fermat 1757 180455838^131072+1 1082180 L5847 2023 Generalized Fermat 1758 180111908^131072+1 1082071 L5844 2023 Generalized Fermat 1759 180084608^131072+1 1082062 L5056 2023 Generalized Fermat 1760 180045220^131072+1 1082050 L4550 2023 Generalized Fermat 1761 180002474^131072+1 1082036 L5361 2023 Generalized Fermat 1762 179913814^131072+1 1082008 L4875 2023 Generalized Fermat 1763 1089*2^3593267+1 1081685 L3035 2019 1764 178743858^131072+1 1081637 L5051 2023 Generalized Fermat 1765 178437884^131072+1 1081539 L4591 2023 Generalized Fermat 1766 178435022^131072+1 1081538 L5639 2023 Generalized Fermat 1767 178311240^131072+1 1081499 L5369 2023 Generalized Fermat 1768 178086108^131072+1 1081427 L4939 2023 Generalized Fermat 1769 178045832^131072+1 1081414 L5836 2023 Generalized Fermat 1770 177796222^131072+1 1081334 L5834 2023 Generalized Fermat 1771 177775606^131072+1 1081328 L5794 2023 Generalized Fermat 1772 177648552^131072+1 1081287 L5782 2023 Generalized Fermat 1773 177398652^131072+1 1081207 L4559 2023 Generalized Fermat 1774 177319028^131072+1 1081181 L5526 2023 Generalized Fermat 1775 177296064^131072+1 1081174 L5831 2023 Generalized Fermat 1776 177129922^131072+1 1081121 L4559 2023 Generalized Fermat 1777 176799404^131072+1 1081014 L4775 2023 Generalized Fermat 1778 176207346^131072+1 1080823 L5805 2023 Generalized Fermat 1779 176085282^131072+1 1080784 L5805 2023 Generalized Fermat 1780 175482140^131072+1 1080589 L5639 2023 Generalized Fermat 1781 175271418^131072+1 1080520 L5051 2023 Generalized Fermat 1782 19581121*2^3589357-1 1080512 p49 2022 1783 175200596^131072+1 1080497 L5817 2023 Generalized Fermat 1784 1101*2^3589103+1 1080431 L1823 2019 1785 174728608^131072+1 1080344 L5416 2023 Generalized Fermat 1786 174697724^131072+1 1080334 L4747 2023 Generalized Fermat 1787 174534362^131072+1 1080280 L5814 2023 Generalized Fermat 1788 174142738^131072+1 1080152 L4249 2023 Generalized Fermat 1789 174103532^131072+1 1080140 L4249 2023 Generalized Fermat 1790 173962482^131072+1 1080093 L4249 2023 Generalized Fermat 1791 35*2^3587843+1 1080050 L1979 2014 Divides GF(3587841,5) 1792 173717408^131072+1 1080013 L5634 2023 Generalized Fermat 1793 173561300^131072+1 1079962 L4249 2023 Generalized Fermat 1794 173343810^131072+1 1079891 L4249 2023 Generalized Fermat 1795 172026454^131072+1 1079456 L4737 2023 Generalized Fermat 1796 172004036^131072+1 1079449 L5512 2023 Generalized Fermat 1797 275*2^3585539+1 1079358 L3803 2016 1798 171677924^131072+1 1079341 L5512 2023 Generalized Fermat 1799 171610156^131072+1 1079319 L4249 2023 Generalized Fermat 1800 171518672^131072+1 1079288 L5586 2023 Generalized Fermat 1801 171128300^131072+1 1079158 L4249 2023 Generalized Fermat 1802 170982934^131072+1 1079110 L4201 2023 Generalized Fermat 1803 170626040^131072+1 1078991 L5748 2023 Generalized Fermat 1804 169929578^131072+1 1078758 L5748 2023 Generalized Fermat 1805 169369502^131072+1 1078570 L4410 2023 Generalized Fermat 1806 169299904^131072+1 1078547 L4559 2023 Generalized Fermat 1807 169059224^131072+1 1078466 L5746 2023 Generalized Fermat 1808 168885632^131072+1 1078408 L5793 2023 Generalized Fermat 1809 168602250^131072+1 1078312 L5782 2023 Generalized Fermat 1810 168576546^131072+1 1078303 L5639 2023 Generalized Fermat 1811 167845698^131072+1 1078056 L5735 2023 Generalized Fermat 1812 167604930^131072+1 1077974 L4859 2023 Generalized Fermat 1813 2*59^608685+1 1077892 g427 2014 Divides Phi(59^608685,2) 1814 167206862^131072+1 1077839 L5641 2023 Generalized Fermat 1815 166964502^131072+1 1077756 L5627 2023 Generalized Fermat 1816 651*2^3579843+1 1077643 L3035 2018 1817 166609122^131072+1 1077635 L5782 2023 Generalized Fermat 1818 166397330^131072+1 1077563 L5578 2023 Generalized Fermat 1819 166393356^131072+1 1077561 L5782 2023 Generalized Fermat 1820 166288612^131072+1 1077525 L4672 2023 Generalized Fermat 1821 166277052^131072+1 1077521 L5755 2023 Generalized Fermat 1822 166052226^131072+1 1077444 L4670 2023 Generalized Fermat 1823 165430644^131072+1 1077231 L4672 2023 Generalized Fermat 1824 165427494^131072+1 1077230 L4249 2023 Generalized Fermat 1825 583*2^3578402+1 1077210 L3035 2018 1826 165361824^131072+1 1077207 L5586 2023 Generalized Fermat 1827 165258594^131072+1 1077172 L4884 2023 Generalized Fermat 1828 165036358^131072+1 1077095 L5156 2023 Generalized Fermat 1829 164922680^131072+1 1077056 L4249 2023 Generalized Fermat 1830 164800594^131072+1 1077014 L5775 2023 Generalized Fermat 1831 164660428^131072+1 1076965 L4249 2023 Generalized Fermat 1832 309*2^3577339+1 1076889 L4406 2016 1833 164440734^131072+1 1076889 L5485 2023 Generalized Fermat 1834 163871194^131072+1 1076692 L5772 2023 Generalized Fermat 1835 163838506^131072+1 1076680 L5758 2023 Generalized Fermat 1836 163821336^131072+1 1076674 L5544 2023 Generalized Fermat 1837 163820256^131072+1 1076674 L5452 2023 Generalized Fermat 1838 163666380^131072+1 1076621 L5030 2023 Generalized Fermat 1839 163585288^131072+1 1076592 L4928 2023 Generalized Fermat 1840 163359994^131072+1 1076514 L5769 2023 Generalized Fermat 1841 163214942^131072+1 1076463 L4933 2023 Generalized Fermat 1842 163193584^131072+1 1076456 L5595 2023 Generalized Fermat 1843 163152818^131072+1 1076442 L5639 2023 Generalized Fermat 1844 163044252^131072+1 1076404 L5775 2023 Generalized Fermat 1845 162950466^131072+1 1076371 L5694 2023 Generalized Fermat 1846 162874590^131072+1 1076345 L5586 2023 Generalized Fermat 1847 162850104^131072+1 1076336 L5769 2023 Generalized Fermat 1848 162817576^131072+1 1076325 L5772 2023 Generalized Fermat 1849 1185*2^3574583+1 1076060 L4851 2018 1850 251*2^3574535+1 1076045 L3035 2016 1851 1485*2^3574333+1 1075985 L1134 2022 1852 161706626^131072+1 1075935 L4870 2023 Generalized Fermat 1853 161619620^131072+1 1075904 L5586 2023 Generalized Fermat 1854 161588716^131072+1 1075893 L4928 2023 Generalized Fermat 1855 161571504^131072+1 1075887 L5030 2023 Generalized Fermat 1856 161569668^131072+1 1075887 L5639 2023 Generalized Fermat 1857 160998114^131072+1 1075685 L5586 2023 Generalized Fermat 1858 160607310^131072+1 1075547 L5763 2023 Generalized Fermat 1859 160325616^131072+1 1075447 L5586 2023 Generalized Fermat 1860 160228242^131072+1 1075412 L5632 2023 Generalized Fermat 1861 160146172^131072+1 1075383 L4773 2023 Generalized Fermat 1862 159800918^131072+1 1075260 L5586 2023 Generalized Fermat 1863 159794566^131072+1 1075258 L4249 2023 Generalized Fermat 1864 159784836^131072+1 1075254 L5639 2023 Generalized Fermat 1865 159784822^131072+1 1075254 L5637 2023 Generalized Fermat 1866 1019*2^3571635+1 1075173 L1823 2018 1867 159509138^131072+1 1075156 L5637 2023 Generalized Fermat 1868 119*2^3571416-1 1075106 L2484 2018 1869 159214418^131072+1 1075051 L5755 2023 Generalized Fermat 1870 158831096^131072+1 1074914 L5022 2023 Generalized Fermat 1871 35*2^3570777+1 1074913 L2891 2014 1872 158696888^131072+1 1074865 L5030 2023 Generalized Fermat 1873 158472238^131072+1 1074785 L5586 2023 Generalized Fermat 1874 33*2^3570132+1 1074719 L2552 2014 1875 157923226^131072+1 1074587 L4249 2023 Generalized Fermat 1876 157541220^131072+1 1074449 L5416 2023 Generalized Fermat 1877 5*2^3569154-1 1074424 L503 2009 1878 157374268^131072+1 1074389 L5578 2023 Generalized Fermat 1879 81*492^399095-1 1074352 L4001 2015 1880 156978838^131072+1 1074246 L5332 2023 Generalized Fermat 1881 156789840^131072+1 1074177 L4747 2023 Generalized Fermat 1882 156756400^131072+1 1074165 L4249 2023 Generalized Fermat 1883 22934*5^1536762-1 1074155 L3789 2014 1884 156625064^131072+1 1074117 L5694 2023 Generalized Fermat 1885 156519708^131072+1 1074079 L5746 2023 Generalized Fermat 1886 156468140^131072+1 1074060 L4249 2023 Generalized Fermat 1887 156203340^131072+1 1073964 L5578 2023 Generalized Fermat 1888 156171526^131072+1 1073952 L5698 2023 Generalized Fermat 1889 155778562^131072+1 1073809 L4309 2023 Generalized Fermat 1890 155650426^131072+1 1073762 L5668 2023 Generalized Fermat 1891 155536474^131072+1 1073720 L4249 2023 Generalized Fermat 1892 155339878^131072+1 1073648 L5206 2023 Generalized Fermat 1893 155305266^131072+1 1073636 L5549 2023 Generalized Fermat 1894 155006218^131072+1 1073526 L4742 2023 Generalized Fermat 1895 154553092^131072+1 1073359 L4920 2023 Generalized Fermat 1896 154492166^131072+1 1073337 L4326 2023 Generalized Fermat 1897 154478286^131072+1 1073332 L4544 2023 Generalized Fermat 1898 154368914^131072+1 1073291 L5738 2023 Generalized Fermat 1899 153966766^131072+1 1073143 L5732 2023 Generalized Fermat 1900 3437687*2^3564664-1 1073078 L5327 2024 1901 265*2^3564373-1 1072986 L2484 2018 1902 153485148^131072+1 1072965 L5736 2023 Generalized Fermat 1903 153432848^131072+1 1072945 L5030 2023 Generalized Fermat 1904 153413432^131072+1 1072938 L4835 2023 Generalized Fermat 1905 771*2^3564109+1 1072907 L2125 2018 1906e 17665*820^368211+1 1072903 A11 2024 1907 381*2^3563676+1 1072776 L4190 2016 1908 152966530^131072+1 1072772 L5070 2023 Generalized Fermat 1909 555*2^3563328+1 1072672 L4850 2018 1910 152542626^131072+1 1072614 L5460 2023 Generalized Fermat 1911 151999396^131072+1 1072411 L5586 2023 Generalized Fermat 1912 151609814^131072+1 1072265 L5663 2023 Generalized Fermat 1913 151218242^131072+1 1072118 L5588 2023 Generalized Fermat 1914 151108236^131072+1 1072076 L4672 2023 Generalized Fermat 1915 151044622^131072+1 1072052 L5544 2023 Generalized Fermat 1916 151030068^131072+1 1072047 L4774 2023 Generalized Fermat 1917 150908454^131072+1 1072001 L4758 2023 Generalized Fermat 1918 150863054^131072+1 1071984 L5720 2023 Generalized Fermat 1919 1183*2^3560584+1 1071846 L1823 2018 1920 150014492^131072+1 1071663 L4476 2023 Generalized Fermat 1921 149972788^131072+1 1071647 L4559 2023 Generalized Fermat 1922 415*2^3559614+1 1071554 L3035 2016 1923 149665588^131072+1 1071530 L4892 2023 Generalized Fermat 1924 149142686^131072+1 1071331 L4684 2023 Generalized Fermat 1925 149057554^131072+1 1071298 L4933 2023 Generalized Fermat 1926 148598024^131072+1 1071123 L4476 2023 Generalized Fermat 1927 1103*2^3558177-503*2^1092022-1 1071122 p423 2022 Arithmetic progression (3,d=1103*2^3558176-503*2^1092022) 1928 1103*2^3558176-1 1071121 L1828 2018 1929 148592576^131072+1 1071121 L4476 2023 Generalized Fermat 1930 148425726^131072+1 1071057 L4289 2023 Generalized Fermat 1931 148154288^131072+1 1070952 L5714 2023 Generalized Fermat 1932 148093952^131072+1 1070929 L4720 2023 Generalized Fermat 1933 148070542^131072+1 1070920 L5155 2023 Generalized Fermat 1934 147988292^131072+1 1070889 L5155 2023 Generalized Fermat 1935 147816036^131072+1 1070822 L5634 2023 Generalized Fermat 1936 1379*2^3557072-1 1070789 L1828 2018 1937 147539992^131072+1 1070716 L4917 2023 Generalized Fermat 1938 147433824^131072+1 1070675 L4753 2023 Generalized Fermat 1939 147310498^131072+1 1070627 L5403 2023 Generalized Fermat 1940 147265916^131072+1 1070610 L5543 2023 Generalized Fermat 1941 146994540^131072+1 1070505 L5634 2023 Generalized Fermat 1942 146520528^131072+1 1070321 L6123 2023 Generalized Fermat 1943 146465338^131072+1 1070300 L5704 2023 Generalized Fermat 1944 146031082^131072+1 1070131 L4697 2023 Generalized Fermat 1945 145949782^131072+1 1070099 L5029 2023 Generalized Fermat 1946 145728478^131072+1 1070013 L5543 2023 Generalized Fermat 1947 145245346^131072+1 1069824 L5586 2023 Generalized Fermat 1948 145137270^131072+1 1069781 L4742 2023 Generalized Fermat 1949 145132288^131072+1 1069779 L4774 2023 Generalized Fermat 1950 144926960^131072+1 1069699 L5036 2023 Generalized Fermat 1951 144810806^131072+1 1069653 L5543 2023 Generalized Fermat 1952 681*2^3553141+1 1069605 L3035 2018 1953 144602744^131072+1 1069571 L5543 2023 Generalized Fermat 1954 143844356^131072+1 1069272 L5693 2023 Generalized Fermat 1955 599*2^3551793+1 1069200 L3824 2018 1956 143421820^131072+1 1069104 L4904 2023 Generalized Fermat 1957 621*2^3551472+1 1069103 L4687 2018 1958 143416574^131072+1 1069102 L4591 2023 Generalized Fermat 1959 143126384^131072+1 1068987 L5288 2023 Generalized Fermat 1960 142589776^131072+1 1068773 L4201 2023 Generalized Fermat 1961 773*2^3550373+1 1068772 L1808 2018 1962 142527792^131072+1 1068748 L4387 2023 Generalized Fermat 1963 142207386^131072+1 1068620 L5694 2023 Generalized Fermat 1964 142195844^131072+1 1068616 L5548 2023 Generalized Fermat 1965 141636602^131072+1 1068391 L5639 2023 Generalized Fermat 1966 141554190^131072+1 1068358 L4956 2023 Generalized Fermat 1967 1199*2^3548380-1 1068172 L1828 2018 1968 140928044^131072+1 1068106 L4870 2023 Generalized Fermat 1969 191*2^3548117+1 1068092 L4203 2015 1970 140859866^131072+1 1068078 L5011 2023 Generalized Fermat 1971 140824516^131072+1 1068064 L4760 2023 Generalized Fermat 1972 140649396^131072+1 1067993 L5578 2023 Generalized Fermat 1973 867*2^3547711+1 1067971 L4155 2018 1974 140473436^131072+1 1067922 L4210 2023 Generalized Fermat 1975 140237690^131072+1 1067826 L5051 2023 Generalized Fermat 1976 139941370^131072+1 1067706 L5671 2023 Generalized Fermat 1977 3^2237561+3^1118781+1 1067588 L3839 2014 Generalized unique 1978 139352402^131072+1 1067466 L5663 2023 Generalized Fermat 1979 351*2^3545752+1 1067381 L4082 2016 1980 138896860^131072+1 1067279 L4745 2023 Generalized Fermat 1981 138894074^131072+1 1067278 L5041 2023 Generalized Fermat 1982 138830036^131072+1 1067252 L5662 2023 Generalized Fermat 1983 138626864^131072+1 1067169 L5663 2023 Generalized Fermat 1984 138527284^131072+1 1067128 L5663 2023 Generalized Fermat 1985 93*2^3544744+1 1067077 L1728 2014 1986 138000006^131072+1 1066911 L5051 2023 Generalized Fermat 1987 137900696^131072+1 1066870 L4249 2023 Generalized Fermat 1988 137878102^131072+1 1066860 L5051 2023 Generalized Fermat 1989 1159*2^3543702+1 1066764 L1823 2018 1990 137521726^131072+1 1066713 L4672 2023 Generalized Fermat 1991 137486564^131072+1 1066699 L5586 2023 Generalized Fermat 1992 136227118^131072+1 1066175 L5416 2023 Generalized Fermat 1993 136192168^131072+1 1066160 L5556 2023 Generalized Fermat 1994 136124076^131072+1 1066132 L5041 2023 Generalized Fermat 1995 136122686^131072+1 1066131 L5375 2023 Generalized Fermat 1996 2*3^2234430-1 1066095 A2 2023 1997 178658*5^1525224-1 1066092 L3789 2014 1998 135744154^131072+1 1065973 L5068 2023 Generalized Fermat 1999 135695350^131072+1 1065952 L4249 2023 Generalized Fermat 2000 135623220^131072+1 1065922 L5657 2023 Generalized Fermat 2001 135513092^131072+1 1065876 L5656 2023 Generalized Fermat 2002 135497678^131072+1 1065869 L4387 2023 Generalized Fermat 2003 135458028^131072+1 1065852 L5051 2023 Generalized Fermat 2004 135332960^131072+1 1065800 L5655 2023 Generalized Fermat 2005 135135930^131072+1 1065717 L4387 2023 Generalized Fermat 2006 1085*2^3539671+1 1065551 L3035 2018 2007 134706086^131072+1 1065536 L5378 2023 Generalized Fermat 2008 134459616^131072+1 1065431 L5658 2023 Generalized Fermat 2009 134447516^131072+1 1065426 L4387 2023 Generalized Fermat 2010 134322272^131072+1 1065373 L4387 2023 Generalized Fermat 2011 134206304^131072+1 1065324 L4684 2023 Generalized Fermat 2012 134176868^131072+1 1065311 L5375 2023 Generalized Fermat 2013 133954018^131072+1 1065217 L5088 2023 Generalized Fermat 2014 133676500^131072+1 1065099 L4387 2023 Generalized Fermat 2015 133569020^131072+1 1065053 L5277 2023 Generalized Fermat 2016 133345154^131072+1 1064958 L4210 2023 Generalized Fermat 2017 133180238^131072+1 1064887 L5586 2023 Generalized Fermat 2018 133096042^131072+1 1064851 L4755 2023 Generalized Fermat 2019 465*2^3536871+1 1064707 L4459 2016 2020 1019*2^3536312-1 1064539 L1828 2012 2021 131820886^131072+1 1064303 L5069 2023 Generalized Fermat 2022 131412078^131072+1 1064126 L5653 2023 Generalized Fermat 2023 131370186^131072+1 1064108 L5036 2023 Generalized Fermat 2024 131309874^131072+1 1064082 L5069 2023 Generalized Fermat 2025 131112524^131072+1 1063996 L4245 2023 Generalized Fermat 2026 1179*2^3534450+1 1063979 L3035 2018 2027 130907540^131072+1 1063907 L4526 2023 Generalized Fermat 2028 130593462^131072+1 1063771 L4559 2023 Generalized Fermat 2029 447*2^3533656+1 1063740 L4457 2016 2030 130518578^131072+1 1063738 L5029 2023 Generalized Fermat 2031 1059*2^3533550+1 1063708 L1823 2018 2032 130198372^131072+1 1063598 L5416 2023 Generalized Fermat 2033 130148002^131072+1 1063576 L4387 2023 Generalized Fermat 2034 130128232^131072+1 1063567 L5029 2023 Generalized Fermat 2035 130051980^131072+1 1063534 L5416 2023 Generalized Fermat 2036 130048816^131072+1 1063533 L4245 2023 Generalized Fermat 2037 345*2^3532957+1 1063529 L4314 2016 2038 553*2^3532758+1 1063469 L1823 2018 2039 129292212^131072+1 1063201 L4285 2023 Generalized Fermat 2040 129159632^131072+1 1063142 L5051 2023 Generalized Fermat 2041 128558886^131072+1 1062877 L5518 2023 Generalized Fermat 2042 128520182^131072+1 1062860 L4745 2023 Generalized Fermat 2043 543131*2^3529754-1 1062568 L4925 2022 2044 127720948^131072+1 1062504 L5378 2023 Generalized Fermat 2045 141*2^3529287+1 1062424 L4185 2015 2046 127093036^131072+1 1062224 L4591 2023 Generalized Fermat 2047 24950*745^369781-1 1062074 L4189 2024 2048 126611934^131072+1 1062008 L4776 2023 Generalized Fermat 2049 126423276^131072+1 1061923 L4201 2023 Generalized Fermat 2050 126334514^131072+1 1061883 L4249 2023 Generalized Fermat 2051 13*2^3527315-1 1061829 L1862 2016 2052 126199098^131072+1 1061822 L4591 2023 Generalized Fermat 2053 126189358^131072+1 1061818 L4704 2023 Generalized Fermat 2054 125966884^131072+1 1061717 L4747 2023 Generalized Fermat 2055 125714084^131072+1 1061603 L4745 2023 Generalized Fermat 2056 125141096^131072+1 1061343 L4559 2023 Generalized Fermat 2057 1393*2^3525571-1 1061306 L1828 2017 2058 125006494^131072+1 1061282 L5639 2023 Generalized Fermat 2059 124877454^131072+1 1061223 L4245 2023 Generalized Fermat 2060 124875502^131072+1 1061222 L4591 2023 Generalized Fermat 2061 124749274^131072+1 1061164 L4591 2023 Generalized Fermat 2062 124586054^131072+1 1061090 L4249 2023 Generalized Fermat 2063 124582356^131072+1 1061088 L5606 2023 Generalized Fermat 2064 124543852^131072+1 1061071 L4249 2023 Generalized Fermat 2065 124393514^131072+1 1061002 L4774 2023 Generalized Fermat 2066 124219534^131072+1 1060922 L4249 2023 Generalized Fermat 2067 124133348^131072+1 1060883 L5088 2023 Generalized Fermat 2068 124080788^131072+1 1060859 L5639 2023 Generalized Fermat 2069 1071*2^3523944+1 1060816 L1675 2018 2070 123910270^131072+1 1060780 L4249 2023 Generalized Fermat 2071 123856592^131072+1 1060756 L4201 2023 Generalized Fermat 2072 123338660^131072+1 1060517 L4905 2022 Generalized Fermat 2073 123306230^131072+1 1060502 L5638 2023 Generalized Fermat 2074 123195196^131072+1 1060451 L5029 2022 Generalized Fermat 2075 122941512^131072+1 1060333 L4559 2022 Generalized Fermat 2076 122869094^131072+1 1060300 L4939 2022 Generalized Fermat 2077 122481106^131072+1 1060120 L4704 2022 Generalized Fermat 2078 122414564^131072+1 1060089 L5627 2022 Generalized Fermat 2079 122372192^131072+1 1060069 L5099 2022 Generalized Fermat 2080 121854624^131072+1 1059828 L5051 2022 Generalized Fermat 2081 121462664^131072+1 1059645 L5632 2022 Generalized Fermat 2082 121158848^131072+1 1059502 L4774 2022 Generalized Fermat 2083 2220172*3^2220172+1 1059298 p137 2023 Generalized Cullen 2084 329*2^3518451+1 1059162 L1823 2016 2085 135*2^3518338+1 1059128 L4045 2015 2086 120106930^131072+1 1059006 L4249 2022 Generalized Fermat 2087 2*10^1059002-1 1059003 L3432 2013 Near-repdigit 2088 119744014^131072+1 1058833 L4249 2022 Generalized Fermat 2089 64*10^1058794+1 1058796 L4036 2017 Generalized Fermat 2090 119604848^131072+1 1058767 L4201 2022 Generalized Fermat 2091 119541900^131072+1 1058737 L4747 2022 Generalized Fermat 2092 119510296^131072+1 1058722 L4201 2022 Generalized Fermat 2093 119246256^131072+1 1058596 L4249 2022 Generalized Fermat 2094 119137704^131072+1 1058544 L4201 2022 Generalized Fermat 2095 118888350^131072+1 1058425 L4999 2022 Generalized Fermat 2096 599*2^3515959+1 1058412 L1823 2018 2097 118583824^131072+1 1058279 L4210 2022 Generalized Fermat 2098 118109876^131072+1 1058051 L4550 2022 Generalized Fermat 2099 117906758^131072+1 1057953 L4249 2022 Generalized Fermat 2100 117687318^131072+1 1057847 L4245 2022 Generalized Fermat 2101 117375862^131072+1 1057696 L4774 2022 Generalized Fermat 2102 117345018^131072+1 1057681 L4848 2022 Generalized Fermat 2103 117196584^131072+1 1057609 L4559 2022 Generalized Fermat 2104 117153716^131072+1 1057588 L4774 2022 Generalized Fermat 2105 117088740^131072+1 1057557 L4559 2022 Generalized Fermat 2106 116936156^131072+1 1057483 L5332 2022 Generalized Fermat 2107 116402336^131072+1 1057222 L4760 2022 Generalized Fermat 2108 7*2^3511774+1 1057151 p236 2008 Divides GF(3511773,6) 2109 116036228^131072+1 1057043 L4773 2022 Generalized Fermat 2110 116017862^131072+1 1057034 L4559 2022 Generalized Fermat 2111 115992582^131072+1 1057021 L4835 2022 Generalized Fermat 2112 115873312^131072+1 1056963 L4677 2022 Generalized Fermat 2113 1135*2^3510890+1 1056887 L1823 2018 2114 115704568^131072+1 1056880 L4559 2022 Generalized Fermat 2115 115479166^131072+1 1056769 L4774 2022 Generalized Fermat 2116 115409608^131072+1 1056735 L4774 2022 Generalized Fermat 2117 115256562^131072+1 1056659 L4559 2022 Generalized Fermat 2118 114687250^131072+1 1056377 L5007 2022 Generalized Fermat 2119 114643510^131072+1 1056356 L4659 2022 Generalized Fermat 2120 114340846^131072+1 1056205 L4559 2022 Generalized Fermat 2121 114159720^131072+1 1056115 L4787 2022 Generalized Fermat 2122 114055498^131072+1 1056063 L4387 2022 Generalized Fermat 2123 114009952^131072+1 1056040 L4387 2022 Generalized Fermat 2124 113904214^131072+1 1055987 L4559 2022 Generalized Fermat 2125 113807058^131072+1 1055939 L5157 2022 Generalized Fermat 2126 113550956^131072+1 1055810 L5578 2022 Generalized Fermat 2127 113521888^131072+1 1055796 L4387 2022 Generalized Fermat 2128 113431922^131072+1 1055751 L4559 2022 Generalized Fermat 2129 113328940^131072+1 1055699 L4787 2022 Generalized Fermat 2130 113327472^131072+1 1055698 L5467 2022 Generalized Fermat 2131 113325850^131072+1 1055698 L4559 2022 Generalized Fermat 2132 113313172^131072+1 1055691 L5005 2022 Generalized Fermat 2133 113191714^131072+1 1055630 L5056 2022 Generalized Fermat 2134 113170004^131072+1 1055619 L4584 2022 Generalized Fermat 2135 428639*2^3506452-1 1055553 L2046 2011 2136 112996304^131072+1 1055532 L5544 2022 Generalized Fermat 2137 112958834^131072+1 1055513 L5512 2022 Generalized Fermat 2138 112852910^131072+1 1055459 L5157 2022 Generalized Fermat 2139 112719374^131072+1 1055392 L4793 2022 Generalized Fermat 2140 112580428^131072+1 1055322 L5512 2022 Generalized Fermat 2141 112248096^131072+1 1055154 L5359 2022 Generalized Fermat 2142 112053266^131072+1 1055055 L5359 2022 Generalized Fermat 2143 112023072^131072+1 1055039 L5156 2022 Generalized Fermat 2144 111673524^131072+1 1054861 L5548 2022 Generalized Fermat 2145 111181588^131072+1 1054610 L4550 2022 Generalized Fermat 2146 104*383^408249+1 1054591 L2012 2021 2147 110866802^131072+1 1054449 L5547 2022 Generalized Fermat 2148 555*2^3502765+1 1054441 L1823 2018 2149 110824714^131072+1 1054427 L4201 2022 Generalized Fermat 2150 8300*171^472170+1 1054358 L5780 2023 2151 110428380^131072+1 1054223 L5543 2022 Generalized Fermat 2152 110406480^131072+1 1054212 L5051 2022 Generalized Fermat 2153 643*2^3501974+1 1054203 L1823 2018 2154 2*23^774109+1 1054127 g427 2014 Divides Phi(23^774109,2) 2155 1159*2^3501490+1 1054057 L2125 2018 2156f 1001*2^3501038-1 1053921 A46 2024 2157 109678642^131072+1 1053835 L4559 2022 Generalized Fermat 2158 109654098^131072+1 1053823 L5143 2022 Generalized Fermat 2159 109142690^131072+1 1053557 L4201 2022 Generalized Fermat 2160 109082020^131072+1 1053525 L4773 2022 Generalized Fermat 2161 1189*2^3499042+1 1053320 L4724 2018 2162 108584736^131072+1 1053265 L5057 2022 Generalized Fermat 2163 108581414^131072+1 1053263 L5088 2022 Generalized Fermat 2164 108195632^131072+1 1053060 L5025 2022 Generalized Fermat 2165 108161744^131072+1 1053043 L4945 2022 Generalized Fermat 2166 108080390^131072+1 1053000 L4945 2022 Generalized Fermat 2167 107979316^131072+1 1052947 L4559 2022 Generalized Fermat 2168 107922308^131072+1 1052916 L5025 2022 Generalized Fermat 2169 609*2^3497474+1 1052848 L1823 2018 2170 9*2^3497442+1 1052836 L1780 2012 Generalized Fermat, divides GF(3497441,10) 2171 107732730^131072+1 1052816 L5518 2022 Generalized Fermat 2172 107627678^131072+1 1052761 L5025 2022 Generalized Fermat 2173 107492880^131072+1 1052689 L4550 2022 Generalized Fermat 2174 107420312^131072+1 1052651 L4550 2022 Generalized Fermat 2175 107404768^131072+1 1052643 L4267 2022 Generalized Fermat 2176 107222132^131072+1 1052546 L5019 2022 Generalized Fermat 2177 107126228^131072+1 1052495 L5025 2022 Generalized Fermat 2178 87*2^3496188+1 1052460 L1576 2014 2179 106901434^131072+1 1052375 L4760 2022 Generalized Fermat 2180 106508704^131072+1 1052166 L5505 2022 Generalized Fermat 2181 106440698^131072+1 1052130 L4245 2022 Generalized Fermat 2182 106019242^131072+1 1051904 L5025 2022 Generalized Fermat 2183 105937832^131072+1 1051860 L4745 2022 Generalized Fermat 2184 783*2^3494129+1 1051841 L3824 2018 2185 105861526^131072+1 1051819 L5500 2022 Generalized Fermat 2186 105850338^131072+1 1051813 L5504 2022 Generalized Fermat 2187 105534478^131072+1 1051643 L5025 2022 Generalized Fermat 2188 105058710^131072+1 1051386 L5499 2022 Generalized Fermat 2189 104907548^131072+1 1051304 L4245 2022 Generalized Fermat 2190 104808996^131072+1 1051250 L4591 2022 Generalized Fermat 2191 104641854^131072+1 1051159 L4245 2022 Generalized Fermat 2192 51*2^3490971+1 1050889 L1823 2014 2193 1485*2^3490746+1 1050823 L1134 2021 2194 103828182^131072+1 1050715 L5072 2022 Generalized Fermat 2195 103605376^131072+1 1050593 L5056 2022 Generalized Fermat 2196 103289324^131072+1 1050419 L5044 2022 Generalized Fermat 2197 103280694^131072+1 1050414 L4745 2022 Generalized Fermat 2198 103209792^131072+1 1050375 L5025 2022 Generalized Fermat 2199 103094212^131072+1 1050311 L4245 2022 Generalized Fermat 2200 103013294^131072+1 1050266 L4745 2022 Generalized Fermat 2201 753*2^3488818+1 1050242 L1823 2018 2202 102507732^131072+1 1049986 L4245 2022 Generalized Fermat 2203 102469684^131072+1 1049965 L4245 2022 Generalized Fermat 2204 102397132^131072+1 1049925 L4720 2022 Generalized Fermat 2205 102257714^131072+1 1049847 L4245 2022 Generalized Fermat 2206 699*2^3487253+1 1049771 L1204 2018 2207 102050324^131072+1 1049732 L5036 2022 Generalized Fermat 2208 102021074^131072+1 1049716 L4245 2022 Generalized Fermat 2209 101915106^131072+1 1049656 L6123 2022 Generalized Fermat 2210 101856256^131072+1 1049623 L4774 2022 Generalized Fermat 2211 1001*2^3486566-1 1049564 L4518 2024 2212 249*2^3486411+1 1049517 L4045 2015 2213 195*2^3486379+1 1049507 L4108 2015 2214 101607438^131072+1 1049484 L4591 2022 Generalized Fermat 2215 4687*2^3485926+1 1049372 L5302 2023 2216 2691*2^3485924+1 1049372 L5302 2023 2217 6083*2^3485877+1 1049358 L5837 2023 2218 101328382^131072+1 1049328 L4591 2022 Generalized Fermat 2219 101270816^131072+1 1049295 L4245 2022 Generalized Fermat 2220 9757*2^3485666+1 1049295 L5284 2023 2221 8859*2^3484982+1 1049089 L5833 2023 2222 100865034^131072+1 1049067 L4387 2022 Generalized Fermat 2223 59912*5^1500861+1 1049062 L3772 2014 2224 495*2^3484656+1 1048989 L3035 2016 2225 100719472^131072+1 1048985 L5270 2022 Generalized Fermat 2226 100534258^131072+1 1048880 L4245 2022 Generalized Fermat 2227 100520930^131072+1 1048872 L4201 2022 Generalized Fermat 2228 4467*2^3484204+1 1048854 L5189 2023 2229 4873*2^3484142+1 1048835 L5710 2023 2230 100441116^131072+1 1048827 L4309 2022 Generalized Fermat 2231 (3*2^1742059)^2-3*2^1742059+1 1048825 A3 2023 Generalized unique 2232 3891*2^3484099+1 1048822 L5260 2023 2233 7833*2^3484060+1 1048811 L5830 2023 2234 100382228^131072+1 1048794 L4308 2022 Generalized Fermat 2235 100369508^131072+1 1048786 L5157 2022 Generalized Fermat 2236 100324226^131072+1 1048761 L4201 2022 Generalized Fermat 2237 3097*2^3483800+1 1048732 L5829 2023 2238 5873*2^3483573+1 1048664 L5710 2023 2239 2895*2^3483455+1 1048628 L5480 2023 2240 9029*2^3483337+1 1048593 L5393 2023 2241 100010426^131072+1 1048582 L5375 2022 Generalized Fermat 2242 5531*2^3483263+1 1048571 L5825 2023 2243 323*2^3482789+1 1048427 L1204 2016 2244 3801*2^3482723+1 1048408 L5517 2023 2245 99665972^131072+1 1048386 L4201 2022 Generalized Fermat 2246 99650934^131072+1 1048377 L5375 2022 Generalized Fermat 2247 99557826^131072+1 1048324 L5466 2022 Generalized Fermat 2248 8235*2^3482277+1 1048274 L5820 2023 2249 9155*2^3482129+1 1048230 L5226 2023 2250 99351950^131072+1 1048206 L5143 2022 Generalized Fermat 2251 4325*2^3481969+1 1048181 L5434 2023 2252 99189780^131072+1 1048113 L4201 2022 Generalized Fermat 2253 1149*2^3481694+1 1048098 L1823 2018 2254 98978354^131072+1 1047992 L5465 2022 Generalized Fermat 2255 6127*2^3481244+1 1047963 L5226 2023 2256 98922946^131072+1 1047960 L5453 2022 Generalized Fermat 2257 8903*2^3481217+1 1047955 L5226 2023 2258 3595*2^3481178+1 1047943 L5214 2023 2259 3799*2^3480810+1 1047832 L5226 2023 2260 6101*2^3480801+1 1047830 L5226 2023 2261 98652282^131072+1 1047804 L4201 2022 Generalized Fermat 2262 1740349*2^3480698+1 1047801 L5765 2023 Generalized Cullen 2263 98557818^131072+1 1047750 L5464 2022 Generalized Fermat 2264 98518362^131072+1 1047727 L5460 2022 Generalized Fermat 2265 5397*2^3480379+1 1047703 L5226 2023 2266 5845*2^3479972+1 1047580 L5517 2023 2267 98240694^131072+1 1047566 L4720 2022 Generalized Fermat 2268 98200338^131072+1 1047543 L4559 2022 Generalized Fermat 2269 701*2^3479779+1 1047521 L2125 2018 2270 98137862^131072+1 1047507 L4525 2022 Generalized Fermat 2271 813*2^3479728+1 1047506 L4724 2018 2272 7125*2^3479509+1 1047441 L5812 2023 2273 1971*2^3479061+1 1047306 L5226 2023 2274 1215*2^3478543+1 1047149 L5226 2023 2275 97512766^131072+1 1047143 L5460 2022 Generalized Fermat 2276 5985*2^3478217+1 1047052 L5387 2023 2277 3093*2^3478148+1 1047031 L5261 2023 2278 2145*2^3478095+1 1047015 L5387 2023 2279 6685*2^3478086+1 1047013 L5237 2023 2280 9603*2^3478084+1 1047012 L5178 2023 2281 1315*2^3477718+1 1046901 L5316 2023 2282 97046574^131072+1 1046870 L4956 2022 Generalized Fermat 2283 197*2^3477399+1 1046804 L2125 2015 2284 8303*2^3477201+1 1046746 L5387 2023 2285 96821302^131072+1 1046738 L5453 2022 Generalized Fermat 2286 5925*2^3477009+1 1046688 L5810 2023 2287 96734274^131072+1 1046686 L5297 2022 Generalized Fermat 2288 7825*2^3476524+1 1046542 L5174 2023 2289 96475576^131072+1 1046534 L4424 2022 Generalized Fermat 2290 8197*2^3476332+1 1046485 L5174 2023 2291 8529*2^3476111+1 1046418 L5387 2023 2292 8411*2^3476055+1 1046401 L5783 2023 2293 4319*2^3475955+1 1046371 L5803 2023 2294 96111850^131072+1 1046319 L4245 2022 Generalized Fermat 2295 95940796^131072+1 1046218 L4591 2022 Generalized Fermat 2296 6423*2^3475393+1 1046202 L5174 2023 2297 2281*2^3475340+1 1046185 L5302 2023 2298 7379*2^3474983+1 1046078 L5798 2023 2299 4*5^1496566+1 1046056 L4965 2023 Generalized Fermat 2300 95635202^131072+1 1046036 L5452 2021 Generalized Fermat 2301 95596816^131072+1 1046013 L4591 2021 Generalized Fermat 2302 4737*2^3474562+1 1045952 L5302 2023 2303 2407*2^3474406+1 1045904 L5557 2023 2304 95308284^131072+1 1045841 L4584 2021 Generalized Fermat 2305 491*2^3473837+1 1045732 L4343 2016 2306 2693*2^3473721+1 1045698 L5174 2023 2307 94978760^131072+1 1045644 L4201 2021 Generalized Fermat 2308 3375*2^3473210+1 1045544 L5294 2023 2309 8835*2^3472666+1 1045381 L5178 2023 2310 5615*2^3472377+1 1045294 L5174 2023 2311 1785*2^3472229+1 1045249 L875 2023 2312 8997*2^3472036+1 1045191 L5302 2023 2313 9473*2^3471885+1 1045146 L5294 2023 2314 7897*2^3471568+1 1045050 L5294 2023 2315 93950924^131072+1 1045025 L5425 2021 Generalized Fermat 2316 93886318^131072+1 1044985 L5433 2021 Generalized Fermat 2317 1061*2^3471354-1 1044985 L1828 2017 2318 1913*2^3471177+1 1044932 L5189 2023 2319 93773904^131072+1 1044917 L4939 2021 Generalized Fermat 2320 7723*2^3471074+1 1044902 L5189 2023 2321 4195*2^3470952+1 1044865 L5294 2023 2322 93514592^131072+1 1044760 L4591 2021 Generalized Fermat 2323 5593*2^3470520+1 1044735 L5387 2023 2324 3665*2^3469955+1 1044565 L5189 2023 2325 3301*2^3469708+1 1044490 L5261 2023 2326 6387*2^3469634+1 1044468 L5192 2023 2327 93035888^131072+1 1044467 L4245 2021 Generalized Fermat 2328 8605*2^3469570+1 1044449 L5387 2023 2329 1359*2^3468725+1 1044194 L5197 2023 2330 92460588^131072+1 1044114 L5254 2021 Generalized Fermat 2331 7585*2^3468338+1 1044078 L5197 2023 2332 1781*2^3468335+1 1044077 L5387 2023 2333 6885*2^3468181+1 1044031 L5197 2023 2334 4372*30^706773-1 1043994 L4955 2023 2335 7287*2^3467938+1 1043958 L5776 2023 2336 92198216^131072+1 1043953 L4738 2021 Generalized Fermat 2337 3163*2^3467710+1 1043889 L5517 2023 2338 6099*2^3467689+1 1043883 L5197 2023 2339 6665*2^3467627+1 1043864 L5174 2023 2340 4099*2^3467462+1 1043814 L5774 2023 2341 5285*2^3467445+1 1043809 L5189 2023 2342 1001*2^3467258-1 1043752 L4518 2024 2343 91767880^131072+1 1043686 L5051 2021 Generalized Fermat 2344 91707732^131072+1 1043649 L4591 2021 Generalized Fermat 2345 5935*2^3466880+1 1043639 L5197 2023 2346 91689894^131072+1 1043638 L4591 2021 Generalized Fermat 2347 91685784^131072+1 1043635 L4591 2021 Generalized Fermat 2348 8937*2^3466822+1 1043622 L5174 2023 2349 91655310^131072+1 1043616 L4659 2021 Generalized Fermat 2350 8347*2^3466736+1 1043596 L5770 2023 2351 8863*2^3465780+1 1043308 L5766 2023 2352 3895*2^3465744+1 1043297 L5640 2023 2353 91069366^131072+1 1043251 L5277 2021 Generalized Fermat 2354 91049202^131072+1 1043239 L4591 2021 Generalized Fermat 2355 91033554^131072+1 1043229 L4591 2021 Generalized Fermat 2356 8561*2^3465371+1 1043185 L5197 2023 2357 90942952^131072+1 1043172 L4387 2021 Generalized Fermat 2358 90938686^131072+1 1043170 L4387 2021 Generalized Fermat 2359 9971*2^3465233+1 1043144 L5488 2023 2360 90857490^131072+1 1043119 L4591 2021 Generalized Fermat 2361 3801*2^3464980+1 1043067 L5197 2023 2362 3099*2^3464739+1 1042994 L5284 2023 2363 90382348^131072+1 1042820 L4267 2021 Generalized Fermat 2364 641*2^3464061+1 1042790 L1444 2018 2365 6717*2^3463735+1 1042692 L5754 2023 2366 6015*2^3463561+1 1042640 L5387 2023 2367 90006846^131072+1 1042583 L4773 2021 Generalized Fermat 2368 1667*2^3463355+1 1042577 L5226 2023 2369 2871*2^3463313+1 1042565 L5189 2023 2370 89977312^131072+1 1042565 L5070 2021 Generalized Fermat 2371 6007*2^3463048+1 1042486 L5226 2023 2372 89790434^131072+1 1042446 L5007 2021 Generalized Fermat 2373 9777*2^3462742+1 1042394 L5197 2023 2374 5215*2^3462740+1 1042393 L5174 2023 2375 8365*2^3462722+1 1042388 L5320 2023 2376 3597*2^3462056+1 1042187 L5174 2023 2377 2413*2^3461890+1 1042137 L5197 2023 2378 89285798^131072+1 1042125 L5157 2021 Generalized Fermat 2379 453*2^3461688+1 1042075 L3035 2016 2380 89113896^131072+1 1042016 L5338 2021 Generalized Fermat 2381 4401*2^3461476+1 1042012 L5197 2023 2382 9471*2^3461305+1 1041961 L5594 2023 2383 7245*2^3461070+1 1041890 L5449 2023 2384 3969*2^3460942+1 1041851 L5471 2023 Generalized Fermat 2385 4365*2^3460914+1 1041843 L5197 2023 2386 4613*2^3460861+1 1041827 L5614 2023 2387 88760062^131072+1 1041789 L4903 2021 Generalized Fermat 2388 5169*2^3460553+1 1041734 L5742 2023 2389 8395*2^3460530+1 1041728 L5284 2023 2390 5835*2^3460515+1 1041723 L5740 2023 2391 8059*2^3460246+1 1041642 L5350 2023 2392 571*2^3460216+1 1041632 L3035 2018 2393 6065*2^3460205+1 1041630 L5683 2023 2394 88243020^131072+1 1041457 L4774 2021 Generalized Fermat 2395 88166868^131072+1 1041408 L5277 2021 Generalized Fermat 2396 6237*2^3459386+1 1041383 L5509 2023 2397 88068088^131072+1 1041344 L4933 2021 Generalized Fermat 2398 4029*2^3459062+1 1041286 L5727 2023 2399 87920992^131072+1 1041249 L4249 2021 Generalized Fermat 2400 7055*2^3458909+1 1041240 L5509 2023 2401 7297*2^3458768+1 1041197 L5726 2023 2402 2421*2^3458432+1 1041096 L5725 2023 2403 7907*2^3458207+1 1041028 L5509 2023 2404 87547832^131072+1 1041006 L4591 2021 Generalized Fermat 2405 87454694^131072+1 1040946 L4672 2021 Generalized Fermat 2406 7839*2^3457846+1 1040920 L5231 2023 2407 87370574^131072+1 1040891 L5297 2021 Generalized Fermat 2408 87352356^131072+1 1040879 L4387 2021 Generalized Fermat 2409 87268788^131072+1 1040825 L4917 2021 Generalized Fermat 2410 87192538^131072+1 1040775 L4861 2021 Generalized Fermat 2411 5327*2^3457363+1 1040774 L5715 2023 2412 87116452^131072+1 1040725 L5297 2021 Generalized Fermat 2413 87039658^131072+1 1040675 L5297 2021 Generalized Fermat 2414 6059*2^3457001+1 1040665 L5197 2023 2415 8953*2^3456938+1 1040646 L5724 2023 2416 8669*2^3456759+1 1040593 L5710 2023 2417 86829162^131072+1 1040537 L5265 2021 Generalized Fermat 2418 4745*2^3456167+1 1040414 L5705 2023 2419 8213*2^3456141+1 1040407 L5703 2023 2420 86413544^131072+1 1040264 L4914 2021 Generalized Fermat 2421 86347638^131072+1 1040221 L4848 2021 Generalized Fermat 2422 86295564^131072+1 1040186 L5030 2021 Generalized Fermat 2423 1155*2^3455254+1 1040139 L4711 2017 2424 37292*5^1487989+1 1040065 L3553 2013 2425 86060696^131072+1 1040031 L5057 2021 Generalized Fermat 2426 5525*2^3454069+1 1039783 L5651 2023 2427 4235*2^3453573+1 1039633 L5650 2023 2428 6441*2^3453227+1 1039529 L5683 2023 2429 4407*2^3453195+1 1039519 L5650 2023 2430 9867*2^3453039+1 1039473 L5686 2023 2431 85115888^131072+1 1039403 L4909 2021 Generalized Fermat 2432 4857*2^3452675+1 1039363 L5600 2023 2433 8339*2^3452667+1 1039361 L5651 2023 2434 84924212^131072+1 1039275 L4309 2021 Generalized Fermat 2435 7079*2^3452367+1 1039270 L5650 2023 2436 5527*2^3452342+1 1039263 L5679 2023 2437 84817722^131072+1 1039203 L4726 2021 Generalized Fermat 2438 84765338^131072+1 1039168 L4245 2021 Generalized Fermat 2439 84757790^131072+1 1039163 L5051 2021 Generalized Fermat 2440 84723284^131072+1 1039140 L5051 2021 Generalized Fermat 2441 84715930^131072+1 1039135 L4963 2021 Generalized Fermat 2442 84679936^131072+1 1039111 L4864 2021 Generalized Fermat 2443 3719*2^3451667+1 1039059 L5294 2023 2444 6725*2^3451455+1 1038996 L5685 2023 2445 8407*2^3451334+1 1038959 L5524 2023 2446 84445014^131072+1 1038952 L4909 2021 Generalized Fermat 2447 84384358^131072+1 1038912 L4622 2021 Generalized Fermat 2448 4*10^1038890+1 1038891 L4789 2024 Generalized Fermat 2449 1623*2^3451109+1 1038891 L5308 2023 2450 8895*2^3450982+1 1038854 L5666 2023 2451 84149050^131072+1 1038753 L5033 2021 Generalized Fermat 2452 2899*2^3450542+1 1038721 L5600 2023 2453 6337*2^3449506+1 1038409 L5197 2023 2454 4381*2^3449456+1 1038394 L5392 2023 2455 2727*2^3449326+1 1038355 L5421 2023 2456 2877*2^3449311+1 1038350 L5517 2023 2457 7507*2^3448920+1 1038233 L5284 2023 2458 3629*2^3448919+1 1038232 L5192 2023 2459 83364886^131072+1 1038220 L4591 2021 Generalized Fermat 2460 83328182^131072+1 1038195 L5051 2021 Generalized Fermat 2461 1273*2^3448551-1 1038121 L1828 2012 2462 1461*2^3448423+1 1038082 L4944 2023 2463 3235*2^3448352+1 1038061 L5571 2023 2464 4755*2^3448344+1 1038059 L5524 2023 2465 5655*2^3448288+1 1038042 L5651 2023 2466 4873*2^3448176+1 1038009 L5524 2023 2467 83003850^131072+1 1037973 L4963 2021 Generalized Fermat 2468 8139*2^3447967+1 1037946 L5652 2023 2469 1065*2^3447906+1 1037927 L4664 2017 2470 1717*2^3446756+1 1037581 L5517 2023 2471 6357*2^3446434+1 1037484 L5284 2023 2472 1155*2^3446253+1 1037429 L3035 2017 2473 9075*2^3446090+1 1037381 L5648 2023 2474 82008736^131072+1 1037286 L4963 2021 Generalized Fermat 2475 82003030^131072+1 1037282 L4410 2021 Generalized Fermat 2476 1483*2^3445724+1 1037270 L5650 2023 2477 81976506^131072+1 1037264 L4249 2021 Generalized Fermat 2478 2223*2^3445682+1 1037257 L5647 2023 2479 8517*2^3445488+1 1037200 L5302 2023 2480 2391*2^3445281+1 1037137 L5596 2023 2481 6883*2^3444784+1 1036988 L5264 2023 2482 81477176^131072+1 1036916 L4245 2020 Generalized Fermat 2483 81444036^131072+1 1036893 L4245 2020 Generalized Fermat 2484 8037*2^3443920+1 1036728 L5626 2023 2485 1375*2^3443850+1 1036706 L5192 2023 2486 81096098^131072+1 1036649 L4249 2020 Generalized Fermat 2487 27288429267119080686...(1036580 other digits)...83679577406643267931 1036620 p384 2015 2488 943*2^3442990+1 1036447 L4687 2017 2489 7743*2^3442814+1 1036395 L5514 2023 2490 5511*2^3442468+1 1036290 L5514 2022 2491 80284312^131072+1 1036076 L5051 2020 Generalized Fermat 2492 6329*2^3441717+1 1036064 L5631 2022 2493 3957*2^3441568+1 1036019 L5476 2022 2494 80146408^131072+1 1035978 L5051 2020 Generalized Fermat 2495 4191*2^3441427+1 1035977 L5189 2022 2496 2459*2^3441331+1 1035948 L5514 2022 2497 4335*2^3441306+1 1035940 L5178 2022 2498 2331*2^3441249+1 1035923 L5626 2022 2499 79912550^131072+1 1035812 L5186 2020 Generalized Fermat 2500 79801426^131072+1 1035733 L4245 2020 Generalized Fermat 2501 79789806^131072+1 1035725 L4658 2020 Generalized Fermat 2502 2363*2^3440385+1 1035663 L5625 2022 2503 5265*2^3440332+1 1035647 L5421 2022 2504 6023*2^3440241+1 1035620 L5517 2022 2505 943*2^3440196+1 1035606 L1448 2017 2506 6663*2^3439901+1 1035518 L5624 2022 2507 79485098^131072+1 1035507 L5130 2020 Generalized Fermat 2508 79428414^131072+1 1035466 L4793 2020 Generalized Fermat 2509 79383608^131072+1 1035434 L4387 2020 Generalized Fermat 2510 5745*2^3439450+1 1035382 L5178 2022 2511 79201682^131072+1 1035303 L5051 2020 Generalized Fermat 2512 5109*2^3439090+1 1035273 L5594 2022 2513 543*2^3438810+1 1035188 L3035 2017 2514 625*2^3438572+1 1035117 L1355 2017 Generalized Fermat 2515 3325*2^3438506+1 1035097 L5619 2022 2516 78910032^131072+1 1035093 L5051 2020 Generalized Fermat 2517 78880690^131072+1 1035072 L5159 2020 Generalized Fermat 2518 78851276^131072+1 1035051 L4928 2020 Generalized Fermat 2519 4775*2^3438217+1 1035011 L5618 2022 2520 78714954^131072+1 1034953 L5130 2020 Generalized Fermat 2521 6963*2^3437988+1 1034942 L5616 2022 2522 74*941^348034-1 1034913 L5410 2020 2523 7423*2^3437856+1 1034902 L5192 2022 2524 6701*2^3437801+1 1034886 L5615 2022 2525 5741*2^3437773+1 1034877 L5517 2022 2526 488639*2^3437688-1 1034853 L5327 2024 2527 78439440^131072+1 1034753 L5051 2020 Generalized Fermat 2528 5601*2^3437259+1 1034722 L5612 2022 2529 7737*2^3437192+1 1034702 L5611 2022 2530 113*2^3437145+1 1034686 L4045 2015 2531 78240016^131072+1 1034608 L4245 2020 Generalized Fermat 2532 6387*2^3436719+1 1034560 L5613 2022 2533 78089172^131072+1 1034498 L4245 2020 Generalized Fermat 2534 2921*2^3436299+1 1034433 L5231 2022 2535 9739*2^3436242+1 1034416 L5178 2022 2536 77924964^131072+1 1034378 L5051 2020 Generalized Fermat 2537 77918854^131072+1 1034374 L4760 2020 Generalized Fermat 2538 1147*2^3435970+1 1034334 L3035 2017 2539 4589*2^3435707+1 1034255 L5174 2022 2540 7479*2^3435683+1 1034248 L5421 2022 2541 2863*2^3435616+1 1034227 L5197 2022 2542 77469882^131072+1 1034045 L4591 2020 Generalized Fermat 2543 9863*2^3434697+1 1033951 L5189 2022 2544 4065*2^3434623+1 1033929 L5197 2022 2545 77281404^131072+1 1033906 L4963 2020 Generalized Fermat 2546 9187*2^3434126+1 1033779 L5600 2022 2547 9531*2^3434103+1 1033772 L5601 2022 2548 1757*2^3433547+1 1033604 L5594 2022 2549 1421*2^3433099+1 1033469 L5237 2022 2550 3969*2^3433007+1 1033442 L5189 2022 2551 6557*2^3433003+1 1033441 L5261 2022 2552 7335*2^3432982+1 1033435 L5231 2022 2553 7125*2^3432836+1 1033391 L5594 2022 2554 2517*2^3432734+1 1033360 L5231 2022 2555 911*2^3432643+1 1033332 L1355 2017 2556 5413*2^3432626+1 1033328 L5231 2022 2557 76416048^131072+1 1033265 L4672 2020 Generalized Fermat 2558 3753*2^3432413+1 1033263 L5261 2022 2559 2691*2^3432191+1 1033196 L5585 2022 2560 3933*2^3432125+1 1033177 L5387 2022 2561 76026988^131072+1 1032975 L5094 2020 Generalized Fermat 2562 76018874^131072+1 1032969 L4774 2020 Generalized Fermat 2563 1435*2^3431284+1 1032923 L5587 2022 2564 75861530^131072+1 1032851 L5053 2020 Generalized Fermat 2565 6783*2^3430781+1 1032772 L5261 2022 2566 8079*2^3430683+1 1032743 L5585 2022 2567 75647276^131072+1 1032690 L4677 2020 Generalized Fermat 2568 75521414^131072+1 1032595 L4584 2020 Generalized Fermat 2569 6605*2^3430187+1 1032593 L5463 2022 2570 3761*2^3430057+1 1032554 L5582 2022 2571 6873*2^3429937+1 1032518 L5294 2022 2572 8067*2^3429891+1 1032504 L5581 2022 2573 3965*2^3429719+1 1032452 L5579 2022 2574 3577*2^3428812+1 1032179 L5401 2022 2575 8747*2^3428755+1 1032163 L5493 2022 2576 9147*2^3428638+1 1032127 L5493 2022 2577 3899*2^3428535+1 1032096 L5174 2022 2578 74833516^131072+1 1032074 L5102 2020 Generalized Fermat 2579 74817490^131072+1 1032062 L4591 2020 Generalized Fermat 2580 8891*2^3428303+1 1032026 L5532 2022 2581 793181*20^793181+1 1031959 L5765 2023 Generalized Cullen 2582 2147*2^3427371+1 1031745 L5189 2022 2583 74396818^131072+1 1031741 L4791 2020 Generalized Fermat 2584 74381296^131072+1 1031729 L4550 2020 Generalized Fermat 2585 74363146^131072+1 1031715 L4898 2020 Generalized Fermat 2586 1127*2^3427219+1 1031699 L3035 2017 2587 74325990^131072+1 1031687 L5024 2020 Generalized Fermat 2588 3021*2^3427059+1 1031652 L5554 2022 2589 3255*2^3426983+1 1031629 L5231 2022 2590 1733*2^3426753+1 1031559 L5565 2022 2591 2339*2^3426599+1 1031513 L5237 2022 2592 4729*2^3426558+1 1031501 L5493 2022 2593 73839292^131072+1 1031313 L4550 2020 Generalized Fermat 2594 5445*2^3425839+1 1031285 L5237 2022 2595 159*2^3425766+1 1031261 L4045 2015 2596 73690464^131072+1 1031198 L4884 2020 Generalized Fermat 2597 3405*2^3425045+1 1031045 L5261 2022 2598 73404316^131072+1 1030976 L5011 2020 Generalized Fermat 2599 1695*2^3424517+1 1030886 L5387 2022 2600 4715*2^3424433+1 1030861 L5557 2022 2601 5525*2^3424423+1 1030858 L5387 2022 2602 8615*2^3424231+1 1030801 L5261 2022 2603 5805*2^3424200+1 1030791 L5237 2022 2604 73160610^131072+1 1030787 L4550 2020 Generalized Fermat 2605 73132228^131072+1 1030765 L4905 2020 Generalized Fermat 2606 73099962^131072+1 1030740 L5068 2020 Generalized Fermat 2607 2109*2^3423798-3027*2^988658+1 1030670 CH13 2023 Arithmetic progression (3,d=2109*2^3423797-3027*2^988658) 2608 2109*2^3423797+1 1030669 L5197 2022 2609 4929*2^3423494+1 1030579 L5554 2022 2610 2987*2^3422911+1 1030403 L5226 2022 2611 72602370^131072+1 1030351 L4201 2020 Generalized Fermat 2612 4843*2^3422644+1 1030323 L5553 2022 2613 5559*2^3422566+1 1030299 L5555 2022 2614 7583*2^3422501+1 1030280 L5421 2022 2615 1119*2^3422189+1 1030185 L1355 2017 2616 2895*2^3422031-143157*2^2144728+1 1030138 p423 2023 Arithmetic progression (3,d=2895*2^3422030-143157*2^2144728) 2617 2895*2^3422030+1 1030138 L5237 2022 2618 2835*2^3421697+1 1030037 L5387 2022 2619 3363*2^3421353+1 1029934 L5226 2022 2620 72070092^131072+1 1029932 L4201 2020 Generalized Fermat 2621 9147*2^3421264+1 1029908 L5237 2022 2622 9705*2^3420915+1 1029803 L5540 2022 2623 1005*2^3420846+1 1029781 L2714 2017 Divides GF(3420844,10) 2624 8919*2^3420758+1 1029755 L5226 2022 2625 71732900^131072+1 1029665 L5053 2020 Generalized Fermat 2626 71679108^131072+1 1029623 L5072 2020 Generalized Fermat 2627 5489*2^3420137+1 1029568 L5174 2022 2628 9957*2^3420098+1 1029557 L5237 2022 2629 93*10^1029523-1 1029525 L4789 2019 Near-repdigit 2630 71450224^131072+1 1029440 L5029 2020 Generalized Fermat 2631 7213*2^3419370+1 1029337 L5421 2022 2632 7293*2^3419264+1 1029305 L5192 2022 2633 975*2^3419230+1 1029294 L3545 2017 2634 4191*2^3419227+1 1029294 L5421 2022 2635 28080*745^358350-1 1029242 L4189 2024 2636 2393*2^3418921+1 1029202 L5197 2022 2637 999*2^3418885+1 1029190 L3035 2017 2638 2925*2^3418543+1 1029088 L5174 2022 2639 70960658^131072+1 1029049 L5039 2020 Generalized Fermat 2640 70948704^131072+1 1029039 L4660 2020 Generalized Fermat 2641 70934282^131072+1 1029028 L5067 2020 Generalized Fermat 2642 7383*2^3418297+1 1029014 L5189 2022 2643 70893680^131072+1 1028995 L5063 2020 Generalized Fermat 2644 907*2^3417890+1 1028891 L3035 2017 2645 5071*2^3417884+1 1028890 L5237 2022 2646 3473*2^3417741+1 1028847 L5541 2022 2647 191249*2^3417696-1 1028835 L1949 2010 2648 70658696^131072+1 1028806 L5051 2020 Generalized Fermat 2649 3299*2^3417329+1 1028723 L5421 2022 2650 6947*2^3416979+1 1028618 L5540 2022 2651 70421038^131072+1 1028615 L4984 2020 Generalized Fermat 2652 8727*2^3416652+1 1028519 L5226 2022 2653 8789*2^3416543+1 1028486 L5197 2022 2654 70050828^131072+1 1028315 L5021 2020 Generalized Fermat 2655 7917*2^3415947+1 1028307 L5537 2022 2656 70022042^131072+1 1028291 L4201 2020 Generalized Fermat 2657 2055*2^3415873+1 1028284 L5535 2022 2658 4731*2^3415712+1 1028236 L5192 2022 2659 2219*2^3415687+1 1028228 L5178 2022 2660 69915032^131072+1 1028204 L4591 2020 Generalized Fermat 2661 5877*2^3415419+1 1028148 L5532 2022 2662 3551*2^3415275+1 1028104 L5231 2022 2663 69742382^131072+1 1028063 L5053 2020 Generalized Fermat 2664 2313*2^3415046+1 1028035 L5226 2022 2665 69689592^131072+1 1028020 L4387 2020 Generalized Fermat 2666 7637*2^3414875+1 1027984 L5507 2022 2667 2141*2^3414821+1 1027967 L5226 2022 2668 69622572^131072+1 1027965 L4909 2020 Generalized Fermat 2669 3667*2^3414686+1 1027927 L5226 2022 2670 69565722^131072+1 1027919 L4387 2020 Generalized Fermat 2671 6159*2^3414623+1 1027908 L5226 2022 2672 69534788^131072+1 1027894 L5029 2020 Generalized Fermat 2673 4577*2^3413539+1 1027582 L5387 2022 2674 5137*2^3413524+1 1027577 L5261 2022 2675 8937*2^3413364+1 1027529 L5527 2022 2676 8829*2^3413339+1 1027522 L5531 2022 2677 7617*2^3413315+1 1027515 L5197 2022 2678 68999820^131072+1 1027454 L5044 2020 Generalized Fermat 2679 3141*2^3413112+1 1027453 L5463 2022 2680 8831*2^3412931+1 1027399 L5310 2022 2681 68924112^131072+1 1027391 L4745 2020 Generalized Fermat 2682 68918852^131072+1 1027387 L5021 2020 Generalized Fermat 2683 5421*2^3412877+1 1027383 L5310 2022 2684 9187*2^3412700+1 1027330 L5337 2022 2685 68811158^131072+1 1027298 L4245 2020 Generalized Fermat 2686 8243*2^3412577+1 1027292 L5524 2022 2687 1751*2^3412565+1 1027288 L5523 2022 2688 9585*2^3412318+1 1027215 L5197 2022 2689 9647*2^3412247+1 1027193 L5178 2022 2690 3207*2^3412108+1 1027151 L5189 2022 2691 479*2^3411975+1 1027110 L2873 2016 2692 245*2^3411973+1 1027109 L1935 2015 2693 177*2^3411847+1 1027071 L4031 2015 2694 68536972^131072+1 1027071 L5027 2020 Generalized Fermat 2695 9963*2^3411566+1 1026988 L5237 2022 2696 68372810^131072+1 1026934 L4956 2020 Generalized Fermat 2697 9785*2^3411223+1 1026885 L5189 2022 2698 5401*2^3411136+1 1026858 L5261 2022 2699 68275006^131072+1 1026853 L4963 2020 Generalized Fermat 2700 9431*2^3411105+1 1026849 L5237 2022 2701 8227*2^3410878+1 1026781 L5316 2022 2702 4735*2^3410724+1 1026734 L5226 2022 2703 9515*2^3410707+1 1026730 L5237 2022 2704 6783*2^3410690+1 1026724 L5434 2022 2705 8773*2^3410558+1 1026685 L5261 2022 2706 4629*2^3410321+1 1026613 L5517 2022 2707 67894288^131072+1 1026535 L5025 2020 Generalized Fermat 2708 113*2^3409934-1 1026495 L2484 2014 2709 5721*2^3409839+1 1026468 L5226 2022 2710 67725850^131072+1 1026393 L5029 2020 Generalized Fermat 2711 6069*2^3409493+1 1026364 L5237 2022 2712 1981*910^346850+1 1026347 L1141 2021 2713 5317*2^3409236+1 1026287 L5471 2022 2714 7511*2^3408985+1 1026211 L5514 2022 2715 7851*2^3408909+1 1026188 L5176 2022 2716 67371416^131072+1 1026094 L4550 2020 Generalized Fermat 2717 6027*2^3408444+1 1026048 L5239 2022 2718 59*2^3408416-1 1026038 L426 2010 2719 2153*2^3408333+1 1026014 L5237 2022 2720 9831*2^3408056+1 1025932 L5233 2022 2721 3615*2^3408035+1 1025925 L5217 2022 2722 6343*2^3407950+1 1025899 L5226 2022 2723 8611*2^3407516+1 1025769 L5509 2022 2724 66982940^131072+1 1025765 L4249 2020 Generalized Fermat 2725 7111*2^3407452+1 1025750 L5508 2022 2726 66901180^131072+1 1025696 L5018 2020 Generalized Fermat 2727 6945*2^3407256+1 1025691 L5507 2022 2728 6465*2^3407229+1 1025682 L5301 2022 2729 1873*2^3407156+1 1025660 L5440 2022 2730 7133*2^3406377+1 1025426 L5279 2022 2731 7063*2^3406122+1 1025349 L5178 2022 2732 3105*2^3405800+1 1025252 L5502 2022 2733 953*2^3405729+1 1025230 L3035 2017 2734 66272848^131072+1 1025159 L5013 2020 Generalized Fermat 2735 66131722^131072+1 1025037 L4530 2020 Generalized Fermat 2736 373*2^3404702+1 1024921 L3924 2016 2737 7221*2^3404507+1 1024863 L5231 2022 2738 6641*2^3404259+1 1024788 L5501 2022 2739 9225*2^3404209+1 1024773 L5250 2022 2740 65791182^131072+1 1024743 L4623 2019 Generalized Fermat 2741 833*2^3403765+1 1024639 L3035 2017 2742 65569854^131072+1 1024552 L4210 2019 Generalized Fermat 2743 2601*2^3403459+1 1024547 L5350 2022 2744 8835*2^3403266+1 1024490 L5161 2022 2745 7755*2^3403010+1 1024412 L5161 2022 2746 3123*2^3402834+1 1024359 L5260 2022 2747 65305572^131072+1 1024322 L5001 2019 Generalized Fermat 2748 65200798^131072+1 1024230 L4999 2019 Generalized Fermat 2749 1417*2^3402246+1 1024182 L5497 2022 2750 5279*2^3402241+1 1024181 L5250 2022 2751 6651*2^3402137+1 1024150 L5476 2022 2752 1779*2^3401715+1 1024022 L5493 2022 2753 64911056^131072+1 1023977 L4870 2019 Generalized Fermat 2754 8397*2^3401502+1 1023959 L5476 2022 2755 4057*2^3401472+1 1023949 L5492 2022 2756 64791668^131072+1 1023872 L4905 2019 Generalized Fermat 2757 4095*2^3401174+1 1023860 L5418 2022 2758 5149*2^3400970+1 1023798 L5176 2022 2759 4665*2^3400922+1 1023784 L5308 2022 2760 24*414^391179+1 1023717 L4273 2016 2761 64568930^131072+1 1023676 L4977 2019 Generalized Fermat 2762 64506894^131072+1 1023621 L4977 2019 Generalized Fermat 2763 1725*2^3400371+1 1023617 L5197 2022 2764 64476916^131072+1 1023595 L4997 2019 Generalized Fermat 2765 9399*2^3400243+1 1023580 L5488 2022 2766 1241*2^3400127+1 1023544 L5279 2022 2767 1263*2^3399876+1 1023468 L5174 2022 2768 1167*2^3399748+1 1023430 L3545 2017 2769 64024604^131072+1 1023194 L4591 2019 Generalized Fermat 2770 7679*2^3398569+1 1023076 L5295 2022 2771 6447*2^3398499+1 1023054 L5302 2022 2772 63823568^131072+1 1023015 L4585 2019 Generalized Fermat 2773 2785*2^3398332+1 1023004 L5250 2022 2774 611*2^3398273+1 1022985 L3035 2017 2775 2145*2^3398034+1 1022914 L5302 2022 2776 3385*2^3397254+1 1022679 L5161 2022 2777 4*3^2143374+1 1022650 L4965 2020 Generalized Fermat 2778 4463*2^3396657+1 1022500 L5476 2022 2779 2889*2^3396450+1 1022437 L5178 2022 2780 8523*2^3396448+1 1022437 L5231 2022 2781 63168480^131072+1 1022428 L4861 2019 Generalized Fermat 2782 63165756^131072+1 1022425 L4987 2019 Generalized Fermat 2783 3349*2^3396326+1 1022400 L5480 2022 2784 63112418^131072+1 1022377 L4201 2019 Generalized Fermat 2785 4477*2^3395786+1 1022238 L5161 2022 2786 3853*2^3395762+1 1022230 L5302 2022 2787 2693*2^3395725+1 1022219 L5284 2022 2788 8201*2^3395673+1 1022204 L5178 2022 2789 255*2^3395661+1 1022199 L3898 2014 2790 1049*2^3395647+1 1022195 L3035 2017 2791 9027*2^3395623+1 1022189 L5263 2022 2792 2523*2^3395549+1 1022166 L5472 2022 2793 3199*2^3395402+1 1022122 L5264 2022 2794 342924651*2^3394939-1 1021988 L4166 2017 2795 3825*2^3394947+1 1021985 L5471 2022 2796 1895*2^3394731+1 1021920 L5174 2022 2797 62276102^131072+1 1021618 L4715 2019 Generalized Fermat 2798 555*2^3393389+1 1021515 L2549 2017 2799 1865*2^3393387+1 1021515 L5237 2022 2800 4911*2^3393373+1 1021511 L5231 2022 2801 62146946^131072+1 1021500 L4720 2019 Generalized Fermat 2802 5229*2^3392587+1 1021275 L5463 2022 2803 61837354^131072+1 1021215 L4656 2019 Generalized Fermat 2804 609*2^3392301+1 1021188 L3035 2017 2805 9787*2^3392236+1 1021169 L5350 2022 2806 303*2^3391977+1 1021090 L2602 2016 2807 805*2^3391818+1 1021042 L4609 2017 2808 6475*2^3391496+1 1020946 L5174 2022 2809 67*2^3391385-1 1020911 L1959 2014 2810 61267078^131072+1 1020688 L4923 2019 Generalized Fermat 2811 4639*2^3390634+1 1020687 L5189 2022 2812 5265*2^3390581+1 1020671 L5456 2022 2813 663*2^3390469+1 1020636 L4316 2017 2814 6945*2^3390340+1 1020598 L5174 2022 2815 5871*2^3390268+1 1020577 L5231 2022 2816 7443*2^3390141+1 1020539 L5226 2022 2817 5383*2^3389924+1 1020473 L5350 2021 2818 61030988^131072+1 1020468 L4898 2019 Generalized Fermat 2819 9627*2^3389331+1 1020295 L5231 2021 2820 60642326^131072+1 1020104 L4591 2019 Generalized Fermat 2821 8253*2^3388624+1 1020082 L5226 2021 2822 3329*2^3388472-1 1020036 L4841 2020 2823 4695*2^3388393+1 1020012 L5237 2021 2824 60540024^131072+1 1020008 L4591 2019 Generalized Fermat 2825 7177*2^3388144+1 1019937 L5174 2021 2826 60455792^131072+1 1019929 L4760 2019 Generalized Fermat 2827 9611*2^3388059+1 1019912 L5435 2021 2828 1833*2^3387760+1 1019821 L5226 2021 2829 9003*2^3387528+1 1019752 L5189 2021 2830 3161*2^3387141+1 1019635 L5226 2021 2831 7585*2^3387110+1 1019626 L5189 2021 2832 60133106^131072+1 1019624 L4942 2019 Generalized Fermat 2833 453*2^3387048+1 1019606 L2602 2016 2834 5177*2^3386919+1 1019568 L5226 2021 2835 8739*2^3386813+1 1019537 L5226 2021 2836 2875*2^3386638+1 1019484 L5226 2021 2837 7197*2^3386526+1 1019450 L5178 2021 2838 1605*2^3386229+1 1019360 L5226 2021 2839 8615*2^3386181+1 1019346 L5442 2021 2840 3765*2^3386141+1 1019334 L5174 2021 2841 5379*2^3385806+1 1019233 L5237 2021 2842 59720358^131072+1 1019232 L4656 2019 Generalized Fermat 2843 59692546^131072+1 1019206 L4747 2019 Generalized Fermat 2844 59515830^131072+1 1019037 L4737 2019 Generalized Fermat 2845 173198*5^1457792-1 1018959 L3720 2013 2846 59405420^131072+1 1018931 L4645 2019 Generalized Fermat 2847 2109*2^3384733+1 1018910 L5261 2021 2848 7067*2^3384667+1 1018891 L5439 2021 2849 59362002^131072+1 1018890 L4249 2019 Generalized Fermat 2850 59305348^131072+1 1018835 L4932 2019 Generalized Fermat 2851 2077*2^3384472+1 1018831 L5237 2021 2852 59210784^131072+1 1018745 L4926 2019 Generalized Fermat 2853 59161754^131072+1 1018697 L4928 2019 Generalized Fermat 2854 9165*2^3383917+1 1018665 L5435 2021 2855 5579*2^3383209+1 1018452 L5434 2021 2856 8241*2^3383131+1 1018428 L5387 2021 2857 7409*2^3382869+1 1018349 L5161 2021 2858 4883*2^3382813+1 1018332 L5161 2021 2859 9783*2^3382792+1 1018326 L5189 2021 2860 58589880^131072+1 1018145 L4923 2019 Generalized Fermat 2861 58523466^131072+1 1018080 L4802 2019 Generalized Fermat 2862 8877*2^3381936+1 1018069 L5429 2021 2863 58447816^131072+1 1018006 L4591 2019 Generalized Fermat 2864 58447642^131072+1 1018006 L4591 2019 Generalized Fermat 2865 6675*2^3381688+1 1017994 L5197 2021 2866 2445*2^3381129+1 1017825 L5231 2021 2867 58247118^131072+1 1017811 L4309 2019 Generalized Fermat 2868 3381*2^3380585+1 1017662 L5237 2021 2869 7899*2^3380459+1 1017624 L5421 2021 2870 5945*2^3379933+1 1017465 L5418 2021 2871 1425*2^3379921+1 1017461 L1134 2020 2872 4975*2^3379420+1 1017311 L5161 2021 2873 57704312^131072+1 1017278 L4591 2019 Generalized Fermat 2874 57694224^131072+1 1017268 L4656 2019 Generalized Fermat 2875 57594734^131072+1 1017169 L4656 2019 Generalized Fermat 2876 9065*2^3378851+1 1017140 L5414 2021 2877 2369*2^3378761+1 1017112 L5197 2021 2878 57438404^131072+1 1017015 L4745 2019 Generalized Fermat 2879 621*2^3378148+1 1016927 L3035 2017 2880 7035*2^3378141+1 1016926 L5408 2021 2881 2067*2^3378115+1 1016918 L5405 2021 2882 1093*2^3378000+1 1016883 L4583 2017 2883 9577*2^3377612+1 1016767 L5406 2021 2884 861*2^3377601+1 1016763 L4582 2017 2885 5811*2^3377016+1 1016587 L5261 2021 2886 2285*2^3376911+1 1016555 L5261 2021 2887 4199*2^3376903+1 1016553 L5174 2021 2888 6405*2^3376890+1 1016549 L5269 2021 2889 1783*2^3376810+1 1016525 L5261 2021 2890 5401*2^3376768+1 1016513 L5174 2021 2891 56917336^131072+1 1016496 L4729 2019 Generalized Fermat 2892 2941*2^3376536+1 1016443 L5174 2021 2893 1841*2^3376379+1 1016395 L5401 2021 2894 6731*2^3376133+1 1016322 L5261 2021 2895 56735576^131072+1 1016314 L4760 2019 Generalized Fermat 2896 8121*2^3375933+1 1016262 L5356 2021 2897 5505*2^3375777+1 1016214 L5174 2021 2898 56584816^131072+1 1016162 L4289 2019 Generalized Fermat 2899 3207*2^3375314+1 1016075 L5237 2021 2900 56459558^131072+1 1016036 L4892 2019 Generalized Fermat 2901 5307*2^3374939+1 1015962 L5392 2021 2902 56383242^131072+1 1015959 L4889 2019 Generalized Fermat 2903 56307420^131072+1 1015883 L4843 2019 Generalized Fermat 2904 208003!-1 1015843 p394 2016 Factorial 2905 6219*2^3374198+1 1015739 L5393 2021 2906 3777*2^3374072+1 1015701 L5261 2021 2907 9347*2^3374055+1 1015696 L5387 2021 2908 1461*2^3373383+1 1015493 L5384 2021 2909 6395*2^3373135+1 1015419 L5382 2021 2910 7869*2^3373021+1 1015385 L5381 2021 2911 55645700^131072+1 1015210 L4745 2019 Generalized Fermat 2912 4905*2^3372216+1 1015142 L5261 2021 2913 55579418^131072+1 1015142 L4745 2019 Generalized Fermat 2914 2839*2^3372034+1 1015087 L5174 2021 2915 7347*2^3371803+1 1015018 L5217 2021 2916 9799*2^3371378+1 1014890 L5261 2021 2917 4329*2^3371201+1 1014837 L5197 2021 2918 3657*2^3371183+1 1014831 L5360 2021 2919 55268442^131072+1 1014822 L4525 2019 Generalized Fermat 2920 179*2^3371145+1 1014819 L3763 2014 2921 5155*2^3371016+1 1014781 L5237 2021 2922 7575*2^3371010+1 1014780 L5237 2021 2923 55184170^131072+1 1014736 L4871 2018 Generalized Fermat 2924 9195*2^3370798+1 1014716 L5178 2021 2925 1749*2^3370786+1 1014711 L5362 2021 2926 8421*2^3370599+1 1014656 L5174 2021 2927 55015050^131072+1 1014561 L4205 2018 Generalized Fermat 2928 4357*2^3369572+1 1014346 L5231 2021 2929 6073*2^3369544+1 1014338 L5358 2021 2930 839*2^3369383+1 1014289 L2891 2017 2931 65*2^3369359+1 1014280 L5236 2021 2932 8023*2^3369228+1 1014243 L5356 2021 2933 677*2^3369115+1 1014208 L2103 2017 2934 1437*2^3369083+1 1014199 L5282 2021 2935 9509*2^3368705+1 1014086 L5237 2021 2936 54548788^131072+1 1014076 L4726 2018 Generalized Fermat 2937 4851*2^3368668+1 1014074 L5307 2021 2938 7221*2^3368448+1 1014008 L5353 2021 2939 5549*2^3368437+1 1014005 L5217 2021 2940 715*2^3368210+1 1013936 L4527 2017 2941 617*2^3368119+1 1013908 L4552 2017 2942 54361742^131072+1 1013881 L4210 2018 Generalized Fermat 2943 1847*2^3367999+1 1013872 L5352 2021 2944 54334044^131072+1 1013852 L4745 2018 Generalized Fermat 2945 6497*2^3367743+1 1013796 L5285 2021 2946 2533*2^3367666+1 1013772 L5326 2021 2947 6001*2^3367552+1 1013738 L5350 2021 2948 54212352^131072+1 1013724 L4307 2018 Generalized Fermat 2949 54206254^131072+1 1013718 L4249 2018 Generalized Fermat 2950 777*2^3367372+1 1013683 L4408 2017 2951 9609*2^3367351+1 1013678 L5285 2021 2952 54161106^131072+1 1013670 L4307 2018 Generalized Fermat 2953 2529*2^3367317+1 1013667 L5237 2021 2954 5941*2^3366960+1 1013560 L5189 2021 2955 5845*2^3366956+1 1013559 L5197 2021 2956 54032538^131072+1 1013535 L4591 2018 Generalized Fermat 2957 9853*2^3366608+1 1013454 L5178 2021 2958 61*2^3366033-1 1013279 L4405 2017 2959 7665*2^3365896+1 1013240 L5345 2021 2960 8557*2^3365648+1 1013165 L5346 2021 2961 369*2^3365614+1 1013154 L4364 2016 2962 53659976^131072+1 1013141 L4823 2018 Generalized Fermat 2963 8201*2^3365283+1 1013056 L5345 2021 2964 9885*2^3365151+1 1013016 L5344 2021 2965 5173*2^3365096+1 1012999 L5285 2021 2966 8523*2^3364918+1 1012946 L5237 2021 2967 3985*2^3364776+1 1012903 L5178 2021 2968 9711*2^3364452+1 1012805 L5192 2021 2969 7003*2^3364172+1 1012721 L5217 2021 2970 6703*2^3364088+1 1012696 L5337 2021 2971 7187*2^3364011+1 1012673 L5217 2021 2972 53161266^131072+1 1012610 L4307 2018 Generalized Fermat 2973 53078434^131072+1 1012521 L4835 2018 Generalized Fermat 2974 2345*2^3363157+1 1012415 L5336 2021 2975 6527*2^3363135+1 1012409 L5167 2021 2976 9387*2^3363088+1 1012395 L5161 2021 2977 8989*2^3362986+1 1012364 L5161 2021 2978 533*2^3362857+1 1012324 L3171 2017 2979 619*2^3362814+1 1012311 L4527 2017 2980 2289*2^3362723+1 1012284 L5161 2021 2981 7529*2^3362565+1 1012237 L5161 2021 2982 7377*2^3362366+1 1012177 L5161 2021 2983 4509*2^3362311+1 1012161 L5324 2021 2984 7021*2^3362208+1 1012130 L5178 2021 2985 52712138^131072+1 1012127 L4819 2018 Generalized Fermat 2986 104*873^344135-1 1012108 L4700 2018 2987 4953*2^3362054+1 1012083 L5323 2021 2988 8575*2^3361798+1 1012006 L5237 2021 2989 2139*2^3361706+1 1011978 L5174 2021 2990 6939*2^3361203+1 1011827 L5217 2021 2991 52412612^131072+1 1011802 L4289 2018 Generalized Fermat 2992 3^2120580-3^623816-1 1011774 CH9 2019 2993 8185*2^3360896+1 1011735 L5189 2021 2994 2389*2^3360882+1 1011730 L5317 2021 2995 2787*2^3360631+1 1011655 L5197 2021 2996 6619*2^3360606+1 1011648 L5316 2021 2997 2755*2^3360526+1 1011623 L5174 2021 2998 1445*2^3360099+1 1011494 L5261 2021 2999 2846*67^553905-1 1011476 L4955 2023 3000 8757*2^3359788+1 1011401 L5197 2021 3001 52043532^131072+1 1011400 L4810 2018 Generalized Fermat 3002 5085*2^3359696+1 1011373 L5261 2021 3003 51954384^131072+1 1011303 L4720 2018 Generalized Fermat 3004 6459*2^3359457+1 1011302 L5310 2021 3005 51872628^131072+1 1011213 L4591 2018 Generalized Fermat 3006 6115*2^3358998+1 1011163 L5309 2021 3007 7605*2^3358929+1 1011143 L5308 2021 3008 2315*2^3358899+1 1011133 L5197 2021 3009 6603*2^3358525+1 1011021 L5307 2021 3010 51580416^131072+1 1010891 L4765 2018 Generalized Fermat 3011 51570250^131072+1 1010880 L4591 2018 Generalized Fermat 3012 51567684^131072+1 1010877 L4800 2018 Generalized Fermat 3013 5893*2^3357490+1 1010709 L5285 2021 3014 6947*2^3357075+1 1010585 L5302 2021 3015 4621*2^3357068+1 1010582 L5301 2021 3016 51269192^131072+1 1010547 L4795 2018 Generalized Fermat 3017 1479*2^3356275+1 1010343 L5178 2021 3018 3645*2^3356232+1 1010331 L5296 2021 3019 1259*2^3356215+1 1010325 L5298 2021 3020 2075*2^3356057+1 1010278 L5174 2021 3021 4281*2^3356051+1 1010276 L5295 2021 3022 1275*2^3356045+1 1010274 L5294 2021 3023 50963598^131072+1 1010206 L4726 2018 Generalized Fermat 3024 4365*2^3355770+1 1010192 L5261 2021 3025 50844724^131072+1 1010074 L4656 2018 Generalized Fermat 3026 2183*2^3355297+1 1010049 L5266 2021 3027 3087*2^3355000+1 1009960 L5226 2021 3028 8673*2^3354760+1 1009888 L5233 2021 3029 50495632^131072+1 1009681 L4591 2018 Generalized Fermat 3030 3015*2^3353943+1 1009641 L5290 2021 3031 6819*2^3353877+1 1009622 L5174 2021 3032 9*10^1009567-1 1009568 L3735 2016 Near-repdigit 3033 6393*2^3353366+1 1009468 L5287 2021 3034 3573*2^3353273+1 1009440 L5161 2021 3035 4047*2^3353222+1 1009425 L5286 2021 3036 1473*2^3353114+1 1009392 L5161 2021 3037 1183*2^3353058+1 1009375 L3824 2017 3038 50217306^131072+1 1009367 L4720 2018 Generalized Fermat 3039 81*2^3352924+1 1009333 L1728 2012 Generalized Fermat 3040 50110436^131072+1 1009245 L4591 2018 Generalized Fermat 3041 50055102^131072+1 1009183 L4309 2018 Generalized Fermat 3042 7123*2^3352180+1 1009111 L5161 2021 3043 2757*2^3352180+1 1009111 L5285 2021 3044 9307*2^3352014+1 1009061 L5284 2021 3045 2217*2^3351732+1 1008976 L5283 2021 3046 543*2^3351686+1 1008961 L4198 2017 3047 4419*2^3351666+1 1008956 L5279 2021 3048 49817700^131072+1 1008912 L4760 2018 Generalized Fermat 3049 3059*2^3351379+1 1008870 L5278 2021 3050 7789*2^3351046+1 1008770 L5276 2021 3051 9501*2^3350668+1 1008656 L5272 2021 3052 49530004^131072+1 1008582 L4591 2018 Generalized Fermat 3053 9691*2^3349952+1 1008441 L5242 2021 3054 49397682^131072+1 1008430 L4764 2018 Generalized Fermat 3055 3209*2^3349719+1 1008370 L5269 2021 3056 49331672^131072+1 1008354 L4763 2018 Generalized Fermat 3057 393*2^3349525+1 1008311 L3101 2016 3058 49243622^131072+1 1008252 L4741 2018 Generalized Fermat 3059 5487*2^3349303+1 1008245 L5266 2021 3060 49225986^131072+1 1008232 L4757 2018 Generalized Fermat 3061 2511*2^3349104+1 1008185 L5264 2021 3062 1005*2^3349046-1 1008167 L4518 2021 3063 7659*2^3348894+1 1008122 L5263 2021 3064 9703*2^3348872+1 1008115 L5262 2021 3065 49090656^131072+1 1008075 L4752 2018 Generalized Fermat 3066 7935*2^3348578+1 1008027 L5161 2021 3067 49038514^131072+1 1008015 L4743 2018 Generalized Fermat 3068 7821*2^3348400+1 1007973 L5260 2021 3069 7911*2^3347532+1 1007712 L5250 2021 3070 8295*2^3347031+1 1007561 L5249 2021 3071 48643706^131072+1 1007554 L4691 2018 Generalized Fermat 3072 4029*2^3346729+1 1007470 L5239 2021 3073 9007*2^3346716+1 1007466 L5161 2021 3074 8865*2^3346499+1 1007401 L5238 2021 3075 6171*2^3346480+1 1007395 L5174 2021 3076 6815*2^3346045+1 1007264 L5235 2021 3077 5*326^400785+1 1007261 L4786 2019 3078 5951*2^3345977+1 1007244 L5233 2021 3079 48370248^131072+1 1007234 L4701 2018 Generalized Fermat 3080 1257*2^3345843+1 1007203 L5192 2021 3081 4701*2^3345815+1 1007195 L5192 2021 3082 48273828^131072+1 1007120 L4456 2018 Generalized Fermat 3083 7545*2^3345355+1 1007057 L5231 2021 3084 5559*2^3344826+1 1006897 L5223 2021 3085 6823*2^3344692+1 1006857 L5223 2021 3086 4839*2^3344453+1 1006785 L5188 2021 3087 7527*2^3344332+1 1006749 L5220 2021 3088 7555*2^3344240+1 1006721 L5188 2021 3089 6265*2^3344080+1 1006673 L5197 2021 3090 1299*2^3343943+1 1006631 L5217 2021 3091 2815*2^3343754+1 1006574 L5216 2021 3092 5349*2^3343734+1 1006568 L5174 2021 3093 2863*2^3342920+1 1006323 L5179 2020 3094 7387*2^3342848+1 1006302 L5208 2020 3095 9731*2^3342447+1 1006181 L5203 2020 3096 7725*2^3341708+1 1005959 L5195 2020 3097 7703*2^3341625+1 1005934 L5178 2020 3098 7047*2^3341482+1 1005891 L5194 2020 3099 4839*2^3341309+1 1005838 L5192 2020 3100 47179704^131072+1 1005815 L4673 2017 Generalized Fermat 3101 47090246^131072+1 1005707 L4654 2017 Generalized Fermat 3102 8989*2^3340866+1 1005705 L5189 2020 3103 6631*2^3340808+1 1005688 L5188 2020 3104 1341*2^3340681+1 1005649 L5188 2020 3105 733*2^3340464+1 1005583 L3035 2016 3106 2636*138^469911+1 1005557 L5410 2021 3107 3679815*2^3340001+1 1005448 L4922 2019 3108 57*2^3339932-1 1005422 L3519 2015 3109 46776558^131072+1 1005326 L4659 2017 Generalized Fermat 3110 46736070^131072+1 1005277 L4245 2017 Generalized Fermat 3111 46730280^131072+1 1005270 L4656 2017 Generalized Fermat 3112 3651*2^3339341+1 1005246 L5177 2020 3113 3853*2^3339296+1 1005232 L5178 2020 3114 8015*2^3339267+1 1005224 L5176 2020 3115 3027*2^3339182+1 1005198 L5174 2020 3116 9517*2^3339002+1 1005144 L5172 2020 3117 4003*2^3338588+1 1005019 L3035 2020 3118 6841*2^3338336+1 1004944 L1474 2020 3119 2189*2^3338209+1 1004905 L5031 2020 3120 46413358^131072+1 1004883 L4626 2017 Generalized Fermat 3121 46385310^131072+1 1004848 L4622 2017 Generalized Fermat 3122 46371508^131072+1 1004831 L4620 2017 Generalized Fermat 3123 2957*2^3337667+1 1004742 L5144 2020 3124 1515*2^3337389+1 1004658 L1474 2020 3125 7933*2^3337270+1 1004623 L4666 2020 3126 1251*2^3337116+1 1004576 L4893 2020 3127 651*2^3337101+1 1004571 L3260 2016 3128 46077492^131072+1 1004469 L4595 2017 Generalized Fermat 3129 8397*2^3336654+1 1004437 L5125 2020 3130 8145*2^3336474+1 1004383 L5110 2020 3131 1087*2^3336385-1 1004355 L1828 2012 3132 5325*2^3336120+1 1004276 L2125 2020 3133 849*2^3335669+1 1004140 L3035 2016 3134 8913*2^3335216+1 1004005 L5079 2020 3135 7725*2^3335213+1 1004004 L3035 2020 3136 611*2^3334875+1 1003901 L3813 2016 3137 45570624^131072+1 1003840 L4295 2017 Generalized Fermat 3138 403*2^3334410+1 1003761 L4293 2016 3139 5491*2^3334392+1 1003756 L4815 2020 3140 6035*2^3334341+1 1003741 L2125 2020 3141 1725*2^3334341+1 1003740 L2125 2020 3142 4001*2^3334031+1 1003647 L1203 2020 3143 2315*2^3333969+1 1003629 L2125 2020 3144 6219*2^3333810+1 1003581 L4582 2020 3145 8063*2^3333721+1 1003554 L1823 2020 3146 9051*2^3333677+1 1003541 L3924 2020 3147 45315256^131072+1 1003520 L4562 2017 Generalized Fermat 3148 4091*2^3333153+1 1003383 L1474 2020 3149 9949*2^3332750+1 1003262 L5090 2020 3150 3509*2^3332649+1 1003231 L5085 2020 3151 3781*2^3332436+1 1003167 L1823 2020 3152 4425*2^3332394+1 1003155 L3431 2020 3153 6459*2^3332086+1 1003062 L2629 2020 3154 44919410^131072+1 1003020 L4295 2017 Generalized Fermat 3155 5257*2^3331758+1 1002963 L1188 2020 3156 2939*2^3331393+1 1002853 L1823 2020 3157 6959*2^3331365+1 1002845 L1675 2020 3158 8815*2^3330748+1 1002660 L3329 2020 3159 4303*2^3330652+1 1002630 L4730 2020 3160 8595*2^3330649+1 1002630 L4723 2020 3161 673*2^3330436+1 1002564 L3035 2016 3162 8163*2^3330042+1 1002447 L3278 2020 3163 44438760^131072+1 1002408 L4505 2016 Generalized Fermat 3164 193*2^3329782+1 1002367 L3460 2014 Divides Fermat F(3329780) 3165 44330870^131072+1 1002270 L4501 2016 Generalized Fermat 3166 2829*2^3329061+1 1002151 L4343 2020 3167 5775*2^3329034+1 1002143 L1188 2020 3168 7101*2^3328905+1 1002105 L4568 2020 3169 7667*2^3328807+1 1002075 L4087 2020 3170 129*2^3328805+1 1002073 L3859 2014 3171 7261*2^3328740+1 1002055 L2914 2020 3172 4395*2^3328588+1 1002009 L3924 2020 3173 44085096^131072+1 1001953 L4482 2016 Generalized Fermat 3174 143183*2^3328297+1 1001923 L4504 2017 3175 44049878^131072+1 1001908 L4466 2016 Generalized Fermat 3176 9681*2^3327987+1 1001828 L1204 2020 3177 2945*2^3327987+1 1001828 L2158 2020 3178 5085*2^3327789+1 1001769 L1823 2020 3179 8319*2^3327650+1 1001727 L1204 2020 3180 4581*2^3327644+1 1001725 L2142 2020 3181 655*2^3327518+1 1001686 L4490 2016 3182 8863*2^3327406+1 1001653 L1675 2020 3183 659*2^3327371+1 1001642 L3502 2016 3184 3411*2^3327343+1 1001634 L1675 2020 3185 4987*2^3327294+1 1001619 L3924 2020 3186 821*2^3327003+1 1001531 L3035 2016 3187 2435*2^3326969+1 1001521 L3035 2020 3188 1931*2^3326850-1 1001485 L4113 2022 3189 2277*2^3326794+1 1001469 L5014 2020 3190 6779*2^3326639+1 1001422 L3924 2020 3191 31*2^3326149-1 1001273 L1862 2024 3192 6195*2^3325993+1 1001228 L1474 2019 3193 555*2^3325925+1 1001206 L4414 2016 3194 9041*2^3325643+1 1001123 L3924 2019 3195 1965*2^3325639-1 1001121 L4113 2022 3196 1993*2^3325302+1 1001019 L3662 2019 3197 6179*2^3325027+1 1000937 L3048 2019 3198 4485*2^3324900+1 1000899 L1355 2019 3199 3559*2^3324650+1 1000823 L3035 2019 3200 12512*13^898392-1 1000762 L2425 2024 3201 43165206^131072+1 1000753 L4309 2016 Generalized Fermat 3202 43163894^131072+1 1000751 L4334 2016 Generalized Fermat 3203 6927*2^3324387+1 1000745 L3091 2019 3204 9575*2^3324287+1 1000715 L3824 2019 3205 1797*2^3324259+1 1000705 L3895 2019 3206 4483*2^3324048+1 1000642 L3035 2019 3207 791*2^3323995+1 1000626 L3035 2016 3208 6987*2^3323926+1 1000606 L4973 2019 3209 3937*2^3323886+1 1000593 L3035 2019 3210 2121*2^3323852+1 1000583 L1823 2019 3211 1571*2^3323493+1 1000475 L3035 2019 3212 2319*2^3323402+1 1000448 L4699 2019 3213 2829*2^3323341+1 1000429 L4754 2019 3214 4335*2^3323323+1 1000424 L1823 2019 3215 8485*2^3322938+1 1000308 L4858 2019 3216 6505*2^3322916+1 1000302 L4858 2019 3217 597*2^3322871+1 1000287 L3035 2016 3218 9485*2^3322811+1 1000270 L2603 2019 3219 8619*2^3322774+1 1000259 L3035 2019 3220 387*2^3322763+1 1000254 L1455 2016 3221 1965*2^3322579-1 1000200 L4113 2022 3222 42654182^131072+1 1000075 L4208 2015 Generalized Fermat 3223 6366*745^348190-1 1000060 L4189 2022 3224 13841792445*2^3322000-1 1000032 L5827 2023 3225 5553507*2^3322000+1 1000029 p391 2016 3226 5029159647*2^3321910-1 1000005 L4960 2021 3227 5009522505*2^3321910-1 1000005 L4960 2021 3228 4766298357*2^3321910-1 1000005 L4960 2021 3229 4759383915*2^3321910-1 1000005 L4960 2021 3230 4635733263*2^3321910-1 1000005 L4960 2021 3231 4603393047*2^3321910-1 1000005 L4960 2021 3232 4550053935*2^3321910-1 1000005 L4960 2021 3233 4288198767*2^3321910-1 1000005 L4960 2021 3234 4229494557*2^3321910-1 1000005 L4960 2021 3235 4110178197*2^3321910-1 1000005 L4960 2021 3236 4022490843*2^3321910-1 1000005 L4960 2021 3237 3936623697*2^3321910-1 1000005 L4960 2021 3238 3751145343*2^3321910-1 1000005 L4960 2021 3239 3715773735*2^3321910-1 1000005 L4960 2021 3240 3698976057*2^3321910-1 1000005 L4960 2021 3241 3659465685*2^3321910-1 1000005 L4960 2020 3242 3652932033*2^3321910-1 1000005 L4960 2020 3243 3603204333*2^3321910-1 1000005 L4960 2020 3244 3543733545*2^3321910-1 1000005 L4960 2020 3245 3191900133*2^3321910-1 1000005 L4960 2020 3246 3174957723*2^3321910-1 1000005 L4960 2020 3247 2973510903*2^3321910-1 1000005 L4960 2019 3248 2848144257*2^3321910-1 1000005 L4960 2019 3249 2820058827*2^3321910-1 1000005 L4960 2019 3250 2611553775*2^3321910-1 1000004 L4960 2020 3251 2601087525*2^3321910-1 1000004 L4960 2019 3252 2386538565*2^3321910-1 1000004 L4960 2019 3253 2272291887*2^3321910-1 1000004 L4960 2019 3254 2167709265*2^3321910-1 1000004 L4960 2019 3255 2087077797*2^3321910-1 1000004 L4960 2019 3256 1848133623*2^3321910-1 1000004 L4960 2019 3257 1825072257*2^3321910-1 1000004 L4960 2019 3258 1633473837*2^3321910-1 1000004 L4960 2019 3259 1228267623*2^3321910-1 1000004 L4808 2019 3260 1148781333*2^3321910-1 1000004 L4808 2019 3261 1065440787*2^3321910-1 1000004 L4808 2019 3262 1055109357*2^3321910-1 1000004 L4960 2019 3263 992309607*2^3321910-1 1000004 L4808 2019 3264 926102325*2^3321910-1 1000004 L4808 2019 3265 892610007*2^3321910-1 1000004 L4960 2019 3266 763076757*2^3321910-1 1000004 L4960 2019 3267 607766997*2^3321910-1 1000004 L4808 2019 3268 539679177*2^3321910-1 1000004 L4808 2019 3269 425521077*2^3321910-1 1000004 L4808 2019 3270 132940575*2^3321910-1 1000003 L4808 2019 3271 239378138685*2^3321891+1 1000001 L5104 2020 3272 464253*2^3321908-1 1000000 L466 2013 3273 3^2095902+3^647322-1 1000000 x44 2018 3274 191273*2^3321908-1 1000000 L466 2013 3275 1814570322984178^65536+1 1000000 L5080 2020 Generalized Fermat 3276 1814570322977518^65536+1 1000000 L5080 2020 Generalized Fermat 3277 3292665455999520712131952624640^32768+1 1000000 L5749 2023 Generalized Fermat 3278 3292665455999520712131951642528^32768+1 1000000 L5120 2020 Generalized Fermat 3279 3292665455999520712131951625894^32768+1 1000000 L5122 2020 Generalized Fermat 3280 10841645805132531666786792405311319418846637043199917731999190^16384+1 1000000 L5749 2023 Generalized Fermat 3281 10841645805132531666786792405311319418846637043199917731311876^16384+1 1000000 L5207 2020 Generalized Fermat 3282 10841645805132531666786792405311319418846637043199917731150000^16384+1 1000000 L5122 2020 Generalized Fermat 3283 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729599864^8192+1 1000000 L5749 2023 Generalized Fermat 3284 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729375350^8192+1 1000000 p417 2021 Generalized Fermat 3285 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729240092^8192+1 1000000 p419 2021 Generalized Fermat 3286 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729154678^8192+1 1000000 p418 2021 Generalized Fermat 3287 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729122666^8192+1 1000000 p417 2021 Generalized Fermat 3288 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729023786^8192+1 1000000 p416 2021 Generalized Fermat 3289 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097875144^4096+1 1000000 p421 2021 Generalized Fermat 3290 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097840702^4096+1 1000000 p417 2021 Generalized Fermat 3291c ((sqrtnint(10^999999,2048)+2)+7748134)^2048+1 1000000 A55 2025 Generalized Fermat 3292 ((sqrtnint(10^999999,2048)+2)+364176)^2048+1 1000000 p417 2022 Generalized Fermat 3293 10^999999+10^840885+10^333333+1 1000000 p436 2023 3294 10^999999+308267*10^292000+1 1000000 CH10 2021 3295 10^999999-1022306*10^287000-1 999999 CH13 2021 3296 10^999999-1087604*10^287000-1 999999 CH13 2021 3297 531631540026641*6^1285077+1 999999 L3494 2021 3298 3139*2^3321905-1 999997 L185 2008 3299 702*507^369680+1 999991 A28 2024 3300 42550702^131072+1 999937 L4309 2022 Generalized Fermat 3301 42414020^131072+1 999753 L5030 2022 Generalized Fermat 3302 4847*2^3321063+1 999744 SB9 2005 3303 42254832^131072+1 999539 L5375 2022 Generalized Fermat 3304 42243204^131072+1 999524 L4898 2022 Generalized Fermat 3305 42230406^131072+1 999506 L5453 2022 Generalized Fermat 3306 42168978^131072+1 999424 L5462 2022 Generalized Fermat 3307 439*2^3318318+1 998916 L5573 2022 3308f 201382*5^1428998+1 998833 A11 2024 3309 41688706^131072+1 998772 L5270 2022 Generalized Fermat 3310 41364744^131072+1 998327 L5453 2022 Generalized Fermat 3311 41237116^131072+1 998152 L5459 2022 Generalized Fermat 3312 47714*17^811139+1 998070 L5765 2023 Generalized Cullen 3313 41102236^131072+1 997965 L4245 2022 Generalized Fermat 3314 41007562^131072+1 997834 L4210 2022 Generalized Fermat 3315 41001148^131072+1 997825 L4210 2022 Generalized Fermat 3316 975*2^3312951+1 997301 L5231 2022 3317 40550398^131072+1 997196 L4245 2022 Generalized Fermat 3318 11796*46^599707+1 997172 L5670 2023 3319 40463598^131072+1 997074 L4591 2022 Generalized Fermat 3320 689*2^3311423+1 996841 L5226 2022 3321 40151896^131072+1 996633 L4245 2022 Generalized Fermat 3322 593*2^3309333+1 996212 L5572 2022 3323 383*2^3309321+1 996208 L5570 2022 3324 49*2^3309087-1 996137 L1959 2013 3325 39746366^131072+1 996056 L4201 2022 Generalized Fermat 3326 139413*6^1279992+1 996033 L4001 2015 3327 1274*67^545368-1 995886 L5410 2023 3328 51*2^3308171+1 995861 L2840 2015 3329 719*2^3308127+1 995849 L5192 2022 3330 39597790^131072+1 995842 L4737 2022 Generalized Fermat 3331 39502358^131072+1 995705 L5453 2022 Generalized Fermat 3332 39324372^131072+1 995448 L5202 2022 Generalized Fermat 3333 245114*5^1424104-1 995412 L3686 2013 3334 39100746^131072+1 995123 L5441 2022 Generalized Fermat 3335 38824296^131072+1 994719 L4245 2022 Generalized Fermat 3336 38734748^131072+1 994588 L4249 2021 Generalized Fermat 3337 175124*5^1422646-1 994393 L3686 2013 3338 453*2^3303073+1 994327 L5568 2022 3339 856*75^530221-1 994200 A11 2024 3340 38310998^131072+1 993962 L4737 2021 Generalized Fermat 3341 531*2^3301693+1 993912 L5226 2022 3342 38196496^131072+1 993791 L4861 2021 Generalized Fermat 3343 38152876^131072+1 993726 L4245 2021 Generalized Fermat 3344 195*2^3301018+1 993708 L5569 2022 3345 341*2^3300789+1 993640 L5192 2022 3346 37909914^131072+1 993363 L4249 2021 Generalized Fermat 3347 849*2^3296427+1 992327 L5571 2022 3348 1611*22^738988+1 992038 L4139 2015 3349 36531196^131072+1 991254 L4249 2021 Generalized Fermat 3350 2017*2^3292325-1 991092 L3345 2017 3351 36422846^131072+1 991085 L4245 2021 Generalized Fermat 3352 36416848^131072+1 991076 L5202 2021 Generalized Fermat 3353 885*2^3290927+1 990671 L5161 2022 3354 36038176^131072+1 990481 L4245 2021 Generalized Fermat 3355 35997532^131072+1 990416 L4245 2021 Generalized Fermat 3356 35957420^131072+1 990353 L4245 2021 Generalized Fermat 3357 107970^196608-107970^98304+1 989588 L4506 2016 Generalized unique 3358 35391288^131072+1 989449 L5070 2021 Generalized Fermat 3359 35372304^131072+1 989419 L5443 2021 Generalized Fermat 3360 219*2^3286614+1 989372 L5567 2022 3361 61*2^3286535-1 989348 L4405 2016 3362 35327718^131072+1 989347 L4591 2021 Generalized Fermat 3363 35282096^131072+1 989274 L4245 2021 Generalized Fermat 3364 35141602^131072+1 989046 L4729 2021 Generalized Fermat 3365 35139782^131072+1 989043 L4245 2021 Generalized Fermat 3366 35047222^131072+1 988893 L4249 2021 Generalized Fermat 3367 531*2^3284944+1 988870 L5536 2022 3368 34957136^131072+1 988747 L5321 2021 Generalized Fermat 3369 301*2^3284232+1 988655 L5564 2022 3370 34871942^131072+1 988608 L4245 2021 Generalized Fermat 3371 34763644^131072+1 988431 L4737 2021 Generalized Fermat 3372 34585314^131072+1 988138 L4201 2021 Generalized Fermat 3373 311*2^3282455+1 988120 L5568 2022 3374 34530386^131072+1 988048 L5070 2021 Generalized Fermat 3375 833*2^3282181+1 988038 L5564 2022 3376 561*2^3281889+1 987950 L5477 2022 3377 34087952^131072+1 987314 L4764 2021 Generalized Fermat 3378 87*2^3279368+1 987191 L3458 2015 3379 965*2^3279151+1 987126 L5564 2022 3380 33732746^131072+1 986717 L4359 2021 Generalized Fermat 3381 33474284^131072+1 986279 L5051 2021 Generalized Fermat 3382 33395198^131072+1 986145 L4658 2021 Generalized Fermat 3383 427*2^3275606+1 986059 L5566 2022 3384 33191418^131072+1 985796 L4201 2021 Generalized Fermat 3385 337*2^3274106+1 985607 L5564 2022 3386 357*2^3273543+1 985438 L5237 2022 Divides GF(3273542,10) 3387 1045*2^3273488+1 985422 L5192 2022 3388 32869172^131072+1 985241 L4285 2021 Generalized Fermat 3389 32792696^131072+1 985108 L5198 2021 Generalized Fermat 3390 1047*2^3272351+1 985079 L5563 2022 3391 32704348^131072+1 984955 L5312 2021 Generalized Fermat 3392 6781*24^713573-1 984886 A11 2024 3393 32608738^131072+1 984788 L5395 2021 Generalized Fermat 3394 75*2^3271125-1 984709 A38 2024 3395 933*2^3270993+1 984670 L5562 2022 3396 311*2^3270759+1 984600 L5560 2022 3397 32430486^131072+1 984476 L4245 2021 Generalized Fermat 3398 32417420^131072+1 984453 L4245 2021 Generalized Fermat 3399 65*2^3270127+1 984409 L3924 2015 3400 32348894^131072+1 984333 L4245 2021 Generalized Fermat 3401 579*2^3269850+1 984326 L5226 2022 3402 32286660^131072+1 984223 L5400 2021 Generalized Fermat 3403 32200644^131072+1 984071 L4387 2021 Generalized Fermat 3404 32137342^131072+1 983959 L4559 2021 Generalized Fermat 3405 32096608^131072+1 983887 L4559 2021 Generalized Fermat 3406 32055422^131072+1 983814 L4559 2021 Generalized Fermat 3407 31821360^131072+1 983397 L4861 2021 Generalized Fermat 3408 31768014^131072+1 983301 L4252 2021 Generalized Fermat 3409 335*2^3266237+1 983238 L5559 2022 3410 1031*2^3265915+1 983142 L5364 2022 3411 31469984^131072+1 982765 L5078 2021 Generalized Fermat 3412 5*2^3264650-1 982759 L384 2013 3413 223*2^3264459-1 982703 L1884 2012 3414 1101*2^3264400+1 982686 L5231 2022 3415 483*2^3264181+1 982620 L5174 2022 3416 525*2^3263227+1 982332 L5231 2022 3417 31145080^131072+1 982174 L4201 2021 Generalized Fermat 3418 622*48^584089+1 981998 L5629 2023 3419 31044982^131072+1 981991 L5041 2021 Generalized Fermat 3420 683*2^3262037+1 981974 L5192 2022 3421 923*2^3261401+1 981783 L5477 2022 3422 30844300^131072+1 981622 L5102 2021 Generalized Fermat 3423 30819256^131072+1 981575 L4201 2021 Generalized Fermat 3424 9*2^3259381-1 981173 L1828 2011 3425 31*2^3259185-1 981114 L1862 2024 3426 1059*2^3258751+1 980985 L5231 2022 3427 6*5^1403337+1 980892 L4965 2020 3428 30318724^131072+1 980643 L4309 2021 Generalized Fermat 3429 30315072^131072+1 980636 L5375 2021 Generalized Fermat 3430 30300414^131072+1 980609 L4755 2021 Generalized Fermat 3431 30225714^131072+1 980468 L4201 2021 Generalized Fermat 3432 875*2^3256589+1 980334 L5550 2022 3433 30059800^131072+1 980155 L4928 2021 Generalized Fermat 3434 30022816^131072+1 980085 L5273 2021 Generalized Fermat 3435 29959190^131072+1 979964 L4905 2021 Generalized Fermat 3436 968*75^522276-1 979303 A11 2024 3437 29607314^131072+1 979292 L5378 2021 Generalized Fermat 3438 779*2^3253063+1 979273 L5192 2022 3439 29505368^131072+1 979095 L5378 2021 Generalized Fermat 3440 163*2^3250978+1 978645 L5161 2022 Divides GF(3250977,6) 3441 29169314^131072+1 978443 L5380 2021 Generalized Fermat 3442 417*2^3248255+1 977825 L5178 2022 3443 28497098^131072+1 977116 L4308 2021 Generalized Fermat 3444 28398204^131072+1 976918 L5379 2021 Generalized Fermat 3445 28294666^131072+1 976710 L5375 2021 Generalized Fermat 3446 28175634^131072+1 976470 L5378 2021 Generalized Fermat 3447 33*2^3242126-1 975979 L3345 2014 3448 27822108^131072+1 975752 L4760 2021 Generalized Fermat 3449 39*2^3240990+1 975637 L3432 2014 3450 27758510^131072+1 975621 L4289 2021 Generalized Fermat 3451 3706*103^484644+1 975514 A11 2024 3452 27557876^131072+1 975208 L4245 2021 Generalized Fermat 3453 27544748^131072+1 975181 L4387 2021 Generalized Fermat 3454 27408050^131072+1 974898 L4210 2021 Generalized Fermat 3455 14275*60^548133-1 974668 x51 2024 3456 225*2^3236967+1 974427 L5529 2022 3457 27022768^131072+1 974092 L4309 2021 Generalized Fermat 3458 26896670^131072+1 973826 L5376 2021 Generalized Fermat 3459 1075*2^3234606+1 973717 L5192 2022 3460 26757382^131072+1 973530 L5375 2021 Generalized Fermat 3461 26599558^131072+1 973194 L4245 2021 Generalized Fermat 3462 6*5^1392287+1 973168 L4965 2020 3463 26500832^131072+1 972982 L4956 2021 Generalized Fermat 3464 325*2^3231474+1 972774 L5536 2022 3465 933*2^3231438+1 972763 L5197 2022 3466 123*2^3230548+1 972494 L5178 2022 Divides GF(3230546,12) 3467 26172278^131072+1 972272 L4245 2021 Generalized Fermat 3468 697*2^3229518+1 972185 L5534 2022 3469 22598*745^338354-1 971810 L4189 2022 3470 385*2^3226814+1 971371 L5178 2022 3471 211195*2^3224974+1 970820 L2121 2013 3472 1173*2^3223546+1 970388 L5178 2022 3473 7*6^1246814+1 970211 L4965 2019 3474 25128150^131072+1 969954 L4738 2021 Generalized Fermat 3475 25124378^131072+1 969946 L5102 2021 Generalized Fermat 3476 1089*2^3221691+1 969829 L5178 2022 3477 35*832^332073-1 969696 L4001 2019 3478 600921*2^3219922-1 969299 g337 2018 3479 939*2^3219319+1 969115 L5178 2022 3480 24734116^131072+1 969055 L5070 2021 Generalized Fermat 3481 76896*5^1386360+1 969029 A42 2024 3482 24644826^131072+1 968849 L5070 2021 Generalized Fermat 3483 24642712^131072+1 968844 L5070 2021 Generalized Fermat 3484 24641166^131072+1 968840 L5070 2021 Generalized Fermat 3485 129*2^3218214+1 968782 L5529 2022 3486 24522386^131072+1 968565 L5070 2021 Generalized Fermat 3487 24486806^131072+1 968483 L4737 2021 Generalized Fermat 3488 811*2^3216944+1 968400 L5233 2022 3489 24297936^131072+1 968042 L4201 2021 Generalized Fermat 3490 1023*2^3214745+1 967738 L5178 2022 3491 187*2^3212152+1 966957 L5178 2022 3492 301*2^3211281-1 966695 L5545 2022 3493 6*409^369832+1 965900 L4001 2015 3494 23363426^131072+1 965809 L5033 2021 Generalized Fermat 3495 1165*2^3207702+1 965618 L5178 2022 3496 94373*2^3206717+1 965323 L2785 2013 3497 2751*2^3206569-1 965277 L4036 2015 3498 761*2^3206341+1 965208 L5178 2022 3499 23045178^131072+1 965029 L5023 2021 Generalized Fermat 3500 23011666^131072+1 964946 L5273 2021 Generalized Fermat 3501 911*2^3205225+1 964872 L5364 2022 3502 22980158^131072+1 964868 L4201 2021 Generalized Fermat 3503 22901508^131072+1 964673 L4743 2021 Generalized Fermat 3504 22808110^131072+1 964440 L5248 2021 Generalized Fermat 3505 22718284^131072+1 964215 L5254 2021 Generalized Fermat 3506 22705306^131072+1 964183 L5248 2021 Generalized Fermat 3507 113983*2^3201175-1 963655 L613 2008 3508 34*888^326732-1 963343 L4001 2017 3509 899*2^3198219+1 962763 L5503 2022 3510 22007146^131072+1 962405 L4245 2020 Generalized Fermat 3511 4*3^2016951+1 962331 L4965 2020 3512 21917442^131072+1 962173 L4622 2020 Generalized Fermat 3513 987*2^3195883+1 962060 L5282 2022 3514 21869554^131072+1 962048 L5061 2020 Generalized Fermat 3515 21757066^131072+1 961754 L4773 2020 Generalized Fermat 3516 21582550^131072+1 961296 L5068 2020 Generalized Fermat 3517 21517658^131072+1 961125 L5126 2020 Generalized Fermat 3518 20968936^131072+1 959654 L4245 2020 Generalized Fermat 3519 671*2^3185411+1 958908 L5315 2022 3520 20674450^131072+1 958849 L4245 2020 Generalized Fermat 3521 1027*2^3184540+1 958646 L5174 2022 3522 789*2^3183463+1 958321 L5482 2022 3523 855*2^3183158+1 958229 L5161 2022 3524 20234282^131072+1 957624 L4942 2020 Generalized Fermat 3525 20227142^131072+1 957604 L4677 2020 Generalized Fermat 3526 625*2^3180780+1 957513 L5178 2022 Generalized Fermat 3527 20185276^131072+1 957486 L4201 2020 Generalized Fermat 3528 935*2^3180599+1 957459 L5477 2022 3529 573*2^3179293+1 957066 L5226 2022 3530 33*2^3176269+1 956154 L3432 2013 3531 81*2^3174353-1 955578 L3887 2022 3532 19464034^131072+1 955415 L4956 2020 Generalized Fermat 3533 600921*2^3173683-1 955380 g337 2018 3534 587*2^3173567+1 955342 L5301 2022 3535 19216648^131072+1 954687 L5024 2020 Generalized Fermat 3536 1414*95^482691-1 954633 L4877 2019 3537 305*2^3171039+1 954581 L5301 2022 3538 755*2^3170701+1 954479 L5302 2022 3539 775*2^3170580+1 954443 L5449 2022 3540 78*236^402022-1 953965 L5410 2020 3541 18968126^131072+1 953946 L5011 2020 Generalized Fermat 3542 18813106^131072+1 953479 L4201 2020 Generalized Fermat 3543 18608780^131072+1 952857 L4488 2020 Generalized Fermat 3544 1087*2^3164677-1 952666 L1828 2012 3545 18509226^131072+1 952552 L4884 2020 Generalized Fermat 3546 18501600^131072+1 952528 L4875 2020 Generalized Fermat 3547 459*2^3163175+1 952214 L5178 2022 3548 15*2^3162659+1 952057 p286 2012 3549 18309468^131072+1 951934 L4928 2020 Generalized Fermat 3550 18298534^131072+1 951900 L4201 2020 Generalized Fermat 3551 849*2^3161727+1 951778 L5178 2022 3552 67*2^3161450+1 951694 L3223 2015 3553 119*2^3161195+1 951617 L5320 2022 3554 1759*2^3160863-1 951518 L4965 2021 3555 58*117^460033+1 951436 L5410 2020 3556 417*2^3160443+1 951391 L5302 2022 3557 9231*70^515544+1 951234 L5410 2021 3558 671*2^3159523+1 951115 L5188 2022 3559 17958952^131072+1 950834 L4201 2020 Generalized Fermat 3560 1001*2^3158422-1 950783 L4518 2023 3561 17814792^131072+1 950375 L4752 2020 Generalized Fermat 3562 17643330^131072+1 949824 L4201 2020 Generalized Fermat 3563 19*2^3155009-1 949754 L1828 2012 3564 281*2^3151457+1 948686 L5316 2022 3565 179*2^3150265+1 948327 L5302 2022 3566 17141888^131072+1 948183 L4963 2019 Generalized Fermat 3567 17138628^131072+1 948172 L4963 2019 Generalized Fermat 3568 17119936^131072+1 948110 L4963 2019 Generalized Fermat 3569 17052490^131072+1 947885 L4715 2019 Generalized Fermat 3570 17025822^131072+1 947796 L4870 2019 Generalized Fermat 3571 16985784^131072+1 947662 L4295 2019 Generalized Fermat 3572 865*2^3147482+1 947490 L5178 2021 3573 963*2^3145753+1 946969 L5451 2021 3574 16741226^131072+1 946837 L4201 2019 Generalized Fermat 3575 387*2^3144483+1 946587 L5450 2021 3576 1035*2^3144236+1 946513 L5449 2021 3577 1065*2^3143667+1 946342 L4944 2021 3578b 1598*187^416536-1 946308 A11 2025 3579 193*2^3142150+1 945884 L5178 2021 3580 915*2^3141942+1 945822 L5448 2021 3581 939*2^3141397+1 945658 L5320 2021 3582 1063*2^3141350+1 945644 L5178 2021 3583 16329572^131072+1 945420 L4201 2019 Generalized Fermat 3584 69*2^3140225-1 945304 L3764 2014 3585 3*2^3136255-1 944108 L256 2007 3586 417*2^3136187+1 944089 L5178 2021 3587 15731520^131072+1 943296 L4245 2019 Generalized Fermat 3588 62721^196608-62721^98304+1 943210 L4506 2016 Generalized unique 3589 15667716^131072+1 943064 L4387 2019 Generalized Fermat 3590 15567144^131072+1 942698 L4918 2019 Generalized Fermat 3591 299*2^3130621+1 942414 L5178 2021 3592 15342502^131072+1 941870 L4245 2019 Generalized Fermat 3593 15237960^131072+1 941481 L4898 2019 Generalized Fermat 3594 571*2^3127388+1 941441 L5440 2021 3595 107*2^3126660-1 941221 A38 2024 3596 15147290^131072+1 941141 L4861 2019 Generalized Fermat 3597 197*2^3126343+1 941126 L5178 2021 3598 15091270^131072+1 940930 L4760 2019 Generalized Fermat 3599 1097*2^3124455+1 940558 L5178 2021 3600 3125*2^3124079+1 940445 L1160 2019 3601 495*2^3123624+1 940308 L5438 2021 3602 14790404^131072+1 939784 L4871 2019 Generalized Fermat 3603 1041*2^3120649+1 939412 L5437 2021 3604 14613898^131072+1 939101 L4926 2019 Generalized Fermat 3605 3317*2^3117162-1 938363 L5399 2021 3606 763*2^3115684+1 937918 L4944 2021 3607 25*746^326451-1 937810 A28 2024 3608 581*2^3114611+1 937595 L5178 2021 3609 14217182^131072+1 937534 L4387 2019 Generalized Fermat 3610 134*864^319246-1 937473 L5410 2020 3611 700057*2^3113753-1 937339 L5410 2022 3612 5*6^1204077-1 936955 A2 2023 3613 1197*2^3111838+1 936760 L5178 2021 3614 14020004^131072+1 936739 L4249 2019 Generalized Fermat 3615 27777*2^3111027+1 936517 L2777 2014 Generalized Cullen 3616 755*2^3110759+1 936435 L5320 2021 3617 13800346^131072+1 935840 L4880 2019 Generalized Fermat 3618 866981*12^866981-1 935636 L5765 2023 Generalized Woodall 3619 313*2^3107219-1 935369 L5819 2024 3620 13613070^131072+1 935062 L4245 2019 Generalized Fermat 3621 628*80^491322+1 935033 L5410 2021 3622 761*2^3105087+1 934728 L5197 2021 3623 13433028^131072+1 934305 L4868 2018 Generalized Fermat 3624 1019*2^3103680-1 934304 L1828 2012 3625 12*978^312346+1 934022 L4294 2023 3626 579*2^3102639+1 933991 L5315 2021 3627 99*2^3102401-1 933918 L1862 2017 3628 256612*5^1335485-1 933470 L1056 2013 3629 13083418^131072+1 932803 L4747 2018 Generalized Fermat 3630 882*1017^310074+1 932495 A10 2024 3631 69*2^3097340-1 932395 L3764 2014 3632 153*2^3097277+1 932376 L4944 2021 3633 12978952^131072+1 932347 L4849 2018 Generalized Fermat 3634 12961862^131072+1 932272 L4245 2018 Generalized Fermat 3635 207*2^3095391+1 931808 L5178 2021 3636 12851074^131072+1 931783 L4670 2018 Generalized Fermat 3637 45*2^3094632-1 931579 L1862 2018 3638 259*2^3094582+1 931565 L5214 2021 3639 553*2^3094072+1 931412 L4944 2021 3640 57*2^3093440-1 931220 L2484 2020 3641 12687374^131072+1 931054 L4289 2018 Generalized Fermat 3642 513*2^3092705+1 931000 L4329 2016 3643 12661786^131072+1 930939 L4819 2018 Generalized Fermat 3644 933*2^3091825+1 930736 L5178 2021 3645 38*875^316292-1 930536 L4001 2019 3646 5*2^3090860-1 930443 L1862 2012 3647 12512992^131072+1 930266 L4814 2018 Generalized Fermat 3648 4*5^1330541-1 930009 L4965 2022 3649 12357518^131072+1 929554 L4295 2018 Generalized Fermat 3650 12343130^131072+1 929488 L4720 2018 Generalized Fermat 3651 297*2^3087543+1 929446 L5326 2021 3652 1149*2^3087514+1 929438 L5407 2021 3653 745*2^3087428+1 929412 L5178 2021 3654 373*520^342177+1 929357 L3610 2014 3655 19401*2^3086450-1 929119 L541 2015 3656 75*2^3086355+1 929088 L3760 2015 3657 65*2^3080952-1 927461 L2484 2020 3658 11876066^131072+1 927292 L4737 2018 Generalized Fermat 3659 1139*2^3079783+1 927111 L5174 2021 3660 271*2^3079189-1 926931 L2484 2018 3661 766*33^610412+1 926923 L4001 2016 3662 11778792^131072+1 926824 L4672 2018 Generalized Fermat 3663 555*2^3078792+1 926812 L5226 2021 3664 31*332^367560+1 926672 L4294 2018 3665 167*2^3077568-1 926443 L1862 2020 3666 10001*2^3075602-1 925853 L4405 2019 3667 116*107^455562-1 924513 L4064 2021 3668 11292782^131072+1 924425 L4672 2018 Generalized Fermat 3669 14844*430^350980-1 924299 L4001 2016 3670 11267296^131072+1 924297 L4654 2017 Generalized Fermat 3671 4*3^1936890+1 924132 L4965 2020 Generalized Fermat 3672 1105*2^3069884+1 924131 L5314 2021 3673 319*2^3069362+1 923973 L5377 2021 3674 11195602^131072+1 923933 L4706 2017 Generalized Fermat 3675 973*2^3069092+1 923892 L5214 2021 3676 765*2^3068511+1 923717 L5174 2021 3677 60849*2^3067914+1 923539 L591 2014 3678 674*249^385359+1 923400 L5410 2019 3679 499*2^3066970+1 923253 L5373 2021 3680 553*2^3066838+1 923213 L5368 2021 3681 629*2^3066827+1 923210 L5226 2021 3682 11036888^131072+1 923120 L4660 2017 Generalized Fermat 3683 261*2^3066009+1 922964 L5197 2021 3684 10994460^131072+1 922901 L4704 2017 Generalized Fermat 3685 214916*3^1934246-1 922876 L4965 2023 Generalized Woodall 3686 21*2^3065701+1 922870 p286 2012 3687 10962066^131072+1 922733 L4702 2017 Generalized Fermat 3688 10921162^131072+1 922520 L4559 2017 Generalized Fermat 3689 875*2^3063847+1 922313 L5364 2021 3690 43*2^3063674+1 922260 L3432 2013 3691 677*2^3063403+1 922180 L5346 2021 3692 8460*241^387047-1 921957 L5410 2019 3693 10765720^131072+1 921704 L4695 2017 Generalized Fermat 3694 111*2^3060238-1 921226 L2484 2020 3695 1165*2^3060228+1 921224 L5360 2021 3696 5*2^3059698-1 921062 L503 2008 3697 10453790^131072+1 920031 L4694 2017 Generalized Fermat 3698 453*2^3056181+1 920005 L5320 2021 3699 791*2^3055695+1 919859 L5177 2021 3700 10368632^131072+1 919565 L4692 2017 Generalized Fermat 3701 582971*2^3053414-1 919175 L5410 2022 3702 123*2^3049038+1 917854 L4119 2015 3703 10037266^131072+1 917716 L4691 2017 Generalized Fermat 3704 400*95^463883-1 917435 L4001 2019 3705 9907326^131072+1 916975 L4690 2017 Generalized Fermat 3706 454*383^354814+1 916558 L2012 2020 3707 9785844^131072+1 916272 L4326 2017 Generalized Fermat 3708 435*2^3041954+1 915723 L5320 2021 3709 639*2^3040438+1 915266 L5320 2021 3710 13822*115^443832+1 914608 A11 2024 3711 1045*2^3037988+1 914529 L5178 2021 3712 291*2^3037904+1 914503 L3545 2015 3713 311*2^3037565+1 914401 L5178 2021 3714 373*2^3036746+1 914155 L5178 2021 3715 9419976^131072+1 914103 L4591 2017 Generalized Fermat 3716 5706*162^413708+1 914098 A14 2024 3717 341*2^3036506-1 914082 p435 2023 3718 801*2^3036045+1 913944 L5348 2021 3719 915*2^3033775+1 913261 L5178 2021 3720 38804*3^1913975+1 913203 L5410 2021 3721 9240606^131072+1 913009 L4591 2017 Generalized Fermat 3722 869*2^3030655+1 912322 L5260 2021 3723 643*2^3030650+1 912320 L5320 2021 3724 99*2^3029959-1 912111 L1862 2020 3725 417*2^3029342+1 911926 L5178 2021 3726 345*2^3027769+1 911452 L5343 2021 3727 26*3^1910099+1 911351 L4799 2020 3728 355*2^3027372+1 911333 L5174 2021 3729 99*2^3026660-1 911118 L1862 2020 3730 417*2^3026492+1 911068 L5197 2021 3731 1065*2^3025527+1 910778 L5208 2021 3732 34202*3^1908800+1 910734 L5410 2021 3733 8343*42^560662+1 910099 L4444 2020 3734 699*2^3023263+1 910096 L5335 2021 3735 8770526^131072+1 910037 L4245 2017 Generalized Fermat 3736 8704114^131072+1 909604 L4670 2017 Generalized Fermat 3737 383731*2^3021377-1 909531 L466 2011 3738 46821*2^3021380-374567 909531 p363 2013 3739 2^3021377-1 909526 G3 1998 Mersenne 37 3740b 255*2^3021196-1 909474 L3994 2025 3741 615*2^3019445+1 908947 L5260 2021 3742 389*2^3019025+1 908820 L5178 2021 3743 875*2^3018175+1 908565 L5334 2021 3744 375*2^3016803-1 908151 L2235 2023 3745 555*2^3016352+1 908016 L5178 2021 3746 7*2^3015762+1 907836 g279 2008 3747 759*2^3015314+1 907703 L5178 2021 3748 32582*3^1901790+1 907389 L5372 2021 3749 75*2^3012342+1 906808 L3941 2015 3750 459*2^3011814+1 906650 L5178 2021 3751b 171*2^3010938-1 906385 A27 2025 3752 991*2^3010036+1 906115 L5326 2021 3753 583*2^3009698+1 906013 L5325 2021 3754 8150484^131072+1 905863 L4249 2017 Generalized Fermat 3755 593*2^3006969+1 905191 L5178 2021 3756 327*2^3006540-1 905062 L2257 2023 3757 75*2^3006235-1 904969 A38 2024 3758 367*2^3004536+1 904459 L5178 2021 3759 7926326^131072+1 904276 L4249 2017 Generalized Fermat 3760 1003*2^3003756+1 904224 L5320 2021 3761 626*1017^300576+1 903932 A9 2024 3762 573*2^3002662+1 903895 L5319 2021 3763 7858180^131072+1 903784 L4201 2017 Generalized Fermat 3764 329*2^3002295+1 903784 L5318 2021 3765 4*5^1292915-1 903710 L4965 2022 3766 7832704^131072+1 903599 L4249 2017 Generalized Fermat 3767 268514*5^1292240-1 903243 L3562 2013 3768 7*10^902708+1 902709 p342 2013 3769 435*2^2997453+1 902326 L5167 2021 3770 583*2^2996526+1 902047 L5174 2021 3771 1037*2^2995695+1 901798 L5178 2021 3772 717*2^2995326+1 901686 L5178 2021 3773 885*2^2995274+1 901671 L5178 2021 3774 43*2^2994958+1 901574 L3222 2013 3775 1065*2^2994154+1 901334 L5315 2021 3776 561*2^2994132+1 901327 L5314 2021 3777b 147*2^2993165-1 901035 L1817 2025 3778 1095*2^2992587-1 900862 L1828 2011 3779 519*2^2991849+1 900640 L5311 2021 3780 7379442^131072+1 900206 L4201 2017 Generalized Fermat 3781 459*2^2990134+1 900123 L5197 2021 3782 15*2^2988834+1 899730 p286 2012 3783 29*564^326765+1 899024 L4001 2017 3784e 5129*24^650539+1 897885 A11 2024 3785 971*2^2982525+1 897833 L5197 2021 3786 1033*2^2980962+1 897362 L5305 2021 3787 357*2^2980540-1 897235 L2257 2023 3788 367*2^2979033-1 896781 L2257 2023 3789 39*2^2978894+1 896739 L2719 2013 3790 38*977^299737+1 896184 L5410 2021 3791 4348099*2^2976221-1 895939 L466 2008 3792 205833*2^2976222-411665 895938 L4667 2017 3793 593*2^2976226-18975 895937 p373 2014 3794 2^2976221-1 895932 G2 1997 Mersenne 36 3795 1024*3^1877301+1 895704 p378 2014 3796 1065*2^2975442+1 895701 L5300 2021 Divides GF(2975440,3) 3797 24704*3^1877135+1 895626 L5410 2021 3798 591*2^2975069+1 895588 L5299 2021 3799 249*2^2975002+1 895568 L2322 2015 3800e 18431*82^467690-1 895076 A14 2024 3801 195*2^2972947+1 894949 L3234 2015 3802 6705932^131072+1 894758 L4201 2017 Generalized Fermat 3803 391*2^2971600+1 894544 L5242 2021 3804 46425*2^2971203+1 894426 L2777 2014 Generalized Cullen 3805 625*2^2970336+1 894164 L5233 2021 Generalized Fermat 3806 369*2^2968175-1 893513 L2257 2023 3807 493*72^480933+1 893256 L3610 2014 3808 561*2^2964753+1 892483 L5161 2021 3809 1185*2^2964350+1 892362 L5161 2021 3810 6403134^131072+1 892128 L4510 2016 Generalized Fermat 3811 6391936^131072+1 892028 L4511 2016 Generalized Fermat 3812b 1964*991^297652-1 891791 A11 2025 3813 395*2^2961370-1 891464 L2257 2023 3814 21*2^2959789-1 890987 L5313 2021 3815 627*2^2959098+1 890781 L5197 2021 3816 45*2^2958002-1 890449 L1862 2017 3817 729*2^2955389+1 889664 L5282 2021 3818 706*1017^295508+1 888691 p433 2023 3819 198677*2^2950515+1 888199 L2121 2012 3820 88*985^296644+1 887987 L5410 2020 3821 303*2^2949403-1 887862 L1817 2022 3822 5877582^131072+1 887253 L4245 2016 Generalized Fermat 3823 321*2^2946654-1 887034 L1817 2022 3824 17*2^2946584-1 887012 L3519 2013 3825 489*2^2944673+1 886438 L5167 2021 3826 141*2^2943065+1 885953 L3719 2015 3827 757*2^2942742+1 885857 L5261 2021 3828 5734100^131072+1 885846 L4477 2016 Generalized Fermat 3829 33*2^2939064-5606879602425*2^1290000-1 884748 p423 2021 Arithmetic progression (3,d=33*2^2939063-5606879602425*2^1290000) 3830 33*2^2939063-1 884748 L3345 2013 3831 5903*2^2938744-1 884654 L4036 2015 3832 717*2^2937963+1 884418 L5256 2021 3833 5586416^131072+1 884361 L4454 2016 Generalized Fermat 3834d 297*2^2937584-1 884304 L1817 2025 3835 243*2^2937316+1 884223 L4114 2015 3836 973*2^2937046+1 884142 L5253 2021 3837 61*2^2936967-1 884117 L2484 2017 3838d 203*2^2935338-1 883628 L1817 2025 3839 903*2^2934602+1 883407 L5246 2021 3840 5471814^131072+1 883181 L4362 2016 Generalized Fermat 3841 188*228^374503+1 883056 L4786 2020 3842 53*248^368775+1 883016 L5196 2020 3843e 13613*82^461323-1 882891 A11 2024 3844 5400728^131072+1 882436 L4201 2016 Generalized Fermat 3845 17*326^350899+1 881887 L4786 2019 3846 855*2^2929550+1 881886 L5200 2021 3847 5326454^131072+1 881648 L4201 2016 Generalized Fermat 3848 839*2^2928551+1 881585 L5242 2021 3849 7019*10^881309-1 881313 L3564 2013 3850 25*2^2927222+1 881184 L1935 2013 Generalized Fermat 3851 391*2^2925759-1 880744 L2257 2023 3852 577*2^2925602+1 880697 L5201 2021 3853 97366*5^1259955-1 880676 L3567 2013 3854 19861029*2^2924096-1 880248 A31 2024 3855 973*2^2923062+1 879933 L5228 2021 3856 1126*177^391360+1 879770 L4955 2020 3857 243944*5^1258576-1 879713 L3566 2013 3858 693*2^2921528+1 879471 L5201 2021 3859 6*10^879313+1 879314 L5009 2019 3860 269*2^2918105+1 878440 L2715 2015 3861 331*2^2917844+1 878362 L5210 2021 3862 169*2^2917805-1 878350 L2484 2018 3863 1085*2^2916967+1 878098 L5174 2020 3864 389*2^2916499+1 877957 L5215 2020 3865 431*2^2916429+1 877936 L5214 2020 3866 1189*2^2916406+1 877929 L5174 2020 3867 1011*2^2916119-1 877843 L4518 2023 3868 7*2^2915954+1 877791 g279 2008 Divides GF(2915953,12) [g322] 3869 4974408^131072+1 877756 L4380 2016 Generalized Fermat 3870 465*2^2914079+1 877228 L5210 2020 3871 427194*113^427194+1 877069 p310 2012 Generalized Cullen 3872b 322*952^294414+1 876955 A11 2025 3873 4893072^131072+1 876817 L4303 2016 Generalized Fermat 3874 493*2^2912552+1 876769 L5192 2021 3875 379*2^2911423-1 876429 L2257 2023 3876 143157*2^2911403+1 876425 L4504 2017 3877 567*2^2910402+1 876122 L5201 2020 3878 683*2^2909217+1 875765 L5199 2020 3879 674*249^365445+1 875682 L5410 2019 3880 475*2^2908802+1 875640 L5192 2021 3881e 2351*24^634318+1 875497 A11 2024 3882d 117*2^2908312-1 875492 A27 2025 3883 371*2^2907377+1 875211 L5197 2020 3884e 8161*24^633274+1 874056 A11 2024 3885 207*2^2903535+1 874054 L3173 2015 3886 851*2^2902731+1 873813 L5177 2020 3887e 267*2^2902469-1 873733 A27 2024 3888 777*2^2901907+1 873564 L5192 2020 3889 717*2^2900775+1 873224 L5185 2020 3890 99*2^2899303-1 872780 L1862 2017 3891 63*2^2898957+1 872675 L3262 2013 3892e 173*2^2897448-1 872221 A27 2024 3893 11*2^2897409+1 872209 L2973 2013 Divides GF(2897408,3) 3894e 187*2^2896841-1 872039 L3994 2024 3895e 29601*24^631722+1 871915 A11 2024 3896 747*2^2895307+1 871578 L5178 2020 3897 403*2^2894566+1 871354 L5180 2020 3898 629*2^2892961+1 870871 L5173 2020 3899 627*2^2891514+1 870436 L5168 2020 3900 325*2^2890955-1 870267 L5545 2022 3901 363*2^2890208+1 870042 L3261 2020 3902 471*2^2890148+1 870024 L5158 2020 3903 4329134^131072+1 869847 L4395 2016 Generalized Fermat 3904 583*2^2889248+1 869754 L5139 2020 3905 353*2^2888332-1 869478 L2257 2023 3906 955*2^2887934+1 869358 L4958 2020 3907 8300*171^389286+1 869279 L5410 2023 3908 303*2^2887603-1 869258 L5184 2022 3909 937*2^2887130+1 869116 L5134 2020 3910 885*2^2886389+1 868893 L3924 2020 3911 763*2^2885928+1 868754 L2125 2020 3912 1071*2^2884844+1 868428 L3593 2020 3913 1181*2^2883981+1 868168 L3593 2020 3914 327*2^2881349-1 867375 L5545 2022 3915 51*2^2881227+1 867338 L3512 2013 3916 933*2^2879973+1 866962 L4951 2020 3917 261*2^2879941+1 866952 L4119 2015 3918 4085818^131072+1 866554 L4201 2016 Generalized Fermat 3919 65*2^2876718-1 865981 L2484 2016 3920 21*948^290747-1 865500 L4985 2019 3921 4013*2^2873250-1 864939 L1959 2014 3922 41*2^2872058-1 864578 L2484 2013 3923 359*2^2870935+1 864241 L1300 2020 3924 165*2^2870868+1 864220 L4119 2015 3925 961*2^2870596+1 864139 L1300 2020 Generalized Fermat 3926 665*2^2869847+1 863913 L2885 2020 3927 283*2^2868750+1 863583 L3877 2015 3928 663703*20^663703-1 863504 L5765 2023 Generalized Woodall 3929 845*2^2868291+1 863445 L5100 2020 3930 3125*2^2867399+1 863177 L1754 2019 3931 701*2^2867141+1 863099 L1422 2020 3932 9*10^862868+1 862869 L4789 2024 Generalized Fermat 3933 3814944^131072+1 862649 L4201 2016 Generalized Fermat 3934 81030*91^440109-1 862197 A11 2024 3935 119*954^289255+1 861852 L5410 2022 3936 307*2^2862962+1 861840 L4740 2020 3937 147*2^2862651+1 861746 L1741 2015 3938 1207*2^2861901-1 861522 L1828 2011 3939 231*2^2860725+1 861167 L2873 2015 3940 193*2^2858812+1 860591 L2997 2015 3941 629*2^2857891+1 860314 L3035 2020 3942 493*2^2857856+1 860304 L5087 2020 3943 241*2^2857313-1 860140 L2484 2018 3944 707*2^2856331+1 859845 L5084 2020 3945 3615210^131072+1 859588 L4201 2016 Generalized Fermat 3946 949*2^2854946+1 859428 L2366 2020 3947 222361*2^2854840+1 859398 g403 2006 3948 725*2^2854661+1 859342 L5031 2020 3949 178972*5^1228284+1 858539 A42 2024 3950 399*2^2851994+1 858539 L4099 2020 3951 225*2^2851959+1 858528 L3941 2015 3952 247*2^2851602+1 858421 L3865 2015 3953 183*2^2850321+1 858035 L2117 2015 3954 1191*2^2849315+1 857733 L1188 2020 3955 717*2^2848598+1 857517 L1204 2020 3956 795*2^2848360+1 857445 L4099 2020 3957 4242104*15^728840-1 857189 L5410 2023 3958c 2*647^304931+1 857133 L550 2025 3959 3450080^131072+1 856927 L4201 2016 Generalized Fermat 3960 705*2^2846638+1 856927 L1808 2020 3961 369*2^2846547+1 856899 L4099 2020 3962 233*2^2846392-1 856852 L2484 2021 3963 223952*91^437353-1 856798 A11 2024 3964 955*2^2844974+1 856426 L1188 2020 3965 753*2^2844700+1 856343 L1204 2020 3966 11138*745^297992-1 855884 L4189 2019 3967 111*2^2841992+1 855527 L1792 2015 3968 44*744^297912-1 855478 L5410 2021 3969 649*2^2841318+1 855325 L4732 2020 3970 228*912^288954-1 855305 L5410 2022 3971 305*2^2840155+1 854975 L4907 2020 3972 914*871^290787-1 854923 L5787 2023 3973 1149*2^2839622+1 854815 L2042 2020 3974 95*2^2837909+1 854298 L3539 2013 3975 199*2^2835667-1 853624 L2484 2019 3976 595*2^2833406+1 852943 L4343 2020 3977 1101*2^2832061+1 852539 L4930 2020 3978 813*2^2831757+1 852447 L4951 2020 3979 435*2^2831709+1 852432 L4951 2020 3980 38*500^315752-1 852207 A21 2024 3981e 13613*82^445251-1 852132 A11 2024 3982 393*2^2828738-1 851538 L2257 2023 3983 543*2^2828217+1 851381 L4746 2019 3984 68*1010^283267+1 851027 L5778 2023 3985 704*249^354745+1 850043 L5410 2019 3986 1001*2^2822037+1 849521 L1209 2019 3987 84466*5^1215373-1 849515 L3562 2013 3988 97*2^2820650+1 849103 L2163 2013 3989 381*2^2820157-1 848955 L2257 2023 3990 43814*91^433332-1 848920 A32 2024 3991 107*2^2819922-1 848884 L2484 2013 3992 84256*3^1778899+1 848756 L4789 2018 3993 45472*3^1778899-1 848756 L4789 2018 3994 495*2^2819449-1 848742 L3994 2024 3995 14804*3^1778530+1 848579 L4064 2021 3996 497*2^2818787+1 848543 L4842 2019 3997 97*2^2818306+1 848397 L3262 2013 3998 313*2^2817751-1 848231 L802 2021 3999 177*2^2816050+1 847718 L129 2012 4000 585*2^2816000-1 847704 L5819 2024 4001 553*2^2815596+1 847582 L4980 2019 4002 1071*2^2814469+1 847243 L3035 2019 4003 105*2^2813000+1 846800 L3200 2015 4004 1115*2^2812911+1 846774 L1125 2019 4005 96*10^846519-1 846521 L2425 2011 Near-repdigit 4006 763*2^2811726+1 846417 L3919 2019 4007 1125*2^2811598+1 846379 L4981 2019 4008 891*2^2810100+1 845928 L4981 2019 4009 441*2^2809881+1 845862 L4980 2019 4010 499*2^2809261-1 845675 L5516 2024 4011 711*2^2808473+1 845438 L1502 2019 4012 1089*2^2808231+1 845365 L4687 2019 4013 63*2^2807130+1 845033 L3262 2013 4014 1083*2^2806536+1 844855 L3035 2019 4015 675*2^2805669+1 844594 L1932 2019 4016 819*2^2805389+1 844510 L3372 2019 4017 1027*2^2805222+1 844459 L3035 2019 4018 437*2^2803775+1 844024 L3168 2019 4019e 29113*820^289614+1 843886 A50 2024 4020 381*2^2801281-1 843273 L2257 2023 4021 4431*372^327835-1 842718 L5410 2019 4022 150344*5^1205508-1 842620 L3547 2013 4023 311*2^2798459+1 842423 L4970 2019 4024 81*2^2797443-1 842117 L3887 2021 4025 400254*127^400254+1 842062 g407 2013 Generalized Cullen 4026 2639850^131072+1 841690 L4249 2016 Generalized Fermat 4027 43*2^2795582+1 841556 L2842 2013 4028 1001*2^2794357+1 841189 L1675 2019 4029 117*2^2794014+1 841085 L1741 2015 4030 1057*2^2792700+1 840690 L1675 2019 4031 345*2^2792269+1 840560 L1754 2019 4032f 267*2^2792074-1 840501 L1817 2024 4033 711*2^2792072+1 840501 L4256 2019 4034f 293*2^2791482-1 840323 A27 2024 4035 315*2^2791414-1 840302 L2235 2021 4036 973*2^2789516+1 839731 L3372 2019 4037 27602*3^1759590+1 839543 L4064 2021 4038 2187*2^2786802+1 838915 L1745 2019 4039 15*2^2785940+1 838653 p286 2012 4040 333*2^2785626-1 838560 L802 2021 4041 1337*2^2785444-1 838506 L4518 2017 4042 711*2^2784213+1 838135 L4687 2019 4043 58582*91^427818+1 838118 L5410 2020 4044 923*2^2783153+1 837816 L1675 2019 4045 1103*2^2783149+1 837815 L3784 2019 4046e 20708*82^437279-1 836875 A48 2024 4047f 297*2^2778276-1 836347 A27 2024 4048 485*2^2778151+1 836310 L1745 2019 4049 600921*2^2776014-1 835670 g337 2017 4050 1129*2^2774934+1 835342 L1774 2019 4051 750*1017^277556-1 834703 L4955 2021 4052 8700*241^350384-1 834625 L5410 2019 4053 1023*2^2772512+1 834613 L4724 2019 4054 656*249^348030+1 833953 L5410 2019 4055 92*10^833852-1 833854 L4789 2018 Near-repdigit 4056 437*2^2769299+1 833645 L3760 2019 4057 967*2^2768408+1 833377 L3760 2019 4058 2280466^131072+1 833359 L4201 2016 Generalized Fermat 4059 1171*2^2768112+1 833288 L2676 2019 4060 57*2^2765963+1 832640 L3262 2013 4061 1323*2^2764024+1 832058 L1115 2019 4062f 189*2^2762731-1 831668 A27 2024 4063 471*2^2762718-1 831664 L5516 2023 4064f 115*2^2762111-1 831481 A27 2024 4065 77*2^2762047+1 831461 L3430 2013 4066 745*2^2761514+1 831302 L1204 2019 4067 2194180^131072+1 831164 L4276 2016 Generalized Fermat 4068 543*2^2760224-1 830913 L5516 2023 4069 7*10^830865+1 830866 p342 2014 4070 893*2^2758841+1 830497 L4826 2019 4071 593*2^2757554-1 830110 L5516 2023 4072 557*2^2757276-1 830026 L5516 2023 4073 537*2^2755164+1 829390 L3035 2019 4074 225*370^322863-1 829180 A14 2024 4075 579*2^2754370+1 829151 L1823 2019 4076 441*2^2754188+1 829096 L2564 2019 Generalized Fermat 4077 455*2^2754132-1 829080 L5516 2023 4078 139*2^2751839-1 828389 A27 2024 4079 677*792^285769-1 828369 L541 2023 4080 215*2^2751022-1 828143 L2484 2018 4081 337*2^2750860+1 828094 L4854 2019 4082 701*2^2750267+1 827916 L3784 2019 4083 467*2^2749195+1 827593 L1745 2019 4084 245*2^2748663+1 827433 L3173 2015 4085 591*2^2748315+1 827329 L3029 2019 4086 205*2^2747571-1 827104 L1817 2024 4087 57*2^2747499+1 827082 L3514 2013 Divides Fermat F(2747497) 4088 1007*2^2747268-1 827014 L4518 2022 4089 1089*2^2746155+1 826679 L2583 2019 4090 707*2^2745815+1 826576 L3760 2019 4091 525*2^2743252-1 825804 L5516 2023 4092 459*2^2742310+1 825521 L4582 2019 4093 777*2^2742196+1 825487 L3919 2019 4094 609*2^2741078+1 825150 L3091 2019 4095 684*157^375674+1 824946 L5112 2022 4096 639*2^2740186+1 824881 L4958 2019 4097 905*2^2739805+1 824767 L4958 2019 4098 119*954^276761+1 824625 L5410 2022 4099 1955556^131072+1 824610 L4250 2015 Generalized Fermat 4100 777*2^2737282+1 824007 L1823 2019 4101b 224*938^277168-1 823802 A11 2025 4102 765*2^2735232+1 823390 L1823 2019 4103 609*2^2735031+1 823330 L1823 2019 4104 9*10^823037+1 823038 L4789 2024 4105 305*2^2733989+1 823016 L1823 2019 4106 165*2^2732983+1 822713 L1741 2015 4107 1133*2^2731993+1 822415 L4687 2019 4108 251*2^2730917+1 822091 L3924 2015 4109 189*2^2730633-1 822005 A27 2024 4110 1185*2^2730620+1 822002 L4948 2019 4111 (10^410997+1)^2-2 821995 p405 2022 4112 173*2^2729905+1 821786 L3895 2015 4113 285*2^2728979-1 821507 A27 2024 4114 1981*2^2728877-1 821478 L1134 2018 4115 693*2^2728537+1 821375 L3035 2019 4116 501*2^2728224+1 821280 L3035 2019 4117 763*2^2727928+1 821192 L3924 2019 4118 553*2^2727583-1 821088 L5516 2023 4119e 5292*820^281664+1 820721 A11 2024 4120 465*2^2726085-1 820637 L5516 2023 4121 291*2^2725533-1 820470 L1817 2024 4122 10*743^285478+1 819606 L4955 2019 4123 17*2^2721830-1 819354 p279 2010 4124 1006*639^291952+1 819075 L4444 2021 4125 1101*2^2720091+1 818833 L4935 2019 4126 1766192^131072+1 818812 L4231 2015 Generalized Fermat 4127 555*2^2719105-1 818535 L5516 2023 4128 165*2^2717378-1 818015 L2055 2012 4129 495*2^2717011-1 817905 L5516 2023 4130 68633*2^2715609+1 817485 L5105 2020 4131 1722230^131072+1 817377 L4210 2015 Generalized Fermat 4132 9574*5^1169232+1 817263 L5410 2021 4133 1717162^131072+1 817210 L4226 2015 Generalized Fermat 4134 133*2^2713410+1 816820 L3223 2015 4135 9022*96^411931-1 816563 L5410 2023 4136 45*2^2711732+1 816315 L1349 2012 4137 569*2^2711451+1 816231 L4568 2019 4138 567*2^2710898-1 816065 L5516 2023 4139 12830*3^1709456+1 815622 L5410 2021 4140 335*2^2708958-1 815481 L2235 2020 4141 93*2^2708718-1 815408 L1862 2016 4142 1660830^131072+1 815311 L4207 2015 Generalized Fermat 4143 837*2^2708160+1 815241 L4314 2019 4144 261*2^2707551-1 815057 A27 2024 4145 1005*2^2707268+1 814972 L4687 2019 4146 13*458^306196+1 814748 L3610 2015 4147 253*2^2705844+1 814543 L4083 2015 4148 657*2^2705620+1 814476 L4907 2019 4149 39*2^2705367+1 814399 L1576 2013 Divides GF(2705360,3) 4150 405*2^2704471-1 814130 L5516 2023 4151 303*2^2703864+1 813947 L1204 2019 4152 141*2^2702160+1 813434 L1741 2015 4153 753*2^2701925+1 813364 L4314 2019 4154 133*2^2701452+1 813221 L3173 2015 4155 58434*5^1162930+1 812858 A11 2024 4156 521*2^2700095+1 812813 L4854 2019 4157 393*2^2698956+1 812470 L1823 2019 4158 417*2^2698652+1 812378 L3035 2019 4159 525*2^2698118+1 812218 L1823 2019 4160 3125*2^2697651+1 812078 L3924 2019 4161 287*2^2697536-1 812042 A27 2024 4162 153*2^2697173+1 811933 L3865 2015 4163 1560730^131072+1 811772 L4201 2015 Generalized Fermat 4164 26*3^1700041+1 811128 L4799 2020 4165 1538654^131072-1538654^65536+1 810961 L4561 2017 Generalized unique 4166 11*2^2691961+1 810363 p286 2013 Divides GF(2691960,12) 4167 555*2^2691334-1 810176 L5516 2023 4168 58*536^296735-1 809841 L5410 2021 4169 33016*3^1696980+1 809670 L5366 2021 4170 7335*2^2689080-1 809498 L4036 2015 4171 1049*2^2688749+1 809398 L4869 2018 4172 120*957^271487-1 809281 L541 2023 4173 329*2^2688221+1 809238 L3035 2018 4174 1578*37^515979-1 809163 p443 2024 4175 865*2^2687434+1 809002 L4844 2018 4176 989*2^2686591+1 808748 L2805 2018 4177 136*904^273532+1 808609 L5410 2020 4178 243*2^2685873+1 808531 L3865 2015 4179 909*2^2685019+1 808275 L3431 2018 4180 1455*2^2683954-6325241166627*2^1290000-1 807954 p423 2021 Arithmetic progression (3,d=1455*2^2683953-6325241166627*2^1290000) 4181 1455*2^2683953-1 807954 L1134 2020 4182 11210*241^339153-1 807873 L5410 2019 4183 1456746^131072-1456746^65536+1 807848 L4561 2017 Generalized unique 4184 975*2^2681840+1 807318 L4155 2018 4185 999*2^2681353-1 807171 L4518 2022 4186 295*2^2680932+1 807044 L1741 2015 4187 275*2^2679936-1 806744 A27 2024 4188 1427604^131072-1427604^65536+1 806697 L4561 2017 Generalized unique 4189 575*2^2679711+1 806677 L2125 2018 4190 2386*52^469972+1 806477 L4955 2019 4191 2778*991^269162+1 806433 p433 2023 4192 10*80^423715-1 806369 p247 2023 4193 219*2^2676229+1 805628 L1792 2015 4194 637*2^2675976+1 805552 L3035 2018 4195 1395583^131072-1395583^65536+1 805406 L4561 2017 Generalized unique 4196 951*2^2674564+1 805127 L1885 2018 4197 531*2^2673250-1 804732 L5516 2023 4198 1372930^131072+1 804474 g236 2003 Generalized Fermat 4199 662*1009^267747-1 804286 L5410 2020 4200 261*2^2671677+1 804258 L3035 2015 4201 895*2^2671520+1 804211 L3035 2018 4202 1361244^131072+1 803988 g236 2004 Generalized Fermat 4203 789*2^2670409+1 803877 L3035 2018 4204 256*11^771408+1 803342 L3802 2014 Generalized Fermat 4205 503*2^2668529+1 803310 L4844 2018 4206 255*2^2668448+1 803286 L1129 2015 4207 4189*2^2666639-1 802742 L1959 2017 4208 539*2^2664603+1 802129 L4717 2018 4209 3^1681130+3^445781+1 802103 CH9 2022 4210 26036*745^279261-1 802086 L4189 2020 4211 295*2^2663855-1 801903 A27 2024 4212 1396*5^1146713-1 801522 L3547 2013 4213 676*687^282491-1 801418 L5426 2023 4214 267*2^2662090+1 801372 L3234 2015 Divides Fermat F(2662088) 4215 51*892^271541+1 801147 L5410 2019 4216e 1851*24^580404+1 801084 A49 2024 4217c 12124*477^299035-1 800975 A11 2025 4218 297*2^2660048+1 800757 L3865 2015 4219 133*2^2658587-1 800317 L1817 2024 4220 99*2^2658496-1 800290 L1862 2021 4221 851*2^2656411+1 799663 L4717 2018 4222 487*2^2655008+1 799240 L3760 2018 4223 153*2^2654686-1 799143 A27 2024 4224 441*2^2652807-1 798578 L5516 2023 4225 371*2^2651663+1 798233 L3760 2018 4226 69*2^2649939-1 797713 L3764 2014 4227 207*2^2649810+1 797675 L1204 2015 4228 505*2^2649496+1 797581 L3760 2018 4229 993*2^2649256+1 797509 L3760 2018 4230e 225*718^279185-1 797390 A11 2024 4231 517*2^2648698+1 797341 L3760 2018 4232 340*703^280035+1 797250 L4001 2018 4233 441*2^2648307+1 797223 L3760 2018 4234 1129*2^2646590+1 796707 L3760 2018 4235 128*518^293315+1 796156 L4001 2019 4236 211*744^277219-1 796057 L5410 2021 4237 1181782^131072-1181782^65536+1 795940 L4142 2015 Generalized unique 4238 1176694^131072+1 795695 g236 2003 Generalized Fermat 4239 13*2^2642943-1 795607 L1862 2012 4240 119*410^304307+1 795091 L4294 2019 4241 501*2^2641052+1 795039 L3035 2018 4242 267*2^2640554-1 794889 A27 2024 4243 879*2^2639962+1 794711 L3760 2018 4244 57*2^2639528-1 794579 L2484 2016 4245 342673*2^2639439-1 794556 L53 2007 4246 813*2^2639092+1 794449 L2158 2018 4247 1147980^131072-1147980^65536+1 794288 L4142 2015 Generalized unique 4248 197*972^265841-1 794247 L4955 2022 4249 1027*2^2638186+1 794177 L3760 2018 4250 889*2^2637834+1 794071 L3545 2018 4251 175*2^2637399-1 793939 A27 2024 4252 421*2^2636975-1 793812 L5516 2023 4253 92182*5^1135262+1 793520 L3547 2013 4254 5608*70^429979+1 793358 L5390 2021 4255 741*2^2634385+1 793032 L1204 2018 4256 465*2^2630496+1 791861 L1444 2018 4257 189*2^2630487+1 791858 L3035 2015 4258 87*2^2630468+1 791852 L3262 2013 4259 123454321*2^2630208+1 791780 L6049 2024 Generalized Fermat 4260 4*5^1132659-1 791696 L4965 2022 4261 1131*2^2629345+1 791515 L4826 2018 4262 967*2^2629344+1 791515 L3760 2018 4263 267*2^2629210+1 791474 L3035 2015 4264 154*883^268602+1 791294 L5410 2020 4265 237*2^2627713-1 791023 L1817 2024 4266 819*2^2627529+1 790968 L1387 2018 4267 183*2^2626880-1 790772 L1817 2024 4268 17152*5^1131205-1 790683 L3552 2013 4269 183*2^2626442+1 790641 L3035 2015 4270 137*2^2626238-1 790579 A27 2024 4271 813*2^2626224+1 790576 L4830 2018 4272b 66*952^265412+1 790568 A52 2025 4273 807*2^2625044+1 790220 L1412 2018 4274 557*2^2624952-1 790193 L5516 2023 4275 4*10^789955+1 789956 L4789 2024 4276 1063730^131072+1 789949 g260 2013 Generalized Fermat 4277 1243*2^2623707-1 789818 L1828 2011 4278 693*2^2623557+1 789773 L3278 2018 4279 981*2^2622032+1 789314 L1448 2018 4280 145*2^2621020+1 789008 L3035 2015 4281 963*792^271959-1 788338 L5410 2021 4282 1798*165^354958+1 787117 p365 2024 4283 541*2^2614676+1 787099 L4824 2018 4284 545*2^2614294-1 786984 L5516 2023 4285 (10^393063-1)^2-2 786126 p405 2022 Near-repdigit 4286 1061*268^323645-1 785857 L5410 2019 4287 1662*483^292719-1 785646 L5410 2022 4288 984522^131072-984522^65536+1 785545 p379 2015 Generalized unique 4289 1071*2^2609316+1 785486 L3760 2018 4290 87*2^2609046+1 785404 L2520 2013 4291 18922*111^383954+1 785315 L4927 2021 4292 543*2^2608129+1 785128 L4822 2018 4293 377*2^2607856-1 785046 L2257 2023 4294 329584*5^1122935-1 784904 L3553 2013 4295 10*311^314806+1 784737 L3610 2014 4296 1019*2^2606525+1 784646 L1201 2018 4297 977*2^2606211+1 784551 L4746 2018 4298 13*2^2606075-1 784508 L1862 2011 4299 693*2^2605905+1 784459 L4821 2018 4300c 6984*507^289940-1 784294 A54 2025 4301 147*2^2604275+1 783968 L1741 2015 4302 105*2^2603631+1 783774 L3459 2015 4303 93*2^2602483-1 783428 L1862 2016 4304 155*2^2602213+1 783347 L2719 2015 4305 545*2^2602018-1 783289 L5516 2023 4306 303*2^2601525+1 783140 L4816 2018 4307 711*2^2600535+1 782842 L4815 2018 4308 1133*2^2599345+1 782484 L4796 2018 4309 397*2^2598796+1 782319 L3877 2018 4310 421*2^2597273-1 781860 L5516 2023 4311 585*2^2596523-1 781635 L5819 2023 4312 203*2^2595752-1 781402 A27 2024 4313 1536*177^347600+1 781399 L5410 2020 4314 1171*2^2595736+1 781398 L3035 2018 4315 (146^180482+1)^2-2 781254 p405 2022 4316 579*2^2595159-1 781224 L5516 2023 4317 543*2^2594975-1 781169 L5516 2023 4318 909548^131072+1 781036 p387 2015 Generalized Fermat 4319e 7386*82^408082-1 780997 A11 2024 4320 2*218^333925+1 780870 L4683 2017 4321 15690*29^533930+1 780823 L5787 2023 4322 1149*2^2593359+1 780682 L1125 2018 4323 225*2^2592918+1 780549 L1792 2015 Generalized Fermat 4324 495*2^2592802-1 780514 L5516 2023 4325 333*2^2591874-1 780235 L2017 2019 4326 883969^131072-883969^65536+1 779412 p379 2015 Generalized unique 4327 2154*687^274573-1 778956 L5752 2023 4328 872989^131072-872989^65536+1 778700 p379 2015 Generalized unique 4329 703*2^2586728+1 778686 L4256 2018 4330 2642*372^302825-1 778429 L5410 2019 4331 120*825^266904+1 778416 L4001 2018 4332 337*2^2585660+1 778364 L2873 2018 4333 31*2^2585311-1 778258 L4521 2022 4334 393*2^2584957+1 778153 L4600 2018 4335 151*2^2584480+1 778009 L4043 2015 4336 862325^131072-862325^65536+1 778001 p379 2015 Generalized unique 4337 385*2^2584280+1 777949 L4600 2018 4338 861088^131072-861088^65536+1 777919 p379 2015 Generalized unique 4339 65*2^2583720-1 777780 L2484 2015 4340 25*2^2583690+1 777770 L3249 2013 Generalized Fermat 4341 82*920^262409-1 777727 L4064 2015 4342 123*2^2583362-1 777672 L1817 2024 4343 1041*2^2582112+1 777297 L1456 2018 4344 153*2^2581916-1 777237 L1817 2024 4345 334310*211^334310-1 777037 p350 2012 Generalized Woodall 4346 229*2^2581111-1 776995 L1862 2017 4347 61*2^2580689-1 776867 L2484 2015 4348 1113*2^2580205+1 776723 L4724 2018 4349 51*2^2578652+1 776254 L3262 2013 4350 173*2^2578197+1 776117 L3035 2015 4351 833*2^2578029+1 776067 L4724 2018 4352 80*394^298731-1 775358 L541 2020 4353 302*423^295123-1 775096 L5413 2021 4354 460*628^276994+1 775021 L5410 2020 4355 459*2^2573899+1 774824 L1204 2018 4356 593*2^2572634-1 774443 L5516 2023 4357 806883^131072-806883^65536+1 774218 p379 2015 Generalized unique 4358 3*2^2571360-3*2^1285680+1 774057 A3 2023 Generalized unique 4359 181*2^2570921-1 773927 A27 2024 4360 285*2^2570839-1 773903 A27 2024 4361 357*2^2568110-1 773081 L2257 2023 4362 627*2^2567718+1 772963 L3803 2018 4363 933*2^2567598+1 772927 L4724 2018 4364 757*2^2566468+1 772587 L2606 2018 4365 471*2^2566323-1 772543 L5516 2023 4366 231*2^2565263+1 772224 L3035 2015 4367 4*737^269302+1 772216 L4294 2016 Generalized Fermat 4368 941*2^2564867+1 772105 L4724 2018 4369 923*2^2563709+1 771757 L1823 2018 4370 151*596^278054+1 771671 L4876 2019 4371 770202^131072-770202^65536+1 771570 p379 2015 Generalized unique 4372 303*2^2562423-1 771369 L2017 2018 4373 75*2^2562382-1 771356 L2055 2011 4374 147559*2^2562218+1 771310 L764 2012 4375 117*412^294963+1 771300 p268 2021 4376 829*2^2561730+1 771161 L1823 2018 4377 404*12^714558+1 771141 L1471 2011 4378 5*308^309755+1 770842 L4294 2024 4379 757576^131072-757576^65536+1 770629 p379 2015 Generalized unique 4380 295*80^404886+1 770537 L5410 2021 4381 1193*2^2559453+1 770476 L2030 2018 4382 205*2^2559417-1 770464 A27 2024 4383 19*984^257291+1 770072 L5410 2020 4384 116*950^258458-1 769619 L5410 2021 4385 147314*91^392798-1 769513 A11 2024 4386 612497*18^612497+1 768857 L5765 2023 Generalized Cullen 4387e 19861029*2^2553830+1 768787 A31 2024 4388 175*2^2553699-1 768743 A27 2024 4389 731582^131072-731582^65536+1 768641 p379 2015 Generalized unique 4390 479*2^2553152-1 768579 L5516 2023 4391 65*752^267180-1 768470 L5410 2020 4392 120312*91^392238-1 768416 A15 2024 4393 419*2^2552363+1 768341 L4713 2018 4394 369*2^2551955-1 768218 L2257 2023 4395 34*759^266676-1 768093 L4001 2019 4396 315*2^2550412+1 767754 L4712 2017 4397 415*2^2549590+1 767506 L4710 2017 4398 1152*792^264617-1 767056 L4955 2021 4399 693*2^2547752+1 766953 L4600 2017 4400 673*2^2547226+1 766795 L2873 2017 4401 169*2^2545526+1 766282 L2125 2015 Divides GF(2545525,10), generalized Fermat 4402 196*814^263256+1 766242 L5410 2021 Generalized Fermat 4403 183*2^2545116+1 766159 L3035 2015 4404 311*2^2544778-1 766058 L2017 2018 4405 9*2^2543551+1 765687 L1204 2011 Divides Fermat F(2543548), GF(2543549,3), GF(2543549,6), GF(2543549,12) 4406 67*446^288982+1 765612 L4273 2020 4407 663*2^2542990+1 765520 L4703 2017 4408 705*2^2542464+1 765361 L2873 2017 4409 689186^131072+1 765243 g429 2013 Generalized Fermat 4410 745*2^2540726+1 764838 L4696 2017 4411 682504^131072-682504^65536+1 764688 p379 2015 Generalized unique 4412 64*177^340147-1 764644 L3610 2015 4413 421*2^2539336+1 764419 L4148 2017 4414 (2^64-189)*10^764330+1 764350 p439 2024 4415 123287*2^2538167+1 764070 L3054 2012 4416 305716*5^1093095-1 764047 L3547 2013 4417 223*2^2538080+1 764041 L2125 2015 4418 83*2^2537641+1 763908 L1300 2013 4419 543539*2^2536028-1 763427 L4187 2022 4420 473*2^2533376-1 762625 L5516 2023 4421 645*2^2532811+1 762455 L4600 2017 4422 953*2^2531601+1 762091 L4404 2017 4423 694*567^276568-1 761556 L4444 2021 4424 545*2^2528179+1 761061 L1502 2017 4425 517*2^2527857-1 760964 L5516 2023 4426 203*2^2526505+1 760557 L3910 2015 4427 967*2^2526276+1 760488 L1204 2017 4428 3317*2^2523366-1 759613 L5399 2021 4429 241*2^2522801-1 759442 L2484 2018 4430 153*2^2522271-1 759282 A27 2024 4431 360307*6^975466-1 759066 p255 2017 4432 326*80^398799+1 758953 L4444 2021 4433 749*2^2519457+1 758436 L1823 2017 4434 199*2^2518871-1 758259 L2484 2018 4435 6*10^758068+1 758069 L5009 2019 4436 87*2^2518122-1 758033 L2484 2014 4437 515*2^2517626-1 757884 L5516 2023 4438 605347^131072-605347^65536+1 757859 p379 2015 Generalized unique 4439 711*2^2516187+1 757451 L3035 2017 4440 967*2^2514698+1 757003 L4600 2017 4441 33*2^2513872-1 756753 L3345 2013 4442 1-V(-3,-3,1307101)-3^1307101 756533 p437 2024 4443 973*2^2511920+1 756167 L1823 2017 4444 679*2^2511814+1 756135 L4598 2017 4445 1093*2^2511384+1 756005 L1823 2017 4446 38*875^256892-1 755780 L4001 2019 4447 209*2^2510308-1 755681 A27 2024 4448 45*2^2507894+1 754953 L1349 2012 4449 130484*5^1080012-1 754902 L3547 2013 4450 572186^131072+1 754652 g0 2004 Generalized Fermat 4451 242*501^279492-1 754586 L4911 2019 4452 883*2^2506382+1 754500 L1823 2017 4453d 9702*871^256606+1 754431 A44 2025 4454 77*2^2505854-1 754340 A27 2024 4455 847*2^2505540+1 754246 L4600 2017 4456 39768*5^1079005+1 754197 A11 2024 4457 175604*91^384974-1 754186 A16 2024 4458 191*2^2504121+1 753818 L3035 2015 4459 783*2^2500912+1 752853 L1823 2017 4460 133*488^279973-1 752688 L541 2023 4461 165*2^2500130-1 752617 L2055 2011 4462 33*2^2499883-1 752542 L3345 2013 4463 319*2^2498685-1 752182 L2017 2018 4464 215206*5^1076031-1 752119 L20 2023 Generalized Woodall 4465 477*2^2496685-1 751580 L5516 2023 4466 321*2^2496594-1 751553 L2235 2018 4467 531*2^2495930-1 751353 L5516 2023 4468 365*2^2494991+1 751070 L3035 2017 4469 91*2^2494467-1 750912 L1817 2024 4470 213*2^2493004-1 750472 L1863 2017 4471 777*2^2492560+1 750339 L3035 2017 4472 57*2^2492031+1 750178 L1230 2013 4473 879*2^2491342+1 749972 L4600 2017 4474 14*152^343720-1 749945 L3610 2015 4475 231*2^2489083+1 749292 L3035 2015 4476 255*2^2488562+1 749135 L3035 2015 4477 483*2^2488154-1 749012 L5516 2023 4478 708*48^445477-1 748958 L5410 2022 4479 221*780^258841-1 748596 L4001 2018 4480 303*2^2486629+1 748553 L3035 2017 4481 6*433^283918-1 748548 L3610 2015 4482 413*2^2486596-1 748543 L5516 2023 4483 617*2^2485919+1 748339 L1885 2017 4484f 4118*82^390928-1 748168 A11 2024 4485 515*2^2484885+1 748028 L3035 2017 4486 1095*2^2484828+1 748011 L3035 2017 4487 1113*2^2484125+1 747800 L3035 2017 4488 607*2^2483616+1 747646 L3035 2017 4489 625*2^2483272+1 747543 L2487 2017 Generalized Fermat 4490 527*2^2482876-1 747423 L5516 2023 4491 723*2^2482064+1 747179 L3035 2017 4492 2154*687^263317-1 747023 L5410 2023 4493 26*3^1565545+1 746957 L4799 2020 4494 14336*3^1563960+1 746203 L5410 2021 4495 3*2^2478785+1 746190 g245 2003 Divides Fermat F(2478782), GF(2478782,3), GF(2478776,6), GF(2478782,12) 4496 483*2^2478266-1 746036 L5516 2023 4497 429*2^2478139-1 745997 L5516 2023 4498 33324*5^1067123+1 745892 A11 2024 4499 1071*2^2477584+1 745831 L3035 2017 4500 22*30^504814-1 745673 p355 2014 4501 2074*483^277812-1 745637 L5410 2022 4502 11*2^2476839+1 745604 L2691 2011 4503 95977*6^957680-1 745225 L4521 2024 4504 825*2^2474996+1 745051 L1300 2017 4505 1061*2^2474282-1 744837 L1828 2012 4506 435*2^2473905+1 744723 L3035 2017 4507 1005*2^2473724-1 744669 L4518 2021 4508 1121*2^2473401+1 744571 L3924 2017 4509 325*2^2473267-1 744531 L2017 2018 4510 400*639^265307-1 744322 L5410 2022 4511 11996*3^1559395+1 744025 L5410 2021 4512 889*2^2471082+1 743873 L1300 2017 4513 529*2^2470514+1 743702 L3924 2017 Generalized Fermat 4514 561*2^2469713-1 743461 L5516 2023 4515 883*2^2469268+1 743327 L4593 2017 4516 5754*313^297824-1 743237 L5089 2020 4517 81*2^2468789+1 743182 g418 2009 4518 55154*5^1063213+1 743159 L3543 2013 4519 119*2^2468556-1 743112 L2484 2018 4520 2136*396^285974+1 742877 L5410 2021 4521 525*2^2467658+1 742842 L3035 2017 4522 465*2^2467625-1 742832 L5516 2023 4523 715*2^2465640+1 742235 L3035 2017 4524 26773*2^2465343-1 742147 L197 2006 4525 581*550^270707-1 741839 L5410 2020 4526 993*2^2464082+1 741766 L3035 2017 4527 295*2^2463785-1 741676 L1817 2024 4528 1179*2^2463746+1 741665 L3035 2017 4529 857*2^2463411+1 741564 L3662 2017 4530 227*2^2462914-1 741414 L1817 2024 4531 103*2^2462567-1 741309 L2484 2014 4532 12587*2^2462524-1 741298 L2012 2017 4533c 6962*507^273940-1 741014 A11 2025 4534 15592*67^405715+1 740871 A11 2024 4535 5*2^2460482-1 740680 L503 2008 4536 763*2^2458592+1 740113 L1823 2017 4537 453*2^2458461+1 740074 L3035 2017 4538 519*2^2458058+1 739952 L3803 2017 4539 373*2^2457859-1 739892 L2257 2023 4540 545*2^2457692-1 739842 L5516 2023 4541 137*2^2457639+1 739826 L4021 2014 4542 411*2^2457241-1 739706 L5516 2023 4543 41676*7^875197-1 739632 L2777 2012 Generalized Woodall 4544 2688*991^246849+1 739582 L5410 2021 4545f 6143*82^386291-1 739293 A11 2024 4546 133*2^2455666+1 739232 L2322 2014 4547 99*2^2455541-1 739194 L1862 2015 4548 115*2^2454363-1 738839 L1817 2024 4549f 14855*82^385937-1 738616 A11 2024 4550 129*2^2452892-1 738397 L1817 2024 4551 377*2^2452639+1 738321 L3035 2017 4552 2189*138^345010+1 738284 L5410 2020 4553 1129*2^2452294+1 738218 L3035 2017 4554 1103*2^2451133+1 737868 L4531 2017 4555 65*2^2450614-1 737711 L2074 2014 4556 549*2^2450523+1 737684 L3035 2017 4557 4*789^254595+1 737582 L4955 2019 4558 3942*55^423771-1 737519 L4955 2019 4559 441*2^2449825-1 737474 L5516 2023 4560 (3*2^1224895)^2-3*2^1224895+1 737462 A3 2023 Generalized unique 4561 2166*483^274670-1 737204 L5410 2022 4562 765*2^2448660+1 737123 L4412 2017 4563 77*2^2448152-1 736970 L5819 2024 4564 607*2^2447836+1 736875 L4523 2017 4565 1261*988^246031+1 736807 L5342 2021 4566 1005*2^2446722+1 736540 L4522 2017 4567 703*2^2446472+1 736465 L2805 2017 4568 75*2^2446050+1 736337 L3035 2013 4569 115*26^520277-1 736181 L1471 2014 4570 114986*5^1052966-1 735997 L3528 2013 4571 1029*2^2444707+1 735934 L3035 2017 4572 4*5^1052422+1 735613 L4965 2023 Generalized Fermat 4573 1035*2^2443369+1 735531 L3173 2017 4574 1052072*5^1052072-1 735373 L20 2023 Generalized Woodall 4575 1017*2^2442723+1 735336 L4417 2017 4576 489*2^2442281-1 735203 L5516 2023 4577 962*3^1540432+1 734976 L5410 2021 4578 1065*2^2441132+1 734857 L1823 2017 4579 210060*91^374955-1 734558 A10 2024 4580 369*2^2436949-1 733598 L2257 2023 4581 393*2^2436849+1 733568 L3035 2016 4582 1425*2^2435607-1 733194 L1134 2020 4583 183*2^2433172-1 732461 L1817 2024 4584 386892^131072+1 732377 p259 2009 Generalized Fermat 4585 465*2^2431455+1 731944 L3035 2016 4586 905*2^2430509+1 731660 L4408 2016 4587 223*2^2430490+1 731653 L4016 2014 4588 8*410^279991+1 731557 L4700 2019 4589d 962*333^289821+1 731061 A52 2025 4590 69*2^2428251-1 730979 L384 2014 4591 6070*466^273937+1 730974 L5410 2021 4592 541*2^2427667-1 730804 L5516 2023 4593 233*2^2426512-1 730456 L2484 2020 4594 645*2^2426494+1 730451 L3035 2016 4595 665*2^2425789+1 730239 L3173 2016 4596 539*2^2425704-1 730213 L5516 2023 4597 23*2^2425641+1 730193 L2675 2011 4598 527*2^2424868-1 729961 L5516 2023 4599 361*2^2424232+1 729770 L3035 2016 Generalized Fermat 4600 433*2^2423839-1 729651 L5516 2023 4601 753*2^2422914+1 729373 L3035 2016 4602 5619*52^424922+1 729172 L5410 2019 4603 105*2^2422105+1 729129 L2520 2014 4604 62*962^244403+1 729099 L5409 2021 4605 3338*396^280633+1 729003 L5410 2021 4606 539*2^2421556-1 728964 L5516 2023 4607 201*2^2421514-1 728951 L1862 2016 4608 1084*7^862557+1 728949 L5211 2021 4609 239*2^2421404-1 728918 L2484 2018 4610 577*2^2420868+1 728757 L4489 2016 4611f 3156*82^380339-1 727902 A11 2024 4612 929*2^2417767+1 727824 L3924 2016 4613 4075*2^2417579-1 727768 L1959 2017 4614 303*2^2417452-1 727729 L2235 2018 4615 895*2^2417396+1 727712 L3035 2016 4616 113*1010^242194-1 727631 L5789 2023 4617 1764*327^289322+1 727518 L5410 2020 Generalized Fermat 4618 3317*2^2415998-1 727292 L5399 2021 4619 115*2^2415271-1 727072 A27 2024 4620 5724*313^291243-1 726814 L4444 2020 4621 1081*2^2412780+1 726323 L1203 2016 4622 333*2^2412735-1 726309 L2017 2018 4623 6891*52^423132+1 726100 L5410 2019 4624 83*2^2411962-1 726075 L1959 2018 4625 69*2^2410035-1 725495 L2074 2013 4626 12362*1027^240890-1 725462 L4444 2018 4627 143157*2^2409056+1 725204 L4504 2016 4628 340594^131072-340594^65536+1 725122 p379 2015 Generalized unique 4629 339*2^2408337+1 724985 L3029 2016 4630 811*2^2408096+1 724913 L2526 2016 4631 157*2^2407958+1 724870 L1741 2014 4632 243686*5^1036954-1 724806 L3549 2013 4633 91*2^2407249-1 724657 A27 2024 4634 3660*163^327506+1 724509 L4955 2019 4635 303*2^2406433+1 724411 L4425 2016 4636 345*2^2405701+1 724191 L3035 2016 4637 921*2^2405056+1 723997 L2805 2016 4638 970*323^288448+1 723778 A11 2024 4639 673*2^2403606+1 723561 L3035 2016 4640 475*2^2403220+1 723444 L4445 2016 4641 837*2^2402798+1 723318 L3372 2016 4642 329886^131072-329886^65536+1 723303 p379 2015 Generalized unique 4643 231*2^2402748+1 723302 L3995 2014 4644 375*2^2401881+1 723041 L2805 2016 4645 511*2^2401795-1 723016 L5516 2023 4646 107*2^2401731+1 722996 L3998 2014 4647 419*2^2401672-1 722978 L5516 2023 4648 143*2^2400710-1 722688 L5819 2024 4649 1023*2^2398601+1 722054 L4414 2016 4650 539*2^2398227+1 721941 L4061 2016 4651 659*2^2397567+1 721743 L4441 2016 4652 40*844^246524+1 721416 L4001 2017 4653 453*2^2395836-1 721222 L5516 2023 4654 465*2^2395133+1 721010 L4088 2016 4655 56*318^288096+1 720941 L1471 2019 4656 667*2^2394430+1 720799 L4408 2016 4657 15*2^2393365+1 720476 L1349 2010 4658 1642*273^295670+1 720304 L5410 2019 4659 8*908^243439+1 720115 L5410 2021 4660 427*2^2391685-1 719972 L5516 2023 4661 633*2^2391222+1 719833 L3743 2016 4662 9*10^719055+1 719056 L4789 2024 4663 273*2^2388104+1 718894 L3668 2014 4664 118*558^261698+1 718791 L4877 2019 4665 77*2^2387116-1 718596 L1817 2024 4666 1485*2^2386037-1 718272 L1134 2017 4667 399*2^2384115+1 717693 L4412 2016 4668 99*2^2383846+1 717612 L1780 2013 4669 737*2^2382804-1 717299 L191 2007 4670 111*2^2382772+1 717288 L3810 2014 4671 423*2^2382134-1 717097 L2519 2023 4672 61*2^2381887-1 717022 L2432 2012 4673 202*249^299162+1 716855 L5410 2019 4674b 170*938^240974-1 716226 A11 2025 4675 321*2^2378535-1 716013 L2017 2018 4676 435*2^2378522+1 716010 L1218 2016 4677 829*672^253221+1 715953 p433 2023 4678 4*3^1499606+1 715495 L4962 2020 Generalized Fermat 4679 147*2^2375995+1 715248 L1130 2014 4680 915*2^2375923+1 715228 L1741 2016 4681 1981*2^2375591-1 715128 L1134 2017 4682 81*2^2375447-1 715083 L3887 2021 4683 1129*2^2374562+1 714818 L3035 2016 4684 97*2^2374485-1 714794 L2484 2018 4685 1117*2^2373977-1 714642 L1828 2012 4686 161*2^2373286-1 714433 L1817 2024 4687 949*2^2372902+1 714318 L4408 2016 4688 1005*2^2372754-1 714274 L4518 2021 4689 659*2^2372657+1 714244 L3035 2016 4690 1365*2^2372586+1 714223 L1134 2016 4691 509*2^2370721+1 713661 L1792 2016 4692 99*2^2370390+1 713561 L1204 2013 4693 959*2^2370077+1 713468 L1502 2016 4694f 21683*82^372763-1 713404 A11 2024 4695 1135*2^2369808+1 713387 L2520 2016 4696 125*2^2369461+1 713281 L3035 2014 4697 475*2^2369411-1 713267 L5516 2023 4698 1183953*2^2367907-1 712818 L447 2007 Woodall 4699 57671892869766803925...(712708 other digits)...06520121133805600769 712748 p360 2013 4700 119878*5^1019645-1 712707 L3528 2013 4701 453*2^2367388+1 712658 L3035 2016 4702 150209!+1 712355 p3 2011 Factorial 4703 77*2^2363352-1 711442 L1817 2024 4704 281*2^2363327+1 711435 L1741 2014 4705 225408*5^1017214-1 711008 A11 2024 4706 2683*2^2360743-1 710658 L1959 2012 4707 16132*67^389127+1 710580 A11 2024 4708d 411522!3-1 710578 x46 2025 Multifactorial 4709 409*2^2360166+1 710484 L1199 2016 4710 465*2^2360088-1 710460 L5516 2023 4711 561*2^2359543-1 710296 L5516 2023 4712 305*2^2358854-1 710089 L2017 2018 4713 1706*123^339764+1 710078 L5410 2021 4714 169324*5^1015854+1 710057 A36 2024 4715 403*2^2357572+1 709703 L3029 2016 4716 155*2^2357111+1 709564 L3975 2014 4717 523*2^2356047-1 709244 L2519 2023 4718 365*2^2355607+1 709111 L2117 2016 4719 33706*6^910462+1 708482 L587 2014 4720 423*2^2353447-1 708461 L5516 2023 4721 1087*2^2352830+1 708276 L1492 2016 4722 152*1002^235971+1 708120 L5410 2019 4723 179*2^2352291+1 708113 L1741 2014 4724 85*2^2352083-1 708050 L1817 2024 4725 559*2^2351894+1 707994 L3924 2016 4726 24573*2^2350824+1 707673 p168 2018 4727 1035*2^2350388+1 707541 L2526 2016 4728 51306*5^1011671-1 707133 A34 2024 4729 513*2^2348508-1 706975 L5516 2023 4730 433*2^2348252+1 706897 L2322 2016 4731 329*2^2348105+1 706853 L3029 2016 4732 45*2^2347187+1 706576 L1349 2012 4733 7675*46^424840+1 706410 L5410 2019 4734 127*2^2346377-1 706332 L282 2009 4735 933*2^2345893+1 706188 L3035 2016 4736 903*2^2345013+1 705923 L2006 2016 4737 33*2^2345001+1 705918 L2322 2013 4738b 704*733^246349-1 705819 A56 2025 4739 242079^131072-242079^65536+1 705687 p379 2015 Generalized unique 4740 495*2^2343641-1 705509 L5516 2023 4741 627*2^2343140+1 705359 L3125 2016 4742 83*2^2342345+1 705119 L2626 2013 4743 914*871^239796-1 705008 L5410 2023 4744 61*380^273136+1 704634 L5410 2019 4745 277*2^2340182+1 704468 L1158 2014 4746 159*2^2339566+1 704282 L3035 2014 4747 335*2^2338972-1 704104 L2235 2017 4748 535*2^2338971-1 704104 L2519 2023 4749 22*422^268038+1 703685 L4955 2019 4750 9602*241^295318-1 703457 L5410 2019 4751 1149*2^2336638+1 703402 L4388 2016 4752 339*2^2336421-1 703336 L2519 2017 4753 231*2^2335281-1 702992 L1862 2019 4754 275293*2^2335007-1 702913 L193 2006 4755 105*2^2334755-1 702834 L1959 2018 4756 228188^131072+1 702323 g124 2010 Generalized Fermat 4757 809*2^2333017+1 702312 L2675 2016 4758 795*2^2332488+1 702152 L3029 2016 4759 3^1471170-3^529291+1 701927 p269 2019 4760 351*2^2331311-1 701798 L2257 2023 4761 229*2^2331017-1 701709 L1862 2021 4762 118*761^243458+1 701499 L5410 2019 4763 435*2^2329948+1 701387 L2322 2016 4764 205906*5^1003382+1 701340 A39 2024 4765 585*2^2329350+1 701207 L2707 2016 4766 213*2^2328530-1 700960 L1863 2017 4767 1482*327^278686+1 700773 L5410 2020 4768 26472*91^357645+1 700646 L5410 2020 4769 1107*2^2327472+1 700642 L3601 2016 4770 435*2^2327152+1 700546 L2337 2016 4771 413*2^2327048-1 700514 L5516 2023 4772 4161*2^2326875-1 700463 L1959 2016 4773 427*2^2326288+1 700286 L2719 2016 4774 438*19^547574-1 700215 L5410 2020 4775 147855!-1 700177 p362 2013 Factorial 4776 5872*3^1467401+1 700132 L4444 2021 4777 421*2^2324375-1 699710 L5516 2023 4778 451*2^2323952+1 699582 L3173 2016 4779 431*2^2323633+1 699486 L3260 2016 4780 3084*871^237917-1 699484 L5790 2023 4781 228*912^236298-1 699444 L5366 2022 4782 1085*2^2323291+1 699384 L1209 2016 4783b 3338*187^307843-1 699375 A57 2025 4784 15*2^2323205-1 699356 L2484 2011 4785 7566*46^420563+1 699299 L5410 2019 4786 1131*2^2322167+1 699045 L1823 2016 4787 385*2^2321502+1 698845 L1129 2016 4788 8348*3^1464571+1 698782 L5367 2021 4789 645*2^2320231+1 698462 L3377 2016 4790 51306*5^999035-1 698301 A28 2024 4791 1942*877^237267+1 698280 L5410 2022 4792 165*2^2319575+1 698264 L2627 2014 4793 809*2^2319373+1 698204 L3924 2016 4794 10*11^670128+1 697868 A2 2024 4795 125098*6^896696+1 697771 L587 2014 4796 65536*5^997872+1 697488 L3802 2014 Generalized Fermat 4797 381*2^2314743+1 696810 L4358 2016 4798 120*825^238890+1 696714 L4837 2018 4799 3375*2^2314297+1 696677 L1745 2019 4800 4063*2^2313843-1 696540 L1959 2016 4801 345*2^2313720-1 696502 L2017 2017 4802 74*830^238594-1 696477 L5410 2020 4803 495*2^2313462-1 696425 L5545 2023 4804 926*639^248221-1 696388 L4444 2022 4805 361*2^2312832+1 696235 L3415 2016 Generalized Fermat 4806 1983*366^271591-1 696222 L2054 2012 4807 3*2^2312734-1 696203 L158 2005 4808 46188*5^995988-1 696171 A11 2024 4809 2643996*7^823543-1 695981 p396 2021 4810 53653*2^2311848+1 695941 L2012 2017 4811 873*2^2311086+1 695710 L2526 2016 4812 1033*2^2310976+1 695677 L4352 2016 4813 4063*2^2310187-1 695440 L1959 2016 4814 4063*2^2309263-1 695162 L1959 2016 4815 565*2^2308984+1 695077 L2322 2016 4816 447*2^2308104-1 694812 L5516 2023 4817 450457*2^2307905-1 694755 L172 2006 4818 1018*3^1455600+1 694501 L5410 2021 4819 553*2^2306343-1 694282 L5516 2023 4820 1185*2^2306324+1 694276 L4347 2016 4821e 702*718^243032-1 694133 A11 2024 4822 3267*2^2305266+1 693958 L1204 2019 4823 107*770^240408-1 693938 L4955 2020 4824 467*2^2304298-1 693666 L5516 2023 4825 537*2^2304115+1 693611 L3267 2016 4826 842*1017^230634-1 693594 L4001 2017 4827 729*2^2303162+1 693324 L1204 2016 Generalized Fermat 4828 641*2^2302879+1 693239 L2051 2016 4829 729*2^2300290+1 692460 L1204 2016 Generalized Fermat 4830 189*2^2299959+1 692359 L2627 2014 4831 2582*111^338032-1 691389 L4786 2021 4832 659*2^2294393+1 690684 L3378 2016 4833 1087*2^2293345-1 690369 L1828 2011 4834 97768*5^987383-1 690157 L1016 2013 4835 4761657101009*2^2292504-1 690126 L257 2019 4836 12061*60^388015-1 689954 A11 2024 4837 3*2^2291610+1 689844 L753 2008 Divides GF(2291607,3), GF(2291609,5) 4838 319*2^2290722+1 689579 L1792 2015 4839 3066*697^242498-1 689482 L5410 2023 4840 779*2^2290273+1 689444 L3034 2016 4841 22356*24^499418+1 689307 A11 2024 4842a 983*2^2289772-1 689294 L3994 2025 4843 1001*2^2289438-1 689193 L4518 2020 4844 971*2^2289135+1 689102 L4198 2016 4845 399*2^2288691+1 688968 L1990 2015 4846 1425*2^2288483-1 688906 L1134 2021 4847 180139^131072-180139^65536+1 688864 p379 2015 Generalized unique 4848 74270*151^315734-1 687982 L4001 2018 4849 23902*52^400831+1 687832 L5410 2019 4850 391581*2^2284871-1 687821 A2 2024 4851 417*2^2284402+1 687677 L2322 2015 4852b 699*2^2284224-1 687623 L1817 2025 4853b 765*2^2283475-1 687398 L1817 2025 4854 130*686^242244+1 687085 L4064 2018 4855 427*2^2282080+1 686978 L3260 2015 4856 109*2^2280194+1 686409 L2520 2014 4857 105*2^2280078-1 686374 L2444 2014 4858 1019*2^2278467+1 685890 L4323 2016 4859 213*2^2277870-1 685710 L1863 2017 4860b 979*2^2277627-1 685638 A27 2025 4861 904*957^229937-1 685425 L5410 2022 4862 547*2^2276648+1 685343 L3260 2015 4863 26*3^1435875+1 685088 L4799 2020 4864 7913*2^2275664-1 685048 L4036 2015 4865 5*6^880336+1 685036 p420 2023 4866b 717*2^2275606-1 685029 A58 2025 4867 651*2^2275040+1 684859 L4082 2016 4868 155877*2^2273465-1 684387 L541 2014 4869 16*710^240014+1 684344 L5410 2019 Generalized Fermat 4870 739*2^2272938+1 684226 L1209 2016 4871 279*798^235749-1 684147 L541 2021 4872b 717*2^2272597-1 684123 L5819 2025 4873 4821*396^263301+1 683980 L5410 2021 4874 (362^133647+1)^2-2 683928 p403 2019 4875 943*2^2269594+1 683219 L1823 2016 4876 493*2^2269427-1 683169 L5516 2023 4877 182*792^235539+1 682766 L4837 2019 4878 1286*603^245567+1 682758 L4444 2019 4879b 1896*795^235375-1 682678 A11 2025 4880 50*893^231310-1 682564 L4975 2019 4881 329*2^2266631+1 682327 L4109 2015 4882 739*2^2266602+1 682319 L2520 2016 4883 19683*2^2265896+1 682107 L2914 2019 4884 1151*2^2265761+1 682066 L1823 2016 4885 851*2^2265691+1 682044 L3173 2016 4886 977*2^2265655+1 682034 L2413 2016 4887 2*11171^168429+1 681817 g427 2014 Divides Phi(11171^168429,2) 4888 185*2^2264906-1 681807 L2484 2022 4889 31924*3^1428855+1 681742 L5410 2021 4890 217*2^2264546+1 681699 L3179 2014 4891b 961*2^2264499-1 681686 L5819 2025 4892 178*821^233901-1 681671 L5410 2022 4893 841*2^2264184+1 681591 L1823 2016 Generalized Fermat 4894 93*2^2263894+1 681502 L2826 2013 4895a 6371*2^2263357+1 681343 L5888 2025 4896a 5451*2^2263107+1 681267 L6110 2025 4897a 9639*2^2262866+1 681195 L6002 2025 4898 34*912^230098+1 681091 L5410 2022 4899b 6637*2^2262094+1 680962 L6240 2025 4900 377*2^2262094-1 680961 L2257 2023 4901b 957*2^2261990-1 680930 L2257 2025 4902 74*932^229308-1 680913 L4444 2021 4903 217499*28^470508-1 680905 p366 2013 4904a 8137*2^2261708+1 680846 L6002 2025 4905b 3217*2^2261376+1 680746 L5192 2025 4906 963*2^2261357+1 680740 L1300 2016 4907b 6823*2^2261292+1 680721 L6190 2025 4908b 1613*2^2261265+1 680712 L5192 2025 4909 2138*3^1426626+1 680677 L5410 2021 4910b 2595*2^2260296+1 680421 L6013 2025 4911b 7749*2^2260277+1 680416 L5916 2025 4912 43926*5^973444-1 680413 A11 2024 4913 1065*2^2260193+1 680389 L1204 2016 4914b 1373*2^2259953+1 680317 L5233 2025 4915b 6727*2^2259820+1 680278 L6184 2025 4916b 5711*2^2259805+1 680273 L5575 2025 4917b 2277*2^2259740+1 680253 L5192 2025 4918b 5361*2^2259515+1 680186 L6173 2025 4919 837*2^2259470+1 680172 L1823 2016 4920b 9069*2^2259334+1 680132 L5575 2025 4921b 3503*2^2259317+1 680126 L5226 2025 4922b 9553*2^2259066+1 680051 L6167 2025 4923b 2123*2^2259017+1 680036 L5575 2025 4924b 1685*2^2258725+1 679948 L6198 2025 4925b 8043*2^2258370+1 679842 L5575 2025 4926b 9851*2^2258311+1 679824 L5888 2025 4927b 8399*2^2258123+1 679767 L6219 2025 4928 927*2^2258112+1 679763 L4287 2016 4929b 6603*2^2258098+1 679760 L5575 2025 4930b 4925*2^2258069+1 679751 L6013 2025 4931 265*2^2258071-1 679750 L2484 2018 4932b 3215*2^2257925+1 679707 L5885 2025 4933b 4959*2^2257914+1 679704 L6162 2025 4934b 9759*2^2257659+1 679628 L5888 2025 4935b 8907*2^2257598+1 679609 L5887 2025 4936b 2841*2^2257553+1 679595 L5613 2025 4937 430157*38^430157+1 679561 L5765 2023 Generalized Cullen 4938b 3763*2^2257384+1 679544 L5575 2025 4939b 1275*2^2257263+1 679507 L6232 2025 4940c 855*2^2257223-1 679495 L5819 2025 4941b 6699*2^2257167+1 679479 L5589 2025 4942c 717*2^2257054-1 679444 L5819 2025 4943b 1601*2^2256957+1 679415 L6234 2025 4944b 5667*2^2256772+1 679360 L6233 2025 4945 561*2^2256600+1 679308 L3877 2015 4946b 4207*2^2256554+1 679295 L5726 2025 4947b 2291*2^2256119+1 679163 L6110 2025 4948b 2993*2^2256069+1 679148 L6100 2025 4949 495*2^2255944+1 679110 L4119 2015 4950b 3243*2^2255732+1 679047 L5926 2025 4951b 8549*2^2255419+1 678953 L6013 2025 4952b 6489*2^2255387+1 678943 L5575 2025 4953b 1901*2^2255367+1 678937 L6232 2025 4954 489*2^2255331-1 678925 L5516 2023 4955 129*2^2255199+1 678885 L3049 2014 4956b 7575*2^2255024+1 678834 L5233 2025 4957b 6673*2^2254776+1 678760 L5888 2025 4958 735*2^2254660+1 678724 L4283 2016 4959 162*814^233173+1 678682 L5410 2021 4960b 4209*2^2254493+1 678674 L6231 2025 4961b 3361*2^2254444+1 678659 L5803 2025 4962 403*2^2254355-1 678632 L5516 2023 4963 973*2^2254320+1 678621 L1204 2016 4964d 715*2^2254211-1 678588 A53 2025 4965 275102*151^311399-1 678537 L4001 2018 4966b 3525*2^2253928+1 678504 L5916 2025 4967b 8993*2^2253909+1 678499 L6228 2025 4968b 9875*2^2253849+1 678481 L5766 2025 4969b 3791*2^2253709+1 678438 L5575 2025 4970b 4867*2^2253492+1 678373 L5575 2025 4971b 8143*2^2253452+1 678361 L6127 2025 4972b 5201*2^2253321+1 678321 L6099 2025 4973b 3687*2^2252802+1 678165 L6100 2025 4974b 2187*2^2252795+1 678163 L5888 2025 4975b 8617*2^2252504+1 678076 L5888 2025 4976 603*2^2252402+1 678044 L1803 2016 4977b 5355*2^2252261+1 678002 L5888 2025 4978b 3187*2^2252256+1 678001 L5575 2025 4979 1029*2^2252198+1 677983 L3125 2016 4980b 2593*2^2252124+1 677961 L6226 2025 4981b 4047*2^2251831+1 677873 L5888 2025 4982b 1227*2^2251732+1 677842 L5421 2025 4983b 7865*2^2251599+1 677803 L5573 2025 4984b 7657*2^2251544+1 677787 L6013 2025 4985b 9235*2^2251500+1 677774 L5575 2025 4986b 2085*2^2251501+1 677773 L6151 2025 4987 39*2^2251104-1 677652 L177 2015 4988b 3315*2^2250842+1 677575 L5233 2025 4989 575*2^2250751+1 677547 L1741 2015 4990b 4533*2^2250737+1 677544 L6110 2025 4991 2838*88^348438+1 677536 L5410 2020 4992 725*2^2250697+1 677531 L2859 2016 4993 65*2^2250637+1 677512 L3487 2013 4994b 2537*2^2250627+1 677510 L5573 2025 4995b 3735*2^2250597+1 677501 L6014 2025 4996b 9879*2^2250462+1 677461 L5214 2025 4997b 9027*2^2250190+1 677379 L5575 2025 4998b 2241*2^2250124+1 677359 L6225 2025 4999b 7709*2^2250111+1 677355 L5742 2025 5000 14641*2^2250096+1 677351 L181 2017 Generalized Fermat 5001 11*2^2230369+1 671410 L2561 2011 Divides GF(2230368,3) 5002 (10^334568-1)^2-2 669136 p405 2022 Near-repdigit 5003 2*179^294739+1 664004 g424 2011 Divides Phi(179^294739,2) 5004c 2717*2^2196891+1 661334 L5239 2025 Divides GF(2196890,12) 5005 2*10271^164621+1 660397 g427 2014 Divides Phi(10271^164621,2) 5006 2*659^233973+1 659544 g424 2015 Divides Phi(659^233973,2) 5007 2*191^287901+1 656713 g424 2015 Divides Phi(191^287901,2) 5008 7*2^2167800+1 652574 g279 2007 Divides Fermat F(2167797), GF(2167799,5), GF(2167799,10) 5009 1179*2^2158475+1 649769 L3035 2014 Divides GF(2158470,6) 5010 3*2^2145353+1 645817 g245 2003 Divides Fermat F(2145351), GF(2145351,3), GF(2145352,5), GF(2145348,6), GF(2145352,10), GF(2145351,12) 5011 753*2^2143388+1 645227 L2583 2014 Divides GF(2143383,3) 5012 25*2^2141884+1 644773 L1741 2011 Divides Fermat F(2141872), GF(2141871,5), GF(2141872,10); generalized Fermat 5013 7*2^2139912+1 644179 g279 2007 Divides GF(2139911,12) 5014 189*2^2115473+1 636824 L3784 2014 Divides GF(2115468,6) 5015 107*2^2081775+1 626679 L3432 2013 Divides GF(2081774,6) 5016d 2167*2^2050616+1 617301 L6095 2025 Divides GF(2050615,5) 5017 45*2^2014557+1 606444 L1349 2012 Divides GF(2014552,10) 5018 251749*2^2013995-1 606279 L436 2007 Woodall 5019 657*2^1998854+1 601718 L2520 2013 Divides GF(1998852,10) 5020 101*2^1988279+1 598534 L3141 2013 Divides GF(1988278,12) 5021 175*2^1962288+1 590710 L2137 2013 Divides GF(1962284,10) 5022 225*2^1960083+1 590047 L3548 2013 Divides GF(1960078,6) 5023 2*47^346759+1 579816 g424 2011 Divides Phi(47^346759,2) 5024 4401*2^1925824+1 579735 L5309 2024 Divides GF(1925823,5) 5025 71*2^1873569+1 564003 L1223 2011 Divides GF(1873568,5) 5026 13*2^1861732+1 560439 g267 2005 Divides GF(1861731,6) 5027 3*2^1832496+1 551637 p189 2007 Divides GF(1832490,3), GF(1832494,5) 5028 39*2^1824871+1 549343 L2664 2011 Divides GF(1824867,6) 5029 45*2^1779971+1 535827 L1223 2011 Divides GF(1779969,5) 5030 5*2^1777515+1 535087 p148 2005 Divides GF(1777511,5), GF(1777514,6) 5031 129*2^1774709+1 534243 L2526 2013 Divides GF(1774705,12) 5032 2*191^232149+1 529540 g424 2011 Divides Phi(191^232149,2) 5033 183*2^1747660+1 526101 L2163 2013 Divides Fermat F(1747656) 5034 110059!+1 507082 p312 2011 Factorial 5035 2^1667321-2^833661+1 501914 L137 2011 Gaussian Mersenne norm 38, generalized unique 5036 2*359^192871+1 492804 g424 2014 Divides Phi(359^192871,2) 5037e 10^490030+10^309648+12345678987654321*10^245007+10^180382+1 490031 p363 2024 Palindrome 5038 10^490000+3*(10^7383-1)/9*10^241309+1 490001 p413 2021 Palindrome 5039 1098133#-1 476311 p346 2012 Primorial 5040 10^474500+999*10^237249+1 474501 p363 2014 Palindrome 5041 103040!-1 471794 p301 2010 Factorial 5042 135*2^1515894+1 456332 L1129 2013 Divides GF(1515890,10) 5043 2*839^155785+1 455479 g424 2014 Divides Phi(839^155785,2) 5044 131*2^1494099+1 449771 L2959 2012 Divides Fermat F(1494096) 5045 1467763*2^1467763-1 441847 L381 2007 Woodall 5046 4125*2^1445205-1 435054 L1959 2014 Arithmetic progression (2,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5047 94550!-1 429390 p290 2010 Factorial 5048 2415*2^1413627-1 425548 L1959 2014 Arithmetic progression (2,d=2415*2^1413627-1489088842587*2^1290000) [p199] 5049 2985*2^1404274-1 422733 L1959 2014 Arithmetic progression (2,d=2985*2^1404274-770527213395*2^1290000) [p199] 5050 2^1398269-1 420921 G1 1996 Mersenne 35 5051 17*2^1388355+1 417938 g267 2005 Divides GF(1388354,10) 5052 338707*2^1354830+1 407850 L124 2005 Cullen 5053 107*2^1337019+1 402485 L2659 2012 Divides GF(1337018,10) 5054 1389*2^1335434+1 402009 L1209 2015 Divides GF(1335433,10) 5055 10^400000+4*(10^102381-1)/9*10^148810+1 400001 p413 2021 Palindrome 5056 10^390636+999*10^195317+1 390637 p363 2014 Palindrome 5057 6325241166627*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=1455*2^2683953-6325241166627*2^1290000) 5058 5606879602425*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=33*2^2939063-5606879602425*2^1290000) 5059 2618163402417*2^1290001-1 388342 L927 2016 Sophie Germain (2p+1) 5060 4966510140375*2^1290000-1 388342 L3573 2020 Arithmetic progression (2,d=2227792035315*2^1290001) 5061 2996863034895*2^1290000+1 388342 L2035 2016 Twin (p+2) 5062 2996863034895*2^1290000-1 388342 L2035 2016 Twin (p) 5063 2723880039837*2^1290000-1 388342 L3829 2016 Arithmetic progression (1,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5064 2618163402417*2^1290000-1 388342 L927 2016 Sophie Germain (p) 5065 2060323099527*2^1290000-1 388342 L3606 2015 Arithmetic progression (2,d=69718264533*2^1290002) [p199] 5066 1938662032575*2^1290000-1 388341 L927 2015 Arithmetic progression (1,d=10032831585*2^1290001) [p199] 5067 1781450041395*2^1290000-1 388341 L3203 2015 Arithmetic progression (1,d=69718264533*2^1290002) [p199] 5068 15*2^1276177+1 384169 g279 2006 Divides GF(1276174,3), GF(1276174,10) 5069 1268979*2^1268979-1 382007 L201 2007 Woodall 5070 2^1257787-1 378632 SG 1996 Mersenne 34 5071 329*2^1246017+1 375092 L2085 2012 Divides Fermat F(1246013) 5072 843301#-1 365851 p302 2010 Primorial 5073 10^362600+666*10^181299+1 362601 p363 2014 Palindrome 5074 2^1203793-2^601897+1 362378 L192 2006 Gaussian Mersenne norm 37, generalized unique 5075 1195203*2^1195203-1 359799 L124 2005 Woodall 5076 2145*2^1099064+1 330855 L1792 2013 Divides Fermat F(1099061) 5077 10^320236+10^160118+1+(137*10^160119+731*10^159275)*(10^843-1)/999 320237 p44 2014 Palindrome 5078 10^320096+10^160048+1+(137*10^160049+731*10^157453)*(10^2595-1)/999 320097 p44 2014 Palindrome 5079 10^314727-8*10^157363-1 314727 p235 2013 Near-repdigit, palindrome 5080e 10^300010+10^204235+12345678987654321*10^149997+10^95775+1 300011 x45 2024 Palindrome 5081 10^300000+5*(10^48153-1)/9*10^125924+1 300001 p413 2021 Palindrome 5082 10^300000+10^158172+11011*10^149998+10^141828+1 300001 p409 2024 Palindrome 5083 2^991961-2^495981+1 298611 x28 2005 Gaussian Mersenne norm 36, generalized unique 5084 11*2^960901+1 289262 g277 2005 Divides Fermat F(960897) 5085 1705*2^906110+1 272770 L3174 2012 Divides Fermat F(906108) 5086 2^859433-1 258716 SG 1994 Mersenne 33 5087 13243*2^699764+1 210655 L5808 2023 Divides Fermat F(699760) 5088 667071*2^667071-1 200815 g55 2000 Woodall 5089 18543637900515*2^666668-1 200701 L2429 2012 Sophie Germain (2p+1) 5090 18543637900515*2^666667-1 200701 L2429 2012 Sophie Germain (p) 5091 3756801695685*2^666669+1 200700 L1921 2011 Twin (p+2) 5092 3756801695685*2^666669-1 200700 L1921 2011 Twin (p) 5093 392113#+1 169966 p16 2001 Primorial 5094 213778324725*2^561418+1 169015 p430 2023 Cunningham chain 2nd kind (2p-1) 5095 213778324725*2^561417+1 169015 p430 2023 Cunningham chain 2nd kind (p) 5096 366439#+1 158936 p16 2001 Primorial 5097 2*893962950^16384+1 146659 p428 2023 Cunningham chain 2nd kind (2p-1) 5098 893962950^16384+1 146659 p427 2023 Cunningham chain 2nd kind (p), generalized Fermat 5099 481899*2^481899+1 145072 gm 1998 Cullen 5100 669821552^16384-669821552^8192+1 144605 A18 2024 Twin (p+2), generalized unique 5101 669821552^16384-669821552^8192-1 144605 A18 2024 Twin (p) 5102 34790!-1 142891 p85 2002 Factorial 5103 (124750^27751-1)/124749 141416 p441 2024 Generalized repunit 5104 222710306^16384-222710306^8192+1 136770 A13 2024 Twin (p+2), generalized unique 5105 222710306^16384-222710306^8192-1 136770 A13 2024 Twin (p) 5106 (92365^24691-1)/92364 122599 CH14 2024 Generalized repunit 5107 (102936^21961-1)/102935 110076 CH14 2023 Generalized repunit 5108 2^364289-2^182145+1 109662 p58 2001 Gaussian Mersenne norm 35, generalized unique 5109 361275*2^361275+1 108761 DS 1998 Cullen 5110 26951!+1 107707 p65 2002 Factorial 5111 47356235323005*2^333444-1 100391 L6077 2024 Sophie Germain (2p+1) 5112 47356235323005*2^333443-1 100391 L6077 2024 Sophie Germain (p) 5113 21480284945595*2^333444-1 100390 L6029 2024 Sophie Germain (2p+1) 5114 21480284945595*2^333443-1 100390 L6029 2024 Sophie Germain (p) 5115 65516468355*2^333333+1 100355 L923 2009 Twin (p+2) 5116 65516468355*2^333333-1 100355 L923 2009 Twin (p) 5117c 8797170843*(2^317583+2^190552)+2^127033+3 95612 p408 2025 Consecutive primes arithmetic progression (2,d=4) 5118c 8797170843*(2^317583+2^190552)+2^127033-1 95612 p408 2025 Consecutive primes arithmetic progression (1,d=4) 5119 (7176^24691-1)/7175 95202 CH2 2017 Generalized repunit 5120 R(86453) 86453 E3 2023 Repunit, ECPP, unique 5121e (84741735735*(2^190738-1)+4)*2^95369+5 86138 p408 2024 Consecutive primes arithmetic progression (2,d=6) 5122e (84741735735*(2^190738-1)+4)*2^95369-1 86138 p408 2024 Consecutive primes arithmetic progression (1,d=6) 5123e (74018908351*(2^190738-1)+4)*2^95369+3 86138 p408 2024 Consecutive primes arithmetic progression (2,d=4) 5124e (74018908351*(2^190738-1)+4)*2^95369-1 86138 p408 2024 Consecutive primes arithmetic progression (1,d=4) 5125e (29571282950*(2^190738-1)+4)*2^95369+3 86138 p408 2024 Consecutive primes arithmetic progression (2,d=4) 5126e (29571282950*(2^190738-1)+4)*2^95369-1 86138 p408 2024 Consecutive primes arithmetic progression (1,d=4) 5127 21480!-1 83727 p65 2001 Factorial 5128 (74968^17107-1)/74967 83390 p441 2024 Generalized repunit 5129 201926367*2^266668+1 80284 A25 2024 Twin (p+2) 5130 201926367*2^266668-1 80284 A25 2024 Twin (p) 5131 107928275961*2^265876+1 80048 p364 2023 Cunningham chain 2nd kind (2p-1) 5132 107928275961*2^265875+1 80048 p364 2023 Cunningham chain 2nd kind (p) 5133 22942396995*2^265777-1 80018 L3494 2023 Sophie Germain (2p+1) 5134 22942396995*2^265776-1 80017 L3494 2023 Sophie Germain (p) 5135 183027*2^265441-1 79911 L983 2010 Sophie Germain (2p+1) 5136 183027*2^265440-1 79911 L983 2010 Sophie Germain (p) 5137 262419*2^262419+1 79002 DS 1998 Cullen 5138 160204065*2^262148+1 78923 L5115 2021 Twin (p+2) 5139 160204065*2^262148-1 78923 L5115 2021 Twin (p) 5140 3622179275715*2^256003+1 77078 x47 2020 Cunningham chain 2nd kind (2p-1) 5141 3622179275715*2^256002+1 77077 x47 2020 Cunningham chain 2nd kind (p) 5142 648621027630345*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5143 620366307356565*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5144 648621027630345*2^253824-1 76424 x24 2009 Sophie Germain (p) 5145 620366307356565*2^253824-1 76424 x24 2009 Sophie Germain (p) 5146 2570606397*2^252763+1 76099 p364 2020 Cunningham chain 2nd kind (2p-1) 5147 2570606397*2^252762+1 76099 p364 2020 Cunningham chain 2nd kind (p) 5148 1893611985^8192-1893611985^4096+1 76000 A13 2024 Twin (p+2), generalized unique 5149 1893611985^8192-1893611985^4096-1 76000 A13 2024 Twin (p) 5150 1589173270^8192-1589173270^4096+1 75376 A22 2024 Twin (p+2), generalized unique 5151 1589173270^8192-1589173270^4096-1 75376 A22 2024 Twin (p) 5152f (78866031017*(2^166678-1)-4)*2^83339+1 75274 p408 2024 Consecutive primes arithmetic progression (2,d=4) 5153f (78866031017*(2^166678-1)-4)*2^83339-3 75274 p408 2024 Consecutive primes arithmetic progression (1,d=4) 5154 (40734^16111-1)/40733 74267 CH2 2015 Generalized repunit 5155 (64758^15373-1)/64757 73960 p170 2018 Generalized repunit 5156 996094234^8192-996094234^4096+1 73715 A18 2024 Twin (p+2), generalized unique 5157 996094234^8192-996094234^4096-1 73715 A18 2024 Twin (p) 5158 895721531^8192-895721531^4096+1 73337 A7 2024 Twin (p+2), generalized unique 5159 895721531^8192-895721531^4096-1 73337 A7 2024 Twin (p) 5160 5^104824+104824^5 73269 E4 2023 ECPP 5161 795507696^8192-795507696^4096+1 72915 A5 2024 Twin (p+2), generalized unique 5162 795507696^8192-795507696^4096-1 72915 A5 2024 Twin (p) 5163 primV(111534,1,27000) 72683 x25 2013 Generalized Lucas primitive part 5164 691595760^8192-691595760^4096+1 72417 A13 2024 Twin (p+2), generalized unique 5165 691595760^8192-691595760^4096-1 72417 A13 2024 Twin (p) 5166 647020826^8192-647020826^4096+1 72180 A5 2024 Twin (p+2), generalized unique 5167 647020826^8192-647020826^4096-1 72180 A5 2024 Twin (p) 5168 629813654^8192-629813654^4096+1 72084 A5 2024 Twin (p+2), generalized unique 5169 629813654^8192-629813654^4096-1 72084 A5 2024 Twin (p) 5170 (58729^15091-1)/58728 71962 CH2 2017 Generalized repunit 5171 504983334^8192-504983334^4096+1 71298 A7 2024 Twin (p+2), generalized unique 5172 504983334^8192-504983334^4096-1 71298 A7 2024 Twin (p) 5173 314305725^8192-314305725^4096+1 69611 A7 2023 Twin (p+2), generalized unique 5174 314305725^8192-314305725^4096-1 69611 A7 2023 Twin (p) 5175 (27987^15313-1)/27986 68092 CH12 2020 Generalized repunit 5176 184534086^8192-184534086^4096+1 67716 A5 2023 Twin (p+2), generalized unique 5177 184534086^8192-184534086^4096-1 67716 A5 2023 Twin (p) 5178 (23340^15439-1)/23339 67435 p170 2020 Generalized repunit 5179 10957126745325*2^222334-1 66943 L5843 2023 Sophie Germain (2p+1) 5180 20690306380455*2^222333-1 66943 L5843 2023 Sophie Germain (2p+1) 5181 10030004436315*2^222334-1 66943 L5843 2023 Sophie Germain (2p+1) 5182 8964472847055*2^222334-1 66943 L5843 2023 Sophie Germain (2p+1) 5183 14279340881715*2^222333+1 66943 L5843 2023 Twin (p+2) 5184 14279340881715*2^222333-1 66943 L5843 2023 Twin (p) 5185 10957126745325*2^222333-1 66942 L5843 2023 Sophie Germain (p) 5186 20690306380455*2^222332-1 66942 L5843 2023 Sophie Germain (p) 5187 10030004436315*2^222333-1 66942 L5843 2023 Sophie Germain (p) 5188 8964472847055*2^222333-1 66942 L5843 2023 Sophie Germain (p) 5189 12770275971*2^222225+1 66907 L527 2017 Twin (p+2) 5190 12770275971*2^222225-1 66907 L527 2017 Twin (p) 5191 (2^221509-1)/292391881 66673 E12 2023 Mersenne cofactor, ECPP 5192 (24741^15073-1)/24740 66218 p170 2020 Generalized repunit 5193 (63847^13339-1)/63846 64091 p170 2013 Generalized repunit 5194 1068669447*2^211089-1 63554 L4166 2020 Sophie Germain (2p+1) 5195 1068669447*2^211088-1 63553 L4166 2020 Sophie Germain (p) 5196 145823#+1 63142 p21 2000 Primorial 5197 U(15694,1,14700)+U(15694,1,14699) 61674 x45 2019 Lehmer number 5198 (28507^13831-1)/28506 61612 CH12 2020 Generalized repunit 5199 2^203789+2^101895+1 61347 O 2000 Gaussian Mersenne norm 34, generalized unique 5200 (26371^13681-1)/26370 60482 p170 2012 Generalized repunit 5201 U(24,-25,43201) 60391 CH12 2020 Generalized Lucas number 5202 99064503957*2^200009-1 60220 L95 2016 Sophie Germain (2p+1) 5203 99064503957*2^200008-1 60220 L95 2016 Sophie Germain (p) 5204 (4529^16381-1)/4528 59886 CH2 2012 Generalized repunit 5205 3^125330+1968634623437000 59798 E4 2022 ECPP 5206 (9082^15091-1)/9081 59729 CH2 2014 Generalized repunit 5207 primV(27655,1,19926) 57566 x25 2013 Generalized Lucas primitive part 5208 Ramanujan tau function at 199^4518 57125 E3 2022 ECPP 5209 (43326^12041-1)/43325 55827 p170 2017 Generalized repunit 5210 12443794755*2^184517-1 55556 L3494 2021 Sophie Germain (2p+1) 5211 21749869755*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 5212 14901867165*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 5213 12443794755*2^184516-1 55555 L3494 2021 Sophie Germain (p) 5214 21749869755*2^184515-1 55555 L3494 2021 Sophie Germain (p) 5215 14901867165*2^184515-1 55555 L3494 2021 Sophie Germain (p) 5216 607095*2^176312-1 53081 L983 2009 Sophie Germain (2p+1) 5217 607095*2^176311-1 53081 L983 2009 Sophie Germain (p) 5218 (38284^11491-1)/38283 52659 CH2 2013 Generalized repunit 5219 (2^174533-1)/193594572654550537/91917886778031629891960890057 52494 E5 2022 Mersenne cofactor, ECPP 5220d (940^17581-1)/939 52268 E2 2025 ECPP generalized repunit 5221 48047305725*2^172404-1 51910 L99 2007 Sophie Germain (2p+1) 5222 48047305725*2^172403-1 51910 L99 2007 Sophie Germain (p) 5223 137211941292195*2^171961-1 51780 x24 2006 Sophie Germain (2p+1) 5224 137211941292195*2^171960-1 51780 x24 2006 Sophie Germain (p) 5225 (34120^11311-1)/34119 51269 CH2 2011 Generalized repunit 5226 U(809,1,17325)-U(809,1,17324) 50378 x45 2019 Lehmer number 5227 10^50000+65859 50001 E3 2022 ECPP 5228 R(49081) 49081 c70 2022 Repunit, unique, ECPP 5229 2^160423-2^80212+1 48293 O 2000 Gaussian Mersenne norm 33, generalized unique 5230 U(67,-1,26161) 47773 x45 2019 Generalized Lucas number 5231 primV(40395,-1,15588) 47759 x23 2007 Generalized Lucas primitive part 5232 primV(53394,-1,15264) 47200 CH4 2007 Generalized Lucas primitive part 5233 151023*2^151023-1 45468 g25 1998 Woodall 5234e 2^148227+60443 44621 E11 2024 ECPP 5235 U(52245,1,9241)+U(52245,1,9240) 43595 x45 2019 Lehmer number 5236 71509*2^143019-1 43058 g23 1998 Woodall, arithmetic progression (2,d=(143018*2^83969-80047)*2^59049) [x12] 5237 U(2449,-1,12671) 42939 x45 2018 Generalized Lucas number, cyclotomy 5238 V(202667) 42355 E4 2023 Lucas number, ECPP 5239 2^139964+35461 42134 E11 2024 ECPP 5240 U(201107) 42029 E11 2023 Fibonacci number, ECPP 5241 (2^138937+1)/3 41824 E12 2023 Wagstaff, ECPP, generalized Lucas number 5242 E(11848)/7910215 40792 E8 2022 Euler irregular, ECPP 5243 V(193201) 40377 E4 2023 Lucas number, ECPP 5244 10^40000+14253 40001 E3 2022 ECPP 5245 p(1289844341) 40000 c84 2020 Partitions, ECPP 5246 primV(4836,1,16704) 39616 x25 2013 Generalized Lucas primitive part 5247 (2^130439-1)/260879 39261 E9 2023 Mersenne cofactor, ECPP 5248 U(21041,-1,9059) 39159 x45 2018 Generalized Lucas number, cyclotomy 5249 tau(47^4176) 38404 E3 2022 ECPP 5250 V(183089) 38264 E4 2023 Lucas number, ECPP 5251 (2^127031+1)/3 38240 E5 2023 Wagstaff, ECPP, generalized Lucas number 5252 U(5617,-1,9539) 35763 x45 2019 Generalized Lucas number, cyclotomy 5253 (2^117239+1)/3 35292 E2 2022 Wagstaff, ECPP, generalized Lucas number 5254 p(1000007396) 35219 E4 2022 Partitions, ECPP 5255 (V(60145,1,7317)-1)/(V(60145,1,27)-1) 34841 x45 2019 Lehmer primitive part 5256 primV(38513,-1,11502) 34668 x23 2006 Generalized Lucas primitive part 5257 E(10168)/1097239206089665 34323 E10 2023 Euler irregular, ECPP 5258 primV(9008,1,16200) 34168 x23 2005 Generalized Lucas primitive part 5259 (V(28138,1,7587)-1)/(V(28138,1,27)-1) 33637 x45 2019 Lehmer primitive part 5260 V(159521) 33338 E4 2023 Lucas number, ECPP 5261 U(35896,1,7260)+U(35896,1,7259) 33066 x45 2019 Lehmer number 5262 primV(6586,1,16200) 32993 x25 2013 Generalized Lucas primitive part 5263 U(1624,-1,10169) 32646 x45 2018 Generalized Lucas number, cyclotomy 5264 (V(48395,1,6921)-1)/(V(48395,1,9)-1) 32382 x45 2019 Lehmer primitive part 5265a 7300751*74719#-1 32315 p364 2025 Arithmetic progression (4,d=1475275*74719#) 5266a 5825476*74719#-1 32314 p364 2025 Arithmetic progression (3,d=1475275*74719#) 5267a 4350201*74719#-1 32314 p364 2025 Arithmetic progression (2,d=1475275*74719#) 5268a 2874926*74719#-1 32314 p364 2025 Arithmetic progression (1,d=1475275*74719#) 5269 2^106693+2^53347+1 32118 O 2000 Gaussian Mersenne norm 32, generalized unique 5270 primV(28875,1,13500) 32116 x25 2016 Generalized Lucas primitive part 5271 (2^106391-1)/286105171290931103 32010 c95 2022 Mersenne cofactor, ECPP 5272 (2^105269-1)/308568703561/44450301591671/36340288035156065237111970871\ /304727251426107823036749303510161 31603 E17 2024 Mersenne cofactor, ECPP 5273 (V(77786,1,6453)+1)/(V(77786,1,27)+1) 31429 x25 2012 Lehmer primitive part 5274 primV(10987,1,14400) 31034 x25 2005 Generalized Lucas primitive part 5275 V(148091) 30950 c81 2015 Lucas number, ECPP 5276 U(148091) 30949 x49 2021 Fibonacci number, ECPP 5277 -E(9266)/2129452307358569777 30900 E10 2023 Euler irregular, ECPP 5278 Phi(11589,-10000) 30897 E1 2022 Unique,ECPP 5279 (V(73570,1,6309)-1)/(V(73570,1,9)-1) 30661 x25 2016 Lehmer primitive part 5280 V(145703)/179214691 30442 E4 2023 Lucas cofactor, ECPP 5281 V(145193)/38621339 30336 E4 2023 Lucas cofactor, ECPP 5282 1524633857*2^99902-1 30083 p364 2022 Arithmetic progression (4,d=928724769*2^99901) 5283 2120542945*2^99901-1 30083 p364 2022 Arithmetic progression (3,d=928724769*2^99901) 5284 18622159*2^99907-1 30083 p364 2022 Arithmetic progression (2,d=928724769*2^99901) 5285 263093407*2^99901-1 30082 p364 2022 Arithmetic progression (1,d=928724769*2^99901) 5286 Phi(36547,-10) 29832 E1 2022 Unique, ECPP 5287 49363*2^98727-1 29725 Y 1997 Woodall 5288 U(2341,-1,8819) 29712 x25 2008 Generalized Lucas number 5289 primV(24127,-1,6718) 29433 CH3 2005 Generalized Lucas primitive part 5290 primV(12215,-1,13500) 29426 x25 2016 Generalized Lucas primitive part 5291 V(140057) 29271 c76 2014 Lucas number,ECPP 5292 U(1404,-1,9209) 28981 CH10 2018 Generalized Lucas number, cyclotomy 5293 U(23396,1,6615)+U(23396,1,6614) 28898 x45 2019 Lehmer number 5294 (2^95369+1)/3 28709 x49 2021 Generalized Lucas number, Wagstaff, ECPP 5295 primV(45922,1,11520) 28644 x25 2011 Generalized Lucas primitive part 5296 primV(205011) 28552 x39 2009 Lucas primitive part 5297 -30*Bern(10264)/262578313564364605963 28506 c94 2021 Irregular, ECPP 5298 U(16531,1,6721)-U(16531,1,6720) 28347 x36 2007 Lehmer number 5299 (V(28286,1,6309)+1)/(V(28286,1,9)+1) 28045 x25 2016 Lehmer primitive part 5300 U(5092,1,7561)+U(5092,1,7560) 28025 x25 2014 Lehmer number 5301 U(132409)/2882138154561602271737 27651 E16 2024 Fibonacci cofactor, ECPP 5302 90825*2^90825+1 27347 Y 1997 Cullen 5303 U(5239,1,7350)-U(5239,1,7349) 27333 CH10 2017 Lehmer number 5304 U(130021) 27173 x48 2021 Fibonacci number, ECPP 5305 primV(5673,1,13500) 27028 CH3 2005 Generalized Lucas primitive part 5306 primV(44368,1,9504) 26768 CH3 2005 Generalized Lucas primitive part 5307 546351925018076058*Bern(9702)/129255048976106804786904258880518941 26709 c77 2021 Irregular, ECPP 5308 22359307*60919#+1 26383 p364 2022 Arithmetic progression (4,d=5210718*60919#) 5309 17148589*60919#+1 26383 p364 2022 Arithmetic progression (3,d=5210718*60919#) 5310 17029817*60919#+1 26383 p364 2022 Arithmetic progression (4,d=1809778*60919#) 5311 15220039*60919#+1 26383 p364 2022 Arithmetic progression (3,d=1809778*60919#) 5312 13410261*60919#+1 26383 p364 2022 Arithmetic progression (2,d=1809778*60919#) 5313 11937871*60919#+1 26382 p364 2022 Arithmetic progression (2,d=5210718*60919#) 5314 11600483*60919#+1 26382 p364 2022 Arithmetic progression (1,d=1809778*60919#) 5315 6727153*60919#+1 26382 p364 2022 Arithmetic progression (1,d=5210718*60919#) 5316 (2^87691-1)/806957040167570408395443233 26371 E1 2022 Mersenne cofactor, ECPP 5317 primV(10986,-1,9756) 26185 x23 2005 Generalized Lucas primitive part 5318 1043945909*60013#+1 25992 p155 2019 Arithmetic progression (4,d=7399459*60013#) 5319 1036546450*60013#+1 25992 p155 2019 Arithmetic progression (3,d=7399459*60013#) 5320 1029146991*60013#+1 25992 p155 2019 Arithmetic progression (2,d=7399459*60013#) 5321 1021747532*60013#+1 25992 p155 2019 Arithmetic progression (1,d=7399459*60013#) 5322 (2^86371-1)/41681512921035887 25984 E2 2022 Mersenne cofactor, ECPP 5323 (2^86137-1)/2584111/7747937967916174363624460881 25896 c84 2022 Mersenne cofactor, ECPP 5324 primV(11076,-1,12000) 25885 x25 2005 Generalized Lucas primitive part 5325 -E(7894)/19 25790 E10 2023 Euler irregular, ECPP 5326 2^85237+2^42619+1 25659 x16 2000 Gaussian Mersenne norm 31, generalized unique 5327 V(122869)/40546771/1243743094029841 25656 E1 2024 Lucas cofactor, ECPP 5328 primU(183537) 25571 E1 2024 Fibonacci primitive part, ECPP 5329 primV(17505,1,11250) 25459 x25 2011 Generalized Lucas primitive part 5330 U(2325,-1,7561) 25451 x20 2013 Generalized Lucas number 5331 U(13084,-13085,6151) 25319 x45 2018 Generalized Lucas number, cyclotomy 5332 (2^84211-1)/1347377/31358793176711980763958121/33146416760423478241695\ 91561 25291 c95 2020 Mersenne cofactor, ECPP 5333 U(120937)/241873/13689853218820385381 25250 E1 2024 Fibonacci cofactor, ECPP 5334 primV(42,-1,23376) 25249 x23 2007 Generalized Lucas primitive part 5335 U(1064,-1065,8311) 25158 CH10 2018 Generalized Lucas number, cyclotomy 5336 primV(7577,-1,10692) 25140 x33 2007 Generalized Lucas primitive part 5337 (2^83339+1)/3 25088 c54 2014 ECPP, generalized Lucas number, Wagstaff 5338 (2^82939-1)/883323903012540278033571819073 24938 c84 2021 Mersenne cofactor, ECPP 5339 primV(194181) 24908 E1 2024 Lucas primitive part, ECPP 5340 primV(119162) 24903 E1 2024 Lucas primitive part, ECPP 5341 -E(7634)/1559 24828 E10 2023 Euler irregular, ECPP 5342 primU(118319) 24553 E1 2024 Fibonacci primitive part, ECPP 5343 U(1766,1,7561)-U(1766,1,7560) 24548 x25 2013 Lehmer number 5344 U(117167)/17658707237 24476 E1 2024 Fibonacci cofactor, ECPP 5345 V(116593)/120790349 24359 E4 2023 Lucas cofactor, ECPP 5346 primV(214470) 23895 E1 2024 Lucas primitive part, ECPP 5347 primU(115373) 23875 E1 2024 Fibonacci primitive part, ECPP 5348 U(1383,1,7561)+U(1383,1,7560) 23745 x25 2013 Lehmer number 5349 798*Bern(8766)/14670751334144820770719 23743 c94 2021 Irregular, ECPP 5350 Phi(11867,-100) 23732 c47 2021 Unique, ECPP 5351 primU(135421) 23725 E1 2024 Fibonacci primitive part, ECPP 5352 primV(143234) 23654 E1 2024 Lucas primitive part, ECPP 5353 (2^78737-1)/1590296767505866614563328548192658003295567890593 23654 E2 2022 Mersenne cofactor, ECPP 5354 Phi(35421,-10) 23613 c77 2021 Unique, ECPP 5355 6917!-1 23560 g1 1998 Factorial 5356 primU(164185) 23524 E1 2024 Fibonacci primitive part, ECPP 5357 2^77291+2^38646+1 23267 O 2000 Gaussian Mersenne norm 30, generalized unique 5358 primU(166737) 23231 E1 2024 Fibonacci primitive part, ECPP 5359 (V(59936,1,4863)+1)/(V(59936,1,3)+1) 23220 x25 2013 Lehmer primitive part 5360 U(1118,1,7561)-U(1118,1,7560) 23047 x25 2013 Lehmer number 5361 primA(275285) 23012 E1 2024 Lucas Aurifeuillian primitive part, ECPP 5362 primV(110723) 22997 E1 2024 Lucas primitive part, ECPP 5363 primV(180906) 22905 E1 2024 Lucas primitive part, ECPP 5364 (V(45366,1,4857)+1)/(V(45366,1,3)+1) 22604 x25 2013 Lehmer primitive part 5365 U(106663)/35892566541651557 22275 E1 2024 Fibonacci cofactor, ECPP 5366 348054*Bern(8286)/1570865077944473903275073668721 22234 E1 2022 Irregular, ECPP 5367 p(398256632) 22223 E1 2022 Partitions, ECPP 5368 U(105509)/144118801533126010445795676378394340544227572822879081 21997 E1 2022 Fibonacci cofactor, ECPP 5369 U(104911) 21925 c82 2015 Fibonacci number, ECPP 5370 primB(282035) 21758 E1 2023 Lucas Aurifeuillian primitive part, ECPP 5371 primA(276335) 21736 E1 2024 Lucas Aurifeuillian primitive part, ECPP 5372 Phi(1203,10^27) 21600 c47 2021 Unique, ECPP 5373 U(19258,-1,5039) 21586 x23 2007 Generalized Lucas number 5374 6380!+1 21507 g1 1998 Factorial 5375 primV(154281) 21495 E4 2023 Lucas primitive part, ECPP 5376 U(43100,1,4620)+U(43100,1,4619) 21407 x25 2016 Lehmer number 5377 -E(6658)/85079 21257 c77 2020 Euler irregular, ECPP 5378 Phi(39855,-10) 21248 c95 2020 Unique, ECPP 5379 (V(23354,1,4869)-1)/(V(23354,1,9)-1) 21231 x25 2013 Lehmer primitive part 5380 primA(296695) 21137 E1 2023 Lucas Aurifeuillian primitive part, ECPP 5381 U(15631,1,5040)-U(15631,1,5039) 21134 x25 2003 Lehmer number 5382 primA(413205) 21127 E1 2023 Lucas Aurifeuillian primitive part, ECPP 5383 U(35759,1,4620)+U(35759,1,4619) 21033 x25 2016 Lehmer number 5384 p(355646102) 21000 E1 2022 Partitions, ECPP 5385 V(100417)/713042903779101607511808799053206435494854433884796747437071\ 9436805470448849 20911 E1 2024 Lucas cofactor, ECPP 5386 p(350199893) 20838 E7 2022 Partitions, ECPP 5387 U(31321,1,4620)-U(31321,1,4619) 20767 x25 2016 Lehmer number 5388 primU(102689) 20715 E1 2024 Fibonacci primitive part, ECPP 5389 primU(105821) 20598 E1 2022 Fibonacci primitive part, ECPP 5390 primU(172179) 20540 E1 2022 Fibonacci primitive part, ECPP 5391 V(98081)/31189759/611955609270431/6902594225498651/641303018340927841 20442 E1 2024 Lucas cofactor, ECPP 5392 U(11200,-1,5039) 20400 x25 2004 Generalized Lucas number, cyclotomy 5393 4404139952163*2^67002+1 20183 p408 2024 Triplet (3) 5394 4404139952163*2^67002-1 20183 p408 2024 Triplet (2) 5395 4404139952163*2^67002-5 20183 E15 2024 Triplet (1), ECPP 5396 Phi(23749,-10) 20160 c47 2014 Unique, ECPP 5397 U(22098,1,4620)+U(22098,1,4619) 20067 x25 2016 Lehmer number 5398 primV(112028) 20063 E1 2022 Lucas primitive part, ECPP 5399 1128330746865*2^66441-1 20013 p158 2020 Cunningham chain (4p+3) 5400 1128330746865*2^66440-1 20013 p158 2020 Cunningham chain (2p+1) 5401 1128330746865*2^66439-1 20013 p158 2020 Cunningham chain (p) 5402 4111286921397*2^66420+5 20008 c88 2019 Triplet (3) 5403 4111286921397*2^66420+1 20008 L4808 2019 Triplet (2) 5404 4111286921397*2^66420-1 20008 L4808 2019 Triplet (1) 5405 U(21412,1,4620)-U(21412,1,4619) 20004 x25 2016 Lehmer number 5406 p(322610098) 20000 E1 2022 Partitions, ECPP 5407 primV(151521) 19863 E1 2022 Lucas primitive part, ECPP 5408 V(94823) 19817 c73 2014 Lucas number, ECPP 5409 U(19361,1,4620)+U(19361,1,4619) 19802 x25 2016 Lehmer number 5410 U(8454,-1,5039) 19785 x25 2013 Generalized Lucas number 5411 (2^64381-1)/1825231878561264571177401910928543898820492254252817499611\ 8699181907547497 19308 E13 2024 Mersenne cofactor, ECPP 5412 U(6584,-1,5039) 19238 x23 2007 Generalized Lucas number 5413 V(91943)/551659/2390519/9687119153094919 19187 E1 2022 Lucas cofactor, ECPP 5414 (V(428,1,8019)-1)/(V(428,1,729)-1) 19184 E1 2022 Lehmer primitive part, ECPP 5415 V(91873)/3674921/193484539/167745030829 19175 E1 2022 Lucas cofactor, ECPP 5416 (2^63703-1)/42808417 19169 c59 2014 Mersenne cofactor, ECPP 5417 primU(137439) 19148 E1 2022 Fibonacci primitive part, ECPP 5418 primU(107779) 18980 E1 2022 Fibonacci primitive part, ECPP 5419 (U(162,1,8581)+U(162,1,8580))/(U(162,1,66)+U(162,1,65)) 18814 E1 2022 Lehmer primitive part, ECPP 5420 V(89849) 18778 c70 2014 Lucas number, ECPP 5421 primV(145353) 18689 c69 2013 ECPP, Lucas primitive part 5422 Phi(14943,-100) 18688 c47 2014 Unique, ECPP 5423 (U(859,1,6385)-U(859,1,6384))/(U(859,1,57)-U(859,1,56)) 18567 E1 2022 Lehmer primitive part, ECPP 5424 Phi(18827,10) 18480 c47 2014 Unique, ECPP 5425 primB(220895) 18465 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5426 primV(153279) 18283 E1 2022 Lucas primitive part, ECPP 5427 42209#+1 18241 p8 1999 Primorial 5428 (V(46662,1,3879)-1)/(V(46662,1,9)-1) 18069 x25 2012 Lehmer primitive part 5429 V(86477)/1042112515940998434071039 18049 c77 2020 Lucas cofactor, ECPP 5430 7457*2^59659+1 17964 Y 1997 Cullen 5431 primB(235015) 17856 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5432 primV(148197) 17696 E1 2022 Lucas primitive part, ECPP 5433 (V(447,1,6723)+1)/(V(447,1,81)+1) 17604 E1 2022 Lehmer primitive part, ECPP 5434 (2^58199-1)/237604901713907577052391 17497 c59 2015 Mersenne cofactor, ECPP 5435 Phi(26031,-10) 17353 c47 2014 Unique, ECPP 5436 primV(169830) 17335 E1 2022 Lucas primitive part, ECPP 5437 (V(561,1,6309)+1)/(V(561,1,9)+1) 17319 x25 2016 Lehmer primitive part 5438 U(9657,1,4321)-U(9657,1,4320) 17215 x23 2005 Lehmer number 5439 (2^57131-1)/61481396117165983261035042726614288722959856631 17152 c59 2015 Mersenne cofactor, ECPP 5440 U(81839) 17103 p54 2001 Fibonacci number 5441 (V(1578,1,5589)+1)/(V(1578,1,243)+1) 17098 E1 2022 Lehmer primitive part, ECPP 5442 V(81671) 17069 c66 2013 Lucas number, ECPP 5443 primV(101510) 16970 E1 2022 Lucas primitive part, ECPP 5444 primV(86756) 16920 c74 2015 Lucas primitive part, ECPP 5445 V(80761)/570100885555095451 16861 c77 2020 Lucas cofactor, ECPP 5446 6521953289619*2^55555+1 16737 p296 2013 Triplet (3) 5447 6521953289619*2^55555-1 16737 p296 2013 Triplet (2) 5448 6521953289619*2^55555-5 16737 c58 2013 Triplet (1), ECPP 5449 primV(122754) 16653 c77 2021 Lucas primitive part, ECPP 5450 U(15823,1,3960)-U(15823,1,3959) 16625 x25 2002 Lehmer number, cyclotomy 5451 p(221444161) 16569 c77 2017 Partitions, ECPP 5452 (V(1240,1,5589)-1)/(V(1240,1,243)-1) 16538 E1 2022 Lehmer primitive part, ECPP 5453 primA(201485) 16535 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5454 U(78919)/15574900936381642440917 16471 c77 2020 Fibonacci cofactor, ECPP 5455 (U(800,1,5725)-U(800,1,5724))/(U(800,1,54)-U(800,1,53)) 16464 E1 2022 Lehmer primitive part, ECPP 5456 17484430616589*2^54201+5 16330 E14 2024 Consecutive primes arithmetic progression (3,d=6), ECPP 5457 17484430616589*2^54201-1 16330 p440 2024 Consecutive primes arithmetic progression (2,d=6) 5458 17484430616589*2^54201-7 16330 E14 2024 Consecutive primes arithmetic progression (1,d=6), ECPP 5459 (V(21151,1,3777)-1)/(V(21151,1,3)-1) 16324 x25 2011 Lehmer primitive part 5460 primV(123573) 16198 c77 2019 Lucas primitive part, ECPP 5461 primB(225785) 16176 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5462 V(77417)/313991497376559420151 16159 c77 2020 Lucas cofactor, ECPP 5463 (2^53381-1)/15588960193/38922536168186976769/1559912715971690629450336\ 68006103 16008 c84 2017 Mersenne cofactor, ECPP 5464 -E(5186)/295970922359784619239409649676896529941379763 15954 c63 2018 Euler irregular, ECPP 5465 primV(121227) 15890 c77 2019 Lucas primitive part, ECPP 5466 Phi(2949,-100000000) 15713 c47 2013 Unique, ECPP 5467 primU(131481) 15695 c77 2019 Fibonacci primitive part, ECPP 5468 primV(120258) 15649 c77 2019 Lucas primitive part, ECPP 5469 (U(9275,1,3961)+U(9275,1,3960))/(U(9275,1,45)+U(9275,1,44)) 15537 x38 2009 Lehmer primitive part 5470 (2^51487-1)/57410994232247/17292148963401772464767849635553 15455 c77 2018 Mersenne cofactor, ECPP 5471 primB(183835) 15368 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5472 primU(77387) 15319 c77 2019 Fibonacci primitive part, ECPP 5473 primB(181705) 15189 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5474 U(71983)/5614673/363946049 15028 c77 2018 Fibonacci cofactor, ECPP 5475 2494779036241*2^49800+13 15004 c93 2022 Consecutive primes arithmetic progression (3,d=6) 5476 2494779036241*2^49800+7 15004 c93 2022 Consecutive primes arithmetic progression (2,d=6) 5477 2494779036241*2^49800+1 15004 p408 2022 Consecutive primes arithmetic progression (1,d=6) 5478 primB(268665) 14972 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5479 Phi(5015,-10000) 14848 c47 2013 Unique, ECPP 5480 2^49207-2^24604+1 14813 x16 2000 Gaussian Mersenne norm 29, generalized unique 5481d 214923707595*2^49073+1 14784 p364 2025 Cunningham chain 2nd kind (4p-3) 5482 primA(284895) 14626 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5483 U(69239)/1384781 14464 c77 2018 Fibonacci cofactor, ECPP 5484 primA(170575) 14258 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5485 V(68213)/7290202116115634431 14237 c77 2018 Lucas cofactor, ECPP 5486 p(158375386) 14011 E1 2022 Partitions, ECPP 5487 p(158295265) 14007 E1 2022 Partitions, ECPP 5488 p(158221457) 14004 E1 2022 Partitions, ECPP 5489 primU(67703) 13954 c77 2018 Fibonacci primitive part, ECPP 5490 U(66947)/12485272838388758877279873712131648167413 13951 c77 2017 Fibonacci cofactor, ECPP 5491 V(66533)/2128184670585621839884209100279 13875 c77 2018 Lucas cofactor, ECPP 5492 6*Bern(5534)/226840561549600012633271691723599339 13862 c71 2014 Irregular, ECPP 5493 4410546*Bern(5526)/9712202742835546740714595866405369616019 13840 c63 2018 Irregular,ECPP 5494a 191279029*32003#+1 13773 p364 2025 Arithmetic progression (5,d=20571563*32003#) 5495a 170707466*32003#+1 13773 p364 2025 Arithmetic progression (4,d=20571563*32003#) 5496a 150135903*32003#+1 13773 p364 2025 Arithmetic progression (3,d=20571563*32003#) 5497a 129564340*32003#+1 13773 p364 2025 Arithmetic progression (2,d=20571563*32003#) 5498a 108992777*32003#+1 13773 p364 2025 Arithmetic progression (1,d=20571563*32003#) 5499 primB(163595) 13675 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5500 6*Bern(5462)/23238026668982614152809832227 13657 c64 2013 Irregular, ECPP 5501 56667641271*2^44441+5 13389 c99 2022 Triplet (3), ECPP 5502 56667641271*2^44441+1 13389 p426 2022 Triplet (2) 5503 56667641271*2^44441-1 13389 p426 2022 Triplet (1) 5504 V(64063)/464426465381142115542697818362662865912299 13347 E1 2024 Lucas cofactor, ECPP 5505 512792361*30941#+1 13338 p364 2022 Arithmetic progression (5,d=18195056*30941#) 5506 494597305*30941#+1 13338 p364 2022 Arithmetic progression (4,d=18195056*30941#) 5507 476402249*30941#+1 13338 p364 2022 Arithmetic progression (3,d=18195056*30941#) 5508 458207193*30941#+1 13338 p364 2022 Arithmetic progression (2,d=18195056*30941#) 5509 440012137*30941#+1 13338 p364 2022 Arithmetic progression (1,d=18195056*30941#) 5510 1815615642825*2^44046-1 13272 p395 2016 Cunningham chain (4p+3) 5511 1815615642825*2^44045-1 13272 p395 2016 Cunningham chain (2p+1) 5512 1815615642825*2^44044-1 13271 p395 2016 Cunningham chain (p) 5513 p(141528106) 13244 E6 2022 Partitions, ECPP 5514 p(141513546) 13244 E6 2022 Partitions, ECPP 5515 p(141512238) 13244 E6 2022 Partitions, ECPP 5516 p(141255053) 13232 E6 2022 Partitions, ECPP 5517 p(141150528) 13227 E6 2022 Partitions, ECPP 5518 p(141112026) 13225 E6 2022 Partitions, ECPP 5519 p(141111278) 13225 E6 2022 Partitions, ECPP 5520 p(140859260) 13213 E6 2022 Partitions, ECPP 5521 p(140807155) 13211 E6 2022 Partitions, ECPP 5522 p(140791396) 13210 E6 2022 Partitions, ECPP 5523 primU(94551) 13174 c77 2018 Fibonacci primitive part, ECPP 5524 primB(242295) 13014 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5525 U(61813)/594517433/3761274442997 12897 c77 2018 Fibonacci cofactor, ECPP 5526 (2^42737+1)/3 12865 M 2007 ECPP, generalized Lucas number, Wagstaff 5527 primU(62771) 12791 c77 2018 Fibonacci primitive part, ECPP 5528 primA(154415) 12728 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5529 primA(263865) 12570 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5530 6*Bern(5078)/643283455240626084534218914061 12533 c63 2013 Irregular, ECPP 5531 (2^41681-1)/1052945423/16647332713153/2853686272534246492102086015457 12495 c77 2015 Mersenne cofactor, ECPP 5532 (2^41521-1)/41602235382028197528613357724450752065089 12459 c54 2012 Mersenne cofactor, ECPP 5533 (2^41263-1)/1379707143199991617049286121 12395 c59 2012 Mersenne cofactor, ECPP 5534 U(59369)/2442423669148466039458303756169988568809269383644075940757020\ 9763004757 12337 c79 2015 Fibonacci cofactor, ECPP 5535 742478255901*2^40069+1 12074 p395 2016 Cunningham chain 2nd kind (4p-3) 5536 996824343*2^40074+1 12073 p395 2016 Cunningham chain 2nd kind (4p-3) 5537 664342014133*2^39840+1 12005 p408 2020 Consecutive primes arithmetic progression (3,d=30) 5538 664342014133*2^39840-29 12005 c93 2020 Consecutive primes arithmetic progression (2,d=30), ECPP 5539 664342014133*2^39840-59 12005 c93 2020 Consecutive primes arithmetic progression (1,d=30), ECPP 5540 V(56003) 11704 p193 2006 Lucas number 5541 primA(143705) 11703 c77 2017 Lucas Aurifeuillian primitive part, ECPP 5542 4207993863*2^38624+5 11637 L5354 2021 Triplet (3), ECPP 5543 4207993863*2^38624+1 11637 L5354 2021 Triplet (2) 5544 4207993863*2^38624-1 11637 L5354 2021 Triplet (1) 5545 primU(73025) 11587 c77 2015 Fibonacci primitive part, ECPP 5546 primU(67781) 11587 c77 2015 Fibonacci primitive part, ECPP 5547 primB(219165) 11557 c77 2015 Lucas Aurifeuillian primitive part, ECPP 5548 198429723072*11^11005+1 11472 L3323 2016 Cunningham chain 2nd kind (4p-3) 5549 U(54799)/4661437953906084533621577211561 11422 c8 2015 Fibonacci cofactor, ECPP 5550 U(54521)/6403194135342743624071073 11370 c8 2015 Fibonacci cofactor, ECPP 5551 primU(67825) 11336 x23 2007 Fibonacci primitive part 5552 3610!-1 11277 C 1993 Factorial 5553 U(53189)/69431662887136064191105625570683133711989 11075 c8 2014 Fibonacci cofactor, ECPP 5554 primU(61733) 11058 c77 2015 Fibonacci primitive part, ECPP 5555 778965587811*2^36627-1 11038 p395 2016 Cunningham chain (4p+3) 5556 778965587811*2^36626-1 11038 p395 2016 Cunningham chain (2p+1) 5557 778965587811*2^36625-1 11038 p395 2016 Cunningham chain (p) 5558 272879344275*2^36622-1 11036 p395 2016 Cunningham chain (4p+3) 5559 272879344275*2^36621-1 11036 p395 2016 Cunningham chain (2p+1) 5560 272879344275*2^36620-1 11036 p395 2016 Cunningham chain (p) 5561 V(52859)/1124137922466041911 11029 c8 2014 Lucas cofactor, ECPP 5562 3507!-1 10912 C 1992 Factorial 5563 V(52201)/70585804042896975505694709575919458733851279868446609 10857 c8 2015 Lucas cofactor, ECPP 5564 V(52009)/39772636393178951550299332730909 10838 c8 2015 Lucas cofactor, ECPP 5565 V(51941)/2808052157610902114547210696868337380250300924116591143641642\ 866931 10789 c8 2015 Lucas cofactor, ECPP 5566 1258566*Bern(4462)/6610083971965402783802518108033 10763 c64 2013 Irregular, ECPP 5567 3428602715439*2^35678+13 10753 c93 2020 Consecutive primes arithmetic progression (3,d=6), ECPP 5568 3428602715439*2^35678+7 10753 c93 2020 Consecutive primes arithmetic progression (2,d=6), ECPP 5569 3428602715439*2^35678+1 10753 p408 2020 Consecutive primes arithmetic progression (1,d=6) 5570 333645655005*2^35549-1 10713 p364 2015 Cunningham chain (4p+3) 5571 333645655005*2^35548-1 10713 p364 2015 Cunningham chain (2p+1) 5572 333645655005*2^35547-1 10713 p364 2015 Cunningham chain (p) 5573 V(51349)/224417260052884218046541 10708 c8 2014 Lucas cofactor, ECPP 5574 V(51169) 10694 p54 2001 Lucas number 5575 U(51031)/95846689435051369 10648 c8 2014 Fibonacci cofactor, ECPP 5576 V(50989)/69818796119453411 10640 c8 2014 Lucas cofactor, ECPP 5577 Phi(13285,-10) 10625 c47 2012 Unique, ECPP 5578 U(50833) 10624 CH4 2005 Fibonacci number 5579 2683143625525*2^35176+13 10602 c92 2019 Consecutive primes arithmetic progression (3,d=6),ECPP 5580 2683143625525*2^35176+7 10602 c92 2019 Consecutive primes arithmetic progression (2,d=6),ECPP 5581 2683143625525*2^35176+1 10602 p407 2019 Consecutive primes arithmetic progression (1,d=6) 5582 3020616601*24499#+1 10593 p422 2021 Arithmetic progression (6,d=56497325*24499#) 5583 2964119276*24499#+1 10593 p422 2021 Arithmetic progression (5,d=56497325*24499#) 5584 2907621951*24499#+1 10593 p422 2021 Arithmetic progression (4,d=56497325*24499#) 5585 2851124626*24499#+1 10593 p422 2021 Arithmetic progression (3,d=56497325*24499#) 5586 2794627301*24499#+1 10593 p422 2021 Arithmetic progression (2,d=56497325*24499#) 5587 2738129976*24499#+1 10593 p422 2021 Arithmetic progression (1,d=56497325*24499#) 5588 24029#+1 10387 C 1993 Primorial 5589 400791048*24001#+1 10378 p155 2018 Arithmetic progression (5,d=59874860*24001#) 5590 393142614*24001#+1 10378 p155 2018 Arithmetic progression (5,d=54840724*24001#) 5591 340916188*24001#+1 10378 p155 2018 Arithmetic progression (4,d=59874860*24001#) 5592 338301890*24001#+1 10378 p155 2018 Arithmetic progression (4,d=54840724*24001#) 5593 283461166*24001#+1 10377 p155 2018 Arithmetic progression (3,d=54840724*24001#) 5594 281041328*24001#+1 10377 p155 2018 Arithmetic progression (3,d=59874860*24001#) 5595 228620442*24001#+1 10377 p155 2018 Arithmetic progression (2,d=54840724*24001#) 5596 221488788*24001#+1 10377 p155 2018 Arithmetic progression (5,d=22703701*24001#) 5597 221166468*24001#+1 10377 p155 2018 Arithmetic progression (2,d=59874860*24001#) 5598 198785087*24001#+1 10377 p155 2018 Arithmetic progression (4,d=22703701*24001#) 5599 176081386*24001#+1 10377 p155 2018 Arithmetic progression (3,d=22703701*24001#) 5600 173779718*24001#+1 10377 p155 2018 Arithmetic progression (1,d=54840724*24001#) 5601 163456812*24001#+1 10377 p155 2018 Arithmetic progression (2,d=10601738*24001#) 5602 161291608*24001#+1 10377 p155 2018 Arithmetic progression (1,d=59874860*24001#) 5603 152855074*24001#+1 10377 p155 2018 Arithmetic progression (1,d=10601738*24001#) 5604 6*Bern(4306)/2153 10342 FE8 2009 Irregular, ECPP 5605 23801#+1 10273 C 1993 Primorial 5606 667674063382677*2^33608+7 10132 c88 2019 Quadruplet (4), ECPP 5607 667674063382677*2^33608+5 10132 c88 2019 Quadruplet (3), ECPP 5608 667674063382677*2^33608+1 10132 L4808 2019 Quadruplet (2) 5609 667674063382677*2^33608-1 10132 L4808 2019 Quadruplet (1) 5610 Phi(427,-10^28) 10081 FE9 2009 Unique, ECPP 5611 9649755890145*2^33335+1 10048 p364 2015 Cunningham chain 2nd kind (4p-3) 5612 32469*2^32469+1 9779 MM 1997 Cullen 5613 8073*2^32294+1 9726 MM 1997 Cullen 5614 E(3308)/39308792292493140803643373186476368389461245 9516 c8 2014 Euler irregular, ECPP 5615 Phi(5161,-100) 9505 c47 2012 Unique, ECPP 5616 V(44507) 9302 CH3 2005 Lucas number 5617 U(43399)/470400609575881344601538056264109423291827366228494341196421 9010 c8 2013 Fibonacci cofactor, ECPP 5618 U(42829)/107130175995197969243646842778153077 8916 c8 2014 Fibonacci cofactor, ECPP 5619 U(42043)/1681721 8780 c56 2012 Fibonacci cofactor, ECPP 5620 Phi(6105,-1000) 8641 c47 2010 Unique, ECPP 5621 Phi(4667,-100) 8593 c47 2009 Unique, ECPP 5622 U(40763)/643247084652261620737 8498 c8 2013 Fibonacci cofactor, ECPP 5623 2^27529-2^13765+1 8288 O 2000 Gaussian Mersenne norm 28, generalized unique 5624 18523#+1 8002 D 1989 Primorial 5625 6*Bern(3458)/28329084584758278770932715893606309 7945 c8 2013 Irregular, ECPP 5626 U(37987)/1832721858208455887947958246414213 7906 c39 2012 Fibonacci cofactor, ECPP 5627 U(37511) 7839 x13 2005 Fibonacci number 5628 -E(2762)/2670541 7760 c11 2004 Euler irregular, ECPP 5629 V(36779) 7687 CH3 2005 Lucas number 5630 U(35999) 7523 p54 2001 Fibonacci number, cyclotomy 5631 Phi(4029,-1000) 7488 c47 2009 Unique, ECPP 5632 V(35449) 7409 p12 2001 Lucas number 5633 -30*Bern(3176)/6689693100056872989386833739813089720559189736259127537\ 0617658634396391181 7138 c63 2016 Irregular, ECPP 5634 2154675239*16301#+1 7036 p155 2018 Arithmetic progression (6,d=141836149*16301#) 5635 2012839090*16301#+1 7036 p155 2018 Arithmetic progression (5,d=141836149*16301#) 5636 1871002941*16301#+1 7036 p155 2018 Arithmetic progression (4,d=141836149*16301#) 5637 1729166792*16301#+1 7036 p155 2018 Arithmetic progression (3,d=141836149*16301#) 5638 1587330643*16301#+1 7035 p155 2018 Arithmetic progression (2,d=141836149*16301#) 5639 1445494494*16301#+1 7035 p155 2018 Arithmetic progression (1,d=141836149*16301#) 5640 -10365630*Bern(3100)/1670366116112864481699585217650438278080436881373\ 643007997602585219667 6943 c63 2016 Irregular ECPP 5641 23005*2^23005-1 6930 Y 1997 Woodall 5642 22971*2^22971-1 6920 Y 1997 Woodall 5643 15877#-1 6845 CD 1992 Primorial 5644 6*Bern(2974)/19622040971147542470479091157507 6637 c8 2013 Irregular, ECPP 5645 U(30757) 6428 p54 2001 Fibonacci number, cyclotomy 5646 E(2220)/392431891068600713525 6011 c8 2013 Euler irregular, ECPP 5647 -E(2202)/53781055550934778283104432814129020709 5938 c8 2013 Euler irregular, ECPP 5648 13649#+1 5862 D 1987 Primorial 5649 274386*Bern(2622)/8518594882415401157891061256276973722693 5701 c8 2013 Irregular, ECPP 5650 18885*2^18885-1 5690 K 1987 Woodall 5651 1963!-1 5614 CD 1992 Factorial 5652 13033#-1 5610 CD 1992 Primorial 5653 289*2^18502+1 5573 K 1984 Cullen, generalized Fermat 5654 E(2028)/11246153954845684745 5412 c55 2011 Euler irregular, ECPP 5655 -30*Bern(2504)/1248230090315232335602406373438221652417581490266755814\ 38903418303340323897 5354 c63 2013 Irregular ECPP 5656 U(25561) 5342 p54 2001 Fibonacci number 5657 -E(1990)/8338208577950624722417016286765473477033741642105671913 5258 c8 2013 Euler irregular, ECPP 5658 33957462*Bern(2370)/40685 5083 c11 2003 Irregular, ECPP 5659 4122429552750669*2^16567+7 5003 c83 2016 Quadruplet (4), ECPP 5660 4122429552750669*2^16567+5 5003 c83 2016 Quadruplet (3), ECPP 5661 4122429552750669*2^16567+1 5003 L4342 2016 Quadruplet (2) 5662 4122429552750669*2^16567-1 5003 L4342 2016 Quadruplet (1) 5663 35734184537*11677#/3+9 5002 c98 2024 Consecutive primes arithmetic progression (4,d=6), ECPP 5664 35734184537*11677#/3+3 5002 c98 2024 Consecutive primes arithmetic progression (3,d=6), ECPP 5665 35734184537*11677#/3-3 5002 c98 2024 Consecutive primes arithmetic progression (2,d=6), ECPP 5666 35734184537*11677#/3-9 5002 c98 2024 Consecutive primes arithmetic progression (1,d=6), ECPP 5667 E(1840)/31237282053878368942060412182384934425 4812 c4 2011 Euler irregular, ECPP 5668 7911*2^15823-1 4768 K 1987 Woodall 5669 E(1736)/13510337079405137518589526468536905 4498 c4 2004 Euler irregular, ECPP 5670 2^14699+2^7350+1 4425 O 2000 Gaussian Mersenne norm 27, generalized unique 5671c 744029027072*10111#-1 4362 p364 2025 Cunningham chain (8p+7) 5672 (2^14479+1)/3 4359 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5673 62399583639*9923#-3399421517 4285 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5674 62399583639*9923#-3399421547 4285 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5675 62399583639*9923#-3399421577 4285 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5676 62399583639*9923#-3399421607 4285 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5677 49325406476*9811#*8+1 4234 p382 2019 Cunningham chain 2nd kind (8p-7) 5678 276474*Bern(2030)/469951697500688159155 4200 c8 2003 Irregular, ECPP 5679 V(19469) 4069 x25 2002 Lucas number, cyclotomy, APR-CL assisted 5680 1477!+1 4042 D 1984 Factorial 5681 -2730*Bern(1884)/100983617849 3844 c8 2003 Irregular, ECPP 5682 2840178*Bern(1870)/85 3821 c8 2003 Irregular, ECPP 5683 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+9 3753 c101 2023 Quadruplet (4),ECPP 5684 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+7 3753 c101 2023 Quadruplet (3),ECPP 5685 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+3 3753 c101 2023 Quadruplet (2),ECPP 5686 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+1 3753 c101 2023 Quadruplet (1),ECPP 5687 12379*2^12379-1 3731 K 1984 Woodall 5688 (2^12391+1)/3 3730 M 1996 Generalized Lucas number, Wagstaff 5689 -E(1466)/167900532276654417372106952612534399239 3682 c8 2013 Euler irregular, ECPP 5690 E(1468)/12330876589623053882799895025030461658552339028064108285 3671 c4 2003 Euler irregular, ECPP 5691 1268118079424*8501#-1 3640 p434 2023 Cunningham chain (8p+7) 5692 101406820312263*2^12042+7 3640 c67 2018 Quadruplet (4) 5693 101406820312263*2^12042+5 3640 c67 2018 Quadruplet (3) 5694 101406820312263*2^12042+1 3640 p364 2018 Quadruplet (2) 5695 101406820312263*2^12042-1 3640 p364 2018 Quadruplet (1) 5696 2673092556681*15^3048+4 3598 c67 2015 Quadruplet (4) 5697 2673092556681*15^3048+2 3598 c67 2015 Quadruplet (3) 5698 2673092556681*15^3048-2 3598 c67 2015 Quadruplet (2) 5699 2673092556681*15^3048-4 3598 c67 2015 Quadruplet (1) 5700 6016459977*7927#-1 3407 p364 2022 Arithmetic progression (7,d=577051223*7927#) 5701 5439408754*7927#-1 3407 p364 2022 Arithmetic progression (6,d=577051223*7927#) 5702 4862357531*7927#-1 3407 p364 2022 Arithmetic progression (5,d=577051223*7927#) 5703 4285306308*7927#-1 3407 p364 2022 Arithmetic progression (4,d=577051223*7927#) 5704 3708255085*7927#-1 3407 p364 2022 Arithmetic progression (3,d=577051223*7927#) 5705 3131203862*7927#-1 3407 p364 2022 Arithmetic progression (2,d=577051223*7927#) 5706 2554152639*7927#-1 3407 p364 2022 Arithmetic progression (1,d=577051223*7927#) 5707 62753735335*7919#+3399421667 3404 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5708 62753735335*7919#+3399421637 3404 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5709 62753735335*7919#+3399421607 3404 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5710 62753735335*7919#+3399421577 3404 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5711 (2^11279+1)/3 3395 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 5712 109766820328*7877#-1 3385 p395 2016 Cunningham chain (8p+7) 5713 585150568069684836*7757#/85085+17 3344 c88 2022 Quintuplet (5), ECPP 5714 585150568069684836*7757#/85085+13 3344 c88 2022 Quintuplet (4), ECPP 5715 585150568069684836*7757#/85085+11 3344 c88 2022 Quintuplet (3), ECPP 5716 585150568069684836*7757#/85085+7 3344 c88 2022 Quintuplet (2), ECPP 5717 585150568069684836*7757#/85085+5 3344 c88 2022 Quintuplet (1), ECPP 5718 104052837*7759#-1 3343 p398 2017 Arithmetic progression (6,d=12009836*7759#) 5719 92043001*7759#-1 3343 p398 2017 Arithmetic progression (5,d=12009836*7759#) 5720 80033165*7759#-1 3343 p398 2017 Arithmetic progression (4,d=12009836*7759#) 5721 68023329*7759#-1 3343 p398 2017 Arithmetic progression (3,d=12009836*7759#) 5722 56013493*7759#-1 3343 p398 2017 Arithmetic progression (2,d=12009836*7759#) 5723 44003657*7759#-1 3343 p398 2017 Arithmetic progression (1,d=12009836*7759#) 5724 2072453060816*7699#+1 3316 p364 2019 Cunningham chain 2nd kind (8p-7) 5725 (2^10691+1)/3 3218 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5726 231692481512*7517#-1 3218 p395 2016 Cunningham chain (8p+7) 5727 (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+19 3207 c100 2023 Consecutive primes arithmetic progression (4,d=6),ECPP 5728 (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+13 3207 c100 2023 Consecutive primes arithmetic progression (3,d=6),ECPP 5729 (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+7 3207 c100 2023 Consecutive primes arithmetic progression (2,d=6),ECPP 5730 (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+1 3207 c100 2023 Consecutive primes arithmetic progression (1,d=6),ECPP 5731 (2^10501+1)/3 3161 M 1996 Generalized Lucas number, Wagstaff 5732 2^10141+2^5071+1 3053 O 2000 Gaussian Mersenne norm 26, generalized unique 5733 121152729080*7019#/1729+19 3025 c92 2019 Consecutive primes arithmetic progression (4,d=6), ECPP 5734 121152729080*7019#/1729+13 3025 c92 2019 Consecutive primes arithmetic progression (3,d=6), ECPP 5735 121152729080*7019#/1729+7 3025 c92 2019 Consecutive primes arithmetic progression (2,d=6), ECPP 5736 121152729080*7019#/1729+1 3025 p407 2019 Consecutive primes arithmetic progression (1,d=6) 5737 V(14449) 3020 DK 1995 Lucas number 5738 3124777373*7001#+1 3019 p155 2012 Arithmetic progression (7,d=481789017*7001#) 5739 2996180304*7001#+1 3019 p155 2012 Arithmetic progression (6,d=46793757*7001#) 5740 2949386547*7001#+1 3019 p155 2012 Arithmetic progression (5,d=46793757*7001#) 5741 2946259686*7001#+1 3019 p155 2012 Arithmetic progression (6,d=313558156*7001#) 5742 2911906960*7001#+1 3019 p155 2012 Arithmetic progression (5,d=3093612*7001#) 5743 2908813348*7001#+1 3019 p155 2012 Arithmetic progression (4,d=3093612*7001#) 5744 2905719736*7001#+1 3019 p155 2012 Arithmetic progression (3,d=3093612*7001#) 5745 2902626124*7001#+1 3019 p155 2012 Arithmetic progression (2,d=3093612*7001#) 5746 2902592790*7001#+1 3019 p155 2012 Arithmetic progression (4,d=46793757*7001#) 5747 2899532512*7001#+1 3019 p155 2012 Arithmetic progression (1,d=3093612*7001#) 5748 2855799033*7001#+1 3019 p155 2012 Arithmetic progression (3,d=46793757*7001#) 5749 2809005276*7001#+1 3019 p155 2012 Arithmetic progression (2,d=46793757*7001#) 5750 2762211519*7001#+1 3019 p155 2012 Arithmetic progression (1,d=46793757*7001#) 5751 2642988356*7001#+1 3019 p155 2012 Arithmetic progression (6,d=481789017*7001#) 5752 2161199339*7001#+1 3019 p155 2012 Arithmetic progression (5,d=481789017*7001#) 5753 1679410322*7001#+1 3019 p155 2012 Arithmetic progression (4,d=481789017*7001#) 5754 1197621305*7001#+1 3019 p155 2012 Arithmetic progression (3,d=481789017*7001#) 5755 715832288*7001#+1 3019 p155 2012 Arithmetic progression (2,d=481789017*7001#) 5756 234043271*7001#+1 3018 p155 2012 Arithmetic progression (1,d=481789017*7001#) 5757 U(14431) 3016 p54 2001 Fibonacci number 5758 138281163736*6977#+1 3006 p395 2016 Cunningham chain 2nd kind (8p-7) 5759 375967981369*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5760 V(13963) 2919 c11 2002 Lucas number, ECPP 5761 284787490256*6701#+1 2879 p364 2015 Cunningham chain 2nd kind (8p-7) 5762 9531*2^9531-1 2874 K 1984 Woodall 5763 -E(1174)/50550511342697072710795058639332351763 2829 c8 2013 Euler irregular, ECPP 5764 -E(1142)/6233437695283865492412648122953349079446935570718422828539863\ 59013986902240869 2697 c77 2015 Euler irregular, ECPP 5765 -E(1078)/361898544439043 2578 c4 2002 Euler irregular, ECPP 5766 V(12251) 2561 p54 2001 Lucas number 5767 974!-1 2490 CD 1992 Factorial 5768 7755*2^7755-1 2339 K 1984 Woodall 5769 772463767240*5303#+1 2272 p308 2019 Cunningham chain 2nd kind (8p-7) 5770 116814018316*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10892863626*5303#) 5771 116746086504*5303#+1 2271 p406 2019 Arithmetic progression (7,d=9726011684*5303#) 5772 116242725347*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10388428124*5303#) 5773 107020074820*5303#+1 2271 p406 2019 Arithmetic progression (6,d=9726011684*5303#) 5774 105921154690*5303#+1 2271 p406 2019 Arithmetic progression (6,d=10892863626*5303#) 5775 105854297223*5303#+1 2271 p406 2019 Arithmetic progression (6,d=10388428124*5303#) 5776 97867278281*5303#+1 2271 p406 2019 Arithmetic progression (5,d=2972005888*5303#) 5777 97348096836*5303#+1 2271 p406 2019 Arithmetic progression (5,d=5447332033*5303#) 5778 97294063136*5303#+1 2271 p406 2019 Arithmetic progression (5,d=9726011684*5303#) 5779 96461651937*5303#+1 2271 p406 2019 Arithmetic progression (4,d=435232416*5303#) 5780 96026419521*5303#+1 2271 p406 2019 Arithmetic progression (3,d=435232416*5303#) 5781 95664304943*5303#+1 2271 p406 2019 Arithmetic progression (4,d=817534485*5303#) 5782 95591187105*5303#+1 2271 p406 2019 Arithmetic progression (2,d=435232416*5303#) 5783 95155954689*5303#+1 2271 p406 2019 Arithmetic progression (1,d=435232416*5303#) 5784 94895272393*5303#+1 2271 p406 2019 Arithmetic progression (4,d=2972005888*5303#) 5785 94846770458*5303#+1 2271 p406 2019 Arithmetic progression (3,d=817534485*5303#) 5786 94029235973*5303#+1 2271 p406 2019 Arithmetic progression (2,d=817534485*5303#) 5787 93984538785*5303#+1 2271 p406 2019 Arithmetic progression (3,d=387018369*5303#) 5788 93597520416*5303#+1 2271 p406 2019 Arithmetic progression (2,d=387018369*5303#) 5789 93211701488*5303#+1 2271 p406 2019 Arithmetic progression (1,d=817534485*5303#) 5790 93210502047*5303#+1 2271 p406 2019 Arithmetic progression (1,d=387018369*5303#) 5791 69285767989*5303#+1 2271 p406 2019 Arithmetic progression (8,d=3026809034*5303#) 5792 66258958955*5303#+1 2271 p406 2019 Arithmetic progression (7,d=3026809034*5303#) 5793 63232149921*5303#+1 2271 p406 2019 Arithmetic progression (6,d=3026809034*5303#) 5794 60205340887*5303#+1 2271 p406 2019 Arithmetic progression (5,d=3026809034*5303#) 5795 57178531853*5303#+1 2271 p406 2019 Arithmetic progression (4,d=3026809034*5303#) 5796 54151722819*5303#+1 2271 p406 2019 Arithmetic progression (3,d=3026809034*5303#) 5797 51124913785*5303#+1 2271 p406 2019 Arithmetic progression (2,d=3026809034*5303#) 5798 48098104751*5303#+1 2270 p406 2019 Arithmetic progression (1,d=3026809034*5303#) 5799 V(10691) 2235 DK 1995 Lucas number 5800 566761969187*4733#/2+4 2034 c67 2020 Quintuplet (5) 5801 566761969187*4733#/2+2 2034 c67 2020 Quintuplet (4) 5802 566761969187*4733#/2-2 2034 c67 2020 Quintuplet (3) 5803 566761969187*4733#/2-4 2034 c67 2020 Quintuplet (2) 5804 566761969187*4733#/2-8 2034 c67 2020 Quintuplet (1) 5805 U(9677) 2023 c2 2000 Fibonacci number, ECPP 5806 7610828704751636272*4679#-1 2020 p151 2024 Cunningham chain (16p+15) 5807 126831252923413*4657#/273+13 2002 c88 2020 Quintuplet (5) 5808 126831252923413*4657#/273+9 2002 c88 2020 Quintuplet (4) 5809 126831252923413*4657#/273+7 2002 c88 2020 Quintuplet (3) 5810 126831252923413*4657#/273+3 2002 c88 2020 Quintuplet (2) 5811 126831252923413*4657#/273+1 2002 c88 2020 Quintuplet (1) 5812 6611*2^6611+1 1994 K 1984 Cullen 5813 U(9311) 1946 DK 1995 Fibonacci number 5814 2738129459017*4211#+3399421637 1805 c98 2022 Consecutive primes arithmetic progression (5,d=30) 5815 2738129459017*4211#+3399421607 1805 c98 2022 Consecutive primes arithmetic progression (4,d=30) 5816 2738129459017*4211#+3399421577 1805 c98 2022 Consecutive primes arithmetic progression (3,d=30) 5817 2738129459017*4211#+3399421547 1805 c98 2022 Consecutive primes arithmetic progression (2,d=30) 5818 2738129459017*4211#+3399421517 1805 c98 2022 Consecutive primes arithmetic progression (1,d=30) 5819 V(8467) 1770 c2 2000 Lucas number, ECPP 5820 5795*2^5795+1 1749 K 1984 Cullen 5821 (2^5807+1)/3 1748 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 5822 54201838768*3917#-1 1681 p395 2016 Cunningham chain (16p+15) 5823 102619722624*3797#+1 1631 p395 2016 Cunningham chain 2nd kind (16p-15) 5824 394254311495*3733#/2+4 1606 c67 2017 Quintuplet (5) 5825 394254311495*3733#/2+2 1606 c67 2017 Quintuplet (4) 5826 394254311495*3733#/2-2 1606 c67 2017 Quintuplet (3) 5827 394254311495*3733#/2-4 1606 c67 2017 Quintuplet (2) 5828 394254311495*3733#/2-8 1606 c67 2017 Quintuplet (1) 5829 83*2^5318-1 1603 K 1984 Woodall 5830 2316765173284*3593#+16073 1543 c18 2016 Quintuplet (5), ECPP 5831 2316765173284*3593#+16069 1543 c18 2016 Quintuplet (4), ECPP 5832 2316765173284*3593#+16067 1543 c18 2016 Quintuplet (3), ECPP 5833 2316765173284*3593#+16063 1543 c18 2016 Quintuplet (2), ECPP 5834 2316765173284*3593#+16061 1543 c18 2016 Quintuplet (1), ECPP 5835 652229318541*3527#+3399421637 1504 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5836 652229318541*3527#+3399421607 1504 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5837 652229318541*3527#+3399421577 1504 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5838 652229318541*3527#+3399421547 1504 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5839 652229318541*3527#+3399421517 1504 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5840 3199190962192*3499#-1 1494 p382 2016 Cunningham chain (16p+15) 5841 4713*2^4713+1 1423 K 1984 Cullen 5842 449209457832*3307#+1633050403 1408 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5843 449209457832*3307#+1633050373 1408 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5844 449209457832*3307#+1633050343 1408 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5845 449209457832*3307#+1633050313 1408 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5846 449209457832*3307#+1633050283 1408 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5847 5780736564512*3023#-1 1301 p364 2015 Cunningham chain (16p+15) 5848 2746496109133*3001#+27011 1290 c97 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5849 2746496109133*3001#+26981 1290 c97 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5850 2746496109133*3001#+26951 1290 c97 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5851 2746496109133*3001#+26921 1290 c97 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5852 2746496109133*3001#+26891 1290 c97 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5853 898966996992*3001#+1 1289 p364 2015 Cunningham chain 2nd kind (16p-15) 5854 42530119784448*2969#+1 1281 p382 2017 Cunningham chain 2nd kind (16p-15) 5855 22623218234368*2969#+1 1280 p382 2017 Cunningham chain 2nd kind (16p-15) 5856 1542946580224*2851#-1 1231 p364 2023 Cunningham chain (16p+15) 5857 406463527990*2801#+1633050403 1209 x38 2013 Consecutive primes arithmetic progression (5,d=30) 5858 406463527990*2801#+1633050373 1209 x38 2013 Consecutive primes arithmetic progression (4,d=30) 5859 406463527990*2801#+1633050343 1209 x38 2013 Consecutive primes arithmetic progression (3,d=30) 5860 406463527990*2801#+1633050313 1209 x38 2013 Consecutive primes arithmetic progression (2,d=30) 5861 406463527990*2801#+1633050283 1209 x38 2013 Consecutive primes arithmetic progression (1,d=30) 5862 1290733709840*2677#+1 1141 p295 2011 Cunningham chain 2nd kind (16p-15) 5863 U(5387) 1126 WM 1990 Fibonacci number 5864 1176100079*2591#+1 1101 p252 2019 Arithmetic progression (8,d=60355670*2591#) 5865 1115744409*2591#+1 1101 p252 2019 Arithmetic progression (7,d=60355670*2591#) 5866 1055388739*2591#+1 1100 p252 2019 Arithmetic progression (6,d=60355670*2591#) 5867 995033069*2591#+1 1100 p252 2019 Arithmetic progression (5,d=60355670*2591#) 5868 934677399*2591#+1 1100 p252 2019 Arithmetic progression (4,d=60355670*2591#) 5869 874321729*2591#+1 1100 p252 2019 Arithmetic progression (3,d=60355670*2591#) 5870 813966059*2591#+1 1100 p252 2019 Arithmetic progression (2,d=60355670*2591#) 5871 753610389*2591#+1 1100 p252 2019 Arithmetic progression (1,d=60355670*2591#) 5872 (2^3539+1)/3 1065 M 1989 First titanic by ECPP, generalized Lucas number, Wagstaff 5873 2968802755*2459#+1 1057 p155 2009 Arithmetic progression (8,d=359463429*2459#) 5874 2609339326*2459#+1 1057 p155 2009 Arithmetic progression (7,d=359463429*2459#) 5875 2249875897*2459#+1 1057 p155 2009 Arithmetic progression (6,d=359463429*2459#) 5876 1890412468*2459#+1 1056 p155 2009 Arithmetic progression (5,d=359463429*2459#) 5877 1530949039*2459#+1 1056 p155 2009 Arithmetic progression (4,d=359463429*2459#) 5878 1171485610*2459#+1 1056 p155 2009 Arithmetic progression (3,d=359463429*2459#) 5879 812022181*2459#+1 1056 p155 2009 Arithmetic progression (2,d=359463429*2459#) 5880 452558752*2459#+1 1056 p155 2009 Arithmetic progression (1,d=359463429*2459#) 5881b 5963982717*2417#-1 1040 p364 2025 Arithmetic progression (8,d=108526765*2417#) 5882b 5855455952*2417#-1 1040 p364 2025 Arithmetic progression (7,d=108526765*2417#) 5883b 5746929187*2417#-1 1040 p364 2025 Arithmetic progression (6,d=108526765*2417#) 5884b 5638402422*2417#-1 1040 p364 2025 Arithmetic progression (5,d=108526765*2417#) 5885b 5529875657*2417#-1 1040 p364 2025 Arithmetic progression (4,d=108526765*2417#) 5886b 5421348892*2417#-1 1040 p364 2025 Arithmetic progression (3,d=108526765*2417#) 5887b 5312822127*2417#-1 1040 p364 2025 Arithmetic progression (2,d=108526765*2417#) 5888b 5204295362*2417#-1 1040 p364 2025 Arithmetic progression (1,d=108526765*2417#) 5889b 4692090369*2417#-1 1040 p364 2025 Arithmetic progression (8,d=370899838*2417#) 5890b 4321190531*2417#-1 1040 p364 2025 Arithmetic progression (7,d=370899838*2417#) 5891b 3950290693*2417#-1 1040 p364 2025 Arithmetic progression (6,d=370899838*2417#) 5892b 3579390855*2417#-1 1040 p364 2025 Arithmetic progression (5,d=370899838*2417#) 5893b 3208491017*2417#-1 1040 p364 2025 Arithmetic progression (4,d=370899838*2417#) 5894b 2837591179*2417#-1 1040 p364 2025 Arithmetic progression (3,d=370899838*2417#) 5895b 2466691341*2417#-1 1040 p364 2025 Arithmetic progression (2,d=370899838*2417#) 5896b 2095791503*2417#-1 1040 p364 2025 Arithmetic progression (1,d=370899838*2417#) 5897 28993093368077*2399#+19433 1037 c18 2016 Sextuplet (6), ECPP 5898 28993093368077*2399#+19429 1037 c18 2016 Sextuplet (5), ECPP 5899 28993093368077*2399#+19427 1037 c18 2016 Sextuplet (4), ECPP 5900 28993093368077*2399#+19423 1037 c18 2016 Sextuplet (3), ECPP 5901 28993093368077*2399#+19421 1037 c18 2016 Sextuplet (2), ECPP 5902 28993093368077*2399#+19417 1037 c18 2016 Sextuplet (1), ECPP 5903 R(1031) 1031 WD 1985 Repunit 5904 89595955370432*2371#-1 1017 p364 2015 Cunningham chain (32p+31) 5905 116040452086*2371#+1 1014 p308 2012 Arithmetic progression (9,d=6317280828*2371#) 5906 109723171258*2371#+1 1014 p308 2012 Arithmetic progression (8,d=6317280828*2371#) 5907 103405890430*2371#+1 1014 p308 2012 Arithmetic progression (7,d=6317280828*2371#) 5908 97336164242*2371#+1 1014 p308 2013 Arithmetic progression (9,d=6350457699*2371#) 5909 97088609602*2371#+1 1014 p308 2012 Arithmetic progression (6,d=6317280828*2371#) 5910 93537753980*2371#+1 1014 p308 2013 Arithmetic progression (9,d=3388165411*2371#) 5911 92836168856*2371#+1 1014 p308 2013 Arithmetic progression (9,d=127155673*2371#) 5912 92709013183*2371#+1 1014 p308 2013 Arithmetic progression (8,d=127155673*2371#) 5913 92581857510*2371#+1 1014 p308 2013 Arithmetic progression (7,d=127155673*2371#) 5914 92454701837*2371#+1 1014 p308 2013 Arithmetic progression (6,d=127155673*2371#) 5915 92327546164*2371#+1 1014 p308 2013 Arithmetic progression (5,d=127155673*2371#) 5916 92200390491*2371#+1 1014 p308 2013 Arithmetic progression (4,d=127155673*2371#) 5917 92073234818*2371#+1 1014 p308 2013 Arithmetic progression (3,d=127155673*2371#) 5918 91946079145*2371#+1 1014 p308 2013 Arithmetic progression (2,d=127155673*2371#) 5919 91818923472*2371#+1 1014 p308 2013 Arithmetic progression (1,d=127155673*2371#) 5920 90985706543*2371#+1 1014 p308 2013 Arithmetic progression (8,d=6350457699*2371#) 5921 90771328774*2371#+1 1014 p308 2012 Arithmetic progression (5,d=6317280828*2371#) 5922 90149588569*2371#+1 1014 p308 2013 Arithmetic progression (8,d=3388165411*2371#) 5923 86761423158*2371#+1 1014 p308 2013 Arithmetic progression (7,d=3388165411*2371#) 5924 84635248844*2371#+1 1014 p308 2013 Arithmetic progression (7,d=6350457699*2371#) 5925 84454047946*2371#+1 1014 p308 2012 Arithmetic progression (4,d=6317280828*2371#) 5926 83373257747*2371#+1 1014 p308 2013 Arithmetic progression (6,d=3388165411*2371#) 5927 79985092336*2371#+1 1014 p308 2013 Arithmetic progression (5,d=3388165411*2371#) 5928 78284791145*2371#+1 1014 p308 2013 Arithmetic progression (6,d=6350457699*2371#) 5929 78136767118*2371#+1 1014 p308 2012 Arithmetic progression (3,d=6317280828*2371#) 5930 76596926925*2371#+1 1014 p308 2013 Arithmetic progression (4,d=3388165411*2371#) 5931 73208761514*2371#+1 1014 p308 2013 Arithmetic progression (3,d=3388165411*2371#) 5932 71934333446*2371#+1 1014 p308 2013 Arithmetic progression (5,d=6350457699*2371#) 5933 71819486290*2371#+1 1014 p308 2012 Arithmetic progression (2,d=6317280828*2371#) 5934 69820596103*2371#+1 1014 p308 2013 Arithmetic progression (2,d=3388165411*2371#) 5935 69318339141*2371#+1 1014 p308 2011 Arithmetic progression (9,d=1298717501*2371#) 5936 68019621640*2371#+1 1014 p308 2011 Arithmetic progression (8,d=1298717501*2371#) 5937 66720904139*2371#+1 1014 p308 2011 Arithmetic progression (7,d=1298717501*2371#) 5938 66432430692*2371#+1 1014 p308 2013 Arithmetic progression (1,d=3388165411*2371#) 5939 65583875747*2371#+1 1014 p308 2013 Arithmetic progression (4,d=6350457699*2371#) 5940 65502205462*2371#+1 1014 p308 2012 Arithmetic progression (1,d=6317280828*2371#) 5941 65422186638*2371#+1 1014 p308 2011 Arithmetic progression (6,d=1298717501*2371#) 5942 64123469137*2371#+1 1014 p308 2011 Arithmetic progression (5,d=1298717501*2371#) 5943 62824751636*2371#+1 1014 p308 2011 Arithmetic progression (4,d=1298717501*2371#) 5944 61526034135*2371#+1 1014 p308 2011 Arithmetic progression (3,d=1298717501*2371#) 5945 60227316634*2371#+1 1014 p308 2011 Arithmetic progression (2,d=1298717501*2371#) 5946 59233418048*2371#+1 1014 p308 2013 Arithmetic progression (3,d=6350457699*2371#) 5947 58928599133*2371#+1 1014 p308 2011 Arithmetic progression (1,d=1298717501*2371#) 5948 52882960349*2371#+1 1014 p308 2013 Arithmetic progression (2,d=6350457699*2371#) 5949 46532502650*2371#+1 1014 p308 2013 Arithmetic progression (1,d=6350457699*2371#) 5950 533098369554*2357#+3399421667 1012 c98 2021 Consecutive primes arithmetic progression (6,d=30), ECPP 5951 533098369554*2357#+3399421637 1012 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5952 533098369554*2357#+3399421607 1012 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5953 533098369554*2357#+3399421577 1012 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5954 533098369554*2357#+3399421547 1012 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5955 533098369554*2357#+3399421517 1012 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5956 113225039190926127209*2339#/57057+21 1002 c88 2021 Septuplet (7) 5957 113225039190926127209*2339#/57057+19 1002 c88 2021 Septuplet (6) 5958 113225039190926127209*2339#/57057+13 1002 c88 2021 Septuplet (5) 5959 113225039190926127209*2339#/57057+9 1002 c88 2021 Septuplet (4) 5960 113225039190926127209*2339#/57057+7 1002 c88 2021 Septuplet (3) 5961d 1184490310627008*2339#+1 1001 p364 2025 Cunningham chain 2nd kind (32p-31) ----- ------------------------------- -------- ----- ---- -------------- KEY TO PROOF-CODES (primality provers): A1 Propper, Srsieve, PrimeGrid, PRST A2 Propper, Srsieve, PRST A3 Atnashev, PRST A5 Gahan, Cyclo, PRST A6 Propper, Gcwsieve, PRST A7 Baur, Cyclo, PRST A8 Baur1, Srsieve, PRST A9 Wright1, Srsieve, CRUS, PRST A10 Grosvenor, Srsieve, CRUS, PRST A11 Anonymous, Srsieve, CRUS, PRST A12 Kruse, Srsieve, CRUS, PRST A13 Marler, Cyclo, PRST A14 Thompson5, Srsieve, CRUS, PRST A15 Sielemann, Srsieve, CRUS, PRST A16 Broer, Srsieve, CRUS, PRST A18 Trunov, Cyclo, PRST A19 Propper, Batalov, Srsieve, PRST A20 Propper, Batalov, Gcwsieve, PRST A21 Piesker, Srsieve, CRUS, PRST A22 Doornink, Cyclo, PRST A23 Brown1, Srsieve, PrimeGrid, PRST A24 Ogawa, MultiSieve, NewPGen, PRST A25 Schmidt2, NewPGen, PRST A26 VISCAPI, Srsieve, CRUS, PRST A27 Piesker, PSieve, Srsieve, NPLB, PRST A28 Gingrich1, Srsieve, CRUS, PRST A29 Kelava1, Srsieve, Prime95, PRST A30 Silva2, Srsieve, PrimeGrid, PRST A31 Dinkel, MultiSieve, PRST A32 Cedric, Srsieve, CRUS, PRST A34 Verhaagen, Srsieve, CRUS, PRST A36 Glotzbach, Srsieve, CRUS, PRST A38 Batalov, PSieve, Srsieve, PRST A39 Majors, Srsieve, CRUS, PRST A41 Gmirkin, Srsieve, PrimeGrid, PRST A42 Dadocad72, Srsieve, CRUS, PRST A43 Propper, MultiSieve, PRST A44 Smith12, Srsieve, CRUS, PRST A45 Kaczala, Srsieve, PrimeGrid, PRST A46 Primecrunch.com, Hedges, Srsieve, PRST A48 Peteri, Srsieve, CRUS, PRST A49 Swerczek, Srsieve, CRUS, PRST A50 Bird2, Srsieve, CRUS, PRST A51 Gahan, NewPGen, PRST A52 Schumacher, Srsieve, CRUS, PRST A53 Childs, PSieve, Srsieve, NPLB, PRST A54 Lynch, Srsieve, CRUS, PRST A55 Nielsen1, Gahan, PRST A56 Loebmann, Srsieve, CRUS, PRST A57 Busler, Srsieve, CRUS, PRST A58 Schmidt2, PSieve, Srsieve, NPLB, PRST C Caldwell, Cruncher c2 Water, Primo c4 Broadhurst, Primo c8 Broadhurst, Water, Primo c11 Oakes, Primo c18 Luhn, Primo c39 Minovic, OpenPFGW, Primo c47 Chandler, Primo c54 Wu_T, Primo c55 Gramolin, Primo c56 Soule, Minovic, OpenPFGW, Primo c58 Kaiser1, NewPGen, OpenPFGW, Primo c59 Metcalfe, OpenPFGW, Primo c63 Ritschel, TOPS, Primo c64 Metcalfe, Minovic, Ritschel, TOPS, Primo c66 Steine, Primo c67 Batalov, NewPGen, OpenPFGW, Primo c69 Jacobsen, Primo c70 Underwood, Dubner, Primo c71 Metcalfe, Ritschel, Andersen, TOPS, Primo c73 Underwood, Lifchitz, Primo c74 Lasher, Dubner, Primo c76 Kaiser1, Water, Underwood, Primo c77 Batalov, Primo c79 Batalov, Broadhurst, Water, Primo c81 Water, Underwood, Primo c82 Steine, Water, Primo c83 Kaiser1, PolySieve, NewPGen, Primo c84 Underwood, Primo c88 Kaiser1, PolySieve, Primo c92 Lamprecht, Luhn, Primo c93 Batalov, PolySieve, Primo c94 Gelhar, Ritschel, TOPS, Primo c95 Gelhar, Primo c97 Lamprecht, Luhn, APSieve, OpenPFGW, Primo c98 Batalov, EMsieve, Primo c99 Kruse, Schoeler, Primo c100 DavisK, APTreeSieve, NewPGen, OpenPFGW, Primo c101 DavisK, APTreeSieve, OpenPFGW, Primo CD Caldwell, Dubner, Cruncher CH10 Batalov, OpenPFGW, Primo, CHG CH12 Propper, Batalov, OpenPFGW, Primo, CHG CH13 Propper, Batalov, EMsieve, OpenPFGW, CHG CH14 Wu_T, CM, OpenPFGW, CHG CH2 Wu_T, OpenPFGW, Primo, CHG CH3 Broadhurst, Water, OpenPFGW, Primo, CHG CH4 Irvine, Broadhurst, Water, OpenPFGW, Primo, CHG CH9 Zhou, OpenPFGW, CHG D Dubner, Cruncher DK Dubner, Keller, Cruncher DS Smith_Darren, Proth.exe E1 Batalov, CM E2 Propper, CM E3 Enge, CM E4 Childers, CM E5 Underwood, CM E6 Lasher, Broadhurst, Underwood, CM E7 Lasher, CM E8 Broadhurst, Underwood, CM E9 Mock, CM E10 Doornink, CM E11 Karpovich, CM E12 Enge, Underwood, CM E13 Batalov, Masser, CM E14 Batalov, EMsieve, CM E15 Batalov, PolySieve, CM E16 Propper, Batalov, CM E17 Foreman, Batalov, CM FE8 Oakes, Broadhurst, Water, Morain, FastECPP FE9 Broadhurst, Water, Morain, FastECPP g0 Gallot, Proth.exe g1 Caldwell, Proth.exe G1 Armengaud, GIMPS, Prime95 G2 Spence, GIMPS, Prime95 G3 Clarkson, Kurowski, GIMPS, Prime95 G4 Hajratwala, Kurowski, GIMPS, Prime95 G5 Cameron, Kurowski, GIMPS, Prime95 G6 Shafer, GIMPS, Prime95 G7 Findley_J, GIMPS, Prime95 G8 Nowak, GIMPS, Prime95 G9 Boone, Cooper, GIMPS, Prime95 G10 Smith_E, GIMPS, Prime95 G11 Elvenich, GIMPS, Prime95 G12 Strindmo, GIMPS, Prime95 G13 Cooper, GIMPS, Prime95 G14 Cooper, GIMPS, Prime95 G15 Pace, GIMPS, Prime95 G16 Laroche, GIMPS, Prime95 g23 Ballinger, Proth.exe g25 OHare, Proth.exe g55 Toplic, Proth.exe g124 Crickman, Proth.exe g236 Heuer, GFN17Sieve, GFNSearch, Proth.exe g245 Cosgrave, NewPGen, PRP, Proth.exe g260 AYENI, Proth.exe g267 Grobstich, NewPGen, PRP, Proth.exe g277 Eaton, NewPGen, PRP, Proth.exe g279 Cooper, NewPGen, PRP, Proth.exe g337 Hsieh, NewPGen, PRP, Proth.exe g403 Yoshimura, ProthSieve, PrimeSierpinski, LLR, Proth.exe g407 HermleGC, MultiSieve, PRP, Proth.exe g413 Scott, AthGFNSieve, Proth.exe g414 Gilvey, Srsieve, PrimeGrid, PrimeSierpinski, LLR, Proth.exe g418 Taura, NewPGen, PRP, Proth.exe g424 Broadhurst, NewPGen, OpenPFGW, Proth.exe g427 Batalov, Srsieve, LLR, Proth.exe g429 Underbakke, GenefX64, AthGFNSieve, PrimeGrid, Proth.exe g431 Shenton, Srsieve, Proth.exe gm Morii, Proth.exe K Keller L20 Kapek, LLR L53 Zaveri, ProthSieve, RieselSieve, PRP, LLR L95 Urushi, LLR L99 Underbakke, TwinGen, LLR L124 Rodenkirch, MultiSieve, LLR L129 Snyder, LLR L137 Jaworski, Rieselprime, LLR L158 Underwood, NewPGen, 321search, LLR L161 Schafer, NewPGen, LLR L172 Smith, ProthSieve, RieselSieve, LLR L177 Kwok, Rieselprime, LLR L181 Siegert, LLR L185 Hassler, NewPGen, LLR L191 Banka, NewPGen, LLR L192 Jaworski, LLR L193 Rosink, ProthSieve, RieselSieve, LLR L197 DaltonJ, ProthSieve, RieselSieve, LLR L201 Siemelink, LLR L256 Underwood, Srsieve, NewPGen, 321search, LLR L257 Ritschel, Srsieve, Rieselprime, LLR L282 Curtis, Srsieve, Rieselprime, LLR L381 Mate, Siemelink, Rodenkirch, MultiSieve, LLR L384 Pinho, Srsieve, Rieselprime, LLR L426 Jaworski, Srsieve, Rieselprime, LLR L436 Andersen2, Gcwsieve, MultiSieve, PrimeGrid, LLR L447 Kohlman, Gcwsieve, MultiSieve, PrimeGrid, LLR L466 Zhou, NewPGen, LLR L503 Benson, Srsieve, LLR L521 Thompson1, Gcwsieve, MultiSieve, PrimeGrid, LLR L527 Tornberg, TwinGen, LLR L541 Barnes, Srsieve, CRUS, LLR L550 Bonath, Srsieve, CRUS, LLR L587 Dettweiler, Srsieve, CRUS, LLR L591 Penne, Srsieve, CRUS, LLR L606 Bennett, Srsieve, NewPGen, PrimeGrid, 321search, LLR L613 Keogh, Srsieve, ProthSieve, RieselSieve, LLR L622 Cardall, Srsieve, ProthSieve, RieselSieve, LLR L671 Wong, Srsieve, PrimeGrid, LLR L689 Brown1, Srsieve, PrimeGrid, LLR L690 Cholt, Srsieve, PrimeGrid, LLR L753 Wolfram, Srsieve, PrimeGrid, LLR L760 Riesen, Srsieve, Rieselprime, LLR L764 Ewing, Srsieve, PrimeGrid, LLR L780 Brady, Srsieve, PrimeGrid, LLR L801 Gesker, Gcwsieve, MultiSieve, PrimeGrid, LLR L802 Zachariassen, Srsieve, NPLB, LLR L875 Hatland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L917 Bergman1, Gcwsieve, MultiSieve, PrimeGrid, LLR L923 Kaiser1, Klahn, NewPGen, PrimeGrid, TPS, SunGard, LLR L927 Brown1, TwinGen, PrimeGrid, LLR L983 Wu_T, LLR L1016 Hartel, Srsieve, PrimeGrid, LLR L1056 Schwieger, Srsieve, PrimeGrid, LLR L1115 Splain, PSieve, Srsieve, PrimeGrid, LLR L1125 Laluk, PSieve, Srsieve, PrimeGrid, LLR L1129 Slomma, PSieve, Srsieve, PrimeGrid, LLR L1130 Adolfsson, PSieve, Srsieve, PrimeGrid, LLR L1134 Ogawa, Srsieve, NewPGen, LLR L1141 Ogawa, NewPGen, LLR L1158 Vogel, PSieve, Srsieve, PrimeGrid, LLR L1160 Sunderland, PSieve, Srsieve, PrimeGrid, LLR L1188 Faith, PSieve, Srsieve, PrimeGrid, LLR L1199 DeRidder, PSieve, Srsieve, PrimeGrid, LLR L1201 Carpenter1, PSieve, Srsieve, PrimeGrid, LLR L1203 Mauno, PSieve, Srsieve, PrimeGrid, LLR L1204 Brown1, PSieve, Srsieve, PrimeGrid, LLR L1209 Wong, PSieve, Srsieve, PrimeGrid, LLR L1218 Winslow, PSieve, Srsieve, PrimeGrid, LLR L1223 Courty, PSieve, Srsieve, PrimeGrid, LLR L1230 Yooil1, PSieve, Srsieve, PrimeGrid, LLR L1300 Yama, PSieve, Srsieve, PrimeGrid, LLR L1301 Sorbera, Srsieve, CRUS, LLR L1349 Wallace, Srsieve, NewPGen, PrimeGrid, LLR L1353 Mumper, Srsieve, PrimeGrid, LLR L1355 Beck, PSieve, Srsieve, PrimeGrid, LLR L1372 Glennie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L1387 Anonymous, PSieve, Srsieve, PrimeGrid, LLR L1412 Jones_M, PSieve, Srsieve, PrimeGrid, LLR L1422 Steichen, PSieve, Srsieve, PrimeGrid, LLR L1444 Davies, PSieve, Srsieve, PrimeGrid, LLR L1448 Hron, PSieve, Srsieve, PrimeGrid, LLR L1455 Heikkila, PSieve, Srsieve, PrimeGrid, LLR L1456 Webster, PSieve, Srsieve, PrimeGrid, LLR L1460 Salah, Srsieve, PrimeGrid, PrimeSierpinski, LLR L1471 Gunn, Srsieve, CRUS, LLR L1474 Brown6, PSieve, Srsieve, PrimeGrid, LLR L1486 Dinkel, PSieve, Srsieve, PrimeGrid, LLR L1492 Eiterig, PSieve, Srsieve, PrimeGrid, LLR L1502 Champ, PSieve, Srsieve, PrimeGrid, LLR L1576 Craig, PSieve, Srsieve, PrimeGrid, LLR L1675 Schwieger, PSieve, Srsieve, PrimeGrid, LLR L1728 Gasewicz, PSieve, Srsieve, PrimeGrid, LLR L1741 Granowski, PSieve, Srsieve, PrimeGrid, LLR L1745 Cholt, PSieve, Srsieve, PrimeGrid, LLR L1754 Hubbard, PSieve, Srsieve, PrimeGrid, LLR L1774 Schoefer, PSieve, Srsieve, PrimeGrid, LLR L1780 Ming, PSieve, Srsieve, PrimeGrid, LLR L1792 Tang, PSieve, Srsieve, PrimeGrid, LLR L1803 Puppi, PSieve, Srsieve, PrimeGrid, LLR L1808 Reynolds1, PSieve, Srsieve, PrimeGrid, LLR L1817 Barnes, PSieve, Srsieve, NPLB, LLR L1823 Larsson, PSieve, Srsieve, PrimeGrid, LLR L1828 Benson, PSieve, Srsieve, Rieselprime, LLR L1862 Curtis, PSieve, Srsieve, Rieselprime, LLR L1863 Wozny, PSieve, Srsieve, Rieselprime, LLR L1884 Jaworski, PSieve, Srsieve, Rieselprime, LLR L1885 Ostaszewski, PSieve, Srsieve, PrimeGrid, LLR L1921 Winslow, TwinGen, PrimeGrid, LLR L1932 Dragnev, PSieve, Srsieve, PrimeGrid, LLR L1935 Channing, PSieve, Srsieve, PrimeGrid, LLR L1949 Pritchard, Srsieve, PrimeGrid, RieselSieve, LLR L1959 Metcalfe, PSieve, Srsieve, Rieselprime, LLR L1979 Tibbott, PSieve, Srsieve, PrimeGrid, LLR L1990 Makowski, PSieve, Srsieve, PrimeGrid, LLR L2006 Rix, PSieve, Srsieve, PrimeGrid, LLR L2012 Pedersen_K, Srsieve, CRUS, OpenPFGW, LLR L2017 Hubbard, PSieve, Srsieve, NPLB, LLR L2030 Tonner, PSieve, Srsieve, PrimeGrid, LLR L2035 Greer, TwinGen, PrimeGrid, LLR L2042 Lachance, PSieve, Srsieve, PrimeGrid, LLR L2046 Melvold, Srsieve, PrimeGrid, LLR L2051 Reich, PSieve, Srsieve, PrimeGrid, LLR L2054 Kaiser1, Srsieve, CRUS, LLR L2055 Soule, PSieve, Srsieve, Rieselprime, LLR L2074 Minovic, PSieve, Srsieve, Rieselprime, LLR L2085 Dodson1, PSieve, Srsieve, PrimeGrid, LLR L2086 Sveen, PSieve, Srsieve, PrimeGrid, LLR L2103 Schmidt1, PSieve, Srsieve, PrimeGrid, LLR L2117 Karlsteen, PSieve, Srsieve, PrimeGrid, LLR L2121 VanRangelrooij, PSieve, Srsieve, PrimeGrid, LLR L2125 Greer, PSieve, Srsieve, PrimeGrid, LLR L2137 Hayashi1, PSieve, Srsieve, PrimeGrid, LLR L2142 Hajek, PSieve, Srsieve, PrimeGrid, LLR L2158 Krauss, PSieve, Srsieve, PrimeGrid, LLR L2163 VanRooijen1, PSieve, Srsieve, PrimeGrid, LLR L2233 Herder, Srsieve, PrimeGrid, LLR L2235 Mullage, PSieve, Srsieve, NPLB, LLR L2257 Dettweiler, PSieve, Srsieve, NPLB, LLR L2269 Schori, Srsieve, PrimeGrid, LLR L2322 Szafranski, PSieve, Srsieve, PrimeGrid, LLR L2337 Schmalen, PSieve, Srsieve, PrimeGrid, LLR L2366 Satoh, PSieve, Srsieve, PrimeGrid, LLR L2371 Luszczek, Srsieve, PrimeGrid, LLR L2373 Tarasov1, Srsieve, PrimeGrid, LLR L2408 Reinman, Srsieve, PrimeGrid, LLR L2413 Blyth, PSieve, Srsieve, PrimeGrid, LLR L2425 DallOsto, LLR L2429 Bliedung, TwinGen, PrimeGrid, LLR L2432 Sutton1, PSieve, Srsieve, Rieselprime, LLR L2444 Batalov, PSieve, Srsieve, Rieselprime, LLR L2484 Ritschel, PSieve, Srsieve, Rieselprime, LLR L2487 Liao, PSieve, Srsieve, PrimeGrid, LLR L2519 Schmidt2, PSieve, Srsieve, NPLB, LLR L2520 Mamanakis, PSieve, Srsieve, PrimeGrid, LLR L2526 Martinik, PSieve, Srsieve, PrimeGrid, LLR L2549 McKay, PSieve, Srsieve, PrimeGrid, LLR L2552 Foulher, PSieve, Srsieve, PrimeGrid, LLR L2561 Vinklat, PSieve, Srsieve, PrimeGrid, LLR L2564 Bravin, PSieve, Srsieve, PrimeGrid, LLR L2583 Nakamura, PSieve, Srsieve, PrimeGrid, LLR L2602 Mueller4, PSieve, Srsieve, PrimeGrid, LLR L2603 Hoffman, PSieve, Srsieve, PrimeGrid, LLR L2606 Slakans, PSieve, Srsieve, PrimeGrid, LLR L2626 DeKlerk, PSieve, Srsieve, PrimeGrid, LLR L2627 Graham2, PSieve, Srsieve, PrimeGrid, LLR L2629 Becker2, PSieve, Srsieve, PrimeGrid, LLR L2659 Reber, PSieve, Srsieve, PrimeGrid, LLR L2664 Koluvere, PSieve, Srsieve, PrimeGrid, LLR L2675 Ling, PSieve, Srsieve, PrimeGrid, LLR L2676 Cox2, PSieve, Srsieve, PrimeGrid, LLR L2691 Pettersen, PSieve, Srsieve, PrimeGrid, LLR L2707 Out, PSieve, Srsieve, PrimeGrid, LLR L2714 Piotrowski, PSieve, Srsieve, PrimeGrid, LLR L2715 Donovan, PSieve, Srsieve, PrimeGrid, LLR L2719 Yost, PSieve, Srsieve, PrimeGrid, LLR L2777 Ritschel, Gcwsieve, TOPS, LLR L2785 Meili, PSieve, Srsieve, PrimeGrid, LLR L2805 Barr, PSieve, Srsieve, PrimeGrid, LLR L2826 Jeudy, PSieve, Srsieve, PrimeGrid, LLR L2840 Santana, PSieve, Srsieve, PrimeGrid, LLR L2842 English1, PSieve, Srsieve, PrimeGrid, LLR L2859 Keenan, PSieve, Srsieve, PrimeGrid, LLR L2873 Jurach, PSieve, Srsieve, PrimeGrid, LLR L2885 Busacker, PSieve, Srsieve, PrimeGrid, LLR L2891 Lacroix, PSieve, Srsieve, PrimeGrid, LLR L2914 Merrylees, PSieve, Srsieve, PrimeGrid, LLR L2959 Derrera, PSieve, Srsieve, PrimeGrid, LLR L2973 Kurtovic, Srsieve, PrimeGrid, LLR L2975 Loureiro, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L2992 Boehm, PSieve, Srsieve, PrimeGrid, LLR L2997 Williams2, PSieve, Srsieve, PrimeGrid, LLR L3023 Winslow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3029 Walsh, PSieve, Srsieve, PrimeGrid, LLR L3033 Snow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3034 Wakolbinger, PSieve, Srsieve, PrimeGrid, LLR L3035 Scalise, PSieve, Srsieve, PrimeGrid, LLR L3048 Breslin, PSieve, Srsieve, PrimeGrid, LLR L3049 Tardy, PSieve, Srsieve, PrimeGrid, LLR L3054 Winslow, Srsieve, PrimeGrid, LLR L3091 Ridgway, PSieve, Srsieve, PrimeGrid, LLR L3101 Reichard, PSieve, Srsieve, PrimeGrid, LLR L3118 Yama, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3125 Rizman, PSieve, Srsieve, PrimeGrid, LLR L3141 Kus, PSieve, Srsieve, PrimeGrid, LLR L3168 Schwegler, PSieve, Srsieve, PrimeGrid, LLR L3171 Bergelt, PSieve, Srsieve, PrimeGrid, LLR L3173 Zhou2, PSieve, Srsieve, PrimeGrid, LLR L3174 Boniecki, PSieve, Srsieve, PrimeGrid, LLR L3179 Hamada, PSieve, Srsieve, PrimeGrid, LLR L3183 Haller, Srsieve, PrimeGrid, LLR L3184 Hayslette, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3200 Athanas, PSieve, Srsieve, PrimeGrid, LLR L3203 Scalise, TwinGen, PrimeGrid, LLR L3209 McArdle, GenefX64, AthGFNSieve, PrimeGrid, LLR L3222 Yamamoto, PSieve, Srsieve, PrimeGrid, LLR L3223 Yurgandzhiev, PSieve, Srsieve, PrimeGrid, LLR L3230 Kumagai, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3234 Parangalan, PSieve, Srsieve, PrimeGrid, LLR L3249 Lind, PSieve, Srsieve, PrimeGrid, LLR L3260 Stanko, PSieve, Srsieve, PrimeGrid, LLR L3261 Batalov, PSieve, Srsieve, PrimeGrid, LLR L3262 Molder, PSieve, Srsieve, PrimeGrid, LLR L3267 Cain, PSieve, Srsieve, PrimeGrid, LLR L3278 Fischer1, PSieve, Srsieve, PrimeGrid, LLR L3323 Ritschel, NewPGen, TOPS, LLR L3325 Elvy, PSieve, Srsieve, PrimeGrid, LLR L3329 Tatearka, PSieve, Srsieve, PrimeGrid, LLR L3345 Domanov1, PSieve, Rieselprime, LLR L3372 Ryan, PSieve, Srsieve, PrimeGrid, LLR L3377 Ollivier, PSieve, Srsieve, PrimeGrid, LLR L3378 Glasgow, PSieve, Srsieve, PrimeGrid, LLR L3415 Johnston1, PSieve, Srsieve, PrimeGrid, LLR L3430 Durstewitz, PSieve, Srsieve, PrimeGrid, LLR L3431 Gahan, PSieve, Srsieve, PrimeGrid, LLR L3432 Batalov, Srsieve, LLR L3458 Jia, PSieve, Srsieve, PrimeGrid, LLR L3459 Boruvka, PSieve, Srsieve, PrimeGrid, LLR L3460 Ottusch, PSieve, Srsieve, PrimeGrid, LLR L3483 Farrow, PSieve, Srsieve, PrimeGrid, LLR L3487 Ziemann, PSieve, Srsieve, PrimeGrid, LLR L3494 Batalov, NewPGen, LLR L3502 Ristic, PSieve, Srsieve, PrimeGrid, LLR L3512 Tsuji, PSieve, Srsieve, PrimeGrid, LLR L3514 Bishop1, PSieve, Srsieve, PrimeGrid, OpenPFGW, LLR L3519 Kurtovic, PSieve, Srsieve, Rieselprime, LLR L3523 Brown1, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3528 Batalov, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3532 Batalov, Gcwsieve, LLR L3539 Jacobs, PSieve, Srsieve, PrimeGrid, LLR L3543 Yama, PrimeGrid, LLR L3545 Eskam1, PSieve, Srsieve, PrimeGrid, LLR L3547 Ready, Srsieve, PrimeGrid, LLR L3548 Ready, PSieve, Srsieve, PrimeGrid, LLR L3549 Hirai, Srsieve, PrimeGrid, LLR L3552 Benson2, Srsieve, PrimeGrid, LLR L3553 Cilliers, Srsieve, PrimeGrid, LLR L3562 Schouten, Srsieve, PrimeGrid, LLR L3564 Jaworski, Srsieve, CRUS, LLR L3566 Slakans, Srsieve, PrimeGrid, LLR L3567 Meili, Srsieve, PrimeGrid, LLR L3573 Batalov, TwinGen, PrimeGrid, LLR L3593 Veit, PSieve, Srsieve, PrimeGrid, LLR L3601 Jablonski1, PSieve, Srsieve, PrimeGrid, LLR L3606 Sander, TwinGen, PrimeGrid, LLR L3610 Batalov, Srsieve, CRUS, LLR L3659 Volynsky, Srsieve, PrimeGrid, LLR L3662 Schawe, PSieve, Srsieve, PrimeGrid, LLR L3665 Kelava1, PSieve, Srsieve, Rieselprime, LLR L3668 Prokopchuk, PSieve, Srsieve, PrimeGrid, LLR L3686 Yost, Srsieve, PrimeGrid, LLR L3719 Skinner, PSieve, Srsieve, PrimeGrid, LLR L3720 Ohno, Srsieve, PrimeGrid, LLR L3735 Kurtovic, Srsieve, LLR L3743 Parker1, PSieve, Srsieve, PrimeGrid, LLR L3749 Meador, Srsieve, PrimeGrid, LLR L3760 Okazaki, PSieve, Srsieve, PrimeGrid, LLR L3763 Martin4, PSieve, Srsieve, PrimeGrid, LLR L3764 Diepeveen, PSieve, Srsieve, Rieselprime, LLR L3770 Tang, Srsieve, PrimeGrid, LLR L3772 Ottusch, Srsieve, PrimeGrid, LLR L3784 Cavnaugh, PSieve, Srsieve, PrimeGrid, LLR L3789 Toda, Srsieve, PrimeGrid, LLR L3802 Aggarwal, Srsieve, LLR L3803 Bredl, PSieve, Srsieve, PrimeGrid, LLR L3810 Radle, PSieve, Srsieve, PrimeGrid, LLR L3813 Chambers2, PSieve, Srsieve, PrimeGrid, LLR L3824 Mazzucato, PSieve, Srsieve, PrimeGrid, LLR L3829 Abrahmi, TwinGen, PrimeGrid, LLR L3839 Batalov, EMsieve, LLR L3849 Smith10, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3859 Clifton, PSieve, Srsieve, PrimeGrid, LLR L3865 Silva, PSieve, Srsieve, PrimeGrid, LLR L3869 Cholt, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3877 Jarne, PSieve, Srsieve, PrimeGrid, LLR L3887 Byerly, PSieve, Rieselprime, LLR L3895 Englehard, PSieve, Srsieve, PrimeGrid, LLR L3898 Christy, PSieve, Srsieve, PrimeGrid, LLR L3903 Miao, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3904 Darimont, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3910 Bischof, PSieve, Srsieve, PrimeGrid, LLR L3917 Rodenkirch, PSieve, Srsieve, LLR L3919 Pickering, PSieve, Srsieve, PrimeGrid, LLR L3924 Kim5, PSieve, Srsieve, PrimeGrid, LLR L3925 Okazaki, Srsieve, PrimeGrid, LLR L3933 Batalov, PSieve, Srsieve, CRUS, Rieselprime, LLR L3941 Lee8, PSieve, Srsieve, PrimeGrid, LLR L3961 Darimont, Srsieve, PrimeGrid, LLR L3964 Iakovlev, Srsieve, PrimeGrid, LLR L3975 Hou, PSieve, Srsieve, PrimeGrid, LLR L3993 Gushchak, Srsieve, PrimeGrid, LLR L3994 Domanov1, PSieve, Srsieve, NPLB, LLR L3995 Unbekannt, PSieve, Srsieve, PrimeGrid, LLR L3998 Rossman, PSieve, Srsieve, PrimeGrid, LLR L4001 Willig, Srsieve, CRUS, LLR L4016 Bedenbaugh, PSieve, Srsieve, PrimeGrid, LLR L4021 Busse, PSieve, Srsieve, PrimeGrid, LLR L4031 Darney, PSieve, Srsieve, PrimeGrid, LLR L4034 Vanc, Srsieve, PrimeGrid, LLR L4036 Domanov1, PSieve, Srsieve, CRUS, LLR L4043 Niedbala, PSieve, Srsieve, PrimeGrid, LLR L4045 Chew, PSieve, Srsieve, PrimeGrid, LLR L4061 Lee, PSieve, Srsieve, PrimeGrid, LLR L4064 Davies, Srsieve, CRUS, LLR L4082 Zimmerman, PSieve, Srsieve, PrimeGrid, LLR L4083 Charrondiere, PSieve, Srsieve, PrimeGrid, LLR L4087 Kecic, PSieve, Srsieve, PrimeGrid, LLR L4088 Graeber, PSieve, Srsieve, PrimeGrid, LLR L4099 Nietering, PSieve, Srsieve, PrimeGrid, LLR L4103 Klopffleisch, Srsieve, PrimeGrid, LLR L4108 Yoshioka, PSieve, Srsieve, PrimeGrid, LLR L4109 Palmer1, PSieve, Srsieve, PrimeGrid, LLR L4113 Batalov, PSieve, Srsieve, LLR L4114 Bubloski, PSieve, Srsieve, PrimeGrid, LLR L4119 Nelson3, PSieve, Srsieve, PrimeGrid, LLR L4139 Hawker, Srsieve, CRUS, LLR L4142 Batalov, CycloSv, EMsieve, PIES, LLR L4146 Schmidt1, Srsieve, PrimeGrid, LLR L4147 Mohacsy, PSieve, Srsieve, PrimeGrid, LLR L4148 Glatte, PSieve, Srsieve, PrimeGrid, LLR L4155 Jones4, PSieve, Srsieve, PrimeGrid, LLR L4159 Schulz5, Srsieve, PrimeGrid, LLR L4166 Kwok, PSieve, LLR L4185 Hoefliger, PSieve, Srsieve, PrimeGrid, LLR L4187 Schmidt2, Srsieve, CRUS, LLR L4189 Lawrence, Powell, Srsieve, CRUS, LLR L4190 Fnasek, PSieve, Srsieve, PrimeGrid, LLR L4197 Kumagai1, Srsieve, PrimeGrid, LLR L4198 Rawles, PSieve, Srsieve, PrimeGrid, LLR L4200 Harste, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4201 Brown1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4203 Azarenko, PSieve, Srsieve, PrimeGrid, LLR L4204 Winslow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4205 Bischof, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4207 Jaamann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4208 Farrow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4210 Cholt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4226 Heath, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4231 Schneider1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4245 Greer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4249 Larsson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4250 Vogt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4252 Nietering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4256 Gniesmer, PSieve, Srsieve, PrimeGrid, LLR L4267 Batalov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4273 Rangelrooij, Srsieve, CRUS, LLR L4274 AhlforsDahl, Srsieve, PrimeGrid, LLR L4276 Borbely, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4283 Crawford1, PSieve, Srsieve, PrimeGrid, LLR L4285 Bravin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4286 Zimmerman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4287 Suzuki1, PSieve, Srsieve, PrimeGrid, LLR L4289 Ito2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4293 Trunov, PSieve, Srsieve, PrimeGrid, LLR L4294 Kurtovic, Srsieve, CRUS, Prime95, LLR L4295 Splain, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4303 Thorson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4307 Keller1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4308 Matillek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4309 Kecic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4314 DeThomas, PSieve, Srsieve, PrimeGrid, LLR L4316 Nilsson1, PSieve, Srsieve, PrimeGrid, LLR L4323 Seisums, PSieve, Srsieve, PrimeGrid, LLR L4326 Steel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4329 Okon, Srsieve, LLR L4334 Miller5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4340 Becker4, Srsieve, PrimeGrid, LLR L4341 Goetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4342 Kaiser1, PolySieve, NewPGen, LLR L4343 Norton, PSieve, Srsieve, PrimeGrid, LLR L4347 Schaeffer, PSieve, Srsieve, PrimeGrid, LLR L4348 Burridge, Srsieve, PrimeGrid, LLR L4352 Fahlenkamp1, PSieve, Srsieve, PrimeGrid, LLR L4358 Tesarz, PSieve, Srsieve, PrimeGrid, LLR L4359 Andou, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4362 Mochizuki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4364 Steinbach, PSieve, Srsieve, PrimeGrid, LLR L4371 Schmidt2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4380 Rix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4387 Davies, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4388 Mena, PSieve, Srsieve, PrimeGrid, LLR L4393 Veit1, Srsieve, CRUS, LLR L4395 Nilsson1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4398 Greer, Srsieve, PrimeGrid, LLR L4404 Stepnicka, PSieve, Srsieve, PrimeGrid, LLR L4405 Eckhard, Srsieve, LLR L4406 Mathers, PSieve, Srsieve, PrimeGrid, LLR L4408 Fricke, PSieve, Srsieve, PrimeGrid, LLR L4410 Andresson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4411 Leudesdorff, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4412 Simpson3, PSieve, Srsieve, PrimeGrid, LLR L4414 Falk, PSieve, Srsieve, PrimeGrid, LLR L4417 Rasp, PSieve, Srsieve, PrimeGrid, LLR L4424 Miyauchi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4425 Weber1, PSieve, Srsieve, PrimeGrid, LLR L4429 Lacroix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4435 Larsson, Srsieve, PrimeGrid, LLR L4441 Miyauchi, PSieve, Srsieve, PrimeGrid, LLR L4444 Terber, Srsieve, CRUS, LLR L4445 Leudesdorff, PSieve, Srsieve, PrimeGrid, LLR L4454 Clark5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4456 Chambers2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4457 Geiger, PSieve, Srsieve, PrimeGrid, LLR L4459 Biscop, PSieve, Srsieve, PrimeGrid, LLR L4466 Falk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4472 Harvanek, Gcwsieve, MultiSieve, PrimeGrid, LLR L4476 Shane, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4477 Tennant, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4482 Mena, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4488 Vrontakis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4489 Szreter, PSieve, Srsieve, PrimeGrid, LLR L4490 Mazumdar, PSieve, Srsieve, PrimeGrid, LLR L4499 Ohsugi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4501 Eskam1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4504 Sesok, NewPGen, LLR L4505 Lind, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4506 Propper, Batalov, CycloSv, EMsieve, PIES, Prime95, LLR L4510 Ming, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4511 Donovan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4518 Primecrunch.com, Hedges, Srsieve, LLR L4521 Curtis, Srsieve, CRUS, LLR L4522 Lorsung, PSieve, Srsieve, PrimeGrid, LLR L4523 Mull, PSieve, Srsieve, PrimeGrid, LLR L4525 Kong1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4526 Schoefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4527 Fruzynski, PSieve, Srsieve, PrimeGrid, LLR L4530 Reynolds1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4531 Butez, PSieve, Srsieve, PrimeGrid, LLR L4537 Mayer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4544 Krauss, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4548 Sydekum, Srsieve, CRUS, Prime95, LLR L4549 Schick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4550 Terry, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4552 Koski, PSieve, Srsieve, PrimeGrid, LLR L4559 Okazaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4561 Propper, Batalov, CycloSv, Cyclo, EMsieve, PIES, LLR L4562 Donovan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4564 DeThomas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4568 Vrontakis, PSieve, Srsieve, PrimeGrid, LLR L4582 Kinney, PSieve, Srsieve, PrimeGrid, LLR L4583 Rohmann, PSieve, Srsieve, PrimeGrid, LLR L4584 Goforth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4585 Schawe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4591 Schwieger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4593 Mangio, PSieve, Srsieve, PrimeGrid, LLR L4595 Mangio, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4598 Connaughty, PSieve, Srsieve, PrimeGrid, LLR L4600 Simbarsky, PSieve, Srsieve, PrimeGrid, LLR L4609 Elgetz, PSieve, Srsieve, PrimeGrid, LLR L4620 Kinney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4622 Jurach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4623 Dugger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4626 Iltus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4645 McKibbon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4649 Humphries, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4654 Voskoboynikov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4656 Beck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4658 Maguin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4659 AverayJones, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4660 Snow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4664 Toledo, PSieve, Srsieve, PrimeGrid, LLR L4665 Szeluga, Kupidura, Banka, LLR L4666 Slade, PSieve, Srsieve, PrimeGrid, LLR L4667 Morelli, LLR L4668 Okazaki, Gcwsieve, MultiSieve, PrimeGrid, LLR L4669 Schwegler, Srsieve, PrimeGrid, LLR L4670 Drumm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4672 Slade, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4673 Okhrimouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4675 Lind, Srsieve, PrimeGrid, LLR L4676 Maloney, Srsieve, PrimeGrid, PrimeSierpinski, LLR L4677 Provencher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4683 Bird2, Srsieve, CRUS, LLR L4684 Sveen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4685 Masser, Srsieve, CRUS, LLR L4687 Campbell1, PSieve, Srsieve, PrimeGrid, LLR L4689 Gordon2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4690 Brandt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4691 Fruzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4692 Hajek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4694 Schapendonk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4695 Goudie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4696 Plottel, PSieve, Srsieve, PrimeGrid, LLR L4697 Sellsted, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4699 Parsonnet, PSieve, Srsieve, PrimeGrid, LLR L4700 Liu4, Srsieve, CRUS, LLR L4701 Kalus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4702 Charette, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4703 Pacini, PSieve, Srsieve, PrimeGrid, LLR L4704 Kurtovic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4706 Kraemer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4710 Wiedemann, PSieve, Srsieve, PrimeGrid, LLR L4711 Closs, PSieve, Srsieve, PrimeGrid, LLR L4712 Gravemeyer, PSieve, Srsieve, PrimeGrid, LLR L4713 Post, PSieve, Srsieve, PrimeGrid, LLR L4715 Skinner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4717 Wypych, PSieve, Srsieve, PrimeGrid, LLR L4718 Brown1, Gcwsieve, MultiSieve, PrimeGrid, LLR L4720 Gahan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4723 Lexut, PSieve, Srsieve, PrimeGrid, LLR L4724 Thonon, PSieve, Srsieve, PrimeGrid, LLR L4726 Miller7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4729 Wimmer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4730 Bowe, PSieve, Srsieve, PrimeGrid, LLR L4732 Miller7, PSieve, Srsieve, PrimeGrid, LLR L4733 Brazier, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4737 Reinhardt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4738 Gelhar, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4740 Silva1, PSieve, Srsieve, PrimeGrid, LLR L4741 Wong, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4742 Schlereth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4743 Plsak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4745 Cavnaugh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4746 Brech, PSieve, Srsieve, PrimeGrid, LLR L4747 Brech, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4752 Harvey2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4753 Riemann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4754 Calvin, PSieve, Srsieve, PrimeGrid, LLR L4755 Glatte, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4756 Dumange, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4757 Johnson9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4758 Walling, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4760 Sipes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4761 Romaidis, PSieve, Srsieve, PrimeGrid, LLR L4763 Guilleminot, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4764 McLean2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4765 Kumsta, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4772 Bird1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4773 Tohmola, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4774 Boehm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4775 Steinbach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4776 Lee7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4783 Marini, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4784 Bertolotti, Gcwsieve, MultiSieve, PrimeGrid, LLR L4786 Sydekum, Srsieve, CRUS, LLR L4787 Sunderland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4789 Kurtovic, Srsieve, Prime95, LLR L4791 Vaisanen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4793 Koski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4795 Lawson2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4796 White2, PSieve, Srsieve, PrimeGrid, LLR L4799 Vanderveen1, LLR L4800 Doenges, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4802 Jones5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4806 Rajala, Srsieve, CRUS, LLR L4807 Tsuji, Srsieve, PrimeGrid, LLR L4808 Kaiser1, PolySieve, LLR L4809 Bocan, Srsieve, PrimeGrid, LLR L4810 Dhuyvetters, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4814 Telesz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4815 Kozisek, PSieve, Srsieve, PrimeGrid, LLR L4816 Doenges, PSieve, Srsieve, PrimeGrid, LLR L4819 Inci, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4821 Svantner, PSieve, Srsieve, PrimeGrid, LLR L4822 Magklaras, PSieve, Srsieve, PrimeGrid, LLR L4823 Helm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4824 Allivato, PSieve, Srsieve, PrimeGrid, LLR L4826 Soraku, PSieve, Srsieve, PrimeGrid, LLR L4830 Eisler1, PSieve, Srsieve, PrimeGrid, LLR L4832 Meekins, Srsieve, CRUS, LLR L4834 Helm, PSieve, Srsieve, PrimeGrid, LLR L4835 Katzur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4837 Hines, Srsieve, CRUS, LLR L4840 Ylijoki, PSieve, Srsieve, PrimeGrid, LLR L4841 Baur, PSieve, Srsieve, PrimeGrid, LLR L4842 Smith11, PSieve, Srsieve, PrimeGrid, LLR L4843 Hutchins, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4844 Valentino, PSieve, Srsieve, PrimeGrid, LLR L4848 Adamec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4849 Burt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4850 Jones5, PSieve, Srsieve, PrimeGrid, LLR L4851 Schioler, PSieve, Srsieve, PrimeGrid, LLR L4854 Gory, PSieve, Srsieve, PrimeGrid, LLR L4858 Koriabine, PSieve, Srsieve, PrimeGrid, LLR L4859 Wang4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4861 Thonon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4864 Freihube, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4868 Bergmann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4869 Ogata, PSieve, Srsieve, PrimeGrid, LLR L4870 Wharton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4871 Gory, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4875 Parsonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4876 Tennant, Srsieve, CRUS, LLR L4877 Cherenkov, Srsieve, CRUS, LLR L4879 Propper, Batalov, Srsieve, LLR L4880 Goossens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4884 Somer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4889 Hundhausen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4892 Hewitt1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4893 Little, PSieve, Srsieve, PrimeGrid, LLR L4898 Kozisek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4903 Laurent1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4904 Dunchouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4905 Niegocki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4907 Reinhardt, PSieve, Srsieve, PrimeGrid, LLR L4909 Hall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4911 Calveley, Srsieve, CRUS, LLR L4914 Bishop_D, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4917 Corlatti, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4918 Weiss1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4920 Walsh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4922 Bulba, Sesok, LLR L4923 Koriabine, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4925 Korolev, Srsieve, CRUS, LLR L4926 Shenton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4927 Smith12, Srsieve, SRBase, CRUS, LLR L4928 Doornink, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4929 Givoni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4930 Shintani, PSieve, Srsieve, PrimeGrid, LLR L4932 Schroeder2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4933 Jacques, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4935 Simard, PSieve, Srsieve, PrimeGrid, LLR L4937 Ito2, Srsieve, PrimeGrid, LLR L4939 Coscia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4942 Matheis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4944 Schori, LLR2, PSieve, Srsieve, PrimeGrid, LLR L4945 Meili, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4948 SchwartzLowe, PSieve, Srsieve, PrimeGrid, LLR L4951 Niegocki, PSieve, Srsieve, PrimeGrid, LLR L4954 Romaidis, Srsieve, PrimeGrid, LLR L4955 Grosvenor, Srsieve, CRUS, LLR L4956 Merrylees, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4958 Shenton, PSieve, Srsieve, PrimeGrid, LLR L4959 Deakin, PSieve, Srsieve, PrimeGrid, LLR L4960 Kaiser1, NewPGen, TPS, LLR L4962 Baur, Srsieve, NewPGen, LLR L4963 Mortimore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4964 Doescher, GFNSvCUDA, GeneFer, LLR L4965 Propper, LLR L4968 Kaczala, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4970 Michael, PSieve, Srsieve, PrimeGrid, LLR L4972 Greer, Gcwsieve, MultiSieve, PrimeGrid, LLR L4973 Landrum, PSieve, Srsieve, PrimeGrid, LLR L4975 Thompson5, Srsieve, CRUS, LLR L4976 Propper, Batalov, Gcwsieve, LLR L4977 Miller8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4979 Matheis, PSieve, Srsieve, PrimeGrid, LLR L4980 Poon1, PSieve, Srsieve, PrimeGrid, LLR L4981 MartinezCucalon, PSieve, Srsieve, PrimeGrid, LLR L4984 Hemsley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4985 Veit, Srsieve, CRUS, LLR L4987 Canossi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4988 Harris3, PSieve, Srsieve, PrimeGrid, LLR L4990 Heindl, PSieve, Srsieve, PrimeGrid, LLR L4997 Gardner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4999 Andrews1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5001 Mamonov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5002 Kato, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5005 Hass, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5007 Faith, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5008 Niegocki, Srsieve, PrimeGrid, LLR L5009 Jungmann, Srsieve, LLR L5011 Strajt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5013 Wypych, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5014 Strokov, PSieve, Srsieve, PrimeGrid, LLR L5016 NebredaJunghans, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5018 Nielsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5019 Ayiomamitis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5020 Eikelenboom, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5021 Svantner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5022 Manz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5023 Schulz6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5024 Schumacher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5025 Lexut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5027 Moudy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5029 Krompolc, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5030 Calvin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5031 Schumacher, PSieve, Srsieve, PrimeGrid, LLR L5033 Ni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5036 Jung2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5037 Diepeveen, Underwood, PSieve, Srsieve, Rieselprime, LLR L5039 Gilliland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5041 Wallbaum, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5043 Vanderveen1, Propper, LLR L5044 Bergelt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5047 Little, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5051 Veit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5053 Yoshigoe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5056 Chu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5057 Hauhia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5061 Cooper5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5063 Wendelboe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5067 Tirkkonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5068 Silva1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5069 Friedrichsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5070 Millerick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5071 McLean2, Srsieve, CRUS, LLR L5072 Romaidis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5076 Atnashev, Srsieve, PrimeGrid, LLR L5077 Martinelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5078 McDonald4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5079 Meditz, PSieve, Srsieve, PrimeGrid, LLR L5080 Gahan, GFNSvCUDA, PrivGfnServer, LLR L5081 Howell, Srsieve, PrimeGrid, LLR L5083 Pickering, Srsieve, PrimeGrid, LLR L5084 Yagi, PSieve, Srsieve, PrimeGrid, LLR L5085 Strajt, PSieve, Srsieve, PrimeGrid, LLR L5087 Coscia, PSieve, Srsieve, PrimeGrid, LLR L5088 Hall1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5089 MARSIN, Srsieve, CRUS, LLR L5090 Jourdan, PSieve, Srsieve, PrimeGrid, LLR L5094 Th�mmler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5099 Lobring, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5100 Stephens, PSieve, Srsieve, PrimeGrid, LLR L5101 Candido, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5102 Liu6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5104 Gahan, LLR2, NewPGen, LLR L5105 Helm, LLR2, Srsieve, PrivGfnServer, LLR L5106 Glennie, PSieve, Srsieve, PrimeGrid, LLR L5110 Provencher, PSieve, Srsieve, PrimeGrid, LLR L5112 Vanderveen1, Srsieve, CRUS, LLR L5115 Doescher, LLR L5117 Trunov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5120 Greer, LLR2, PrivGfnServer, LLR L5122 Tennant, LLR2, PrivGfnServer, LLR L5123 Propper, Batalov, EMsieve, LLR L5125 Tirkkonen, PSieve, Srsieve, PrimeGrid, LLR L5126 Warach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5127 Kemenes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5129 Veit, Srsieve, PrimeGrid, LLR L5130 Jourdan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5134 Cooper5, PSieve, Srsieve, PrimeGrid, LLR L5139 Belozersky, PSieve, Srsieve, PrimeGrid, LLR L5143 Dickinson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5144 McNary, PSieve, Srsieve, PrimeGrid, LLR L5155 Harju, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5156 Dinkel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5157 Asano, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5158 Zuschlag, PSieve, Srsieve, PrimeGrid, LLR L5159 Huetter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5161 Greer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5162 Th�mmler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5166 Jaros1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5167 Gelhar, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5168 Hawkinson, PSieve, Srsieve, PrimeGrid, LLR L5169 Atnashev, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5171 Brown1, LLR2, Srsieve, PrimeGrid, LLR L5172 McNary, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5173 Bishop_D, PSieve, Srsieve, PrimeGrid, LLR L5174 Scalise, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5175 Liiv, PSieve, Srsieve, Rieselprime, LLR L5176 Early, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5177 Tapper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5178 Larsson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5179 Okazaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5180 Laluk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5181 Atnashev, LLR2, Srsieve, PrimeGrid, LLR L5183 Winskill1, PSieve, Srsieve, PrimeGrid, 12121search, LLR L5184 Byerly, PSieve, Srsieve, NPLB, LLR L5185 Elgetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5186 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, United, PrimeGrid, LLR L5188 Wong, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5189 Jackson1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5191 Kaiser1, NewPGen, LLR L5192 Anonymous, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5194 Jonas, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5195 Ridgway, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5196 Sielemann, Srsieve, CRUS, LLR L5197 Propper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5198 Elgetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5199 Romaidis, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5200 Terry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5201 Ford, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5202 Molne, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5203 Topham, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5205 Zuschlag, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5206 Wiseler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5207 Atnashev, LLR2, PrivGfnServer, LLR L5208 Schnur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5210 Brech, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5211 Orpen1, Srsieve, CRUS, LLR L5214 Dinkel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5215 Hawkinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5216 Brazier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5217 Wiseler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5220 Jones4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5223 Vera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5226 Brown1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5228 Jacques, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5229 Karpenko, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5230 Tapper, LLR2, Srsieve, PrimeGrid, LLR L5231 Veit, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5232 Bliedung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5233 Sipes, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5234 Greeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5235 Karpinski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5236 Shenton, LLR2, PSieve, Srsieve, PrivGfnServer, PrimeGrid, LLR L5237 Schwieger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5238 Jourdan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5239 Strajt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5242 Krompolc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5246 Vaisanen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5248 Delgado, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5249 Racanelli, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5250 Nakamura, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5253 Burt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5254 Gerstenberger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5256 Snow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5260 Ostaszewski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5261 Kim5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5262 Clark5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5263 Ito2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5264 Cholt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5265 Fleischman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5266 Sheridan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5267 Schnur, LLR2, Srsieve, PrimeGrid, LLR L5269 Clemence, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5270 Hennebert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5272 Conner, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5273 McGonegal, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5275 Templin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5276 Schawe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5277 McDevitt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5278 Nose, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5279 Schick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5282 Somer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5283 Hua, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5284 Fischer1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5285 Merrylees, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5286 Reynolds1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5287 Thonon, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5288 Heindl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5290 Cooper5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5294 Hewitt1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5295 Gilliland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5296 Piaive, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5297 Nakamura, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5298 Kaczmarek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5299 Corlatti, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5300 Hajek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5301 Harju, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5302 Davies, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5305 Thanry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5307 Bauer2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5308 Krauss, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5309 Bishop_D, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5310 Hubbard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5311 Reich, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5312 Tyndall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5313 Barnes, PSieve, Srsieve, Rieselprime, LLR L5314 Satoh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5315 Dec, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5316 Walsh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5317 Freeze, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5318 Ruber, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5319 Abbey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5320 Niegocki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5321 Dark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5322 Monnin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5323 Chan1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5324 Boehm, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5325 Drager, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5326 Deakin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5327 Shenton, LLR2, Srsieve, LLR L5332 Mizusawa, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5334 Jones6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5335 Harvey1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5336 Leblanc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5337 Kawamura1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5338 Deakin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5342 Rodenkirch, Srsieve, CRUS, LLR L5343 Tajika, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5344 Lowe1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5345 Johnson8, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5346 Polansky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5348 Adam, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5350 McDevitt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5352 Eklof, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5353 Belolipetskiy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5354 Doornink, NewPGen, OpenPFGW, LLR L5355 Henriksson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5356 Hsu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5358 Gmirkin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5359 Ridgway, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5360 Leitch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5361 Schneider6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5362 Domanov1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5364 Blyth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5366 Michael, Srsieve, CRUS, LLR L5367 Hsu2, Srsieve, CRUS, LLR L5368 Valentino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5369 Schnur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5370 Piotrowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5372 Vitiello, Srsieve, CRUS, LLR L5373 Baranchikov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5375 Blanchard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5376 Ranch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5377 Yasuhisa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5378 Seeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5379 Smith4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5380 Campulka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5381 Meppiel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5382 Bulanov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5384 Riemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5387 Johns, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5390 Lemkau, Srsieve, CRUS, LLR L5391 Black1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5392 McDonald4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5393 Lu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5395 Early, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5399 Kolesov, LLR L5400 Hefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5401 Champ, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5402 Greer, LLR2, Gcwsieve, MultiSieve, PrimeGrid, LLR L5403 Slade1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5404 Wiseler, LLR2, Srsieve, PrimeGrid, LLR L5405 Gerstenberger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5406 Jaros, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5407 Mahnken, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5408 Kreth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5409 Lu, Srsieve, CRUS, LLR L5410 Anonymous, Srsieve, CRUS, LLR L5412 Poon1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5413 David1, Srsieve, CRUS, LLR L5414 Mollerus, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5416 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5418 Pollak, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5421 Iwasaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5425 Lichtenwimmer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5426 Gilliland, Srsieve, CRUS, LLR L5427 Hewitt1, LLR2, Srsieve, PrimeGrid, LLR L5429 Meditz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5432 Tatsianenka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5433 Hatanaka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5434 Parsonnet, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5435 Murphy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5437 Rijfers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5438 Tang, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5439 Batalov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5440 McGonegal, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5441 Cherenkov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5442 Moreira, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5443 Venjakob, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5444 Platz, LLR2, Srsieve, PrimeGrid, LLR L5448 Rubin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5449 Reinhardt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5450 Mizusawa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5451 Wilkins, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5452 Morera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5453 Slaets, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5456 Gundermann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5457 Iwasaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5459 Sekanina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5460 Headrick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5461 Anonymous, LLR2, Srsieve, PrimeGrid, LLR L5462 Raimist, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5463 Goforth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5464 Pickering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5465 Hubbard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5466 Furushima, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5467 Tamai1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5470 Latge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5471 Dunchouk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5472 Ready, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5473 StPierre, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5476 Steinbach, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5477 Meador, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5480 Boddener, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5482 Raimist, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5485 Mahnken, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5488 Kecic, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5491 Piaive, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5492 Slaets, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5493 Liu6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5497 Goetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5499 Osada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5500 Racanelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5501 Seeley, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5502 Floyd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5503 Soule, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5504 Cerny, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5505 Chovanec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5507 Brandt2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5508 Gauch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5509 Nietering, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5512 Akesson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5514 Cavnaugh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5516 Piesker, PSieve, Srsieve, NPLB, LLR L5517 Cavecchia, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5518 Eisler1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5523 Sekanina, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5524 Matillek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5526 Kickler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5527 Doornink, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5529 Baur1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5530 Matillek, LLR2, Srsieve, PrimeGrid, LLR L5531 Koci, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5532 Morera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5534 Cervelle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5535 Skahill, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5536 Bennett1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5537 Schafer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5540 Brown6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5541 Parker, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5543 Lucendo, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5544 Byerly, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5545 Kruse, PSieve, Srsieve, NPLB, LLR L5546 Steinwedel, PSieve, Srsieve, NPLB, LLR L5547 Hoonoki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5548 Steinberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5549 Zhang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5550 Provencher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5553 DAmico, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5554 Lucendo, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5555 Parangalan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5556 Javens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5557 Drake, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5558 Lee7, LLR2, Srsieve, PrimeGrid, LLR L5559 Roberts, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5560 Amberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5562 Cheung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5563 Akesson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5564 Lee7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5565 Bailey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5566 Latge, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5567 Marshall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5568 Schioler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5569 Michael, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5570 Arnold, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5571 Williams7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5572 Sveen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5573 Friedrichsen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5574 Laboisne, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5575 Blanchard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5576 Amorim, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5577 Utebaev, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5578 Jablonski1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5579 Cox2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5581 Pickles, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5582 Einvik, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5583 Tanaka3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5584 Barr, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5585 Faith, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5586 Vultur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5587 AverayJones, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5588 Shi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5589 Kupka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5590 Schumacher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5592 Shintani, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5594 Brown7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5595 Hyvonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5596 Kozisek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5600 Steinberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5601 Sato1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5604 Takahashi2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5606 Clark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5607 Rodermond, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5608 Pieritz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5609 Sielemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5610 Katzur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5611 Smith13, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5612 Lugowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5613 Delisle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5614 Becker2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5615 Dodd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5616 Miller7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5617 Sliwicki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5618 Wilson4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5619 Piotrowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5620 He, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5621 Millerick, LLR2, Srsieve, PrimeGrid, LLR L5624 Farrow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5625 Sellsted, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5626 Clark, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5627 Bulanov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5629 Dickinson, Srsieve, CRUS, LLR L5631 Mittelstadt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5632 Marler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5634 Gao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5636 Santosa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5637 Bestor, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5638 Piskun, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5639 Cavecchia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5640 Xu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5641 Kwok, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5645 Orpen1, SRBase, LLR L5646 Dickey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5647 Soraku, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5648 York, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5649 Dietsch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5650 Ketamino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5651 Lexut, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5652 Wilson5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5653 Beck1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5655 Hoffman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5656 McAdams, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5657 Alden, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5658 Sloan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5662 OMalley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5663 Li5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5666 Wendelboe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5667 Totty, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5668 Finn, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5670 Heindl1, Srsieve, CRUS, LLR L5671 Rauh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5676 Fnasek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5679 Shane, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5682 Floyd, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5683 Glatte, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5685 Bestor, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5686 Pistorius, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5687 Wellck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5690 Eldred, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5693 Huan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5694 Petersen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5696 Earle, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5697 Black2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5698 Stenschke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5703 Koudelka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5704 Hampicke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5705 Wharton, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5706 Wallbaum, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5707 Johns, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5710 Hass, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5711 Gingrich1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5712 Stahl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5714 Loucks, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5715 Calvin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5718 Ketamino, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5720 Trigueiro, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5721 Fischer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5723 Fergusson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5724 Pilz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5725 Gingrich1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5726 Noxe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5727 Headrick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5731 Michael, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5732 Monroe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5735 Kobrzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5736 Riva, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5738 Schaeffer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5740 Chu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5742 Steinmetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5745 Saladin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5746 Meister1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5748 Norbert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5749 Gahan, LLR2, LLR L5750 Shi, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5752 Wissel, LLR L5754 Abad, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5755 Kwiatkowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5756 Wei, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5758 Bishop1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5763 Williams7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5764 Tirkkonen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5765 Propper, Gcwsieve, LLR L5766 Takahashi2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5767 Xu2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5768 Lewis2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5769 Welsh1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5770 Silva1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5771 Becker-Bergemann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5772 Tarson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5773 Lugowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5774 Chambers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5775 Garambois, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5776 Anonymous, LLR2, PSieve, Srsieve, United, PrimeGrid, LLR L5778 Sarok, Srsieve, CRUS, LLR L5780 Blanchard, Srsieve, CRUS, LLR L5782 Kang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5783 Bishop1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5784 Coplin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5787 Johnson10, Srsieve, CRUS, LLR L5789 Williams8, LLR L5790 Kolencik, Srsieve, CRUS, LLR L5791 Rindahl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5793 Wang5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5794 Morgan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5796 Hall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5797 Ivanovski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5798 Schoeberl, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5799 Lehmann1, LLR2, Srsieve, PrimeGrid, LLR L5802 Borgerding, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5803 Kwok, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5804 Bowe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5805 Belozersky, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5807 Krauss, Srsieve, PrimeGrid, PRST, LLR L5808 Propper, Batalov, PSieve, Srsieve, LLR L5809 Zhao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5810 Meister1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5811 Dettweiler, LLR2, Srsieve, CRUS, LLR L5812 Song, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5814 Chodzinski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5816 Guenter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5817 Kilstromer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5818 Belozersky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5819 Schmidt2, LLR2, PSieve, Srsieve, NPLB, LLR L5820 Hoonoki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5821 Elmore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5825 Norton, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5826 Morávek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5827 Yasuhisa, TwinGen, NewPGen, TPS, LLR L5829 Dickinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5830 McLean2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5831 Chapman2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5833 Russell2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5834 Roberts, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5836 Becker2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5837 Lin1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5839 Stewart1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5841 Yarham, Srsieve, CRUS, LLR L5842 Steenerson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5843 Vink, Kruse, Kwok, TwinGen, NewPGen, TPS, LLR L5844 Kadowaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5847 Eldredge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5848 Bressani, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5851 Liskay, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5852 Kwiatkowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5853 Simard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5854 Lehmann1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5855 Williams9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5858 GervaisLavoie, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5860 Joseph, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5862 Oppliger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5863 Duvinage, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5864 Amberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5865 Mendrik1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5866 Kim3, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5869 Arnold, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5870 Bodlina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5871 Yakubchak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5875 Monroe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5878 Klinkenberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5879 Sanner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5880 Gehrke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5881 Medcalf, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5882 Basil, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5885 Moreno1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5887 DeRidder, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5888 Presler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5894 Tamai1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5904 Rix, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5913 Burtner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5916 Gao, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5923 Ryabchikov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5926 Carquillat, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5929 Bauer2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5938 Philip, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5945 Bush, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5948 Meuler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5956 Garnier1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5960 Jayaputera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5961 Carlier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5969 Kang, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5971 Da_Mota, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5974 Presler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5977 Brockerhoff, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5984 Desbonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5986 Wolfe1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5989 Williams10, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5995 Lee10, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5997 Smith15, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5998 Da_Mota, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6002 Hauhia, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6005 Overstreet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6006 Propper, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6010 Chaney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6011 Mehner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6013 Preston1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6014 Greeley, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6015 Uehara1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6019 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, Rechenkraft, PrimeGrid, LLR L6026 Bruner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6027 Johnson10, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6029 Schmidt2, Kwok, LLR2, TwinGen, NewPGen, TPS, LLR L6033 Tang3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6035 Garrison1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6036 Hogan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6038 Schafer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6040 Garland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6042 Fink, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6043 Podsada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6044 Chesnut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6047 Wheeler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6049 Chen4, LLR L6057 Kim7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6058 StGeorge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6064 Adrian, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6065 Yakubchak1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6067 O’Hara, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6070 Mumper, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6072 Lundström, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6073 Rojas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6075 Chodzinski, LLR2, Srsieve, PrimeGrid, LLR L6076 Yakubchak2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6077 Vink, Schmidt2, Kwok, TwinGen, NewPGen, TPS, LLR L6078 Zhaozheng, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6080 Sondergard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6082 Mckinley, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6083 Yagi, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6084 Criswell, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6085 Granowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6086 Pastierik, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6087 Osaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6088 Abad, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6089 Lynch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6090 Champ, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6091 Paniczko, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6092 Boerner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6093 Wagner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6094 Skendelis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6095 Stach, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6096 Biggs, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6099 Pickering, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6100 Hilbrink, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6102 Yakubchak3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6110 Perek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6123 Mukanos, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6127 Natividad, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6129 Slade2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6151 Li6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6159 Weinberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6162 Earle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6163 Drozd, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6166 Carquillat, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6167 Morriss, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6170 Liang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6173 Penning, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6176 Shriner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6177 Mostad, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6178 Hua, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6182 Jans, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6183 Lack, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6184 Michaud, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6185 Abromeit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6187 Deram, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6189 Mohacsy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6190 Wen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6198 Meckley, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6201 Lein, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6202 Stach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6204 Probst, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6205 McDonald3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6207 Allen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6215 Vykouril, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6217 Keskitalo, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6219 Roy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6220 Sandhop, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6221 Wu2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6225 Stenschke, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6226 Ray, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6227 Zhao1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6228 Fernando, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6229 Dean1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6230 Gnann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6231 Ives, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6232 O'Mara, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6233 Zhong, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6234 Liu8, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6235 Rosick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6236 Neujahr, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6237 Steffens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6238 Pabsch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6240 Christensen, LLR2, PSieve, Srsieve, PrimeGrid, LLR M Morain MM Morii MP1 Durant, GIMPS, GpuOwl O Oakes p3 Dohmen, OpenPFGW p8 Caldwell, OpenPFGW p12 Water, OpenPFGW p16 Heuer, OpenPFGW p21 Anderson, Robinson, OpenPFGW p44 Broadhurst, OpenPFGW p49 Berg, OpenPFGW p54 Broadhurst, Water, OpenPFGW p58 Glover, Oakes, OpenPFGW p65 DavisK, Kuosa, OpenPFGW p85 Marchal, Carmody, Kuosa, OpenPFGW p137 Rodenkirch, MultiSieve, OpenPFGW p148 Yama, Noda, Nohara, NewPGen, MatGFN, PRP, OpenPFGW p151 Kubota, NewPGen, OpenPFGW p155 DavisK, NewPGen, OpenPFGW p158 Paridon, NewPGen, OpenPFGW p168 Cami, OpenPFGW p170 Wu_T, Primo, OpenPFGW p189 Bohanon, LLR, OpenPFGW p193 Irvine, Broadhurst, Primo, OpenPFGW p235 Bedwell, OpenPFGW p236 Cooper, NewPGen, PRP, OpenPFGW p247 Bonath, Srsieve, CRUS, LLR, OpenPFGW p252 Oakes, NewPGen, OpenPFGW p255 Siemelink, Srsieve, CRUS, OpenPFGW p259 Underbakke, GenefX64, AthGFNSieve, OpenPFGW p268 Rodenkirch, Srsieve, CRUS, OpenPFGW p269 Zhou, OpenPFGW p279 Domanov1, Srsieve, Rieselprime, Prime95, OpenPFGW p286 Batalov, Srsieve, OpenPFGW p290 Domanov1, Fpsieve, PrimeGrid, OpenPFGW p295 Angel, NewPGen, OpenPFGW p296 Kaiser1, Srsieve, LLR, OpenPFGW p301 Winskill1, Fpsieve, PrimeGrid, OpenPFGW p302 Gasewicz, Fpsieve, PrimeGrid, OpenPFGW p308 DavisK, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p309 Yama, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p310 Hubbard, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p312 Doggart, Fpsieve, PrimeGrid, OpenPFGW p314 Hubbard, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p332 Johnson6, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p334 Goetz, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p338 Tomecko, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p342 Trice, OpenPFGW p346 Burt, Fpsieve, PrimeGrid, OpenPFGW p350 Koen, Gcwsieve, GenWoodall, OpenPFGW p355 Domanov1, Srsieve, CRUS, OpenPFGW p360 Kinne, Exoo, OpenPFGW p362 Snow, Fpsieve, PrimeGrid, OpenPFGW p363 Batalov, OpenPFGW p364 Batalov, NewPGen, OpenPFGW p365 Poplin, Srsieve, CRUS, OpenPFGW p366 Demeyer, Siemelink, Srsieve, CRUS, OpenPFGW p373 Morelli, OpenPFGW p378 Batalov, Srsieve, CRUS, LLR, OpenPFGW p379 Batalov, CycloSv, Cyclo, EMsieve, PIES, OpenPFGW p382 Oestlin, NewPGen, OpenPFGW p384 Booker, OpenPFGW p387 Zimmerman, GeneFer, AthGFNSieve, PrimeGrid, OpenPFGW p391 Keiser, NewPGen, OpenPFGW p394 Fukui, MultiSieve, OpenPFGW p395 Angel, Augustin, NewPGen, OpenPFGW p396 Ikisugi, OpenPFGW p398 Stocker, OpenPFGW p403 Bonath, Cksieve, OpenPFGW p405 Propper, Cksieve, OpenPFGW p406 DavisK, Luhn, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p407 Lamprecht, Luhn, OpenPFGW p408 Batalov, PolySieve, OpenPFGW p409 Nielsen1, OpenPFGW p413 Morimoto, OpenPFGW p414 Naimi, OpenPFGW p416 Monnin, LLR2, PrivGfnServer, OpenPFGW p417 Tennant, LLR2, PrivGfnServer, OpenPFGW p418 Sielemann, LLR2, PrivGfnServer, OpenPFGW p419 Bird1, LLR2, PrivGfnServer, OpenPFGW p420 Alex, OpenPFGW p421 Gahan, LLR2, PrivGfnServer, OpenPFGW p422 Kaiser1, PolySieve, OpenPFGW p423 Propper, Batalov, EMsieve, OpenPFGW p425 Propper, MultiSieve, OpenPFGW p426 Schoeler, NewPGen, OpenPFGW p427 Niegocki, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p428 Trunov, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p430 Propper, Batalov, NewPGen, OpenPFGW p431 Piesker, Srsieve, CRUS, OpenPFGW p433 Dettweiler, LLR2, Srsieve, CRUS, OpenPFGW p434 Doornink, MultiSieve, OpenPFGW p435 Dettweiler, LLR2, PSieve, Srsieve, NPLB, OpenPFGW p436 Schwieger, OpenPFGW p437 Propper, Batalov, EMsieve, PIES, OpenPFGW p439 Trice, MultiSieve, OpenPFGW p440 Batalov, EMsieve, OpenPFGW p441 Wu_T, CM, OpenPFGW p442 Presler, MultiSieve, PrimeGrid, PRST, OpenPFGW p443 Brochtrup, Srsieve, CRUS, OpenPFGW p444 Kadowaki, MultiSieve, PrimeGrid, PRST, OpenPFGW p445 Merrylees, MultiSieve, PrimeGrid, PRST, OpenPFGW p446 Greer, MultiSieve, PrimeGrid, PRST, OpenPFGW p447 Wallbaum, MultiSieve, PrimeGrid, PRST, OpenPFGW p448 Little, MultiSieve, PrimeGrid, PRST, OpenPFGW p449 Rodriguez2, OpenPFGW PM Mihailescu SB10 Agafonov, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB11 Sunde, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB12 Szabolcs, Srsieve, SoBSieve, ProthSieve, Ksieve, PrimeGrid, LLR, SB SB6 Sundquist, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB7 Team_Prime_Rib, SoBSieve, ProthSieve, Ksieve, PRP, SB SB8 Gordon, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB9 Hassler, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SG Slowinski, Gage WD Williams, Dubner, Cruncher WM Morain, Williams x13 Renze x16 Doumen, Beelen, Unknown x20 Irvine, Broadhurst, Water x23 Broadhurst, Water, Renze, OpenPFGW, Primo x24 Jarai_Z, Farkas, Csajbok, Kasza, Jarai, Unknown x25 Broadhurst, Water, OpenPFGW, Primo x28 Iskra x33 Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x36 Irvine, Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x38 Broadhurst, OpenPFGW, Primo x39 Broadhurst, Dubner, Keller, OpenPFGW, Primo x44 Zhou, Unknown x45 Batalov, OpenPFGW, Primo, Unknown x46 Otremba, Fpsieve, OpenPFGW, Unknown x47 Szekeres, Magyar, Gevay, Farkas, Jarai, Unknown x48 Asuncion, Allombert, Unknown x49 Facq, Asuncion, Allombert, Unknown x50 Propper, GFNSvCUDA, GeneFer, Unknown x51 Lexut1, Srsieve, CRUS, Unknown Y Young