THE LARGEST KNOWN PRIMES (Primes with 800,000 or more digits) (selected smaller primes which have comments are included) Originally Compiled by Samuel Yates -- Continued by Chris Caldwell and now maintained by Reginald McLean (Mon Oct 2 13:38:29 UTC 2023) So that I can maintain this database of the 5,000 largest known primes (plus selected smaller primes with 1,000 or more digits), please send any new primes (that are large enough) to: https://t5k.org/bios/submission.php This list in a searchable form (plus information such as how to find large primes and how to prove primality) is available at the interactive web site: https://t5k.org/primes/ See the last pages for information about the provers. The letters after the rank refer to when the prime was submitted. 'a' is this month, 'b' last month... ----- ------------------------------- -------- ----- ---- -------------- rank description digits who year comment ----- ------------------------------- -------- ----- ---- -------------- 1 2^82589933-1 24862048 G16 2018 Mersenne 51?? 2 2^77232917-1 23249425 G15 2018 Mersenne 50?? 3 2^74207281-1 22338618 G14 2016 Mersenne 49?? 4 2^57885161-1 17425170 G13 2013 Mersenne 48 5 2^43112609-1 12978189 G10 2008 Mersenne 47 6 2^42643801-1 12837064 G12 2009 Mersenne 46 7f Phi(3,-465859^1048576) 11887192 L4561 2023 Generalized unique 8 2^37156667-1 11185272 G11 2008 Mersenne 45 9 2^32582657-1 9808358 G9 2006 Mersenne 44 10 10223*2^31172165+1 9383761 SB12 2016 11 2^30402457-1 9152052 G9 2005 Mersenne 43 12 2^25964951-1 7816230 G8 2005 Mersenne 42 13 2^24036583-1 7235733 G7 2004 Mersenne 41 14 1963736^1048576+1 6598776 L4245 2022 Generalized Fermat 15 1951734^1048576+1 6595985 L5583 2022 Generalized Fermat 16 202705*2^21320516+1 6418121 L5181 2021 17 2^20996011-1 6320430 G6 2003 Mersenne 40 18 1059094^1048576+1 6317602 L4720 2018 Generalized Fermat 19d 3*2^20928756-1 6300184 L5799 2023 20 919444^1048576+1 6253210 L4286 2017 Generalized Fermat 21e 81*2^20498148+1 6170560 L4965 2023 Generalized Fermat 22 7*2^20267500+1 6101127 L4965 2022 Divides GF(20267499,12) [GG] 23 168451*2^19375200+1 5832522 L4676 2017 24 69*2^19374980-1 5832452 L4965 2022 25 3*2^18924988-1 5696990 L5530 2022 26 69*2^18831865-1 5668959 L4965 2021 27 97139*2^18397548-1 5538219 L4965 2023 28 7*2^18233956+1 5488969 L4965 2020 Divides Fermat F(18233954) 29 3*2^18196595-1 5477722 L5461 2022 30 3*2^17748034-1 5342692 L5404 2021 31 Phi(3,-123447^524288) 5338805 L4561 2017 Generalized unique 32 3622*5^7558139-1 5282917 L4965 2022 33 7*6^6772401+1 5269954 L4965 2019 34 2*3^10852677+1 5178044 L4965 2023 Divides phi 35 8508301*2^17016603-1 5122515 L4784 2018 Woodall 36 3*2^16819291-1 5063112 L5230 2021 37 3*2^16408818+1 4939547 L5171 2020 Divides GF(16408814,3), GF(16408817,5) 38 69*2^15866556-1 4776312 L4965 2021 39 2525532*73^2525532+1 4705888 L5402 2021 Generalized Cullen 40 11*2^15502315+1 4666663 L4965 2023 Divides GF(15502313,10) [GG] 41 37*2^15474010+1 4658143 L4965 2022 42 93839*2^15337656-1 4617100 L4965 2022 43 2^15317227+2^7658614+1 4610945 L5123 2020 Gaussian Mersenne norm 41?, generalized unique 44b 13*2^15294536+1 4604116 A2 2023 45 6*5^6546983+1 4576146 L4965 2020 46 69*2^14977631-1 4508719 L4965 2021 47 192971*2^14773498-1 4447272 L4965 2021 48 4*5^6181673-1 4320805 L4965 2022 49 6962*31^2863120-1 4269952 L5410 2020 50 37*2^14166940+1 4264676 L4965 2022 51 99739*2^14019102+1 4220176 L5008 2019 52 69*2^13832885-1 4164116 L4965 2022 53 404849*2^13764867+1 4143644 L4976 2021 Generalized Cullen 54 25*2^13719266+1 4129912 L4965 2022 Generalized Fermat 55 81*2^13708272+1 4126603 L4965 2022 Generalized Fermat 56 2740879*2^13704395-1 4125441 L4976 2019 Generalized Woodall 57 479216*3^8625889-1 4115601 L4976 2019 Generalized Woodall 58 Phi(3,-143332^393216) 4055114 L4506 2017 Generalized unique 59 81*2^13470584+1 4055052 L4965 2022 Generalized Fermat 60 2^13466917-1 4053946 G5 2001 Mersenne 39 61 9*2^13334487+1 4014082 L4965 2020 Divides GF(13334485,3) 62 206039*2^13104952-1 3944989 L4965 2021 63 2805222*5^5610444+1 3921539 L4972 2019 Generalized Cullen 64 19249*2^13018586+1 3918990 SB10 2007 65 2293*2^12918431-1 3888839 L4965 2021 66 81*2^12804541+1 3854553 L4965 2022 67 4*5^5380542+1 3760839 L4965 2023 Generalized Fermat 68 9*2^12406887+1 3734847 L4965 2020 Divides GF(12406885,3) 69e 7*2^12286041-1 3698468 L4965 2023 70 69*2^12231580-1 3682075 L4965 2021 71 27*2^12184319+1 3667847 L4965 2021 72 3761*2^11978874-1 3606004 L4965 2022 73 3*2^11895718-1 3580969 L4159 2015 74 37*2^11855148+1 3568757 L4965 2022 75e 6339004^524288+1 3566218 L1372 2023 Generalized Fermat 76 5897794^524288+1 3549792 x50 2022 Generalized Fermat 77 3*2^11731850-1 3531640 L4103 2015 78 69*2^11718455-1 3527609 L4965 2020 79 41*2^11676439+1 3514960 L4965 2022 80 4896418^524288+1 3507424 L4245 2022 Generalized Fermat 81 81*2^11616017+1 3496772 L4965 2022 82 69*2^11604348-1 3493259 L4965 2020 83b 4450871*6^4450871+1 3463458 L5765 2023 Generalized Cullen 84 9*2^11500843+1 3462100 L4965 2020 Divides GF(11500840,12) 85 3*2^11484018-1 3457035 L3993 2014 86 193997*2^11452891+1 3447670 L4398 2018 87 3638450^524288+1 3439810 L4591 2020 Generalized Fermat 88 9221*2^11392194-1 3429397 L5267 2021 89 9*2^11366286+1 3421594 L4965 2020 Generalized Fermat 90 5*2^11355764-1 3418427 L4965 2021 91b 732050*6^4392301+1 3417881 L5765 2023 Generalized Cullen 92 3214654^524288+1 3411613 L4309 2019 Generalized Fermat 93 146561*2^11280802-1 3395865 L5181 2020 94 2985036^524288+1 3394739 L4752 2019 Generalized Fermat 95 6929*2^11255424-1 3388225 L4965 2022 96 2877652^524288+1 3386397 L4250 2019 Generalized Fermat 97 2788032^524288+1 3379193 L4584 2019 Generalized Fermat 98 2733014^524288+1 3374655 L4929 2019 Generalized Fermat 99 9*2^11158963+1 3359184 L4965 2020 Divides GF(11158962,5) 100 9271*2^11134335-1 3351773 L4965 2021 101 2312092^524288+1 3336572 L4720 2018 Generalized Fermat 102 2061748^524288+1 3310478 L4783 2018 Generalized Fermat 103 1880370^524288+1 3289511 L4201 2018 Generalized Fermat 104 27*2^10902757-1 3282059 L4965 2022 105 3*2^10829346+1 3259959 L3770 2014 Divides GF(10829343,3), GF(10829345,5) 106 11*2^10803449+1 3252164 L4965 2022 Divides GF(10803448,6) 107 11*2^10797109+1 3250255 L4965 2022 108 7*2^10612737-1 3194754 L4965 2022 109 37*2^10599476+1 3190762 L4965 2022 Divides GF(10599475,10) 110 5*2^10495620-1 3159498 L4965 2021 111e Phi(3,-3^3304302+1)/3 3153105 L5123 2023 Generalized unique 112 5*2^10349000-1 3115361 L4965 2021 113 Phi(3,-844833^262144) 3107335 L4506 2017 Generalized unique 114c 52922*5^4399812-1 3075342 A1 2023 115 Phi(3,-712012^262144) 3068389 L4506 2017 Generalized unique 116d 177742*5^4386703-1 3066180 L5807 2023 117 874208*54^1748416-1 3028951 L4976 2019 Generalized Woodall 118 475856^524288+1 2976633 L3230 2012 Generalized Fermat 119 2*3^6236772+1 2975697 L4965 2022 120c 15*2^9830108+1 2959159 A2 2023 121 9*2^9778263+1 2943552 L4965 2020 122 1806676*41^1806676+1 2913785 L4668 2018 Generalized Cullen 123 356926^524288+1 2911151 L3209 2012 Generalized Fermat 124 341112^524288+1 2900832 L3184 2012 Generalized Fermat 125 213988*5^4138363-1 2892597 L5621 2022 126 43*2^9596983-1 2888982 L4965 2022 127 121*2^9584444+1 2885208 L5183 2020 Generalized Fermat 128 11*2^9381365+1 2824074 L4965 2020 Divides GF(9381364,6) 129c 15*2^9312889+1 2803461 L4965 2023 130 49*2^9187790+1 2765803 L4965 2022 Generalized Fermat 131 27653*2^9167433+1 2759677 SB8 2005 132 90527*2^9162167+1 2758093 L1460 2010 133 6795*2^9144320-1 2752719 L4965 2021 134d 75*2^9079482+1 2733199 L4965 2023 135 1323365*116^1323365+1 2732038 L4718 2018 Generalized Cullen 136 57*2^9075622-1 2732037 L4965 2022 137 63838*5^3887851-1 2717497 L5558 2022 138 13*2^8989858+1 2706219 L4965 2020 139 4159*2^8938471-1 2690752 L4965 2022 140 273809*2^8932416-1 2688931 L1056 2017 141 2*3^5570081+1 2657605 L4965 2020 Divides Phi(3^5570081,2) [g427] 142 25*2^8788628+1 2645643 L5161 2021 Generalized Fermat 143 2038*366^1028507-1 2636562 L2054 2016 144 64598*5^3769854-1 2635020 L5427 2022 145 8*785^900325+1 2606325 L4786 2022 146 17*2^8636199+1 2599757 L5161 2021 Divides GF(8636198,10) 147 75898^524288+1 2558647 p334 2011 Generalized Fermat 148 25*2^8456828+1 2545761 L5237 2021 Divides GF(8456827,12), generalized Fermat 149 39*2^8413422+1 2532694 L5232 2021 150 31*2^8348000+1 2513000 L5229 2021 151 27*2^8342438-1 2511326 L3483 2021 152 3687*2^8261084-1 2486838 L4965 2021 153 273662*5^3493296-1 2441715 L5444 2021 154 81*2^8109236+1 2441126 L4965 2022 Generalized Fermat 155 11*2^8103463+1 2439387 L4965 2020 Divides GF(8103462,12) 156 102818*5^3440382-1 2404729 L5427 2021 157 11*2^7971110-1 2399545 L2484 2019 158 27*2^7963247+1 2397178 L5161 2021 Divides Fermat F(7963245) 159 3177*2^7954621-1 2394584 L4965 2021 160 39*2^7946769+1 2392218 L5226 2021 Divides GF(7946767,12) 161 7*6^3072198+1 2390636 L4965 2019 162 3765*2^7904593-1 2379524 L4965 2021 163 29*2^7899985+1 2378134 L5161 2021 Divides GF(7899984,6) 164 5113*2^7895471-1 2376778 L4965 2022 165 861*2^7895451-1 2376771 L4965 2021 166b 75*2^7886683+1 2374131 A2 2023 167 28433*2^7830457+1 2357207 SB7 2004 168 2589*2^7803339-1 2349043 L4965 2022 169 8401*2^7767655-1 2338302 L4965 2023 170 5*2^7755002-1 2334489 L4965 2021 171 2945*2^7753232-1 2333959 L4965 2022 172 2545*2^7732265-1 2327648 L4965 2021 173 5539*2^7730709-1 2327180 L4965 2021 174 4817*2^7719584-1 2323831 L4965 2021 175 1341174*53^1341174+1 2312561 L4668 2017 Generalized Cullen 176 9467*2^7680034-1 2311925 L4965 2022 177 45*2^7661004+1 2306194 L5200 2020 178 15*2^7619838+1 2293801 L5192 2020 179 3597*2^7580693-1 2282020 L4965 2021 180 3129*2^7545557-1 2271443 L4965 2023 181 7401*2^7523295-1 2264742 L4965 2021 182 45*2^7513661+1 2261839 L5179 2020 183 Phi(3,-558640^196608) 2259865 L4506 2017 Generalized unique 184e 9*2^7479919-1 2251681 L3345 2023 185 1875*2^7474308-1 2249995 L4965 2022 186 69*2^7452023+1 2243285 L4965 2023 Divides GF(7452020,3) [GG] 187 4*5^3189669-1 2229484 L4965 2022 188 29*2^7374577+1 2219971 L5169 2020 Divides GF(7374576,3) 189 3197*2^7359542-1 2215447 L4965 2022 190 109838*5^3168862-1 2214945 L5129 2020 191b 95*2^7354869+1 2214039 A2 2023 192 101*2^7345194-1 2211126 L1884 2019 193b 85*2^7333444+1 2207589 A2 2023 194 15*2^7300254+1 2197597 L5167 2020 195 422429!+1 2193027 p425 2022 Factorial 196 1759*2^7284439-1 2192838 L4965 2021 197f 1909683*14^1909683+1 2188748 L5765 2023 Generalized Cullen 198 737*2^7269322-1 2188287 L4665 2017 199b 93*2^7241494+1 2179909 A2 2023 200 118568*5^3112069+1 2175248 L690 2020 201 6039*2^7207973-1 2169820 L4965 2021 202 502573*2^7181987-1 2162000 L3964 2014 203 402539*2^7173024-1 2159301 L3961 2014 204 3343*2^7166019-1 2157191 L1884 2016 205 161041*2^7107964+1 2139716 L4034 2015 206b 294*213^918952-1 2139672 L5811 2023 207 27*2^7046834+1 2121310 L3483 2018 208 1759*2^7046791-1 2121299 L4965 2021 209 327*2^7044001-1 2120459 L4965 2021 210 5*2^7037188-1 2118406 L4965 2021 211 3*2^7033641+1 2117338 L2233 2011 Divides GF(7033639,3) 212 33661*2^7031232+1 2116617 SB11 2007 213 Phi(3,-237804^196608) 2114016 L4506 2017 Generalized unique 214 207494*5^3017502-1 2109149 L5083 2020 215 15*2^6993631-1 2105294 L4965 2021 216 8943501*2^6972593-1 2098967 L466 2022 217 6020095*2^6972593-1 2098967 L466 2022 218 2^6972593-1 2098960 G4 1999 Mersenne 38 219 273*2^6963847-1 2096330 L4965 2022 220 6219*2^6958945-1 2094855 L4965 2021 221 51*2^6945567+1 2090826 L4965 2020 Divides GF(6945564,12) [p286] 222 238694*5^2979422-1 2082532 L5081 2020 223 4*72^1119849-1 2079933 L4444 2016 224 33*2^6894190-1 2075360 L4965 2021 225 2345*2^6882320-1 2071789 L4965 2022 226c 57*2^6857990+1 2064463 A2 2023 227 146264*5^2953282-1 2064261 L1056 2020 228 69*2^6838971-1 2058738 L5037 2020 229 35816*5^2945294-1 2058677 L5076 2020 230 127*2^6836153-1 2057890 L1862 2018 231 19*2^6833086+1 2056966 L5166 2020 232b 65*2^6810465+1 2050157 A2 2023 233 40597*2^6808509-1 2049571 L3749 2013 234 283*2^6804731-1 2048431 L2484 2020 235 1861709*2^6789999+1 2044000 L5191 2020 236 5781*2^6789459-1 2043835 L4965 2021 237 8435*2^6786180-1 2042848 L4965 2021 238 51*2^6753404+1 2032979 L4965 2020 239b 93*2^6750726+1 2032173 A2 2023 240 69*2^6745775+1 2030683 L4965 2023 241 9995*2^6711008-1 2020219 L4965 2021 242 39*2^6684941+1 2012370 L5162 2020 243 6679881*2^6679881+1 2010852 L917 2009 Cullen 244 37*2^6660841-1 2005115 L3933 2014 245 39*2^6648997+1 2001550 L5161 2020 246 304207*2^6643565-1 1999918 L3547 2013 247 69*2^6639971-1 1998833 L5037 2020 248 6471*2^6631137-1 1996175 L4965 2021 249 9935*2^6603610-1 1987889 L4965 2023 250e 554051*2^6517658-1 1962017 L5811 2023 251 1319*2^6506224-1 1958572 L4965 2021 252 3163*2^6504943-1 1958187 L4965 2023 253 322498*5^2800819-1 1957694 L4954 2019 254c 99*2^6502814+1 1957545 A2 2023 255 88444*5^2799269-1 1956611 L3523 2019 256 13*2^6481780+1 1951212 L4965 2020 257 21*2^6468257-1 1947141 L4965 2021 258b 26128000^262144+1 1944350 L5821 2023 Generalized Fermat 259c 25875054^262144+1 1943243 L5070 2023 Generalized Fermat 260c 25690360^262144+1 1942427 L5809 2023 Generalized Fermat 261c 25635940^262144+1 1942186 L4307 2023 Generalized Fermat 262d 25461468^262144+1 1941408 L4210 2023 Generalized Fermat 263d 25333402^262144+1 1940834 L5802 2023 Generalized Fermat 264e 24678636^262144+1 1937853 L5586 2023 Generalized Fermat 265 138514*5^2771922+1 1937496 L4937 2019 266f 24429706^262144+1 1936699 L4670 2023 Generalized Fermat 267 33*2^6432160-1 1936275 L4965 2022 268 15*2^6429089-1 1935350 L4965 2021 269 23591460^262144+1 1932724 L5720 2023 Generalized Fermat 270 23479122^262144+1 1932181 L5773 2023 Generalized Fermat 271 398023*2^6418059-1 1932034 L3659 2013 272 22984886^262144+1 1929758 L4928 2023 Generalized Fermat 273e Phi(3,3^2021560+1)/3 1929059 L5123 2023 Generalized unique 274 22790808^262144+1 1928793 L5047 2023 Generalized Fermat 275 22480000^262144+1 1927230 L4307 2023 Generalized Fermat 276 22479752^262144+1 1927229 L5159 2023 Generalized Fermat 277 22470828^262144+1 1927183 L4201 2023 Generalized Fermat 278c 55*2^6395254+1 1925166 A2 2023 279 20866766^262144+1 1918752 L4245 2023 Generalized Fermat 280 20710506^262144+1 1917896 L5676 2023 Generalized Fermat 281 20543682^262144+1 1916975 L5663 2023 Generalized Fermat 282 20105956^262144+1 1914523 L5005 2023 Generalized Fermat 283 631*2^6359347-1 1914357 L4965 2021 284 4965*2^6356707-1 1913564 L4965 2022 285 19859450^262144+1 1913119 L5025 2023 Generalized Fermat 286 19527922^262144+1 1911202 L4745 2023 Generalized Fermat 287 19322744^262144+1 1910000 L4775 2023 Generalized Fermat 288 1995*2^6333396-1 1906546 L4965 2021 289 1582137*2^6328550+1 1905090 L801 2009 Cullen 290 18395930^262144+1 1904404 x50 2022 Generalized Fermat 291 17191822^262144+1 1896697 x50 2022 Generalized Fermat 292c 87*2^6293522+1 1894541 A2 2023 293 16769618^262144+1 1893866 L4677 2022 Generalized Fermat 294 16048460^262144+1 1888862 L5127 2022 Generalized Fermat 295 10^1888529-10^944264-1 1888529 p423 2021 Near-repdigit, palindrome 296 15913772^262144+1 1887902 L4387 2022 Generalized Fermat 297 15859176^262144+1 1887511 L5544 2022 Generalized Fermat 298 3303*2^6264946-1 1885941 L4965 2021 299 15417192^262144+1 1884293 L5051 2022 Generalized Fermat 300 14741470^262144+1 1879190 L4204 2022 Generalized Fermat 301 14399216^262144+1 1876516 L4745 2021 Generalized Fermat 302 14103144^262144+1 1874151 L5254 2021 Generalized Fermat 303 13911580^262144+1 1872594 L5068 2021 Generalized Fermat 304 13640376^262144+1 1870352 L4307 2021 Generalized Fermat 305 13553882^262144+1 1869628 L4307 2021 Generalized Fermat 306b 8825*2^6199424-1 1866217 A2 2023 307 13039868^262144+1 1865227 L5273 2021 Generalized Fermat 308 7*6^2396573+1 1864898 L4965 2019 309 12959788^262144+1 1864525 L4591 2021 Generalized Fermat 310 69*2^6186659+1 1862372 L4965 2023 311 12582496^262144+1 1861162 L5202 2021 Generalized Fermat 312 12529818^262144+1 1860684 L4871 2020 Generalized Fermat 313 12304152^262144+1 1858615 L4591 2020 Generalized Fermat 314 12189878^262144+1 1857553 L4905 2020 Generalized Fermat 315 39*2^6164630+1 1855741 L4087 2020 Divides GF(6164629,5) 316 11081688^262144+1 1846702 L5051 2020 Generalized Fermat 317 10979776^262144+1 1845650 L5088 2020 Generalized Fermat 318 10829576^262144+1 1844082 L4677 2020 Generalized Fermat 319 194368*5^2638045-1 1843920 L690 2018 320 10793312^262144+1 1843700 L4905 2020 Generalized Fermat 321 10627360^262144+1 1841936 L4956 2020 Generalized Fermat 322 10578478^262144+1 1841411 L4307 2020 Generalized Fermat 323 66916*5^2628609-1 1837324 L690 2018 324f 521921*2^6101122-1 1836627 L5811 2023 325 3*2^6090515-1 1833429 L1353 2010 326 9812766^262144+1 1832857 L4245 2020 Generalized Fermat 327 9750938^262144+1 1832137 L4309 2020 Generalized Fermat 328 8349*2^6082397-1 1830988 L4965 2021 329 9450844^262144+1 1828578 L5020 2020 Generalized Fermat 330c 71*2^6070943+1 1827538 L4965 2023 331 32*470^683151+1 1825448 L4064 2021 332 9125820^262144+1 1824594 L5002 2019 Generalized Fermat 333 8883864^262144+1 1821535 L4715 2019 Generalized Fermat 334 21*2^6048861+1 1820890 L5106 2020 Divides GF(6048860,5) 335 9999*2^6037057-1 1817340 L4965 2021 336 8521794^262144+1 1816798 L4289 2019 Generalized Fermat 337 33*2^6019138-1 1811943 L4965 2022 338c 67*2^6018626+1 1811789 L4965 2023 339 1583*2^5989282-1 1802957 L4036 2015 340 101806*15^1527091-1 1796004 L5765 2023 Generalized Woodall 341 6291332^262144+1 1782250 L4864 2018 Generalized Fermat 342 6287774^262144+1 1782186 L4726 2018 Generalized Fermat 343 327926*5^2542838-1 1777374 L4807 2018 344 81556*5^2539960+1 1775361 L4809 2018 345 5828034^262144+1 1773542 L4720 2018 Generalized Fermat 346 993*10^1768283-1 1768286 L4879 2019 Near-repdigit 347 9*10^1762063-1 1762064 L4879 2020 Near-repdigit 348 5205422^262144+1 1760679 L4201 2018 Generalized Fermat 349 5152128^262144+1 1759508 L4720 2018 Generalized Fermat 350 4489246^262144+1 1743828 L4591 2018 Generalized Fermat 351d 2240501*6^2240501+1 1743456 L5765 2023 Generalized Cullen 352 2*3^3648969+1 1741001 L5043 2020 Divides Phi(3^3648964,2) [g427] 353 7*2^5775996+1 1738749 L3325 2012 354 4246258^262144+1 1737493 L4720 2018 Generalized Fermat 355 3933508^262144+1 1728783 L4309 2018 Generalized Fermat 356 3853792^262144+1 1726452 L4715 2018 Generalized Fermat 357 3673932^262144+1 1721010 L4649 2017 Generalized Fermat 358 (10^859669-1)^2-2 1719338 p405 2022 Near-repdigit 359 3596074^262144+1 1718572 L4689 2017 Generalized Fermat 360 3547726^262144+1 1717031 L4201 2017 Generalized Fermat 361 8*10^1715905-1 1715906 L4879 2020 Near-repdigit 362 1243*2^5686715-1 1711875 L1828 2016 363 25*2^5658915-1 1703505 L1884 2021 364f 1486287*14^1486287+1 1703482 L5765 2023 Generalized Cullen 365 41*2^5651731+1 1701343 L1204 2020 366 3060772^262144+1 1700222 L4649 2017 Generalized Fermat 367 9*2^5642513+1 1698567 L3432 2013 368 10*3^3550446+1 1693995 L4965 2020 369 2622*11^1621920-1 1689060 L2054 2015 370 81*2^5600028+1 1685779 L4965 2022 Generalized Fermat 371 2676404^262144+1 1684945 L4591 2017 Generalized Fermat 372 301562*5^2408646-1 1683577 L4675 2017 373 2611294^262144+1 1682141 L4250 2017 Generalized Fermat 374 171362*5^2400996-1 1678230 L4669 2017 375 2514168^262144+1 1677825 L4564 2017 Generalized Fermat 376 31*2^5560820+1 1673976 L1204 2020 Divides GF(5560819,6) 377 13*2^5523860+1 1662849 L1204 2020 Divides Fermat F(5523858) 378 252191*2^5497878-1 1655032 L3183 2012 379 2042774^262144+1 1654187 L4499 2016 Generalized Fermat 380 1828858^262144+1 1641593 L4200 2016 Generalized Fermat 381 258317*2^5450519+1 1640776 g414 2008 382 7*6^2104746+1 1637812 L4965 2019 383 5*2^5429494-1 1634442 L3345 2017 384 43*2^5408183-1 1628027 L1884 2018 385 1615588^262144+1 1627477 L4200 2016 Generalized Fermat 386 2*296598^296598-1 1623035 L4965 2022 387 1349*2^5385004-1 1621051 L1828 2017 388 1488256^262144+1 1618131 L4249 2016 Generalized Fermat 389 1415198^262144+1 1612400 L4308 2016 Generalized Fermat 390 45*2^5308037+1 1597881 L4761 2019 391 5468*70^864479-1 1595053 L5410 2022 392 92*10^1585996-1 1585998 L4789 2023 Near-repdigit 393 Phi(3,-1082083^131072) 1581846 L4506 2017 Generalized unique 394 7*2^5229669-1 1574289 L4965 2021 395 180062*5^2249192-1 1572123 L4435 2016 396 124125*6^2018254+1 1570512 L4001 2019 397 27*2^5213635+1 1569462 L3760 2015 398 9992*10^1567410-1 1567414 L4879 2020 Near-repdigit 399 308084!+1 1557176 p425 2022 Factorial 400 Phi(3,-843575^131072) 1553498 L4506 2017 Generalized unique 401 25*2^5152151-1 1550954 L1884 2020 402 53546*5^2216664-1 1549387 L4398 2016 403 773620^262144+1 1543643 L3118 2012 Generalized Fermat 404 39*2^5119458+1 1541113 L1204 2019 405 607*26^1089034+1 1540957 L5410 2021 406 81*2^5115131+1 1539810 L4965 2022 Divides GF(5115128,12) [GG] 407 223*2^5105835-1 1537012 L2484 2019 408 99*10^1536527-1 1536529 L4879 2019 Near-repdigit 409 81*2^5100331+1 1535355 L4965 2022 Divides GF(5100327,6) [GG] 410 992*10^1533933-1 1533936 L4879 2019 Near-repdigit 411 51*2^5085142-1 1530782 L760 2014 412 3*2^5082306+1 1529928 L780 2009 Divides GF(5082303,3), GF(5082305,5) 413 676754^262144+1 1528413 L2975 2012 Generalized Fermat 414 296024*5^2185270-1 1527444 L671 2016 415 5359*2^5054502+1 1521561 SB6 2003 416 1405486*12^1405486-1 1516781 L5765 2023 Generalized Woodall 417d 53*2^5019181+1 1510926 L4965 2023 418 13*2^4998362+1 1504659 L3917 2014 419 525094^262144+1 1499526 p338 2012 Generalized Fermat 420 92158*5^2145024+1 1499313 L4348 2016 421 499238*10^1497714-1 1497720 L4976 2019 Generalized Woodall 422 77072*5^2139921+1 1495746 L4340 2016 423 2*3^3123036+1 1490068 L5043 2020 424d 51*2^4923905+1 1482245 L4965 2023 425 519397*2^4908893-1 1477730 L5410 2022 426 306398*5^2112410-1 1476517 L4274 2016 427c 39*684^519468-1 1472723 L5410 2023 428 265711*2^4858008+1 1462412 g414 2008 429 154222*5^2091432+1 1461854 L3523 2015 430 1271*2^4850526-1 1460157 L1828 2012 431 333*2^4846958-1 1459083 L5546 2022 432 156*532^534754-1 1457695 L5410 2023 433 Phi(3,-362978^131072) 1457490 p379 2015 Generalized unique 434 361658^262144+1 1457075 p332 2011 Generalized Fermat 435 100186*5^2079747-1 1453686 L4197 2015 436 288465!+1 1449771 p3 2022 Factorial 437 15*2^4800315+1 1445040 L1754 2019 Divides GF(4800313,3), GF(4800310,5) 438 2^4792057-2^2396029+1 1442553 L3839 2014 Gaussian Mersenne norm 40, generalized unique 439 92*10^1439761-1 1439763 L4789 2020 Near-repdigit 440 653*10^1435026-1 1435029 p355 2014 441 197*2^4765318-1 1434506 L5175 2021 442 1401*2^4759435-1 1432736 L4965 2023 443 2169*2^4754343-1 1431204 L4965 2023 444 188*468^535963+1 1431156 L4832 2019 445 1809*2^4752792-1 1430737 L4965 2022 446 2427*2^4749044-1 1429609 L4965 2022 447c 303*2^4748019-1 1429299 L5545 2023 448 2259*2^4746735-1 1428913 L4965 2022 449c 309*2^4745713-1 1428605 L5545 2023 450 2223*2^4729304-1 1423666 L4965 2022 451 1851*2^4727663-1 1423172 L4965 2022 452 1725*2^4727375-1 1423085 L4965 2022 453 1611*2^4724014-1 1422074 L4965 2022 454 1383*2^4719270-1 1420645 L4965 2022 455 1749*2^4717431-1 1420092 L4965 2022 456 2325*2^4713991-1 1419057 L4965 2022 457 3267113#-1 1418398 p301 2021 Primorial 458 100*406^543228+1 1417027 L5410 2020 Generalized Fermat 459 2337*2^4705660-1 1416549 L4965 2022 460 1229*2^4703492-1 1415896 L1828 2018 461 144052*5^2018290+1 1410730 L4146 2015 462 195*2^4685711-1 1410542 L5175 2021 463 9*2^4683555-1 1409892 L1828 2012 464 31*2^4673544+1 1406879 L4990 2019 465 34*993^469245+1 1406305 L4806 2018 466 79*2^4658115-1 1402235 L1884 2018 467 39*2^4657951+1 1402185 L1823 2019 468 4*650^498101-1 1401116 L4294 2021 469 11*2^4643238-1 1397755 L2484 2014 470f 884411*38^884411+1 1397184 L5765 2023 Generalized Cullen 471 68*995^465908-1 1396712 L4001 2017 472 7*6^1793775+1 1395830 L4965 2019 473 Phi(3,-192098^131072) 1385044 p379 2015 Generalized unique 474 6*10^1380098+1 1380099 L5009 2023 475 27*2^4583717-1 1379838 L2992 2014 476e Phi(3,-3^1444194+1)/3 1378111 L5123 2023 Generalized unique 477f 1198433*14^1198433+1 1373564 L5765 2023 Generalized Cullen 478 121*2^4553899-1 1370863 L3023 2012 479 9473*2^4543680-1 1367788 L5037 2022 480 27*2^4542344-1 1367384 L1204 2014 481 29*2^4532463+1 1364409 L4988 2019 482 4*797^468702+1 1359920 L4548 2017 Generalized Fermat 483 145310^262144+1 1353265 p314 2011 Generalized Fermat 484 25*2^4481024+1 1348925 L4364 2019 Generalized Fermat 485 81*536^493229+1 1346106 p431 2023 486 303*2^4471002-1 1345909 L5545 2022 487 2*1283^432757+1 1345108 L4879 2019 Divides Phi(1283^432757,2) 488 36772*6^1723287-1 1340983 L1301 2014 489 583854*14^1167708-1 1338349 L4976 2019 Generalized Woodall 490f 20*634^476756-1 1335915 L4975 2023 491d 85*2^4432870+1 1334429 L4965 2023 492 151*2^4424321-1 1331856 L1884 2016 493 195*2^4373994-1 1316706 L5175 2020 494 (10^657559-1)^2-2 1315118 p405 2022 Near-repdigit 495 49*2^4365175-1 1314051 L1959 2017 496 49*2^4360869-1 1312755 L1959 2017 497 13*2^4333087-1 1304391 L1862 2018 498 353159*2^4331116-1 1303802 L2408 2011 499 9959*2^4308760-1 1297071 L5037 2022 500b 195*2^4304861+1 1295895 L5178 2023 501 23*2^4300741+1 1294654 L4147 2019 502 682156*79^682156+1 1294484 L4472 2016 Generalized Cullen 503 141941*2^4299438-1 1294265 L689 2011 504d 87*2^4297718+1 1293744 L4965 2023 505b 435*2^4292968+1 1292315 L5783 2023 506f 993149*20^993149+1 1292123 L5765 2023 Generalized Cullen 507b 415*2^4280864+1 1288672 L5818 2023 508d 79*2^4279006+1 1288112 L4965 2023 509c 205*2^4270310+1 1285494 L5517 2023 510c 483*2^4270112+1 1285435 L5178 2023 511c 123*2^4266441+1 1284329 L5178 2023 512 612749*2^4254500-1 1280738 L5410 2022 513c 223*2^4252660+1 1280181 L5178 2023 514d 1644731*6^1644731+1 1279856 L5765 2023 Generalized Cullen 515 2*1151^417747+1 1278756 L4879 2019 Divides Phi(1151^417747,2) 516 15*2^4246384+1 1278291 L3432 2013 Divides GF(4246381,6) 517 3*2^4235414-1 1274988 L606 2008 518 2*1259^411259+1 1274914 L4879 2020 Divides Phi(1259^411259,2) 519d 93*2^4232892+1 1274230 L4965 2023 520c 131*2^4227493+1 1272605 L5226 2023 521 45*436^481613+1 1271213 L5410 2020 522 109208*5^1816285+1 1269534 L3523 2014 523d 435*2^4216447+1 1269280 L5178 2023 524 1091*2^4215518-1 1269001 L1828 2018 525 191*2^4203426-1 1265360 L2484 2012 526d 269*2^4198809+1 1263970 L5226 2023 527d 545*2^4198333+1 1263827 L5804 2023 528d 53*2^4197093+1 1263453 L5563 2023 529 1259*2^4196028-1 1263134 L1828 2016 530d 329*2^4193199+1 1262282 L5226 2023 531d 141*2^4192911+1 1262195 L5226 2023 Divides Fermat F(4192909) 532 325918*5^1803339-1 1260486 L3567 2014 533d 345*2^4173969+1 1256493 L5226 2023 534d 161*2^4164267+1 1253572 L5178 2023 535d 135*2^4162529+1 1253049 L5178 2023 Divides GF(4162525,10) 536d 177*2^4162494+1 1253038 L5796 2023 537e 237*2^4153348+1 1250285 L5178 2023 538 69*2^4151165+1 1249628 L4965 2023 539 133778*5^1785689+1 1248149 L3903 2014 540e 201*2^4146003+1 1248074 L5161 2023 541e 329*2^4136019+1 1245069 L5178 2023 542 81*2^4131975+1 1243851 L4965 2022 543e 459*2^4129577+1 1243130 L5226 2023 544e 551*2^4126303+1 1242144 L5226 2023 545e 363*2^4119017+1 1239951 L5226 2023 546e 105*2^4113039+1 1238151 L5178 2023 547 204*532^454080-1 1237785 L5410 2023 548 17*2^4107544-1 1236496 L4113 2015 549f 261*2^4106385+1 1236148 L5178 2023 550 24032*5^1768249+1 1235958 L3925 2014 551 172*159^561319-1 1235689 L4001 2017 552 10^1234567-20342924302*10^617278-1 1234567 p423 2021 Palindrome 553e 10^1234567-1927633367291*10^617277-1 1234567 p423 2023 Palindrome 554 10^1234567-3626840486263*10^617277-1 1234567 p423 2021 Palindrome 555 10^1234567-4708229228074*10^617277-1 1234567 p423 2021 Palindrome 556f 67*2^4100746+1 1234450 L5178 2023 557f 191*2^4099097+1 1233954 L5563 2023 558f 325*2^4097700+1 1233534 L5226 2023 559f 519*2^4095491+1 1232869 L5226 2023 560f 111*2^4091044+1 1231530 L5783 2023 Divides GF(4091041,3) 561 1182072*11^1182072-1 1231008 L5765 2023 Generalized Woodall 562 64*425^467857-1 1229712 p268 2021 563f 381*2^4069617+1 1225080 L5226 2023 564 97*2^4066717-1 1224206 L2484 2019 565f 95*2^4063895+1 1223357 L5226 2023 566f 79*2^4062818+1 1223032 L5178 2023 567 1031*2^4054974-1 1220672 L1828 2017 568f 309*2^4054114+1 1220413 L5178 2023 569 2022202116^131072+1 1219734 L4704 2022 Generalized Fermat 570 37*2^4046360+1 1218078 L2086 2019 571 141*2^4043116+1 1217102 L5517 2023 572 39653*430^460397-1 1212446 L4187 2016 573 1777034894^131072+1 1212377 L4704 2022 Generalized Fermat 574 141*2^4024411+1 1211471 L5226 2023 575 515*2^4021165+1 1210494 L5174 2023 576 73*2^4016912+1 1209213 L5226 2023 577 40734^262144+1 1208473 p309 2011 Generalized Fermat 578 235*2^4013398+1 1208156 L5178 2023 579 9*2^4005979-1 1205921 L1828 2012 580 417*2^4003224+1 1205094 L5764 2023 581 12*68^656921+1 1203815 L4001 2016 582 67*688^423893+1 1202836 L4001 2017 583 221*2^3992723+1 1201932 L5178 2023 584 213*2^3990702+1 1201324 L5216 2023 585 1993191*2^3986382-1 1200027 L3532 2015 Generalized Woodall 586 163*2^3984604+1 1199488 L5756 2023 587 725*2^3983355+1 1199113 L5706 2023 588 (146^276995+1)^2-2 1199030 p405 2022 589 455*2^3981067+1 1198424 L5724 2023 590 138172*5^1714207-1 1198185 L3904 2014 591 50*383^463313+1 1196832 L2012 2021 592 339*2^3974295+1 1196385 L5178 2023 593 699*2^3974045+1 1196310 L5750 2023 594 Phi(3,-1202113^98304) 1195366 L4506 2016 Generalized unique 595 29*2^3964697+1 1193495 L1204 2019 596 599*2^3963655+1 1193182 L5226 2023 597 683*2^3962937+1 1192966 L5226 2023 598 39*2^3961129+1 1192421 L1486 2019 599 165*2^3960664+1 1192281 L5178 2023 600 79*2^3957238+1 1191250 L5745 2023 601 687*2^3955918+1 1190853 L5554 2023 Divides GF(3955915,6) 602 163*2^3954818+1 1190522 L5178 2023 603 431*2^3953647+1 1190169 L5554 2023 604 Phi(3,-1110815^98304) 1188622 L4506 2016 Generalized unique 605 341*2^3938565+1 1185629 L5554 2023 606 503*2^3936845+1 1185112 L5706 2023 607 717*2^3934760+1 1184484 L5285 2023 608 493*2^3929192+1 1182808 L5161 2023 609 273*2^3929128+1 1182788 L5554 2023 610 609*2^3928682+1 1182654 L5178 2023 611 609*2^3928441+1 1182582 L5527 2023 612 281*2^3926467+1 1181987 L5174 2023 613 153*2^3922478+1 1180786 L5554 2023 614 69*2^3920863+1 1180300 L5554 2023 615 273*2^3919321+1 1179836 L5706 2023 616 531*2^3918985+1 1179735 L5706 2023 617 1000032472^131072+1 1179650 L4704 2022 Generalized Fermat 618 555*2^3916875+1 1179100 L5302 2023 619 571*2^3910616+1 1177216 L5178 2023 620 421*2^3905144+1 1175569 L5600 2023 621 P1174253 1174253 p414 2022 622 567*2^3897588+1 1173294 L5600 2023 623 417*2^3895404+1 1172637 L5600 2023 624 539*2^3894953+1 1172501 L5285 2023 625 645*2^3893849+1 1172169 L5600 2023 626 818764*3^2456293-1 1171956 L4965 2023 Generalized Woodall 627 22478*5^1675150-1 1170884 L3903 2014 628 1199*2^3889576-1 1170883 L1828 2018 629 298989*2^3886857+1 1170067 L2777 2014 Generalized Cullen 630 93*10^1170023-1 1170025 L4789 2022 Near-repdigit 631 711*2^3886480+1 1169950 L5320 2023 632 375*2^3884634+1 1169394 L5600 2023 633 94*872^397354+1 1168428 L5410 2019 634 269*2^3877485+1 1167242 L5649 2023 635 163*2^3874556+1 1166360 L5646 2023 Divides GF(3874552,5) 636c 1365*2^3872811+1 1165836 L1134 2023 637 313*2^3869536+1 1164849 L5600 2023 638 159*2^3860863+1 1162238 L5226 2023 639 445*2^3860780+1 1162214 L5640 2023 640 397*2^3859450+1 1161813 L5226 2023 641 685*2^3856790+1 1161013 L5226 2023 642 27*2^3855094-1 1160501 L3033 2012 643 537*2^3853860+1 1160131 L5636 2022 644 164*978^387920-1 1160015 L4700 2018 645 175*2^3850344+1 1159072 L5226 2022 646 685*2^3847268+1 1158146 L5226 2022 647 655*2^3846352+1 1157871 L5282 2022 648 583*2^3846196+1 1157824 L5226 2022 649 615*2^3844151+1 1157208 L5226 2022 650 14772*241^485468-1 1156398 L5410 2022 651 525*2^3840963+1 1156248 L5613 2022 652 313*2^3837304+1 1155147 L5298 2022 653 49*2^3837090+1 1155081 L4979 2019 Generalized Fermat 654 431*2^3835247+1 1154528 L5161 2022 655 97*2^3833722+1 1154068 L5226 2022 656 2*839^394257+1 1152714 L4879 2019 Divides Phi(839^394257,2) 657 125*392^444161+1 1151839 L4832 2022 658 255*2^3824348+1 1151246 L5226 2022 659 30*514^424652-1 1151218 L4001 2017 660 569*2^3823191+1 1150898 L5226 2022 661 24518^262144+1 1150678 g413 2008 Generalized Fermat 662 563*2^3819237+1 1149708 L5178 2022 663 345*2^3817949+1 1149320 L5373 2022 664 Phi(3,-700219^98304) 1149220 L4506 2016 Generalized unique 665 241*2^3815727-1 1148651 L2484 2019 666 351*2^3815467+1 1148573 L5226 2022 667 109*980^383669-1 1147643 L4001 2018 668 427*2^3811610+1 1147412 L5614 2022 669 569*2^3810475+1 1147071 L5610 2022 670 213*2^3807864+1 1146284 L5609 2022 671 87*2^3806438+1 1145854 L5607 2022 672 369*2^3805321+1 1145519 L5541 2022 673 123547*2^3804809-1 1145367 L2371 2011 674 2564*75^610753+1 1145203 L3610 2014 675 539*2^3801705+1 1144430 L5161 2022 676 159*2^3801463+1 1144357 L5197 2022 677 235*2^3801284+1 1144303 L5608 2022 678 Phi(3,-660955^98304) 1144293 L4506 2016 Generalized unique 679 519*2^3800625+1 1144105 L5315 2022 680 281*2^3798465+1 1143455 L5178 2022 681 166*443^432000+1 1143249 L5410 2020 682 85*2^3797698+1 1143223 L5161 2022 683 326834*5^1634978-1 1142807 L3523 2014 684 459*2^3795969+1 1142704 L5161 2022 685 447*2^3780151+1 1137942 L5596 2022 686 345*2^3779921+1 1137873 L5557 2022 687 477*2^3779871+1 1137858 L5197 2022 688 251*2^3774587+1 1136267 L5592 2022 689 439*2^3773958+1 1136078 L5557 2022 690 43*182^502611-1 1135939 L4064 2020 691 415267*2^3771929-1 1135470 L2373 2011 692 11*2^3771821+1 1135433 p286 2013 693 427*2^3768104+1 1134315 L5192 2022 694 1455*2^3768024-1 1134292 L1134 2022 695 711*2^3767492+1 1134131 L5161 2022 696 265*2^3765189-1 1133438 L2484 2018 697 297*2^3765140+1 1133423 L5197 2022 698 381*2^3764189+1 1133137 L5589 2022 699 115*2^3763650+1 1132974 L5554 2022 700 411*2^3759067+1 1131595 L5589 2022 701 405*2^3757192+1 1131031 L5590 2022 702 938237*2^3752950-1 1129757 L521 2007 Woodall 703 399866798^131072+1 1127471 L4964 2019 Generalized Fermat 704 701*2^3744713+1 1127274 L5554 2022 705 207394*5^1612573-1 1127146 L3869 2014 706 684*10^1127118+1 1127121 L4036 2017 707 Phi(3,-535386^98304) 1126302 L4506 2016 Generalized unique 708 104944*5^1610735-1 1125861 L3849 2014 709 23451*2^3739388+1 1125673 L591 2015 710f 78*622^402915-1 1125662 L5645 2023 711 615*2^3738023+1 1125260 L5161 2022 712 347*2^3737875+1 1125216 L5178 2022 713 163*2^3735726+1 1124568 L5477 2022 Divides GF(3735725,6) 714 375*2^3733510+1 1123902 L5584 2022 715 25*2^3733144+1 1123790 L2125 2019 Generalized Fermat 716 629*2^3731479+1 1123290 L5283 2022 717 113*2^3728113+1 1122276 L5161 2022 718 303*2^3725438+1 1121472 L5161 2022 719 187*2^3723972+1 1121030 L5178 2022 720 2*1103^368361+1 1120767 L4879 2019 Divides Phi(1103^368361,2) 721 105*2^3720512+1 1119988 L5493 2022 722 447*2^3719024+1 1119541 L5493 2022 723 177*2^3717746+1 1119156 L5279 2022 724 2*131^528469+1 1118913 L4879 2019 Divides Phi(131^528469,2) 725 123*2^3716758+1 1118858 L5563 2022 726 313*2^3716716+1 1118846 L5237 2022 727 367*2^3712952+1 1117713 L5264 2022 728 53*2^3709297+1 1116612 L5197 2022 729 2^3704053+2^1852027+1 1115032 L3839 2014 Gaussian Mersenne norm 39, generalized unique 730 395*2^3701693+1 1114324 L5536 2022 731 589*2^3699954+1 1113800 L5576 2022 732 314187728^131072+1 1113744 L4704 2019 Generalized Fermat 733 119*2^3698412-1 1113336 L2484 2018 734 391*2^3693728+1 1111926 L5493 2022 735 485*2^3688111+1 1110235 L5237 2022 736 341*2^3686613+1 1109784 L5573 2022 737 87*2^3686558+1 1109767 L5573 2022 738 675*2^3682616+1 1108581 L5231 2022 739 569*2^3682167+1 1108446 L5488 2022 740 330286*5^1584399-1 1107453 L3523 2014 741 34*951^371834-1 1107391 L5410 2019 742 45*2^3677787+1 1107126 L1204 2019 743 625*2^3676300+1 1106680 L5302 2022 Generalized Fermat 744 13*2^3675223-1 1106354 L1862 2016 745 271643232^131072+1 1105462 L4704 2019 Generalized Fermat 746 463*2^3671262+1 1105163 L5524 2022 747 735*2^3670991+1 1105082 L5575 2022 748 475*2^3670046+1 1104797 L5524 2022 749 15*2^3668194-1 1104238 L3665 2013 750 273*2^3665736+1 1103499 L5192 2022 751 13*2^3664703-1 1103187 L1862 2016 752 Phi(3,-406515^98304) 1102790 L4506 2016 Generalized unique 753 609*2^3662931+1 1102655 L5573 2022 754 118*892^373012+1 1100524 L5071 2020 755 33300*430^417849-1 1100397 L4393 2016 756 655*2^3653008+1 1099668 L5574 2022 757 291*268^452750-1 1099341 L5410 2022 758 33*2^3649810+1 1098704 L4958 2019 759 295*2^3642206+1 1096416 L5161 2022 760 989*2^3640585+1 1095929 L5115 2020 761 567*2^3639287+1 1095538 L4959 2019 762 639*2^3635707+1 1094460 L1823 2019 763 753*2^3631472+1 1093185 L1823 2019 764 2*205731^205731-1 1093111 L4965 2022 765 65531*2^3629342-1 1092546 L2269 2011 766 1121*2^3629201+1 1092502 L4761 2019 767 215*2^3628962-1 1092429 L2484 2018 768 113*2^3628034-1 1092150 L2484 2014 769 1175*2^3627541+1 1092002 L4840 2019 770 2*431^414457+1 1091878 L4879 2019 Divides Phi(431^414457,2) 771 951*2^3623185+1 1090691 L1823 2019 772 29*920^367810-1 1090113 L4064 2015 773 14641*2^3618876+1 1089395 L181 2018 Generalized Fermat 774 485*2^3618563+1 1089299 L3924 2019 775 95*2^3614033+1 1087935 L1474 2019 776 1005*2^3612300+1 1087414 L1823 2019 777 861*2^3611815+1 1087268 L1745 2019 778 1087*2^3611476+1 1087166 L4834 2019 779 485767*2^3609357-1 1086531 L622 2008 780 675*2^3606447+1 1085652 L3278 2019 781 669*2^3606266+1 1085598 L1675 2019 782 65077*2^3605944+1 1085503 L4685 2020 783 1365*2^3605491+1 1085365 L1134 2022 784 851*2^3604395+1 1085034 L2125 2019 785 1143*2^3602429+1 1084443 L4754 2019 786 1183*2^3601898+1 1084283 L1823 2019 787 189*2^3596375+1 1082620 L3760 2016 788 1089*2^3593267+1 1081685 L3035 2019 789b 176799404^131072+1 1081014 L4775 2023 Generalized Fermat 790b 176207346^131072+1 1080823 L5805 2023 Generalized Fermat 791b 176085282^131072+1 1080784 L5805 2023 Generalized Fermat 792c 175482140^131072+1 1080589 L5639 2023 Generalized Fermat 793c 175271418^131072+1 1080520 L5051 2023 Generalized Fermat 794 19581121*2^3589357-1 1080512 p49 2022 795c 175200596^131072+1 1080497 L5817 2023 Generalized Fermat 796 1101*2^3589103+1 1080431 L1823 2019 797c 174728608^131072+1 1080344 L5416 2023 Generalized Fermat 798c 174697724^131072+1 1080334 L4747 2023 Generalized Fermat 799c 174534362^131072+1 1080280 L5814 2023 Generalized Fermat 800c 174142738^131072+1 1080152 L4249 2023 Generalized Fermat 801c 174103532^131072+1 1080140 L4249 2023 Generalized Fermat 802c 173962482^131072+1 1080093 L4249 2023 Generalized Fermat 803 35*2^3587843+1 1080050 L1979 2014 Divides GF(3587841,5) 804c 173717408^131072+1 1080013 L5634 2023 Generalized Fermat 805c 173561300^131072+1 1079962 L4249 2023 Generalized Fermat 806c 173343810^131072+1 1079891 L4249 2023 Generalized Fermat 807d 172026454^131072+1 1079456 L4737 2023 Generalized Fermat 808d 172004036^131072+1 1079449 L5512 2023 Generalized Fermat 809 275*2^3585539+1 1079358 L3803 2016 810d 171677924^131072+1 1079341 L5512 2023 Generalized Fermat 811d 171610156^131072+1 1079319 L4249 2023 Generalized Fermat 812d 171518672^131072+1 1079288 L5586 2023 Generalized Fermat 813d 171128300^131072+1 1079158 L4249 2023 Generalized Fermat 814d 170982934^131072+1 1079110 L4201 2023 Generalized Fermat 815d 170626040^131072+1 1078991 L5748 2023 Generalized Fermat 816d 169929578^131072+1 1078758 L5748 2023 Generalized Fermat 817e 169369502^131072+1 1078570 L4410 2023 Generalized Fermat 818e 169299904^131072+1 1078547 L4559 2023 Generalized Fermat 819e 169059224^131072+1 1078466 L5746 2023 Generalized Fermat 820e 168885632^131072+1 1078408 L5793 2023 Generalized Fermat 821e 168602250^131072+1 1078312 L5782 2023 Generalized Fermat 822e 168576546^131072+1 1078303 L5639 2023 Generalized Fermat 823e 167845698^131072+1 1078056 L5735 2023 Generalized Fermat 824e 167604930^131072+1 1077974 L4859 2023 Generalized Fermat 825 2*59^608685+1 1077892 g427 2014 Divides Phi(59^608685,2) 826f 167206862^131072+1 1077839 L5641 2023 Generalized Fermat 827f 166964502^131072+1 1077756 L5627 2023 Generalized Fermat 828 651*2^3579843+1 1077643 L3035 2018 829f 166609122^131072+1 1077635 L5782 2023 Generalized Fermat 830f 166397330^131072+1 1077563 L5578 2023 Generalized Fermat 831f 166393356^131072+1 1077561 L5782 2023 Generalized Fermat 832f 166288612^131072+1 1077525 L4672 2023 Generalized Fermat 833f 166277052^131072+1 1077521 L5755 2023 Generalized Fermat 834f 166052226^131072+1 1077444 L4670 2023 Generalized Fermat 835f 165430644^131072+1 1077231 L4672 2023 Generalized Fermat 836f 165427494^131072+1 1077230 L4249 2023 Generalized Fermat 837 583*2^3578402+1 1077210 L3035 2018 838f 165361824^131072+1 1077207 L5586 2023 Generalized Fermat 839f 165258594^131072+1 1077172 L4884 2023 Generalized Fermat 840f 165036358^131072+1 1077095 L5156 2023 Generalized Fermat 841f 164922680^131072+1 1077056 L4249 2023 Generalized Fermat 842f 164800594^131072+1 1077014 L5775 2023 Generalized Fermat 843 164660428^131072+1 1076965 L4249 2023 Generalized Fermat 844 309*2^3577339+1 1076889 L4406 2016 845 164440734^131072+1 1076889 L5485 2023 Generalized Fermat 846 163871194^131072+1 1076692 L5772 2023 Generalized Fermat 847 163838506^131072+1 1076680 L5758 2023 Generalized Fermat 848 163821336^131072+1 1076674 L5544 2023 Generalized Fermat 849 163820256^131072+1 1076674 L5452 2023 Generalized Fermat 850 163666380^131072+1 1076621 L5030 2023 Generalized Fermat 851 163585288^131072+1 1076592 L4928 2023 Generalized Fermat 852 163359994^131072+1 1076514 L5769 2023 Generalized Fermat 853 163214942^131072+1 1076463 L4933 2023 Generalized Fermat 854 163193584^131072+1 1076456 L5595 2023 Generalized Fermat 855 163152818^131072+1 1076442 L5639 2023 Generalized Fermat 856 163044252^131072+1 1076404 L5775 2023 Generalized Fermat 857 162950466^131072+1 1076371 L5694 2023 Generalized Fermat 858 162874590^131072+1 1076345 L5586 2023 Generalized Fermat 859 162850104^131072+1 1076336 L5769 2023 Generalized Fermat 860 162817576^131072+1 1076325 L5772 2023 Generalized Fermat 861 1185*2^3574583+1 1076060 L4851 2018 862 251*2^3574535+1 1076045 L3035 2016 863 1485*2^3574333+1 1075985 L1134 2022 864 161706626^131072+1 1075935 L4870 2023 Generalized Fermat 865 161619620^131072+1 1075904 L5586 2023 Generalized Fermat 866 161588716^131072+1 1075893 L4928 2023 Generalized Fermat 867 161571504^131072+1 1075887 L5030 2023 Generalized Fermat 868 161569668^131072+1 1075887 L5639 2023 Generalized Fermat 869 160998114^131072+1 1075685 L5586 2023 Generalized Fermat 870 160607310^131072+1 1075547 L5763 2023 Generalized Fermat 871 160325616^131072+1 1075447 L5586 2023 Generalized Fermat 872 160228242^131072+1 1075412 L5632 2023 Generalized Fermat 873 160146172^131072+1 1075383 L4773 2023 Generalized Fermat 874 159800918^131072+1 1075260 L5586 2023 Generalized Fermat 875 159794566^131072+1 1075258 L4249 2023 Generalized Fermat 876 159784836^131072+1 1075254 L5639 2023 Generalized Fermat 877 159784822^131072+1 1075254 L5637 2023 Generalized Fermat 878 1019*2^3571635+1 1075173 L1823 2018 879 159509138^131072+1 1075156 L5637 2023 Generalized Fermat 880 119*2^3571416-1 1075106 L2484 2018 881 159214418^131072+1 1075051 L5755 2023 Generalized Fermat 882 158831096^131072+1 1074914 L5022 2023 Generalized Fermat 883 35*2^3570777+1 1074913 L2891 2014 884 158696888^131072+1 1074865 L5030 2023 Generalized Fermat 885 158472238^131072+1 1074785 L5586 2023 Generalized Fermat 886 33*2^3570132+1 1074719 L2552 2014 887 157923226^131072+1 1074587 L4249 2023 Generalized Fermat 888 157541220^131072+1 1074449 L5416 2023 Generalized Fermat 889 5*2^3569154-1 1074424 L503 2009 890 157374268^131072+1 1074389 L5578 2023 Generalized Fermat 891 81*492^399095-1 1074352 L4001 2015 892 156978838^131072+1 1074246 L5332 2023 Generalized Fermat 893 156789840^131072+1 1074177 L4747 2023 Generalized Fermat 894 156756400^131072+1 1074165 L4249 2023 Generalized Fermat 895 22934*5^1536762-1 1074155 L3789 2014 896 156625064^131072+1 1074117 L5694 2023 Generalized Fermat 897 156519708^131072+1 1074079 L5746 2023 Generalized Fermat 898 156468140^131072+1 1074060 L4249 2023 Generalized Fermat 899 156203340^131072+1 1073964 L5578 2023 Generalized Fermat 900 156171526^131072+1 1073952 L5698 2023 Generalized Fermat 901 155778562^131072+1 1073809 L4309 2023 Generalized Fermat 902 155650426^131072+1 1073762 L5668 2023 Generalized Fermat 903 155536474^131072+1 1073720 L4249 2023 Generalized Fermat 904 155339878^131072+1 1073648 L5206 2023 Generalized Fermat 905 155305266^131072+1 1073636 L5549 2023 Generalized Fermat 906 155006218^131072+1 1073526 L4742 2023 Generalized Fermat 907 154553092^131072+1 1073359 L4920 2023 Generalized Fermat 908 154492166^131072+1 1073337 L4326 2023 Generalized Fermat 909 154478286^131072+1 1073332 L4544 2023 Generalized Fermat 910 154368914^131072+1 1073291 L5738 2023 Generalized Fermat 911 153966766^131072+1 1073143 L5732 2023 Generalized Fermat 912 265*2^3564373-1 1072986 L2484 2018 913 153485148^131072+1 1072965 L5736 2023 Generalized Fermat 914 153432848^131072+1 1072945 L5030 2023 Generalized Fermat 915 153413432^131072+1 1072938 L4835 2023 Generalized Fermat 916 771*2^3564109+1 1072907 L2125 2018 917 381*2^3563676+1 1072776 L4190 2016 918 152966530^131072+1 1072772 L5070 2023 Generalized Fermat 919 555*2^3563328+1 1072672 L4850 2018 920 152542626^131072+1 1072614 L5460 2023 Generalized Fermat 921 151999396^131072+1 1072411 L5586 2023 Generalized Fermat 922 151609814^131072+1 1072265 L5663 2023 Generalized Fermat 923 151218242^131072+1 1072118 L5588 2023 Generalized Fermat 924 151108236^131072+1 1072076 L4672 2023 Generalized Fermat 925 151044622^131072+1 1072052 L5544 2023 Generalized Fermat 926 151030068^131072+1 1072047 L4774 2023 Generalized Fermat 927 150908454^131072+1 1072001 L4758 2023 Generalized Fermat 928 150863054^131072+1 1071984 L5720 2023 Generalized Fermat 929 1183*2^3560584+1 1071846 L1823 2018 930 150014492^131072+1 1071663 L4476 2023 Generalized Fermat 931 149972788^131072+1 1071647 L4559 2023 Generalized Fermat 932 415*2^3559614+1 1071554 L3035 2016 933 149665588^131072+1 1071530 L4892 2023 Generalized Fermat 934 149142686^131072+1 1071331 L4684 2023 Generalized Fermat 935 149057554^131072+1 1071298 L4933 2023 Generalized Fermat 936 148598024^131072+1 1071123 L4476 2023 Generalized Fermat 937 1103*2^3558177-503*2^1092022-1 1071122 p423 2022 Arithmetic progression (3,d=1103*2^3558176-503*2^1092022) 938 1103*2^3558176-1 1071121 L1828 2018 939 148592576^131072+1 1071121 L4476 2023 Generalized Fermat 940 148425726^131072+1 1071057 L4289 2023 Generalized Fermat 941 148154288^131072+1 1070952 L5714 2023 Generalized Fermat 942 148093952^131072+1 1070929 L4720 2023 Generalized Fermat 943 148070542^131072+1 1070920 L5155 2023 Generalized Fermat 944 147988292^131072+1 1070889 L5155 2023 Generalized Fermat 945 147816036^131072+1 1070822 L5634 2023 Generalized Fermat 946 1379*2^3557072-1 1070789 L1828 2018 947 147539992^131072+1 1070716 L4917 2023 Generalized Fermat 948 147433824^131072+1 1070675 L4753 2023 Generalized Fermat 949 147310498^131072+1 1070627 L5403 2023 Generalized Fermat 950 147265916^131072+1 1070610 L5543 2023 Generalized Fermat 951 146994540^131072+1 1070505 L5634 2023 Generalized Fermat 952 146520528^131072+1 1070321 L5469 2023 Generalized Fermat 953 146465338^131072+1 1070300 L5704 2023 Generalized Fermat 954 146031082^131072+1 1070131 L4697 2023 Generalized Fermat 955 145949782^131072+1 1070099 L5029 2023 Generalized Fermat 956 145728478^131072+1 1070013 L5543 2023 Generalized Fermat 957 145245346^131072+1 1069824 L5586 2023 Generalized Fermat 958 145137270^131072+1 1069781 L4742 2023 Generalized Fermat 959 145132288^131072+1 1069779 L4774 2023 Generalized Fermat 960 144926960^131072+1 1069699 L5036 2023 Generalized Fermat 961 144810806^131072+1 1069653 L5543 2023 Generalized Fermat 962 681*2^3553141+1 1069605 L3035 2018 963 144602744^131072+1 1069571 L5543 2023 Generalized Fermat 964 143844356^131072+1 1069272 L5693 2023 Generalized Fermat 965 599*2^3551793+1 1069200 L3824 2018 966 143421820^131072+1 1069104 L4904 2023 Generalized Fermat 967 621*2^3551472+1 1069103 L4687 2018 968 143416574^131072+1 1069102 L4591 2023 Generalized Fermat 969 143126384^131072+1 1068987 L5288 2023 Generalized Fermat 970 142589776^131072+1 1068773 L4201 2023 Generalized Fermat 971 773*2^3550373+1 1068772 L1808 2018 972 142527792^131072+1 1068748 L4387 2023 Generalized Fermat 973 142207386^131072+1 1068620 L5694 2023 Generalized Fermat 974 142195844^131072+1 1068616 L5548 2023 Generalized Fermat 975 141636602^131072+1 1068391 L5639 2023 Generalized Fermat 976 141554190^131072+1 1068358 L4956 2023 Generalized Fermat 977 1199*2^3548380-1 1068172 L1828 2018 978 140928044^131072+1 1068106 L4870 2023 Generalized Fermat 979 191*2^3548117+1 1068092 L4203 2015 980 140859866^131072+1 1068078 L5011 2023 Generalized Fermat 981 140824516^131072+1 1068064 L4760 2023 Generalized Fermat 982 140649396^131072+1 1067993 L5578 2023 Generalized Fermat 983 867*2^3547711+1 1067971 L4155 2018 984 140473436^131072+1 1067922 L4210 2023 Generalized Fermat 985 140237690^131072+1 1067826 L5051 2023 Generalized Fermat 986 139941370^131072+1 1067706 L5671 2023 Generalized Fermat 987 Phi(3,3^1118781+1)/3 1067588 L3839 2014 Generalized unique 988 139352402^131072+1 1067466 L5663 2023 Generalized Fermat 989 351*2^3545752+1 1067381 L4082 2016 990 138896860^131072+1 1067279 L4745 2023 Generalized Fermat 991 138894074^131072+1 1067278 L5041 2023 Generalized Fermat 992 138830036^131072+1 1067252 L5662 2023 Generalized Fermat 993 138626864^131072+1 1067169 L5663 2023 Generalized Fermat 994 138527284^131072+1 1067128 L5663 2023 Generalized Fermat 995 93*2^3544744+1 1067077 L1728 2014 996 138000006^131072+1 1066911 L5051 2023 Generalized Fermat 997 137900696^131072+1 1066870 L4249 2023 Generalized Fermat 998 137878102^131072+1 1066860 L5051 2023 Generalized Fermat 999 1159*2^3543702+1 1066764 L1823 2018 1000 137521726^131072+1 1066713 L4672 2023 Generalized Fermat 1001 137486564^131072+1 1066699 L5586 2023 Generalized Fermat 1002 136227118^131072+1 1066175 L5416 2023 Generalized Fermat 1003 136192168^131072+1 1066160 L5556 2023 Generalized Fermat 1004 136124076^131072+1 1066132 L5041 2023 Generalized Fermat 1005 136122686^131072+1 1066131 L5375 2023 Generalized Fermat 1006 178658*5^1525224-1 1066092 L3789 2014 1007 135744154^131072+1 1065973 L5068 2023 Generalized Fermat 1008 135695350^131072+1 1065952 L4249 2023 Generalized Fermat 1009 135623220^131072+1 1065922 L5657 2023 Generalized Fermat 1010 135513092^131072+1 1065876 L5656 2023 Generalized Fermat 1011 135497678^131072+1 1065869 L4387 2023 Generalized Fermat 1012 135458028^131072+1 1065852 L5051 2023 Generalized Fermat 1013 135332960^131072+1 1065800 L5655 2023 Generalized Fermat 1014 135135930^131072+1 1065717 L4387 2023 Generalized Fermat 1015 1085*2^3539671+1 1065551 L3035 2018 1016 134706086^131072+1 1065536 L5378 2023 Generalized Fermat 1017 134459616^131072+1 1065431 L5658 2023 Generalized Fermat 1018 134447516^131072+1 1065426 L4387 2023 Generalized Fermat 1019 134322272^131072+1 1065373 L4387 2023 Generalized Fermat 1020 134206304^131072+1 1065324 L4684 2023 Generalized Fermat 1021 134176868^131072+1 1065311 L5375 2023 Generalized Fermat 1022 133954018^131072+1 1065217 L5088 2023 Generalized Fermat 1023 133676500^131072+1 1065099 L4387 2023 Generalized Fermat 1024 133569020^131072+1 1065053 L5277 2023 Generalized Fermat 1025 133345154^131072+1 1064958 L4210 2023 Generalized Fermat 1026 133180238^131072+1 1064887 L5586 2023 Generalized Fermat 1027 133096042^131072+1 1064851 L4755 2023 Generalized Fermat 1028 465*2^3536871+1 1064707 L4459 2016 1029 1019*2^3536312-1 1064539 L1828 2012 1030 131820886^131072+1 1064303 L5069 2023 Generalized Fermat 1031 131412078^131072+1 1064126 L5653 2023 Generalized Fermat 1032 131370186^131072+1 1064108 L5036 2023 Generalized Fermat 1033 131309874^131072+1 1064082 L5069 2023 Generalized Fermat 1034 131112524^131072+1 1063996 L4245 2023 Generalized Fermat 1035 1179*2^3534450+1 1063979 L3035 2018 1036 130907540^131072+1 1063907 L4526 2023 Generalized Fermat 1037 130593462^131072+1 1063771 L4559 2023 Generalized Fermat 1038 447*2^3533656+1 1063740 L4457 2016 1039 130518578^131072+1 1063738 L5029 2023 Generalized Fermat 1040 1059*2^3533550+1 1063708 L1823 2018 1041 130198372^131072+1 1063598 L5416 2023 Generalized Fermat 1042 130148002^131072+1 1063576 L4387 2023 Generalized Fermat 1043 130128232^131072+1 1063567 L5029 2023 Generalized Fermat 1044 130051980^131072+1 1063534 L5416 2023 Generalized Fermat 1045 130048816^131072+1 1063533 L4245 2023 Generalized Fermat 1046 345*2^3532957+1 1063529 L4314 2016 1047 553*2^3532758+1 1063469 L1823 2018 1048 129292212^131072+1 1063201 L4285 2023 Generalized Fermat 1049 129159632^131072+1 1063142 L5051 2023 Generalized Fermat 1050 128558886^131072+1 1062877 L5518 2023 Generalized Fermat 1051 128520182^131072+1 1062860 L4745 2023 Generalized Fermat 1052 543131*2^3529754-1 1062568 L4925 2022 1053 127720948^131072+1 1062504 L5378 2023 Generalized Fermat 1054 141*2^3529287+1 1062424 L4185 2015 1055 127093036^131072+1 1062224 L4591 2023 Generalized Fermat 1056 126611934^131072+1 1062008 L4776 2023 Generalized Fermat 1057 126423276^131072+1 1061923 L4201 2023 Generalized Fermat 1058 126334514^131072+1 1061883 L4249 2023 Generalized Fermat 1059 13*2^3527315-1 1061829 L1862 2016 1060 126199098^131072+1 1061822 L4591 2023 Generalized Fermat 1061 126189358^131072+1 1061818 L4704 2023 Generalized Fermat 1062 125966884^131072+1 1061717 L4747 2023 Generalized Fermat 1063 125714084^131072+1 1061603 L4745 2023 Generalized Fermat 1064 125141096^131072+1 1061343 L4559 2023 Generalized Fermat 1065 1393*2^3525571-1 1061306 L1828 2017 1066 125006494^131072+1 1061282 L5639 2023 Generalized Fermat 1067 124877454^131072+1 1061223 L4245 2023 Generalized Fermat 1068 124875502^131072+1 1061222 L4591 2023 Generalized Fermat 1069 124749274^131072+1 1061164 L4591 2023 Generalized Fermat 1070 124586054^131072+1 1061090 L4249 2023 Generalized Fermat 1071 124582356^131072+1 1061088 L5606 2023 Generalized Fermat 1072 124543852^131072+1 1061071 L4249 2023 Generalized Fermat 1073 124393514^131072+1 1061002 L4774 2023 Generalized Fermat 1074 124219534^131072+1 1060922 L4249 2023 Generalized Fermat 1075 124133348^131072+1 1060883 L5088 2023 Generalized Fermat 1076 124080788^131072+1 1060859 L5639 2023 Generalized Fermat 1077 1071*2^3523944+1 1060816 L1675 2018 1078 123910270^131072+1 1060780 L4249 2023 Generalized Fermat 1079 123856592^131072+1 1060756 L4201 2023 Generalized Fermat 1080 123338660^131072+1 1060517 L4905 2022 Generalized Fermat 1081 123306230^131072+1 1060502 L5638 2023 Generalized Fermat 1082 123195196^131072+1 1060451 L5029 2022 Generalized Fermat 1083 122941512^131072+1 1060333 L4559 2022 Generalized Fermat 1084 122869094^131072+1 1060300 L4939 2022 Generalized Fermat 1085 122481106^131072+1 1060120 L4704 2022 Generalized Fermat 1086 122414564^131072+1 1060089 L5627 2022 Generalized Fermat 1087 122372192^131072+1 1060069 L5099 2022 Generalized Fermat 1088 121854624^131072+1 1059828 L5051 2022 Generalized Fermat 1089 121462664^131072+1 1059645 L5632 2022 Generalized Fermat 1090 121158848^131072+1 1059502 L4774 2022 Generalized Fermat 1091b 2220172*3^2220172+1 1059298 p137 2023 Generalized Cullen 1092 329*2^3518451+1 1059162 L1823 2016 1093 135*2^3518338+1 1059128 L4045 2015 1094 120106930^131072+1 1059006 L4249 2022 Generalized Fermat 1095 2*10^1059002-1 1059003 L3432 2013 Near-repdigit 1096 119744014^131072+1 1058833 L4249 2022 Generalized Fermat 1097 64*10^1058794+1 1058796 L4036 2017 Generalized Fermat 1098 119604848^131072+1 1058767 L4201 2022 Generalized Fermat 1099 119541900^131072+1 1058737 L4747 2022 Generalized Fermat 1100 119510296^131072+1 1058722 L4201 2022 Generalized Fermat 1101 119246256^131072+1 1058596 L4249 2022 Generalized Fermat 1102 119137704^131072+1 1058544 L4201 2022 Generalized Fermat 1103 118888350^131072+1 1058425 L4999 2022 Generalized Fermat 1104 599*2^3515959+1 1058412 L1823 2018 1105 118583824^131072+1 1058279 L4210 2022 Generalized Fermat 1106 118109876^131072+1 1058051 L4550 2022 Generalized Fermat 1107 117906758^131072+1 1057953 L4249 2022 Generalized Fermat 1108 117687318^131072+1 1057847 L4245 2022 Generalized Fermat 1109 117375862^131072+1 1057696 L4774 2022 Generalized Fermat 1110 117345018^131072+1 1057681 L4848 2022 Generalized Fermat 1111 117196584^131072+1 1057609 L4559 2022 Generalized Fermat 1112 117153716^131072+1 1057588 L4774 2022 Generalized Fermat 1113 117088740^131072+1 1057557 L4559 2022 Generalized Fermat 1114 116936156^131072+1 1057483 L5332 2022 Generalized Fermat 1115 116402336^131072+1 1057222 L4760 2022 Generalized Fermat 1116 7*2^3511774+1 1057151 p236 2008 Divides GF(3511773,6) 1117 116036228^131072+1 1057043 L4773 2022 Generalized Fermat 1118 116017862^131072+1 1057034 L4559 2022 Generalized Fermat 1119 115992582^131072+1 1057021 L4835 2022 Generalized Fermat 1120 115873312^131072+1 1056963 L4677 2022 Generalized Fermat 1121 1135*2^3510890+1 1056887 L1823 2018 1122 115704568^131072+1 1056880 L4559 2022 Generalized Fermat 1123 115479166^131072+1 1056769 L4774 2022 Generalized Fermat 1124 115409608^131072+1 1056735 L4774 2022 Generalized Fermat 1125 115256562^131072+1 1056659 L4559 2022 Generalized Fermat 1126 114687250^131072+1 1056377 L5007 2022 Generalized Fermat 1127 114643510^131072+1 1056356 L4659 2022 Generalized Fermat 1128 114340846^131072+1 1056205 L4559 2022 Generalized Fermat 1129 114159720^131072+1 1056115 L4787 2022 Generalized Fermat 1130 114055498^131072+1 1056063 L4387 2022 Generalized Fermat 1131 114009952^131072+1 1056040 L4387 2022 Generalized Fermat 1132 113904214^131072+1 1055987 L4559 2022 Generalized Fermat 1133 113807058^131072+1 1055939 L5157 2022 Generalized Fermat 1134 113550956^131072+1 1055810 L5578 2022 Generalized Fermat 1135 113521888^131072+1 1055796 L4387 2022 Generalized Fermat 1136 113431922^131072+1 1055751 L4559 2022 Generalized Fermat 1137 113328940^131072+1 1055699 L4787 2022 Generalized Fermat 1138 113327472^131072+1 1055698 L5467 2022 Generalized Fermat 1139 113325850^131072+1 1055698 L4559 2022 Generalized Fermat 1140 113313172^131072+1 1055691 L5005 2022 Generalized Fermat 1141 113191714^131072+1 1055630 L5056 2022 Generalized Fermat 1142 113170004^131072+1 1055619 L4584 2022 Generalized Fermat 1143 428639*2^3506452-1 1055553 L2046 2011 1144 112996304^131072+1 1055532 L5544 2022 Generalized Fermat 1145 112958834^131072+1 1055513 L5512 2022 Generalized Fermat 1146 112852910^131072+1 1055459 L5157 2022 Generalized Fermat 1147 112719374^131072+1 1055392 L4793 2022 Generalized Fermat 1148 112580428^131072+1 1055322 L5512 2022 Generalized Fermat 1149 112248096^131072+1 1055154 L5359 2022 Generalized Fermat 1150 112053266^131072+1 1055055 L5359 2022 Generalized Fermat 1151 112023072^131072+1 1055039 L5156 2022 Generalized Fermat 1152 111673524^131072+1 1054861 L5548 2022 Generalized Fermat 1153 111181588^131072+1 1054610 L4550 2022 Generalized Fermat 1154 104*383^408249+1 1054591 L2012 2021 1155 110866802^131072+1 1054449 L5547 2022 Generalized Fermat 1156 555*2^3502765+1 1054441 L1823 2018 1157 110824714^131072+1 1054427 L4201 2022 Generalized Fermat 1158f 8300*171^472170+1 1054358 L5780 2023 1159 110428380^131072+1 1054223 L5543 2022 Generalized Fermat 1160 110406480^131072+1 1054212 L5051 2022 Generalized Fermat 1161 643*2^3501974+1 1054203 L1823 2018 1162 2*23^774109+1 1054127 g427 2014 Divides Phi(23^774109,2) 1163 1159*2^3501490+1 1054057 L2125 2018 1164 109678642^131072+1 1053835 L4559 2022 Generalized Fermat 1165 109654098^131072+1 1053823 L5143 2022 Generalized Fermat 1166 109142690^131072+1 1053557 L4201 2022 Generalized Fermat 1167 109082020^131072+1 1053525 L4773 2022 Generalized Fermat 1168 1189*2^3499042+1 1053320 L4724 2018 1169 108584736^131072+1 1053265 L5057 2022 Generalized Fermat 1170 108581414^131072+1 1053263 L5088 2022 Generalized Fermat 1171 108195632^131072+1 1053060 L5025 2022 Generalized Fermat 1172 108161744^131072+1 1053043 L4945 2022 Generalized Fermat 1173 108080390^131072+1 1053000 L4945 2022 Generalized Fermat 1174 107979316^131072+1 1052947 L4559 2022 Generalized Fermat 1175 107922308^131072+1 1052916 L5025 2022 Generalized Fermat 1176 609*2^3497474+1 1052848 L1823 2018 1177 9*2^3497442+1 1052836 L1780 2012 Generalized Fermat, divides GF(3497441,10) 1178 107732730^131072+1 1052816 L5518 2022 Generalized Fermat 1179 107627678^131072+1 1052761 L5025 2022 Generalized Fermat 1180 107492880^131072+1 1052689 L4550 2022 Generalized Fermat 1181 107420312^131072+1 1052651 L4550 2022 Generalized Fermat 1182 107404768^131072+1 1052643 L4267 2022 Generalized Fermat 1183 107222132^131072+1 1052546 L5019 2022 Generalized Fermat 1184 107126228^131072+1 1052495 L5025 2022 Generalized Fermat 1185 87*2^3496188+1 1052460 L1576 2014 1186 106901434^131072+1 1052375 L4760 2022 Generalized Fermat 1187 106508704^131072+1 1052166 L5505 2022 Generalized Fermat 1188 106440698^131072+1 1052130 L4245 2022 Generalized Fermat 1189 106019242^131072+1 1051904 L5025 2022 Generalized Fermat 1190 105937832^131072+1 1051860 L4745 2022 Generalized Fermat 1191 783*2^3494129+1 1051841 L3824 2018 1192 105861526^131072+1 1051819 L5500 2022 Generalized Fermat 1193 105850338^131072+1 1051813 L5504 2022 Generalized Fermat 1194 105534478^131072+1 1051643 L5025 2022 Generalized Fermat 1195 105058710^131072+1 1051386 L5499 2022 Generalized Fermat 1196 104907548^131072+1 1051304 L4245 2022 Generalized Fermat 1197 104808996^131072+1 1051250 L4591 2022 Generalized Fermat 1198 104641854^131072+1 1051159 L4245 2022 Generalized Fermat 1199 51*2^3490971+1 1050889 L1823 2014 1200 1485*2^3490746+1 1050823 L1134 2021 1201 103828182^131072+1 1050715 L5072 2022 Generalized Fermat 1202 103605376^131072+1 1050593 L5056 2022 Generalized Fermat 1203 103289324^131072+1 1050419 L5044 2022 Generalized Fermat 1204 103280694^131072+1 1050414 L4745 2022 Generalized Fermat 1205 103209792^131072+1 1050375 L5025 2022 Generalized Fermat 1206 103094212^131072+1 1050311 L4245 2022 Generalized Fermat 1207 103013294^131072+1 1050266 L4745 2022 Generalized Fermat 1208 753*2^3488818+1 1050242 L1823 2018 1209 102507732^131072+1 1049986 L4245 2022 Generalized Fermat 1210 102469684^131072+1 1049965 L4245 2022 Generalized Fermat 1211 102397132^131072+1 1049925 L4720 2022 Generalized Fermat 1212 102257714^131072+1 1049847 L4245 2022 Generalized Fermat 1213 699*2^3487253+1 1049771 L1204 2018 1214 102050324^131072+1 1049732 L5036 2022 Generalized Fermat 1215 102021074^131072+1 1049716 L4245 2022 Generalized Fermat 1216 101915106^131072+1 1049656 L5469 2022 Generalized Fermat 1217 101856256^131072+1 1049623 L4774 2022 Generalized Fermat 1218 249*2^3486411+1 1049517 L4045 2015 1219 195*2^3486379+1 1049507 L4108 2015 1220 101607438^131072+1 1049484 L4591 2022 Generalized Fermat 1221 101328382^131072+1 1049328 L4591 2022 Generalized Fermat 1222 101270816^131072+1 1049295 L4245 2022 Generalized Fermat 1223 100865034^131072+1 1049067 L4387 2022 Generalized Fermat 1224 59912*5^1500861+1 1049062 L3772 2014 1225 495*2^3484656+1 1048989 L3035 2016 1226 100719472^131072+1 1048985 L5270 2022 Generalized Fermat 1227 100534258^131072+1 1048880 L4245 2022 Generalized Fermat 1228 100520930^131072+1 1048872 L4201 2022 Generalized Fermat 1229 100441116^131072+1 1048827 L4309 2022 Generalized Fermat 1230b Phi(3,-3*2^1742059) 1048825 A3 2023 Generalized unique 1231 100382228^131072+1 1048794 L4308 2022 Generalized Fermat 1232 100369508^131072+1 1048786 L5157 2022 Generalized Fermat 1233 100324226^131072+1 1048761 L4201 2022 Generalized Fermat 1234b 9029*2^3483337+1 1048593 L5393 2023 1235 100010426^131072+1 1048582 L5375 2022 Generalized Fermat 1236b 5531*2^3483263+1 1048571 L5825 2023 1237 323*2^3482789+1 1048427 L1204 2016 1238b 3801*2^3482723+1 1048408 L5517 2023 1239 99665972^131072+1 1048386 L4201 2022 Generalized Fermat 1240 99650934^131072+1 1048377 L5375 2022 Generalized Fermat 1241 99557826^131072+1 1048324 L5466 2022 Generalized Fermat 1242b 8235*2^3482277+1 1048274 L5820 2023 1243b 9155*2^3482129+1 1048230 L5226 2023 1244 99351950^131072+1 1048206 L5143 2022 Generalized Fermat 1245b 4325*2^3481969+1 1048181 L5434 2023 1246 99189780^131072+1 1048113 L4201 2022 Generalized Fermat 1247 1149*2^3481694+1 1048098 L1823 2018 1248 98978354^131072+1 1047992 L5465 2022 Generalized Fermat 1249b 6127*2^3481244+1 1047963 L5226 2023 1250 98922946^131072+1 1047960 L5453 2022 Generalized Fermat 1251b 8903*2^3481217+1 1047955 L5226 2023 1252b 3595*2^3481178+1 1047943 L5214 2023 1253c 3799*2^3480810+1 1047832 L5226 2023 1254c 6101*2^3480801+1 1047830 L5226 2023 1255 98652282^131072+1 1047804 L4201 2022 Generalized Fermat 1256d 1740349*2^3480698+1 1047801 L5765 2023 Generalized Cullen 1257 98557818^131072+1 1047750 L5464 2022 Generalized Fermat 1258 98518362^131072+1 1047727 L5460 2022 Generalized Fermat 1259c 5397*2^3480379+1 1047703 L5226 2023 1260c 5845*2^3479972+1 1047580 L5517 2023 1261 98240694^131072+1 1047566 L4720 2022 Generalized Fermat 1262 98200338^131072+1 1047543 L4559 2022 Generalized Fermat 1263 701*2^3479779+1 1047521 L2125 2018 1264 98137862^131072+1 1047507 L4525 2022 Generalized Fermat 1265 813*2^3479728+1 1047506 L4724 2018 1266c 7125*2^3479509+1 1047441 L5812 2023 1267c 1971*2^3479061+1 1047306 L5226 2023 1268c 1215*2^3478543+1 1047149 L5226 2023 1269 97512766^131072+1 1047143 L5460 2022 Generalized Fermat 1270c 5985*2^3478217+1 1047052 L5387 2023 1271c 3093*2^3478148+1 1047031 L5261 2023 1272c 2145*2^3478095+1 1047015 L5387 2023 1273c 6685*2^3478086+1 1047013 L5237 2023 1274c 9603*2^3478084+1 1047012 L5178 2023 1275c 1315*2^3477718+1 1046901 L5316 2023 1276 97046574^131072+1 1046870 L4956 2022 Generalized Fermat 1277 197*2^3477399+1 1046804 L2125 2015 1278c 8303*2^3477201+1 1046746 L5387 2023 1279 96821302^131072+1 1046738 L5453 2022 Generalized Fermat 1280d 5925*2^3477009+1 1046688 L5810 2023 1281 96734274^131072+1 1046686 L5297 2022 Generalized Fermat 1282d 7825*2^3476524+1 1046542 L5174 2023 1283 96475576^131072+1 1046534 L4424 2022 Generalized Fermat 1284d 8197*2^3476332+1 1046485 L5174 2023 1285d 8529*2^3476111+1 1046418 L5387 2023 1286d 8411*2^3476055+1 1046401 L5783 2023 1287d 4319*2^3475955+1 1046371 L5803 2023 1288 96111850^131072+1 1046319 L4245 2022 Generalized Fermat 1289 95940796^131072+1 1046218 L4591 2022 Generalized Fermat 1290d 6423*2^3475393+1 1046202 L5174 2023 1291d 2281*2^3475340+1 1046185 L5302 2023 1292d 7379*2^3474983+1 1046078 L5798 2023 1293 4*5^1496566+1 1046056 L4965 2023 Generalized Fermat 1294 95635202^131072+1 1046036 L5452 2021 Generalized Fermat 1295 95596816^131072+1 1046013 L4591 2021 Generalized Fermat 1296e 4737*2^3474562+1 1045952 L5302 2023 1297e 2407*2^3474406+1 1045904 L5557 2023 1298 95308284^131072+1 1045841 L4584 2021 Generalized Fermat 1299 491*2^3473837+1 1045732 L4343 2016 1300e 2693*2^3473721+1 1045698 L5174 2023 1301 94978760^131072+1 1045644 L4201 2021 Generalized Fermat 1302e 3375*2^3473210+1 1045544 L5294 2023 1303e 8835*2^3472666+1 1045381 L5178 2023 1304e 5615*2^3472377+1 1045294 L5174 2023 1305e 1785*2^3472229+1 1045249 L875 2023 1306e 8997*2^3472036+1 1045191 L5302 2023 1307e 9473*2^3471885+1 1045146 L5294 2023 1308e 7897*2^3471568+1 1045050 L5294 2023 1309 93950924^131072+1 1045025 L5425 2021 Generalized Fermat 1310 93886318^131072+1 1044985 L5433 2021 Generalized Fermat 1311 1061*2^3471354-1 1044985 L1828 2017 1312f 1913*2^3471177+1 1044932 L5189 2023 1313 93773904^131072+1 1044917 L4939 2021 Generalized Fermat 1314f 7723*2^3471074+1 1044902 L5189 2023 1315f 4195*2^3470952+1 1044865 L5294 2023 1316 93514592^131072+1 1044760 L4591 2021 Generalized Fermat 1317f 5593*2^3470520+1 1044735 L5387 2023 1318f 3665*2^3469955+1 1044565 L5189 2023 1319f 3301*2^3469708+1 1044490 L5261 2023 1320f 6387*2^3469634+1 1044468 L5192 2023 1321 93035888^131072+1 1044467 L4245 2021 Generalized Fermat 1322f 8605*2^3469570+1 1044449 L5387 2023 1323f 1359*2^3468725+1 1044194 L5197 2023 1324 92460588^131072+1 1044114 L5254 2021 Generalized Fermat 1325f 7585*2^3468338+1 1044078 L5197 2023 1326f 1781*2^3468335+1 1044077 L5387 2023 1327 6885*2^3468181+1 1044031 L5197 2023 1328 7287*2^3467938+1 1043958 L5776 2023 1329 92198216^131072+1 1043953 L4738 2021 Generalized Fermat 1330 3163*2^3467710+1 1043889 L5517 2023 1331 6099*2^3467689+1 1043883 L5197 2023 1332 6665*2^3467627+1 1043864 L5174 2023 1333 4099*2^3467462+1 1043814 L5774 2023 1334 5285*2^3467445+1 1043809 L5189 2023 1335 91767880^131072+1 1043686 L5051 2021 Generalized Fermat 1336 91707732^131072+1 1043649 L4591 2021 Generalized Fermat 1337 5935*2^3466880+1 1043639 L5197 2023 1338 91689894^131072+1 1043638 L4591 2021 Generalized Fermat 1339 91685784^131072+1 1043635 L4591 2021 Generalized Fermat 1340 8937*2^3466822+1 1043622 L5174 2023 1341 91655310^131072+1 1043616 L4659 2021 Generalized Fermat 1342 8347*2^3466736+1 1043596 L5770 2023 1343 8863*2^3465780+1 1043308 L5766 2023 1344 3895*2^3465744+1 1043297 L5640 2023 1345 91069366^131072+1 1043251 L5277 2021 Generalized Fermat 1346 91049202^131072+1 1043239 L4591 2021 Generalized Fermat 1347 91033554^131072+1 1043229 L4591 2021 Generalized Fermat 1348 8561*2^3465371+1 1043185 L5197 2023 1349 90942952^131072+1 1043172 L4387 2021 Generalized Fermat 1350 90938686^131072+1 1043170 L4387 2021 Generalized Fermat 1351 9971*2^3465233+1 1043144 L5488 2023 1352 90857490^131072+1 1043119 L4591 2021 Generalized Fermat 1353 3801*2^3464980+1 1043067 L5197 2023 1354 3099*2^3464739+1 1042994 L5284 2023 1355 90382348^131072+1 1042820 L4267 2021 Generalized Fermat 1356 641*2^3464061+1 1042790 L1444 2018 1357 6717*2^3463735+1 1042692 L5754 2023 1358 6015*2^3463561+1 1042640 L5387 2023 1359 90006846^131072+1 1042583 L4773 2021 Generalized Fermat 1360 1667*2^3463355+1 1042577 L5226 2023 1361 2871*2^3463313+1 1042565 L5189 2023 1362 89977312^131072+1 1042565 L5070 2021 Generalized Fermat 1363 6007*2^3463048+1 1042486 L5226 2023 1364 89790434^131072+1 1042446 L5007 2021 Generalized Fermat 1365 9777*2^3462742+1 1042394 L5197 2023 1366 5215*2^3462740+1 1042393 L5174 2023 1367 8365*2^3462722+1 1042388 L5320 2023 1368 3597*2^3462056+1 1042187 L5174 2023 1369 2413*2^3461890+1 1042137 L5197 2023 1370 89285798^131072+1 1042125 L5157 2021 Generalized Fermat 1371 453*2^3461688+1 1042075 L3035 2016 1372 89113896^131072+1 1042016 L5338 2021 Generalized Fermat 1373 4401*2^3461476+1 1042012 L5197 2023 1374 9471*2^3461305+1 1041961 L5594 2023 1375 7245*2^3461070+1 1041890 L5449 2023 1376 3969*2^3460942+1 1041851 L5471 2023 Generalized Fermat 1377 4365*2^3460914+1 1041843 L5197 2023 1378 4613*2^3460861+1 1041827 L5614 2023 1379 88760062^131072+1 1041789 L4903 2021 Generalized Fermat 1380 5169*2^3460553+1 1041734 L5742 2023 1381 8395*2^3460530+1 1041728 L5284 2023 1382 5835*2^3460515+1 1041723 L5740 2023 1383 8059*2^3460246+1 1041642 L5350 2023 1384 571*2^3460216+1 1041632 L3035 2018 1385 6065*2^3460205+1 1041630 L5683 2023 1386 88243020^131072+1 1041457 L4774 2021 Generalized Fermat 1387 88166868^131072+1 1041408 L5277 2021 Generalized Fermat 1388 6237*2^3459386+1 1041383 L5509 2023 1389 88068088^131072+1 1041344 L4933 2021 Generalized Fermat 1390 4029*2^3459062+1 1041286 L5727 2023 1391 87920992^131072+1 1041249 L4249 2021 Generalized Fermat 1392 7055*2^3458909+1 1041240 L5509 2023 1393 7297*2^3458768+1 1041197 L5726 2023 1394 2421*2^3458432+1 1041096 L5725 2023 1395 7907*2^3458207+1 1041028 L5509 2023 1396 87547832^131072+1 1041006 L4591 2021 Generalized Fermat 1397 87454694^131072+1 1040946 L4672 2021 Generalized Fermat 1398 7839*2^3457846+1 1040920 L5231 2023 1399 87370574^131072+1 1040891 L5297 2021 Generalized Fermat 1400 87352356^131072+1 1040879 L4387 2021 Generalized Fermat 1401 87268788^131072+1 1040825 L4917 2021 Generalized Fermat 1402 87192538^131072+1 1040775 L4861 2021 Generalized Fermat 1403 5327*2^3457363+1 1040774 L5715 2023 1404 87116452^131072+1 1040725 L5297 2021 Generalized Fermat 1405 87039658^131072+1 1040675 L5297 2021 Generalized Fermat 1406 6059*2^3457001+1 1040665 L5197 2023 1407 8953*2^3456938+1 1040646 L5724 2023 1408 8669*2^3456759+1 1040593 L5710 2023 1409 86829162^131072+1 1040537 L5265 2021 Generalized Fermat 1410 4745*2^3456167+1 1040414 L5705 2023 1411 8213*2^3456141+1 1040407 L5703 2023 1412 86413544^131072+1 1040264 L4914 2021 Generalized Fermat 1413 86347638^131072+1 1040221 L4848 2021 Generalized Fermat 1414 86295564^131072+1 1040186 L5030 2021 Generalized Fermat 1415 1155*2^3455254+1 1040139 L4711 2017 1416 37292*5^1487989+1 1040065 L3553 2013 1417 86060696^131072+1 1040031 L5057 2021 Generalized Fermat 1418 5525*2^3454069+1 1039783 L5651 2023 1419 4235*2^3453573+1 1039633 L5650 2023 1420 6441*2^3453227+1 1039529 L5683 2023 1421 4407*2^3453195+1 1039519 L5650 2023 1422 9867*2^3453039+1 1039473 L5686 2023 1423 85115888^131072+1 1039403 L4909 2021 Generalized Fermat 1424 4857*2^3452675+1 1039363 L5600 2023 1425 8339*2^3452667+1 1039361 L5651 2023 1426 84924212^131072+1 1039275 L4309 2021 Generalized Fermat 1427 7079*2^3452367+1 1039270 L5650 2023 1428 5527*2^3452342+1 1039263 L5679 2023 1429 84817722^131072+1 1039203 L4726 2021 Generalized Fermat 1430 84765338^131072+1 1039168 L4245 2021 Generalized Fermat 1431 84757790^131072+1 1039163 L5051 2021 Generalized Fermat 1432 84723284^131072+1 1039140 L5051 2021 Generalized Fermat 1433 84715930^131072+1 1039135 L4963 2021 Generalized Fermat 1434 84679936^131072+1 1039111 L4864 2021 Generalized Fermat 1435 3719*2^3451667+1 1039059 L5294 2023 1436 6725*2^3451455+1 1038996 L5685 2023 1437 8407*2^3451334+1 1038959 L5524 2023 1438 84445014^131072+1 1038952 L4909 2021 Generalized Fermat 1439 84384358^131072+1 1038912 L4622 2021 Generalized Fermat 1440 1623*2^3451109+1 1038891 L5308 2023 1441 8895*2^3450982+1 1038854 L5666 2023 1442 84149050^131072+1 1038753 L5033 2021 Generalized Fermat 1443 2899*2^3450542+1 1038721 L5600 2023 1444 6337*2^3449506+1 1038409 L5197 2023 1445 4381*2^3449456+1 1038394 L5392 2023 1446 2727*2^3449326+1 1038355 L5421 2023 1447 2877*2^3449311+1 1038350 L5517 2023 1448 7507*2^3448920+1 1038233 L5284 2023 1449 3629*2^3448919+1 1038232 L5192 2023 1450 83364886^131072+1 1038220 L4591 2021 Generalized Fermat 1451 83328182^131072+1 1038195 L5051 2021 Generalized Fermat 1452 1273*2^3448551-1 1038121 L1828 2012 1453 1461*2^3448423+1 1038082 L4944 2023 1454 3235*2^3448352+1 1038061 L5571 2023 1455 4755*2^3448344+1 1038059 L5524 2023 1456 5655*2^3448288+1 1038042 L5651 2023 1457 4873*2^3448176+1 1038009 L5524 2023 1458 83003850^131072+1 1037973 L4963 2021 Generalized Fermat 1459 8139*2^3447967+1 1037946 L5652 2023 1460 1065*2^3447906+1 1037927 L4664 2017 1461 1717*2^3446756+1 1037581 L5517 2023 1462 6357*2^3446434+1 1037484 L5284 2023 1463 1155*2^3446253+1 1037429 L3035 2017 1464 9075*2^3446090+1 1037381 L5648 2023 1465 82008736^131072+1 1037286 L4963 2021 Generalized Fermat 1466 82003030^131072+1 1037282 L4410 2021 Generalized Fermat 1467 1483*2^3445724+1 1037270 L5650 2023 1468 81976506^131072+1 1037264 L4249 2021 Generalized Fermat 1469 2223*2^3445682+1 1037257 L5647 2023 1470 8517*2^3445488+1 1037200 L5302 2023 1471 2391*2^3445281+1 1037137 L5596 2023 1472 6883*2^3444784+1 1036988 L5264 2023 1473 81477176^131072+1 1036916 L4245 2020 Generalized Fermat 1474 81444036^131072+1 1036893 L4245 2020 Generalized Fermat 1475 8037*2^3443920+1 1036728 L5626 2023 1476 1375*2^3443850+1 1036706 L5192 2023 1477 81096098^131072+1 1036649 L4249 2020 Generalized Fermat 1478 27288429267119080686...(1036580 other digits)...83679577406643267931 1036620 p384 2015 1479 943*2^3442990+1 1036447 L4687 2017 1480 7743*2^3442814+1 1036395 L5514 2023 1481 5511*2^3442468+1 1036290 L5514 2022 1482 80284312^131072+1 1036076 L5051 2020 Generalized Fermat 1483 6329*2^3441717+1 1036064 L5631 2022 1484 3957*2^3441568+1 1036019 L5476 2022 1485 80146408^131072+1 1035978 L5051 2020 Generalized Fermat 1486 4191*2^3441427+1 1035977 L5189 2022 1487 2459*2^3441331+1 1035948 L5514 2022 1488 4335*2^3441306+1 1035940 L5178 2022 1489 2331*2^3441249+1 1035923 L5626 2022 1490 79912550^131072+1 1035812 L5186 2020 Generalized Fermat 1491 79801426^131072+1 1035733 L4245 2020 Generalized Fermat 1492 79789806^131072+1 1035725 L4658 2020 Generalized Fermat 1493 2363*2^3440385+1 1035663 L5625 2022 1494 5265*2^3440332+1 1035647 L5421 2022 1495 6023*2^3440241+1 1035620 L5517 2022 1496 943*2^3440196+1 1035606 L1448 2017 1497 6663*2^3439901+1 1035518 L5624 2022 1498 79485098^131072+1 1035507 L5130 2020 Generalized Fermat 1499 79428414^131072+1 1035466 L4793 2020 Generalized Fermat 1500 79383608^131072+1 1035434 L4387 2020 Generalized Fermat 1501 5745*2^3439450+1 1035382 L5178 2022 1502 79201682^131072+1 1035303 L5051 2020 Generalized Fermat 1503 5109*2^3439090+1 1035273 L5594 2022 1504 543*2^3438810+1 1035188 L3035 2017 1505 625*2^3438572+1 1035117 L1355 2017 Generalized Fermat 1506 3325*2^3438506+1 1035097 L5619 2022 1507 78910032^131072+1 1035093 L5051 2020 Generalized Fermat 1508 78880690^131072+1 1035072 L5159 2020 Generalized Fermat 1509 78851276^131072+1 1035051 L4928 2020 Generalized Fermat 1510 4775*2^3438217+1 1035011 L5618 2022 1511 78714954^131072+1 1034953 L5130 2020 Generalized Fermat 1512 6963*2^3437988+1 1034942 L5616 2022 1513 74*941^348034-1 1034913 L5410 2020 1514 7423*2^3437856+1 1034902 L5192 2022 1515 6701*2^3437801+1 1034886 L5615 2022 1516 5741*2^3437773+1 1034877 L5517 2022 1517 78439440^131072+1 1034753 L5051 2020 Generalized Fermat 1518 5601*2^3437259+1 1034722 L5612 2022 1519 7737*2^3437192+1 1034702 L5611 2022 1520 113*2^3437145+1 1034686 L4045 2015 1521 78240016^131072+1 1034608 L4245 2020 Generalized Fermat 1522 6387*2^3436719+1 1034560 L5613 2022 1523 78089172^131072+1 1034498 L4245 2020 Generalized Fermat 1524 2921*2^3436299+1 1034433 L5231 2022 1525 9739*2^3436242+1 1034416 L5178 2022 1526 77924964^131072+1 1034378 L5051 2020 Generalized Fermat 1527 77918854^131072+1 1034374 L4760 2020 Generalized Fermat 1528 1147*2^3435970+1 1034334 L3035 2017 1529 4589*2^3435707+1 1034255 L5174 2022 1530 7479*2^3435683+1 1034248 L5421 2022 1531 2863*2^3435616+1 1034227 L5197 2022 1532 77469882^131072+1 1034045 L4591 2020 Generalized Fermat 1533 9863*2^3434697+1 1033951 L5189 2022 1534 4065*2^3434623+1 1033929 L5197 2022 1535 77281404^131072+1 1033906 L4963 2020 Generalized Fermat 1536 9187*2^3434126+1 1033779 L5600 2022 1537 9531*2^3434103+1 1033772 L5601 2022 1538 1757*2^3433547+1 1033604 L5594 2022 1539 1421*2^3433099+1 1033469 L5237 2022 1540 3969*2^3433007+1 1033442 L5189 2022 1541 6557*2^3433003+1 1033441 L5261 2022 1542 7335*2^3432982+1 1033435 L5231 2022 1543 7125*2^3432836+1 1033391 L5594 2022 1544 2517*2^3432734+1 1033360 L5231 2022 1545 911*2^3432643+1 1033332 L1355 2017 1546 5413*2^3432626+1 1033328 L5231 2022 1547 76416048^131072+1 1033265 L4672 2020 Generalized Fermat 1548 3753*2^3432413+1 1033263 L5261 2022 1549 2691*2^3432191+1 1033196 L5585 2022 1550 3933*2^3432125+1 1033177 L5387 2022 1551 76026988^131072+1 1032975 L5094 2020 Generalized Fermat 1552 76018874^131072+1 1032969 L4774 2020 Generalized Fermat 1553 1435*2^3431284+1 1032923 L5587 2022 1554 75861530^131072+1 1032851 L5053 2020 Generalized Fermat 1555 6783*2^3430781+1 1032772 L5261 2022 1556 8079*2^3430683+1 1032743 L5585 2022 1557 75647276^131072+1 1032690 L4677 2020 Generalized Fermat 1558 75521414^131072+1 1032595 L4584 2020 Generalized Fermat 1559 6605*2^3430187+1 1032593 L5463 2022 1560 3761*2^3430057+1 1032554 L5582 2022 1561 6873*2^3429937+1 1032518 L5294 2022 1562 8067*2^3429891+1 1032504 L5581 2022 1563 3965*2^3429719+1 1032452 L5579 2022 1564 3577*2^3428812+1 1032179 L5401 2022 1565 8747*2^3428755+1 1032163 L5493 2022 1566 9147*2^3428638+1 1032127 L5493 2022 1567 3899*2^3428535+1 1032096 L5174 2022 1568 74833516^131072+1 1032074 L5102 2020 Generalized Fermat 1569 74817490^131072+1 1032062 L4591 2020 Generalized Fermat 1570 8891*2^3428303+1 1032026 L5532 2022 1571f 793181*20^793181+1 1031959 L5765 2023 Generalized Cullen 1572 2147*2^3427371+1 1031745 L5189 2022 1573 74396818^131072+1 1031741 L4791 2020 Generalized Fermat 1574 74381296^131072+1 1031729 L4550 2020 Generalized Fermat 1575 74363146^131072+1 1031715 L4898 2020 Generalized Fermat 1576 1127*2^3427219+1 1031699 L3035 2017 1577 74325990^131072+1 1031687 L5024 2020 Generalized Fermat 1578 3021*2^3427059+1 1031652 L5554 2022 1579 3255*2^3426983+1 1031629 L5231 2022 1580 1733*2^3426753+1 1031559 L5565 2022 1581 2339*2^3426599+1 1031513 L5237 2022 1582 4729*2^3426558+1 1031501 L5493 2022 1583 73839292^131072+1 1031313 L4550 2020 Generalized Fermat 1584 5445*2^3425839+1 1031285 L5237 2022 1585 159*2^3425766+1 1031261 L4045 2015 1586 73690464^131072+1 1031198 L4884 2020 Generalized Fermat 1587 3405*2^3425045+1 1031045 L5261 2022 1588 73404316^131072+1 1030976 L5011 2020 Generalized Fermat 1589 1695*2^3424517+1 1030886 L5387 2022 1590 4715*2^3424433+1 1030861 L5557 2022 1591 5525*2^3424423+1 1030858 L5387 2022 1592 8615*2^3424231+1 1030801 L5261 2022 1593 5805*2^3424200+1 1030791 L5237 2022 1594 73160610^131072+1 1030787 L4550 2020 Generalized Fermat 1595 73132228^131072+1 1030765 L4905 2020 Generalized Fermat 1596 73099962^131072+1 1030740 L5068 2020 Generalized Fermat 1597 2109*2^3423798-3027*2^988658+1 1030670 CH13 2023 Arithmetic progression (3,d=2109*2^3423797-3027*2^988658) 1598 2109*2^3423797+1 1030669 L5197 2022 1599 4929*2^3423494+1 1030579 L5554 2022 1600 2987*2^3422911+1 1030403 L5226 2022 1601 72602370^131072+1 1030351 L4201 2020 Generalized Fermat 1602 4843*2^3422644+1 1030323 L5553 2022 1603 5559*2^3422566+1 1030299 L5555 2022 1604 7583*2^3422501+1 1030280 L5421 2022 1605 1119*2^3422189+1 1030185 L1355 2017 1606 2895*2^3422031-143157*2^2144728+1 1030138 p423 2023 Arithmetic progression (3,d=2895*2^3422030-143157*2^2144728) 1607 2895*2^3422030+1 1030138 L5237 2022 1608 2835*2^3421697+1 1030037 L5387 2022 1609 3363*2^3421353+1 1029934 L5226 2022 1610 72070092^131072+1 1029932 L4201 2020 Generalized Fermat 1611 9147*2^3421264+1 1029908 L5237 2022 1612 9705*2^3420915+1 1029803 L5540 2022 1613 1005*2^3420846+1 1029781 L2714 2017 Divides GF(3420844,10) 1614 8919*2^3420758+1 1029755 L5226 2022 1615 71732900^131072+1 1029665 L5053 2020 Generalized Fermat 1616 71679108^131072+1 1029623 L5072 2020 Generalized Fermat 1617 5489*2^3420137+1 1029568 L5174 2022 1618 9957*2^3420098+1 1029557 L5237 2022 1619 93*10^1029523-1 1029525 L4789 2019 Near-repdigit 1620 71450224^131072+1 1029440 L5029 2020 Generalized Fermat 1621 7213*2^3419370+1 1029337 L5421 2022 1622 7293*2^3419264+1 1029305 L5192 2022 1623 975*2^3419230+1 1029294 L3545 2017 1624 4191*2^3419227+1 1029294 L5421 2022 1625 2393*2^3418921+1 1029202 L5197 2022 1626 999*2^3418885+1 1029190 L3035 2017 1627 2925*2^3418543+1 1029088 L5174 2022 1628 70960658^131072+1 1029049 L5039 2020 Generalized Fermat 1629 70948704^131072+1 1029039 L4660 2020 Generalized Fermat 1630 70934282^131072+1 1029028 L5067 2020 Generalized Fermat 1631 7383*2^3418297+1 1029014 L5189 2022 1632 70893680^131072+1 1028995 L5063 2020 Generalized Fermat 1633 907*2^3417890+1 1028891 L3035 2017 1634 5071*2^3417884+1 1028890 L5237 2022 1635 3473*2^3417741+1 1028847 L5541 2022 1636 191249*2^3417696-1 1028835 L1949 2010 1637 70658696^131072+1 1028806 L5051 2020 Generalized Fermat 1638 3299*2^3417329+1 1028723 L5421 2022 1639 6947*2^3416979+1 1028618 L5540 2022 1640 70421038^131072+1 1028615 L4984 2020 Generalized Fermat 1641 8727*2^3416652+1 1028519 L5226 2022 1642 8789*2^3416543+1 1028486 L5197 2022 1643 70050828^131072+1 1028315 L5021 2020 Generalized Fermat 1644 7917*2^3415947+1 1028307 L5537 2022 1645 70022042^131072+1 1028291 L4201 2020 Generalized Fermat 1646 2055*2^3415873+1 1028284 L5535 2022 1647 4731*2^3415712+1 1028236 L5192 2022 1648 2219*2^3415687+1 1028228 L5178 2022 1649 69915032^131072+1 1028204 L4591 2020 Generalized Fermat 1650 5877*2^3415419+1 1028148 L5532 2022 1651 3551*2^3415275+1 1028104 L5231 2022 1652 69742382^131072+1 1028063 L5053 2020 Generalized Fermat 1653 2313*2^3415046+1 1028035 L5226 2022 1654 69689592^131072+1 1028020 L4387 2020 Generalized Fermat 1655 7637*2^3414875+1 1027984 L5507 2022 1656 2141*2^3414821+1 1027967 L5226 2022 1657 69622572^131072+1 1027965 L4909 2020 Generalized Fermat 1658 3667*2^3414686+1 1027927 L5226 2022 1659 69565722^131072+1 1027919 L4387 2020 Generalized Fermat 1660 6159*2^3414623+1 1027908 L5226 2022 1661 69534788^131072+1 1027894 L5029 2020 Generalized Fermat 1662 4577*2^3413539+1 1027582 L5387 2022 1663 5137*2^3413524+1 1027577 L5261 2022 1664 8937*2^3413364+1 1027529 L5527 2022 1665 8829*2^3413339+1 1027522 L5531 2022 1666 7617*2^3413315+1 1027515 L5197 2022 1667 68999820^131072+1 1027454 L5044 2020 Generalized Fermat 1668 3141*2^3413112+1 1027453 L5463 2022 1669 8831*2^3412931+1 1027399 L5310 2022 1670 68924112^131072+1 1027391 L4745 2020 Generalized Fermat 1671 68918852^131072+1 1027387 L5021 2020 Generalized Fermat 1672 5421*2^3412877+1 1027383 L5310 2022 1673 9187*2^3412700+1 1027330 L5337 2022 1674 68811158^131072+1 1027298 L4245 2020 Generalized Fermat 1675 8243*2^3412577+1 1027292 L5524 2022 1676 1751*2^3412565+1 1027288 L5523 2022 1677 9585*2^3412318+1 1027215 L5197 2022 1678 9647*2^3412247+1 1027193 L5178 2022 1679 3207*2^3412108+1 1027151 L5189 2022 1680 479*2^3411975+1 1027110 L2873 2016 1681 245*2^3411973+1 1027109 L1935 2015 1682 177*2^3411847+1 1027071 L4031 2015 1683 68536972^131072+1 1027071 L5027 2020 Generalized Fermat 1684 9963*2^3411566+1 1026988 L5237 2022 1685 68372810^131072+1 1026934 L4956 2020 Generalized Fermat 1686 9785*2^3411223+1 1026885 L5189 2022 1687 5401*2^3411136+1 1026858 L5261 2022 1688 68275006^131072+1 1026853 L4963 2020 Generalized Fermat 1689 9431*2^3411105+1 1026849 L5237 2022 1690 8227*2^3410878+1 1026781 L5316 2022 1691 4735*2^3410724+1 1026734 L5226 2022 1692 9515*2^3410707+1 1026730 L5237 2022 1693 6783*2^3410690+1 1026724 L5434 2022 1694 8773*2^3410558+1 1026685 L5261 2022 1695 4629*2^3410321+1 1026613 L5517 2022 1696 67894288^131072+1 1026535 L5025 2020 Generalized Fermat 1697 113*2^3409934-1 1026495 L2484 2014 1698 5721*2^3409839+1 1026468 L5226 2022 1699 67725850^131072+1 1026393 L5029 2020 Generalized Fermat 1700 6069*2^3409493+1 1026364 L5237 2022 1701 1981*910^346850+1 1026347 L1141 2021 1702 5317*2^3409236+1 1026287 L5471 2022 1703 7511*2^3408985+1 1026211 L5514 2022 1704 7851*2^3408909+1 1026188 L5176 2022 1705 67371416^131072+1 1026094 L4550 2020 Generalized Fermat 1706 6027*2^3408444+1 1026048 L5239 2022 1707 59*2^3408416-1 1026038 L426 2010 1708 2153*2^3408333+1 1026014 L5237 2022 1709 9831*2^3408056+1 1025932 L5233 2022 1710 3615*2^3408035+1 1025925 L5217 2022 1711 6343*2^3407950+1 1025899 L5226 2022 1712 8611*2^3407516+1 1025769 L5509 2022 1713 66982940^131072+1 1025765 L4249 2020 Generalized Fermat 1714 7111*2^3407452+1 1025750 L5508 2022 1715 66901180^131072+1 1025696 L5018 2020 Generalized Fermat 1716 6945*2^3407256+1 1025691 L5507 2022 1717 6465*2^3407229+1 1025682 L5301 2022 1718 1873*2^3407156+1 1025660 L5440 2022 1719 7133*2^3406377+1 1025426 L5279 2022 1720 7063*2^3406122+1 1025349 L5178 2022 1721 3105*2^3405800+1 1025252 L5502 2022 1722 953*2^3405729+1 1025230 L3035 2017 1723 66272848^131072+1 1025159 L5013 2020 Generalized Fermat 1724 66131722^131072+1 1025037 L4530 2020 Generalized Fermat 1725 373*2^3404702+1 1024921 L3924 2016 1726 7221*2^3404507+1 1024863 L5231 2022 1727 6641*2^3404259+1 1024788 L5501 2022 1728 9225*2^3404209+1 1024773 L5250 2022 1729 65791182^131072+1 1024743 L4623 2019 Generalized Fermat 1730 833*2^3403765+1 1024639 L3035 2017 1731 65569854^131072+1 1024552 L4210 2019 Generalized Fermat 1732 2601*2^3403459+1 1024547 L5350 2022 1733 8835*2^3403266+1 1024490 L5161 2022 1734 7755*2^3403010+1 1024412 L5161 2022 1735 3123*2^3402834+1 1024359 L5260 2022 1736 65305572^131072+1 1024322 L5001 2019 Generalized Fermat 1737 65200798^131072+1 1024230 L4999 2019 Generalized Fermat 1738 1417*2^3402246+1 1024182 L5497 2022 1739 5279*2^3402241+1 1024181 L5250 2022 1740 6651*2^3402137+1 1024150 L5476 2022 1741 1779*2^3401715+1 1024022 L5493 2022 1742 64911056^131072+1 1023977 L4870 2019 Generalized Fermat 1743 8397*2^3401502+1 1023959 L5476 2022 1744 4057*2^3401472+1 1023949 L5492 2022 1745 64791668^131072+1 1023872 L4905 2019 Generalized Fermat 1746 4095*2^3401174+1 1023860 L5418 2022 1747 5149*2^3400970+1 1023798 L5176 2022 1748 4665*2^3400922+1 1023784 L5308 2022 1749 24*414^391179+1 1023717 L4273 2016 1750 64568930^131072+1 1023676 L4977 2019 Generalized Fermat 1751 64506894^131072+1 1023621 L4977 2019 Generalized Fermat 1752 1725*2^3400371+1 1023617 L5197 2022 1753 64476916^131072+1 1023595 L4997 2019 Generalized Fermat 1754 9399*2^3400243+1 1023580 L5488 2022 1755 1241*2^3400127+1 1023544 L5279 2022 1756 1263*2^3399876+1 1023468 L5174 2022 1757 1167*2^3399748+1 1023430 L3545 2017 1758 64024604^131072+1 1023194 L4591 2019 Generalized Fermat 1759 7679*2^3398569+1 1023076 L5295 2022 1760 6447*2^3398499+1 1023054 L5302 2022 1761 63823568^131072+1 1023015 L4585 2019 Generalized Fermat 1762 2785*2^3398332+1 1023004 L5250 2022 1763 611*2^3398273+1 1022985 L3035 2017 1764 2145*2^3398034+1 1022914 L5302 2022 1765 3385*2^3397254+1 1022679 L5161 2022 1766 4*3^2143374+1 1022650 L4965 2020 Generalized Fermat 1767 4463*2^3396657+1 1022500 L5476 2022 1768 2889*2^3396450+1 1022437 L5178 2022 1769 8523*2^3396448+1 1022437 L5231 2022 1770 63168480^131072+1 1022428 L4861 2019 Generalized Fermat 1771 63165756^131072+1 1022425 L4987 2019 Generalized Fermat 1772 3349*2^3396326+1 1022400 L5480 2022 1773 63112418^131072+1 1022377 L4201 2019 Generalized Fermat 1774 4477*2^3395786+1 1022238 L5161 2022 1775 3853*2^3395762+1 1022230 L5302 2022 1776 2693*2^3395725+1 1022219 L5284 2022 1777 8201*2^3395673+1 1022204 L5178 2022 1778 255*2^3395661+1 1022199 L3898 2014 1779 1049*2^3395647+1 1022195 L3035 2017 1780 9027*2^3395623+1 1022189 L5263 2022 1781 2523*2^3395549+1 1022166 L5472 2022 1782 3199*2^3395402+1 1022122 L5264 2022 1783 342924651*2^3394939-1 1021988 L4166 2017 1784 3825*2^3394947+1 1021985 L5471 2022 1785 1895*2^3394731+1 1021920 L5174 2022 1786 62276102^131072+1 1021618 L4715 2019 Generalized Fermat 1787 555*2^3393389+1 1021515 L2549 2017 1788 1865*2^3393387+1 1021515 L5237 2022 1789 4911*2^3393373+1 1021511 L5231 2022 1790 62146946^131072+1 1021500 L4720 2019 Generalized Fermat 1791 5229*2^3392587+1 1021275 L5463 2022 1792 61837354^131072+1 1021215 L4656 2019 Generalized Fermat 1793 609*2^3392301+1 1021188 L3035 2017 1794 9787*2^3392236+1 1021169 L5350 2022 1795 303*2^3391977+1 1021090 L2602 2016 1796 805*2^3391818+1 1021042 L4609 2017 1797 6475*2^3391496+1 1020946 L5174 2022 1798 67*2^3391385-1 1020911 L1959 2014 1799 61267078^131072+1 1020688 L4923 2019 Generalized Fermat 1800 4639*2^3390634+1 1020687 L5189 2022 1801 5265*2^3390581+1 1020671 L5456 2022 1802 663*2^3390469+1 1020636 L4316 2017 1803 6945*2^3390340+1 1020598 L5174 2022 1804 5871*2^3390268+1 1020577 L5231 2022 1805 7443*2^3390141+1 1020539 L5226 2022 1806 5383*2^3389924+1 1020473 L5350 2021 1807 61030988^131072+1 1020468 L4898 2019 Generalized Fermat 1808 9627*2^3389331+1 1020295 L5231 2021 1809 60642326^131072+1 1020104 L4591 2019 Generalized Fermat 1810 8253*2^3388624+1 1020082 L5226 2021 1811 3329*2^3388472-1 1020036 L4841 2020 1812 4695*2^3388393+1 1020012 L5237 2021 1813 60540024^131072+1 1020008 L4591 2019 Generalized Fermat 1814 7177*2^3388144+1 1019937 L5174 2021 1815 60455792^131072+1 1019929 L4760 2019 Generalized Fermat 1816 9611*2^3388059+1 1019912 L5435 2021 1817 1833*2^3387760+1 1019821 L5226 2021 1818 9003*2^3387528+1 1019752 L5189 2021 1819 3161*2^3387141+1 1019635 L5226 2021 1820 7585*2^3387110+1 1019626 L5189 2021 1821 60133106^131072+1 1019624 L4942 2019 Generalized Fermat 1822 453*2^3387048+1 1019606 L2602 2016 1823 5177*2^3386919+1 1019568 L5226 2021 1824 8739*2^3386813+1 1019537 L5226 2021 1825 2875*2^3386638+1 1019484 L5226 2021 1826 7197*2^3386526+1 1019450 L5178 2021 1827 1605*2^3386229+1 1019360 L5226 2021 1828 8615*2^3386181+1 1019346 L5442 2021 1829 3765*2^3386141+1 1019334 L5174 2021 1830 5379*2^3385806+1 1019233 L5237 2021 1831 59720358^131072+1 1019232 L4656 2019 Generalized Fermat 1832 59692546^131072+1 1019206 L4747 2019 Generalized Fermat 1833 59515830^131072+1 1019037 L4737 2019 Generalized Fermat 1834 173198*5^1457792-1 1018959 L3720 2013 1835 59405420^131072+1 1018931 L4645 2019 Generalized Fermat 1836 2109*2^3384733+1 1018910 L5261 2021 1837 7067*2^3384667+1 1018891 L5439 2021 1838 59362002^131072+1 1018890 L4249 2019 Generalized Fermat 1839 59305348^131072+1 1018835 L4932 2019 Generalized Fermat 1840 2077*2^3384472+1 1018831 L5237 2021 1841 59210784^131072+1 1018745 L4926 2019 Generalized Fermat 1842 59161754^131072+1 1018697 L4928 2019 Generalized Fermat 1843 9165*2^3383917+1 1018665 L5435 2021 1844 5579*2^3383209+1 1018452 L5434 2021 1845 8241*2^3383131+1 1018428 L5387 2021 1846 7409*2^3382869+1 1018349 L5161 2021 1847 4883*2^3382813+1 1018332 L5161 2021 1848 9783*2^3382792+1 1018326 L5189 2021 1849 58589880^131072+1 1018145 L4923 2019 Generalized Fermat 1850 58523466^131072+1 1018080 L4802 2019 Generalized Fermat 1851 8877*2^3381936+1 1018069 L5429 2021 1852 58447816^131072+1 1018006 L4591 2019 Generalized Fermat 1853 58447642^131072+1 1018006 L4591 2019 Generalized Fermat 1854 6675*2^3381688+1 1017994 L5197 2021 1855 2445*2^3381129+1 1017825 L5231 2021 1856 58247118^131072+1 1017811 L4309 2019 Generalized Fermat 1857 3381*2^3380585+1 1017662 L5237 2021 1858 7899*2^3380459+1 1017624 L5421 2021 1859 5945*2^3379933+1 1017465 L5418 2021 1860 1425*2^3379921+1 1017461 L1134 2020 1861 4975*2^3379420+1 1017311 L5161 2021 1862 57704312^131072+1 1017278 L4591 2019 Generalized Fermat 1863 57694224^131072+1 1017268 L4656 2019 Generalized Fermat 1864 57594734^131072+1 1017169 L4656 2019 Generalized Fermat 1865 9065*2^3378851+1 1017140 L5414 2021 1866 2369*2^3378761+1 1017112 L5197 2021 1867 57438404^131072+1 1017015 L4745 2019 Generalized Fermat 1868 621*2^3378148+1 1016927 L3035 2017 1869 7035*2^3378141+1 1016926 L5408 2021 1870 2067*2^3378115+1 1016918 L5405 2021 1871 1093*2^3378000+1 1016883 L4583 2017 1872 9577*2^3377612+1 1016767 L5406 2021 1873 861*2^3377601+1 1016763 L4582 2017 1874 5811*2^3377016+1 1016587 L5261 2021 1875 2285*2^3376911+1 1016555 L5261 2021 1876 4199*2^3376903+1 1016553 L5174 2021 1877 6405*2^3376890+1 1016549 L5269 2021 1878 1783*2^3376810+1 1016525 L5261 2021 1879 5401*2^3376768+1 1016513 L5174 2021 1880 56917336^131072+1 1016496 L4729 2019 Generalized Fermat 1881 2941*2^3376536+1 1016443 L5174 2021 1882 1841*2^3376379+1 1016395 L5401 2021 1883 6731*2^3376133+1 1016322 L5261 2021 1884 56735576^131072+1 1016314 L4760 2019 Generalized Fermat 1885 8121*2^3375933+1 1016262 L5356 2021 1886 5505*2^3375777+1 1016214 L5174 2021 1887 56584816^131072+1 1016162 L4289 2019 Generalized Fermat 1888 3207*2^3375314+1 1016075 L5237 2021 1889 56459558^131072+1 1016036 L4892 2019 Generalized Fermat 1890 5307*2^3374939+1 1015962 L5392 2021 1891 56383242^131072+1 1015959 L4889 2019 Generalized Fermat 1892 56307420^131072+1 1015883 L4843 2019 Generalized Fermat 1893 208003!-1 1015843 p394 2016 Factorial 1894 6219*2^3374198+1 1015739 L5393 2021 1895 3777*2^3374072+1 1015701 L5261 2021 1896 9347*2^3374055+1 1015696 L5387 2021 1897 1461*2^3373383+1 1015493 L5384 2021 1898 6395*2^3373135+1 1015419 L5382 2021 1899 7869*2^3373021+1 1015385 L5381 2021 1900 55645700^131072+1 1015210 L4745 2019 Generalized Fermat 1901 4905*2^3372216+1 1015142 L5261 2021 1902 55579418^131072+1 1015142 L4745 2019 Generalized Fermat 1903 2839*2^3372034+1 1015087 L5174 2021 1904 7347*2^3371803+1 1015018 L5217 2021 1905 9799*2^3371378+1 1014890 L5261 2021 1906 4329*2^3371201+1 1014837 L5197 2021 1907 3657*2^3371183+1 1014831 L5360 2021 1908 55268442^131072+1 1014822 L4525 2019 Generalized Fermat 1909 179*2^3371145+1 1014819 L3763 2014 1910 5155*2^3371016+1 1014781 L5237 2021 1911 7575*2^3371010+1 1014780 L5237 2021 1912 55184170^131072+1 1014736 L4871 2018 Generalized Fermat 1913 9195*2^3370798+1 1014716 L5178 2021 1914 1749*2^3370786+1 1014711 L5362 2021 1915 8421*2^3370599+1 1014656 L5174 2021 1916 55015050^131072+1 1014561 L4205 2018 Generalized Fermat 1917 4357*2^3369572+1 1014346 L5231 2021 1918 6073*2^3369544+1 1014338 L5358 2021 1919 839*2^3369383+1 1014289 L2891 2017 1920 65*2^3369359+1 1014280 L5236 2021 1921 8023*2^3369228+1 1014243 L5356 2021 1922 677*2^3369115+1 1014208 L2103 2017 1923 1437*2^3369083+1 1014199 L5282 2021 1924 9509*2^3368705+1 1014086 L5237 2021 1925 54548788^131072+1 1014076 L4726 2018 Generalized Fermat 1926 4851*2^3368668+1 1014074 L5307 2021 1927 7221*2^3368448+1 1014008 L5353 2021 1928 5549*2^3368437+1 1014005 L5217 2021 1929 715*2^3368210+1 1013936 L4527 2017 1930 617*2^3368119+1 1013908 L4552 2017 1931 54361742^131072+1 1013881 L4210 2018 Generalized Fermat 1932 1847*2^3367999+1 1013872 L5352 2021 1933 54334044^131072+1 1013852 L4745 2018 Generalized Fermat 1934 6497*2^3367743+1 1013796 L5285 2021 1935 2533*2^3367666+1 1013772 L5326 2021 1936 6001*2^3367552+1 1013738 L5350 2021 1937 54212352^131072+1 1013724 L4307 2018 Generalized Fermat 1938 54206254^131072+1 1013718 L4249 2018 Generalized Fermat 1939 777*2^3367372+1 1013683 L4408 2017 1940 9609*2^3367351+1 1013678 L5285 2021 1941 54161106^131072+1 1013670 L4307 2018 Generalized Fermat 1942 2529*2^3367317+1 1013667 L5237 2021 1943 5941*2^3366960+1 1013560 L5189 2021 1944 5845*2^3366956+1 1013559 L5197 2021 1945 54032538^131072+1 1013535 L4591 2018 Generalized Fermat 1946 9853*2^3366608+1 1013454 L5178 2021 1947 61*2^3366033-1 1013279 L4405 2017 1948 7665*2^3365896+1 1013240 L5345 2021 1949 8557*2^3365648+1 1013165 L5346 2021 1950 369*2^3365614+1 1013154 L4364 2016 1951 53659976^131072+1 1013141 L4823 2018 Generalized Fermat 1952 8201*2^3365283+1 1013056 L5345 2021 1953 9885*2^3365151+1 1013016 L5344 2021 1954 5173*2^3365096+1 1012999 L5285 2021 1955 8523*2^3364918+1 1012946 L5237 2021 1956 3985*2^3364776+1 1012903 L5178 2021 1957 9711*2^3364452+1 1012805 L5192 2021 1958 7003*2^3364172+1 1012721 L5217 2021 1959 6703*2^3364088+1 1012696 L5337 2021 1960 7187*2^3364011+1 1012673 L5217 2021 1961 53161266^131072+1 1012610 L4307 2018 Generalized Fermat 1962 53078434^131072+1 1012521 L4835 2018 Generalized Fermat 1963 2345*2^3363157+1 1012415 L5336 2021 1964 6527*2^3363135+1 1012409 L5167 2021 1965 9387*2^3363088+1 1012395 L5161 2021 1966 8989*2^3362986+1 1012364 L5161 2021 1967 533*2^3362857+1 1012324 L3171 2017 1968 619*2^3362814+1 1012311 L4527 2017 1969 2289*2^3362723+1 1012284 L5161 2021 1970 7529*2^3362565+1 1012237 L5161 2021 1971 7377*2^3362366+1 1012177 L5161 2021 1972 4509*2^3362311+1 1012161 L5324 2021 1973 7021*2^3362208+1 1012130 L5178 2021 1974 52712138^131072+1 1012127 L4819 2018 Generalized Fermat 1975 104*873^344135-1 1012108 L4700 2018 1976 4953*2^3362054+1 1012083 L5323 2021 1977 8575*2^3361798+1 1012006 L5237 2021 1978 2139*2^3361706+1 1011978 L5174 2021 1979 6939*2^3361203+1 1011827 L5217 2021 1980 52412612^131072+1 1011802 L4289 2018 Generalized Fermat 1981 3^2120580-3^623816-1 1011774 CH9 2019 1982 8185*2^3360896+1 1011735 L5189 2021 1983 2389*2^3360882+1 1011730 L5317 2021 1984 2787*2^3360631+1 1011655 L5197 2021 1985 6619*2^3360606+1 1011648 L5316 2021 1986 2755*2^3360526+1 1011623 L5174 2021 1987 1445*2^3360099+1 1011494 L5261 2021 1988d 2846*67^553905-1 1011476 L4955 2023 1989 8757*2^3359788+1 1011401 L5197 2021 1990 52043532^131072+1 1011400 L4810 2018 Generalized Fermat 1991 5085*2^3359696+1 1011373 L5261 2021 1992 51954384^131072+1 1011303 L4720 2018 Generalized Fermat 1993 6459*2^3359457+1 1011302 L5310 2021 1994 51872628^131072+1 1011213 L4591 2018 Generalized Fermat 1995 6115*2^3358998+1 1011163 L5309 2021 1996 7605*2^3358929+1 1011143 L5308 2021 1997 2315*2^3358899+1 1011133 L5197 2021 1998 6603*2^3358525+1 1011021 L5307 2021 1999 51580416^131072+1 1010891 L4765 2018 Generalized Fermat 2000 51570250^131072+1 1010880 L4591 2018 Generalized Fermat 2001 51567684^131072+1 1010877 L4800 2018 Generalized Fermat 2002 5893*2^3357490+1 1010709 L5285 2021 2003 6947*2^3357075+1 1010585 L5302 2021 2004 4621*2^3357068+1 1010582 L5301 2021 2005 51269192^131072+1 1010547 L4795 2018 Generalized Fermat 2006 1479*2^3356275+1 1010343 L5178 2021 2007 3645*2^3356232+1 1010331 L5296 2021 2008 1259*2^3356215+1 1010325 L5298 2021 2009 2075*2^3356057+1 1010278 L5174 2021 2010 4281*2^3356051+1 1010276 L5295 2021 2011 1275*2^3356045+1 1010274 L5294 2021 2012 50963598^131072+1 1010206 L4726 2018 Generalized Fermat 2013 4365*2^3355770+1 1010192 L5261 2021 2014 50844724^131072+1 1010074 L4656 2018 Generalized Fermat 2015 2183*2^3355297+1 1010049 L5266 2021 2016 3087*2^3355000+1 1009960 L5226 2021 2017 8673*2^3354760+1 1009888 L5233 2021 2018 50495632^131072+1 1009681 L4591 2018 Generalized Fermat 2019 3015*2^3353943+1 1009641 L5290 2021 2020 6819*2^3353877+1 1009622 L5174 2021 2021 9*10^1009567-1 1009568 L3735 2016 Near-repdigit 2022 6393*2^3353366+1 1009468 L5287 2021 2023 3573*2^3353273+1 1009440 L5161 2021 2024 4047*2^3353222+1 1009425 L5286 2021 2025 1473*2^3353114+1 1009392 L5161 2021 2026 1183*2^3353058+1 1009375 L3824 2017 2027 50217306^131072+1 1009367 L4720 2018 Generalized Fermat 2028 81*2^3352924+1 1009333 L1728 2012 Generalized Fermat 2029 50110436^131072+1 1009245 L4591 2018 Generalized Fermat 2030 50055102^131072+1 1009183 L4309 2018 Generalized Fermat 2031 7123*2^3352180+1 1009111 L5161 2021 2032 2757*2^3352180+1 1009111 L5285 2021 2033 9307*2^3352014+1 1009061 L5284 2021 2034 2217*2^3351732+1 1008976 L5283 2021 2035 543*2^3351686+1 1008961 L4198 2017 2036 4419*2^3351666+1 1008956 L5279 2021 2037 49817700^131072+1 1008912 L4760 2018 Generalized Fermat 2038 3059*2^3351379+1 1008870 L5278 2021 2039 7789*2^3351046+1 1008770 L5276 2021 2040 9501*2^3350668+1 1008656 L5272 2021 2041 49530004^131072+1 1008582 L4591 2018 Generalized Fermat 2042 9691*2^3349952+1 1008441 L5242 2021 2043 49397682^131072+1 1008430 L4764 2018 Generalized Fermat 2044 3209*2^3349719+1 1008370 L5269 2021 2045 49331672^131072+1 1008354 L4763 2018 Generalized Fermat 2046 393*2^3349525+1 1008311 L3101 2016 2047 49243622^131072+1 1008252 L4741 2018 Generalized Fermat 2048 5487*2^3349303+1 1008245 L5266 2021 2049 49225986^131072+1 1008232 L4757 2018 Generalized Fermat 2050 2511*2^3349104+1 1008185 L5264 2021 2051 1005*2^3349046-1 1008167 L4518 2021 2052 7659*2^3348894+1 1008122 L5263 2021 2053 9703*2^3348872+1 1008115 L5262 2021 2054 49090656^131072+1 1008075 L4752 2018 Generalized Fermat 2055 7935*2^3348578+1 1008027 L5161 2021 2056 49038514^131072+1 1008015 L4743 2018 Generalized Fermat 2057 7821*2^3348400+1 1007973 L5260 2021 2058 7911*2^3347532+1 1007712 L5250 2021 2059 8295*2^3347031+1 1007561 L5249 2021 2060 48643706^131072+1 1007554 L4691 2018 Generalized Fermat 2061 4029*2^3346729+1 1007470 L5239 2021 2062 9007*2^3346716+1 1007466 L5161 2021 2063 8865*2^3346499+1 1007401 L5238 2021 2064 6171*2^3346480+1 1007395 L5174 2021 2065 6815*2^3346045+1 1007264 L5235 2021 2066 5*326^400785+1 1007261 L4786 2019 2067 5951*2^3345977+1 1007244 L5233 2021 2068 48370248^131072+1 1007234 L4701 2018 Generalized Fermat 2069 1257*2^3345843+1 1007203 L5192 2021 2070 4701*2^3345815+1 1007195 L5192 2021 2071 48273828^131072+1 1007120 L4456 2018 Generalized Fermat 2072 7545*2^3345355+1 1007057 L5231 2021 2073 5559*2^3344826+1 1006897 L5223 2021 2074 6823*2^3344692+1 1006857 L5223 2021 2075 4839*2^3344453+1 1006785 L5188 2021 2076 7527*2^3344332+1 1006749 L5220 2021 2077 7555*2^3344240+1 1006721 L5188 2021 2078 6265*2^3344080+1 1006673 L5197 2021 2079 1299*2^3343943+1 1006631 L5217 2021 2080 2815*2^3343754+1 1006574 L5216 2021 2081 5349*2^3343734+1 1006568 L5174 2021 2082 2863*2^3342920+1 1006323 L5179 2020 2083 7387*2^3342848+1 1006302 L5208 2020 2084 9731*2^3342447+1 1006181 L5203 2020 2085 7725*2^3341708+1 1005959 L5195 2020 2086 7703*2^3341625+1 1005934 L5178 2020 2087 7047*2^3341482+1 1005891 L5194 2020 2088 4839*2^3341309+1 1005838 L5192 2020 2089 47179704^131072+1 1005815 L4673 2017 Generalized Fermat 2090 47090246^131072+1 1005707 L4654 2017 Generalized Fermat 2091 8989*2^3340866+1 1005705 L5189 2020 2092 6631*2^3340808+1 1005688 L5188 2020 2093 1341*2^3340681+1 1005649 L5188 2020 2094 733*2^3340464+1 1005583 L3035 2016 2095 2636*138^469911+1 1005557 L5410 2021 2096 3679815*2^3340001+1 1005448 L4922 2019 2097 57*2^3339932-1 1005422 L3519 2015 2098 46776558^131072+1 1005326 L4659 2017 Generalized Fermat 2099 46736070^131072+1 1005277 L4245 2017 Generalized Fermat 2100 46730280^131072+1 1005270 L4656 2017 Generalized Fermat 2101 3651*2^3339341+1 1005246 L5177 2020 2102 3853*2^3339296+1 1005232 L5178 2020 2103 8015*2^3339267+1 1005224 L5176 2020 2104 3027*2^3339182+1 1005198 L5174 2020 2105 9517*2^3339002+1 1005144 L5172 2020 2106 4003*2^3338588+1 1005019 L3035 2020 2107 6841*2^3338336+1 1004944 L1474 2020 2108 2189*2^3338209+1 1004905 L5031 2020 2109 46413358^131072+1 1004883 L4626 2017 Generalized Fermat 2110 46385310^131072+1 1004848 L4622 2017 Generalized Fermat 2111 46371508^131072+1 1004831 L4620 2017 Generalized Fermat 2112 2957*2^3337667+1 1004742 L5144 2020 2113 1515*2^3337389+1 1004658 L1474 2020 2114 7933*2^3337270+1 1004623 L4666 2020 2115 1251*2^3337116+1 1004576 L4893 2020 2116 651*2^3337101+1 1004571 L3260 2016 2117 46077492^131072+1 1004469 L4595 2017 Generalized Fermat 2118 8397*2^3336654+1 1004437 L5125 2020 2119 8145*2^3336474+1 1004383 L5110 2020 2120 1087*2^3336385-1 1004355 L1828 2012 2121 5325*2^3336120+1 1004276 L2125 2020 2122 849*2^3335669+1 1004140 L3035 2016 2123 8913*2^3335216+1 1004005 L5079 2020 2124 7725*2^3335213+1 1004004 L3035 2020 2125 611*2^3334875+1 1003901 L3813 2016 2126 45570624^131072+1 1003840 L4295 2017 Generalized Fermat 2127 403*2^3334410+1 1003761 L4293 2016 2128 5491*2^3334392+1 1003756 L4815 2020 2129 6035*2^3334341+1 1003741 L2125 2020 2130 1725*2^3334341+1 1003740 L2125 2020 2131 4001*2^3334031+1 1003647 L1203 2020 2132 2315*2^3333969+1 1003629 L2125 2020 2133 6219*2^3333810+1 1003581 L4582 2020 2134 8063*2^3333721+1 1003554 L1823 2020 2135 9051*2^3333677+1 1003541 L3924 2020 2136 45315256^131072+1 1003520 L4562 2017 Generalized Fermat 2137 4091*2^3333153+1 1003383 L1474 2020 2138 9949*2^3332750+1 1003262 L5090 2020 2139 3509*2^3332649+1 1003231 L5085 2020 2140 3781*2^3332436+1 1003167 L1823 2020 2141 4425*2^3332394+1 1003155 L3431 2020 2142 6459*2^3332086+1 1003062 L2629 2020 2143 44919410^131072+1 1003020 L4295 2017 Generalized Fermat 2144 5257*2^3331758+1 1002963 L1188 2020 2145 2939*2^3331393+1 1002853 L1823 2020 2146 6959*2^3331365+1 1002845 L1675 2020 2147 8815*2^3330748+1 1002660 L3329 2020 2148 4303*2^3330652+1 1002630 L4730 2020 2149 8595*2^3330649+1 1002630 L4723 2020 2150 673*2^3330436+1 1002564 L3035 2016 2151 8163*2^3330042+1 1002447 L3278 2020 2152 44438760^131072+1 1002408 L4505 2016 Generalized Fermat 2153 193*2^3329782+1 1002367 L3460 2014 Divides Fermat F(3329780) 2154 44330870^131072+1 1002270 L4501 2016 Generalized Fermat 2155 2829*2^3329061+1 1002151 L4343 2020 2156 5775*2^3329034+1 1002143 L1188 2020 2157 7101*2^3328905+1 1002105 L4568 2020 2158 7667*2^3328807+1 1002075 L4087 2020 2159 129*2^3328805+1 1002073 L3859 2014 2160 7261*2^3328740+1 1002055 L2914 2020 2161 4395*2^3328588+1 1002009 L3924 2020 2162 44085096^131072+1 1001953 L4482 2016 Generalized Fermat 2163 143183*2^3328297+1 1001923 L4504 2017 2164 44049878^131072+1 1001908 L4466 2016 Generalized Fermat 2165 9681*2^3327987+1 1001828 L1204 2020 2166 2945*2^3327987+1 1001828 L2158 2020 2167 5085*2^3327789+1 1001769 L1823 2020 2168 8319*2^3327650+1 1001727 L1204 2020 2169 4581*2^3327644+1 1001725 L2142 2020 2170 655*2^3327518+1 1001686 L4490 2016 2171 8863*2^3327406+1 1001653 L1675 2020 2172 659*2^3327371+1 1001642 L3502 2016 2173 3411*2^3327343+1 1001634 L1675 2020 2174 4987*2^3327294+1 1001619 L3924 2020 2175 821*2^3327003+1 1001531 L3035 2016 2176 2435*2^3326969+1 1001521 L3035 2020 2177 1931*2^3326850-1 1001485 L4113 2022 2178 2277*2^3326794+1 1001469 L5014 2020 2179 6779*2^3326639+1 1001422 L3924 2020 2180 6195*2^3325993+1 1001228 L1474 2019 2181 555*2^3325925+1 1001206 L4414 2016 2182 9041*2^3325643+1 1001123 L3924 2019 2183 1965*2^3325639-1 1001121 L4113 2022 2184 1993*2^3325302+1 1001019 L3662 2019 2185 6179*2^3325027+1 1000937 L3048 2019 2186 4485*2^3324900+1 1000899 L1355 2019 2187 3559*2^3324650+1 1000823 L3035 2019 2188 43165206^131072+1 1000753 L4309 2016 Generalized Fermat 2189 43163894^131072+1 1000751 L4334 2016 Generalized Fermat 2190 6927*2^3324387+1 1000745 L3091 2019 2191 9575*2^3324287+1 1000715 L3824 2019 2192 1797*2^3324259+1 1000705 L3895 2019 2193 4483*2^3324048+1 1000642 L3035 2019 2194 791*2^3323995+1 1000626 L3035 2016 2195 6987*2^3323926+1 1000606 L4973 2019 2196 3937*2^3323886+1 1000593 L3035 2019 2197 2121*2^3323852+1 1000583 L1823 2019 2198 1571*2^3323493+1 1000475 L3035 2019 2199 2319*2^3323402+1 1000448 L4699 2019 2200 2829*2^3323341+1 1000429 L4754 2019 2201 4335*2^3323323+1 1000424 L1823 2019 2202 8485*2^3322938+1 1000308 L4858 2019 2203 6505*2^3322916+1 1000302 L4858 2019 2204 597*2^3322871+1 1000287 L3035 2016 2205 9485*2^3322811+1 1000270 L2603 2019 2206 8619*2^3322774+1 1000259 L3035 2019 2207 387*2^3322763+1 1000254 L1455 2016 2208 1965*2^3322579-1 1000200 L4113 2022 2209 42654182^131072+1 1000075 L4208 2015 Generalized Fermat 2210 6366*745^348190-1 1000060 L4189 2022 2211a 13841792445*2^3322000-1 1000032 L5827 2023 2212 5553507*2^3322000+1 1000029 p391 2016 2213 5029159647*2^3321910-1 1000005 L4960 2021 2214 5009522505*2^3321910-1 1000005 L4960 2021 2215 4766298357*2^3321910-1 1000005 L4960 2021 2216 4759383915*2^3321910-1 1000005 L4960 2021 2217 4635733263*2^3321910-1 1000005 L4960 2021 2218 4603393047*2^3321910-1 1000005 L4960 2021 2219 4550053935*2^3321910-1 1000005 L4960 2021 2220 4288198767*2^3321910-1 1000005 L4960 2021 2221 4229494557*2^3321910-1 1000005 L4960 2021 2222 4110178197*2^3321910-1 1000005 L4960 2021 2223 4022490843*2^3321910-1 1000005 L4960 2021 2224 3936623697*2^3321910-1 1000005 L4960 2021 2225 3751145343*2^3321910-1 1000005 L4960 2021 2226 3715773735*2^3321910-1 1000005 L4960 2021 2227 3698976057*2^3321910-1 1000005 L4960 2021 2228 3659465685*2^3321910-1 1000005 L4960 2020 2229 3652932033*2^3321910-1 1000005 L4960 2020 2230 3603204333*2^3321910-1 1000005 L4960 2020 2231 3543733545*2^3321910-1 1000005 L4960 2020 2232 3191900133*2^3321910-1 1000005 L4960 2020 2233 3174957723*2^3321910-1 1000005 L4960 2020 2234 2973510903*2^3321910-1 1000005 L4960 2019 2235 2848144257*2^3321910-1 1000005 L4960 2019 2236 2820058827*2^3321910-1 1000005 L4960 2019 2237 2611553775*2^3321910-1 1000004 L4960 2020 2238 2601087525*2^3321910-1 1000004 L4960 2019 2239 2386538565*2^3321910-1 1000004 L4960 2019 2240 2272291887*2^3321910-1 1000004 L4960 2019 2241 2167709265*2^3321910-1 1000004 L4960 2019 2242 2087077797*2^3321910-1 1000004 L4960 2019 2243 1848133623*2^3321910-1 1000004 L4960 2019 2244 1825072257*2^3321910-1 1000004 L4960 2019 2245 1633473837*2^3321910-1 1000004 L4960 2019 2246 1228267623*2^3321910-1 1000004 L4808 2019 2247 1148781333*2^3321910-1 1000004 L4808 2019 2248 1065440787*2^3321910-1 1000004 L4808 2019 2249 1055109357*2^3321910-1 1000004 L4960 2019 2250 992309607*2^3321910-1 1000004 L4808 2019 2251 926102325*2^3321910-1 1000004 L4808 2019 2252 892610007*2^3321910-1 1000004 L4960 2019 2253 763076757*2^3321910-1 1000004 L4960 2019 2254 607766997*2^3321910-1 1000004 L4808 2019 2255 539679177*2^3321910-1 1000004 L4808 2019 2256 425521077*2^3321910-1 1000004 L4808 2019 2257 132940575*2^3321910-1 1000003 L4808 2019 2258 239378138685*2^3321891+1 1000001 L5104 2020 2259 464253*2^3321908-1 1000000 L466 2013 2260 3^2095902+3^647322-1 1000000 x44 2018 2261 191273*2^3321908-1 1000000 L466 2013 2262 1814570322984178^65536+1 1000000 L5080 2020 Generalized Fermat 2263 1814570322977518^65536+1 1000000 L5080 2020 Generalized Fermat 2264 3292665455999520712131952624640^32768+1 1000000 L5749 2023 Generalized Fermat 2265 3292665455999520712131951642528^32768+1 1000000 L5120 2020 Generalized Fermat 2266 3292665455999520712131951625894^32768+1 1000000 L5122 2020 Generalized Fermat 2267f 10841645805132531666786792405311319418846637043199917731999190^16384+1 1000000 L5749 2023 Generalized Fermat 2268 10841645805132531666786792405311319418846637043199917731311876^16384+1 1000000 L5207 2020 Generalized Fermat 2269 10841645805132531666786792405311319418846637043199917731150000^16384+1 1000000 L5122 2020 Generalized Fermat 2270e 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729599864^8192+1 1000000 L5749 2023 Generalized Fermat 2271 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729375350^8192+1 1000000 p417 2021 Generalized Fermat 2272 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729240092^8192+1 1000000 p419 2021 Generalized Fermat 2273 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729154678^8192+1 1000000 p418 2021 Generalized Fermat 2274 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729122666^8192+1 1000000 p417 2021 Generalized Fermat 2275 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729023786^8192+1 1000000 p416 2021 Generalized Fermat 2276 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097875144^4096+1 1000000 p421 2021 Generalized Fermat 2277 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097840702^4096+1 1000000 p417 2021 Generalized Fermat 2278 ((sqrtnint(10^999999,2048)+2)+364176)^2048+1 1000000 p417 2022 Generalized Fermat 2279 10^999999+308267*10^292000+1 1000000 CH10 2021 2280 10^999999-1022306*10^287000-1 999999 CH13 2021 2281 10^999999-1087604*10^287000-1 999999 CH13 2021 2282 531631540026641*6^1285077+1 999999 L3494 2021 2283 3139*2^3321905-1 999997 L185 2008 2284 42550702^131072+1 999937 L4309 2022 Generalized Fermat 2285 42414020^131072+1 999753 L5030 2022 Generalized Fermat 2286 4847*2^3321063+1 999744 SB9 2005 2287 42254832^131072+1 999539 L5375 2022 Generalized Fermat 2288 42243204^131072+1 999524 L4898 2022 Generalized Fermat 2289 42230406^131072+1 999506 L5453 2022 Generalized Fermat 2290 42168978^131072+1 999424 L5462 2022 Generalized Fermat 2291 439*2^3318318+1 998916 L5573 2022 2292 41688706^131072+1 998772 L5270 2022 Generalized Fermat 2293 41364744^131072+1 998327 L5453 2022 Generalized Fermat 2294 41237116^131072+1 998152 L5459 2022 Generalized Fermat 2295f 47714*17^811139+1 998070 L5765 2023 Generalized Cullen 2296 41102236^131072+1 997965 L4245 2022 Generalized Fermat 2297 41007562^131072+1 997834 L4210 2022 Generalized Fermat 2298 41001148^131072+1 997825 L4210 2022 Generalized Fermat 2299 975*2^3312951+1 997301 L5231 2022 2300 40550398^131072+1 997196 L4245 2022 Generalized Fermat 2301 11796*46^599707+1 997172 L5670 2023 2302 40463598^131072+1 997074 L4591 2022 Generalized Fermat 2303 689*2^3311423+1 996841 L5226 2022 2304 40151896^131072+1 996633 L4245 2022 Generalized Fermat 2305 593*2^3309333+1 996212 L5572 2022 2306 383*2^3309321+1 996208 L5570 2022 2307 49*2^3309087-1 996137 L1959 2013 2308 39746366^131072+1 996056 L4201 2022 Generalized Fermat 2309 139413*6^1279992+1 996033 L4001 2015 2310d 1274*67^545368-1 995886 L5410 2023 2311 51*2^3308171+1 995861 L2840 2015 2312 719*2^3308127+1 995849 L5192 2022 2313 39597790^131072+1 995842 L4737 2022 Generalized Fermat 2314 39502358^131072+1 995705 L5453 2022 Generalized Fermat 2315 39324372^131072+1 995448 L5202 2022 Generalized Fermat 2316 245114*5^1424104-1 995412 L3686 2013 2317 39100746^131072+1 995123 L5441 2022 Generalized Fermat 2318 38824296^131072+1 994719 L4245 2022 Generalized Fermat 2319 38734748^131072+1 994588 L4249 2021 Generalized Fermat 2320 175124*5^1422646-1 994393 L3686 2013 2321 453*2^3303073+1 994327 L5568 2022 2322 38310998^131072+1 993962 L4737 2021 Generalized Fermat 2323 531*2^3301693+1 993912 L5226 2022 2324 38196496^131072+1 993791 L4861 2021 Generalized Fermat 2325 38152876^131072+1 993726 L4245 2021 Generalized Fermat 2326 195*2^3301018+1 993708 L5569 2022 2327 341*2^3300789+1 993640 L5192 2022 2328 37909914^131072+1 993363 L4249 2021 Generalized Fermat 2329 849*2^3296427+1 992327 L5571 2022 2330 1611*22^738988+1 992038 L4139 2015 2331 36531196^131072+1 991254 L4249 2021 Generalized Fermat 2332 2017*2^3292325-1 991092 L3345 2017 2333 36422846^131072+1 991085 L4245 2021 Generalized Fermat 2334 36416848^131072+1 991076 L5202 2021 Generalized Fermat 2335 885*2^3290927+1 990671 L5161 2022 2336 36038176^131072+1 990481 L4245 2021 Generalized Fermat 2337 35997532^131072+1 990416 L4245 2021 Generalized Fermat 2338 35957420^131072+1 990353 L4245 2021 Generalized Fermat 2339 Phi(3,-107970^98304) 989588 L4506 2016 Generalized unique 2340 35391288^131072+1 989449 L5070 2021 Generalized Fermat 2341 35372304^131072+1 989419 L5443 2021 Generalized Fermat 2342 219*2^3286614+1 989372 L5567 2022 2343 61*2^3286535-1 989348 L4405 2016 2344 35327718^131072+1 989347 L4591 2021 Generalized Fermat 2345 35282096^131072+1 989274 L4245 2021 Generalized Fermat 2346 35141602^131072+1 989046 L4729 2021 Generalized Fermat 2347 35139782^131072+1 989043 L4245 2021 Generalized Fermat 2348 35047222^131072+1 988893 L4249 2021 Generalized Fermat 2349 531*2^3284944+1 988870 L5536 2022 2350 34957136^131072+1 988747 L5321 2021 Generalized Fermat 2351 301*2^3284232+1 988655 L5564 2022 2352 34871942^131072+1 988608 L4245 2021 Generalized Fermat 2353 34763644^131072+1 988431 L4737 2021 Generalized Fermat 2354 34585314^131072+1 988138 L4201 2021 Generalized Fermat 2355 311*2^3282455+1 988120 L5568 2022 2356 34530386^131072+1 988048 L5070 2021 Generalized Fermat 2357 833*2^3282181+1 988038 L5564 2022 2358 561*2^3281889+1 987950 L5477 2022 2359 34087952^131072+1 987314 L4764 2021 Generalized Fermat 2360 87*2^3279368+1 987191 L3458 2015 2361 965*2^3279151+1 987126 L5564 2022 2362 33732746^131072+1 986717 L4359 2021 Generalized Fermat 2363 33474284^131072+1 986279 L5051 2021 Generalized Fermat 2364 33395198^131072+1 986145 L4658 2021 Generalized Fermat 2365 427*2^3275606+1 986059 L5566 2022 2366 33191418^131072+1 985796 L4201 2021 Generalized Fermat 2367 337*2^3274106+1 985607 L5564 2022 2368 357*2^3273543+1 985438 L5237 2022 Divides GF(3273542,10) 2369 1045*2^3273488+1 985422 L5192 2022 2370 32869172^131072+1 985241 L4285 2021 Generalized Fermat 2371 32792696^131072+1 985108 L5198 2021 Generalized Fermat 2372 1047*2^3272351+1 985079 L5563 2022 2373 32704348^131072+1 984955 L5312 2021 Generalized Fermat 2374 32608738^131072+1 984788 L5395 2021 Generalized Fermat 2375 933*2^3270993+1 984670 L5562 2022 2376 311*2^3270759+1 984600 L5560 2022 2377 32430486^131072+1 984476 L4245 2021 Generalized Fermat 2378 32417420^131072+1 984453 L4245 2021 Generalized Fermat 2379 65*2^3270127+1 984409 L3924 2015 2380 32348894^131072+1 984333 L4245 2021 Generalized Fermat 2381 579*2^3269850+1 984326 L5226 2022 2382 32286660^131072+1 984223 L5400 2021 Generalized Fermat 2383 32200644^131072+1 984071 L4387 2021 Generalized Fermat 2384 32137342^131072+1 983959 L4559 2021 Generalized Fermat 2385 32096608^131072+1 983887 L4559 2021 Generalized Fermat 2386 32055422^131072+1 983814 L4559 2021 Generalized Fermat 2387 31821360^131072+1 983397 L4861 2021 Generalized Fermat 2388 31768014^131072+1 983301 L4252 2021 Generalized Fermat 2389 335*2^3266237+1 983238 L5559 2022 2390 1031*2^3265915+1 983142 L5364 2022 2391 31469984^131072+1 982765 L5078 2021 Generalized Fermat 2392 5*2^3264650-1 982759 L384 2013 2393 223*2^3264459-1 982703 L1884 2012 2394 1101*2^3264400+1 982686 L5231 2022 2395 483*2^3264181+1 982620 L5174 2022 2396 525*2^3263227+1 982332 L5231 2022 2397 31145080^131072+1 982174 L4201 2021 Generalized Fermat 2398 622*48^584089+1 981998 L5629 2023 2399 31044982^131072+1 981991 L5041 2021 Generalized Fermat 2400 683*2^3262037+1 981974 L5192 2022 2401 923*2^3261401+1 981783 L5477 2022 2402 30844300^131072+1 981622 L5102 2021 Generalized Fermat 2403 30819256^131072+1 981575 L4201 2021 Generalized Fermat 2404 9*2^3259381-1 981173 L1828 2011 2405 1059*2^3258751+1 980985 L5231 2022 2406 6*5^1403337+1 980892 L4965 2020 2407 30318724^131072+1 980643 L4309 2021 Generalized Fermat 2408 30315072^131072+1 980636 L5375 2021 Generalized Fermat 2409 30300414^131072+1 980609 L4755 2021 Generalized Fermat 2410 30225714^131072+1 980468 L4201 2021 Generalized Fermat 2411 875*2^3256589+1 980334 L5550 2022 2412 30059800^131072+1 980155 L4928 2021 Generalized Fermat 2413 30022816^131072+1 980085 L5273 2021 Generalized Fermat 2414 29959190^131072+1 979964 L4905 2021 Generalized Fermat 2415 29607314^131072+1 979292 L5378 2021 Generalized Fermat 2416 779*2^3253063+1 979273 L5192 2022 2417 29505368^131072+1 979095 L5378 2021 Generalized Fermat 2418 163*2^3250978+1 978645 L5161 2022 Divides GF(3250977,6) 2419 29169314^131072+1 978443 L5380 2021 Generalized Fermat 2420 417*2^3248255+1 977825 L5178 2022 2421 28497098^131072+1 977116 L4308 2021 Generalized Fermat 2422 28398204^131072+1 976918 L5379 2021 Generalized Fermat 2423 28294666^131072+1 976710 L5375 2021 Generalized Fermat 2424 28175634^131072+1 976470 L5378 2021 Generalized Fermat 2425 33*2^3242126-1 975979 L3345 2014 2426 27822108^131072+1 975752 L4760 2021 Generalized Fermat 2427 39*2^3240990+1 975637 L3432 2014 2428 27758510^131072+1 975621 L4289 2021 Generalized Fermat 2429 27557876^131072+1 975208 L4245 2021 Generalized Fermat 2430 27544748^131072+1 975181 L4387 2021 Generalized Fermat 2431 27408050^131072+1 974898 L4210 2021 Generalized Fermat 2432 225*2^3236967+1 974427 L5529 2022 2433 27022768^131072+1 974092 L4309 2021 Generalized Fermat 2434 26896670^131072+1 973826 L5376 2021 Generalized Fermat 2435 1075*2^3234606+1 973717 L5192 2022 2436 26757382^131072+1 973530 L5375 2021 Generalized Fermat 2437 26599558^131072+1 973194 L4245 2021 Generalized Fermat 2438 6*5^1392287+1 973168 L4965 2020 2439 26500832^131072+1 972982 L4956 2021 Generalized Fermat 2440 325*2^3231474+1 972774 L5536 2022 2441 933*2^3231438+1 972763 L5197 2022 2442 123*2^3230548+1 972494 L5178 2022 Divides GF(3230546,12) 2443 26172278^131072+1 972272 L4245 2021 Generalized Fermat 2444 697*2^3229518+1 972185 L5534 2022 2445 22598*745^338354-1 971810 L4189 2022 2446 385*2^3226814+1 971371 L5178 2022 2447 211195*2^3224974+1 970820 L2121 2013 2448 1173*2^3223546+1 970388 L5178 2022 2449 7*6^1246814+1 970211 L4965 2019 2450 25128150^131072+1 969954 L4738 2021 Generalized Fermat 2451 25124378^131072+1 969946 L5102 2021 Generalized Fermat 2452 1089*2^3221691+1 969829 L5178 2022 2453 35*832^332073-1 969696 L4001 2019 2454 600921*2^3219922-1 969299 g337 2018 2455 939*2^3219319+1 969115 L5178 2022 2456 24734116^131072+1 969055 L5070 2021 Generalized Fermat 2457 24644826^131072+1 968849 L5070 2021 Generalized Fermat 2458 24642712^131072+1 968844 L5070 2021 Generalized Fermat 2459 24641166^131072+1 968840 L5070 2021 Generalized Fermat 2460 129*2^3218214+1 968782 L5529 2022 2461 24522386^131072+1 968565 L5070 2021 Generalized Fermat 2462 24486806^131072+1 968483 L4737 2021 Generalized Fermat 2463 811*2^3216944+1 968400 L5233 2022 2464 24297936^131072+1 968042 L4201 2021 Generalized Fermat 2465 1023*2^3214745+1 967738 L5178 2022 2466 187*2^3212152+1 966957 L5178 2022 2467 301*2^3211281-1 966695 L5545 2022 2468 6*409^369832+1 965900 L4001 2015 2469 23363426^131072+1 965809 L5033 2021 Generalized Fermat 2470 1165*2^3207702+1 965618 L5178 2022 2471 94373*2^3206717+1 965323 L2785 2013 2472 2751*2^3206569-1 965277 L4036 2015 2473 761*2^3206341+1 965208 L5178 2022 2474 23045178^131072+1 965029 L5023 2021 Generalized Fermat 2475 23011666^131072+1 964946 L5273 2021 Generalized Fermat 2476 911*2^3205225+1 964872 L5364 2022 2477 22980158^131072+1 964868 L4201 2021 Generalized Fermat 2478 22901508^131072+1 964673 L4743 2021 Generalized Fermat 2479 22808110^131072+1 964440 L5248 2021 Generalized Fermat 2480 22718284^131072+1 964215 L5254 2021 Generalized Fermat 2481 22705306^131072+1 964183 L5248 2021 Generalized Fermat 2482 113983*2^3201175-1 963655 L613 2008 2483 34*888^326732-1 963343 L4001 2017 2484 899*2^3198219+1 962763 L5503 2022 2485 22007146^131072+1 962405 L4245 2020 Generalized Fermat 2486 4*3^2016951+1 962331 L4965 2020 2487 21917442^131072+1 962173 L4622 2020 Generalized Fermat 2488 987*2^3195883+1 962060 L5282 2022 2489 21869554^131072+1 962048 L5061 2020 Generalized Fermat 2490 21757066^131072+1 961754 L4773 2020 Generalized Fermat 2491 21582550^131072+1 961296 L5068 2020 Generalized Fermat 2492 21517658^131072+1 961125 L5126 2020 Generalized Fermat 2493 20968936^131072+1 959654 L4245 2020 Generalized Fermat 2494 671*2^3185411+1 958908 L5315 2022 2495 20674450^131072+1 958849 L4245 2020 Generalized Fermat 2496 1027*2^3184540+1 958646 L5174 2022 2497 789*2^3183463+1 958321 L5482 2022 2498 855*2^3183158+1 958229 L5161 2022 2499 20234282^131072+1 957624 L4942 2020 Generalized Fermat 2500 20227142^131072+1 957604 L4677 2020 Generalized Fermat 2501 625*2^3180780+1 957513 L5178 2022 Generalized Fermat 2502 20185276^131072+1 957486 L4201 2020 Generalized Fermat 2503 935*2^3180599+1 957459 L5477 2022 2504 573*2^3179293+1 957066 L5226 2022 2505 33*2^3176269+1 956154 L3432 2013 2506 81*2^3174353-1 955578 L3887 2022 2507 19464034^131072+1 955415 L4956 2020 Generalized Fermat 2508 600921*2^3173683-1 955380 g337 2018 2509 587*2^3173567+1 955342 L5301 2022 2510 19216648^131072+1 954687 L5024 2020 Generalized Fermat 2511 1414*95^482691-1 954633 L4877 2019 2512 305*2^3171039+1 954581 L5301 2022 2513 755*2^3170701+1 954479 L5302 2022 2514 775*2^3170580+1 954443 L5449 2022 2515 78*236^402022-1 953965 L5410 2020 2516 18968126^131072+1 953946 L5011 2020 Generalized Fermat 2517 18813106^131072+1 953479 L4201 2020 Generalized Fermat 2518 18608780^131072+1 952857 L4488 2020 Generalized Fermat 2519 1087*2^3164677-1 952666 L1828 2012 2520 18509226^131072+1 952552 L4884 2020 Generalized Fermat 2521 18501600^131072+1 952528 L4875 2020 Generalized Fermat 2522 459*2^3163175+1 952214 L5178 2022 2523 15*2^3162659+1 952057 p286 2012 2524 18309468^131072+1 951934 L4928 2020 Generalized Fermat 2525 18298534^131072+1 951900 L4201 2020 Generalized Fermat 2526 849*2^3161727+1 951778 L5178 2022 2527 67*2^3161450+1 951694 L3223 2015 2528 119*2^3161195+1 951617 L5320 2022 2529 1759*2^3160863-1 951518 L4965 2021 2530 58*117^460033+1 951436 L5410 2020 2531 417*2^3160443+1 951391 L5302 2022 2532 9231*70^515544+1 951234 L5410 2021 2533 671*2^3159523+1 951115 L5188 2022 2534 17958952^131072+1 950834 L4201 2020 Generalized Fermat 2535b 1001*2^3158422-1 950783 L4518 2023 2536 17814792^131072+1 950375 L4752 2020 Generalized Fermat 2537 17643330^131072+1 949824 L4201 2020 Generalized Fermat 2538 19*2^3155009-1 949754 L1828 2012 2539 281*2^3151457+1 948686 L5316 2022 2540 179*2^3150265+1 948327 L5302 2022 2541 17141888^131072+1 948183 L4963 2019 Generalized Fermat 2542 17138628^131072+1 948172 L4963 2019 Generalized Fermat 2543 17119936^131072+1 948110 L4963 2019 Generalized Fermat 2544 17052490^131072+1 947885 L4715 2019 Generalized Fermat 2545 17025822^131072+1 947796 L4870 2019 Generalized Fermat 2546 16985784^131072+1 947662 L4295 2019 Generalized Fermat 2547 865*2^3147482+1 947490 L5178 2021 2548 963*2^3145753+1 946969 L5451 2021 2549 16741226^131072+1 946837 L4201 2019 Generalized Fermat 2550 387*2^3144483+1 946587 L5450 2021 2551 1035*2^3144236+1 946513 L5449 2021 2552 1065*2^3143667+1 946342 L4944 2021 2553 193*2^3142150+1 945884 L5178 2021 2554 915*2^3141942+1 945822 L5448 2021 2555 939*2^3141397+1 945658 L5320 2021 2556 1063*2^3141350+1 945644 L5178 2021 2557 16329572^131072+1 945420 L4201 2019 Generalized Fermat 2558 69*2^3140225-1 945304 L3764 2014 2559 3*2^3136255-1 944108 L256 2007 2560 417*2^3136187+1 944089 L5178 2021 2561 15731520^131072+1 943296 L4245 2019 Generalized Fermat 2562 Phi(3,-62721^98304) 943210 L4506 2016 Generalized unique 2563 15667716^131072+1 943064 L4387 2019 Generalized Fermat 2564 15567144^131072+1 942698 L4918 2019 Generalized Fermat 2565 299*2^3130621+1 942414 L5178 2021 2566 15342502^131072+1 941870 L4245 2019 Generalized Fermat 2567 15237960^131072+1 941481 L4898 2019 Generalized Fermat 2568 571*2^3127388+1 941441 L5440 2021 2569 15147290^131072+1 941141 L4861 2019 Generalized Fermat 2570 197*2^3126343+1 941126 L5178 2021 2571 15091270^131072+1 940930 L4760 2019 Generalized Fermat 2572 1097*2^3124455+1 940558 L5178 2021 2573 3125*2^3124079+1 940445 L1160 2019 2574 495*2^3123624+1 940308 L5438 2021 2575 14790404^131072+1 939784 L4871 2019 Generalized Fermat 2576 1041*2^3120649+1 939412 L5437 2021 2577 14613898^131072+1 939101 L4926 2019 Generalized Fermat 2578 3317*2^3117162-1 938363 L5399 2021 2579 763*2^3115684+1 937918 L4944 2021 2580 581*2^3114611+1 937595 L5178 2021 2581 14217182^131072+1 937534 L4387 2019 Generalized Fermat 2582 134*864^319246-1 937473 L5410 2020 2583 700057*2^3113753-1 937339 L5410 2022 2584 1197*2^3111838+1 936760 L5178 2021 2585 14020004^131072+1 936739 L4249 2019 Generalized Fermat 2586 27777*2^3111027+1 936517 L2777 2014 Generalized Cullen 2587 755*2^3110759+1 936435 L5320 2021 2588 13800346^131072+1 935840 L4880 2019 Generalized Fermat 2589 866981*12^866981-1 935636 L5765 2023 Generalized Woodall 2590 13613070^131072+1 935062 L4245 2019 Generalized Fermat 2591 628*80^491322+1 935033 L5410 2021 2592 761*2^3105087+1 934728 L5197 2021 2593 13433028^131072+1 934305 L4868 2018 Generalized Fermat 2594 1019*2^3103680-1 934304 L1828 2012 2595 579*2^3102639+1 933991 L5315 2021 2596 99*2^3102401-1 933918 L1862 2017 2597 256612*5^1335485-1 933470 L1056 2013 2598 13083418^131072+1 932803 L4747 2018 Generalized Fermat 2599 69*2^3097340-1 932395 L3764 2014 2600 153*2^3097277+1 932376 L4944 2021 2601 12978952^131072+1 932347 L4849 2018 Generalized Fermat 2602 12961862^131072+1 932272 L4245 2018 Generalized Fermat 2603 207*2^3095391+1 931808 L5178 2021 2604 12851074^131072+1 931783 L4670 2018 Generalized Fermat 2605 45*2^3094632-1 931579 L1862 2018 2606 259*2^3094582+1 931565 L5214 2021 2607 553*2^3094072+1 931412 L4944 2021 2608 57*2^3093440-1 931220 L2484 2020 2609 12687374^131072+1 931054 L4289 2018 Generalized Fermat 2610 513*2^3092705+1 931000 L4329 2016 2611 12661786^131072+1 930939 L4819 2018 Generalized Fermat 2612 933*2^3091825+1 930736 L5178 2021 2613 38*875^316292-1 930536 L4001 2019 2614 5*2^3090860-1 930443 L1862 2012 2615 12512992^131072+1 930266 L4814 2018 Generalized Fermat 2616 4*5^1330541-1 930009 L4965 2022 2617 12357518^131072+1 929554 L4295 2018 Generalized Fermat 2618 12343130^131072+1 929488 L4720 2018 Generalized Fermat 2619 297*2^3087543+1 929446 L5326 2021 2620 1149*2^3087514+1 929438 L5407 2021 2621 745*2^3087428+1 929412 L5178 2021 2622 373*520^342177+1 929357 L3610 2014 2623 19401*2^3086450-1 929119 L541 2015 2624 75*2^3086355+1 929088 L3760 2015 2625 65*2^3080952-1 927461 L2484 2020 2626 11876066^131072+1 927292 L4737 2018 Generalized Fermat 2627 1139*2^3079783+1 927111 L5174 2021 2628 271*2^3079189-1 926931 L2484 2018 2629 766*33^610412+1 926923 L4001 2016 2630 11778792^131072+1 926824 L4672 2018 Generalized Fermat 2631 555*2^3078792+1 926812 L5226 2021 2632 31*332^367560+1 926672 L4294 2018 2633 167*2^3077568-1 926443 L1862 2020 2634 10001*2^3075602-1 925853 L4405 2019 2635 116*107^455562-1 924513 L4064 2021 2636 11292782^131072+1 924425 L4672 2018 Generalized Fermat 2637 14844*430^350980-1 924299 L4001 2016 2638 11267296^131072+1 924297 L4654 2017 Generalized Fermat 2639 4*3^1936890+1 924132 L4965 2020 Generalized Fermat 2640 1105*2^3069884+1 924131 L5314 2021 2641 319*2^3069362+1 923973 L5377 2021 2642 11195602^131072+1 923933 L4706 2017 Generalized Fermat 2643 973*2^3069092+1 923892 L5214 2021 2644 765*2^3068511+1 923717 L5174 2021 2645 60849*2^3067914+1 923539 L591 2014 2646 674*249^385359+1 923400 L5410 2019 2647 499*2^3066970+1 923253 L5373 2021 2648 553*2^3066838+1 923213 L5368 2021 2649 629*2^3066827+1 923210 L5226 2021 2650 11036888^131072+1 923120 L4660 2017 Generalized Fermat 2651 261*2^3066009+1 922964 L5197 2021 2652 10994460^131072+1 922901 L4704 2017 Generalized Fermat 2653 214916*3^1934246-1 922876 L4965 2023 Generalized Woodall 2654 21*2^3065701+1 922870 p286 2012 2655 10962066^131072+1 922733 L4702 2017 Generalized Fermat 2656 10921162^131072+1 922520 L4559 2017 Generalized Fermat 2657 875*2^3063847+1 922313 L5364 2021 2658 43*2^3063674+1 922260 L3432 2013 2659 677*2^3063403+1 922180 L5346 2021 2660 8460*241^387047-1 921957 L5410 2019 2661 10765720^131072+1 921704 L4695 2017 Generalized Fermat 2662 111*2^3060238-1 921226 L2484 2020 2663 1165*2^3060228+1 921224 L5360 2021 2664 5*2^3059698-1 921062 L503 2008 2665 10453790^131072+1 920031 L4694 2017 Generalized Fermat 2666 453*2^3056181+1 920005 L5320 2021 2667 791*2^3055695+1 919859 L5177 2021 2668 10368632^131072+1 919565 L4692 2017 Generalized Fermat 2669 582971*2^3053414-1 919175 L5410 2022 2670 123*2^3049038+1 917854 L4119 2015 2671 10037266^131072+1 917716 L4691 2017 Generalized Fermat 2672 400*95^463883-1 917435 L4001 2019 2673 9907326^131072+1 916975 L4690 2017 Generalized Fermat 2674 454*383^354814+1 916558 L2012 2020 2675 9785844^131072+1 916272 L4326 2017 Generalized Fermat 2676 435*2^3041954+1 915723 L5320 2021 2677 639*2^3040438+1 915266 L5320 2021 2678 1045*2^3037988+1 914529 L5178 2021 2679 291*2^3037904+1 914503 L3545 2015 2680 311*2^3037565+1 914401 L5178 2021 2681 373*2^3036746+1 914155 L5178 2021 2682 9419976^131072+1 914103 L4591 2017 Generalized Fermat 2683 801*2^3036045+1 913944 L5348 2021 2684 915*2^3033775+1 913261 L5178 2021 2685 38804*3^1913975+1 913203 L5410 2021 2686 9240606^131072+1 913009 L4591 2017 Generalized Fermat 2687 869*2^3030655+1 912322 L5260 2021 2688 643*2^3030650+1 912320 L5320 2021 2689 99*2^3029959-1 912111 L1862 2020 2690 417*2^3029342+1 911926 L5178 2021 2691 345*2^3027769+1 911452 L5343 2021 2692 26*3^1910099+1 911351 L4799 2020 2693 355*2^3027372+1 911333 L5174 2021 2694 99*2^3026660-1 911118 L1862 2020 2695 417*2^3026492+1 911068 L5197 2021 2696 1065*2^3025527+1 910778 L5208 2021 2697 34202*3^1908800+1 910734 L5410 2021 2698 8343*42^560662+1 910099 L4444 2020 2699 699*2^3023263+1 910096 L5335 2021 2700 8770526^131072+1 910037 L4245 2017 Generalized Fermat 2701 8704114^131072+1 909604 L4670 2017 Generalized Fermat 2702 383731*2^3021377-1 909531 L466 2011 2703 46821*2^3021380-374567 909531 p363 2013 2704 2^3021377-1 909526 G3 1998 Mersenne 37 2705 615*2^3019445+1 908947 L5260 2021 2706 389*2^3019025+1 908820 L5178 2021 2707 875*2^3018175+1 908565 L5334 2021 2708d 375*2^3016803-1 908151 L2235 2023 2709 555*2^3016352+1 908016 L5178 2021 2710 7*2^3015762+1 907836 g279 2008 2711 759*2^3015314+1 907703 L5178 2021 2712 32582*3^1901790+1 907389 L5372 2021 2713 75*2^3012342+1 906808 L3941 2015 2714 459*2^3011814+1 906650 L5178 2021 2715 991*2^3010036+1 906115 L5326 2021 2716 583*2^3009698+1 906013 L5325 2021 2717 8150484^131072+1 905863 L4249 2017 Generalized Fermat 2718 593*2^3006969+1 905191 L5178 2021 2719 327*2^3006540-1 905062 L2257 2023 2720 367*2^3004536+1 904459 L5178 2021 2721 7926326^131072+1 904276 L4249 2017 Generalized Fermat 2722 1003*2^3003756+1 904224 L5320 2021 2723 573*2^3002662+1 903895 L5319 2021 2724 7858180^131072+1 903784 L4201 2017 Generalized Fermat 2725 329*2^3002295+1 903784 L5318 2021 2726 4*5^1292915-1 903710 L4965 2022 2727 7832704^131072+1 903599 L4249 2017 Generalized Fermat 2728 268514*5^1292240-1 903243 L3562 2013 2729 7*10^902708+1 902709 p342 2013 2730 435*2^2997453+1 902326 L5167 2021 2731 583*2^2996526+1 902047 L5174 2021 2732 1037*2^2995695+1 901798 L5178 2021 2733 717*2^2995326+1 901686 L5178 2021 2734 885*2^2995274+1 901671 L5178 2021 2735 43*2^2994958+1 901574 L3222 2013 2736 1065*2^2994154+1 901334 L5315 2021 2737 561*2^2994132+1 901327 L5314 2021 2738 1095*2^2992587-1 900862 L1828 2011 2739 519*2^2991849+1 900640 L5311 2021 2740 7379442^131072+1 900206 L4201 2017 Generalized Fermat 2741 459*2^2990134+1 900123 L5197 2021 2742 15*2^2988834+1 899730 p286 2012 2743 29*564^326765+1 899024 L4001 2017 2744 971*2^2982525+1 897833 L5197 2021 2745 1033*2^2980962+1 897362 L5305 2021 2746 357*2^2980540-1 897235 L2257 2023 2747 367*2^2979033-1 896781 L2257 2023 2748 39*2^2978894+1 896739 L2719 2013 2749 38*977^299737+1 896184 L5410 2021 2750 4348099*2^2976221-1 895939 L466 2008 2751 205833*2^2976222-411665 895938 L4667 2017 2752 18976*2^2976221-18975 895937 p373 2014 2753 2^2976221-1 895932 G2 1997 Mersenne 36 2754 1024*3^1877301+1 895704 p378 2014 2755 1065*2^2975442+1 895701 L5300 2021 Divides GF(2975440,3) 2756 24704*3^1877135+1 895626 L5410 2021 2757 591*2^2975069+1 895588 L5299 2021 2758 249*2^2975002+1 895568 L2322 2015 2759 195*2^2972947+1 894949 L3234 2015 2760 6705932^131072+1 894758 L4201 2017 Generalized Fermat 2761 391*2^2971600+1 894544 L5242 2021 2762 46425*2^2971203+1 894426 L2777 2014 Generalized Cullen 2763 625*2^2970336+1 894164 L5233 2021 Generalized Fermat 2764 369*2^2968175-1 893513 L2257 2023 2765 493*72^480933+1 893256 L3610 2014 2766 561*2^2964753+1 892483 L5161 2021 2767 1185*2^2964350+1 892362 L5161 2021 2768 6403134^131072+1 892128 L4510 2016 Generalized Fermat 2769 6391936^131072+1 892028 L4511 2016 Generalized Fermat 2770 395*2^2961370-1 891464 L2257 2023 2771 21*2^2959789-1 890987 L5313 2021 2772 627*2^2959098+1 890781 L5197 2021 2773 45*2^2958002-1 890449 L1862 2017 2774 729*2^2955389+1 889664 L5282 2021 2775 198677*2^2950515+1 888199 L2121 2012 2776 88*985^296644+1 887987 L5410 2020 2777 303*2^2949403-1 887862 L1817 2022 2778 5877582^131072+1 887253 L4245 2016 Generalized Fermat 2779 321*2^2946654-1 887034 L1817 2022 2780 17*2^2946584-1 887012 L3519 2013 2781 489*2^2944673+1 886438 L5167 2021 2782 141*2^2943065+1 885953 L3719 2015 2783 757*2^2942742+1 885857 L5261 2021 2784 5734100^131072+1 885846 L4477 2016 Generalized Fermat 2785 33*2^2939064-5606879602425*2^1290000-1 884748 p423 2021 Arithmetic progression (3,d=33*2^2939063-5606879602425*2^1290000) 2786 33*2^2939063-1 884748 L3345 2013 2787 5903*2^2938744-1 884654 L4036 2015 2788 717*2^2937963+1 884418 L5256 2021 2789 5586416^131072+1 884361 L4454 2016 Generalized Fermat 2790 243*2^2937316+1 884223 L4114 2015 2791 973*2^2937046+1 884142 L5253 2021 2792 61*2^2936967-1 884117 L2484 2017 2793 903*2^2934602+1 883407 L5246 2021 2794 5471814^131072+1 883181 L4362 2016 Generalized Fermat 2795 188*228^374503+1 883056 L4786 2020 2796 53*248^368775+1 883016 L5196 2020 2797 5400728^131072+1 882436 L4201 2016 Generalized Fermat 2798 17*326^350899+1 881887 L4786 2019 2799 855*2^2929550+1 881886 L5200 2021 2800 5326454^131072+1 881648 L4201 2016 Generalized Fermat 2801 839*2^2928551+1 881585 L5242 2021 2802 7019*10^881309-1 881313 L3564 2013 2803 25*2^2927222+1 881184 L1935 2013 Generalized Fermat 2804 391*2^2925759-1 880744 L2257 2023 2805 577*2^2925602+1 880697 L5201 2021 2806 97366*5^1259955-1 880676 L3567 2013 2807 973*2^2923062+1 879933 L5228 2021 2808 1126*177^391360+1 879770 L4955 2020 2809 243944*5^1258576-1 879713 L3566 2013 2810 693*2^2921528+1 879471 L5201 2021 2811 6*10^879313+1 879314 L5009 2019 2812 269*2^2918105+1 878440 L2715 2015 2813 331*2^2917844+1 878362 L5210 2021 2814 169*2^2917805-1 878350 L2484 2018 2815 1085*2^2916967+1 878098 L5174 2020 2816 389*2^2916499+1 877957 L5215 2020 2817 431*2^2916429+1 877936 L5214 2020 2818 1189*2^2916406+1 877929 L5174 2020 2819 1011*2^2916119-1 877843 L4518 2023 2820 7*2^2915954+1 877791 g279 2008 Divides GF(2915953,12) [g322] 2821 4974408^131072+1 877756 L4380 2016 Generalized Fermat 2822 465*2^2914079+1 877228 L5210 2020 2823 427194*113^427194+1 877069 p310 2012 Generalized Cullen 2824 4893072^131072+1 876817 L4303 2016 Generalized Fermat 2825 493*2^2912552+1 876769 L5192 2021 2826 379*2^2911423-1 876429 L2257 2023 2827 143157*2^2911403+1 876425 L4504 2017 2828 567*2^2910402+1 876122 L5201 2020 2829 683*2^2909217+1 875765 L5199 2020 2830 674*249^365445+1 875682 L5410 2019 2831 475*2^2908802+1 875640 L5192 2021 2832 371*2^2907377+1 875211 L5197 2020 2833 207*2^2903535+1 874054 L3173 2015 2834 851*2^2902731+1 873813 L5177 2020 2835 777*2^2901907+1 873564 L5192 2020 2836 717*2^2900775+1 873224 L5185 2020 2837 99*2^2899303-1 872780 L1862 2017 2838 63*2^2898957+1 872675 L3262 2013 2839 11*2^2897409+1 872209 L2973 2013 Divides GF(2897408,3) 2840 747*2^2895307+1 871578 L5178 2020 2841 403*2^2894566+1 871354 L5180 2020 2842 629*2^2892961+1 870871 L5173 2020 2843 627*2^2891514+1 870436 L5168 2020 2844 325*2^2890955-1 870267 L5545 2022 2845 363*2^2890208+1 870042 L3261 2020 2846 471*2^2890148+1 870024 L5158 2020 2847 4329134^131072+1 869847 L4395 2016 Generalized Fermat 2848 583*2^2889248+1 869754 L5139 2020 2849 353*2^2888332-1 869478 L2257 2023 2850 955*2^2887934+1 869358 L4958 2020 2851d 8300*171^389286+1 869279 L5410 2023 2852 303*2^2887603-1 869258 L5184 2022 2853 937*2^2887130+1 869116 L5134 2020 2854 885*2^2886389+1 868893 L3924 2020 2855 763*2^2885928+1 868754 L2125 2020 2856 1071*2^2884844+1 868428 L3593 2020 2857 1181*2^2883981+1 868168 L3593 2020 2858 327*2^2881349-1 867375 L5545 2022 2859 51*2^2881227+1 867338 L3512 2013 2860 933*2^2879973+1 866962 L4951 2020 2861 261*2^2879941+1 866952 L4119 2015 2862 4085818^131072+1 866554 L4201 2016 Generalized Fermat 2863 65*2^2876718-1 865981 L2484 2016 2864 21*948^290747-1 865500 L4985 2019 2865 4013*2^2873250-1 864939 L1959 2014 2866 41*2^2872058-1 864578 L2484 2013 2867 359*2^2870935+1 864241 L1300 2020 2868 165*2^2870868+1 864220 L4119 2015 2869 961*2^2870596+1 864139 L1300 2020 Generalized Fermat 2870 665*2^2869847+1 863913 L2885 2020 2871 283*2^2868750+1 863583 L3877 2015 2872 663703*20^663703-1 863504 L5765 2023 Generalized Woodall 2873 845*2^2868291+1 863445 L5100 2020 2874 3125*2^2867399+1 863177 L1754 2019 2875 701*2^2867141+1 863099 L1422 2020 2876 3814944^131072+1 862649 L4201 2016 Generalized Fermat 2877 119*954^289255+1 861852 L5410 2022 2878 307*2^2862962+1 861840 L4740 2020 2879 147*2^2862651+1 861746 L1741 2015 2880 1207*2^2861901-1 861522 L1828 2011 2881 231*2^2860725+1 861167 L2873 2015 2882 193*2^2858812+1 860591 L2997 2015 2883 629*2^2857891+1 860314 L3035 2020 2884 493*2^2857856+1 860304 L5087 2020 2885 241*2^2857313-1 860140 L2484 2018 2886 707*2^2856331+1 859845 L5084 2020 2887 3615210^131072+1 859588 L4201 2016 Generalized Fermat 2888 949*2^2854946+1 859428 L2366 2020 2889 222361*2^2854840+1 859398 g403 2006 2890 725*2^2854661+1 859342 L5031 2020 2891 399*2^2851994+1 858539 L4099 2020 2892 225*2^2851959+1 858528 L3941 2015 2893 247*2^2851602+1 858421 L3865 2015 2894 183*2^2850321+1 858035 L2117 2015 2895 1191*2^2849315+1 857733 L1188 2020 2896 717*2^2848598+1 857517 L1204 2020 2897 795*2^2848360+1 857445 L4099 2020 2898 4242104*15^728840-1 857189 L5410 2023 2899 3450080^131072+1 856927 L4201 2016 Generalized Fermat 2900 705*2^2846638+1 856927 L1808 2020 2901 369*2^2846547+1 856899 L4099 2020 2902 233*2^2846392-1 856852 L2484 2021 2903 955*2^2844974+1 856426 L1188 2020 2904 753*2^2844700+1 856343 L1204 2020 2905 11138*745^297992-1 855884 L4189 2019 2906 111*2^2841992+1 855527 L1792 2015 2907 44*744^297912-1 855478 L5410 2021 2908 649*2^2841318+1 855325 L4732 2020 2909 228*912^288954-1 855305 L5410 2022 2910 305*2^2840155+1 854975 L4907 2020 2911e 914*871^290787-1 854923 L5787 2023 2912 1149*2^2839622+1 854815 L2042 2020 2913 95*2^2837909+1 854298 L3539 2013 2914 199*2^2835667-1 853624 L2484 2019 2915 595*2^2833406+1 852943 L4343 2020 2916 1101*2^2832061+1 852539 L4930 2020 2917 813*2^2831757+1 852447 L4951 2020 2918 435*2^2831709+1 852432 L4951 2020 2919 393*2^2828738-1 851538 L2257 2023 2920 543*2^2828217+1 851381 L4746 2019 2921 68*1010^283267+1 851027 L5778 2023 2922 704*249^354745+1 850043 L5410 2019 2923 1001*2^2822037+1 849521 L1209 2019 2924 84466*5^1215373-1 849515 L3562 2013 2925 97*2^2820650+1 849103 L2163 2013 2926 381*2^2820157-1 848955 L2257 2023 2927 107*2^2819922-1 848884 L2484 2013 2928 84256*3^1778899+1 848756 L4789 2018 2929 45472*3^1778899-1 848756 L4789 2018 2930 14804*3^1778530+1 848579 L4064 2021 2931 497*2^2818787+1 848543 L4842 2019 2932 97*2^2818306+1 848397 L3262 2013 2933 313*2^2817751-1 848231 L802 2021 2934 177*2^2816050+1 847718 L129 2012 2935 553*2^2815596+1 847582 L4980 2019 2936 1071*2^2814469+1 847243 L3035 2019 2937 105*2^2813000+1 846800 L3200 2015 2938 1115*2^2812911+1 846774 L1125 2019 2939 96*10^846519-1 846521 L2425 2011 Near-repdigit 2940 763*2^2811726+1 846417 L3919 2019 2941 1125*2^2811598+1 846379 L4981 2019 2942 891*2^2810100+1 845928 L4981 2019 2943 441*2^2809881+1 845862 L4980 2019 2944 711*2^2808473+1 845438 L1502 2019 2945 1089*2^2808231+1 845365 L4687 2019 2946 63*2^2807130+1 845033 L3262 2013 2947 1083*2^2806536+1 844855 L3035 2019 2948 675*2^2805669+1 844594 L1932 2019 2949 819*2^2805389+1 844510 L3372 2019 2950 1027*2^2805222+1 844459 L3035 2019 2951 437*2^2803775+1 844024 L3168 2019 2952 381*2^2801281-1 843273 L2257 2023 2953 4431*372^327835-1 842718 L5410 2019 2954 150344*5^1205508-1 842620 L3547 2013 2955 311*2^2798459+1 842423 L4970 2019 2956 81*2^2797443-1 842117 L3887 2021 2957 400254*127^400254+1 842062 g407 2013 Generalized Cullen 2958 2639850^131072+1 841690 L4249 2016 Generalized Fermat 2959 43*2^2795582+1 841556 L2842 2013 2960 1001*2^2794357+1 841189 L1675 2019 2961 117*2^2794014+1 841085 L1741 2015 2962 1057*2^2792700+1 840690 L1675 2019 2963 345*2^2792269+1 840560 L1754 2019 2964 711*2^2792072+1 840501 L4256 2019 2965 315*2^2791414-1 840302 L2235 2021 2966 973*2^2789516+1 839731 L3372 2019 2967 27602*3^1759590+1 839543 L4064 2021 2968 2187*2^2786802+1 838915 L1745 2019 2969 15*2^2785940+1 838653 p286 2012 2970 333*2^2785626-1 838560 L802 2021 2971 1337*2^2785444-1 838506 L4518 2017 2972 711*2^2784213+1 838135 L4687 2019 2973 58582*91^427818+1 838118 L5410 2020 2974 923*2^2783153+1 837816 L1675 2019 2975 1103*2^2783149+1 837815 L3784 2019 2976 485*2^2778151+1 836310 L1745 2019 2977 600921*2^2776014-1 835670 g337 2017 2978 1129*2^2774934+1 835342 L1774 2019 2979 750*1017^277556-1 834703 L4955 2021 2980 8700*241^350384-1 834625 L5410 2019 2981 1023*2^2772512+1 834613 L4724 2019 2982 656*249^348030+1 833953 L5410 2019 2983 92*10^833852-1 833854 L4789 2018 Near-repdigit 2984 437*2^2769299+1 833645 L3760 2019 2985 967*2^2768408+1 833377 L3760 2019 2986 2280466^131072+1 833359 L4201 2016 Generalized Fermat 2987 1171*2^2768112+1 833288 L2676 2019 2988 57*2^2765963+1 832640 L3262 2013 2989 1323*2^2764024+1 832058 L1115 2019 2990 77*2^2762047+1 831461 L3430 2013 2991 745*2^2761514+1 831302 L1204 2019 2992 2194180^131072+1 831164 L4276 2016 Generalized Fermat 2993 7*10^830865+1 830866 p342 2014 2994 893*2^2758841+1 830497 L4826 2019 2995 537*2^2755164+1 829390 L3035 2019 2996 579*2^2754370+1 829151 L1823 2019 2997 441*2^2754188+1 829096 L2564 2019 Generalized Fermat 2998c 677*792^285769-1 828369 L541 2023 2999 215*2^2751022-1 828143 L2484 2018 3000 337*2^2750860+1 828094 L4854 2019 3001 701*2^2750267+1 827916 L3784 2019 3002 467*2^2749195+1 827593 L1745 2019 3003 245*2^2748663+1 827433 L3173 2015 3004 591*2^2748315+1 827329 L3029 2019 3005 57*2^2747499+1 827082 L3514 2013 Divides Fermat F(2747497) 3006 1007*2^2747268-1 827014 L4518 2022 3007 1089*2^2746155+1 826679 L2583 2019 3008 707*2^2745815+1 826576 L3760 2019 3009 459*2^2742310+1 825521 L4582 2019 3010 777*2^2742196+1 825487 L3919 2019 3011 609*2^2741078+1 825150 L3091 2019 3012 684*157^375674+1 824946 L5112 2022 3013 639*2^2740186+1 824881 L4958 2019 3014 905*2^2739805+1 824767 L4958 2019 3015 119*954^276761+1 824625 L5410 2022 3016 1955556^131072+1 824610 L4250 2015 Generalized Fermat 3017 777*2^2737282+1 824007 L1823 2019 3018 765*2^2735232+1 823390 L1823 2019 3019 609*2^2735031+1 823330 L1823 2019 3020 305*2^2733989+1 823016 L1823 2019 3021 165*2^2732983+1 822713 L1741 2015 3022 1133*2^2731993+1 822415 L4687 2019 3023 251*2^2730917+1 822091 L3924 2015 3024 1185*2^2730620+1 822002 L4948 2019 3025 (10^410997+1)^2-2 821995 p405 2022 3026 173*2^2729905+1 821786 L3895 2015 3027 1981*2^2728877-1 821478 L1134 2018 3028 693*2^2728537+1 821375 L3035 2019 3029 501*2^2728224+1 821280 L3035 2019 3030 763*2^2727928+1 821192 L3924 2019 3031 10*743^285478+1 819606 L4955 2019 3032 17*2^2721830-1 819354 p279 2010 3033 1006*639^291952+1 819075 L4444 2021 3034 1101*2^2720091+1 818833 L4935 2019 3035 1766192^131072+1 818812 L4231 2015 Generalized Fermat 3036 165*2^2717378-1 818015 L2055 2012 3037 68633*2^2715609+1 817485 L5105 2020 3038 1722230^131072+1 817377 L4210 2015 Generalized Fermat 3039 9574*5^1169232+1 817263 L5410 2021 3040 1717162^131072+1 817210 L4226 2015 Generalized Fermat 3041 133*2^2713410+1 816820 L3223 2015 3042 45*2^2711732+1 816315 L1349 2012 3043 569*2^2711451+1 816231 L4568 2019 3044 12830*3^1709456+1 815622 L5410 2021 3045 335*2^2708958-1 815481 L2235 2020 3046 93*2^2708718-1 815408 L1862 2016 3047 1660830^131072+1 815311 L4207 2015 Generalized Fermat 3048 837*2^2708160+1 815241 L4314 2019 3049 1005*2^2707268+1 814972 L4687 2019 3050 13*458^306196+1 814748 L3610 2015 3051 253*2^2705844+1 814543 L4083 2015 3052 657*2^2705620+1 814476 L4907 2019 3053 39*2^2705367+1 814399 L1576 2013 Divides GF(2705360,3) 3054 303*2^2703864+1 813947 L1204 2019 3055 141*2^2702160+1 813434 L1741 2015 3056 753*2^2701925+1 813364 L4314 2019 3057 133*2^2701452+1 813221 L3173 2015 3058 521*2^2700095+1 812813 L4854 2019 3059 393*2^2698956+1 812470 L1823 2019 3060 417*2^2698652+1 812378 L3035 2019 3061 525*2^2698118+1 812218 L1823 2019 3062 3125*2^2697651+1 812078 L3924 2019 3063 153*2^2697173+1 811933 L3865 2015 3064 1560730^131072+1 811772 L4201 2015 Generalized Fermat 3065 26*3^1700041+1 811128 L4799 2020 3066 Phi(3,-1538654^65536) 810961 L4561 2017 Generalized unique 3067 11*2^2691961+1 810363 p286 2013 Divides GF(2691960,12) 3068 58*536^296735-1 809841 L5410 2021 3069 33016*3^1696980+1 809670 L5366 2021 3070 7335*2^2689080-1 809498 L4036 2015 3071 1049*2^2688749+1 809398 L4869 2018 3072c 120*957^271487-1 809281 L541 2023 3073 329*2^2688221+1 809238 L3035 2018 3074 865*2^2687434+1 809002 L4844 2018 3075 989*2^2686591+1 808748 L2805 2018 3076 136*904^273532+1 808609 L5410 2020 3077 243*2^2685873+1 808531 L3865 2015 3078 909*2^2685019+1 808275 L3431 2018 3079 1455*2^2683954-6325241166627*2^1290000-1 807954 p423 2021 Arithmetic progression (3,d=1455*2^2683953-6325241166627*2^1290000) 3080 1455*2^2683953-1 807954 L1134 2020 3081 11210*241^339153-1 807873 L5410 2019 3082 Phi(3,-1456746^65536) 807848 L4561 2017 Generalized unique 3083 975*2^2681840+1 807318 L4155 2018 3084 999*2^2681353-1 807171 L4518 2022 3085 295*2^2680932+1 807044 L1741 2015 3086 Phi(3,-1427604^65536) 806697 L4561 2017 Generalized unique 3087 575*2^2679711+1 806677 L2125 2018 3088 2386*52^469972+1 806477 L4955 2019 3089b 2778*991^269162+1 806433 p433 2023 3090 10*80^423715-1 806369 p247 2023 3091 219*2^2676229+1 805628 L1792 2015 3092 637*2^2675976+1 805552 L3035 2018 3093 Phi(3,-1395583^65536) 805406 L4561 2017 Generalized unique 3094 951*2^2674564+1 805127 L1885 2018 3095 1372930^131072+1 804474 g236 2003 Generalized Fermat 3096 662*1009^267747-1 804286 L5410 2020 3097 261*2^2671677+1 804258 L3035 2015 3098 895*2^2671520+1 804211 L3035 2018 3099 1361244^131072+1 803988 g236 2004 Generalized Fermat 3100 789*2^2670409+1 803877 L3035 2018 3101 256*11^771408+1 803342 L3802 2014 Generalized Fermat 3102 503*2^2668529+1 803310 L4844 2018 3103 255*2^2668448+1 803286 L1129 2015 3104 4189*2^2666639-1 802742 L1959 2017 3105 539*2^2664603+1 802129 L4717 2018 3106 3^1681130+3^445781+1 802103 CH9 2022 3107 26036*745^279261-1 802086 L4189 2020 3108 1396*5^1146713-1 801522 L3547 2013 3109 676*687^282491-1 801418 L5426 2023 3110 267*2^2662090+1 801372 L3234 2015 Divides Fermat F(2662088) 3111 51*892^271541+1 801147 L5410 2019 3112 297*2^2660048+1 800757 L3865 2015 3113 99*2^2658496-1 800290 L1862 2021 3114 (10^393063-1)^2-2 786126 p405 2022 Near-repdigit 3115 334310*211^334310-1 777037 p350 2012 Generalized Woodall 3116 169*2^2545526+1 766282 L2125 2015 Divides GF(2545525,10), generalized Fermat 3117 9*2^2543551+1 765687 L1204 2011 Divides Fermat F(2543548), GF(2543549,3), GF(2543549,6), GF(2543549,12) 3118b 215206*5^1076031-1 752119 L20 2023 Generalized Woodall 3119 3*2^2478785+1 746190 g245 2003 Divides Fermat F(2478782), GF(2478782,3), GF(2478776,6), GF(2478782,12) 3120 41676*7^875197-1 739632 L2777 2012 Generalized Woodall 3121b 1052072*5^1052072-1 735373 L20 2023 Generalized Woodall 3122 1183953*2^2367907-1 712818 L447 2007 Woodall 3123 150209!+1 712355 p3 2011 Factorial 3124 147855!-1 700177 p362 2013 Factorial 3125 3*2^2291610+1 689844 L753 2008 Divides GF(2291607,3), GF(2291609,5) 3126 2*11171^168429+1 681817 g427 2014 Divides Phi(11171^168429,2) 3127 11*2^2230369+1 671410 L2561 2011 Divides GF(2230368,3) 3128 (10^334568-1)^2-2 669136 p405 2022 Near-repdigit 3129 2*179^294739+1 664004 g424 2011 Divides Phi(179^294739,2) 3130 404882*43^404882-1 661368 p310 2011 Generalized Woodall 3131 2*10271^164621+1 660397 g427 2014 Divides Phi(10271^164621,2) 3132 2*659^233973+1 659544 g424 2015 Divides Phi(659^233973,2) 3133 2*191^287901+1 656713 g424 2015 Divides Phi(191^287901,2) 3134 7*2^2167800+1 652574 g279 2007 Divides Fermat F(2167797), GF(2167799,5), GF(2167799,10) 3135 1179*2^2158475+1 649769 L3035 2014 Divides GF(2158470,6) 3136 3*2^2145353+1 645817 g245 2003 Divides Fermat F(2145351), GF(2145351,3), GF(2145352,5), GF(2145348,6), GF(2145352,10), GF(2145351,12) 3137 753*2^2143388+1 645227 L2583 2014 Divides GF(2143383,3) 3138 25*2^2141884+1 644773 L1741 2011 Divides Fermat F(2141872), GF(2141871,5), GF(2141872,10); generalized Fermat 3139 7*2^2139912+1 644179 g279 2007 Divides GF(2139911,12) 3140 93*10^642225-1 642227 L4789 2020 Near-repdigit 3141 189*2^2115473+1 636824 L3784 2014 Divides GF(2115468,6) 3142 563528*13^563528-1 627745 p262 2009 Generalized Woodall 3143 107*2^2081775+1 626679 L3432 2013 Divides GF(2081774,6) 3144 45*2^2014557+1 606444 L1349 2012 Divides GF(2014552,10) 3145 251749*2^2013995-1 606279 L436 2007 Woodall 3146 657*2^1998854+1 601718 L2520 2013 Divides GF(1998852,10) 3147 17*2^1990299+1 599141 g267 2006 Divides GF(1990298,3) 3148 101*2^1988279+1 598534 L3141 2013 Divides GF(1988278,12) 3149 549721*12^549721-1 593255 L5765 2023 Generalized Woodall 3150 175*2^1962288+1 590710 L2137 2013 Divides GF(1962284,10) 3151 225*2^1960083+1 590047 L3548 2013 Divides GF(1960078,6) 3152 2*47^346759+1 579816 g424 2011 Divides Phi(47^346759,2) 3153 71*2^1873569+1 564003 L1223 2011 Divides GF(1873568,5) 3154 13*2^1861732+1 560439 g267 2005 Divides GF(1861731,6) 3155 3*2^1832496+1 551637 p189 2007 Divides GF(1832490,3), GF(1832494,5) 3156 39*2^1824871+1 549343 L2664 2011 Divides GF(1824867,6) 3157 45*2^1779971+1 535827 L1223 2011 Divides GF(1779969,5) 3158 5*2^1777515+1 535087 p148 2005 Divides GF(1777511,5), GF(1777514,6) 3159 129*2^1774709+1 534243 L2526 2013 Divides GF(1774705,12) 3160 2*191^232149+1 529540 g424 2011 Divides Phi(191^232149,2) 3161 183*2^1747660+1 526101 L2163 2013 Divides Fermat F(1747656) 3162 63*2^1686050+1 507554 L2085 2011 Divides GF(1686047,12) 3163 110059!+1 507082 p312 2011 Factorial 3164 55*2^1669798+1 502662 L2518 2011 Divides GF(1669797,12) 3165 2^1667321-2^833661+1 501914 L137 2011 Gaussian Mersenne norm 38, generalized unique 3166 2*359^192871+1 492804 g424 2014 Divides Phi(359^192871,2) 3167 10^490000+3*(10^7383-1)/9*10^241309+1 490001 p413 2021 Palindrome 3168 1098133#-1 476311 p346 2012 Primorial 3169 10^474500+999*10^237249+1 474501 p363 2014 Palindrome 3170 103040!-1 471794 p301 2010 Factorial 3171 3803*2^1553013+1 467508 L1957 2020 Divides GF(1553012,5) 3172 135*2^1515894+1 456332 L1129 2013 Divides GF(1515890,10) 3173 2*839^155785+1 455479 g424 2014 Divides Phi(839^155785,2) 3174 131*2^1494099+1 449771 L2959 2012 Divides Fermat F(1494096) 3175 1467763*2^1467763-1 441847 L381 2007 Woodall 3176 4125*2^1445205-1 435054 L1959 2014 Arithmetic progression (2,d=4125*2^1445205-2723880039837*2^1290000) [p199] 3177 5529*2^1430926+1 430756 L3035 2017 Divides GF(1430925,5) 3178 94550!-1 429390 p290 2010 Factorial 3179 15*2^1418605+1 427044 g279 2006 Divides GF(1418600,5), GF(1418601,6) 3180 2415*2^1413627-1 425548 L1959 2014 Arithmetic progression (2,d=2415*2^1413627-1489088842587*2^1290000) [p199] 3181 2985*2^1404274-1 422733 L1959 2014 Arithmetic progression (2,d=2985*2^1404274-770527213395*2^1290000) [p199] 3182 2^1398269-1 420921 G1 1996 Mersenne 35 3183 17*2^1388355+1 417938 g267 2005 Divides GF(1388354,10) 3184 338707*2^1354830+1 407850 L124 2005 Cullen 3185 107*2^1337019+1 402485 L2659 2012 Divides GF(1337018,10) 3186 1389*2^1335434+1 402009 L1209 2015 Divides GF(1335433,10) 3187 10^400000+4*(10^102381-1)/9*10^148810+1 400001 p413 2021 Palindrome 3188 5*2^1320487+1 397507 g55 2002 Divides GF(1320486,12) 3189 10^390636+999*10^195317+1 390637 p363 2014 Palindrome 3190 6325241166627*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=1455*2^2683953-6325241166627*2^1290000) 3191 5606879602425*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=33*2^2939063-5606879602425*2^1290000) 3192 2618163402417*2^1290001-1 388342 L927 2016 Sophie Germain (2p+1) 3193 4966510140375*2^1290000-1 388342 L3573 2020 Arithmetic progression (2,d=2227792035315*2^1290001) 3194 2996863034895*2^1290000+1 388342 L2035 2016 Twin (p+2) 3195 2996863034895*2^1290000-1 388342 L2035 2016 Twin (p) 3196 2723880039837*2^1290000-1 388342 L3829 2016 Arithmetic progression (1,d=4125*2^1445205-2723880039837*2^1290000) [p199] 3197 2618163402417*2^1290000-1 388342 L927 2016 Sophie Germain (p) 3198 2060323099527*2^1290000-1 388342 L3606 2015 Arithmetic progression (2,d=69718264533*2^1290002) [p199] 3199 1938662032575*2^1290000-1 388341 L927 2015 Arithmetic progression (1,d=10032831585*2^1290001) [p199] 3200 1781450041395*2^1290000-1 388341 L3203 2015 Arithmetic progression (1,d=69718264533*2^1290002) [p199] 3201 15*2^1276177+1 384169 g279 2006 Divides GF(1276174,3), GF(1276174,10) 3202 1268979*2^1268979-1 382007 L201 2007 Woodall 3203 2^1257787-1 378632 SG 1996 Mersenne 34 3204 329*2^1246017+1 375092 L2085 2012 Divides Fermat F(1246013) 3205 843301#-1 365851 p302 2010 Primorial 3206 25*2^1211488+1 364696 g279 2005 Generalized Fermat, divides GF(1211487,12) 3207 10^362600+666*10^181299+1 362601 p363 2014 Palindrome 3208 2^1203793-2^601897+1 362378 L192 2006 Gaussian Mersenne norm 37, generalized unique 3209 1195203*2^1195203-1 359799 L124 2005 Woodall 3210 29*2^1152765+1 347019 g300 2005 Divides GF(1152760,10) 3211 2145*2^1099064+1 330855 L1792 2013 Divides Fermat F(1099061) 3212 Phi(3,10^160118)+(137*10^160119+731*10^159275)*(10^843-1)/999 320237 p44 2014 Palindrome 3213 Phi(3,10^160048)+(137*10^160049+731*10^157453)*(10^2595-1)/999 320097 p44 2014 Palindrome 3214 10^314727-8*10^157363-1 314727 p235 2013 Near-repdigit, palindrome 3215 10^300000+5*(10^48153-1)/9*10^125924+1 300001 p413 2021 Palindrome 3216 2^991961-2^495981+1 298611 x28 2005 Gaussian Mersenne norm 36, generalized unique 3217 10^290253-2*10^145126-1 290253 p235 2012 Near-repdigit, Palindrome 3218 11*2^960901+1 289262 g277 2005 Divides Fermat F(960897) 3219 10^283355-737*10^141676-1 283355 p399 2020 Palindrome 3220 Phi(3,10^137747)+(137*10^137748+731*10^129293)*(10^8454-1)/999 275495 p44 2012 Palindrome 3221 1705*2^906110+1 272770 L3174 2012 Divides Fermat F(906108) 3222 10^269479-7*10^134739-1 269479 p235 2012 Near-repdigit, Palindrome 3223 10^262144+7*(10^5193-1)/9*10^128476+1 262145 p413 2021 Palindrome 3224 2^859433-1 258716 SG 1994 Mersenne 33 3225 2^756839-1 227832 SG 1992 Mersenne 32 3226 10^223663-454*10^111830-1 223663 p363 2016 Palindrome 3227d 13243*2^699764+1 210655 L5808 2023 Divides Fermat F(699760) 3228 27*2^672007+1 202296 g279 2005 Divides Fermat F(672005) 3229 667071*2^667071-1 200815 g55 2000 Woodall 3230 18543637900515*2^666668-1 200701 L2429 2012 Sophie Germain (2p+1) 3231 18543637900515*2^666667-1 200701 L2429 2012 Sophie Germain (p) 3232 3756801695685*2^666669+1 200700 L1921 2011 Twin (p+2) 3233 3756801695685*2^666669-1 200700 L1921 2011 Twin (p) 3234 392113#+1 169966 p16 2001 Primorial 3235 213778324725*2^561418+1 169015 p430 2023 Cunningham chain 2nd kind (2p-1) 3236 213778324725*2^561417+1 169015 p430 2023 Cunningham chain 2nd kind (p) 3237 366439#+1 158936 p16 2001 Primorial 3238 2*893962950^16384+1 146659 p428 2023 Cunningham chain 2nd kind (2p-1) 3239 893962950^16384+1 146659 p427 2023 Cunningham chain 2nd kind (p), generalized Fermat 3240 481899*2^481899+1 145072 gm 1998 Cullen 3241 34790!-1 142891 p85 2002 Factorial 3242 2^364289-2^182145+1 109662 p58 2001 Gaussian Mersenne norm 35, generalized unique 3243 361275*2^361275+1 108761 DS 1998 Cullen 3244 26951!+1 107707 p65 2002 Factorial 3245 65516468355*2^333333+1 100355 L923 2009 Twin (p+2) 3246 65516468355*2^333333-1 100355 L923 2009 Twin (p) 3247 (7176^24691-1)/7175 95202 CH2 2017 Generalized repunit 3248f R(86453) 86453 E3 2023 Repunit, ECPP, unique 3249 21480!-1 83727 p65 2001 Factorial 3250 183027*2^265441-1 79911 L983 2010 Sophie Germain (2p+1) 3251 183027*2^265440-1 79911 L983 2010 Sophie Germain (p) 3252 262419*2^262419+1 79002 DS 1998 Cullen 3253 160204065*2^262148+1 78923 L5115 2021 Twin (p+2) 3254 160204065*2^262148-1 78923 L5115 2021 Twin (p) 3255 3622179275715*2^256003+1 77078 x47 2020 Cunningham chain 2nd kind (2p-1) 3256 3622179275715*2^256002+1 77077 x47 2020 Cunningham chain 2nd kind (p) 3257 648621027630345*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 3258 620366307356565*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 3259 648621027630345*2^253824-1 76424 x24 2009 Sophie Germain (p) 3260 620366307356565*2^253824-1 76424 x24 2009 Sophie Germain (p) 3261 2570606397*2^252763+1 76099 p364 2020 Cunningham chain 2nd kind (2p-1) 3262 2570606397*2^252762+1 76099 p364 2020 Cunningham chain 2nd kind (p) 3263 (40734^16111-1)/40733 74267 CH2 2015 Generalized repunit 3264 (64758^15373-1)/64757 73960 p170 2018 Generalized repunit 3265 5^104824+104824^5 73269 E4 2023 ECPP 3266 primV(111534,1,27000) 72683 x25 2013 Generalized Lucas primitive part 3267 (58729^15091-1)/58728 71962 CH2 2017 Generalized repunit 3268 2*352666770^8192+1 70021 p409 2020 Cunningham chain 2nd kind (2p-1) 3269 352666770^8192+1 70021 p411 2020 Cunningham chain 2nd kind (p), generalized Fermat 3270 (27987^15313-1)/27986 68092 CH12 2020 Generalized repunit 3271 (23340^15439-1)/23339 67435 p170 2020 Generalized repunit 3272 12770275971*2^222225+1 66907 L527 2017 Twin (p+2) 3273 12770275971*2^222225-1 66907 L527 2017 Twin (p) 3274 (24741^15073-1)/24740 66218 p170 2020 Generalized repunit 3275 (63847^13339-1)/63846 64091 p170 2013 Generalized repunit 3276 12599682117*2^211088+1 63554 L4166 2022 Twin (p+2) 3277 12599682117*2^211088-1 63554 L4166 2022 Twin (p) 3278 12566577633*2^211088+1 63554 L4166 2022 Twin (p+2) 3279 12566577633*2^211088-1 63554 L4166 2022 Twin (p) 3280 1068669447*2^211089-1 63554 L4166 2020 Sophie Germain (2p+1) 3281 1068669447*2^211088-1 63553 L4166 2020 Sophie Germain (p) 3282 145823#+1 63142 p21 2000 Primorial 3283 U(15694,1,14700)+U(15694,1,14699) 61674 x45 2019 Lehmer number 3284 (28507^13831-1)/28506 61612 CH12 2020 Generalized repunit 3285 2^203789+2^101895+1 61347 O 2000 Gaussian Mersenne norm 34, generalized unique 3286 (26371^13681-1)/26370 60482 p170 2012 Generalized repunit 3287 U(24,-25,43201) 60391 CH12 2020 Generalized Lucas number 3288 99064503957*2^200009-1 60220 L95 2016 Sophie Germain (2p+1) 3289 99064503957*2^200008-1 60220 L95 2016 Sophie Germain (p) 3290 70965694293*2^200006+1 60219 L95 2016 Twin (p+2) 3291 70965694293*2^200006-1 60219 L95 2016 Twin (p) 3292 66444866235*2^200003+1 60218 L95 2016 Twin (p+2) 3293 66444866235*2^200003-1 60218 L95 2016 Twin (p) 3294 (4529^16381-1)/4528 59886 CH2 2012 Generalized repunit 3295 4884940623*2^198800+1 59855 L4166 2015 Twin (p+2) 3296 4884940623*2^198800-1 59855 L4166 2015 Twin (p) 3297 3^125330+1968634623437000 59798 E4 2022 ECPP 3298 (9082^15091-1)/9081 59729 CH2 2014 Generalized repunit 3299 2003663613*2^195000+1 58711 L202 2007 Twin (p+2) 3300 2003663613*2^195000-1 58711 L202 2007 Twin (p) 3301 primV(27655,1,19926) 57566 x25 2013 Generalized Lucas primitive part 3302 Ramanujan tau function at 199^4518 57125 E3 2022 ECPP 3303 (43326^12041-1)/43325 55827 p170 2017 Generalized repunit 3304 12443794755*2^184517-1 55556 L3494 2021 Sophie Germain (2p+1) 3305 21749869755*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 3306 14901867165*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 3307 12443794755*2^184516-1 55555 L3494 2021 Sophie Germain (p) 3308 21749869755*2^184515-1 55555 L3494 2021 Sophie Germain (p) 3309 14901867165*2^184515-1 55555 L3494 2021 Sophie Germain (p) 3310 17976255129*2^183241+1 55172 p415 2021 Twin (p+2) 3311 17976255129*2^183241-1 55172 p415 2021 Twin (p) 3312 607095*2^176312-1 53081 L983 2009 Sophie Germain (2p+1) 3313 607095*2^176311-1 53081 L983 2009 Sophie Germain (p) 3314 (38284^11491-1)/38283 52659 CH2 2013 Generalized repunit 3315 (2^174533-1)/193594572654550537/91917886778031629891960890057 52494 E5 2022 Mersenne cofactor, ECPP 3316 191547657*2^173372+1 52199 L5116 2020 Twin (p+2) 3317 191547657*2^173372-1 52199 L5116 2020 Twin (p) 3318 38529154785*2^173250+1 52165 L3494 2014 Twin (p+2) 3319 38529154785*2^173250-1 52165 L3494 2014 Twin (p) 3320 29055814795*(2^172486-2^86243)+2^86245+1 51934 p408 2022 Consecutive primes arithmetic progression (2,d=4) 3321 11922002779*(2^172486-2^86243)+2^86245+1 51934 p408 2022 Consecutive primes arithmetic progression (2,d=6) 3322 48047305725*2^172404-1 51910 L99 2007 Sophie Germain (2p+1) 3323 48047305725*2^172403-1 51910 L99 2007 Sophie Germain (p) 3324 137211941292195*2^171961-1 51780 x24 2006 Sophie Germain (2p+1) 3325 194772106074315*2^171960+1 51780 x24 2007 Twin (p+2) 3326 194772106074315*2^171960-1 51780 x24 2007 Twin (p) 3327 137211941292195*2^171960-1 51780 x24 2006 Sophie Germain (p) 3328 100314512544015*2^171960+1 51780 x24 2006 Twin (p+2) 3329 100314512544015*2^171960-1 51780 x24 2006 Twin (p) 3330 16869987339975*2^171960+1 51779 x24 2005 Twin (p+2) 3331 16869987339975*2^171960-1 51779 x24 2005 Twin (p) 3332 (34120^11311-1)/34119 51269 CH2 2011 Generalized repunit 3333 33218925*2^169690+1 51090 g259 2002 Twin (p+2) 3334 33218925*2^169690-1 51090 g259 2002 Twin (p) 3335 U(809,1,17325)-U(809,1,17324) 50378 x45 2019 Lehmer number 3336 10^50000+65859 50001 E3 2022 ECPP 3337 R(49081) 49081 c70 2022 Repunit, unique, ECPP 3338 (50091^10357-1)/50090 48671 p170 2016 Generalized repunit 3339 268981272*5^69421+1 48532 L5695 2023 Twin (p+2) 3340 268981272*5^69421-1 48532 L5695 2023 Twin (p) 3341 2^160423-2^80212+1 48293 O 2000 Gaussian Mersenne norm 33, generalized unique 3342 U(67,-1,26161) 47773 x45 2019 Generalized Lucas number 3343 primV(40395,-1,15588) 47759 x23 2007 Generalized Lucas primitive part 3344 110427610*3^100003+1 47722 p415 2021 Twin (p+2) 3345 110427610*3^100003-1 47722 p415 2021 Twin (p) 3346 primV(53394,-1,15264) 47200 CH4 2007 Generalized Lucas primitive part 3347 (44497^10093-1)/44496 46911 p170 2016 Generalized repunit 3348 4931286045*2^152850-1 46023 L5389 2021 Sophie Germain (2p+1) 3349 4318624617*2^152850-1 46023 L5389 2021 Sophie Germain (2p+1) 3350 4931286045*2^152849-1 46022 L5389 2021 Sophie Germain (p) 3351 4318624617*2^152849-1 46022 L5389 2021 Sophie Germain (p) 3352 151023*2^151023-1 45468 g25 1998 Woodall 3353 (1852^13477-1)/1851 44035 p170 2015 Generalized repunit 3354 U(52245,1,9241)+U(52245,1,9240) 43595 x45 2019 Lehmer number 3355 17147299833*2^143732-1 43278 L3494 2023 Sophie Germain (2p+1) 3356 17147299833*2^143731-1 43278 L3494 2023 Sophie Germain (p) 3357 21195711*2^143631-1 43245 L3494 2019 Sophie Germain (2p+1) 3358 21195711*2^143630-1 43245 L3494 2019 Sophie Germain (p) 3359 (42417^9337-1)/42416 43203 p170 2015 Generalized repunit 3360 838269645*2^143166-1 43107 L3494 2019 Sophie Germain (2p+1) 3361 838269645*2^143165-1 43106 L3494 2019 Sophie Germain (p) 3362 570409245*2^143164-1 43106 L3494 2019 Sophie Germain (2p+1) 3363 570409245*2^143163-1 43106 L3494 2019 Sophie Germain (p) 3364 2830598517*2^143113-1 43091 L3494 2019 Sophie Germain (2p+1) 3365 2830598517*2^143112-1 43091 L3494 2019 Sophie Germain (p) 3366 71509*2^143019-1 43058 g23 1998 Woodall, arithmetic progression (2,d=(143018*2^83969-80047)*2^59049) [x12] 3367 U(2449,-1,12671) 42939 x45 2018 Generalized Lucas number, cyclotomy 3368 (36210^9319-1)/36209 42480 p170 2019 Generalized repunit 3369b U(201107) 42029 E11 2023 Fibonacci number, ECPP 3370 E(11848)/7910215 40792 E8 2022 Euler irregular, ECPP 3371 10^40000+14253 40001 E3 2022 ECPP 3372 p(1289844341) 40000 c84 2020 Partitions, ECPP 3373 primV(4836,1,16704) 39616 x25 2013 Generalized Lucas primitive part 3374 (2^130439-1)/260879 39261 E9 2023 Mersenne cofactor, ECPP 3375 U(21041,-1,9059) 39159 x45 2018 Generalized Lucas number, cyclotomy 3376 tau(47^4176) 38404 E3 2022 ECPP 3377 (2^127031+1)/3 38240 E5 2023 Wagstaff, ECPP, generalized Lucas number 3378 3^78296+479975120078336 37357 E4 2022 ECPP 3379 63^20018+20018^63 36020 E4 2023 ECPP 3380 U(5617,-1,9539) 35763 x45 2019 Generalized Lucas number, cyclotomy 3381 (2^117239+1)/3 35292 E2 2022 Wagstaff, ECPP, generalized Lucas number 3382 p(1000007396) 35219 E4 2022 Partitions, ECPP 3383 2^116224-15905 34987 c87 2017 ECPP 3384 (V(60145,1,7317)-1)/(V(60145,1,27)-1) 34841 x45 2019 Lehmer primitive part 3385 primV(38513,-1,11502) 34668 x23 2006 Generalized Lucas primitive part 3386 primV(9008,1,16200) 34168 x23 2005 Generalized Lucas primitive part 3387 (14665*10^34110-56641)/9999 34111 c89 2018 ECPP, Palindrome 3388 (V(28138,1,7587)-1)/(V(28138,1,27)-1) 33637 x45 2019 Lehmer primitive part 3389 U(35896,1,7260)+U(35896,1,7259) 33066 x45 2019 Lehmer number 3390 primV(6586,1,16200) 32993 x25 2013 Generalized Lucas primitive part 3391 U(1624,-1,10169) 32646 x45 2018 Generalized Lucas number, cyclotomy 3392 (V(48395,1,6921)-1)/(V(48395,1,9)-1) 32382 x45 2019 Lehmer primitive part 3393 2^106693+2^53347+1 32118 O 2000 Gaussian Mersenne norm 32, generalized unique 3394 primV(28875,1,13500) 32116 x25 2016 Generalized Lucas primitive part 3395 (2^106391-1)/286105171290931103 32010 c95 2022 Mersenne cofactor, ECPP 3396 (V(77786,1,6453)+1)/(V(77786,1,27)+1) 31429 x25 2012 Lehmer primitive part 3397 primV(10987,1,14400) 31034 x25 2005 Generalized Lucas primitive part 3398 V(148091) 30950 c81 2015 Lucas number, ECPP 3399 U(148091) 30949 x49 2021 Fibonacci number, ECPP 3400f -E(9266)/(61657889*34536574993) 30900 E10 2023 Euler irregular, ECPP 3401 Phi(11589,-10000) 30897 E1 2022 Unique,ECPP 3402 (V(73570,1,6309)-1)/(V(73570,1,9)-1) 30661 x25 2016 Lehmer primitive part 3403 1524633857*2^99902-1 30083 p364 2022 Arithmetic progression (4,d=928724769*2^99901) 3404 Phi(36547,-10) 29832 E1 2022 Unique, ECPP 3405 49363*2^98727-1 29725 Y 1997 Woodall 3406 U(2341,-1,8819) 29712 x25 2008 Generalized Lucas number 3407 primV(24127,-1,6718) 29433 CH3 2005 Generalized Lucas primitive part 3408 primV(12215,-1,13500) 29426 x25 2016 Generalized Lucas primitive part 3409 V(140057) 29271 c76 2014 Lucas number,ECPP 3410 U(1404,-1,9209) 28981 CH10 2018 Generalized Lucas number, cyclotomy 3411 U(23396,1,6615)+U(23396,1,6614) 28898 x45 2019 Lehmer number 3412 (2^95369+1)/3 28709 x49 2021 Generalized Lucas number, Wagstaff, ECPP 3413 primV(45922,1,11520) 28644 x25 2011 Generalized Lucas primitive part 3414 primV(205011) 28552 x39 2009 Lucas primitive part 3415 -30*Bern(10264)/(1040513*252354668864651) 28506 c94 2021 Irregular, ECPP 3416 U(16531,1,6721)-U(16531,1,6720) 28347 x36 2007 Lehmer number 3417 (V(28286,1,6309)+1)/(V(28286,1,9)+1) 28045 x25 2016 Lehmer primitive part 3418 U(5092,1,7561)+U(5092,1,7560) 28025 x25 2014 Lehmer number 3419 90825*2^90825+1 27347 Y 1997 Cullen 3420 U(5239,1,7350)-U(5239,1,7349) 27333 CH10 2017 Lehmer number 3421 U(130021) 27173 x48 2021 Fibonacci number, ECPP 3422 primV(5673,1,13500) 27028 CH3 2005 Generalized Lucas primitive part 3423 primV(44368,1,9504) 26768 CH3 2005 Generalized Lucas primitive part 3424 546351925018076058*Bern(9702)/129255048976106804786904258880518941 26709 c77 2021 Irregular, ECPP 3425 22359307*60919#+1 26383 p364 2022 Arithmetic progression (4,d=5210718*60919#) 3426 17029817*60919#+1 26383 p364 2022 Arithmetic progression (4,d=1809778*60919#) 3427 (2^87691-1)/806957040167570408395443233 26371 E1 2022 Mersenne cofactor, ECPP 3428 primV(10986,-1,9756) 26185 x23 2005 Generalized Lucas primitive part 3429 1043945909*60013#+1 25992 p155 2019 Arithmetic progression (4,d=7399459*60013#) 3430 1041073153*60013#+1 25992 p155 2019 Arithmetic progression (4,d=10142823*60013#) 3431 (2^86371-1)/41681512921035887 25984 E2 2022 Mersenne cofactor, ECPP 3432 (2^86137-1)/2584111/7747937967916174363624460881 25896 c84 2022 Mersenne cofactor, ECPP 3433 primV(11076,-1,12000) 25885 x25 2005 Generalized Lucas primitive part 3434f -E(7894)/19 25790 E10 2023 Euler irregular, ECPP 3435 2^85237+2^42619+1 25659 x16 2000 Gaussian Mersenne norm 31, generalized unique 3436 primV(17505,1,11250) 25459 x25 2011 Generalized Lucas primitive part 3437 U(2325,-1,7561) 25451 x20 2013 Generalized Lucas number 3438 U(13084,-13085,6151) 25319 x45 2018 Generalized Lucas number, cyclotomy 3439 (2^84211-1)/1347377/31358793176711980763958121/33146416760423478241695\ 91561 25291 c95 2020 Mersenne cofactor, ECPP 3440 primV(42,-1,23376) 25249 x23 2007 Generalized Lucas primitive part 3441 U(1064,-1065,8311) 25158 CH10 2018 Generalized Lucas number, cyclotomy 3442 primV(7577,-1,10692) 25140 x33 2007 Generalized Lucas primitive part 3443 (2^83339+1)/3 25088 c54 2014 ECPP, generalized Lucas number, Wagstaff 3444 (2^82939-1)/883323903012540278033571819073 24938 c84 2021 Mersenne cofactor, ECPP 3445f -E(7634)/1559 24828 E10 2023 Euler irregular, ECPP 3446 U(1766,1,7561)-U(1766,1,7560) 24548 x25 2013 Lehmer number 3447 U(1383,1,7561)+U(1383,1,7560) 23745 x25 2013 Lehmer number 3448 798*Bern(8766)/(2267959*6468702182951641) 23743 c94 2021 Irregular, ECPP 3449 Phi(11867,-100) 23732 c47 2021 Unique, ECPP 3450 (2^78737-1)/1590296767505866614563328548192658003295567890593 23654 E2 2022 Mersenne cofactor, ECPP 3451 Phi(35421,-10) 23613 c77 2021 Unique, ECPP 3452 6917!-1 23560 g1 1998 Factorial 3453 2^77291+2^38646+1 23267 O 2000 Gaussian Mersenne norm 30, generalized unique 3454 (V(59936,1,4863)+1)/(V(59936,1,3)+1) 23220 x25 2013 Lehmer primitive part 3455 U(1118,1,7561)-U(1118,1,7560) 23047 x25 2013 Lehmer number 3456 (V(45366,1,4857)+1)/(V(45366,1,3)+1) 22604 x25 2013 Lehmer primitive part 3457 348054*Bern(8286)/1570865077944473903275073668721 22234 E1 2022 Irregular, ECPP 3458 p(398256632) 22223 E1 2022 Partitions, ECPP 3459 U(105509)/144118801533126010445795676378394340544227572822879081 21997 E1 2022 Fibonacci cofactor, ECPP 3460 U(104911) 21925 c82 2015 Fibonacci number, ECPP 3461 Phi(1203,10^27) 21600 c47 2021 Unique, ECPP 3462 U(19258,-1,5039) 21586 x23 2007 Generalized Lucas number 3463 6380!+1 21507 g1 1998 Factorial 3464 U(43100,1,4620)+U(43100,1,4619) 21407 x25 2016 Lehmer number 3465 -E(6658)/85079 21257 c77 2020 Euler irregular, ECPP 3466 Phi(39855,-10) 21248 c95 2020 Unique, ECPP 3467 (V(23354,1,4869)-1)/(V(23354,1,9)-1) 21231 x25 2013 Lehmer primitive part 3468a primA(296695) 21137 E1 2023 Lucas Aurifeuillian primitive part, ECPP 3469 U(15631,1,5040)-U(15631,1,5039) 21134 x25 2003 Lehmer number 3470b primA(413205) 21127 E1 2023 Lucas Aurifeuillian primitive part, ECPP 3471 U(35759,1,4620)+U(35759,1,4619) 21033 x25 2016 Lehmer number 3472 p(355646102) 21000 E1 2022 Partitions, ECPP 3473 p(350199893) 20838 E7 2022 Partitions, ECPP 3474 U(31321,1,4620)-U(31321,1,4619) 20767 x25 2016 Lehmer number 3475 primU(105821) 20598 E1 2022 Fibonacci primitive part, ECPP 3476 primU(172179) 20540 E1 2022 Fibonacci primitive part, ECPP 3477 U(11200,-1,5039) 20400 x25 2004 Generalized Lucas number, cyclotomy 3478 Phi(23749,-10) 20160 c47 2014 Unique, ECPP 3479 U(22098,1,4620)+U(22098,1,4619) 20067 x25 2016 Lehmer number 3480 primV(112028) 20063 E1 2022 Lucas primitive part, ECPP 3481 1128330746865*2^66441-1 20013 p158 2020 Cunningham chain (4p+3) 3482 1128330746865*2^66440-1 20013 p158 2020 Cunningham chain (2p+1) 3483 1128330746865*2^66439-1 20013 p158 2020 Cunningham chain (p) 3484 4111286921397*2^66420+5 20008 c88 2019 Triplet (3) 3485 4111286921397*2^66420+1 20008 L4808 2019 Triplet (2) 3486 4111286921397*2^66420-1 20008 L4808 2019 Triplet (1) 3487 U(21412,1,4620)-U(21412,1,4619) 20004 x25 2016 Lehmer number 3488 p(322610098) 20000 E1 2022 Partitions, ECPP 3489 primV(151521) 19863 E1 2022 Lucas primitive part, ECPP 3490 V(94823) 19817 c73 2014 Lucas number, ECPP 3491 U(19361,1,4620)+U(19361,1,4619) 19802 x25 2016 Lehmer number 3492 U(8454,-1,5039) 19785 x25 2013 Generalized Lucas number 3493 U(6584,-1,5039) 19238 x23 2007 Generalized Lucas number 3494 V(91943)/551659/2390519/9687119153094919 19187 E1 2022 Lucas cofactor, ECPP 3495 (V(428,1,8019)-1)/(V(428,1,729)-1) 19184 E1 2022 Lehmer primitive part, ECPP 3496 V(91873)/3674921/193484539/167745030829 19175 E1 2022 Lucas cofactor, ECPP 3497 (2^63703-1)/42808417 19169 c59 2014 Mersenne cofactor, ECPP 3498 primU(137439) 19148 E1 2022 Fibonacci primitive part, ECPP 3499 primU(107779) 18980 E1 2022 Fibonacci primitive part, ECPP 3500 (U(162,1,8581)+U(162,1,8580))/(U(162,1,66)+U(162,1,65)) 18814 E1 2022 Lehmer primitive part, ECPP 3501 V(89849) 18778 c70 2014 Lucas number, ECPP 3502 primV(145353) 18689 c69 2013 ECPP, Lucas primitive part 3503 Phi(14943,-100) 18688 c47 2014 Unique, ECPP 3504 (U(859,1,6385)-U(859,1,6384))/(U(859,1,57)-U(859,1,56)) 18567 E1 2022 Lehmer primitive part, ECPP 3505 Phi(18827,10) 18480 c47 2014 Unique, ECPP 3506 primB(220895) 18465 E1 2022 Lucas Aurifeuillian primitive part, ECPP 3507 primV(153279) 18283 E1 2022 Lucas primitive part, ECPP 3508 42209#+1 18241 p8 1999 Primorial 3509 (V(46662,1,3879)-1)/(V(46662,1,9)-1) 18069 x25 2012 Lehmer primitive part 3510 V(86477)/1042112515940998434071039 18049 c77 2020 Lucas cofactor, ECPP 3511 7457*2^59659+1 17964 Y 1997 Cullen 3512 primB(235015) 17856 E1 2022 Lucas Aurifeuillian primitive part, ECPP 3513 primV(148197) 17696 E1 2022 Lucas primitive part, ECPP 3514 (V(447,1,6723)+1)/(V(447,1,81)+1) 17604 E1 2022 Lehmer primitive part, ECPP 3515 (2^58199-1)/237604901713907577052391 17497 c59 2015 Mersenne cofactor, ECPP 3516 Phi(26031,-10) 17353 c47 2014 Unique, ECPP 3517 primV(169830) 17335 E1 2022 Lucas primitive part, ECPP 3518 (V(561,1,6309)+1)/(V(561,1,9)+1) 17319 x25 2016 Lehmer primitive part 3519 U(5768,-5769,4591) 17264 x45 2018 Generalized Lucas number, cyclotomy 3520 U(9657,1,4321)-U(9657,1,4320) 17215 x23 2005 Lehmer number 3521 (2^57131-1)/61481396117165983261035042726614288722959856631 17152 c59 2015 Mersenne cofactor, ECPP 3522 U(81839) 17103 p54 2001 Fibonacci number 3523 (V(1578,1,5589)+1)/(V(1578,1,243)+1) 17098 E1 2022 Lehmer primitive part, ECPP 3524 V(81671) 17069 c66 2013 Lucas number, ECPP 3525 primV(101510) 16970 E1 2022 Lucas primitive part, ECPP 3526 primV(86756) 16920 c74 2015 Lucas primitive part, ECPP 3527 V(80761)/(23259169*24510801979) 16861 c77 2020 Lucas cofactor, ECPP 3528 6521953289619*2^55555+1 16737 p296 2013 Triplet (3) 3529 6521953289619*2^55555-1 16737 p296 2013 Triplet (2) 3530 6521953289619*2^55555-5 16737 c58 2013 Triplet (1), ECPP 3531 primV(122754) 16653 c77 2021 Lucas primitive part, ECPP 3532 U(15823,1,3960)-U(15823,1,3959) 16625 x25 2002 Lehmer number, cyclotomy 3533 p(221444161) 16569 c77 2017 Partitions, ECPP 3534 (V(1240,1,5589)-1)/(V(1240,1,243)-1) 16538 E1 2022 Lehmer primitive part, ECPP 3535 primA(201485) 16535 E1 2022 Lucas Aurifeuillian primitive part, ECPP 3536 U(78919)/15574900936381642440917 16471 c77 2020 Fibonacci cofactor, ECPP 3537 (U(800,1,5725)-U(800,1,5724))/(U(800,1,54)-U(800,1,53)) 16464 E1 2022 Lehmer primitive part, ECPP 3538 (V(21151,1,3777)-1)/(V(21151,1,3)-1) 16324 x25 2011 Lehmer primitive part 3539 primV(123573) 16198 c77 2019 Lucas primitive part, ECPP 3540 primB(225785) 16176 E1 2022 Lucas Aurifeuillian primitive part, ECPP 3541 V(77417)/313991497376559420151 16159 c77 2020 Lucas cofactor, ECPP 3542 (2^53381-1)/15588960193/38922536168186976769/1559912715971690629450336\ 68006103 16008 c84 2017 Mersenne cofactor, ECPP 3543 -E(5186)/(704695260558899*578291717*726274378546751504461) 15954 c63 2018 Euler irregular, ECPP 3544 primV(121227) 15890 c77 2019 Lucas primitive part, ECPP 3545 Phi(2949,-100000000) 15713 c47 2013 Unique, ECPP 3546 primU(131481) 15695 c77 2019 Fibonacci primitive part, ECPP 3547 primV(120258) 15649 c77 2019 Lucas primitive part, ECPP 3548 (U(9275,1,3961)+U(9275,1,3960))/(U(9275,1,45)+U(9275,1,44)) 15537 x38 2009 Lehmer primitive part 3549 (2^51487-1)/57410994232247/17292148963401772464767849635553 15455 c77 2018 Mersenne cofactor, ECPP 3550 primB(183835) 15368 c77 2019 Lucas Aurifeuillian primitive part, ECPP 3551 primU(77387) 15319 c77 2019 Fibonacci primitive part, ECPP 3552 primB(181705) 15189 c77 2019 Lucas Aurifeuillian primitive part, ECPP 3553 primV(76568) 15034 c74 2015 Lucas primitive part, ECPP 3554 U(71983)/5614673/363946049 15028 c77 2018 Fibonacci cofactor, ECPP 3555 2494779036241*2^49800+13 15004 c93 2022 Consecutive primes arithmetic progression (3,d=6) 3556 2494779036241*2^49800+7 15004 c93 2022 Consecutive primes arithmetic progression (2,d=6) 3557 2494779036241*2^49800+1 15004 p408 2022 Consecutive primes arithmetic progression (1,d=6) 3558 primB(268665) 14972 c77 2019 Lucas Aurifeuillian primitive part, ECPP 3559 primV(75316) 14897 c74 2015 Lucas primitive part, ECPP 3560 Phi(5015,-10000) 14848 c47 2013 Unique, ECPP 3561 primV(91322) 14847 c74 2016 Lucas primitive part, ECPP 3562 2^49207-2^24604+1 14813 x16 2000 Gaussian Mersenne norm 29, generalized unique 3563 primV(110676) 14713 c74 2016 Lucas primitive part, ECPP 3564 primA(284895) 14626 c77 2019 Lucas Aurifeuillian primitive part, ECPP 3565 U(69239)/1384781 14464 c77 2018 Fibonacci cofactor, ECPP 3566 primV(112914) 14446 c74 2016 Lucas primitive part, ECPP 3567 primA(170575) 14258 c77 2018 Lucas Aurifeuillian primitive part, ECPP 3568 V(68213)/7290202116115634431 14237 c77 2018 Lucas cofactor, ECPP 3569 p(158375386) 14011 E1 2022 Partitions, ECPP 3570 p(158295265) 14007 E1 2022 Partitions, ECPP 3571 p(158221457) 14004 E1 2022 Partitions, ECPP 3572 primU(67703) 13954 c77 2018 Fibonacci primitive part, ECPP 3573 U(66947)/12485272838388758877279873712131648167413 13951 c77 2017 Fibonacci cofactor, ECPP 3574 V(66533)/2128184670585621839884209100279 13875 c77 2018 Lucas cofactor, ECPP 3575 6*Bern(5534)/(89651360098907*22027790155387*114866371) 13862 c71 2014 Irregular, ECPP 3576 4410546*Bern(5526)/(4931516285027*1969415121333695957254369297) 13840 c63 2018 Irregular,ECPP 3577 primV(82630) 13814 c74 2014 Lucas primitive part, ECPP 3578 primB(163595) 13675 c77 2018 Lucas Aurifeuillian primitive part, ECPP 3579 6*Bern(5462)/(724389557*8572589*3742097186099) 13657 c64 2013 Irregular, ECPP 3580 56667641271*2^44441+5 13389 c99 2022 Triplet (3), ECPP 3581 56667641271*2^44441+1 13389 p426 2022 Triplet (2) 3582 56667641271*2^44441-1 13389 p426 2022 Triplet (1) 3583 512792361*30941#+1 13338 p364 2022 Arithmetic progression (5,d=18195056*30941#) 3584 1815615642825*2^44046-1 13272 p395 2016 Cunningham chain (4p+3) 3585 1815615642825*2^44045-1 13272 p395 2016 Cunningham chain (2p+1) 3586 1815615642825*2^44044-1 13271 p395 2016 Cunningham chain (p) 3587 p(141528106) 13244 E6 2022 Partitions, ECPP 3588 p(141513546) 13244 E6 2022 Partitions, ECPP 3589 p(141512238) 13244 E6 2022 Partitions, ECPP 3590 p(141255053) 13232 E6 2022 Partitions, ECPP 3591 p(141150528) 13227 E6 2022 Partitions, ECPP 3592 p(141112026) 13225 E6 2022 Partitions, ECPP 3593 p(141111278) 13225 E6 2022 Partitions, ECPP 3594 p(140859260) 13213 E6 2022 Partitions, ECPP 3595 p(140807155) 13211 E6 2022 Partitions, ECPP 3596 p(140791396) 13210 E6 2022 Partitions, ECPP 3597 primU(94551) 13174 c77 2018 Fibonacci primitive part, ECPP 3598 primB(242295) 13014 c77 2018 Lucas Aurifeuillian primitive part, ECPP 3599 U(61813)/594517433/3761274442997 12897 c77 2018 Fibonacci cofactor, ECPP 3600 (2^42737+1)/3 12865 M 2007 ECPP, generalized Lucas number, Wagstaff 3601 primU(62771) 12791 c77 2018 Fibonacci primitive part, ECPP 3602 primA(154415) 12728 c77 2018 Lucas Aurifeuillian primitive part, ECPP 3603 primA(263865) 12570 c77 2018 Lucas Aurifeuillian primitive part, ECPP 3604 6*Bern(5078)/(64424527603*9985070580644364287) 12533 c63 2013 Irregular, ECPP 3605 (2^41681-1)/1052945423/16647332713153/2853686272534246492102086015457 12495 c77 2015 Mersenne cofactor, ECPP 3606 (2^41521-1)/41602235382028197528613357724450752065089 12459 c54 2012 Mersenne cofactor, ECPP 3607 (2^41263-1)/(1402943*983437775590306674647) 12395 c59 2012 Mersenne cofactor, ECPP 3608 U(59369)/2442423669148466039458303756169988568809269383644075940757020\ 9763004757 12337 c79 2015 Fibonacci cofactor, ECPP 3609 primV(73549) 12324 c74 2015 Lucas primitive part, ECPP 3610 742478255901*2^40069+1 12074 p395 2016 Cunningham chain 2nd kind (4p-3) 3611 996824343*2^40074+1 12073 p395 2016 Cunningham chain 2nd kind (4p-3) 3612 664342014133*2^39840+1 12005 p408 2020 Consecutive primes arithmetic progression (3,d=30) 3613 664342014133*2^39840-29 12005 c93 2020 Consecutive primes arithmetic progression (2,d=30), ECPP 3614 664342014133*2^39840-59 12005 c93 2020 Consecutive primes arithmetic progression (1,d=30), ECPP 3615 V(56003) 11704 p193 2006 Lucas number 3616 primA(143705) 11703 c77 2017 Lucas Aurifeuillian primitive part, ECPP 3617 4207993863*2^38624+5 11637 L5354 2021 Triplet (3), ECPP 3618 4207993863*2^38624+1 11637 L5354 2021 Triplet (2) 3619 4207993863*2^38624-1 11637 L5354 2021 Triplet (1) 3620 primU(73025) 11587 c77 2015 Fibonacci primitive part, ECPP 3621 primU(67781) 11587 c77 2015 Fibonacci primitive part, ECPP 3622 primB(219165) 11557 c77 2015 Lucas Aurifeuillian primitive part, ECPP 3623 198429723072*11^11005+1 11472 L3323 2016 Cunningham chain 2nd kind (4p-3) 3624 U(54799)/4661437953906084533621577211561 11422 c8 2015 Fibonacci cofactor, ECPP 3625 U(54521)/6403194135342743624071073 11370 c8 2015 Fibonacci cofactor, ECPP 3626 primU(67825) 11336 x23 2007 Fibonacci primitive part 3627 3610!-1 11277 C 1993 Factorial 3628 U(53189)/69431662887136064191105625570683133711989 11075 c8 2014 Fibonacci cofactor, ECPP 3629 primU(61733) 11058 c77 2015 Fibonacci primitive part, ECPP 3630 14059969053*2^36672+1 11050 p364 2018 Triplet (3) 3631 14059969053*2^36672-1 11050 p364 2018 Triplet (2) 3632 14059969053*2^36672-5 11050 c67 2018 Triplet (1), ECPP 3633 778965587811*2^36627-1 11038 p395 2016 Cunningham chain (4p+3) 3634 778965587811*2^36626-1 11038 p395 2016 Cunningham chain (2p+1) 3635 778965587811*2^36625-1 11038 p395 2016 Cunningham chain (p) 3636 272879344275*2^36622-1 11036 p395 2016 Cunningham chain (4p+3) 3637 272879344275*2^36621-1 11036 p395 2016 Cunningham chain (2p+1) 3638 272879344275*2^36620-1 11036 p395 2016 Cunningham chain (p) 3639 V(52859)/1124137922466041911 11029 c8 2014 Lucas cofactor, ECPP 3640 3507!-1 10912 C 1992 Factorial 3641 V(52201)/70585804042896975505694709575919458733851279868446609 10857 c8 2015 Lucas cofactor, ECPP 3642 V(52009)/39772636393178951550299332730909 10838 c8 2015 Lucas cofactor, ECPP 3643 V(51941)/2808052157610902114547210696868337380250300924116591143641642\ 866931 10789 c8 2015 Lucas cofactor, ECPP 3644 1258566*Bern(4462)/(2231*596141126178107*4970022131749) 10763 c64 2013 Irregular, ECPP 3645 3428602715439*2^35678+13 10753 c93 2020 Consecutive primes arithmetic progression (3,d=6), ECPP 3646 3428602715439*2^35678+7 10753 c93 2020 Consecutive primes arithmetic progression (2,d=6), ECPP 3647 3428602715439*2^35678+1 10753 p408 2020 Consecutive primes arithmetic progression (1,d=6) 3648 333645655005*2^35549-1 10713 p364 2015 Cunningham chain (4p+3) 3649 333645655005*2^35548-1 10713 p364 2015 Cunningham chain (2p+1) 3650 333645655005*2^35547-1 10713 p364 2015 Cunningham chain (p) 3651 V(51349)/224417260052884218046541 10708 c8 2014 Lucas cofactor, ECPP 3652 V(51169) 10694 p54 2001 Lucas number 3653 U(51031)/95846689435051369 10648 c8 2014 Fibonacci cofactor, ECPP 3654 V(50989)/69818796119453411 10640 c8 2014 Lucas cofactor, ECPP 3655 Phi(13285,-10) 10625 c47 2012 Unique, ECPP 3656 U(50833) 10624 CH4 2005 Fibonacci number 3657 2683143625525*2^35176+13 10602 c92 2019 Consecutive primes arithmetic progression (3,d=6),ECPP 3658 2683143625525*2^35176+1 10602 p407 2019 Consecutive primes arithmetic progression (1,d=6) 3659 3020616601*24499#+1 10593 p422 2021 Arithmetic progression (6,d=56497325*24499#) 3660 2964119276*24499#+1 10593 p422 2021 Arithmetic progression (5,d=56497325*24499#) 3661 (2^35339-1)/4909884303849890402839544048623503366767426783548098123390\ 4512709297747031041 10562 c77 2015 Mersenne cofactor, ECPP 3662 1213266377*2^35000+4859 10546 c4 2014 ECPP, consecutive primes arithmetic progression (3,d=2430) 3663 1213266377*2^35000-1 10546 p44 2014 Consecutive primes arithmetic progression (1,d=2430) 3664 primU(55297) 10483 c8 2014 Fibonacci primitive part, ECPP 3665 primA(219135) 10462 c8 2014 Lucas Aurifeuillian primitive part, ECPP 3666 24029#+1 10387 C 1993 Primorial 3667 400791048*24001#+1 10378 p155 2018 Arithmetic progression (5,d=59874860*24001#) 3668 393142614*24001#+1 10378 p155 2018 Arithmetic progression (5,d=54840724*24001#) 3669 221488788*24001#+1 10377 p155 2018 Arithmetic progression (5,d=22703701*24001#) 3670 6*Bern(4306)/2153 10342 FE8 2009 Irregular, ECPP 3671 V(49391)/298414424560419239 10305 c8 2013 Lucas cofactor, ECPP 3672 23801#+1 10273 C 1993 Primorial 3673 667674063382677*2^33608+7 10132 c88 2019 Quadruplet (4), ECPP 3674 667674063382677*2^33608+5 10132 c88 2019 Quadruplet (3), ECPP 3675 667674063382677*2^33608+1 10132 L4808 2019 Quadruplet (2) 3676 667674063382677*2^33608-1 10132 L4808 2019 Quadruplet (1) 3677 Phi(427,-10^28) 10081 FE9 2009 Unique, ECPP 3678 9649755890145*2^33335+1 10048 p364 2015 Cunningham chain 2nd kind (4p-3) 3679 15162914750865*2^33219+1 10014 p364 2015 Cunningham chain 2nd kind (4p-3) 3680 32469*2^32469+1 9779 MM 1997 Cullen 3681 (2^32531-1)/(65063*25225122959) 9778 c60 2012 Mersenne cofactor, ECPP 3682 (2^32611-1)/1514800731246429921091778748731899943932296901864652928732\ 838910515860494755367311 9736 c90 2018 Mersenne cofactor, ECPP 3683 8073*2^32294+1 9726 MM 1997 Cullen 3684 V(45953)/4561241750239 9591 c56 2012 Lucas cofactor, ECPP 3685 E(3308)/39308792292493140803643373186476368389461245 9516 c8 2014 Euler irregular, ECPP 3686 Phi(5161,-100) 9505 c47 2012 Unique, ECPP 3687 primA(196035) 9359 c8 2014 Lucas Aurifeuillian primitive part, ECPP 3688 V(44507) 9302 CH3 2005 Lucas number 3689 V(43987)/175949 9188 c8 2014 Lucas cofactor, ECPP 3690 U(43399)/470400609575881344601538056264109423291827366228494341196421 9010 c8 2013 Fibonacci cofactor, ECPP 3691 primU(44113) 8916 c8 2014 Fibonacci primitive part, ECPP 3692 U(42829)/107130175995197969243646842778153077 8916 c8 2014 Fibonacci cofactor, ECPP 3693 primA(159165) 8803 c8 2013 Lucas Aurifeuillian primitive part, ECPP 3694 U(42043)/1681721 8780 c56 2012 Fibonacci cofactor, ECPP 3695 Phi(6105,-1000) 8641 c47 2010 Unique, ECPP 3696 Phi(4667,-100) 8593 c47 2009 Unique, ECPP 3697 U(40763)/643247084652261620737 8498 c8 2013 Fibonacci cofactor, ECPP 3698 primU(46711) 8367 c8 2013 Fibonacci primitive part, ECPP 3699 V(39769)/18139109172816581 8295 c8 2013 Lucas cofactor, ECPP 3700 2^27529-2^13765+1 8288 O 2000 Gaussian Mersenne norm 28, generalized unique 3701 V(39607)/158429 8273 c46 2011 Lucas cofactor, ECPP 3702 primU(62373) 8173 c8 2013 Fibonacci primitive part, ECPP 3703 18523#+1 8002 D 1990 Primorial 3704 primU(43121) 7975 c8 2013 Fibonacci primitive part, ECPP 3705 6*Bern(3458)/28329084584758278770932715893606309 7945 c8 2013 Irregular, ECPP 3706 U(37987)/(16117960073*94533840409*1202815961509) 7906 c39 2012 Fibonacci cofactor, ECPP 3707 U(37511) 7839 x13 2005 Fibonacci number 3708 V(37357)/20210113386303842894568629 7782 c8 2013 Lucas cofactor, ECPP 3709 U(37217)/4466041 7771 c46 2011 Fibonacci cofactor, ECPP 3710 -E(2762)/2670541 7760 c11 2004 Euler irregular, ECPP 3711 V(36779) 7687 CH3 2005 Lucas number 3712 U(35999) 7523 p54 2001 Fibonacci number, cyclotomy 3713 Phi(4029,-1000) 7488 c47 2009 Unique, ECPP 3714 V(35449) 7409 p12 2001 Lucas number 3715 V(35107)/525110138418084707309 7317 c8 2013 Lucas cofactor, ECPP 3716 U(34897)/4599458691503517435329 7272 c8 2013 Fibonacci cofactor, ECPP 3717 U(34807)/551750980997908879677508732866536453 7239 c8 2013 Fibonacci cofactor, ECPP 3718 U(34607)/13088506284255296513 7213 c8 2013 Fibonacci cofactor, ECPP 3719 -30*Bern(3176)/(169908471493279*905130251538800883547330531*4349908093\ 09147283469396721753169) 7138 c63 2016 Irregular, ECPP 3720 2154675239*16301#+1 7036 p155 2018 Arithmetic progression (6,d=141836149*16301#) 3721 primU(48965) 7012 c8 2013 Fibonacci primitive part, ECPP 3722 -10365630*Bern(3100)/(140592076277*66260150981141825531862457*17930747\ 9508256366206520177467103) 6943 c63 2016 Irregular ECPP 3723 23005*2^23005-1 6930 Y 1997 Woodall 3724 22971*2^22971-1 6920 Y 1997 Woodall 3725 15877#-1 6845 CD 1992 Primorial 3726 primU(58773) 6822 c8 2013 Fibonacci primitive part, ECPP 3727 6*Bern(2974)/19622040971147542470479091157507 6637 c8 2013 Irregular, ECPP 3728 U(30757) 6428 p54 2001 Fibonacci number, cyclotomy 3729 E(2220)/392431891068600713525 6011 c8 2013 Euler irregular, ECPP 3730 -E(2202)/53781055550934778283104432814129020709 5938 c8 2013 Euler irregular, ECPP 3731 13649#+1 5862 D 1988 Primorial 3732 274386*Bern(2622)/8518594882415401157891061256276973722693 5701 c8 2013 Irregular, ECPP 3733 18885*2^18885-1 5690 K 1988 Woodall 3734 1963!-1 5614 CD 1992 Factorial 3735 13033#-1 5610 CD 1992 Primorial 3736 289*2^18502+1 5573 K 1985 Cullen, generalized Fermat 3737 E(2028)/11246153954845684745 5412 c55 2011 Euler irregular, ECPP 3738 -30*Bern(2504)/(313*424524649821233650433*117180678030577350578887*801\ 6621720796146291948744439) 5354 c63 2013 Irregular ECPP 3739 U(25561) 5342 p54 2001 Fibonacci number 3740 -E(1990)/8338208577950624722417016286765473477033741642105671913 5258 c8 2013 Euler irregular, ECPP 3741 33957462*Bern(2370)/40685 5083 c11 2003 Irregular, ECPP 3742 4122429552750669*2^16567+7 5003 c83 2016 Quadruplet (4), ECPP 3743 4122429552750669*2^16567+5 5003 c83 2016 Quadruplet (3), ECPP 3744 4122429552750669*2^16567+1 5003 L4342 2016 Quadruplet (2) 3745 4122429552750669*2^16567-1 5003 L4342 2016 Quadruplet (1) 3746 11549#+1 4951 D 1987 Primorial 3747 E(1840)/31237282053878368942060412182384934425 4812 c4 2011 Euler irregular, ECPP 3748 7911*2^15823-1 4768 K 1988 Woodall 3749 E(1736)/(55695515*75284987831*3222089324971117) 4498 c4 2004 Euler irregular, ECPP 3750 2^14699+2^7350+1 4425 O 2000 Gaussian Mersenne norm 27, generalized unique 3751 (2^14479+1)/3 4359 c4 2004 Generalized Lucas number, Wagstaff, ECPP 3752 62399583639*9923#-3399421517 4285 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 3753 49325406476*9811#*8+1 4234 p382 2019 Cunningham chain 2nd kind (8p-7) 3754 276474*Bern(2030)/(19426085*24191786327543) 4200 c8 2003 Irregular, ECPP 3755 V(19469) 4069 x25 2002 Lucas number, cyclotomy, APR-CL assisted 3756 1477!+1 4042 D 1985 Factorial 3757 -2730*Bern(1884)/100983617849 3844 c8 2003 Irregular, ECPP 3758 2840178*Bern(1870)/85 3821 c8 2003 Irregular, ECPP 3759d (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+9 3753 c101 2023 Quadruplet (4),ECPP 3760d (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+7 3753 c101 2023 Quadruplet (3),ECPP 3761d (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+3 3753 c101 2023 Quadruplet (2),ECPP 3762d (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+1 3753 c101 2023 Quadruplet (1),ECPP 3763 12379*2^12379-1 3731 K 1985 Woodall 3764 (2^12391+1)/3 3730 M 1996 Generalized Lucas number, Wagstaff 3765 -E(1466)/167900532276654417372106952612534399239 3682 c8 2013 Euler irregular, ECPP 3766 E(1468)/(95*217158949445380764696306893*597712879321361736404369071) 3671 c4 2003 Euler irregular, ECPP 3767 101406820312263*2^12042+7 3640 c67 2018 Quadruplet (4) 3768 101406820312263*2^12042+5 3640 c67 2018 Quadruplet (3) 3769 101406820312263*2^12042+1 3640 p364 2018 Quadruplet (2) 3770 101406820312263*2^12042-1 3640 p364 2018 Quadruplet (1) 3771 2673092556681*15^3048+4 3598 c67 2015 Quadruplet (4) 3772 2673092556681*15^3048+2 3598 c67 2015 Quadruplet (3) 3773 2673092556681*15^3048-2 3598 c67 2015 Quadruplet (2) 3774 2673092556681*15^3048-4 3598 c67 2015 Quadruplet (1) 3775 6016459977*7927#-1 3407 p364 2022 Arithmetic progression (7,d=577051223*7927#) 3776 5439408754*7927#-1 3407 p364 2022 Arithmetic progression (6,d=577051223*7927#) 3777 62753735335*7919#+3399421667 3404 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 3778 (2^11279+1)/3 3395 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 3779 109766820328*7877#-1 3385 p395 2016 Cunningham chain (8p+7) 3780 585150568069684836*7757#/85085+17 3344 c88 2022 Quintuplet (5), ECPP 3781 585150568069684836*7757#/85085+13 3344 c88 2022 Quintuplet (4), ECPP 3782 585150568069684836*7757#/85085+11 3344 c88 2022 Quintuplet (3), ECPP 3783 585150568069684836*7757#/85085+7 3344 c88 2022 Quintuplet (2), ECPP 3784 585150568069684836*7757#/85085+5 3344 c88 2022 Quintuplet (1), ECPP 3785 104052837*7759#-1 3343 p398 2017 Arithmetic progression (6,d=12009836*7759#) 3786 2072453060816*7699#+1 3316 p364 2019 Cunningham chain 2nd kind (8p-7) 3787 (2^10691+1)/3 3218 c4 2004 Generalized Lucas number, Wagstaff, ECPP 3788 231692481512*7517#-1 3218 p395 2016 Cunningham chain (8p+7) 3789d (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+19 3207 c100 2023 Consecutive primes arithmetic progression (4,d=6),ECPP 3790 (2^10501+1)/3 3161 M 1996 Generalized Lucas number, Wagstaff 3791 2^10141+2^5071+1 3053 O 2000 Gaussian Mersenne norm 26, generalized unique 3792 121152729080*7019#/1729+19 3025 c92 2019 Consecutive primes arithmetic progression (4,d=6), ECPP 3793 62037039993*7001#+7811555813 3021 x38 2013 Consecutive primes arithmetic progression (4,d=30), ECPP 3794 V(14449) 3020 DK 1995 Lucas number 3795 3124777373*7001#+1 3019 p155 2012 Arithmetic progression (7,d=481789017*7001#) 3796 2996180304*7001#+1 3019 p155 2012 Arithmetic progression (6,d=46793757*7001#) 3797 U(14431) 3016 p54 2001 Fibonacci number 3798 138281163736*6977#+1 3006 p395 2016 Cunningham chain 2nd kind (8p-7) 3799 375967981369*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 3800 354362289656*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 3801 285993323512*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 3802 V(13963) 2919 c11 2002 Lucas number, ECPP 3803 284787490256*6701#+1 2879 p364 2015 Cunningham chain 2nd kind (8p-7) 3804 9531*2^9531-1 2874 K 1985 Woodall 3805 -E(1174)/50550511342697072710795058639332351763 2829 c8 2013 Euler irregular, ECPP 3806 6569#-1 2811 D 1992 Primorial 3807 -E(1142)/6233437695283865492412648122953349079446935570718422828539863\ 59013986902240869 2697 c77 2015 Euler irregular, ECPP 3808 -E(1078)/361898544439043 2578 c4 2002 Euler irregular, ECPP 3809 V(12251) 2561 p54 2001 Lucas number 3810 974!-1 2490 CD 1992 Factorial 3811 E(1028)/(6415*56837916301577) 2433 c4 2002 Euler irregular, ECPP 3812 7755*2^7755-1 2339 K 1985 Woodall 3813 772463767240*5303#+1 2272 p308 2019 Cunningham chain 2nd kind (8p-7) 3814 116814018316*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10892863626*5303#) 3815 116746086504*5303#+1 2271 p406 2019 Arithmetic progression (7,d=9726011684*5303#) 3816 116242725347*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10388428124*5303#) 3817 69285767989*5303#+1 2271 p406 2019 Arithmetic progression (8,d=3026809034*5303#) 3818 V(10691) 2235 DK 1996 Lucas number 3819 872!+1 2188 D 1984 Factorial 3820 4787#+1 2038 D 1985 Primorial 3821 566761969187*4733#/2+4 2034 c67 2020 Quintuplet (5) 3822 566761969187*4733#/2+2 2034 c67 2020 Quintuplet (4) 3823 566761969187*4733#/2-2 2034 c67 2020 Quintuplet (3) 3824 566761969187*4733#/2-4 2034 c67 2020 Quintuplet (2) 3825 566761969187*4733#/2-8 2034 c67 2020 Quintuplet (1) 3826 U(9677) 2023 c2 2000 Fibonacci number, ECPP 3827 126831252923413*4657#/273+13 2002 c88 2020 Quintuplet (5) 3828 126831252923413*4657#/273+9 2002 c88 2020 Quintuplet (4) 3829 126831252923413*4657#/273+7 2002 c88 2020 Quintuplet (3) 3830 126831252923413*4657#/273+3 2002 c88 2020 Quintuplet (2) 3831 126831252923413*4657#/273+1 2002 c88 2020 Quintuplet (1) 3832 6611*2^6611+1 1994 K 1985 Cullen 3833 4583#-1 1953 D 1992 Primorial 3834 U(9311) 1946 DK 1995 Fibonacci number 3835 4547#+1 1939 D 1985 Primorial 3836 4297#-1 1844 D 1992 Primorial 3837 2738129459017*4211#+3399421637 1805 c98 2022 Consecutive primes arithmetic progression (5,d=30) 3838 V(8467) 1770 c2 2000 Lucas number, ECPP 3839 4093#-1 1750 CD 1992 Primorial 3840 5795*2^5795+1 1749 K 1985 Cullen 3841 (2^5807+1)/3 1748 PM 1999 Cyclotomy, generalized Lucas number, Wagstaff 3842 54201838768*3917#-1 1681 p395 2016 Cunningham chain (16p+15) 3843 102619722624*3797#+1 1631 p395 2016 Cunningham chain 2nd kind (16p-15) 3844 V(7741) 1618 DK 1995 Lucas number 3845 394254311495*3733#/2+4 1606 c67 2017 Quintuplet (5) 3846 394254311495*3733#/2+2 1606 c67 2017 Quintuplet (4) 3847 394254311495*3733#/2-2 1606 c67 2017 Quintuplet (3) 3848 394254311495*3733#/2-4 1606 c67 2017 Quintuplet (2) 3849 394254311495*3733#/2-8 1606 c67 2017 Quintuplet (1) 3850 83*2^5318-1 1603 K 1985 Woodall 3851 2316765173284*3593#+16073 1543 c18 2016 Quintuplet (5), ECPP 3852 2316765173284*3593#+16069 1543 c18 2016 Quintuplet (4), ECPP 3853 2316765173284*3593#+16067 1543 c18 2016 Quintuplet (3), ECPP 3854 2316765173284*3593#+16063 1543 c18 2016 Quintuplet (2), ECPP 3855 2316765173284*3593#+16061 1543 c18 2016 Quintuplet (1), ECPP 3856 652229318541*3527#+3399421637 1504 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 3857 16*199949435137*3499#-1 1494 p382 2016 Cunningham chain (16p+15) 3858 4713*2^4713+1 1423 K 1985 Cullen 3859 449209457832*3307#+1633050403 1408 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 3860 5780736564512*3023#-1 1301 p364 2015 Cunningham chain (16p+15) 3861 2746496109133*3001#+27011 1290 c97 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 3862 898966996992*3001#+1 1289 p364 2015 Cunningham chain 2nd kind (16p-15) 3863 16*2658132486528*2969#+1 1281 p382 2017 Cunningham chain 2nd kind (16p-15) 3864 16*1413951139648*2969#+1 1280 p382 2017 Cunningham chain 2nd kind (16p-15) 3865c 1542946580224*2851#-1 1231 p364 2023 Cunningham chain (16p+15) 3866 V(5851) 1223 DK 1995 Lucas number 3867 406463527990*2801#+1633050403 1209 x38 2013 Consecutive primes arithmetic progression (5,d=30) 3868 16*(257578748915*2777#-1)+15 1197 p429 2023 Cunningham chain (16p+15) 3869 1290733709840*2677#+1 1141 p295 2011 Cunningham chain 2nd kind (16p-15) 3870 U(5387) 1126 WM 1991 Fibonacci number 3871 1176100079*2591#+1 1101 p252 2019 Arithmetic progression (8,d=60355670*2591#) 3872 (2^3539+1)/3 1065 M 1990 First titanic by ECPP, generalized Lucas number, Wagstaff 3873 2968802755*2459#+1 1057 p155 2009 Arithmetic progression (8,d=359463429*2459#) 3874 28993093368077*2399#+19433 1037 c18 2016 Sextuplet (6), ECPP 3875 28993093368077*2399#+19429 1037 c18 2016 Sextuplet (5), ECPP 3876 28993093368077*2399#+19427 1037 c18 2016 Sextuplet (4), ECPP 3877 28993093368077*2399#+19423 1037 c18 2016 Sextuplet (3), ECPP 3878 28993093368077*2399#+19421 1037 c18 2016 Sextuplet (2), ECPP 3879 6179783529*2411#+1 1037 p102 2003 Arithmetic progression (8,d=176836494*2411#) 3880 R(1031) 1031 WD 1986 Repunit 3881 89595955370432*2371#-1 1017 p364 2015 Cunningham chain (32p+31) 3882 116040452086*2371#+1 1014 p308 2012 Arithmetic progression (9,d=6317280828*2371#) 3883 115248484057*2371#+1 1014 p308 2013 Arithmetic progression (8,d=7327002535*2371#) 3884 97336164242*2371#+1 1014 p308 2013 Arithmetic progression (9,d=6350457699*2371#) 3885 93537753980*2371#+1 1014 p308 2013 Arithmetic progression (9,d=3388165411*2371#) 3886 92836168856*2371#+1 1014 p308 2013 Arithmetic progression (9,d=127155673*2371#) 3887 69318339141*2371#+1 1014 p308 2011 Arithmetic progression (9,d=1298717501*2371#) 3888 533098369554*2357#+3399421667 1012 c98 2021 Consecutive primes arithmetic progression (6,d=30), ECPP 3889 V(4793) 1002 DK 1995 Lucas number 3890 113225039190926127209*2339#/57057+21 1002 c88 2021 Septuplet (7) 3891 113225039190926127209*2339#/57057+19 1002 c88 2021 Septuplet (6) 3892 113225039190926127209*2339#/57057+13 1002 c88 2021 Septuplet (5) 3893 113225039190926127209*2339#/57057+9 1002 c88 2021 Septuplet (4) 3894 113225039190926127209*2339#/57057+7 1002 c88 2021 Septuplet (3) 3895 V(4787) 1001 DK 1995 Lucas number ----- ------------------------------- -------- ----- ---- -------------- KEY TO PROOF-CODES (primality provers): A1 Propper, Srsieve, PrimeGrid, PRST A2 Propper, Srsieve, PRST A3 Atnashev, PRST C Caldwell, Cruncher c2 Water, Primo c4 Broadhurst, Primo c8 Broadhurst, Water, Primo c11 Oakes, Primo c18 Luhn, Primo c39 Minovic, OpenPFGW, Primo c46 Boncompagni, Primo c47 Chandler, Primo c54 Wu_T, Primo c55 Gramolin, Primo c56 Soule, Minovic, OpenPFGW, Primo c58 Kaiser1, NewPGen, OpenPFGW, Primo c59 Metcalfe, OpenPFGW, Primo c60 Lemsafer, Primo c63 Ritschel, TOPS, Primo c64 Metcalfe, Minovic, Ritschel, TOPS, Primo c66 Steine, Primo c67 Batalov, NewPGen, OpenPFGW, Primo c69 Jacobsen, Primo c70 Underwood, Dubner, Primo c71 Metcalfe, Ritschel, Andersen, TOPS, Primo c73 Underwood, Lifchitz, Primo c74 Lasher, Dubner, Primo c76 Kaiser1, Water, Underwood, Primo c77 Batalov, Primo c79 Batalov, Broadhurst, Water, Primo c81 Water, Underwood, Primo c82 Steine, Water, Primo c83 Kaiser1, PolySieve, NewPGen, Primo c84 Underwood, Primo c87 Kaiser1, OpenPFGW, Primo c88 Kaiser1, PolySieve, Primo c89 Broadhurst, Underwood, Primo c90 Palameta, Batalov, Primo c92 Lamprecht, Luhn, Primo c93 Batalov, PolySieve, Primo c94 Gelhar, Ritschel, TOPS, Primo c95 Gelhar, Primo c97 Lamprecht, Luhn, APSieve, OpenPFGW, Primo c98 Batalov, EMsieve, Primo c99 Kruse, Schoeler, Primo c100 DavisK, APTreeSieve, NewPGen, OpenPFGW, Primo c101 DavisK, APTreeSieve, OpenPFGW, Primo CD Caldwell, Dubner, Cruncher CH10 Batalov, OpenPFGW, Primo, CHG CH12 Propper, Batalov, OpenPFGW, Primo, CHG CH13 Propper, Batalov, EMsieve, OpenPFGW, CHG CH2 Wu_T, OpenPFGW, Primo, CHG CH3 Broadhurst, Water, OpenPFGW, Primo, CHG CH4 Irvine, Broadhurst, Water, OpenPFGW, Primo, CHG CH9 Zhou, OpenPFGW, CHG D Dubner, Cruncher DK Dubner, Keller, Cruncher DS Smith_Darren, Proth.exe E1 Batalov, CM E2 Propper, CM E3 Enge, CM E4 Childers, CM E5 Underwood, CM E6 Lasher, Broadhurst, Underwood, CM E7 Lasher, CM E8 Broadhurst, Underwood, CM E9 Mock, CM E10 Doornink, CM E11 Karpovich, CM FE8 Oakes, Broadhurst, Water, Morain, FastECPP FE9 Broadhurst, Water, Morain, FastECPP g1 Caldwell, Proth.exe G1 Armengaud, GIMPS, Prime95 G2 Spence, GIMPS, Prime95 G3 Clarkson, Kurowski, GIMPS, Prime95 G4 Hajratwala, Kurowski, GIMPS, Prime95 G5 Cameron, Kurowski, GIMPS, Prime95 G6 Shafer, GIMPS, Prime95 G7 Findley_J, GIMPS, Prime95 G8 Nowak, GIMPS, Prime95 G9 Boone, Cooper, GIMPS, Prime95 G10 Smith_E, GIMPS, Prime95 G11 Elvenich, GIMPS, Prime95 G12 Strindmo, GIMPS, Prime95 G13 Cooper, GIMPS, Prime95 G14 Cooper, GIMPS, Prime95 G15 Pace, GIMPS, Prime95 G16 Laroche, GIMPS, Prime95 g23 Ballinger, Proth.exe g25 OHare, Proth.exe g55 Toplic, Proth.exe g236 Heuer, GFN17Sieve, GFNSearch, Proth.exe g245 Cosgrave, NewPGen, PRP, Proth.exe g259 Papp, Proth.exe g267 Grobstich, NewPGen, PRP, Proth.exe g277 Eaton, NewPGen, PRP, Proth.exe g279 Cooper, NewPGen, PRP, Proth.exe g300 Zilmer, Proth.exe g337 Hsieh, NewPGen, PRP, Proth.exe g403 Yoshimura, ProthSieve, PrimeSierpinski, LLR, Proth.exe g407 HermleGC, MultiSieve, PRP, Proth.exe g413 Scott, AthGFNSieve, Proth.exe g414 Gilvey, Srsieve, PrimeGrid, PrimeSierpinski, LLR, Proth.exe g424 Broadhurst, NewPGen, OpenPFGW, Proth.exe g427 Batalov, Srsieve, LLR, Proth.exe gm Morii, Proth.exe K Keller L20 Kapek, LLR L95 Urushi, LLR L99 Underbakke, TwinGen, LLR L124 Rodenkirch, MultiSieve, LLR L129 Snyder, LLR L137 Jaworski, Rieselprime, LLR L181 Siegert, LLR L185 Hassler, NewPGen, LLR L192 Jaworski, LLR L201 Siemelink, LLR L202 Vautier, McKibbon, Gribenko, NewPGen, PrimeGrid, TPS, LLR L256 Underwood, Srsieve, NewPGen, 321search, LLR L381 Mate, Siemelink, Rodenkirch, MultiSieve, LLR L384 Pinho, Srsieve, Rieselprime, LLR L426 Jaworski, Srsieve, Rieselprime, LLR L436 Andersen2, Gcwsieve, MultiSieve, PrimeGrid, LLR L447 Kohlman, Gcwsieve, MultiSieve, PrimeGrid, LLR L466 Zhou, NewPGen, LLR L503 Benson, Srsieve, LLR L521 Thompson1, Gcwsieve, MultiSieve, PrimeGrid, LLR L527 Tornberg, TwinGen, LLR L541 Barnes, Srsieve, CRUS, LLR L591 Penne, Srsieve, CRUS, LLR L606 Bennett, Srsieve, NewPGen, PrimeGrid, 321search, LLR L613 Keogh, Srsieve, ProthSieve, RieselSieve, LLR L622 Cardall, Srsieve, ProthSieve, RieselSieve, LLR L671 Wong, Srsieve, PrimeGrid, LLR L689 Brown1, Srsieve, PrimeGrid, LLR L690 Cholt, Srsieve, PrimeGrid, LLR L753 Wolfram, Srsieve, PrimeGrid, LLR L760 Riesen, Srsieve, Rieselprime, LLR L780 Brady, Srsieve, PrimeGrid, LLR L801 Gesker, Gcwsieve, MultiSieve, PrimeGrid, LLR L802 Zachariassen, Srsieve, NPLB, LLR L875 Hatland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L917 Bergman1, Gcwsieve, MultiSieve, PrimeGrid, LLR L923 Kaiser1, Klahn, NewPGen, PrimeGrid, TPS, SunGard, LLR L927 Brown1, TwinGen, PrimeGrid, LLR L983 Wu_T, LLR L1056 Schwieger, Srsieve, PrimeGrid, LLR L1115 Splain, PSieve, Srsieve, PrimeGrid, LLR L1125 Laluk, PSieve, Srsieve, PrimeGrid, LLR L1129 Slomma, PSieve, Srsieve, PrimeGrid, LLR L1134 Ogawa, Srsieve, NewPGen, LLR L1141 Ogawa, NewPGen, LLR L1160 Sunderland, PSieve, Srsieve, PrimeGrid, LLR L1188 Faith, PSieve, Srsieve, PrimeGrid, LLR L1203 Mauno, PSieve, Srsieve, PrimeGrid, LLR L1204 Brown1, PSieve, Srsieve, PrimeGrid, LLR L1209 Wong, PSieve, Srsieve, PrimeGrid, LLR L1223 Courty, PSieve, Srsieve, PrimeGrid, LLR L1300 Yama, PSieve, Srsieve, PrimeGrid, LLR L1301 Sorbera, Srsieve, CRUS, LLR L1349 Wallace, Srsieve, NewPGen, PrimeGrid, LLR L1353 Mumper, Srsieve, PrimeGrid, LLR L1355 Beck, PSieve, Srsieve, PrimeGrid, LLR L1372 Glennie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L1422 Steichen, PSieve, Srsieve, PrimeGrid, LLR L1444 Davies, PSieve, Srsieve, PrimeGrid, LLR L1448 Hron, PSieve, Srsieve, PrimeGrid, LLR L1455 Heikkila, PSieve, Srsieve, PrimeGrid, LLR L1460 Salah, Srsieve, PrimeGrid, PrimeSierpinski, LLR L1474 Brown6, PSieve, Srsieve, PrimeGrid, LLR L1486 Dinkel, PSieve, Srsieve, PrimeGrid, LLR L1502 Champ, PSieve, Srsieve, PrimeGrid, LLR L1576 Craig, PSieve, Srsieve, PrimeGrid, LLR L1675 Schwieger, PSieve, Srsieve, PrimeGrid, LLR L1728 Gasewicz, PSieve, Srsieve, PrimeGrid, LLR L1741 Granowski, PSieve, Srsieve, PrimeGrid, LLR L1745 Cholt, PSieve, Srsieve, PrimeGrid, LLR L1754 Hubbard, PSieve, Srsieve, PrimeGrid, LLR L1774 Schoefer, PSieve, Srsieve, PrimeGrid, LLR L1780 Ming, PSieve, Srsieve, PrimeGrid, LLR L1792 Tang, PSieve, Srsieve, PrimeGrid, LLR L1808 Reynolds1, PSieve, Srsieve, PrimeGrid, LLR L1817 Barnes, PSieve, Srsieve, NPLB, LLR L1823 Larsson, PSieve, Srsieve, PrimeGrid, LLR L1828 Benson, PSieve, Srsieve, Rieselprime, LLR L1862 Curtis, PSieve, Srsieve, Rieselprime, LLR L1884 Jaworski, PSieve, Srsieve, Rieselprime, LLR L1885 Ostaszewski, PSieve, Srsieve, PrimeGrid, LLR L1921 Winslow, TwinGen, PrimeGrid, LLR L1932 Dragnev, PSieve, Srsieve, PrimeGrid, LLR L1935 Channing, PSieve, Srsieve, PrimeGrid, LLR L1949 Pritchard, Srsieve, PrimeGrid, RieselSieve, LLR L1957 Hemsley, PSieve, Srsieve, PrimeGrid, LLR L1959 Metcalfe, PSieve, Srsieve, Rieselprime, LLR L1979 Tibbott, PSieve, Srsieve, PrimeGrid, LLR L2012 Pedersen_K, Srsieve, CRUS, OpenPFGW, LLR L2035 Greer, TwinGen, PrimeGrid, LLR L2042 Lachance, PSieve, Srsieve, PrimeGrid, LLR L2046 Melvold, Srsieve, PrimeGrid, LLR L2054 Kaiser1, Srsieve, CRUS, LLR L2055 Soule, PSieve, Srsieve, Rieselprime, LLR L2085 Dodson1, PSieve, Srsieve, PrimeGrid, LLR L2086 Sveen, PSieve, Srsieve, PrimeGrid, LLR L2103 Schmidt1, PSieve, Srsieve, PrimeGrid, LLR L2117 Karlsteen, PSieve, Srsieve, PrimeGrid, LLR L2121 VanRangelrooij, PSieve, Srsieve, PrimeGrid, LLR L2125 Greer, PSieve, Srsieve, PrimeGrid, LLR L2137 Hayashi1, PSieve, Srsieve, PrimeGrid, LLR L2142 Hajek, PSieve, Srsieve, PrimeGrid, LLR L2158 Krauss, PSieve, Srsieve, PrimeGrid, LLR L2163 VanRooijen1, PSieve, Srsieve, PrimeGrid, LLR L2233 Herder, Srsieve, PrimeGrid, LLR L2235 Mullage, PSieve, Srsieve, NPLB, LLR L2257 Dettweiler, PSieve, Srsieve, NPLB, LLR L2269 Schori, Srsieve, PrimeGrid, LLR L2322 Szafranski, PSieve, Srsieve, PrimeGrid, LLR L2366 Satoh, PSieve, Srsieve, PrimeGrid, LLR L2371 Luszczek, Srsieve, PrimeGrid, LLR L2373 Tarasov1, Srsieve, PrimeGrid, LLR L2408 Reinman, Srsieve, PrimeGrid, LLR L2425 DallOsto, LLR L2429 Bliedung, TwinGen, PrimeGrid, LLR L2484 Ritschel, PSieve, Srsieve, Rieselprime, LLR L2518 Karevik, PSieve, Srsieve, PrimeGrid, LLR L2520 Mamanakis, PSieve, Srsieve, PrimeGrid, LLR L2526 Martinik, PSieve, Srsieve, PrimeGrid, LLR L2549 McKay, PSieve, Srsieve, PrimeGrid, LLR L2552 Foulher, PSieve, Srsieve, PrimeGrid, LLR L2561 Vinklat, PSieve, Srsieve, PrimeGrid, LLR L2564 Bravin, PSieve, Srsieve, PrimeGrid, LLR L2583 Nakamura, PSieve, Srsieve, PrimeGrid, LLR L2602 Mueller4, PSieve, Srsieve, PrimeGrid, LLR L2603 Hoffman, PSieve, Srsieve, PrimeGrid, LLR L2629 Becker2, PSieve, Srsieve, PrimeGrid, LLR L2659 Reber, PSieve, Srsieve, PrimeGrid, LLR L2664 Koluvere, PSieve, Srsieve, PrimeGrid, LLR L2676 Cox2, PSieve, Srsieve, PrimeGrid, LLR L2714 Piotrowski, PSieve, Srsieve, PrimeGrid, LLR L2715 Donovan, PSieve, Srsieve, PrimeGrid, LLR L2719 Yost, PSieve, Srsieve, PrimeGrid, LLR L2777 Ritschel, Gcwsieve, TOPS, LLR L2785 Meili, PSieve, Srsieve, PrimeGrid, LLR L2805 Barr, PSieve, Srsieve, PrimeGrid, LLR L2840 Santana, PSieve, Srsieve, PrimeGrid, LLR L2842 English1, PSieve, Srsieve, PrimeGrid, LLR L2873 Jurach, PSieve, Srsieve, PrimeGrid, LLR L2885 Busacker, PSieve, Srsieve, PrimeGrid, LLR L2891 Lacroix, PSieve, Srsieve, PrimeGrid, LLR L2914 Merrylees, PSieve, Srsieve, PrimeGrid, LLR L2959 Derrera, PSieve, Srsieve, PrimeGrid, LLR L2973 Kurtovic, Srsieve, PrimeGrid, LLR L2975 Loureiro, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L2992 Boehm, PSieve, Srsieve, PrimeGrid, LLR L2997 Williams2, PSieve, Srsieve, PrimeGrid, LLR L3023 Winslow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3029 Walsh, PSieve, Srsieve, PrimeGrid, LLR L3033 Snow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3035 Scalise, PSieve, Srsieve, PrimeGrid, LLR L3048 Breslin, PSieve, Srsieve, PrimeGrid, LLR L3091 Ridgway, PSieve, Srsieve, PrimeGrid, LLR L3101 Reichard, PSieve, Srsieve, PrimeGrid, LLR L3118 Yama, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3141 Kus, PSieve, Srsieve, PrimeGrid, LLR L3168 Schwegler, PSieve, Srsieve, PrimeGrid, LLR L3171 Bergelt, PSieve, Srsieve, PrimeGrid, LLR L3173 Zhou2, PSieve, Srsieve, PrimeGrid, LLR L3174 Boniecki, PSieve, Srsieve, PrimeGrid, LLR L3183 Haller, Srsieve, PrimeGrid, LLR L3184 Hayslette, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3200 Athanas, PSieve, Srsieve, PrimeGrid, LLR L3203 Scalise, TwinGen, PrimeGrid, LLR L3209 McArdle, GenefX64, AthGFNSieve, PrimeGrid, LLR L3222 Yamamoto, PSieve, Srsieve, PrimeGrid, LLR L3223 Yurgandzhiev, PSieve, Srsieve, PrimeGrid, LLR L3230 Kumagai, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3234 Parangalan, PSieve, Srsieve, PrimeGrid, LLR L3260 Stanko, PSieve, Srsieve, PrimeGrid, LLR L3261 Batalov, PSieve, Srsieve, PrimeGrid, LLR L3262 Molder, PSieve, Srsieve, PrimeGrid, LLR L3278 Fischer1, PSieve, Srsieve, PrimeGrid, LLR L3323 Ritschel, NewPGen, TOPS, LLR L3325 Elvy, PSieve, Srsieve, PrimeGrid, LLR L3329 Tatearka, PSieve, Srsieve, PrimeGrid, LLR L3345 Domanov1, PSieve, Rieselprime, LLR L3372 Ryan, PSieve, Srsieve, PrimeGrid, LLR L3430 Durstewitz, PSieve, Srsieve, PrimeGrid, LLR L3431 Gahan, PSieve, Srsieve, PrimeGrid, LLR L3432 Batalov, Srsieve, LLR L3458 Jia, PSieve, Srsieve, PrimeGrid, LLR L3460 Ottusch, PSieve, Srsieve, PrimeGrid, LLR L3483 Farrow, PSieve, Srsieve, PrimeGrid, LLR L3494 Batalov, NewPGen, LLR L3502 Ristic, PSieve, Srsieve, PrimeGrid, LLR L3512 Tsuji, PSieve, Srsieve, PrimeGrid, LLR L3514 Bishop1, PSieve, Srsieve, PrimeGrid, OpenPFGW, LLR L3519 Kurtovic, PSieve, Srsieve, Rieselprime, LLR L3523 Brown1, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3532 Batalov, Gcwsieve, LLR L3539 Jacobs, PSieve, Srsieve, PrimeGrid, LLR L3545 Eskam1, PSieve, Srsieve, PrimeGrid, LLR L3547 Ready, Srsieve, PrimeGrid, LLR L3548 Ready, PSieve, Srsieve, PrimeGrid, LLR L3553 Cilliers, Srsieve, PrimeGrid, LLR L3562 Schouten, Srsieve, PrimeGrid, LLR L3564 Jaworski, Srsieve, CRUS, LLR L3566 Slakans, Srsieve, PrimeGrid, LLR L3567 Meili, Srsieve, PrimeGrid, LLR L3573 Batalov, TwinGen, PrimeGrid, LLR L3593 Veit, PSieve, Srsieve, PrimeGrid, LLR L3606 Sander, TwinGen, PrimeGrid, LLR L3610 Batalov, Srsieve, CRUS, LLR L3659 Volynsky, Srsieve, PrimeGrid, LLR L3662 Schawe, PSieve, Srsieve, PrimeGrid, LLR L3665 Kelava1, PSieve, Srsieve, Rieselprime, LLR L3686 Yost, Srsieve, PrimeGrid, LLR L3719 Skinner, PSieve, Srsieve, PrimeGrid, LLR L3720 Ohno, Srsieve, PrimeGrid, LLR L3735 Kurtovic, Srsieve, LLR L3749 Meador, Srsieve, PrimeGrid, LLR L3760 Okazaki, PSieve, Srsieve, PrimeGrid, LLR L3763 Martin4, PSieve, Srsieve, PrimeGrid, LLR L3764 Diepeveen, PSieve, Srsieve, Rieselprime, LLR L3770 Tang, Srsieve, PrimeGrid, LLR L3772 Ottusch, Srsieve, PrimeGrid, LLR L3784 Cavnaugh, PSieve, Srsieve, PrimeGrid, LLR L3789 Toda, Srsieve, PrimeGrid, LLR L3802 Aggarwal, Srsieve, LLR L3803 Bredl, PSieve, Srsieve, PrimeGrid, LLR L3813 Chambers2, PSieve, Srsieve, PrimeGrid, LLR L3824 Mazzucato, PSieve, Srsieve, PrimeGrid, LLR L3829 Abrahmi, TwinGen, PrimeGrid, LLR L3839 Batalov, EMsieve, LLR L3849 Smith10, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3859 Clifton, PSieve, Srsieve, PrimeGrid, LLR L3865 Silva, PSieve, Srsieve, PrimeGrid, LLR L3869 Cholt, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3877 Jarne, PSieve, Srsieve, PrimeGrid, LLR L3887 Byerly, PSieve, Rieselprime, LLR L3895 Englehard, PSieve, Srsieve, PrimeGrid, LLR L3898 Christy, PSieve, Srsieve, PrimeGrid, LLR L3903 Miao, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3904 Darimont, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3917 Rodenkirch, PSieve, Srsieve, LLR L3919 Pickering, PSieve, Srsieve, PrimeGrid, LLR L3924 Kim5, PSieve, Srsieve, PrimeGrid, LLR L3925 Okazaki, Srsieve, PrimeGrid, LLR L3933 Batalov, PSieve, Srsieve, CRUS, Rieselprime, LLR L3941 Lee8, PSieve, Srsieve, PrimeGrid, LLR L3961 Darimont, Srsieve, PrimeGrid, LLR L3964 Iakovlev, Srsieve, PrimeGrid, LLR L3993 Gushchak, Srsieve, PrimeGrid, LLR L4001 Willig, Srsieve, CRUS, LLR L4031 Darney, PSieve, Srsieve, PrimeGrid, LLR L4034 Vanc, Srsieve, PrimeGrid, LLR L4036 Domanov1, PSieve, Srsieve, CRUS, LLR L4045 Chew, PSieve, Srsieve, PrimeGrid, LLR L4064 Davies, Srsieve, CRUS, LLR L4082 Zimmerman, PSieve, Srsieve, PrimeGrid, LLR L4083 Charrondiere, PSieve, Srsieve, PrimeGrid, LLR L4087 Kecic, PSieve, Srsieve, PrimeGrid, LLR L4099 Nietering, PSieve, Srsieve, PrimeGrid, LLR L4103 Klopffleisch, Srsieve, PrimeGrid, LLR L4108 Yoshioka, PSieve, Srsieve, PrimeGrid, LLR L4113 Batalov, PSieve, Srsieve, LLR L4114 Bubloski, PSieve, Srsieve, PrimeGrid, LLR L4119 Nelson3, PSieve, Srsieve, PrimeGrid, LLR L4139 Hawker, Srsieve, CRUS, LLR L4146 Schmidt1, Srsieve, PrimeGrid, LLR L4147 Mohacsy, PSieve, Srsieve, PrimeGrid, LLR L4155 Jones4, PSieve, Srsieve, PrimeGrid, LLR L4159 Schulz5, Srsieve, PrimeGrid, LLR L4166 Kwok, PSieve, LLR L4185 Hoefliger, PSieve, Srsieve, PrimeGrid, LLR L4187 Schmidt2, Srsieve, CRUS, LLR L4189 Lawrence, Powell, Srsieve, CRUS, LLR L4190 Fnasek, PSieve, Srsieve, PrimeGrid, LLR L4197 Kumagai1, Srsieve, PrimeGrid, LLR L4198 Rawles, PSieve, Srsieve, PrimeGrid, LLR L4200 Harste, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4201 Brown1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4203 Azarenko, PSieve, Srsieve, PrimeGrid, LLR L4204 Winslow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4205 Bischof, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4207 Jaamann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4208 Farrow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4210 Cholt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4226 Heath, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4231 Schneider1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4245 Greer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4249 Larsson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4250 Vogt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4252 Nietering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4256 Gniesmer, PSieve, Srsieve, PrimeGrid, LLR L4267 Batalov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4273 Rangelrooij, Srsieve, CRUS, LLR L4274 AhlforsDahl, Srsieve, PrimeGrid, LLR L4276 Borbely, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4285 Bravin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4286 Zimmerman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4289 Ito2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4293 Trunov, PSieve, Srsieve, PrimeGrid, LLR L4294 Kurtovic, Srsieve, CRUS, Prime95, LLR L4295 Splain, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4303 Thorson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4307 Keller1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4308 Matillek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4309 Kecic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4314 DeThomas, PSieve, Srsieve, PrimeGrid, LLR L4316 Nilsson1, PSieve, Srsieve, PrimeGrid, LLR L4326 Steel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4329 Okon, Srsieve, LLR L4334 Miller5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4340 Becker4, Srsieve, PrimeGrid, LLR L4342 Kaiser1, PolySieve, NewPGen, LLR L4343 Norton, PSieve, Srsieve, PrimeGrid, LLR L4348 Burridge, Srsieve, PrimeGrid, LLR L4359 Andou, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4362 Mochizuki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4364 Steinbach, PSieve, Srsieve, PrimeGrid, LLR L4380 Rix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4387 Davies, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4393 Veit1, Srsieve, CRUS, LLR L4395 Nilsson1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4398 Greer, Srsieve, PrimeGrid, LLR L4405 Eckhard, Srsieve, LLR L4406 Mathers, PSieve, Srsieve, PrimeGrid, LLR L4408 Fricke, PSieve, Srsieve, PrimeGrid, LLR L4410 Andresson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4414 Falk, PSieve, Srsieve, PrimeGrid, LLR L4424 Miyauchi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4435 Larsson, Srsieve, PrimeGrid, LLR L4444 Terber, Srsieve, CRUS, LLR L4454 Clark5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4456 Chambers2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4457 Geiger, PSieve, Srsieve, PrimeGrid, LLR L4459 Biscop, PSieve, Srsieve, PrimeGrid, LLR L4466 Falk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4472 Harvanek, Gcwsieve, MultiSieve, PrimeGrid, LLR L4476 Shane, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4477 Tennant, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4482 Mena, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4488 Vrontakis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4490 Mazumdar, PSieve, Srsieve, PrimeGrid, LLR L4499 Ohsugi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4501 Eskam1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4504 Sesok, NewPGen, LLR L4505 Lind, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4506 Propper, Batalov, CycloSv, EMsieve, PIES, Prime95, LLR L4510 Ming, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4511 Donovan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4518 Primecrunch.com, Hedges, Srsieve, LLR L4525 Kong1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4526 Schoefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4527 Fruzynski, PSieve, Srsieve, PrimeGrid, LLR L4530 Reynolds1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4544 Krauss, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4548 Sydekum, Srsieve, CRUS, Prime95, LLR L4550 Terry, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4552 Koski, PSieve, Srsieve, PrimeGrid, LLR L4559 Okazaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4561 Propper, Batalov, CycloSv, Cyclo, EMsieve, PIES, LLR L4562 Donovan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4564 DeThomas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4568 Vrontakis, PSieve, Srsieve, PrimeGrid, LLR L4582 Kinney, PSieve, Srsieve, PrimeGrid, LLR L4583 Rohmann, PSieve, Srsieve, PrimeGrid, LLR L4584 Goforth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4585 Schawe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4591 Schwieger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4595 Mangio, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4609 Elgetz, PSieve, Srsieve, PrimeGrid, LLR L4620 Kinney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4622 Jurach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4623 Dugger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4626 Iltus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4645 McKibbon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4649 Humphries, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4654 Voskoboynikov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4656 Beck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4658 Maguin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4659 AverayJones, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4660 Snow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4664 Toledo, PSieve, Srsieve, PrimeGrid, LLR L4665 Szeluga, Kupidura, Banka, LLR L4666 Slade, PSieve, Srsieve, PrimeGrid, LLR L4667 Morelli, LLR L4668 Okazaki, Gcwsieve, MultiSieve, PrimeGrid, LLR L4669 Schwegler, Srsieve, PrimeGrid, LLR L4670 Drumm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4672 Slade, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4673 Okhrimouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4675 Lind, Srsieve, PrimeGrid, LLR L4676 Maloney, Srsieve, PrimeGrid, PrimeSierpinski, LLR L4677 Provencher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4684 Sveen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4685 Masser, Srsieve, CRUS, LLR L4687 Campbell1, PSieve, Srsieve, PrimeGrid, LLR L4689 Gordon2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4690 Brandt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4691 Fruzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4692 Hajek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4694 Schapendonk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4695 Goudie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4697 Sellsted, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4699 Parsonnet, PSieve, Srsieve, PrimeGrid, LLR L4700 Liu4, Srsieve, CRUS, LLR L4701 Kalus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4702 Charette, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4704 Kurtovic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4706 Kraemer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4711 Closs, PSieve, Srsieve, PrimeGrid, LLR L4715 Skinner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4717 Wypych, PSieve, Srsieve, PrimeGrid, LLR L4718 Brown1, Gcwsieve, MultiSieve, PrimeGrid, LLR L4720 Gahan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4723 Lexut, PSieve, Srsieve, PrimeGrid, LLR L4724 Thonon, PSieve, Srsieve, PrimeGrid, LLR L4726 Miller7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4729 Wimmer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4730 Bowe, PSieve, Srsieve, PrimeGrid, LLR L4732 Miller7, PSieve, Srsieve, PrimeGrid, LLR L4737 Reinhardt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4738 Gelhar, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4740 Silva1, PSieve, Srsieve, PrimeGrid, LLR L4741 Wong, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4742 Schlereth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4743 Plsak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4745 Cavnaugh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4746 Brech, PSieve, Srsieve, PrimeGrid, LLR L4747 Brech, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4752 Harvey2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4753 Riemann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4754 Calvin, PSieve, Srsieve, PrimeGrid, LLR L4755 Glatte, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4757 Johnson9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4758 Walling, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4760 Sipes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4761 Romaidis, PSieve, Srsieve, PrimeGrid, LLR L4763 Guilleminot, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4764 McLean2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4765 Kumsta, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4773 Tohmola, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4774 Boehm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4775 Steinbach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4776 Lee7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4783 Marini, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4784 Bertolotti, Gcwsieve, MultiSieve, PrimeGrid, LLR L4786 Sydekum, Srsieve, CRUS, LLR L4787 Sunderland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4789 Kurtovic, Srsieve, Prime95, LLR L4791 Vaisanen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4793 Koski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4795 Lawson2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4799 Vanderveen1, LLR L4800 Doenges, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4802 Jones5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4806 Rajala, Srsieve, CRUS, LLR L4807 Tsuji, Srsieve, PrimeGrid, LLR L4808 Kaiser1, PolySieve, LLR L4809 Bocan, Srsieve, PrimeGrid, LLR L4810 Dhuyvetters, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4814 Telesz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4815 Kozisek, PSieve, Srsieve, PrimeGrid, LLR L4819 Inci, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4823 Helm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4826 Soraku, PSieve, Srsieve, PrimeGrid, LLR L4832 Meekins, Srsieve, CRUS, LLR L4834 Helm, PSieve, Srsieve, PrimeGrid, LLR L4835 Katzur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4840 Ylijoki, PSieve, Srsieve, PrimeGrid, LLR L4841 Baur, PSieve, Srsieve, PrimeGrid, LLR L4842 Smith11, PSieve, Srsieve, PrimeGrid, LLR L4843 Hutchins, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4844 Valentino, PSieve, Srsieve, PrimeGrid, LLR L4848 Adamec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4849 Burt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4850 Jones5, PSieve, Srsieve, PrimeGrid, LLR L4851 Schioler, PSieve, Srsieve, PrimeGrid, LLR L4854 Gory, PSieve, Srsieve, PrimeGrid, LLR L4858 Koriabine, PSieve, Srsieve, PrimeGrid, LLR L4859 Wang4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4861 Thonon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4864 Freihube, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4868 Bergmann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4869 Ogata, PSieve, Srsieve, PrimeGrid, LLR L4870 Wharton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4871 Gory, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4875 Parsonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4877 Cherenkov, Srsieve, CRUS, LLR L4879 Propper, Batalov, Srsieve, LLR L4880 Goossens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4884 Somer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4889 Hundhausen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4892 Hewitt1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4893 Little, PSieve, Srsieve, PrimeGrid, LLR L4898 Kozisek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4903 Laurent1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4904 Dunchouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4905 Niegocki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4907 Reinhardt, PSieve, Srsieve, PrimeGrid, LLR L4909 Hall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4914 Bishop_D, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4917 Corlatti, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4918 Weiss1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4920 Walsh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4922 Bulba, Sesok, LLR L4923 Koriabine, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4925 Korolev, Srsieve, CRUS, LLR L4926 Shenton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4928 Doornink, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4929 Givoni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4930 Shintani, PSieve, Srsieve, PrimeGrid, LLR L4932 Schroeder2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4933 Jacques, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4935 Simard, PSieve, Srsieve, PrimeGrid, LLR L4937 Ito2, Srsieve, PrimeGrid, LLR L4939 Coscia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4942 Matheis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4944 Schori, LLR2, PSieve, Srsieve, PrimeGrid, LLR L4945 Meili, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4948 SchwartzLowe, PSieve, Srsieve, PrimeGrid, LLR L4951 Niegocki, PSieve, Srsieve, PrimeGrid, LLR L4954 Romaidis, Srsieve, PrimeGrid, LLR L4955 Grosvenor, Srsieve, CRUS, LLR L4956 Merrylees, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4958 Shenton, PSieve, Srsieve, PrimeGrid, LLR L4959 Deakin, PSieve, Srsieve, PrimeGrid, LLR L4960 Kaiser1, NewPGen, TPS, LLR L4963 Mortimore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4964 Doescher, GFNSvCUDA, GeneFer, LLR L4965 Propper, LLR L4970 Michael, PSieve, Srsieve, PrimeGrid, LLR L4972 Greer, Gcwsieve, MultiSieve, PrimeGrid, LLR L4973 Landrum, PSieve, Srsieve, PrimeGrid, LLR L4975 Thompson5, Srsieve, CRUS, LLR L4976 Propper, Batalov, Gcwsieve, LLR L4977 Miller8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4979 Matheis, PSieve, Srsieve, PrimeGrid, LLR L4980 Poon1, PSieve, Srsieve, PrimeGrid, LLR L4981 MartinezCucalon, PSieve, Srsieve, PrimeGrid, LLR L4984 Hemsley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4985 Veit, Srsieve, CRUS, LLR L4987 Canossi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4988 Harris3, PSieve, Srsieve, PrimeGrid, LLR L4990 Heindl, PSieve, Srsieve, PrimeGrid, LLR L4997 Gardner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4999 Andrews1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5001 Mamonov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5002 Kato, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5005 Hass, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5007 Faith, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5008 Niegocki, Srsieve, PrimeGrid, LLR L5009 Jungmann, Srsieve, LLR L5011 Strajt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5013 Wypych, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5014 Strokov, PSieve, Srsieve, PrimeGrid, LLR L5018 Nielsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5019 Ayiomamitis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5020 Eikelenboom, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5021 Svantner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5022 Manz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5023 Schulz6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5024 Schumacher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5025 Lexut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5027 Moudy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5029 Krompolc, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5030 Calvin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5031 Schumacher, PSieve, Srsieve, PrimeGrid, LLR L5033 Ni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5036 Jung2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5037 Diepeveen, Underwood, PSieve, Srsieve, Rieselprime, LLR L5039 Gilliland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5041 Wallbaum, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5043 Vanderveen1, Propper, LLR L5044 Bergelt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5047 Little, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5051 Veit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5053 Yoshigoe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5056 Chu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5057 Hauhia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5061 Cooper5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5063 Wendelboe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5067 Tirkkonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5068 Silva1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5069 Friedrichsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5070 Millerick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5071 McLean2, Srsieve, CRUS, LLR L5072 Romaidis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5076 Atnashev, Srsieve, PrimeGrid, LLR L5078 McDonald4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5079 Meditz, PSieve, Srsieve, PrimeGrid, LLR L5080 Gahan, GFNSvCUDA, PrivGfnServer, LLR L5081 Howell, Srsieve, PrimeGrid, LLR L5083 Pickering, Srsieve, PrimeGrid, LLR L5084 Yagi, PSieve, Srsieve, PrimeGrid, LLR L5085 Strajt, PSieve, Srsieve, PrimeGrid, LLR L5087 Coscia, PSieve, Srsieve, PrimeGrid, LLR L5088 Hall1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5090 Jourdan, PSieve, Srsieve, PrimeGrid, LLR L5094 Th�mmler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5099 Lobring, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5100 Stephens, PSieve, Srsieve, PrimeGrid, LLR L5102 Liu6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5104 Gahan, LLR2, NewPGen, LLR L5105 Helm, LLR2, Srsieve, PrivGfnServer, LLR L5106 Glennie, PSieve, Srsieve, PrimeGrid, LLR L5110 Provencher, PSieve, Srsieve, PrimeGrid, LLR L5112 Vanderveen1, Srsieve, CRUS, LLR L5115 Doescher, LLR L5116 Schoeler, MultiSieve, LLR L5120 Greer, LLR2, PrivGfnServer, LLR L5122 Tennant, LLR2, PrivGfnServer, LLR L5123 Propper, Batalov, EMsieve, LLR L5125 Tirkkonen, PSieve, Srsieve, PrimeGrid, LLR L5126 Warach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5127 Kemenes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5129 Veit, Srsieve, PrimeGrid, LLR L5130 Jourdan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5134 Cooper5, PSieve, Srsieve, PrimeGrid, LLR L5139 Belozersky, PSieve, Srsieve, PrimeGrid, LLR L5143 Dickinson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5144 McNary, PSieve, Srsieve, PrimeGrid, LLR L5155 Harju, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5156 Dinkel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5157 Asano, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5158 Zuschlag, PSieve, Srsieve, PrimeGrid, LLR L5159 Huetter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5161 Greer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5162 Th�mmler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5166 Jaros1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5167 Gelhar, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5168 Hawkinson, PSieve, Srsieve, PrimeGrid, LLR L5169 Atnashev, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5171 Brown1, LLR2, Srsieve, PrimeGrid, LLR L5172 McNary, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5173 Bishop_D, PSieve, Srsieve, PrimeGrid, LLR L5174 Scalise, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5175 Liiv, PSieve, Srsieve, Rieselprime, LLR L5176 Early, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5177 Tapper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5178 Larsson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5179 Okazaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5180 Laluk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5181 Atnashev, LLR2, Srsieve, PrimeGrid, LLR L5183 Winskill1, PSieve, Srsieve, PrimeGrid, 12121search, LLR L5184 Byerly, PSieve, Srsieve, NPLB, LLR L5185 Elgetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5186 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, United, PrimeGrid, LLR L5188 Wong, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5189 Jackson1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5191 Kaiser1, NewPGen, LLR L5192 Anonymous, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5194 Jonas, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5195 Ridgway, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5196 Sielemann, Srsieve, CRUS, LLR L5197 Propper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5198 Elgetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5199 Romaidis, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5200 Terry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5201 Ford, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5202 Molne, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5203 Topham, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5206 Wiseler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5207 Atnashev, LLR2, PrivGfnServer, LLR L5208 Schnur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5210 Brech, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5214 Dinkel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5215 Hawkinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5216 Brazier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5217 Wiseler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5220 Jones4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5223 Vera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5226 Brown1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5228 Jacques, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5229 Karpenko, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5230 Tapper, LLR2, Srsieve, PrimeGrid, LLR L5231 Veit, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5232 Bliedung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5233 Sipes, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5235 Karpinski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5236 Shenton, LLR2, PSieve, Srsieve, PrivGfnServer, PrimeGrid, LLR L5237 Schwieger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5238 Jourdan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5239 Strajt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5242 Krompolc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5246 Vaisanen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5248 Delgado, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5249 Racanelli, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5250 Nakamura, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5253 Burt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5254 Gerstenberger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5256 Snow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5260 Ostaszewski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5261 Kim5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5262 Clark5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5263 Ito2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5264 Cholt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5265 Fleischman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5266 Sheridan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5267 Schnur, LLR2, Srsieve, PrimeGrid, LLR L5269 Clemence, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5270 Hennebert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5272 Conner, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5273 McGonegal, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5276 Schawe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5277 McDevitt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5278 Nose, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5279 Schick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5282 Somer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5283 Hua, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5284 Fischer1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5285 Merrylees, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5286 Reynolds1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5287 Thonon, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5288 Heindl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5290 Cooper5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5294 Hewitt1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5295 Gilliland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5296 Piaive, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5297 Nakamura, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5298 Kaczmarek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5299 Corlatti, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5300 Hajek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5301 Harju, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5302 Davies, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5305 Thanry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5307 Bauer2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5308 Krauss, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5309 Bishop_D, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5310 Hubbard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5311 Reich, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5312 Tyndall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5313 Barnes, PSieve, Srsieve, Rieselprime, LLR L5314 Satoh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5315 Dec, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5316 Walsh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5317 Freeze, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5318 Ruber, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5319 Abbey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5320 Niegocki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5321 Dark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5323 Chan1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5324 Boehm, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5325 Drager, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5326 Deakin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5332 Mizusawa, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5334 Jones6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5335 Harvey1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5336 Leblanc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5337 Kawamura1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5338 Deakin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5343 Tajika, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5344 Lowe1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5345 Johnson8, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5346 Polansky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5348 Adam, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5350 McDevitt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5352 Eklof, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5353 Belolipetskiy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5354 Doornink, NewPGen, OpenPFGW, LLR L5356 Hsu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5358 Gmirkin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5359 Ridgway, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5360 Leitch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5362 Domanov1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5364 Blyth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5366 Michael, Srsieve, CRUS, LLR L5368 Valentino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5372 Vitiello, Srsieve, CRUS, LLR L5373 Baranchikov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5375 Blanchard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5376 Ranch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5377 Yasuhisa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5378 Seeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5379 Smith4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5380 Campulka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5381 Meppiel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5382 Bulanov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5384 Riemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5387 Johns, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5389 Doornink, TwinGen, LLR L5392 McDonald4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5393 Lu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5395 Early, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5399 Kolesov, LLR L5400 Hefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5401 Champ, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5402 Greer, LLR2, Gcwsieve, MultiSieve, PrimeGrid, LLR L5403 Slade1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5404 Wiseler, LLR2, Srsieve, PrimeGrid, LLR L5405 Gerstenberger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5406 Jaros, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5407 Mahnken, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5408 Kreth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5410 Anonymous, Srsieve, CRUS, LLR L5414 Mollerus, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5416 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5418 Pollak, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5421 Iwasaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5425 Lichtenwimmer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5426 Gilliland, Srsieve, CRUS, LLR L5427 Hewitt1, LLR2, Srsieve, PrimeGrid, LLR L5429 Meditz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5433 Hatanaka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5434 Parsonnet, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5435 Murphy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5437 Rijfers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5438 Tang, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5439 Batalov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5440 McGonegal, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5441 Cherenkov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5442 Moreira, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5443 Venjakob, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5444 Platz, LLR2, Srsieve, PrimeGrid, LLR L5448 Rubin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5449 Reinhardt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5450 Mizusawa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5451 Wilkins, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5452 Morera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5453 Slaets, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5456 Gundermann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5459 Sekanina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5460 Headrick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5461 Anonymous, LLR2, Srsieve, PrimeGrid, LLR L5462 Raimist, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5463 Goforth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5464 Pickering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5465 Hubbard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5466 Furushima, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5467 Tamai1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5469 Bishopp, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5471 Dunchouk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5472 Ready, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5476 Steinbach, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5477 Meador, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5480 Boddener, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5482 Raimist, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5485 Mahnken, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5488 Kecic, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5492 Slaets, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5493 Liu6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5497 Goetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5499 Osada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5500 Racanelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5501 Seeley, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5502 Floyd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5503 Soule, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5504 Cerny, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5505 Chovanec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5507 Brandt2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5508 Gauch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5509 Nietering, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5512 Akesson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5514 Cavnaugh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5517 Cavecchia, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5518 Eisler1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5523 Sekanina, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5524 Matillek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5527 Doornink, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5529 Baur1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5530 Matillek, LLR2, Srsieve, PrimeGrid, LLR L5531 Koci, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5532 Morera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5534 Cervelle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5535 Skahill, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5536 Bennett1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5537 Schafer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5540 Brown6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5541 Parker, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5543 Lucendo, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5544 Byerly, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5545 Kruse, PSieve, Srsieve, NPLB, LLR L5546 Steinwedel, PSieve, Srsieve, NPLB, LLR L5547 Hoonoki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5548 Steinberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5549 Zhang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5550 Provencher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5553 DAmico, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5554 Lucendo, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5555 Parangalan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5556 Javens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5557 Drake, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5558 Lee7, LLR2, Srsieve, PrimeGrid, LLR L5559 Roberts, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5560 Amberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5562 Cheung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5563 Akesson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5564 Lee7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5565 Bailey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5566 Latge, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5567 Marshall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5568 Schioler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5569 Michael, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5570 Arnold, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5571 Williams7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5572 Sveen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5573 Friedrichsen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5574 Laboisne, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5575 Blanchard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5576 Amorim, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5578 Jablonski1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5579 Cox2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5581 Pickles, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5582 Einvik, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5583 Tanaka3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5584 Barr, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5585 Faith, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5586 Vultur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5587 AverayJones, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5588 Shi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5589 Kupka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5590 Schumacher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5592 Shintani, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5594 Brown7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5595 Hyvonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5596 Kozisek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5600 Steinberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5601 Sato1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5606 Clark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5607 Rodermond, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5608 Pieritz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5609 Sielemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5610 Katzur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5611 Smith13, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5612 Lugowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5613 Delisle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5614 Becker2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5615 Dodd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5616 Miller7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5618 Wilson4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5619 Piotrowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5621 Millerick, LLR2, Srsieve, PrimeGrid, LLR L5624 Farrow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5625 Sellsted, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5626 Clark, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5627 Bulanov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5629 Dickinson, Srsieve, CRUS, LLR L5631 Mittelstadt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5632 Marler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5634 Gao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5636 Santosa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5637 Bestor, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5638 Piskun, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5639 Cavecchia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5640 Xu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5641 Kwok, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5645 Orpen1, SRBase, LLR L5646 Dickey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5647 Soraku, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5648 York, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5649 Dietsch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5650 Ketamino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5651 Lexut, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5652 Wilson5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5653 Beck1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5655 Hoffman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5656 McAdams, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5657 Alden, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5658 Sloan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5662 OMalley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5663 Li5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5666 Wendelboe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5668 Finn, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5670 Heindl1, Srsieve, CRUS, LLR L5671 Rauh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5676 Fnasek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5679 Shane, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5683 Glatte, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5685 Bestor, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5686 Pistorius, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5693 Huan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5694 Petersen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5695 Steinberg, NewPGen, LLR L5698 Stenschke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5703 Koudelka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5704 Hampicke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5705 Wharton, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5706 Wallbaum, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5710 Hass, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5714 Loucks, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5715 Calvin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5720 Trigueiro, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5724 Pilz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5725 Gingrich1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5726 Noxe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5727 Headrick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5732 Monroe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5735 Kobrzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5736 Riva, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5738 Schaeffer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5740 Chu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5742 Steinmetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5745 Saladin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5746 Meister1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5748 Norbert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5749 Gahan, LLR2, LLR L5750 Shi, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5754 Abad, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5755 Kwiatkowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5756 Wei, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5758 Bishop1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5763 Williams7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5764 Tirkkonen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5765 Propper, Gcwsieve, LLR L5766 Takahashi2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5769 Welsh1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5770 Silva1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5772 Tarson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5773 Lugowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5774 Chambers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5775 Garambois, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5776 Anonymous, LLR2, PSieve, Srsieve, United, PrimeGrid, LLR L5778 Sarok, Srsieve, CRUS, LLR L5780 Blanchard, Srsieve, CRUS, LLR L5782 Kang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5783 Bishop1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5787 Johnson10, Srsieve, CRUS, LLR L5793 Wang5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5796 Hall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5798 Schoeberl, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5799 Lehmann1, LLR2, Srsieve, PrimeGrid, LLR L5802 Borgerding, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5803 Kwok, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5804 Bowe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5805 Belozersky, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5807 Krauss, Srsieve, PrimeGrid, PRST, LLR L5808 Propper, Batalov, PSieve, Srsieve, LLR L5809 Zhao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5810 Meister1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5811 Dettweiler, LLR2, Srsieve, CRUS, LLR L5812 Song, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5814 Chodzinski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5817 Kilstromer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5818 Belozersky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5820 Hoonoki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5821 Elmore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5825 Norton, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5827 Yasuhisa, TwinGen, NewPGen, TPS, LLR M Morain MM Morii O Oakes p3 Dohmen, OpenPFGW p8 Caldwell, OpenPFGW p12 Water, OpenPFGW p16 Heuer, OpenPFGW p21 Anderson, Robinson, OpenPFGW p44 Broadhurst, OpenPFGW p49 Berg, OpenPFGW p54 Broadhurst, Water, OpenPFGW p58 Glover, Oakes, OpenPFGW p65 DavisK, Kuosa, OpenPFGW p85 Marchal, Carmody, Kuosa, OpenPFGW p102 Frind, Underwood, OpenPFGW p137 Rodenkirch, MultiSieve, OpenPFGW p148 Yama, Noda, Nohara, NewPGen, MatGFN, PRP, OpenPFGW p155 DavisK, NewPGen, OpenPFGW p158 Paridon, NewPGen, OpenPFGW p170 Wu_T, Primo, OpenPFGW p189 Bohanon, LLR, OpenPFGW p193 Irvine, Broadhurst, Primo, OpenPFGW p235 Bedwell, OpenPFGW p236 Cooper, NewPGen, PRP, OpenPFGW p247 Bonath, Srsieve, CRUS, LLR, OpenPFGW p252 Oakes, NewPGen, OpenPFGW p262 Vogel, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p268 Rodenkirch, Srsieve, CRUS, OpenPFGW p279 Domanov1, Srsieve, Rieselprime, Prime95, OpenPFGW p286 Batalov, Srsieve, OpenPFGW p290 Domanov1, Fpsieve, PrimeGrid, OpenPFGW p295 Angel, NewPGen, OpenPFGW p296 Kaiser1, Srsieve, LLR, OpenPFGW p301 Winskill1, Fpsieve, PrimeGrid, OpenPFGW p302 Gasewicz, Fpsieve, PrimeGrid, OpenPFGW p308 DavisK, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p309 Yama, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p310 Hubbard, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p312 Doggart, Fpsieve, PrimeGrid, OpenPFGW p314 Hubbard, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p332 Johnson6, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p334 Goetz, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p338 Tomecko, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p342 Trice, OpenPFGW p346 Burt, Fpsieve, PrimeGrid, OpenPFGW p350 Koen, Gcwsieve, GenWoodall, OpenPFGW p355 Domanov1, Srsieve, CRUS, OpenPFGW p362 Snow, Fpsieve, PrimeGrid, OpenPFGW p363 Batalov, OpenPFGW p364 Batalov, NewPGen, OpenPFGW p373 Morelli, OpenPFGW p378 Batalov, Srsieve, CRUS, LLR, OpenPFGW p379 Batalov, CycloSv, Cyclo, EMsieve, PIES, OpenPFGW p382 Oestlin, NewPGen, OpenPFGW p384 Booker, OpenPFGW p391 Keiser, NewPGen, OpenPFGW p394 Fukui, MultiSieve, OpenPFGW p395 Angel, Augustin, NewPGen, OpenPFGW p398 Stocker, OpenPFGW p399 Kebbaj, OpenPFGW p405 Propper, Cksieve, OpenPFGW p406 DavisK, Luhn, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p407 Lamprecht, Luhn, OpenPFGW p408 Batalov, PolySieve, OpenPFGW p409 Nielsen1, OpenPFGW p411 Larsson, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p413 Morimoto, OpenPFGW p414 Naimi, OpenPFGW p415 Doornink, TwinGen, OpenPFGW p416 Monnin, LLR2, PrivGfnServer, OpenPFGW p417 Tennant, LLR2, PrivGfnServer, OpenPFGW p418 Sielemann, LLR2, PrivGfnServer, OpenPFGW p419 Bird1, LLR2, PrivGfnServer, OpenPFGW p421 Gahan, LLR2, PrivGfnServer, OpenPFGW p422 Kaiser1, PolySieve, OpenPFGW p423 Propper, Batalov, EMsieve, OpenPFGW p425 Propper, MultiSieve, OpenPFGW p426 Schoeler, NewPGen, OpenPFGW p427 Niegocki, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p428 Trunov, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p429 Steinberg, MultiSieve, OpenPFGW p430 Propper, Batalov, NewPGen, OpenPFGW p431 Piesker, Srsieve, CRUS, OpenPFGW p433 Dettweiler, LLR2, Srsieve, CRUS, OpenPFGW PM Mihailescu SB10 Agafonov, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB11 Sunde, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB12 Szabolcs, Srsieve, SoBSieve, ProthSieve, Ksieve, PrimeGrid, LLR, SB SB6 Sundquist, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB7 Team_Prime_Rib, SoBSieve, ProthSieve, Ksieve, PRP, SB SB8 Gordon, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB9 Hassler, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SG Slowinski, Gage WD Williams, Dubner, Cruncher WM Morain, Williams x13 Renze x16 Doumen, Beelen, Unknown x20 Irvine, Broadhurst, Water x23 Broadhurst, Water, Renze, OpenPFGW, Primo x24 Jarai_Z, Farkas, Csajbok, Kasza, Jarai, Unknown x25 Broadhurst, Water, OpenPFGW, Primo x28 Iskra x33 Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x36 Irvine, Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x38 Broadhurst, OpenPFGW, Primo x39 Broadhurst, Dubner, Keller, OpenPFGW, Primo x44 Zhou, Unknown x45 Batalov, OpenPFGW, Primo, Unknown x47 Szekeres, Magyar, Gevay, Farkas, Jarai, Unknown x48 Asuncion, Allombert, Unknown x49 Facq, Asuncion, Allombert, Unknown x50 Propper, GFNSvCUDA, GeneFer, Unknown Y Young