THE LARGEST KNOWN PRIMES (The 5,000 largest known primes) (selected smaller primes which have comments are included) Originally Compiled by Samuel Yates -- Continued by Chris Caldwell and now maintained by Reginald McLean (Tue Sep 26 14:37:36 UTC 2023) So that I can maintain this database of the 5,000 largest known primes (plus selected smaller primes with 1,000 or more digits), please send any new primes (that are large enough) to: https://t5k.org/bios/submission.php This list in a searchable form (plus information such as how to find large primes and how to prove primality) is available at the interactive web site: https://t5k.org/primes/ See the last pages for information about the provers. The letters after the rank refer to when the prime was submitted. 'a' is this month, 'b' last month... ----- ------------------------------- -------- ----- ---- -------------- rank description digits who year comment ----- ------------------------------- -------- ----- ---- -------------- 1 2^82589933-1 24862048 G16 2018 Mersenne 51?? 2 2^77232917-1 23249425 G15 2018 Mersenne 50?? 3 2^74207281-1 22338618 G14 2016 Mersenne 49?? 4 2^57885161-1 17425170 G13 2013 Mersenne 48 5 2^43112609-1 12978189 G10 2008 Mersenne 47 6 2^42643801-1 12837064 G12 2009 Mersenne 46 7e Phi(3,-465859^1048576) 11887192 L4561 2023 Generalized unique 8 2^37156667-1 11185272 G11 2008 Mersenne 45 9 2^32582657-1 9808358 G9 2006 Mersenne 44 10 10223*2^31172165+1 9383761 SB12 2016 11 2^30402457-1 9152052 G9 2005 Mersenne 43 12 2^25964951-1 7816230 G8 2005 Mersenne 42 13 2^24036583-1 7235733 G7 2004 Mersenne 41 14 1963736^1048576+1 6598776 L4245 2022 Generalized Fermat 15 1951734^1048576+1 6595985 L5583 2022 Generalized Fermat 16 202705*2^21320516+1 6418121 L5181 2021 17 2^20996011-1 6320430 G6 2003 Mersenne 40 18 1059094^1048576+1 6317602 L4720 2018 Generalized Fermat 19c 3*2^20928756-1 6300184 L5799 2023 20 919444^1048576+1 6253210 L4286 2017 Generalized Fermat 21d 81*2^20498148+1 6170560 L4965 2023 Generalized Fermat 22 7*2^20267500+1 6101127 L4965 2022 Divides GF(20267499,12) [GG] 23 168451*2^19375200+1 5832522 L4676 2017 24 69*2^19374980-1 5832452 L4965 2022 25 3*2^18924988-1 5696990 L5530 2022 26 69*2^18831865-1 5668959 L4965 2021 27f 97139*2^18397548-1 5538219 L4965 2023 28 7*2^18233956+1 5488969 L4965 2020 Divides Fermat F(18233954) 29 3*2^18196595-1 5477722 L5461 2022 30 3*2^17748034-1 5342692 L5404 2021 31 Phi(3,-123447^524288) 5338805 L4561 2017 Generalized unique 32 3622*5^7558139-1 5282917 L4965 2022 33 7*6^6772401+1 5269954 L4965 2019 34 2*3^10852677+1 5178044 L4965 2023 Divides phi 35 8508301*2^17016603-1 5122515 L4784 2018 Woodall 36 3*2^16819291-1 5063112 L5230 2021 37 3*2^16408818+1 4939547 L5171 2020 Divides GF(16408814,3), GF(16408817,5) 38 69*2^15866556-1 4776312 L4965 2021 39 2525532*73^2525532+1 4705888 L5402 2021 Generalized Cullen 40 11*2^15502315+1 4666663 L4965 2023 Divides GF(15502313,10) [GG] 41 37*2^15474010+1 4658143 L4965 2022 42 93839*2^15337656-1 4617100 L4965 2022 43 2^15317227+2^7658614+1 4610945 L5123 2020 Gaussian Mersenne norm 41?, generalized unique 44 6*5^6546983+1 4576146 L4965 2020 45 69*2^14977631-1 4508719 L4965 2021 46 192971*2^14773498-1 4447272 L4965 2021 47 4*5^6181673-1 4320805 L4965 2022 48 6962*31^2863120-1 4269952 L5410 2020 49 37*2^14166940+1 4264676 L4965 2022 50 99739*2^14019102+1 4220176 L5008 2019 51 69*2^13832885-1 4164116 L4965 2022 52 404849*2^13764867+1 4143644 L4976 2021 Generalized Cullen 53 25*2^13719266+1 4129912 L4965 2022 Generalized Fermat 54 81*2^13708272+1 4126603 L4965 2022 Generalized Fermat 55 2740879*2^13704395-1 4125441 L4976 2019 Generalized Woodall 56 479216*3^8625889-1 4115601 L4976 2019 Generalized Woodall 57 Phi(3,-143332^393216) 4055114 L4506 2017 Generalized unique 58 81*2^13470584+1 4055052 L4965 2022 Generalized Fermat 59 2^13466917-1 4053946 G5 2001 Mersenne 39 60 9*2^13334487+1 4014082 L4965 2020 Divides GF(13334485,3) 61 206039*2^13104952-1 3944989 L4965 2021 62 2805222*5^5610444+1 3921539 L4972 2019 Generalized Cullen 63 19249*2^13018586+1 3918990 SB10 2007 64 2293*2^12918431-1 3888839 L4965 2021 65 81*2^12804541+1 3854553 L4965 2022 66 4*5^5380542+1 3760839 L4965 2023 Generalized Fermat 67 9*2^12406887+1 3734847 L4965 2020 Divides GF(12406885,3) 68d 7*2^12286041-1 3698468 L4965 2023 69 69*2^12231580-1 3682075 L4965 2021 70 27*2^12184319+1 3667847 L4965 2021 71 3761*2^11978874-1 3606004 L4965 2022 72 3*2^11895718-1 3580969 L4159 2015 73 37*2^11855148+1 3568757 L4965 2022 74d 6339004^524288+1 3566218 L1372 2023 Generalized Fermat 75 5897794^524288+1 3549792 x50 2022 Generalized Fermat 76 3*2^11731850-1 3531640 L4103 2015 77 69*2^11718455-1 3527609 L4965 2020 78 41*2^11676439+1 3514960 L4965 2022 79 4896418^524288+1 3507424 L4245 2022 Generalized Fermat 80 81*2^11616017+1 3496772 L4965 2022 81 69*2^11604348-1 3493259 L4965 2020 82a 4450871*6^4450871+1 3463458 L5765 2023 Generalized Cullen 83 9*2^11500843+1 3462100 L4965 2020 Divides GF(11500840,12) 84 3*2^11484018-1 3457035 L3993 2014 85 193997*2^11452891+1 3447670 L4398 2018 86 3638450^524288+1 3439810 L4591 2020 Generalized Fermat 87 9221*2^11392194-1 3429397 L5267 2021 88 9*2^11366286+1 3421594 L4965 2020 Generalized Fermat 89 5*2^11355764-1 3418427 L4965 2021 90a 732050*6^4392301+1 3417881 L5765 2023 Generalized Cullen 91 3214654^524288+1 3411613 L4309 2019 Generalized Fermat 92 146561*2^11280802-1 3395865 L5181 2020 93 2985036^524288+1 3394739 L4752 2019 Generalized Fermat 94 6929*2^11255424-1 3388225 L4965 2022 95 2877652^524288+1 3386397 L4250 2019 Generalized Fermat 96 2788032^524288+1 3379193 L4584 2019 Generalized Fermat 97 2733014^524288+1 3374655 L4929 2019 Generalized Fermat 98 9*2^11158963+1 3359184 L4965 2020 Divides GF(11158962,5) 99 9271*2^11134335-1 3351773 L4965 2021 100 2312092^524288+1 3336572 L4720 2018 Generalized Fermat 101 2061748^524288+1 3310478 L4783 2018 Generalized Fermat 102 1880370^524288+1 3289511 L4201 2018 Generalized Fermat 103 27*2^10902757-1 3282059 L4965 2022 104 3*2^10829346+1 3259959 L3770 2014 Divides GF(10829343,3), GF(10829345,5) 105 11*2^10803449+1 3252164 L4965 2022 Divides GF(10803448,6) 106 11*2^10797109+1 3250255 L4965 2022 107 7*2^10612737-1 3194754 L4965 2022 108 37*2^10599476+1 3190762 L4965 2022 Divides GF(10599475,10) 109 5*2^10495620-1 3159498 L4965 2021 110d Phi(3,-3^3304302+1)/3 3153105 L5123 2023 Generalized unique 111 5*2^10349000-1 3115361 L4965 2021 112 Phi(3,-844833^262144) 3107335 L4506 2017 Generalized unique 113b 52922*5^4399812-1 3075342 A1 2023 114 Phi(3,-712012^262144) 3068389 L4506 2017 Generalized unique 115c 177742*5^4386703-1 3066180 L5807 2023 116 874208*54^1748416-1 3028951 L4976 2019 Generalized Woodall 117 475856^524288+1 2976633 L3230 2012 Generalized Fermat 118 2*3^6236772+1 2975697 L4965 2022 119b 15*2^9830108+1 2959159 A2 2023 120 9*2^9778263+1 2943552 L4965 2020 121 1806676*41^1806676+1 2913785 L4668 2018 Generalized Cullen 122 356926^524288+1 2911151 L3209 2012 Generalized Fermat 123 341112^524288+1 2900832 L3184 2012 Generalized Fermat 124 213988*5^4138363-1 2892597 L5621 2022 125 43*2^9596983-1 2888982 L4965 2022 126 121*2^9584444+1 2885208 L5183 2020 Generalized Fermat 127 11*2^9381365+1 2824074 L4965 2020 Divides GF(9381364,6) 128b 15*2^9312889+1 2803461 L4965 2023 129 49*2^9187790+1 2765803 L4965 2022 Generalized Fermat 130 27653*2^9167433+1 2759677 SB8 2005 131 90527*2^9162167+1 2758093 L1460 2010 132 6795*2^9144320-1 2752719 L4965 2021 133c 75*2^9079482+1 2733199 L4965 2023 134 1323365*116^1323365+1 2732038 L4718 2018 Generalized Cullen 135 57*2^9075622-1 2732037 L4965 2022 136 63838*5^3887851-1 2717497 L5558 2022 137 13*2^8989858+1 2706219 L4965 2020 138 4159*2^8938471-1 2690752 L4965 2022 139 273809*2^8932416-1 2688931 L1056 2017 140 2*3^5570081+1 2657605 L4965 2020 Divides Phi(3^5570081,2) [g427] 141 25*2^8788628+1 2645643 L5161 2021 Generalized Fermat 142 2038*366^1028507-1 2636562 L2054 2016 143 64598*5^3769854-1 2635020 L5427 2022 144 8*785^900325+1 2606325 L4786 2022 145 17*2^8636199+1 2599757 L5161 2021 Divides GF(8636198,10) 146 75898^524288+1 2558647 p334 2011 Generalized Fermat 147 25*2^8456828+1 2545761 L5237 2021 Divides GF(8456827,12), generalized Fermat 148 39*2^8413422+1 2532694 L5232 2021 149 31*2^8348000+1 2513000 L5229 2021 150 27*2^8342438-1 2511326 L3483 2021 151 3687*2^8261084-1 2486838 L4965 2021 152 273662*5^3493296-1 2441715 L5444 2021 153 81*2^8109236+1 2441126 L4965 2022 Generalized Fermat 154 11*2^8103463+1 2439387 L4965 2020 Divides GF(8103462,12) 155 102818*5^3440382-1 2404729 L5427 2021 156 11*2^7971110-1 2399545 L2484 2019 157 27*2^7963247+1 2397178 L5161 2021 Divides Fermat F(7963245) 158 3177*2^7954621-1 2394584 L4965 2021 159 39*2^7946769+1 2392218 L5226 2021 Divides GF(7946767,12) 160 7*6^3072198+1 2390636 L4965 2019 161 3765*2^7904593-1 2379524 L4965 2021 162 29*2^7899985+1 2378134 L5161 2021 Divides GF(7899984,6) 163 5113*2^7895471-1 2376778 L4965 2022 164 861*2^7895451-1 2376771 L4965 2021 165a 75*2^7886683+1 2374131 A2 2023 166 28433*2^7830457+1 2357207 SB7 2004 167 2589*2^7803339-1 2349043 L4965 2022 168f 8401*2^7767655-1 2338302 L4965 2023 169 5*2^7755002-1 2334489 L4965 2021 170 2945*2^7753232-1 2333959 L4965 2022 171 2545*2^7732265-1 2327648 L4965 2021 172 5539*2^7730709-1 2327180 L4965 2021 173 4817*2^7719584-1 2323831 L4965 2021 174 1341174*53^1341174+1 2312561 L4668 2017 Generalized Cullen 175 9467*2^7680034-1 2311925 L4965 2022 176 45*2^7661004+1 2306194 L5200 2020 177 15*2^7619838+1 2293801 L5192 2020 178 3597*2^7580693-1 2282020 L4965 2021 179 3129*2^7545557-1 2271443 L4965 2023 180 7401*2^7523295-1 2264742 L4965 2021 181 45*2^7513661+1 2261839 L5179 2020 182 Phi(3,-558640^196608) 2259865 L4506 2017 Generalized unique 183d 9*2^7479919-1 2251681 L3345 2023 184 1875*2^7474308-1 2249995 L4965 2022 185 69*2^7452023+1 2243285 L4965 2023 Divides GF(7452020,3) [GG] 186 4*5^3189669-1 2229484 L4965 2022 187 29*2^7374577+1 2219971 L5169 2020 Divides GF(7374576,3) 188 3197*2^7359542-1 2215447 L4965 2022 189 109838*5^3168862-1 2214945 L5129 2020 190a 95*2^7354869+1 2214039 A2 2023 191 101*2^7345194-1 2211126 L1884 2019 192a 85*2^7333444+1 2207589 A2 2023 193 15*2^7300254+1 2197597 L5167 2020 194 422429!+1 2193027 p425 2022 Factorial 195 1759*2^7284439-1 2192838 L4965 2021 196e 1909683*14^1909683+1 2188748 L5765 2023 Generalized Cullen 197 737*2^7269322-1 2188287 L4665 2017 198a 93*2^7241494+1 2179909 A2 2023 199 118568*5^3112069+1 2175248 L690 2020 200 6039*2^7207973-1 2169820 L4965 2021 201 502573*2^7181987-1 2162000 L3964 2014 202 402539*2^7173024-1 2159301 L3961 2014 203 3343*2^7166019-1 2157191 L1884 2016 204 161041*2^7107964+1 2139716 L4034 2015 205a 294*213^918952-1 2139672 L5811 2023 206 27*2^7046834+1 2121310 L3483 2018 207 1759*2^7046791-1 2121299 L4965 2021 208 327*2^7044001-1 2120459 L4965 2021 209 5*2^7037188-1 2118406 L4965 2021 210 3*2^7033641+1 2117338 L2233 2011 Divides GF(7033639,3) 211 33661*2^7031232+1 2116617 SB11 2007 212 Phi(3,-237804^196608) 2114016 L4506 2017 Generalized unique 213 207494*5^3017502-1 2109149 L5083 2020 214 15*2^6993631-1 2105294 L4965 2021 215 8943501*2^6972593-1 2098967 L466 2022 216 6020095*2^6972593-1 2098967 L466 2022 217 2^6972593-1 2098960 G4 1999 Mersenne 38 218 273*2^6963847-1 2096330 L4965 2022 219 6219*2^6958945-1 2094855 L4965 2021 220 51*2^6945567+1 2090826 L4965 2020 Divides GF(6945564,12) [p286] 221 238694*5^2979422-1 2082532 L5081 2020 222 4*72^1119849-1 2079933 L4444 2016 223 33*2^6894190-1 2075360 L4965 2021 224 2345*2^6882320-1 2071789 L4965 2022 225b 57*2^6857990+1 2064463 A2 2023 226 146264*5^2953282-1 2064261 L1056 2020 227 69*2^6838971-1 2058738 L5037 2020 228 35816*5^2945294-1 2058677 L5076 2020 229 127*2^6836153-1 2057890 L1862 2018 230 19*2^6833086+1 2056966 L5166 2020 231a 65*2^6810465+1 2050157 A2 2023 232 40597*2^6808509-1 2049571 L3749 2013 233 283*2^6804731-1 2048431 L2484 2020 234 1861709*2^6789999+1 2044000 L5191 2020 235 5781*2^6789459-1 2043835 L4965 2021 236 8435*2^6786180-1 2042848 L4965 2021 237 51*2^6753404+1 2032979 L4965 2020 238a 93*2^6750726+1 2032173 A2 2023 239 69*2^6745775+1 2030683 L4965 2023 240 9995*2^6711008-1 2020219 L4965 2021 241 39*2^6684941+1 2012370 L5162 2020 242 6679881*2^6679881+1 2010852 L917 2009 Cullen 243 37*2^6660841-1 2005115 L3933 2014 244 39*2^6648997+1 2001550 L5161 2020 245 304207*2^6643565-1 1999918 L3547 2013 246 69*2^6639971-1 1998833 L5037 2020 247 6471*2^6631137-1 1996175 L4965 2021 248 9935*2^6603610-1 1987889 L4965 2023 249d 554051*2^6517658-1 1962017 L5811 2023 250 1319*2^6506224-1 1958572 L4965 2021 251 3163*2^6504943-1 1958187 L4965 2023 252 322498*5^2800819-1 1957694 L4954 2019 253b 99*2^6502814+1 1957545 A2 2023 254 88444*5^2799269-1 1956611 L3523 2019 255 13*2^6481780+1 1951212 L4965 2020 256 21*2^6468257-1 1947141 L4965 2021 257a 26128000^262144+1 1944350 L5821 2023 Generalized Fermat 258b 25875054^262144+1 1943243 L5070 2023 Generalized Fermat 259b 25690360^262144+1 1942427 L5809 2023 Generalized Fermat 260b 25635940^262144+1 1942186 L4307 2023 Generalized Fermat 261c 25461468^262144+1 1941408 L4210 2023 Generalized Fermat 262c 25333402^262144+1 1940834 L5802 2023 Generalized Fermat 263d 24678636^262144+1 1937853 L5586 2023 Generalized Fermat 264 138514*5^2771922+1 1937496 L4937 2019 265e 24429706^262144+1 1936699 L4670 2023 Generalized Fermat 266 33*2^6432160-1 1936275 L4965 2022 267 15*2^6429089-1 1935350 L4965 2021 268f 23591460^262144+1 1932724 L5720 2023 Generalized Fermat 269f 23479122^262144+1 1932181 L5773 2023 Generalized Fermat 270 398023*2^6418059-1 1932034 L3659 2013 271 22984886^262144+1 1929758 L4928 2023 Generalized Fermat 272d Phi(3,3^2021560+1)/3 1929059 L5123 2023 Generalized unique 273 22790808^262144+1 1928793 L5047 2023 Generalized Fermat 274 22480000^262144+1 1927230 L4307 2023 Generalized Fermat 275 22479752^262144+1 1927229 L5159 2023 Generalized Fermat 276 22470828^262144+1 1927183 L4201 2023 Generalized Fermat 277b 55*2^6395254+1 1925166 A2 2023 278 20866766^262144+1 1918752 L4245 2023 Generalized Fermat 279 20710506^262144+1 1917896 L5676 2023 Generalized Fermat 280 20543682^262144+1 1916975 L5663 2023 Generalized Fermat 281 20105956^262144+1 1914523 L5005 2023 Generalized Fermat 282 631*2^6359347-1 1914357 L4965 2021 283 4965*2^6356707-1 1913564 L4965 2022 284 19859450^262144+1 1913119 L5025 2023 Generalized Fermat 285 19527922^262144+1 1911202 L4745 2023 Generalized Fermat 286 19322744^262144+1 1910000 L4775 2023 Generalized Fermat 287 1995*2^6333396-1 1906546 L4965 2021 288 1582137*2^6328550+1 1905090 L801 2009 Cullen 289 18395930^262144+1 1904404 x50 2022 Generalized Fermat 290 17191822^262144+1 1896697 x50 2022 Generalized Fermat 291b 87*2^6293522+1 1894541 A2 2023 292 16769618^262144+1 1893866 L4677 2022 Generalized Fermat 293 16048460^262144+1 1888862 L5127 2022 Generalized Fermat 294 10^1888529-10^944264-1 1888529 p423 2021 Near-repdigit, palindrome 295 15913772^262144+1 1887902 L4387 2022 Generalized Fermat 296 15859176^262144+1 1887511 L5544 2022 Generalized Fermat 297 3303*2^6264946-1 1885941 L4965 2021 298 15417192^262144+1 1884293 L5051 2022 Generalized Fermat 299 14741470^262144+1 1879190 L4204 2022 Generalized Fermat 300 14399216^262144+1 1876516 L4745 2021 Generalized Fermat 301 14103144^262144+1 1874151 L5254 2021 Generalized Fermat 302 13911580^262144+1 1872594 L5068 2021 Generalized Fermat 303 13640376^262144+1 1870352 L4307 2021 Generalized Fermat 304 13553882^262144+1 1869628 L4307 2021 Generalized Fermat 305a 8825*2^6199424-1 1866217 A2 2023 306 13039868^262144+1 1865227 L5273 2021 Generalized Fermat 307 7*6^2396573+1 1864898 L4965 2019 308 12959788^262144+1 1864525 L4591 2021 Generalized Fermat 309 69*2^6186659+1 1862372 L4965 2023 310 12582496^262144+1 1861162 L5202 2021 Generalized Fermat 311 12529818^262144+1 1860684 L4871 2020 Generalized Fermat 312 12304152^262144+1 1858615 L4591 2020 Generalized Fermat 313 12189878^262144+1 1857553 L4905 2020 Generalized Fermat 314 39*2^6164630+1 1855741 L4087 2020 Divides GF(6164629,5) 315 11081688^262144+1 1846702 L5051 2020 Generalized Fermat 316 10979776^262144+1 1845650 L5088 2020 Generalized Fermat 317 10829576^262144+1 1844082 L4677 2020 Generalized Fermat 318 194368*5^2638045-1 1843920 L690 2018 319 10793312^262144+1 1843700 L4905 2020 Generalized Fermat 320 10627360^262144+1 1841936 L4956 2020 Generalized Fermat 321 10578478^262144+1 1841411 L4307 2020 Generalized Fermat 322 66916*5^2628609-1 1837324 L690 2018 323e 521921*2^6101122-1 1836627 L5811 2023 324 3*2^6090515-1 1833429 L1353 2010 325 9812766^262144+1 1832857 L4245 2020 Generalized Fermat 326 9750938^262144+1 1832137 L4309 2020 Generalized Fermat 327 8349*2^6082397-1 1830988 L4965 2021 328 9450844^262144+1 1828578 L5020 2020 Generalized Fermat 329b 71*2^6070943+1 1827538 L4965 2023 330 32*470^683151+1 1825448 L4064 2021 331 9125820^262144+1 1824594 L5002 2019 Generalized Fermat 332 8883864^262144+1 1821535 L4715 2019 Generalized Fermat 333 21*2^6048861+1 1820890 L5106 2020 Divides GF(6048860,5) 334 9999*2^6037057-1 1817340 L4965 2021 335 8521794^262144+1 1816798 L4289 2019 Generalized Fermat 336 33*2^6019138-1 1811943 L4965 2022 337b 67*2^6018626+1 1811789 L4965 2023 338 1583*2^5989282-1 1802957 L4036 2015 339f 101806*15^1527091-1 1796004 L5765 2023 Generalized Woodall 340 6291332^262144+1 1782250 L4864 2018 Generalized Fermat 341 6287774^262144+1 1782186 L4726 2018 Generalized Fermat 342 327926*5^2542838-1 1777374 L4807 2018 343 81556*5^2539960+1 1775361 L4809 2018 344 5828034^262144+1 1773542 L4720 2018 Generalized Fermat 345 993*10^1768283-1 1768286 L4879 2019 Near-repdigit 346 9*10^1762063-1 1762064 L4879 2020 Near-repdigit 347 5205422^262144+1 1760679 L4201 2018 Generalized Fermat 348 5152128^262144+1 1759508 L4720 2018 Generalized Fermat 349 4489246^262144+1 1743828 L4591 2018 Generalized Fermat 350c 2240501*6^2240501+1 1743456 L5765 2023 Generalized Cullen 351 2*3^3648969+1 1741001 L5043 2020 Divides Phi(3^3648964,2) [g427] 352 7*2^5775996+1 1738749 L3325 2012 353 4246258^262144+1 1737493 L4720 2018 Generalized Fermat 354 3933508^262144+1 1728783 L4309 2018 Generalized Fermat 355 3853792^262144+1 1726452 L4715 2018 Generalized Fermat 356 3673932^262144+1 1721010 L4649 2017 Generalized Fermat 357 (10^859669-1)^2-2 1719338 p405 2022 Near-repdigit 358 3596074^262144+1 1718572 L4689 2017 Generalized Fermat 359 3547726^262144+1 1717031 L4201 2017 Generalized Fermat 360 8*10^1715905-1 1715906 L4879 2020 Near-repdigit 361 1243*2^5686715-1 1711875 L1828 2016 362 25*2^5658915-1 1703505 L1884 2021 363e 1486287*14^1486287+1 1703482 L5765 2023 Generalized Cullen 364 41*2^5651731+1 1701343 L1204 2020 365 3060772^262144+1 1700222 L4649 2017 Generalized Fermat 366 9*2^5642513+1 1698567 L3432 2013 367 10*3^3550446+1 1693995 L4965 2020 368 2622*11^1621920-1 1689060 L2054 2015 369 81*2^5600028+1 1685779 L4965 2022 Generalized Fermat 370 2676404^262144+1 1684945 L4591 2017 Generalized Fermat 371 301562*5^2408646-1 1683577 L4675 2017 372 2611294^262144+1 1682141 L4250 2017 Generalized Fermat 373 171362*5^2400996-1 1678230 L4669 2017 374 2514168^262144+1 1677825 L4564 2017 Generalized Fermat 375 31*2^5560820+1 1673976 L1204 2020 Divides GF(5560819,6) 376 13*2^5523860+1 1662849 L1204 2020 Divides Fermat F(5523858) 377 252191*2^5497878-1 1655032 L3183 2012 378 2042774^262144+1 1654187 L4499 2016 Generalized Fermat 379 1828858^262144+1 1641593 L4200 2016 Generalized Fermat 380 258317*2^5450519+1 1640776 g414 2008 381 7*6^2104746+1 1637812 L4965 2019 382 5*2^5429494-1 1634442 L3345 2017 383 43*2^5408183-1 1628027 L1884 2018 384 1615588^262144+1 1627477 L4200 2016 Generalized Fermat 385 2*296598^296598-1 1623035 L4965 2022 386 1349*2^5385004-1 1621051 L1828 2017 387 1488256^262144+1 1618131 L4249 2016 Generalized Fermat 388 1415198^262144+1 1612400 L4308 2016 Generalized Fermat 389 45*2^5308037+1 1597881 L4761 2019 390 5468*70^864479-1 1595053 L5410 2022 391f 92*10^1585996-1 1585998 L4789 2023 Near-repdigit 392 Phi(3,-1082083^131072) 1581846 L4506 2017 Generalized unique 393 7*2^5229669-1 1574289 L4965 2021 394 180062*5^2249192-1 1572123 L4435 2016 395 124125*6^2018254+1 1570512 L4001 2019 396 27*2^5213635+1 1569462 L3760 2015 397 9992*10^1567410-1 1567414 L4879 2020 Near-repdigit 398 308084!+1 1557176 p425 2022 Factorial 399 Phi(3,-843575^131072) 1553498 L4506 2017 Generalized unique 400 25*2^5152151-1 1550954 L1884 2020 401 53546*5^2216664-1 1549387 L4398 2016 402 773620^262144+1 1543643 L3118 2012 Generalized Fermat 403 39*2^5119458+1 1541113 L1204 2019 404 607*26^1089034+1 1540957 L5410 2021 405 81*2^5115131+1 1539810 L4965 2022 Divides GF(5115128,12) [GG] 406 223*2^5105835-1 1537012 L2484 2019 407 99*10^1536527-1 1536529 L4879 2019 Near-repdigit 408 81*2^5100331+1 1535355 L4965 2022 Divides GF(5100327,6) [GG] 409 992*10^1533933-1 1533936 L4879 2019 Near-repdigit 410 51*2^5085142-1 1530782 L760 2014 411 3*2^5082306+1 1529928 L780 2009 Divides GF(5082303,3), GF(5082305,5) 412 676754^262144+1 1528413 L2975 2012 Generalized Fermat 413 296024*5^2185270-1 1527444 L671 2016 414 5359*2^5054502+1 1521561 SB6 2003 415f 1405486*12^1405486-1 1516781 L5765 2023 Generalized Woodall 416c 53*2^5019181+1 1510926 L4965 2023 417 13*2^4998362+1 1504659 L3917 2014 418 525094^262144+1 1499526 p338 2012 Generalized Fermat 419 92158*5^2145024+1 1499313 L4348 2016 420 499238*10^1497714-1 1497720 L4976 2019 Generalized Woodall 421 77072*5^2139921+1 1495746 L4340 2016 422 2*3^3123036+1 1490068 L5043 2020 423c 51*2^4923905+1 1482245 L4965 2023 424 519397*2^4908893-1 1477730 L5410 2022 425 306398*5^2112410-1 1476517 L4274 2016 426b 39*684^519468-1 1472723 L5410 2023 427 265711*2^4858008+1 1462412 g414 2008 428 154222*5^2091432+1 1461854 L3523 2015 429 1271*2^4850526-1 1460157 L1828 2012 430 333*2^4846958-1 1459083 L5546 2022 431f 156*532^534754-1 1457695 L5410 2023 432 Phi(3,-362978^131072) 1457490 p379 2015 Generalized unique 433 361658^262144+1 1457075 p332 2011 Generalized Fermat 434 100186*5^2079747-1 1453686 L4197 2015 435 288465!+1 1449771 p3 2022 Factorial 436 15*2^4800315+1 1445040 L1754 2019 Divides GF(4800313,3), GF(4800310,5) 437 2^4792057-2^2396029+1 1442553 L3839 2014 Gaussian Mersenne norm 40, generalized unique 438 92*10^1439761-1 1439763 L4789 2020 Near-repdigit 439 653*10^1435026-1 1435029 p355 2014 440 197*2^4765318-1 1434506 L5175 2021 441 1401*2^4759435-1 1432736 L4965 2023 442 2169*2^4754343-1 1431204 L4965 2023 443 188*468^535963+1 1431156 L4832 2019 444 1809*2^4752792-1 1430737 L4965 2022 445 2427*2^4749044-1 1429609 L4965 2022 446b 303*2^4748019-1 1429299 L5545 2023 447 2259*2^4746735-1 1428913 L4965 2022 448b 309*2^4745713-1 1428605 L5545 2023 449 2223*2^4729304-1 1423666 L4965 2022 450 1851*2^4727663-1 1423172 L4965 2022 451 1725*2^4727375-1 1423085 L4965 2022 452 1611*2^4724014-1 1422074 L4965 2022 453 1383*2^4719270-1 1420645 L4965 2022 454 1749*2^4717431-1 1420092 L4965 2022 455 2325*2^4713991-1 1419057 L4965 2022 456 3267113#-1 1418398 p301 2021 Primorial 457 100*406^543228+1 1417027 L5410 2020 Generalized Fermat 458 2337*2^4705660-1 1416549 L4965 2022 459 1229*2^4703492-1 1415896 L1828 2018 460 144052*5^2018290+1 1410730 L4146 2015 461 195*2^4685711-1 1410542 L5175 2021 462 9*2^4683555-1 1409892 L1828 2012 463 31*2^4673544+1 1406879 L4990 2019 464 34*993^469245+1 1406305 L4806 2018 465 79*2^4658115-1 1402235 L1884 2018 466 39*2^4657951+1 1402185 L1823 2019 467 4*650^498101-1 1401116 L4294 2021 468 11*2^4643238-1 1397755 L2484 2014 469e 884411*38^884411+1 1397184 L5765 2023 Generalized Cullen 470 68*995^465908-1 1396712 L4001 2017 471 7*6^1793775+1 1395830 L4965 2019 472 Phi(3,-192098^131072) 1385044 p379 2015 Generalized unique 473f 6*10^1380098+1 1380099 L5009 2023 474 27*2^4583717-1 1379838 L2992 2014 475d Phi(3,-3^1444194+1)/3 1378111 L5123 2023 Generalized unique 476e 1198433*14^1198433+1 1373564 L5765 2023 Generalized Cullen 477 121*2^4553899-1 1370863 L3023 2012 478 9473*2^4543680-1 1367788 L5037 2022 479 27*2^4542344-1 1367384 L1204 2014 480 29*2^4532463+1 1364409 L4988 2019 481 4*797^468702+1 1359920 L4548 2017 Generalized Fermat 482 145310^262144+1 1353265 p314 2011 Generalized Fermat 483 25*2^4481024+1 1348925 L4364 2019 Generalized Fermat 484 81*536^493229+1 1346106 p431 2023 485 303*2^4471002-1 1345909 L5545 2022 486 2*1283^432757+1 1345108 L4879 2019 Divides Phi(1283^432757,2) 487 36772*6^1723287-1 1340983 L1301 2014 488 583854*14^1167708-1 1338349 L4976 2019 Generalized Woodall 489e 20*634^476756-1 1335915 L4975 2023 490c 85*2^4432870+1 1334429 L4965 2023 491 151*2^4424321-1 1331856 L1884 2016 492 195*2^4373994-1 1316706 L5175 2020 493 (10^657559-1)^2-2 1315118 p405 2022 Near-repdigit 494 49*2^4365175-1 1314051 L1959 2017 495 49*2^4360869-1 1312755 L1959 2017 496 13*2^4333087-1 1304391 L1862 2018 497 353159*2^4331116-1 1303802 L2408 2011 498 9959*2^4308760-1 1297071 L5037 2022 499a 195*2^4304861+1 1295895 L5178 2023 500 23*2^4300741+1 1294654 L4147 2019 501 682156*79^682156+1 1294484 L4472 2016 Generalized Cullen 502 141941*2^4299438-1 1294265 L689 2011 503c 87*2^4297718+1 1293744 L4965 2023 504a 435*2^4292968+1 1292315 L5783 2023 505e 993149*20^993149+1 1292123 L5765 2023 Generalized Cullen 506a 415*2^4280864+1 1288672 L5818 2023 507c 79*2^4279006+1 1288112 L4965 2023 508b 205*2^4270310+1 1285494 L5517 2023 509b 483*2^4270112+1 1285435 L5178 2023 510b 123*2^4266441+1 1284329 L5178 2023 511 612749*2^4254500-1 1280738 L5410 2022 512b 223*2^4252660+1 1280181 L5178 2023 513c 1644731*6^1644731+1 1279856 L5765 2023 Generalized Cullen 514 2*1151^417747+1 1278756 L4879 2019 Divides Phi(1151^417747,2) 515 15*2^4246384+1 1278291 L3432 2013 Divides GF(4246381,6) 516 3*2^4235414-1 1274988 L606 2008 517 2*1259^411259+1 1274914 L4879 2020 Divides Phi(1259^411259,2) 518c 93*2^4232892+1 1274230 L4965 2023 519b 131*2^4227493+1 1272605 L5226 2023 520 45*436^481613+1 1271213 L5410 2020 521 109208*5^1816285+1 1269534 L3523 2014 522c 435*2^4216447+1 1269280 L5178 2023 523 1091*2^4215518-1 1269001 L1828 2018 524 191*2^4203426-1 1265360 L2484 2012 525c 269*2^4198809+1 1263970 L5226 2023 526c 545*2^4198333+1 1263827 L5804 2023 527c 53*2^4197093+1 1263453 L5563 2023 528 1259*2^4196028-1 1263134 L1828 2016 529c 329*2^4193199+1 1262282 L5226 2023 530c 141*2^4192911+1 1262195 L5226 2023 Divides Fermat F(4192909) 531 325918*5^1803339-1 1260486 L3567 2014 532c 345*2^4173969+1 1256493 L5226 2023 533c 161*2^4164267+1 1253572 L5178 2023 534c 135*2^4162529+1 1253049 L5178 2023 Divides GF(4162525,10) 535c 177*2^4162494+1 1253038 L5796 2023 536d 237*2^4153348+1 1250285 L5178 2023 537 69*2^4151165+1 1249628 L4965 2023 538 133778*5^1785689+1 1248149 L3903 2014 539d 201*2^4146003+1 1248074 L5161 2023 540d 329*2^4136019+1 1245069 L5178 2023 541 81*2^4131975+1 1243851 L4965 2022 542d 459*2^4129577+1 1243130 L5226 2023 543d 551*2^4126303+1 1242144 L5226 2023 544d 363*2^4119017+1 1239951 L5226 2023 545d 105*2^4113039+1 1238151 L5178 2023 546f 204*532^454080-1 1237785 L5410 2023 547 17*2^4107544-1 1236496 L4113 2015 548e 261*2^4106385+1 1236148 L5178 2023 549 24032*5^1768249+1 1235958 L3925 2014 550 172*159^561319-1 1235689 L4001 2017 551 10^1234567-20342924302*10^617278-1 1234567 p423 2021 Palindrome 552d 10^1234567-1927633367291*10^617277-1 1234567 p423 2023 Palindrome 553 10^1234567-3626840486263*10^617277-1 1234567 p423 2021 Palindrome 554 10^1234567-4708229228074*10^617277-1 1234567 p423 2021 Palindrome 555e 67*2^4100746+1 1234450 L5178 2023 556e 191*2^4099097+1 1233954 L5563 2023 557e 325*2^4097700+1 1233534 L5226 2023 558e 519*2^4095491+1 1232869 L5226 2023 559e 111*2^4091044+1 1231530 L5783 2023 Divides GF(4091041,3) 560f 1182072*11^1182072-1 1231008 L5765 2023 Generalized Woodall 561 64*425^467857-1 1229712 p268 2021 562e 381*2^4069617+1 1225080 L5226 2023 563 97*2^4066717-1 1224206 L2484 2019 564e 95*2^4063895+1 1223357 L5226 2023 565e 79*2^4062818+1 1223032 L5178 2023 566 1031*2^4054974-1 1220672 L1828 2017 567e 309*2^4054114+1 1220413 L5178 2023 568 2022202116^131072+1 1219734 L4704 2022 Generalized Fermat 569 37*2^4046360+1 1218078 L2086 2019 570f 141*2^4043116+1 1217102 L5517 2023 571 39653*430^460397-1 1212446 L4187 2016 572 1777034894^131072+1 1212377 L4704 2022 Generalized Fermat 573f 141*2^4024411+1 1211471 L5226 2023 574f 515*2^4021165+1 1210494 L5174 2023 575f 73*2^4016912+1 1209213 L5226 2023 576 40734^262144+1 1208473 p309 2011 Generalized Fermat 577f 235*2^4013398+1 1208156 L5178 2023 578 9*2^4005979-1 1205921 L1828 2012 579f 417*2^4003224+1 1205094 L5764 2023 580 12*68^656921+1 1203815 L4001 2016 581 67*688^423893+1 1202836 L4001 2017 582 221*2^3992723+1 1201932 L5178 2023 583 213*2^3990702+1 1201324 L5216 2023 584 1993191*2^3986382-1 1200027 L3532 2015 Generalized Woodall 585 163*2^3984604+1 1199488 L5756 2023 586 725*2^3983355+1 1199113 L5706 2023 587 (146^276995+1)^2-2 1199030 p405 2022 588 455*2^3981067+1 1198424 L5724 2023 589 138172*5^1714207-1 1198185 L3904 2014 590 50*383^463313+1 1196832 L2012 2021 591 339*2^3974295+1 1196385 L5178 2023 592 699*2^3974045+1 1196310 L5750 2023 593 Phi(3,-1202113^98304) 1195366 L4506 2016 Generalized unique 594 29*2^3964697+1 1193495 L1204 2019 595 599*2^3963655+1 1193182 L5226 2023 596 683*2^3962937+1 1192966 L5226 2023 597 39*2^3961129+1 1192421 L1486 2019 598 165*2^3960664+1 1192281 L5178 2023 599 79*2^3957238+1 1191250 L5745 2023 600 687*2^3955918+1 1190853 L5554 2023 Divides GF(3955915,6) 601 163*2^3954818+1 1190522 L5178 2023 602 431*2^3953647+1 1190169 L5554 2023 603 Phi(3,-1110815^98304) 1188622 L4506 2016 Generalized unique 604 341*2^3938565+1 1185629 L5554 2023 605 503*2^3936845+1 1185112 L5706 2023 606 717*2^3934760+1 1184484 L5285 2023 607 493*2^3929192+1 1182808 L5161 2023 608 273*2^3929128+1 1182788 L5554 2023 609 609*2^3928682+1 1182654 L5178 2023 610 609*2^3928441+1 1182582 L5527 2023 611 281*2^3926467+1 1181987 L5174 2023 612 153*2^3922478+1 1180786 L5554 2023 613 69*2^3920863+1 1180300 L5554 2023 614 273*2^3919321+1 1179836 L5706 2023 615 531*2^3918985+1 1179735 L5706 2023 616 1000032472^131072+1 1179650 L4704 2022 Generalized Fermat 617 555*2^3916875+1 1179100 L5302 2023 618 571*2^3910616+1 1177216 L5178 2023 619 421*2^3905144+1 1175569 L5600 2023 620 P1174253 1174253 p414 2022 621 567*2^3897588+1 1173294 L5600 2023 622 417*2^3895404+1 1172637 L5600 2023 623 539*2^3894953+1 1172501 L5285 2023 624 645*2^3893849+1 1172169 L5600 2023 625f 818764*3^2456293-1 1171956 L4965 2023 Generalized Woodall 626 22478*5^1675150-1 1170884 L3903 2014 627 1199*2^3889576-1 1170883 L1828 2018 628 298989*2^3886857+1 1170067 L2777 2014 Generalized Cullen 629 93*10^1170023-1 1170025 L4789 2022 Near-repdigit 630 711*2^3886480+1 1169950 L5320 2023 631 375*2^3884634+1 1169394 L5600 2023 632 94*872^397354+1 1168428 L5410 2019 633 269*2^3877485+1 1167242 L5649 2023 634 163*2^3874556+1 1166360 L5646 2023 Divides GF(3874552,5) 635b 1365*2^3872811+1 1165836 L1134 2023 636 313*2^3869536+1 1164849 L5600 2023 637 159*2^3860863+1 1162238 L5226 2023 638 445*2^3860780+1 1162214 L5640 2023 639 397*2^3859450+1 1161813 L5226 2023 640 685*2^3856790+1 1161013 L5226 2023 641 27*2^3855094-1 1160501 L3033 2012 642 537*2^3853860+1 1160131 L5636 2022 643 164*978^387920-1 1160015 L4700 2018 644 175*2^3850344+1 1159072 L5226 2022 645 685*2^3847268+1 1158146 L5226 2022 646 655*2^3846352+1 1157871 L5282 2022 647 583*2^3846196+1 1157824 L5226 2022 648 615*2^3844151+1 1157208 L5226 2022 649 14772*241^485468-1 1156398 L5410 2022 650 525*2^3840963+1 1156248 L5613 2022 651 313*2^3837304+1 1155147 L5298 2022 652 49*2^3837090+1 1155081 L4979 2019 Generalized Fermat 653 431*2^3835247+1 1154528 L5161 2022 654 97*2^3833722+1 1154068 L5226 2022 655 2*839^394257+1 1152714 L4879 2019 Divides Phi(839^394257,2) 656 125*392^444161+1 1151839 L4832 2022 657 255*2^3824348+1 1151246 L5226 2022 658 30*514^424652-1 1151218 L4001 2017 659 569*2^3823191+1 1150898 L5226 2022 660 24518^262144+1 1150678 g413 2008 Generalized Fermat 661 563*2^3819237+1 1149708 L5178 2022 662 345*2^3817949+1 1149320 L5373 2022 663 Phi(3,-700219^98304) 1149220 L4506 2016 Generalized unique 664 241*2^3815727-1 1148651 L2484 2019 665 351*2^3815467+1 1148573 L5226 2022 666 109*980^383669-1 1147643 L4001 2018 667 427*2^3811610+1 1147412 L5614 2022 668 569*2^3810475+1 1147071 L5610 2022 669 213*2^3807864+1 1146284 L5609 2022 670 87*2^3806438+1 1145854 L5607 2022 671 369*2^3805321+1 1145519 L5541 2022 672 123547*2^3804809-1 1145367 L2371 2011 673 2564*75^610753+1 1145203 L3610 2014 674 539*2^3801705+1 1144430 L5161 2022 675 159*2^3801463+1 1144357 L5197 2022 676 235*2^3801284+1 1144303 L5608 2022 677 Phi(3,-660955^98304) 1144293 L4506 2016 Generalized unique 678 519*2^3800625+1 1144105 L5315 2022 679 281*2^3798465+1 1143455 L5178 2022 680 166*443^432000+1 1143249 L5410 2020 681 85*2^3797698+1 1143223 L5161 2022 682 326834*5^1634978-1 1142807 L3523 2014 683 459*2^3795969+1 1142704 L5161 2022 684 447*2^3780151+1 1137942 L5596 2022 685 345*2^3779921+1 1137873 L5557 2022 686 477*2^3779871+1 1137858 L5197 2022 687 251*2^3774587+1 1136267 L5592 2022 688 439*2^3773958+1 1136078 L5557 2022 689 43*182^502611-1 1135939 L4064 2020 690 415267*2^3771929-1 1135470 L2373 2011 691 11*2^3771821+1 1135433 p286 2013 692 427*2^3768104+1 1134315 L5192 2022 693 1455*2^3768024-1 1134292 L1134 2022 694 711*2^3767492+1 1134131 L5161 2022 695 265*2^3765189-1 1133438 L2484 2018 696 297*2^3765140+1 1133423 L5197 2022 697 381*2^3764189+1 1133137 L5589 2022 698 115*2^3763650+1 1132974 L5554 2022 699 411*2^3759067+1 1131595 L5589 2022 700 405*2^3757192+1 1131031 L5590 2022 701 938237*2^3752950-1 1129757 L521 2007 Woodall 702 399866798^131072+1 1127471 L4964 2019 Generalized Fermat 703 701*2^3744713+1 1127274 L5554 2022 704 207394*5^1612573-1 1127146 L3869 2014 705 684*10^1127118+1 1127121 L4036 2017 706 Phi(3,-535386^98304) 1126302 L4506 2016 Generalized unique 707 104944*5^1610735-1 1125861 L3849 2014 708 23451*2^3739388+1 1125673 L591 2015 709e 78*622^402915-1 1125662 L5645 2023 710 615*2^3738023+1 1125260 L5161 2022 711 347*2^3737875+1 1125216 L5178 2022 712 163*2^3735726+1 1124568 L5477 2022 Divides GF(3735725,6) 713 375*2^3733510+1 1123902 L5584 2022 714 25*2^3733144+1 1123790 L2125 2019 Generalized Fermat 715 629*2^3731479+1 1123290 L5283 2022 716 113*2^3728113+1 1122276 L5161 2022 717 303*2^3725438+1 1121472 L5161 2022 718 187*2^3723972+1 1121030 L5178 2022 719 2*1103^368361+1 1120767 L4879 2019 Divides Phi(1103^368361,2) 720 105*2^3720512+1 1119988 L5493 2022 721 447*2^3719024+1 1119541 L5493 2022 722 177*2^3717746+1 1119156 L5279 2022 723 2*131^528469+1 1118913 L4879 2019 Divides Phi(131^528469,2) 724 123*2^3716758+1 1118858 L5563 2022 725 313*2^3716716+1 1118846 L5237 2022 726 367*2^3712952+1 1117713 L5264 2022 727 53*2^3709297+1 1116612 L5197 2022 728 2^3704053+2^1852027+1 1115032 L3839 2014 Gaussian Mersenne norm 39, generalized unique 729 395*2^3701693+1 1114324 L5536 2022 730 589*2^3699954+1 1113800 L5576 2022 731 314187728^131072+1 1113744 L4704 2019 Generalized Fermat 732 119*2^3698412-1 1113336 L2484 2018 733 391*2^3693728+1 1111926 L5493 2022 734 485*2^3688111+1 1110235 L5237 2022 735 341*2^3686613+1 1109784 L5573 2022 736 87*2^3686558+1 1109767 L5573 2022 737 675*2^3682616+1 1108581 L5231 2022 738 569*2^3682167+1 1108446 L5488 2022 739 330286*5^1584399-1 1107453 L3523 2014 740 34*951^371834-1 1107391 L5410 2019 741 45*2^3677787+1 1107126 L1204 2019 742 625*2^3676300+1 1106680 L5302 2022 Generalized Fermat 743 13*2^3675223-1 1106354 L1862 2016 744 271643232^131072+1 1105462 L4704 2019 Generalized Fermat 745 463*2^3671262+1 1105163 L5524 2022 746 735*2^3670991+1 1105082 L5575 2022 747 475*2^3670046+1 1104797 L5524 2022 748 15*2^3668194-1 1104238 L3665 2013 749 273*2^3665736+1 1103499 L5192 2022 750 13*2^3664703-1 1103187 L1862 2016 751 Phi(3,-406515^98304) 1102790 L4506 2016 Generalized unique 752 609*2^3662931+1 1102655 L5573 2022 753 118*892^373012+1 1100524 L5071 2020 754 33300*430^417849-1 1100397 L4393 2016 755 655*2^3653008+1 1099668 L5574 2022 756 291*268^452750-1 1099341 L5410 2022 757 33*2^3649810+1 1098704 L4958 2019 758 295*2^3642206+1 1096416 L5161 2022 759 989*2^3640585+1 1095929 L5115 2020 760 567*2^3639287+1 1095538 L4959 2019 761 639*2^3635707+1 1094460 L1823 2019 762 753*2^3631472+1 1093185 L1823 2019 763 2*205731^205731-1 1093111 L4965 2022 764 65531*2^3629342-1 1092546 L2269 2011 765 1121*2^3629201+1 1092502 L4761 2019 766 215*2^3628962-1 1092429 L2484 2018 767 113*2^3628034-1 1092150 L2484 2014 768 1175*2^3627541+1 1092002 L4840 2019 769 2*431^414457+1 1091878 L4879 2019 Divides Phi(431^414457,2) 770 951*2^3623185+1 1090691 L1823 2019 771 29*920^367810-1 1090113 L4064 2015 772 14641*2^3618876+1 1089395 L181 2018 Generalized Fermat 773 485*2^3618563+1 1089299 L3924 2019 774 95*2^3614033+1 1087935 L1474 2019 775 1005*2^3612300+1 1087414 L1823 2019 776 861*2^3611815+1 1087268 L1745 2019 777 1087*2^3611476+1 1087166 L4834 2019 778 485767*2^3609357-1 1086531 L622 2008 779 675*2^3606447+1 1085652 L3278 2019 780 669*2^3606266+1 1085598 L1675 2019 781 65077*2^3605944+1 1085503 L4685 2020 782 1365*2^3605491+1 1085365 L1134 2022 783 851*2^3604395+1 1085034 L2125 2019 784 1143*2^3602429+1 1084443 L4754 2019 785 1183*2^3601898+1 1084283 L1823 2019 786 189*2^3596375+1 1082620 L3760 2016 787 1089*2^3593267+1 1081685 L3035 2019 788a 176799404^131072+1 1081014 L4775 2023 Generalized Fermat 789a 176207346^131072+1 1080823 L5805 2023 Generalized Fermat 790a 176085282^131072+1 1080784 L5805 2023 Generalized Fermat 791b 175482140^131072+1 1080589 L5639 2023 Generalized Fermat 792b 175271418^131072+1 1080520 L5051 2023 Generalized Fermat 793 19581121*2^3589357-1 1080512 p49 2022 794b 175200596^131072+1 1080497 L5817 2023 Generalized Fermat 795 1101*2^3589103+1 1080431 L1823 2019 796b 174728608^131072+1 1080344 L5416 2023 Generalized Fermat 797b 174697724^131072+1 1080334 L4747 2023 Generalized Fermat 798b 174534362^131072+1 1080280 L5814 2023 Generalized Fermat 799b 174142738^131072+1 1080152 L4249 2023 Generalized Fermat 800b 174103532^131072+1 1080140 L4249 2023 Generalized Fermat 801b 173962482^131072+1 1080093 L4249 2023 Generalized Fermat 802 35*2^3587843+1 1080050 L1979 2014 Divides GF(3587841,5) 803b 173717408^131072+1 1080013 L5634 2023 Generalized Fermat 804b 173561300^131072+1 1079962 L4249 2023 Generalized Fermat 805b 173343810^131072+1 1079891 L4249 2023 Generalized Fermat 806c 172026454^131072+1 1079456 L4737 2023 Generalized Fermat 807c 172004036^131072+1 1079449 L5512 2023 Generalized Fermat 808 275*2^3585539+1 1079358 L3803 2016 809c 171677924^131072+1 1079341 L5512 2023 Generalized Fermat 810c 171610156^131072+1 1079319 L4249 2023 Generalized Fermat 811c 171518672^131072+1 1079288 L5586 2023 Generalized Fermat 812c 171128300^131072+1 1079158 L4249 2023 Generalized Fermat 813c 170982934^131072+1 1079110 L4201 2023 Generalized Fermat 814c 170626040^131072+1 1078991 L5748 2023 Generalized Fermat 815c 169929578^131072+1 1078758 L5748 2023 Generalized Fermat 816d 169369502^131072+1 1078570 L4410 2023 Generalized Fermat 817d 169299904^131072+1 1078547 L4559 2023 Generalized Fermat 818d 169059224^131072+1 1078466 L5746 2023 Generalized Fermat 819d 168885632^131072+1 1078408 L5793 2023 Generalized Fermat 820d 168602250^131072+1 1078312 L5782 2023 Generalized Fermat 821d 168576546^131072+1 1078303 L5639 2023 Generalized Fermat 822d 167845698^131072+1 1078056 L5735 2023 Generalized Fermat 823d 167604930^131072+1 1077974 L4859 2023 Generalized Fermat 824 2*59^608685+1 1077892 g427 2014 Divides Phi(59^608685,2) 825e 167206862^131072+1 1077839 L5641 2023 Generalized Fermat 826e 166964502^131072+1 1077756 L5627 2023 Generalized Fermat 827 651*2^3579843+1 1077643 L3035 2018 828e 166609122^131072+1 1077635 L5782 2023 Generalized Fermat 829e 166397330^131072+1 1077563 L5578 2023 Generalized Fermat 830e 166393356^131072+1 1077561 L5782 2023 Generalized Fermat 831e 166288612^131072+1 1077525 L4672 2023 Generalized Fermat 832e 166277052^131072+1 1077521 L5755 2023 Generalized Fermat 833e 166052226^131072+1 1077444 L4670 2023 Generalized Fermat 834e 165430644^131072+1 1077231 L4672 2023 Generalized Fermat 835e 165427494^131072+1 1077230 L4249 2023 Generalized Fermat 836 583*2^3578402+1 1077210 L3035 2018 837e 165361824^131072+1 1077207 L5586 2023 Generalized Fermat 838e 165258594^131072+1 1077172 L4884 2023 Generalized Fermat 839e 165036358^131072+1 1077095 L5156 2023 Generalized Fermat 840e 164922680^131072+1 1077056 L4249 2023 Generalized Fermat 841e 164800594^131072+1 1077014 L5775 2023 Generalized Fermat 842f 164660428^131072+1 1076965 L4249 2023 Generalized Fermat 843 309*2^3577339+1 1076889 L4406 2016 844f 164440734^131072+1 1076889 L5485 2023 Generalized Fermat 845f 163871194^131072+1 1076692 L5772 2023 Generalized Fermat 846f 163838506^131072+1 1076680 L5758 2023 Generalized Fermat 847f 163821336^131072+1 1076674 L5544 2023 Generalized Fermat 848f 163820256^131072+1 1076674 L5452 2023 Generalized Fermat 849f 163666380^131072+1 1076621 L5030 2023 Generalized Fermat 850f 163585288^131072+1 1076592 L4928 2023 Generalized Fermat 851f 163359994^131072+1 1076514 L5769 2023 Generalized Fermat 852f 163214942^131072+1 1076463 L4933 2023 Generalized Fermat 853f 163193584^131072+1 1076456 L5595 2023 Generalized Fermat 854f 163152818^131072+1 1076442 L5639 2023 Generalized Fermat 855f 163044252^131072+1 1076404 L5775 2023 Generalized Fermat 856f 162950466^131072+1 1076371 L5694 2023 Generalized Fermat 857f 162874590^131072+1 1076345 L5586 2023 Generalized Fermat 858f 162850104^131072+1 1076336 L5769 2023 Generalized Fermat 859f 162817576^131072+1 1076325 L5772 2023 Generalized Fermat 860 1185*2^3574583+1 1076060 L4851 2018 861 251*2^3574535+1 1076045 L3035 2016 862 1485*2^3574333+1 1075985 L1134 2022 863f 161706626^131072+1 1075935 L4870 2023 Generalized Fermat 864f 161619620^131072+1 1075904 L5586 2023 Generalized Fermat 865f 161588716^131072+1 1075893 L4928 2023 Generalized Fermat 866f 161571504^131072+1 1075887 L5030 2023 Generalized Fermat 867f 161569668^131072+1 1075887 L5639 2023 Generalized Fermat 868f 160998114^131072+1 1075685 L5586 2023 Generalized Fermat 869 160607310^131072+1 1075547 L5763 2023 Generalized Fermat 870 160325616^131072+1 1075447 L5586 2023 Generalized Fermat 871 160228242^131072+1 1075412 L5632 2023 Generalized Fermat 872 160146172^131072+1 1075383 L4773 2023 Generalized Fermat 873 159800918^131072+1 1075260 L5586 2023 Generalized Fermat 874 159794566^131072+1 1075258 L4249 2023 Generalized Fermat 875 159784836^131072+1 1075254 L5639 2023 Generalized Fermat 876 159784822^131072+1 1075254 L5637 2023 Generalized Fermat 877 1019*2^3571635+1 1075173 L1823 2018 878 159509138^131072+1 1075156 L5637 2023 Generalized Fermat 879 119*2^3571416-1 1075106 L2484 2018 880 159214418^131072+1 1075051 L5755 2023 Generalized Fermat 881 158831096^131072+1 1074914 L5022 2023 Generalized Fermat 882 35*2^3570777+1 1074913 L2891 2014 883 158696888^131072+1 1074865 L5030 2023 Generalized Fermat 884 158472238^131072+1 1074785 L5586 2023 Generalized Fermat 885 33*2^3570132+1 1074719 L2552 2014 886 157923226^131072+1 1074587 L4249 2023 Generalized Fermat 887 157541220^131072+1 1074449 L5416 2023 Generalized Fermat 888 5*2^3569154-1 1074424 L503 2009 889 157374268^131072+1 1074389 L5578 2023 Generalized Fermat 890 81*492^399095-1 1074352 L4001 2015 891 156978838^131072+1 1074246 L5332 2023 Generalized Fermat 892 156789840^131072+1 1074177 L4747 2023 Generalized Fermat 893 156756400^131072+1 1074165 L4249 2023 Generalized Fermat 894 22934*5^1536762-1 1074155 L3789 2014 895 156625064^131072+1 1074117 L5694 2023 Generalized Fermat 896 156519708^131072+1 1074079 L5746 2023 Generalized Fermat 897 156468140^131072+1 1074060 L4249 2023 Generalized Fermat 898 156203340^131072+1 1073964 L5578 2023 Generalized Fermat 899 156171526^131072+1 1073952 L5698 2023 Generalized Fermat 900 155778562^131072+1 1073809 L4309 2023 Generalized Fermat 901 155650426^131072+1 1073762 L5668 2023 Generalized Fermat 902 155536474^131072+1 1073720 L4249 2023 Generalized Fermat 903 155339878^131072+1 1073648 L5206 2023 Generalized Fermat 904 155305266^131072+1 1073636 L5549 2023 Generalized Fermat 905 155006218^131072+1 1073526 L4742 2023 Generalized Fermat 906 154553092^131072+1 1073359 L4920 2023 Generalized Fermat 907 154492166^131072+1 1073337 L4326 2023 Generalized Fermat 908 154478286^131072+1 1073332 L4544 2023 Generalized Fermat 909 154368914^131072+1 1073291 L5738 2023 Generalized Fermat 910 153966766^131072+1 1073143 L5732 2023 Generalized Fermat 911 265*2^3564373-1 1072986 L2484 2018 912 153485148^131072+1 1072965 L5736 2023 Generalized Fermat 913 153432848^131072+1 1072945 L5030 2023 Generalized Fermat 914 153413432^131072+1 1072938 L4835 2023 Generalized Fermat 915 771*2^3564109+1 1072907 L2125 2018 916 381*2^3563676+1 1072776 L4190 2016 917 152966530^131072+1 1072772 L5070 2023 Generalized Fermat 918 555*2^3563328+1 1072672 L4850 2018 919 152542626^131072+1 1072614 L5460 2023 Generalized Fermat 920 151999396^131072+1 1072411 L5586 2023 Generalized Fermat 921 151609814^131072+1 1072265 L5663 2023 Generalized Fermat 922 151218242^131072+1 1072118 L5588 2023 Generalized Fermat 923 151108236^131072+1 1072076 L4672 2023 Generalized Fermat 924 151044622^131072+1 1072052 L5544 2023 Generalized Fermat 925 151030068^131072+1 1072047 L4774 2023 Generalized Fermat 926 150908454^131072+1 1072001 L4758 2023 Generalized Fermat 927 150863054^131072+1 1071984 L5720 2023 Generalized Fermat 928 1183*2^3560584+1 1071846 L1823 2018 929 150014492^131072+1 1071663 L4476 2023 Generalized Fermat 930 149972788^131072+1 1071647 L4559 2023 Generalized Fermat 931 415*2^3559614+1 1071554 L3035 2016 932 149665588^131072+1 1071530 L4892 2023 Generalized Fermat 933 149142686^131072+1 1071331 L4684 2023 Generalized Fermat 934 149057554^131072+1 1071298 L4933 2023 Generalized Fermat 935 148598024^131072+1 1071123 L4476 2023 Generalized Fermat 936 1103*2^3558177-503*2^1092022-1 1071122 p423 2022 Arithmetic progression (3,d=1103*2^3558176-503*2^1092022) 937 1103*2^3558176-1 1071121 L1828 2018 938 148592576^131072+1 1071121 L4476 2023 Generalized Fermat 939 148425726^131072+1 1071057 L4289 2023 Generalized Fermat 940 148154288^131072+1 1070952 L5714 2023 Generalized Fermat 941 148093952^131072+1 1070929 L4720 2023 Generalized Fermat 942 148070542^131072+1 1070920 L5155 2023 Generalized Fermat 943 147988292^131072+1 1070889 L5155 2023 Generalized Fermat 944 147816036^131072+1 1070822 L5634 2023 Generalized Fermat 945 1379*2^3557072-1 1070789 L1828 2018 946 147539992^131072+1 1070716 L4917 2023 Generalized Fermat 947 147433824^131072+1 1070675 L4753 2023 Generalized Fermat 948 147310498^131072+1 1070627 L5403 2023 Generalized Fermat 949 147265916^131072+1 1070610 L5543 2023 Generalized Fermat 950 146994540^131072+1 1070505 L5634 2023 Generalized Fermat 951 146520528^131072+1 1070321 L5469 2023 Generalized Fermat 952 146465338^131072+1 1070300 L5704 2023 Generalized Fermat 953 146031082^131072+1 1070131 L4697 2023 Generalized Fermat 954 145949782^131072+1 1070099 L5029 2023 Generalized Fermat 955 145728478^131072+1 1070013 L5543 2023 Generalized Fermat 956 145245346^131072+1 1069824 L5586 2023 Generalized Fermat 957 145137270^131072+1 1069781 L4742 2023 Generalized Fermat 958 145132288^131072+1 1069779 L4774 2023 Generalized Fermat 959 144926960^131072+1 1069699 L5036 2023 Generalized Fermat 960 144810806^131072+1 1069653 L5543 2023 Generalized Fermat 961 681*2^3553141+1 1069605 L3035 2018 962 144602744^131072+1 1069571 L5543 2023 Generalized Fermat 963 143844356^131072+1 1069272 L5693 2023 Generalized Fermat 964 599*2^3551793+1 1069200 L3824 2018 965 143421820^131072+1 1069104 L4904 2023 Generalized Fermat 966 621*2^3551472+1 1069103 L4687 2018 967 143416574^131072+1 1069102 L4591 2023 Generalized Fermat 968 143126384^131072+1 1068987 L5288 2023 Generalized Fermat 969 142589776^131072+1 1068773 L4201 2023 Generalized Fermat 970 773*2^3550373+1 1068772 L1808 2018 971 142527792^131072+1 1068748 L4387 2023 Generalized Fermat 972 142207386^131072+1 1068620 L5694 2023 Generalized Fermat 973 142195844^131072+1 1068616 L5548 2023 Generalized Fermat 974 141636602^131072+1 1068391 L5639 2023 Generalized Fermat 975 141554190^131072+1 1068358 L4956 2023 Generalized Fermat 976 1199*2^3548380-1 1068172 L1828 2018 977 140928044^131072+1 1068106 L4870 2023 Generalized Fermat 978 191*2^3548117+1 1068092 L4203 2015 979 140859866^131072+1 1068078 L5011 2023 Generalized Fermat 980 140824516^131072+1 1068064 L4760 2023 Generalized Fermat 981 140649396^131072+1 1067993 L5578 2023 Generalized Fermat 982 867*2^3547711+1 1067971 L4155 2018 983 140473436^131072+1 1067922 L4210 2023 Generalized Fermat 984 140237690^131072+1 1067826 L5051 2023 Generalized Fermat 985 139941370^131072+1 1067706 L5671 2023 Generalized Fermat 986 Phi(3,3^1118781+1)/3 1067588 L3839 2014 Generalized unique 987 139352402^131072+1 1067466 L5663 2023 Generalized Fermat 988 351*2^3545752+1 1067381 L4082 2016 989 138896860^131072+1 1067279 L4745 2023 Generalized Fermat 990 138894074^131072+1 1067278 L5041 2023 Generalized Fermat 991 138830036^131072+1 1067252 L5662 2023 Generalized Fermat 992 138626864^131072+1 1067169 L5663 2023 Generalized Fermat 993 138527284^131072+1 1067128 L5663 2023 Generalized Fermat 994 93*2^3544744+1 1067077 L1728 2014 995 138000006^131072+1 1066911 L5051 2023 Generalized Fermat 996 137900696^131072+1 1066870 L4249 2023 Generalized Fermat 997 137878102^131072+1 1066860 L5051 2023 Generalized Fermat 998 1159*2^3543702+1 1066764 L1823 2018 999 137521726^131072+1 1066713 L4672 2023 Generalized Fermat 1000 137486564^131072+1 1066699 L5586 2023 Generalized Fermat 1001 136227118^131072+1 1066175 L5416 2023 Generalized Fermat 1002 136192168^131072+1 1066160 L5556 2023 Generalized Fermat 1003 136124076^131072+1 1066132 L5041 2023 Generalized Fermat 1004 136122686^131072+1 1066131 L5375 2023 Generalized Fermat 1005 178658*5^1525224-1 1066092 L3789 2014 1006 135744154^131072+1 1065973 L5068 2023 Generalized Fermat 1007 135695350^131072+1 1065952 L4249 2023 Generalized Fermat 1008 135623220^131072+1 1065922 L5657 2023 Generalized Fermat 1009 135513092^131072+1 1065876 L5656 2023 Generalized Fermat 1010 135497678^131072+1 1065869 L4387 2023 Generalized Fermat 1011 135458028^131072+1 1065852 L5051 2023 Generalized Fermat 1012 135332960^131072+1 1065800 L5655 2023 Generalized Fermat 1013 135135930^131072+1 1065717 L4387 2023 Generalized Fermat 1014 1085*2^3539671+1 1065551 L3035 2018 1015 134706086^131072+1 1065536 L5378 2023 Generalized Fermat 1016 134459616^131072+1 1065431 L5658 2023 Generalized Fermat 1017 134447516^131072+1 1065426 L4387 2023 Generalized Fermat 1018 134322272^131072+1 1065373 L4387 2023 Generalized Fermat 1019 134206304^131072+1 1065324 L4684 2023 Generalized Fermat 1020 134176868^131072+1 1065311 L5375 2023 Generalized Fermat 1021 133954018^131072+1 1065217 L5088 2023 Generalized Fermat 1022 133676500^131072+1 1065099 L4387 2023 Generalized Fermat 1023 133569020^131072+1 1065053 L5277 2023 Generalized Fermat 1024 133345154^131072+1 1064958 L4210 2023 Generalized Fermat 1025 133180238^131072+1 1064887 L5586 2023 Generalized Fermat 1026 133096042^131072+1 1064851 L4755 2023 Generalized Fermat 1027 465*2^3536871+1 1064707 L4459 2016 1028 1019*2^3536312-1 1064539 L1828 2012 1029 131820886^131072+1 1064303 L5069 2023 Generalized Fermat 1030 131412078^131072+1 1064126 L5653 2023 Generalized Fermat 1031 131370186^131072+1 1064108 L5036 2023 Generalized Fermat 1032 131309874^131072+1 1064082 L5069 2023 Generalized Fermat 1033 131112524^131072+1 1063996 L4245 2023 Generalized Fermat 1034 1179*2^3534450+1 1063979 L3035 2018 1035 130907540^131072+1 1063907 L4526 2023 Generalized Fermat 1036 130593462^131072+1 1063771 L4559 2023 Generalized Fermat 1037 447*2^3533656+1 1063740 L4457 2016 1038 130518578^131072+1 1063738 L5029 2023 Generalized Fermat 1039 1059*2^3533550+1 1063708 L1823 2018 1040 130198372^131072+1 1063598 L5416 2023 Generalized Fermat 1041 130148002^131072+1 1063576 L4387 2023 Generalized Fermat 1042 130128232^131072+1 1063567 L5029 2023 Generalized Fermat 1043 130051980^131072+1 1063534 L5416 2023 Generalized Fermat 1044 130048816^131072+1 1063533 L4245 2023 Generalized Fermat 1045 345*2^3532957+1 1063529 L4314 2016 1046 553*2^3532758+1 1063469 L1823 2018 1047 129292212^131072+1 1063201 L4285 2023 Generalized Fermat 1048 129159632^131072+1 1063142 L5051 2023 Generalized Fermat 1049 128558886^131072+1 1062877 L5518 2023 Generalized Fermat 1050 128520182^131072+1 1062860 L4745 2023 Generalized Fermat 1051 543131*2^3529754-1 1062568 L4925 2022 1052 127720948^131072+1 1062504 L5378 2023 Generalized Fermat 1053 141*2^3529287+1 1062424 L4185 2015 1054 127093036^131072+1 1062224 L4591 2023 Generalized Fermat 1055 126611934^131072+1 1062008 L4776 2023 Generalized Fermat 1056 126423276^131072+1 1061923 L4201 2023 Generalized Fermat 1057 126334514^131072+1 1061883 L4249 2023 Generalized Fermat 1058 13*2^3527315-1 1061829 L1862 2016 1059 126199098^131072+1 1061822 L4591 2023 Generalized Fermat 1060 126189358^131072+1 1061818 L4704 2023 Generalized Fermat 1061 125966884^131072+1 1061717 L4747 2023 Generalized Fermat 1062 125714084^131072+1 1061603 L4745 2023 Generalized Fermat 1063 125141096^131072+1 1061343 L4559 2023 Generalized Fermat 1064 1393*2^3525571-1 1061306 L1828 2017 1065 125006494^131072+1 1061282 L5639 2023 Generalized Fermat 1066 124877454^131072+1 1061223 L4245 2023 Generalized Fermat 1067 124875502^131072+1 1061222 L4591 2023 Generalized Fermat 1068 124749274^131072+1 1061164 L4591 2023 Generalized Fermat 1069 124586054^131072+1 1061090 L4249 2023 Generalized Fermat 1070 124582356^131072+1 1061088 L5606 2023 Generalized Fermat 1071 124543852^131072+1 1061071 L4249 2023 Generalized Fermat 1072 124393514^131072+1 1061002 L4774 2023 Generalized Fermat 1073 124219534^131072+1 1060922 L4249 2023 Generalized Fermat 1074 124133348^131072+1 1060883 L5088 2023 Generalized Fermat 1075 124080788^131072+1 1060859 L5639 2023 Generalized Fermat 1076 1071*2^3523944+1 1060816 L1675 2018 1077 123910270^131072+1 1060780 L4249 2023 Generalized Fermat 1078 123856592^131072+1 1060756 L4201 2023 Generalized Fermat 1079 123338660^131072+1 1060517 L4905 2022 Generalized Fermat 1080 123306230^131072+1 1060502 L5638 2023 Generalized Fermat 1081 123195196^131072+1 1060451 L5029 2022 Generalized Fermat 1082 122941512^131072+1 1060333 L4559 2022 Generalized Fermat 1083 122869094^131072+1 1060300 L4939 2022 Generalized Fermat 1084 122481106^131072+1 1060120 L4704 2022 Generalized Fermat 1085 122414564^131072+1 1060089 L5627 2022 Generalized Fermat 1086 122372192^131072+1 1060069 L5099 2022 Generalized Fermat 1087 121854624^131072+1 1059828 L5051 2022 Generalized Fermat 1088 121462664^131072+1 1059645 L5632 2022 Generalized Fermat 1089 121158848^131072+1 1059502 L4774 2022 Generalized Fermat 1090a 2220172*3^2220172+1 1059298 p137 2023 Generalized Cullen 1091 329*2^3518451+1 1059162 L1823 2016 1092 135*2^3518338+1 1059128 L4045 2015 1093 120106930^131072+1 1059006 L4249 2022 Generalized Fermat 1094 2*10^1059002-1 1059003 L3432 2013 Near-repdigit 1095 119744014^131072+1 1058833 L4249 2022 Generalized Fermat 1096 64*10^1058794+1 1058796 L4036 2017 Generalized Fermat 1097 119604848^131072+1 1058767 L4201 2022 Generalized Fermat 1098 119541900^131072+1 1058737 L4747 2022 Generalized Fermat 1099 119510296^131072+1 1058722 L4201 2022 Generalized Fermat 1100 119246256^131072+1 1058596 L4249 2022 Generalized Fermat 1101 119137704^131072+1 1058544 L4201 2022 Generalized Fermat 1102 118888350^131072+1 1058425 L4999 2022 Generalized Fermat 1103 599*2^3515959+1 1058412 L1823 2018 1104 118583824^131072+1 1058279 L4210 2022 Generalized Fermat 1105 118109876^131072+1 1058051 L4550 2022 Generalized Fermat 1106 117906758^131072+1 1057953 L4249 2022 Generalized Fermat 1107 117687318^131072+1 1057847 L4245 2022 Generalized Fermat 1108 117375862^131072+1 1057696 L4774 2022 Generalized Fermat 1109 117345018^131072+1 1057681 L4848 2022 Generalized Fermat 1110 117196584^131072+1 1057609 L4559 2022 Generalized Fermat 1111 117153716^131072+1 1057588 L4774 2022 Generalized Fermat 1112 117088740^131072+1 1057557 L4559 2022 Generalized Fermat 1113 116936156^131072+1 1057483 L5332 2022 Generalized Fermat 1114 116402336^131072+1 1057222 L4760 2022 Generalized Fermat 1115 7*2^3511774+1 1057151 p236 2008 Divides GF(3511773,6) 1116 116036228^131072+1 1057043 L4773 2022 Generalized Fermat 1117 116017862^131072+1 1057034 L4559 2022 Generalized Fermat 1118 115992582^131072+1 1057021 L4835 2022 Generalized Fermat 1119 115873312^131072+1 1056963 L4677 2022 Generalized Fermat 1120 1135*2^3510890+1 1056887 L1823 2018 1121 115704568^131072+1 1056880 L4559 2022 Generalized Fermat 1122 115479166^131072+1 1056769 L4774 2022 Generalized Fermat 1123 115409608^131072+1 1056735 L4774 2022 Generalized Fermat 1124 115256562^131072+1 1056659 L4559 2022 Generalized Fermat 1125 114687250^131072+1 1056377 L5007 2022 Generalized Fermat 1126 114643510^131072+1 1056356 L4659 2022 Generalized Fermat 1127 114340846^131072+1 1056205 L4559 2022 Generalized Fermat 1128 114159720^131072+1 1056115 L4787 2022 Generalized Fermat 1129 114055498^131072+1 1056063 L4387 2022 Generalized Fermat 1130 114009952^131072+1 1056040 L4387 2022 Generalized Fermat 1131 113904214^131072+1 1055987 L4559 2022 Generalized Fermat 1132 113807058^131072+1 1055939 L5157 2022 Generalized Fermat 1133 113550956^131072+1 1055810 L5578 2022 Generalized Fermat 1134 113521888^131072+1 1055796 L4387 2022 Generalized Fermat 1135 113431922^131072+1 1055751 L4559 2022 Generalized Fermat 1136 113328940^131072+1 1055699 L4787 2022 Generalized Fermat 1137 113327472^131072+1 1055698 L5467 2022 Generalized Fermat 1138 113325850^131072+1 1055698 L4559 2022 Generalized Fermat 1139 113313172^131072+1 1055691 L5005 2022 Generalized Fermat 1140 113191714^131072+1 1055630 L5056 2022 Generalized Fermat 1141 113170004^131072+1 1055619 L4584 2022 Generalized Fermat 1142 428639*2^3506452-1 1055553 L2046 2011 1143 112996304^131072+1 1055532 L5544 2022 Generalized Fermat 1144 112958834^131072+1 1055513 L5512 2022 Generalized Fermat 1145 112852910^131072+1 1055459 L5157 2022 Generalized Fermat 1146 112719374^131072+1 1055392 L4793 2022 Generalized Fermat 1147 112580428^131072+1 1055322 L5512 2022 Generalized Fermat 1148 112248096^131072+1 1055154 L5359 2022 Generalized Fermat 1149 112053266^131072+1 1055055 L5359 2022 Generalized Fermat 1150 112023072^131072+1 1055039 L5156 2022 Generalized Fermat 1151 111673524^131072+1 1054861 L5548 2022 Generalized Fermat 1152 111181588^131072+1 1054610 L4550 2022 Generalized Fermat 1153 104*383^408249+1 1054591 L2012 2021 1154 110866802^131072+1 1054449 L5547 2022 Generalized Fermat 1155 555*2^3502765+1 1054441 L1823 2018 1156 110824714^131072+1 1054427 L4201 2022 Generalized Fermat 1157e 8300*171^472170+1 1054358 L5780 2023 1158 110428380^131072+1 1054223 L5543 2022 Generalized Fermat 1159 110406480^131072+1 1054212 L5051 2022 Generalized Fermat 1160 643*2^3501974+1 1054203 L1823 2018 1161 2*23^774109+1 1054127 g427 2014 Divides Phi(23^774109,2) 1162 1159*2^3501490+1 1054057 L2125 2018 1163 109678642^131072+1 1053835 L4559 2022 Generalized Fermat 1164 109654098^131072+1 1053823 L5143 2022 Generalized Fermat 1165 109142690^131072+1 1053557 L4201 2022 Generalized Fermat 1166 109082020^131072+1 1053525 L4773 2022 Generalized Fermat 1167 1189*2^3499042+1 1053320 L4724 2018 1168 108584736^131072+1 1053265 L5057 2022 Generalized Fermat 1169 108581414^131072+1 1053263 L5088 2022 Generalized Fermat 1170 108195632^131072+1 1053060 L5025 2022 Generalized Fermat 1171 108161744^131072+1 1053043 L4945 2022 Generalized Fermat 1172 108080390^131072+1 1053000 L4945 2022 Generalized Fermat 1173 107979316^131072+1 1052947 L4559 2022 Generalized Fermat 1174 107922308^131072+1 1052916 L5025 2022 Generalized Fermat 1175 609*2^3497474+1 1052848 L1823 2018 1176 9*2^3497442+1 1052836 L1780 2012 Generalized Fermat, divides GF(3497441,10) 1177 107732730^131072+1 1052816 L5518 2022 Generalized Fermat 1178 107627678^131072+1 1052761 L5025 2022 Generalized Fermat 1179 107492880^131072+1 1052689 L4550 2022 Generalized Fermat 1180 107420312^131072+1 1052651 L4550 2022 Generalized Fermat 1181 107404768^131072+1 1052643 L4267 2022 Generalized Fermat 1182 107222132^131072+1 1052546 L5019 2022 Generalized Fermat 1183 107126228^131072+1 1052495 L5025 2022 Generalized Fermat 1184 87*2^3496188+1 1052460 L1576 2014 1185 106901434^131072+1 1052375 L4760 2022 Generalized Fermat 1186 106508704^131072+1 1052166 L5505 2022 Generalized Fermat 1187 106440698^131072+1 1052130 L4245 2022 Generalized Fermat 1188 106019242^131072+1 1051904 L5025 2022 Generalized Fermat 1189 105937832^131072+1 1051860 L4745 2022 Generalized Fermat 1190 783*2^3494129+1 1051841 L3824 2018 1191 105861526^131072+1 1051819 L5500 2022 Generalized Fermat 1192 105850338^131072+1 1051813 L5504 2022 Generalized Fermat 1193 105534478^131072+1 1051643 L5025 2022 Generalized Fermat 1194 105058710^131072+1 1051386 L5499 2022 Generalized Fermat 1195 104907548^131072+1 1051304 L4245 2022 Generalized Fermat 1196 104808996^131072+1 1051250 L4591 2022 Generalized Fermat 1197 104641854^131072+1 1051159 L4245 2022 Generalized Fermat 1198 51*2^3490971+1 1050889 L1823 2014 1199 1485*2^3490746+1 1050823 L1134 2021 1200 103828182^131072+1 1050715 L5072 2022 Generalized Fermat 1201 103605376^131072+1 1050593 L5056 2022 Generalized Fermat 1202 103289324^131072+1 1050419 L5044 2022 Generalized Fermat 1203 103280694^131072+1 1050414 L4745 2022 Generalized Fermat 1204 103209792^131072+1 1050375 L5025 2022 Generalized Fermat 1205 103094212^131072+1 1050311 L4245 2022 Generalized Fermat 1206 103013294^131072+1 1050266 L4745 2022 Generalized Fermat 1207 753*2^3488818+1 1050242 L1823 2018 1208 102507732^131072+1 1049986 L4245 2022 Generalized Fermat 1209 102469684^131072+1 1049965 L4245 2022 Generalized Fermat 1210 102397132^131072+1 1049925 L4720 2022 Generalized Fermat 1211 102257714^131072+1 1049847 L4245 2022 Generalized Fermat 1212 699*2^3487253+1 1049771 L1204 2018 1213 102050324^131072+1 1049732 L5036 2022 Generalized Fermat 1214 102021074^131072+1 1049716 L4245 2022 Generalized Fermat 1215 101915106^131072+1 1049656 L5469 2022 Generalized Fermat 1216 101856256^131072+1 1049623 L4774 2022 Generalized Fermat 1217 249*2^3486411+1 1049517 L4045 2015 1218 195*2^3486379+1 1049507 L4108 2015 1219 101607438^131072+1 1049484 L4591 2022 Generalized Fermat 1220 101328382^131072+1 1049328 L4591 2022 Generalized Fermat 1221 101270816^131072+1 1049295 L4245 2022 Generalized Fermat 1222 100865034^131072+1 1049067 L4387 2022 Generalized Fermat 1223 59912*5^1500861+1 1049062 L3772 2014 1224 495*2^3484656+1 1048989 L3035 2016 1225 100719472^131072+1 1048985 L5270 2022 Generalized Fermat 1226 100534258^131072+1 1048880 L4245 2022 Generalized Fermat 1227 100520930^131072+1 1048872 L4201 2022 Generalized Fermat 1228 100441116^131072+1 1048827 L4309 2022 Generalized Fermat 1229a Phi(3,-3*2^1742059) 1048825 A3 2023 Generalized unique 1230 100382228^131072+1 1048794 L4308 2022 Generalized Fermat 1231 100369508^131072+1 1048786 L5157 2022 Generalized Fermat 1232 100324226^131072+1 1048761 L4201 2022 Generalized Fermat 1233 100010426^131072+1 1048582 L5375 2022 Generalized Fermat 1234 323*2^3482789+1 1048427 L1204 2016 1235a 3801*2^3482723+1 1048408 L5517 2023 1236 99665972^131072+1 1048386 L4201 2022 Generalized Fermat 1237 99650934^131072+1 1048377 L5375 2022 Generalized Fermat 1238 99557826^131072+1 1048324 L5466 2022 Generalized Fermat 1239a 8235*2^3482277+1 1048274 L5820 2023 1240a 9155*2^3482129+1 1048230 L5226 2023 1241 99351950^131072+1 1048206 L5143 2022 Generalized Fermat 1242a 4325*2^3481969+1 1048181 L5434 2023 1243 99189780^131072+1 1048113 L4201 2022 Generalized Fermat 1244 1149*2^3481694+1 1048098 L1823 2018 1245 98978354^131072+1 1047992 L5465 2022 Generalized Fermat 1246a 6127*2^3481244+1 1047963 L5226 2023 1247 98922946^131072+1 1047960 L5453 2022 Generalized Fermat 1248a 8903*2^3481217+1 1047955 L5226 2023 1249a 3595*2^3481178+1 1047943 L5214 2023 1250b 3799*2^3480810+1 1047832 L5226 2023 1251b 6101*2^3480801+1 1047830 L5226 2023 1252 98652282^131072+1 1047804 L4201 2022 Generalized Fermat 1253c 1740349*2^3480698+1 1047801 L5765 2023 Generalized Cullen 1254 98557818^131072+1 1047750 L5464 2022 Generalized Fermat 1255 98518362^131072+1 1047727 L5460 2022 Generalized Fermat 1256b 5397*2^3480379+1 1047703 L5226 2023 1257b 5845*2^3479972+1 1047580 L5517 2023 1258 98240694^131072+1 1047566 L4720 2022 Generalized Fermat 1259 98200338^131072+1 1047543 L4559 2022 Generalized Fermat 1260 701*2^3479779+1 1047521 L2125 2018 1261 98137862^131072+1 1047507 L4525 2022 Generalized Fermat 1262 813*2^3479728+1 1047506 L4724 2018 1263b 7125*2^3479509+1 1047441 L5812 2023 1264b 1971*2^3479061+1 1047306 L5226 2023 1265b 1215*2^3478543+1 1047149 L5226 2023 1266 97512766^131072+1 1047143 L5460 2022 Generalized Fermat 1267b 5985*2^3478217+1 1047052 L5387 2023 1268b 3093*2^3478148+1 1047031 L5261 2023 1269b 2145*2^3478095+1 1047015 L5387 2023 1270b 6685*2^3478086+1 1047013 L5237 2023 1271b 9603*2^3478084+1 1047012 L5178 2023 1272b 1315*2^3477718+1 1046901 L5316 2023 1273 97046574^131072+1 1046870 L4956 2022 Generalized Fermat 1274 197*2^3477399+1 1046804 L2125 2015 1275b 8303*2^3477201+1 1046746 L5387 2023 1276 96821302^131072+1 1046738 L5453 2022 Generalized Fermat 1277c 5925*2^3477009+1 1046688 L5810 2023 1278 96734274^131072+1 1046686 L5297 2022 Generalized Fermat 1279c 7825*2^3476524+1 1046542 L5174 2023 1280 96475576^131072+1 1046534 L4424 2022 Generalized Fermat 1281c 8197*2^3476332+1 1046485 L5174 2023 1282c 8529*2^3476111+1 1046418 L5387 2023 1283c 8411*2^3476055+1 1046401 L5783 2023 1284c 4319*2^3475955+1 1046371 L5803 2023 1285 96111850^131072+1 1046319 L4245 2022 Generalized Fermat 1286 95940796^131072+1 1046218 L4591 2022 Generalized Fermat 1287c 6423*2^3475393+1 1046202 L5174 2023 1288c 2281*2^3475340+1 1046185 L5302 2023 1289c 7379*2^3474983+1 1046078 L5798 2023 1290 4*5^1496566+1 1046056 L4965 2023 Generalized Fermat 1291 95635202^131072+1 1046036 L5452 2021 Generalized Fermat 1292 95596816^131072+1 1046013 L4591 2021 Generalized Fermat 1293d 4737*2^3474562+1 1045952 L5302 2023 1294d 2407*2^3474406+1 1045904 L5557 2023 1295 95308284^131072+1 1045841 L4584 2021 Generalized Fermat 1296 491*2^3473837+1 1045732 L4343 2016 1297d 2693*2^3473721+1 1045698 L5174 2023 1298 94978760^131072+1 1045644 L4201 2021 Generalized Fermat 1299d 3375*2^3473210+1 1045544 L5294 2023 1300d 8835*2^3472666+1 1045381 L5178 2023 1301d 5615*2^3472377+1 1045294 L5174 2023 1302d 1785*2^3472229+1 1045249 L875 2023 1303d 8997*2^3472036+1 1045191 L5302 2023 1304d 9473*2^3471885+1 1045146 L5294 2023 1305d 7897*2^3471568+1 1045050 L5294 2023 1306 93950924^131072+1 1045025 L5425 2021 Generalized Fermat 1307 93886318^131072+1 1044985 L5433 2021 Generalized Fermat 1308 1061*2^3471354-1 1044985 L1828 2017 1309e 1913*2^3471177+1 1044932 L5189 2023 1310 93773904^131072+1 1044917 L4939 2021 Generalized Fermat 1311e 7723*2^3471074+1 1044902 L5189 2023 1312e 4195*2^3470952+1 1044865 L5294 2023 1313 93514592^131072+1 1044760 L4591 2021 Generalized Fermat 1314e 5593*2^3470520+1 1044735 L5387 2023 1315e 3665*2^3469955+1 1044565 L5189 2023 1316e 3301*2^3469708+1 1044490 L5261 2023 1317e 6387*2^3469634+1 1044468 L5192 2023 1318 93035888^131072+1 1044467 L4245 2021 Generalized Fermat 1319e 8605*2^3469570+1 1044449 L5387 2023 1320e 1359*2^3468725+1 1044194 L5197 2023 1321 92460588^131072+1 1044114 L5254 2021 Generalized Fermat 1322e 7585*2^3468338+1 1044078 L5197 2023 1323e 1781*2^3468335+1 1044077 L5387 2023 1324f 6885*2^3468181+1 1044031 L5197 2023 1325f 7287*2^3467938+1 1043958 L5776 2023 1326 92198216^131072+1 1043953 L4738 2021 Generalized Fermat 1327f 3163*2^3467710+1 1043889 L5517 2023 1328f 6099*2^3467689+1 1043883 L5197 2023 1329f 6665*2^3467627+1 1043864 L5174 2023 1330f 4099*2^3467462+1 1043814 L5774 2023 1331f 5285*2^3467445+1 1043809 L5189 2023 1332 91767880^131072+1 1043686 L5051 2021 Generalized Fermat 1333 91707732^131072+1 1043649 L4591 2021 Generalized Fermat 1334f 5935*2^3466880+1 1043639 L5197 2023 1335 91689894^131072+1 1043638 L4591 2021 Generalized Fermat 1336 91685784^131072+1 1043635 L4591 2021 Generalized Fermat 1337f 8937*2^3466822+1 1043622 L5174 2023 1338 91655310^131072+1 1043616 L4659 2021 Generalized Fermat 1339f 8347*2^3466736+1 1043596 L5770 2023 1340f 8863*2^3465780+1 1043308 L5766 2023 1341f 3895*2^3465744+1 1043297 L5640 2023 1342 91069366^131072+1 1043251 L5277 2021 Generalized Fermat 1343 91049202^131072+1 1043239 L4591 2021 Generalized Fermat 1344 91033554^131072+1 1043229 L4591 2021 Generalized Fermat 1345 8561*2^3465371+1 1043185 L5197 2023 1346 90942952^131072+1 1043172 L4387 2021 Generalized Fermat 1347 90938686^131072+1 1043170 L4387 2021 Generalized Fermat 1348 9971*2^3465233+1 1043144 L5488 2023 1349 90857490^131072+1 1043119 L4591 2021 Generalized Fermat 1350 3801*2^3464980+1 1043067 L5197 2023 1351 3099*2^3464739+1 1042994 L5284 2023 1352 90382348^131072+1 1042820 L4267 2021 Generalized Fermat 1353 641*2^3464061+1 1042790 L1444 2018 1354 6717*2^3463735+1 1042692 L5754 2023 1355 6015*2^3463561+1 1042640 L5387 2023 1356 90006846^131072+1 1042583 L4773 2021 Generalized Fermat 1357 1667*2^3463355+1 1042577 L5226 2023 1358 2871*2^3463313+1 1042565 L5189 2023 1359 89977312^131072+1 1042565 L5070 2021 Generalized Fermat 1360 6007*2^3463048+1 1042486 L5226 2023 1361 89790434^131072+1 1042446 L5007 2021 Generalized Fermat 1362 9777*2^3462742+1 1042394 L5197 2023 1363 5215*2^3462740+1 1042393 L5174 2023 1364 8365*2^3462722+1 1042388 L5320 2023 1365 3597*2^3462056+1 1042187 L5174 2023 1366 2413*2^3461890+1 1042137 L5197 2023 1367 89285798^131072+1 1042125 L5157 2021 Generalized Fermat 1368 453*2^3461688+1 1042075 L3035 2016 1369 89113896^131072+1 1042016 L5338 2021 Generalized Fermat 1370 4401*2^3461476+1 1042012 L5197 2023 1371 9471*2^3461305+1 1041961 L5594 2023 1372 7245*2^3461070+1 1041890 L5449 2023 1373 3969*2^3460942+1 1041851 L5471 2023 Generalized Fermat 1374 4365*2^3460914+1 1041843 L5197 2023 1375 4613*2^3460861+1 1041827 L5614 2023 1376 88760062^131072+1 1041789 L4903 2021 Generalized Fermat 1377 5169*2^3460553+1 1041734 L5742 2023 1378 8395*2^3460530+1 1041728 L5284 2023 1379 5835*2^3460515+1 1041723 L5740 2023 1380 8059*2^3460246+1 1041642 L5350 2023 1381 571*2^3460216+1 1041632 L3035 2018 1382 6065*2^3460205+1 1041630 L5683 2023 1383 88243020^131072+1 1041457 L4774 2021 Generalized Fermat 1384 88166868^131072+1 1041408 L5277 2021 Generalized Fermat 1385 6237*2^3459386+1 1041383 L5509 2023 1386 88068088^131072+1 1041344 L4933 2021 Generalized Fermat 1387 4029*2^3459062+1 1041286 L5727 2023 1388 87920992^131072+1 1041249 L4249 2021 Generalized Fermat 1389 7055*2^3458909+1 1041240 L5509 2023 1390 7297*2^3458768+1 1041197 L5726 2023 1391 2421*2^3458432+1 1041096 L5725 2023 1392 7907*2^3458207+1 1041028 L5509 2023 1393 87547832^131072+1 1041006 L4591 2021 Generalized Fermat 1394 87454694^131072+1 1040946 L4672 2021 Generalized Fermat 1395 7839*2^3457846+1 1040920 L5231 2023 1396 87370574^131072+1 1040891 L5297 2021 Generalized Fermat 1397 87352356^131072+1 1040879 L4387 2021 Generalized Fermat 1398 87268788^131072+1 1040825 L4917 2021 Generalized Fermat 1399 87192538^131072+1 1040775 L4861 2021 Generalized Fermat 1400 5327*2^3457363+1 1040774 L5715 2023 1401 87116452^131072+1 1040725 L5297 2021 Generalized Fermat 1402 87039658^131072+1 1040675 L5297 2021 Generalized Fermat 1403 6059*2^3457001+1 1040665 L5197 2023 1404 8953*2^3456938+1 1040646 L5724 2023 1405 8669*2^3456759+1 1040593 L5710 2023 1406 86829162^131072+1 1040537 L5265 2021 Generalized Fermat 1407 4745*2^3456167+1 1040414 L5705 2023 1408 8213*2^3456141+1 1040407 L5703 2023 1409 86413544^131072+1 1040264 L4914 2021 Generalized Fermat 1410 86347638^131072+1 1040221 L4848 2021 Generalized Fermat 1411 86295564^131072+1 1040186 L5030 2021 Generalized Fermat 1412 1155*2^3455254+1 1040139 L4711 2017 1413 37292*5^1487989+1 1040065 L3553 2013 1414 86060696^131072+1 1040031 L5057 2021 Generalized Fermat 1415 5525*2^3454069+1 1039783 L5651 2023 1416 4235*2^3453573+1 1039633 L5650 2023 1417 6441*2^3453227+1 1039529 L5683 2023 1418 4407*2^3453195+1 1039519 L5650 2023 1419 9867*2^3453039+1 1039473 L5686 2023 1420 85115888^131072+1 1039403 L4909 2021 Generalized Fermat 1421 4857*2^3452675+1 1039363 L5600 2023 1422 8339*2^3452667+1 1039361 L5651 2023 1423 84924212^131072+1 1039275 L4309 2021 Generalized Fermat 1424 7079*2^3452367+1 1039270 L5650 2023 1425 5527*2^3452342+1 1039263 L5679 2023 1426 84817722^131072+1 1039203 L4726 2021 Generalized Fermat 1427 84765338^131072+1 1039168 L4245 2021 Generalized Fermat 1428 84757790^131072+1 1039163 L5051 2021 Generalized Fermat 1429 84723284^131072+1 1039140 L5051 2021 Generalized Fermat 1430 84715930^131072+1 1039135 L4963 2021 Generalized Fermat 1431 84679936^131072+1 1039111 L4864 2021 Generalized Fermat 1432 3719*2^3451667+1 1039059 L5294 2023 1433 6725*2^3451455+1 1038996 L5685 2023 1434 8407*2^3451334+1 1038959 L5524 2023 1435 84445014^131072+1 1038952 L4909 2021 Generalized Fermat 1436 84384358^131072+1 1038912 L4622 2021 Generalized Fermat 1437 1623*2^3451109+1 1038891 L5308 2023 1438 8895*2^3450982+1 1038854 L5666 2023 1439 84149050^131072+1 1038753 L5033 2021 Generalized Fermat 1440 2899*2^3450542+1 1038721 L5600 2023 1441 6337*2^3449506+1 1038409 L5197 2023 1442 4381*2^3449456+1 1038394 L5392 2023 1443 2727*2^3449326+1 1038355 L5421 2023 1444 2877*2^3449311+1 1038350 L5517 2023 1445 7507*2^3448920+1 1038233 L5284 2023 1446 3629*2^3448919+1 1038232 L5192 2023 1447 83364886^131072+1 1038220 L4591 2021 Generalized Fermat 1448 83328182^131072+1 1038195 L5051 2021 Generalized Fermat 1449 1273*2^3448551-1 1038121 L1828 2012 1450 1461*2^3448423+1 1038082 L4944 2023 1451 3235*2^3448352+1 1038061 L5571 2023 1452 4755*2^3448344+1 1038059 L5524 2023 1453 5655*2^3448288+1 1038042 L5651 2023 1454 4873*2^3448176+1 1038009 L5524 2023 1455 83003850^131072+1 1037973 L4963 2021 Generalized Fermat 1456 8139*2^3447967+1 1037946 L5652 2023 1457 1065*2^3447906+1 1037927 L4664 2017 1458 1717*2^3446756+1 1037581 L5517 2023 1459 6357*2^3446434+1 1037484 L5284 2023 1460 1155*2^3446253+1 1037429 L3035 2017 1461 9075*2^3446090+1 1037381 L5648 2023 1462 82008736^131072+1 1037286 L4963 2021 Generalized Fermat 1463 82003030^131072+1 1037282 L4410 2021 Generalized Fermat 1464 1483*2^3445724+1 1037270 L5650 2023 1465 81976506^131072+1 1037264 L4249 2021 Generalized Fermat 1466 2223*2^3445682+1 1037257 L5647 2023 1467 8517*2^3445488+1 1037200 L5302 2023 1468 2391*2^3445281+1 1037137 L5596 2023 1469 6883*2^3444784+1 1036988 L5264 2023 1470 81477176^131072+1 1036916 L4245 2020 Generalized Fermat 1471 81444036^131072+1 1036893 L4245 2020 Generalized Fermat 1472 8037*2^3443920+1 1036728 L5626 2023 1473 1375*2^3443850+1 1036706 L5192 2023 1474 81096098^131072+1 1036649 L4249 2020 Generalized Fermat 1475 27288429267119080686...(1036580 other digits)...83679577406643267931 1036620 p384 2015 1476 943*2^3442990+1 1036447 L4687 2017 1477 7743*2^3442814+1 1036395 L5514 2023 1478 5511*2^3442468+1 1036290 L5514 2022 1479 80284312^131072+1 1036076 L5051 2020 Generalized Fermat 1480 6329*2^3441717+1 1036064 L5631 2022 1481 3957*2^3441568+1 1036019 L5476 2022 1482 80146408^131072+1 1035978 L5051 2020 Generalized Fermat 1483 4191*2^3441427+1 1035977 L5189 2022 1484 2459*2^3441331+1 1035948 L5514 2022 1485 4335*2^3441306+1 1035940 L5178 2022 1486 2331*2^3441249+1 1035923 L5626 2022 1487 79912550^131072+1 1035812 L5186 2020 Generalized Fermat 1488 79801426^131072+1 1035733 L4245 2020 Generalized Fermat 1489 79789806^131072+1 1035725 L4658 2020 Generalized Fermat 1490 2363*2^3440385+1 1035663 L5625 2022 1491 5265*2^3440332+1 1035647 L5421 2022 1492 6023*2^3440241+1 1035620 L5517 2022 1493 943*2^3440196+1 1035606 L1448 2017 1494 6663*2^3439901+1 1035518 L5624 2022 1495 79485098^131072+1 1035507 L5130 2020 Generalized Fermat 1496 79428414^131072+1 1035466 L4793 2020 Generalized Fermat 1497 79383608^131072+1 1035434 L4387 2020 Generalized Fermat 1498 5745*2^3439450+1 1035382 L5178 2022 1499 79201682^131072+1 1035303 L5051 2020 Generalized Fermat 1500 5109*2^3439090+1 1035273 L5594 2022 1501 543*2^3438810+1 1035188 L3035 2017 1502 625*2^3438572+1 1035117 L1355 2017 Generalized Fermat 1503 3325*2^3438506+1 1035097 L5619 2022 1504 78910032^131072+1 1035093 L5051 2020 Generalized Fermat 1505 78880690^131072+1 1035072 L5159 2020 Generalized Fermat 1506 78851276^131072+1 1035051 L4928 2020 Generalized Fermat 1507 4775*2^3438217+1 1035011 L5618 2022 1508 78714954^131072+1 1034953 L5130 2020 Generalized Fermat 1509 6963*2^3437988+1 1034942 L5616 2022 1510 74*941^348034-1 1034913 L5410 2020 1511 7423*2^3437856+1 1034902 L5192 2022 1512 6701*2^3437801+1 1034886 L5615 2022 1513 5741*2^3437773+1 1034877 L5517 2022 1514 78439440^131072+1 1034753 L5051 2020 Generalized Fermat 1515 5601*2^3437259+1 1034722 L5612 2022 1516 7737*2^3437192+1 1034702 L5611 2022 1517 113*2^3437145+1 1034686 L4045 2015 1518 78240016^131072+1 1034608 L4245 2020 Generalized Fermat 1519 6387*2^3436719+1 1034560 L5613 2022 1520 78089172^131072+1 1034498 L4245 2020 Generalized Fermat 1521 2921*2^3436299+1 1034433 L5231 2022 1522 9739*2^3436242+1 1034416 L5178 2022 1523 77924964^131072+1 1034378 L5051 2020 Generalized Fermat 1524 77918854^131072+1 1034374 L4760 2020 Generalized Fermat 1525 1147*2^3435970+1 1034334 L3035 2017 1526 4589*2^3435707+1 1034255 L5174 2022 1527 7479*2^3435683+1 1034248 L5421 2022 1528 2863*2^3435616+1 1034227 L5197 2022 1529 77469882^131072+1 1034045 L4591 2020 Generalized Fermat 1530 9863*2^3434697+1 1033951 L5189 2022 1531 4065*2^3434623+1 1033929 L5197 2022 1532 77281404^131072+1 1033906 L4963 2020 Generalized Fermat 1533 9187*2^3434126+1 1033779 L5600 2022 1534 9531*2^3434103+1 1033772 L5601 2022 1535 1757*2^3433547+1 1033604 L5594 2022 1536 1421*2^3433099+1 1033469 L5237 2022 1537 3969*2^3433007+1 1033442 L5189 2022 1538 6557*2^3433003+1 1033441 L5261 2022 1539 7335*2^3432982+1 1033435 L5231 2022 1540 7125*2^3432836+1 1033391 L5594 2022 1541 2517*2^3432734+1 1033360 L5231 2022 1542 911*2^3432643+1 1033332 L1355 2017 1543 5413*2^3432626+1 1033328 L5231 2022 1544 76416048^131072+1 1033265 L4672 2020 Generalized Fermat 1545 3753*2^3432413+1 1033263 L5261 2022 1546 2691*2^3432191+1 1033196 L5585 2022 1547 3933*2^3432125+1 1033177 L5387 2022 1548 76026988^131072+1 1032975 L5094 2020 Generalized Fermat 1549 76018874^131072+1 1032969 L4774 2020 Generalized Fermat 1550 1435*2^3431284+1 1032923 L5587 2022 1551 75861530^131072+1 1032851 L5053 2020 Generalized Fermat 1552 6783*2^3430781+1 1032772 L5261 2022 1553 8079*2^3430683+1 1032743 L5585 2022 1554 75647276^131072+1 1032690 L4677 2020 Generalized Fermat 1555 75521414^131072+1 1032595 L4584 2020 Generalized Fermat 1556 6605*2^3430187+1 1032593 L5463 2022 1557 3761*2^3430057+1 1032554 L5582 2022 1558 6873*2^3429937+1 1032518 L5294 2022 1559 8067*2^3429891+1 1032504 L5581 2022 1560 3965*2^3429719+1 1032452 L5579 2022 1561 3577*2^3428812+1 1032179 L5401 2022 1562 8747*2^3428755+1 1032163 L5493 2022 1563 9147*2^3428638+1 1032127 L5493 2022 1564 3899*2^3428535+1 1032096 L5174 2022 1565 74833516^131072+1 1032074 L5102 2020 Generalized Fermat 1566 74817490^131072+1 1032062 L4591 2020 Generalized Fermat 1567 8891*2^3428303+1 1032026 L5532 2022 1568e 793181*20^793181+1 1031959 L5765 2023 Generalized Cullen 1569 2147*2^3427371+1 1031745 L5189 2022 1570 74396818^131072+1 1031741 L4791 2020 Generalized Fermat 1571 74381296^131072+1 1031729 L4550 2020 Generalized Fermat 1572 74363146^131072+1 1031715 L4898 2020 Generalized Fermat 1573 1127*2^3427219+1 1031699 L3035 2017 1574 74325990^131072+1 1031687 L5024 2020 Generalized Fermat 1575 3021*2^3427059+1 1031652 L5554 2022 1576 3255*2^3426983+1 1031629 L5231 2022 1577 1733*2^3426753+1 1031559 L5565 2022 1578 2339*2^3426599+1 1031513 L5237 2022 1579 4729*2^3426558+1 1031501 L5493 2022 1580 73839292^131072+1 1031313 L4550 2020 Generalized Fermat 1581 5445*2^3425839+1 1031285 L5237 2022 1582 159*2^3425766+1 1031261 L4045 2015 1583 73690464^131072+1 1031198 L4884 2020 Generalized Fermat 1584 3405*2^3425045+1 1031045 L5261 2022 1585 73404316^131072+1 1030976 L5011 2020 Generalized Fermat 1586 1695*2^3424517+1 1030886 L5387 2022 1587 4715*2^3424433+1 1030861 L5557 2022 1588 5525*2^3424423+1 1030858 L5387 2022 1589 8615*2^3424231+1 1030801 L5261 2022 1590 5805*2^3424200+1 1030791 L5237 2022 1591 73160610^131072+1 1030787 L4550 2020 Generalized Fermat 1592 73132228^131072+1 1030765 L4905 2020 Generalized Fermat 1593 73099962^131072+1 1030740 L5068 2020 Generalized Fermat 1594 2109*2^3423798-3027*2^988658+1 1030670 CH13 2023 Arithmetic progression (3,d=2109*2^3423797-3027*2^988658) 1595 2109*2^3423797+1 1030669 L5197 2022 1596 4929*2^3423494+1 1030579 L5554 2022 1597 2987*2^3422911+1 1030403 L5226 2022 1598 72602370^131072+1 1030351 L4201 2020 Generalized Fermat 1599 4843*2^3422644+1 1030323 L5553 2022 1600 5559*2^3422566+1 1030299 L5555 2022 1601 7583*2^3422501+1 1030280 L5421 2022 1602 1119*2^3422189+1 1030185 L1355 2017 1603 2895*2^3422031-143157*2^2144728+1 1030138 p423 2023 Arithmetic progression (3,d=2895*2^3422030-143157*2^2144728) 1604 2895*2^3422030+1 1030138 L5237 2022 1605 2835*2^3421697+1 1030037 L5387 2022 1606 3363*2^3421353+1 1029934 L5226 2022 1607 72070092^131072+1 1029932 L4201 2020 Generalized Fermat 1608 9147*2^3421264+1 1029908 L5237 2022 1609 9705*2^3420915+1 1029803 L5540 2022 1610 1005*2^3420846+1 1029781 L2714 2017 Divides GF(3420844,10) 1611 8919*2^3420758+1 1029755 L5226 2022 1612 71732900^131072+1 1029665 L5053 2020 Generalized Fermat 1613 71679108^131072+1 1029623 L5072 2020 Generalized Fermat 1614 5489*2^3420137+1 1029568 L5174 2022 1615 9957*2^3420098+1 1029557 L5237 2022 1616 93*10^1029523-1 1029525 L4789 2019 Near-repdigit 1617 71450224^131072+1 1029440 L5029 2020 Generalized Fermat 1618 7213*2^3419370+1 1029337 L5421 2022 1619 7293*2^3419264+1 1029305 L5192 2022 1620 975*2^3419230+1 1029294 L3545 2017 1621 4191*2^3419227+1 1029294 L5421 2022 1622 2393*2^3418921+1 1029202 L5197 2022 1623 999*2^3418885+1 1029190 L3035 2017 1624 2925*2^3418543+1 1029088 L5174 2022 1625 70960658^131072+1 1029049 L5039 2020 Generalized Fermat 1626 70948704^131072+1 1029039 L4660 2020 Generalized Fermat 1627 70934282^131072+1 1029028 L5067 2020 Generalized Fermat 1628 7383*2^3418297+1 1029014 L5189 2022 1629 70893680^131072+1 1028995 L5063 2020 Generalized Fermat 1630 907*2^3417890+1 1028891 L3035 2017 1631 5071*2^3417884+1 1028890 L5237 2022 1632 3473*2^3417741+1 1028847 L5541 2022 1633 191249*2^3417696-1 1028835 L1949 2010 1634 70658696^131072+1 1028806 L5051 2020 Generalized Fermat 1635 3299*2^3417329+1 1028723 L5421 2022 1636 6947*2^3416979+1 1028618 L5540 2022 1637 70421038^131072+1 1028615 L4984 2020 Generalized Fermat 1638 8727*2^3416652+1 1028519 L5226 2022 1639 8789*2^3416543+1 1028486 L5197 2022 1640 70050828^131072+1 1028315 L5021 2020 Generalized Fermat 1641 7917*2^3415947+1 1028307 L5537 2022 1642 70022042^131072+1 1028291 L4201 2020 Generalized Fermat 1643 2055*2^3415873+1 1028284 L5535 2022 1644 4731*2^3415712+1 1028236 L5192 2022 1645 2219*2^3415687+1 1028228 L5178 2022 1646 69915032^131072+1 1028204 L4591 2020 Generalized Fermat 1647 5877*2^3415419+1 1028148 L5532 2022 1648 3551*2^3415275+1 1028104 L5231 2022 1649 69742382^131072+1 1028063 L5053 2020 Generalized Fermat 1650 2313*2^3415046+1 1028035 L5226 2022 1651 69689592^131072+1 1028020 L4387 2020 Generalized Fermat 1652 7637*2^3414875+1 1027984 L5507 2022 1653 2141*2^3414821+1 1027967 L5226 2022 1654 69622572^131072+1 1027965 L4909 2020 Generalized Fermat 1655 3667*2^3414686+1 1027927 L5226 2022 1656 69565722^131072+1 1027919 L4387 2020 Generalized Fermat 1657 6159*2^3414623+1 1027908 L5226 2022 1658 69534788^131072+1 1027894 L5029 2020 Generalized Fermat 1659 4577*2^3413539+1 1027582 L5387 2022 1660 5137*2^3413524+1 1027577 L5261 2022 1661 8937*2^3413364+1 1027529 L5527 2022 1662 8829*2^3413339+1 1027522 L5531 2022 1663 7617*2^3413315+1 1027515 L5197 2022 1664 68999820^131072+1 1027454 L5044 2020 Generalized Fermat 1665 3141*2^3413112+1 1027453 L5463 2022 1666 8831*2^3412931+1 1027399 L5310 2022 1667 68924112^131072+1 1027391 L4745 2020 Generalized Fermat 1668 68918852^131072+1 1027387 L5021 2020 Generalized Fermat 1669 5421*2^3412877+1 1027383 L5310 2022 1670 9187*2^3412700+1 1027330 L5337 2022 1671 68811158^131072+1 1027298 L4245 2020 Generalized Fermat 1672 8243*2^3412577+1 1027292 L5524 2022 1673 1751*2^3412565+1 1027288 L5523 2022 1674 9585*2^3412318+1 1027215 L5197 2022 1675 9647*2^3412247+1 1027193 L5178 2022 1676 3207*2^3412108+1 1027151 L5189 2022 1677 479*2^3411975+1 1027110 L2873 2016 1678 245*2^3411973+1 1027109 L1935 2015 1679 177*2^3411847+1 1027071 L4031 2015 1680 68536972^131072+1 1027071 L5027 2020 Generalized Fermat 1681 9963*2^3411566+1 1026988 L5237 2022 1682 68372810^131072+1 1026934 L4956 2020 Generalized Fermat 1683 9785*2^3411223+1 1026885 L5189 2022 1684 5401*2^3411136+1 1026858 L5261 2022 1685 68275006^131072+1 1026853 L4963 2020 Generalized Fermat 1686 9431*2^3411105+1 1026849 L5237 2022 1687 8227*2^3410878+1 1026781 L5316 2022 1688 4735*2^3410724+1 1026734 L5226 2022 1689 9515*2^3410707+1 1026730 L5237 2022 1690 6783*2^3410690+1 1026724 L5434 2022 1691 8773*2^3410558+1 1026685 L5261 2022 1692 4629*2^3410321+1 1026613 L5517 2022 1693 67894288^131072+1 1026535 L5025 2020 Generalized Fermat 1694 113*2^3409934-1 1026495 L2484 2014 1695 5721*2^3409839+1 1026468 L5226 2022 1696 67725850^131072+1 1026393 L5029 2020 Generalized Fermat 1697 6069*2^3409493+1 1026364 L5237 2022 1698 1981*910^346850+1 1026347 L1141 2021 1699 5317*2^3409236+1 1026287 L5471 2022 1700 7511*2^3408985+1 1026211 L5514 2022 1701 7851*2^3408909+1 1026188 L5176 2022 1702 67371416^131072+1 1026094 L4550 2020 Generalized Fermat 1703 6027*2^3408444+1 1026048 L5239 2022 1704 59*2^3408416-1 1026038 L426 2010 1705 2153*2^3408333+1 1026014 L5237 2022 1706 9831*2^3408056+1 1025932 L5233 2022 1707 3615*2^3408035+1 1025925 L5217 2022 1708 6343*2^3407950+1 1025899 L5226 2022 1709 8611*2^3407516+1 1025769 L5509 2022 1710 66982940^131072+1 1025765 L4249 2020 Generalized Fermat 1711 7111*2^3407452+1 1025750 L5508 2022 1712 66901180^131072+1 1025696 L5018 2020 Generalized Fermat 1713 6945*2^3407256+1 1025691 L5507 2022 1714 6465*2^3407229+1 1025682 L5301 2022 1715 1873*2^3407156+1 1025660 L5440 2022 1716 7133*2^3406377+1 1025426 L5279 2022 1717 7063*2^3406122+1 1025349 L5178 2022 1718 3105*2^3405800+1 1025252 L5502 2022 1719 953*2^3405729+1 1025230 L3035 2017 1720 66272848^131072+1 1025159 L5013 2020 Generalized Fermat 1721 66131722^131072+1 1025037 L4530 2020 Generalized Fermat 1722 373*2^3404702+1 1024921 L3924 2016 1723 7221*2^3404507+1 1024863 L5231 2022 1724 6641*2^3404259+1 1024788 L5501 2022 1725 9225*2^3404209+1 1024773 L5250 2022 1726 65791182^131072+1 1024743 L4623 2019 Generalized Fermat 1727 833*2^3403765+1 1024639 L3035 2017 1728 65569854^131072+1 1024552 L4210 2019 Generalized Fermat 1729 2601*2^3403459+1 1024547 L5350 2022 1730 8835*2^3403266+1 1024490 L5161 2022 1731 7755*2^3403010+1 1024412 L5161 2022 1732 3123*2^3402834+1 1024359 L5260 2022 1733 65305572^131072+1 1024322 L5001 2019 Generalized Fermat 1734 65200798^131072+1 1024230 L4999 2019 Generalized Fermat 1735 1417*2^3402246+1 1024182 L5497 2022 1736 5279*2^3402241+1 1024181 L5250 2022 1737 6651*2^3402137+1 1024150 L5476 2022 1738 1779*2^3401715+1 1024022 L5493 2022 1739 64911056^131072+1 1023977 L4870 2019 Generalized Fermat 1740 8397*2^3401502+1 1023959 L5476 2022 1741 4057*2^3401472+1 1023949 L5492 2022 1742 64791668^131072+1 1023872 L4905 2019 Generalized Fermat 1743 4095*2^3401174+1 1023860 L5418 2022 1744 5149*2^3400970+1 1023798 L5176 2022 1745 4665*2^3400922+1 1023784 L5308 2022 1746 24*414^391179+1 1023717 L4273 2016 1747 64568930^131072+1 1023676 L4977 2019 Generalized Fermat 1748 64506894^131072+1 1023621 L4977 2019 Generalized Fermat 1749 1725*2^3400371+1 1023617 L5197 2022 1750 64476916^131072+1 1023595 L4997 2019 Generalized Fermat 1751 9399*2^3400243+1 1023580 L5488 2022 1752 1241*2^3400127+1 1023544 L5279 2022 1753 1263*2^3399876+1 1023468 L5174 2022 1754 1167*2^3399748+1 1023430 L3545 2017 1755 64024604^131072+1 1023194 L4591 2019 Generalized Fermat 1756 7679*2^3398569+1 1023076 L5295 2022 1757 6447*2^3398499+1 1023054 L5302 2022 1758 63823568^131072+1 1023015 L4585 2019 Generalized Fermat 1759 2785*2^3398332+1 1023004 L5250 2022 1760 611*2^3398273+1 1022985 L3035 2017 1761 2145*2^3398034+1 1022914 L5302 2022 1762 3385*2^3397254+1 1022679 L5161 2022 1763 4*3^2143374+1 1022650 L4965 2020 Generalized Fermat 1764 4463*2^3396657+1 1022500 L5476 2022 1765 2889*2^3396450+1 1022437 L5178 2022 1766 8523*2^3396448+1 1022437 L5231 2022 1767 63168480^131072+1 1022428 L4861 2019 Generalized Fermat 1768 63165756^131072+1 1022425 L4987 2019 Generalized Fermat 1769 3349*2^3396326+1 1022400 L5480 2022 1770 63112418^131072+1 1022377 L4201 2019 Generalized Fermat 1771 4477*2^3395786+1 1022238 L5161 2022 1772 3853*2^3395762+1 1022230 L5302 2022 1773 2693*2^3395725+1 1022219 L5284 2022 1774 8201*2^3395673+1 1022204 L5178 2022 1775 255*2^3395661+1 1022199 L3898 2014 1776 1049*2^3395647+1 1022195 L3035 2017 1777 9027*2^3395623+1 1022189 L5263 2022 1778 2523*2^3395549+1 1022166 L5472 2022 1779 3199*2^3395402+1 1022122 L5264 2022 1780 342924651*2^3394939-1 1021988 L4166 2017 1781 3825*2^3394947+1 1021985 L5471 2022 1782 1895*2^3394731+1 1021920 L5174 2022 1783 62276102^131072+1 1021618 L4715 2019 Generalized Fermat 1784 555*2^3393389+1 1021515 L2549 2017 1785 1865*2^3393387+1 1021515 L5237 2022 1786 4911*2^3393373+1 1021511 L5231 2022 1787 62146946^131072+1 1021500 L4720 2019 Generalized Fermat 1788 5229*2^3392587+1 1021275 L5463 2022 1789 61837354^131072+1 1021215 L4656 2019 Generalized Fermat 1790 609*2^3392301+1 1021188 L3035 2017 1791 9787*2^3392236+1 1021169 L5350 2022 1792 303*2^3391977+1 1021090 L2602 2016 1793 805*2^3391818+1 1021042 L4609 2017 1794 6475*2^3391496+1 1020946 L5174 2022 1795 67*2^3391385-1 1020911 L1959 2014 1796 61267078^131072+1 1020688 L4923 2019 Generalized Fermat 1797 4639*2^3390634+1 1020687 L5189 2022 1798 5265*2^3390581+1 1020671 L5456 2022 1799 663*2^3390469+1 1020636 L4316 2017 1800 6945*2^3390340+1 1020598 L5174 2022 1801 5871*2^3390268+1 1020577 L5231 2022 1802 7443*2^3390141+1 1020539 L5226 2022 1803 5383*2^3389924+1 1020473 L5350 2021 1804 61030988^131072+1 1020468 L4898 2019 Generalized Fermat 1805 9627*2^3389331+1 1020295 L5231 2021 1806 60642326^131072+1 1020104 L4591 2019 Generalized Fermat 1807 8253*2^3388624+1 1020082 L5226 2021 1808 3329*2^3388472-1 1020036 L4841 2020 1809 4695*2^3388393+1 1020012 L5237 2021 1810 60540024^131072+1 1020008 L4591 2019 Generalized Fermat 1811 7177*2^3388144+1 1019937 L5174 2021 1812 60455792^131072+1 1019929 L4760 2019 Generalized Fermat 1813 9611*2^3388059+1 1019912 L5435 2021 1814 1833*2^3387760+1 1019821 L5226 2021 1815 9003*2^3387528+1 1019752 L5189 2021 1816 3161*2^3387141+1 1019635 L5226 2021 1817 7585*2^3387110+1 1019626 L5189 2021 1818 60133106^131072+1 1019624 L4942 2019 Generalized Fermat 1819 453*2^3387048+1 1019606 L2602 2016 1820 5177*2^3386919+1 1019568 L5226 2021 1821 8739*2^3386813+1 1019537 L5226 2021 1822 2875*2^3386638+1 1019484 L5226 2021 1823 7197*2^3386526+1 1019450 L5178 2021 1824 1605*2^3386229+1 1019360 L5226 2021 1825 8615*2^3386181+1 1019346 L5442 2021 1826 3765*2^3386141+1 1019334 L5174 2021 1827 5379*2^3385806+1 1019233 L5237 2021 1828 59720358^131072+1 1019232 L4656 2019 Generalized Fermat 1829 59692546^131072+1 1019206 L4747 2019 Generalized Fermat 1830 59515830^131072+1 1019037 L4737 2019 Generalized Fermat 1831 173198*5^1457792-1 1018959 L3720 2013 1832 59405420^131072+1 1018931 L4645 2019 Generalized Fermat 1833 2109*2^3384733+1 1018910 L5261 2021 1834 7067*2^3384667+1 1018891 L5439 2021 1835 59362002^131072+1 1018890 L4249 2019 Generalized Fermat 1836 59305348^131072+1 1018835 L4932 2019 Generalized Fermat 1837 2077*2^3384472+1 1018831 L5237 2021 1838 59210784^131072+1 1018745 L4926 2019 Generalized Fermat 1839 59161754^131072+1 1018697 L4928 2019 Generalized Fermat 1840 9165*2^3383917+1 1018665 L5435 2021 1841 5579*2^3383209+1 1018452 L5434 2021 1842 8241*2^3383131+1 1018428 L5387 2021 1843 7409*2^3382869+1 1018349 L5161 2021 1844 4883*2^3382813+1 1018332 L5161 2021 1845 9783*2^3382792+1 1018326 L5189 2021 1846 58589880^131072+1 1018145 L4923 2019 Generalized Fermat 1847 58523466^131072+1 1018080 L4802 2019 Generalized Fermat 1848 8877*2^3381936+1 1018069 L5429 2021 1849 58447816^131072+1 1018006 L4591 2019 Generalized Fermat 1850 58447642^131072+1 1018006 L4591 2019 Generalized Fermat 1851 6675*2^3381688+1 1017994 L5197 2021 1852 2445*2^3381129+1 1017825 L5231 2021 1853 58247118^131072+1 1017811 L4309 2019 Generalized Fermat 1854 3381*2^3380585+1 1017662 L5237 2021 1855 7899*2^3380459+1 1017624 L5421 2021 1856 5945*2^3379933+1 1017465 L5418 2021 1857 1425*2^3379921+1 1017461 L1134 2020 1858 4975*2^3379420+1 1017311 L5161 2021 1859 57704312^131072+1 1017278 L4591 2019 Generalized Fermat 1860 57694224^131072+1 1017268 L4656 2019 Generalized Fermat 1861 57594734^131072+1 1017169 L4656 2019 Generalized Fermat 1862 9065*2^3378851+1 1017140 L5414 2021 1863 2369*2^3378761+1 1017112 L5197 2021 1864 57438404^131072+1 1017015 L4745 2019 Generalized Fermat 1865 621*2^3378148+1 1016927 L3035 2017 1866 7035*2^3378141+1 1016926 L5408 2021 1867 2067*2^3378115+1 1016918 L5405 2021 1868 1093*2^3378000+1 1016883 L4583 2017 1869 9577*2^3377612+1 1016767 L5406 2021 1870 861*2^3377601+1 1016763 L4582 2017 1871 5811*2^3377016+1 1016587 L5261 2021 1872 2285*2^3376911+1 1016555 L5261 2021 1873 4199*2^3376903+1 1016553 L5174 2021 1874 6405*2^3376890+1 1016549 L5269 2021 1875 1783*2^3376810+1 1016525 L5261 2021 1876 5401*2^3376768+1 1016513 L5174 2021 1877 56917336^131072+1 1016496 L4729 2019 Generalized Fermat 1878 2941*2^3376536+1 1016443 L5174 2021 1879 1841*2^3376379+1 1016395 L5401 2021 1880 6731*2^3376133+1 1016322 L5261 2021 1881 56735576^131072+1 1016314 L4760 2019 Generalized Fermat 1882 8121*2^3375933+1 1016262 L5356 2021 1883 5505*2^3375777+1 1016214 L5174 2021 1884 56584816^131072+1 1016162 L4289 2019 Generalized Fermat 1885 3207*2^3375314+1 1016075 L5237 2021 1886 56459558^131072+1 1016036 L4892 2019 Generalized Fermat 1887 5307*2^3374939+1 1015962 L5392 2021 1888 56383242^131072+1 1015959 L4889 2019 Generalized Fermat 1889 56307420^131072+1 1015883 L4843 2019 Generalized Fermat 1890 208003!-1 1015843 p394 2016 Factorial 1891 6219*2^3374198+1 1015739 L5393 2021 1892 3777*2^3374072+1 1015701 L5261 2021 1893 9347*2^3374055+1 1015696 L5387 2021 1894 1461*2^3373383+1 1015493 L5384 2021 1895 6395*2^3373135+1 1015419 L5382 2021 1896 7869*2^3373021+1 1015385 L5381 2021 1897 55645700^131072+1 1015210 L4745 2019 Generalized Fermat 1898 4905*2^3372216+1 1015142 L5261 2021 1899 55579418^131072+1 1015142 L4745 2019 Generalized Fermat 1900 2839*2^3372034+1 1015087 L5174 2021 1901 7347*2^3371803+1 1015018 L5217 2021 1902 9799*2^3371378+1 1014890 L5261 2021 1903 4329*2^3371201+1 1014837 L5197 2021 1904 3657*2^3371183+1 1014831 L5360 2021 1905 55268442^131072+1 1014822 L4525 2019 Generalized Fermat 1906 179*2^3371145+1 1014819 L3763 2014 1907 5155*2^3371016+1 1014781 L5237 2021 1908 7575*2^3371010+1 1014780 L5237 2021 1909 55184170^131072+1 1014736 L4871 2018 Generalized Fermat 1910 9195*2^3370798+1 1014716 L5178 2021 1911 1749*2^3370786+1 1014711 L5362 2021 1912 8421*2^3370599+1 1014656 L5174 2021 1913 55015050^131072+1 1014561 L4205 2018 Generalized Fermat 1914 4357*2^3369572+1 1014346 L5231 2021 1915 6073*2^3369544+1 1014338 L5358 2021 1916 839*2^3369383+1 1014289 L2891 2017 1917 65*2^3369359+1 1014280 L5236 2021 1918 8023*2^3369228+1 1014243 L5356 2021 1919 677*2^3369115+1 1014208 L2103 2017 1920 1437*2^3369083+1 1014199 L5282 2021 1921 9509*2^3368705+1 1014086 L5237 2021 1922 54548788^131072+1 1014076 L4726 2018 Generalized Fermat 1923 4851*2^3368668+1 1014074 L5307 2021 1924 7221*2^3368448+1 1014008 L5353 2021 1925 5549*2^3368437+1 1014005 L5217 2021 1926 715*2^3368210+1 1013936 L4527 2017 1927 617*2^3368119+1 1013908 L4552 2017 1928 54361742^131072+1 1013881 L4210 2018 Generalized Fermat 1929 1847*2^3367999+1 1013872 L5352 2021 1930 54334044^131072+1 1013852 L4745 2018 Generalized Fermat 1931 6497*2^3367743+1 1013796 L5285 2021 1932 2533*2^3367666+1 1013772 L5326 2021 1933 6001*2^3367552+1 1013738 L5350 2021 1934 54212352^131072+1 1013724 L4307 2018 Generalized Fermat 1935 54206254^131072+1 1013718 L4249 2018 Generalized Fermat 1936 777*2^3367372+1 1013683 L4408 2017 1937 9609*2^3367351+1 1013678 L5285 2021 1938 54161106^131072+1 1013670 L4307 2018 Generalized Fermat 1939 2529*2^3367317+1 1013667 L5237 2021 1940 5941*2^3366960+1 1013560 L5189 2021 1941 5845*2^3366956+1 1013559 L5197 2021 1942 54032538^131072+1 1013535 L4591 2018 Generalized Fermat 1943 9853*2^3366608+1 1013454 L5178 2021 1944 61*2^3366033-1 1013279 L4405 2017 1945 7665*2^3365896+1 1013240 L5345 2021 1946 8557*2^3365648+1 1013165 L5346 2021 1947 369*2^3365614+1 1013154 L4364 2016 1948 53659976^131072+1 1013141 L4823 2018 Generalized Fermat 1949 8201*2^3365283+1 1013056 L5345 2021 1950 9885*2^3365151+1 1013016 L5344 2021 1951 5173*2^3365096+1 1012999 L5285 2021 1952 8523*2^3364918+1 1012946 L5237 2021 1953 3985*2^3364776+1 1012903 L5178 2021 1954 9711*2^3364452+1 1012805 L5192 2021 1955 7003*2^3364172+1 1012721 L5217 2021 1956 6703*2^3364088+1 1012696 L5337 2021 1957 7187*2^3364011+1 1012673 L5217 2021 1958 53161266^131072+1 1012610 L4307 2018 Generalized Fermat 1959 53078434^131072+1 1012521 L4835 2018 Generalized Fermat 1960 2345*2^3363157+1 1012415 L5336 2021 1961 6527*2^3363135+1 1012409 L5167 2021 1962 9387*2^3363088+1 1012395 L5161 2021 1963 8989*2^3362986+1 1012364 L5161 2021 1964 533*2^3362857+1 1012324 L3171 2017 1965 619*2^3362814+1 1012311 L4527 2017 1966 2289*2^3362723+1 1012284 L5161 2021 1967 7529*2^3362565+1 1012237 L5161 2021 1968 7377*2^3362366+1 1012177 L5161 2021 1969 4509*2^3362311+1 1012161 L5324 2021 1970 7021*2^3362208+1 1012130 L5178 2021 1971 52712138^131072+1 1012127 L4819 2018 Generalized Fermat 1972 104*873^344135-1 1012108 L4700 2018 1973 4953*2^3362054+1 1012083 L5323 2021 1974 8575*2^3361798+1 1012006 L5237 2021 1975 2139*2^3361706+1 1011978 L5174 2021 1976 6939*2^3361203+1 1011827 L5217 2021 1977 52412612^131072+1 1011802 L4289 2018 Generalized Fermat 1978 3^2120580-3^623816-1 1011774 CH9 2019 1979 8185*2^3360896+1 1011735 L5189 2021 1980 2389*2^3360882+1 1011730 L5317 2021 1981 2787*2^3360631+1 1011655 L5197 2021 1982 6619*2^3360606+1 1011648 L5316 2021 1983 2755*2^3360526+1 1011623 L5174 2021 1984 1445*2^3360099+1 1011494 L5261 2021 1985c 2846*67^553905-1 1011476 L4955 2023 1986 8757*2^3359788+1 1011401 L5197 2021 1987 52043532^131072+1 1011400 L4810 2018 Generalized Fermat 1988 5085*2^3359696+1 1011373 L5261 2021 1989 51954384^131072+1 1011303 L4720 2018 Generalized Fermat 1990 6459*2^3359457+1 1011302 L5310 2021 1991 51872628^131072+1 1011213 L4591 2018 Generalized Fermat 1992 6115*2^3358998+1 1011163 L5309 2021 1993 7605*2^3358929+1 1011143 L5308 2021 1994 2315*2^3358899+1 1011133 L5197 2021 1995 6603*2^3358525+1 1011021 L5307 2021 1996 51580416^131072+1 1010891 L4765 2018 Generalized Fermat 1997 51570250^131072+1 1010880 L4591 2018 Generalized Fermat 1998 51567684^131072+1 1010877 L4800 2018 Generalized Fermat 1999 5893*2^3357490+1 1010709 L5285 2021 2000 6947*2^3357075+1 1010585 L5302 2021 2001 4621*2^3357068+1 1010582 L5301 2021 2002 51269192^131072+1 1010547 L4795 2018 Generalized Fermat 2003 1479*2^3356275+1 1010343 L5178 2021 2004 3645*2^3356232+1 1010331 L5296 2021 2005 1259*2^3356215+1 1010325 L5298 2021 2006 2075*2^3356057+1 1010278 L5174 2021 2007 4281*2^3356051+1 1010276 L5295 2021 2008 1275*2^3356045+1 1010274 L5294 2021 2009 50963598^131072+1 1010206 L4726 2018 Generalized Fermat 2010 4365*2^3355770+1 1010192 L5261 2021 2011 50844724^131072+1 1010074 L4656 2018 Generalized Fermat 2012 2183*2^3355297+1 1010049 L5266 2021 2013 3087*2^3355000+1 1009960 L5226 2021 2014 8673*2^3354760+1 1009888 L5233 2021 2015 50495632^131072+1 1009681 L4591 2018 Generalized Fermat 2016 3015*2^3353943+1 1009641 L5290 2021 2017 6819*2^3353877+1 1009622 L5174 2021 2018 9*10^1009567-1 1009568 L3735 2016 Near-repdigit 2019 6393*2^3353366+1 1009468 L5287 2021 2020 3573*2^3353273+1 1009440 L5161 2021 2021 4047*2^3353222+1 1009425 L5286 2021 2022 1473*2^3353114+1 1009392 L5161 2021 2023 1183*2^3353058+1 1009375 L3824 2017 2024 50217306^131072+1 1009367 L4720 2018 Generalized Fermat 2025 81*2^3352924+1 1009333 L1728 2012 Generalized Fermat 2026 50110436^131072+1 1009245 L4591 2018 Generalized Fermat 2027 50055102^131072+1 1009183 L4309 2018 Generalized Fermat 2028 7123*2^3352180+1 1009111 L5161 2021 2029 2757*2^3352180+1 1009111 L5285 2021 2030 9307*2^3352014+1 1009061 L5284 2021 2031 2217*2^3351732+1 1008976 L5283 2021 2032 543*2^3351686+1 1008961 L4198 2017 2033 4419*2^3351666+1 1008956 L5279 2021 2034 49817700^131072+1 1008912 L4760 2018 Generalized Fermat 2035 3059*2^3351379+1 1008870 L5278 2021 2036 7789*2^3351046+1 1008770 L5276 2021 2037 9501*2^3350668+1 1008656 L5272 2021 2038 49530004^131072+1 1008582 L4591 2018 Generalized Fermat 2039 9691*2^3349952+1 1008441 L5242 2021 2040 49397682^131072+1 1008430 L4764 2018 Generalized Fermat 2041 3209*2^3349719+1 1008370 L5269 2021 2042 49331672^131072+1 1008354 L4763 2018 Generalized Fermat 2043 393*2^3349525+1 1008311 L3101 2016 2044 49243622^131072+1 1008252 L4741 2018 Generalized Fermat 2045 5487*2^3349303+1 1008245 L5266 2021 2046 49225986^131072+1 1008232 L4757 2018 Generalized Fermat 2047 2511*2^3349104+1 1008185 L5264 2021 2048 1005*2^3349046-1 1008167 L4518 2021 2049 7659*2^3348894+1 1008122 L5263 2021 2050 9703*2^3348872+1 1008115 L5262 2021 2051 49090656^131072+1 1008075 L4752 2018 Generalized Fermat 2052 7935*2^3348578+1 1008027 L5161 2021 2053 49038514^131072+1 1008015 L4743 2018 Generalized Fermat 2054 7821*2^3348400+1 1007973 L5260 2021 2055 7911*2^3347532+1 1007712 L5250 2021 2056 8295*2^3347031+1 1007561 L5249 2021 2057 48643706^131072+1 1007554 L4691 2018 Generalized Fermat 2058 4029*2^3346729+1 1007470 L5239 2021 2059 9007*2^3346716+1 1007466 L5161 2021 2060 8865*2^3346499+1 1007401 L5238 2021 2061 6171*2^3346480+1 1007395 L5174 2021 2062 6815*2^3346045+1 1007264 L5235 2021 2063 5*326^400785+1 1007261 L4786 2019 2064 5951*2^3345977+1 1007244 L5233 2021 2065 48370248^131072+1 1007234 L4701 2018 Generalized Fermat 2066 1257*2^3345843+1 1007203 L5192 2021 2067 4701*2^3345815+1 1007195 L5192 2021 2068 48273828^131072+1 1007120 L4456 2018 Generalized Fermat 2069 7545*2^3345355+1 1007057 L5231 2021 2070 5559*2^3344826+1 1006897 L5223 2021 2071 6823*2^3344692+1 1006857 L5223 2021 2072 4839*2^3344453+1 1006785 L5188 2021 2073 7527*2^3344332+1 1006749 L5220 2021 2074 7555*2^3344240+1 1006721 L5188 2021 2075 6265*2^3344080+1 1006673 L5197 2021 2076 1299*2^3343943+1 1006631 L5217 2021 2077 2815*2^3343754+1 1006574 L5216 2021 2078 5349*2^3343734+1 1006568 L5174 2021 2079 2863*2^3342920+1 1006323 L5179 2020 2080 7387*2^3342848+1 1006302 L5208 2020 2081 9731*2^3342447+1 1006181 L5203 2020 2082 7725*2^3341708+1 1005959 L5195 2020 2083 7703*2^3341625+1 1005934 L5178 2020 2084 7047*2^3341482+1 1005891 L5194 2020 2085 4839*2^3341309+1 1005838 L5192 2020 2086 47179704^131072+1 1005815 L4673 2017 Generalized Fermat 2087 47090246^131072+1 1005707 L4654 2017 Generalized Fermat 2088 8989*2^3340866+1 1005705 L5189 2020 2089 6631*2^3340808+1 1005688 L5188 2020 2090 1341*2^3340681+1 1005649 L5188 2020 2091 733*2^3340464+1 1005583 L3035 2016 2092 2636*138^469911+1 1005557 L5410 2021 2093 3679815*2^3340001+1 1005448 L4922 2019 2094 57*2^3339932-1 1005422 L3519 2015 2095 46776558^131072+1 1005326 L4659 2017 Generalized Fermat 2096 46736070^131072+1 1005277 L4245 2017 Generalized Fermat 2097 46730280^131072+1 1005270 L4656 2017 Generalized Fermat 2098 3651*2^3339341+1 1005246 L5177 2020 2099 3853*2^3339296+1 1005232 L5178 2020 2100 8015*2^3339267+1 1005224 L5176 2020 2101 3027*2^3339182+1 1005198 L5174 2020 2102 9517*2^3339002+1 1005144 L5172 2020 2103 4003*2^3338588+1 1005019 L3035 2020 2104 6841*2^3338336+1 1004944 L1474 2020 2105 2189*2^3338209+1 1004905 L5031 2020 2106 46413358^131072+1 1004883 L4626 2017 Generalized Fermat 2107 46385310^131072+1 1004848 L4622 2017 Generalized Fermat 2108 46371508^131072+1 1004831 L4620 2017 Generalized Fermat 2109 2957*2^3337667+1 1004742 L5144 2020 2110 1515*2^3337389+1 1004658 L1474 2020 2111 7933*2^3337270+1 1004623 L4666 2020 2112 1251*2^3337116+1 1004576 L4893 2020 2113 651*2^3337101+1 1004571 L3260 2016 2114 46077492^131072+1 1004469 L4595 2017 Generalized Fermat 2115 8397*2^3336654+1 1004437 L5125 2020 2116 8145*2^3336474+1 1004383 L5110 2020 2117 1087*2^3336385-1 1004355 L1828 2012 2118 5325*2^3336120+1 1004276 L2125 2020 2119 849*2^3335669+1 1004140 L3035 2016 2120 8913*2^3335216+1 1004005 L5079 2020 2121 7725*2^3335213+1 1004004 L3035 2020 2122 611*2^3334875+1 1003901 L3813 2016 2123 45570624^131072+1 1003840 L4295 2017 Generalized Fermat 2124 403*2^3334410+1 1003761 L4293 2016 2125 5491*2^3334392+1 1003756 L4815 2020 2126 6035*2^3334341+1 1003741 L2125 2020 2127 1725*2^3334341+1 1003740 L2125 2020 2128 4001*2^3334031+1 1003647 L1203 2020 2129 2315*2^3333969+1 1003629 L2125 2020 2130 6219*2^3333810+1 1003581 L4582 2020 2131 8063*2^3333721+1 1003554 L1823 2020 2132 9051*2^3333677+1 1003541 L3924 2020 2133 45315256^131072+1 1003520 L4562 2017 Generalized Fermat 2134 4091*2^3333153+1 1003383 L1474 2020 2135 9949*2^3332750+1 1003262 L5090 2020 2136 3509*2^3332649+1 1003231 L5085 2020 2137 3781*2^3332436+1 1003167 L1823 2020 2138 4425*2^3332394+1 1003155 L3431 2020 2139 6459*2^3332086+1 1003062 L2629 2020 2140 44919410^131072+1 1003020 L4295 2017 Generalized Fermat 2141 5257*2^3331758+1 1002963 L1188 2020 2142 2939*2^3331393+1 1002853 L1823 2020 2143 6959*2^3331365+1 1002845 L1675 2020 2144 8815*2^3330748+1 1002660 L3329 2020 2145 4303*2^3330652+1 1002630 L4730 2020 2146 8595*2^3330649+1 1002630 L4723 2020 2147 673*2^3330436+1 1002564 L3035 2016 2148 8163*2^3330042+1 1002447 L3278 2020 2149 44438760^131072+1 1002408 L4505 2016 Generalized Fermat 2150 193*2^3329782+1 1002367 L3460 2014 Divides Fermat F(3329780) 2151 44330870^131072+1 1002270 L4501 2016 Generalized Fermat 2152 2829*2^3329061+1 1002151 L4343 2020 2153 5775*2^3329034+1 1002143 L1188 2020 2154 7101*2^3328905+1 1002105 L4568 2020 2155 7667*2^3328807+1 1002075 L4087 2020 2156 129*2^3328805+1 1002073 L3859 2014 2157 7261*2^3328740+1 1002055 L2914 2020 2158 4395*2^3328588+1 1002009 L3924 2020 2159 44085096^131072+1 1001953 L4482 2016 Generalized Fermat 2160 143183*2^3328297+1 1001923 L4504 2017 2161 44049878^131072+1 1001908 L4466 2016 Generalized Fermat 2162 9681*2^3327987+1 1001828 L1204 2020 2163 2945*2^3327987+1 1001828 L2158 2020 2164 5085*2^3327789+1 1001769 L1823 2020 2165 8319*2^3327650+1 1001727 L1204 2020 2166 4581*2^3327644+1 1001725 L2142 2020 2167 655*2^3327518+1 1001686 L4490 2016 2168 8863*2^3327406+1 1001653 L1675 2020 2169 659*2^3327371+1 1001642 L3502 2016 2170 3411*2^3327343+1 1001634 L1675 2020 2171 4987*2^3327294+1 1001619 L3924 2020 2172 821*2^3327003+1 1001531 L3035 2016 2173 2435*2^3326969+1 1001521 L3035 2020 2174 1931*2^3326850-1 1001485 L4113 2022 2175 2277*2^3326794+1 1001469 L5014 2020 2176 6779*2^3326639+1 1001422 L3924 2020 2177 6195*2^3325993+1 1001228 L1474 2019 2178 555*2^3325925+1 1001206 L4414 2016 2179 9041*2^3325643+1 1001123 L3924 2019 2180 1965*2^3325639-1 1001121 L4113 2022 2181 1993*2^3325302+1 1001019 L3662 2019 2182 6179*2^3325027+1 1000937 L3048 2019 2183 4485*2^3324900+1 1000899 L1355 2019 2184 3559*2^3324650+1 1000823 L3035 2019 2185 43165206^131072+1 1000753 L4309 2016 Generalized Fermat 2186 43163894^131072+1 1000751 L4334 2016 Generalized Fermat 2187 6927*2^3324387+1 1000745 L3091 2019 2188 9575*2^3324287+1 1000715 L3824 2019 2189 1797*2^3324259+1 1000705 L3895 2019 2190 4483*2^3324048+1 1000642 L3035 2019 2191 791*2^3323995+1 1000626 L3035 2016 2192 6987*2^3323926+1 1000606 L4973 2019 2193 3937*2^3323886+1 1000593 L3035 2019 2194 2121*2^3323852+1 1000583 L1823 2019 2195 1571*2^3323493+1 1000475 L3035 2019 2196 2319*2^3323402+1 1000448 L4699 2019 2197 2829*2^3323341+1 1000429 L4754 2019 2198 4335*2^3323323+1 1000424 L1823 2019 2199 8485*2^3322938+1 1000308 L4858 2019 2200 6505*2^3322916+1 1000302 L4858 2019 2201 597*2^3322871+1 1000287 L3035 2016 2202 9485*2^3322811+1 1000270 L2603 2019 2203 8619*2^3322774+1 1000259 L3035 2019 2204 387*2^3322763+1 1000254 L1455 2016 2205 1965*2^3322579-1 1000200 L4113 2022 2206 42654182^131072+1 1000075 L4208 2015 Generalized Fermat 2207 6366*745^348190-1 1000060 L4189 2022 2208 5553507*2^3322000+1 1000029 p391 2016 2209 5029159647*2^3321910-1 1000005 L4960 2021 2210 5009522505*2^3321910-1 1000005 L4960 2021 2211 4766298357*2^3321910-1 1000005 L4960 2021 2212 4759383915*2^3321910-1 1000005 L4960 2021 2213 4635733263*2^3321910-1 1000005 L4960 2021 2214 4603393047*2^3321910-1 1000005 L4960 2021 2215 4550053935*2^3321910-1 1000005 L4960 2021 2216 4288198767*2^3321910-1 1000005 L4960 2021 2217 4229494557*2^3321910-1 1000005 L4960 2021 2218 4110178197*2^3321910-1 1000005 L4960 2021 2219 4022490843*2^3321910-1 1000005 L4960 2021 2220 3936623697*2^3321910-1 1000005 L4960 2021 2221 3751145343*2^3321910-1 1000005 L4960 2021 2222 3715773735*2^3321910-1 1000005 L4960 2021 2223 3698976057*2^3321910-1 1000005 L4960 2021 2224 3659465685*2^3321910-1 1000005 L4960 2020 2225 3652932033*2^3321910-1 1000005 L4960 2020 2226 3603204333*2^3321910-1 1000005 L4960 2020 2227 3543733545*2^3321910-1 1000005 L4960 2020 2228 3191900133*2^3321910-1 1000005 L4960 2020 2229 3174957723*2^3321910-1 1000005 L4960 2020 2230 2973510903*2^3321910-1 1000005 L4960 2019 2231 2848144257*2^3321910-1 1000005 L4960 2019 2232 2820058827*2^3321910-1 1000005 L4960 2019 2233 2611553775*2^3321910-1 1000004 L4960 2020 2234 2601087525*2^3321910-1 1000004 L4960 2019 2235 2386538565*2^3321910-1 1000004 L4960 2019 2236 2272291887*2^3321910-1 1000004 L4960 2019 2237 2167709265*2^3321910-1 1000004 L4960 2019 2238 2087077797*2^3321910-1 1000004 L4960 2019 2239 1848133623*2^3321910-1 1000004 L4960 2019 2240 1825072257*2^3321910-1 1000004 L4960 2019 2241 1633473837*2^3321910-1 1000004 L4960 2019 2242 1228267623*2^3321910-1 1000004 L4808 2019 2243 1148781333*2^3321910-1 1000004 L4808 2019 2244 1065440787*2^3321910-1 1000004 L4808 2019 2245 1055109357*2^3321910-1 1000004 L4960 2019 2246 992309607*2^3321910-1 1000004 L4808 2019 2247 926102325*2^3321910-1 1000004 L4808 2019 2248 892610007*2^3321910-1 1000004 L4960 2019 2249 763076757*2^3321910-1 1000004 L4960 2019 2250 607766997*2^3321910-1 1000004 L4808 2019 2251 539679177*2^3321910-1 1000004 L4808 2019 2252 425521077*2^3321910-1 1000004 L4808 2019 2253 132940575*2^3321910-1 1000003 L4808 2019 2254 239378138685*2^3321891+1 1000001 L5104 2020 2255 464253*2^3321908-1 1000000 L466 2013 2256 3^2095902+3^647322-1 1000000 x44 2018 2257 191273*2^3321908-1 1000000 L466 2013 2258 1814570322984178^65536+1 1000000 L5080 2020 Generalized Fermat 2259 1814570322977518^65536+1 1000000 L5080 2020 Generalized Fermat 2260 3292665455999520712131952624640^32768+1 1000000 L5749 2023 Generalized Fermat 2261 3292665455999520712131951642528^32768+1 1000000 L5120 2020 Generalized Fermat 2262 3292665455999520712131951625894^32768+1 1000000 L5122 2020 Generalized Fermat 2263e 10841645805132531666786792405311319418846637043199917731999190^16384+1 1000000 L5749 2023 Generalized Fermat 2264 10841645805132531666786792405311319418846637043199917731311876^16384+1 1000000 L5207 2020 Generalized Fermat 2265 10841645805132531666786792405311319418846637043199917731150000^16384+1 1000000 L5122 2020 Generalized Fermat 2266d 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729599864^8192+1 1000000 L5749 2023 Generalized Fermat 2267 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729375350^8192+1 1000000 p417 2021 Generalized Fermat 2268 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729240092^8192+1 1000000 p419 2021 Generalized Fermat 2269 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729154678^8192+1 1000000 p418 2021 Generalized Fermat 2270 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729122666^8192+1 1000000 p417 2021 Generalized Fermat 2271 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729023786^8192+1 1000000 p416 2021 Generalized Fermat 2272 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097875144^4096+1 1000000 p421 2021 Generalized Fermat 2273 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097840702^4096+1 1000000 p417 2021 Generalized Fermat 2274 ((sqrtnint(10^999999,2048)+2)+364176)^2048+1 1000000 p417 2022 Generalized Fermat 2275 10^999999+308267*10^292000+1 1000000 CH10 2021 2276 10^999999-1022306*10^287000-1 999999 CH13 2021 2277 10^999999-1087604*10^287000-1 999999 CH13 2021 2278 531631540026641*6^1285077+1 999999 L3494 2021 2279 3139*2^3321905-1 999997 L185 2008 2280 42550702^131072+1 999937 L4309 2022 Generalized Fermat 2281 42414020^131072+1 999753 L5030 2022 Generalized Fermat 2282 4847*2^3321063+1 999744 SB9 2005 2283 42254832^131072+1 999539 L5375 2022 Generalized Fermat 2284 42243204^131072+1 999524 L4898 2022 Generalized Fermat 2285 42230406^131072+1 999506 L5453 2022 Generalized Fermat 2286 42168978^131072+1 999424 L5462 2022 Generalized Fermat 2287 439*2^3318318+1 998916 L5573 2022 2288 41688706^131072+1 998772 L5270 2022 Generalized Fermat 2289 41364744^131072+1 998327 L5453 2022 Generalized Fermat 2290 41237116^131072+1 998152 L5459 2022 Generalized Fermat 2291e 47714*17^811139+1 998070 L5765 2023 Generalized Cullen 2292 41102236^131072+1 997965 L4245 2022 Generalized Fermat 2293 41007562^131072+1 997834 L4210 2022 Generalized Fermat 2294 41001148^131072+1 997825 L4210 2022 Generalized Fermat 2295 975*2^3312951+1 997301 L5231 2022 2296 40550398^131072+1 997196 L4245 2022 Generalized Fermat 2297 11796*46^599707+1 997172 L5670 2023 2298 40463598^131072+1 997074 L4591 2022 Generalized Fermat 2299 689*2^3311423+1 996841 L5226 2022 2300 40151896^131072+1 996633 L4245 2022 Generalized Fermat 2301 593*2^3309333+1 996212 L5572 2022 2302 383*2^3309321+1 996208 L5570 2022 2303 49*2^3309087-1 996137 L1959 2013 2304 39746366^131072+1 996056 L4201 2022 Generalized Fermat 2305 139413*6^1279992+1 996033 L4001 2015 2306c 1274*67^545368-1 995886 L5410 2023 2307 51*2^3308171+1 995861 L2840 2015 2308 719*2^3308127+1 995849 L5192 2022 2309 39597790^131072+1 995842 L4737 2022 Generalized Fermat 2310 39502358^131072+1 995705 L5453 2022 Generalized Fermat 2311 39324372^131072+1 995448 L5202 2022 Generalized Fermat 2312 245114*5^1424104-1 995412 L3686 2013 2313 39100746^131072+1 995123 L5441 2022 Generalized Fermat 2314 38824296^131072+1 994719 L4245 2022 Generalized Fermat 2315 38734748^131072+1 994588 L4249 2021 Generalized Fermat 2316 175124*5^1422646-1 994393 L3686 2013 2317 453*2^3303073+1 994327 L5568 2022 2318 38310998^131072+1 993962 L4737 2021 Generalized Fermat 2319 531*2^3301693+1 993912 L5226 2022 2320 38196496^131072+1 993791 L4861 2021 Generalized Fermat 2321 38152876^131072+1 993726 L4245 2021 Generalized Fermat 2322 195*2^3301018+1 993708 L5569 2022 2323 341*2^3300789+1 993640 L5192 2022 2324 37909914^131072+1 993363 L4249 2021 Generalized Fermat 2325 849*2^3296427+1 992327 L5571 2022 2326 1611*22^738988+1 992038 L4139 2015 2327 36531196^131072+1 991254 L4249 2021 Generalized Fermat 2328 2017*2^3292325-1 991092 L3345 2017 2329 36422846^131072+1 991085 L4245 2021 Generalized Fermat 2330 36416848^131072+1 991076 L5202 2021 Generalized Fermat 2331 885*2^3290927+1 990671 L5161 2022 2332 36038176^131072+1 990481 L4245 2021 Generalized Fermat 2333 35997532^131072+1 990416 L4245 2021 Generalized Fermat 2334 35957420^131072+1 990353 L4245 2021 Generalized Fermat 2335 Phi(3,-107970^98304) 989588 L4506 2016 Generalized unique 2336 35391288^131072+1 989449 L5070 2021 Generalized Fermat 2337 35372304^131072+1 989419 L5443 2021 Generalized Fermat 2338 219*2^3286614+1 989372 L5567 2022 2339 61*2^3286535-1 989348 L4405 2016 2340 35327718^131072+1 989347 L4591 2021 Generalized Fermat 2341 35282096^131072+1 989274 L4245 2021 Generalized Fermat 2342 35141602^131072+1 989046 L4729 2021 Generalized Fermat 2343 35139782^131072+1 989043 L4245 2021 Generalized Fermat 2344 35047222^131072+1 988893 L4249 2021 Generalized Fermat 2345 531*2^3284944+1 988870 L5536 2022 2346 34957136^131072+1 988747 L5321 2021 Generalized Fermat 2347 301*2^3284232+1 988655 L5564 2022 2348 34871942^131072+1 988608 L4245 2021 Generalized Fermat 2349 34763644^131072+1 988431 L4737 2021 Generalized Fermat 2350 34585314^131072+1 988138 L4201 2021 Generalized Fermat 2351 311*2^3282455+1 988120 L5568 2022 2352 34530386^131072+1 988048 L5070 2021 Generalized Fermat 2353 833*2^3282181+1 988038 L5564 2022 2354 561*2^3281889+1 987950 L5477 2022 2355 34087952^131072+1 987314 L4764 2021 Generalized Fermat 2356 87*2^3279368+1 987191 L3458 2015 2357 965*2^3279151+1 987126 L5564 2022 2358 33732746^131072+1 986717 L4359 2021 Generalized Fermat 2359 33474284^131072+1 986279 L5051 2021 Generalized Fermat 2360 33395198^131072+1 986145 L4658 2021 Generalized Fermat 2361 427*2^3275606+1 986059 L5566 2022 2362 33191418^131072+1 985796 L4201 2021 Generalized Fermat 2363 337*2^3274106+1 985607 L5564 2022 2364 357*2^3273543+1 985438 L5237 2022 Divides GF(3273542,10) 2365 1045*2^3273488+1 985422 L5192 2022 2366 32869172^131072+1 985241 L4285 2021 Generalized Fermat 2367 32792696^131072+1 985108 L5198 2021 Generalized Fermat 2368 1047*2^3272351+1 985079 L5563 2022 2369 32704348^131072+1 984955 L5312 2021 Generalized Fermat 2370 32608738^131072+1 984788 L5395 2021 Generalized Fermat 2371 933*2^3270993+1 984670 L5562 2022 2372 311*2^3270759+1 984600 L5560 2022 2373 32430486^131072+1 984476 L4245 2021 Generalized Fermat 2374 32417420^131072+1 984453 L4245 2021 Generalized Fermat 2375 65*2^3270127+1 984409 L3924 2015 2376 32348894^131072+1 984333 L4245 2021 Generalized Fermat 2377 579*2^3269850+1 984326 L5226 2022 2378 32286660^131072+1 984223 L5400 2021 Generalized Fermat 2379 32200644^131072+1 984071 L4387 2021 Generalized Fermat 2380 32137342^131072+1 983959 L4559 2021 Generalized Fermat 2381 32096608^131072+1 983887 L4559 2021 Generalized Fermat 2382 32055422^131072+1 983814 L4559 2021 Generalized Fermat 2383 31821360^131072+1 983397 L4861 2021 Generalized Fermat 2384 31768014^131072+1 983301 L4252 2021 Generalized Fermat 2385 335*2^3266237+1 983238 L5559 2022 2386 1031*2^3265915+1 983142 L5364 2022 2387 31469984^131072+1 982765 L5078 2021 Generalized Fermat 2388 5*2^3264650-1 982759 L384 2013 2389 223*2^3264459-1 982703 L1884 2012 2390 1101*2^3264400+1 982686 L5231 2022 2391 483*2^3264181+1 982620 L5174 2022 2392 525*2^3263227+1 982332 L5231 2022 2393 31145080^131072+1 982174 L4201 2021 Generalized Fermat 2394 622*48^584089+1 981998 L5629 2023 2395 31044982^131072+1 981991 L5041 2021 Generalized Fermat 2396 683*2^3262037+1 981974 L5192 2022 2397 923*2^3261401+1 981783 L5477 2022 2398 30844300^131072+1 981622 L5102 2021 Generalized Fermat 2399 30819256^131072+1 981575 L4201 2021 Generalized Fermat 2400 9*2^3259381-1 981173 L1828 2011 2401 1059*2^3258751+1 980985 L5231 2022 2402 6*5^1403337+1 980892 L4965 2020 2403 30318724^131072+1 980643 L4309 2021 Generalized Fermat 2404 30315072^131072+1 980636 L5375 2021 Generalized Fermat 2405 30300414^131072+1 980609 L4755 2021 Generalized Fermat 2406 30225714^131072+1 980468 L4201 2021 Generalized Fermat 2407 875*2^3256589+1 980334 L5550 2022 2408 30059800^131072+1 980155 L4928 2021 Generalized Fermat 2409 30022816^131072+1 980085 L5273 2021 Generalized Fermat 2410 29959190^131072+1 979964 L4905 2021 Generalized Fermat 2411 29607314^131072+1 979292 L5378 2021 Generalized Fermat 2412 779*2^3253063+1 979273 L5192 2022 2413 29505368^131072+1 979095 L5378 2021 Generalized Fermat 2414 163*2^3250978+1 978645 L5161 2022 Divides GF(3250977,6) 2415 29169314^131072+1 978443 L5380 2021 Generalized Fermat 2416 417*2^3248255+1 977825 L5178 2022 2417 28497098^131072+1 977116 L4308 2021 Generalized Fermat 2418 28398204^131072+1 976918 L5379 2021 Generalized Fermat 2419 28294666^131072+1 976710 L5375 2021 Generalized Fermat 2420 28175634^131072+1 976470 L5378 2021 Generalized Fermat 2421 33*2^3242126-1 975979 L3345 2014 2422 27822108^131072+1 975752 L4760 2021 Generalized Fermat 2423 39*2^3240990+1 975637 L3432 2014 2424 27758510^131072+1 975621 L4289 2021 Generalized Fermat 2425 27557876^131072+1 975208 L4245 2021 Generalized Fermat 2426 27544748^131072+1 975181 L4387 2021 Generalized Fermat 2427 27408050^131072+1 974898 L4210 2021 Generalized Fermat 2428 225*2^3236967+1 974427 L5529 2022 2429 27022768^131072+1 974092 L4309 2021 Generalized Fermat 2430 26896670^131072+1 973826 L5376 2021 Generalized Fermat 2431 1075*2^3234606+1 973717 L5192 2022 2432 26757382^131072+1 973530 L5375 2021 Generalized Fermat 2433 26599558^131072+1 973194 L4245 2021 Generalized Fermat 2434 6*5^1392287+1 973168 L4965 2020 2435 26500832^131072+1 972982 L4956 2021 Generalized Fermat 2436 325*2^3231474+1 972774 L5536 2022 2437 933*2^3231438+1 972763 L5197 2022 2438 123*2^3230548+1 972494 L5178 2022 Divides GF(3230546,12) 2439 26172278^131072+1 972272 L4245 2021 Generalized Fermat 2440 697*2^3229518+1 972185 L5534 2022 2441 22598*745^338354-1 971810 L4189 2022 2442 385*2^3226814+1 971371 L5178 2022 2443 211195*2^3224974+1 970820 L2121 2013 2444 1173*2^3223546+1 970388 L5178 2022 2445 7*6^1246814+1 970211 L4965 2019 2446 25128150^131072+1 969954 L4738 2021 Generalized Fermat 2447 25124378^131072+1 969946 L5102 2021 Generalized Fermat 2448 1089*2^3221691+1 969829 L5178 2022 2449 35*832^332073-1 969696 L4001 2019 2450 600921*2^3219922-1 969299 g337 2018 2451 939*2^3219319+1 969115 L5178 2022 2452 24734116^131072+1 969055 L5070 2021 Generalized Fermat 2453 24644826^131072+1 968849 L5070 2021 Generalized Fermat 2454 24642712^131072+1 968844 L5070 2021 Generalized Fermat 2455 24641166^131072+1 968840 L5070 2021 Generalized Fermat 2456 129*2^3218214+1 968782 L5529 2022 2457 24522386^131072+1 968565 L5070 2021 Generalized Fermat 2458 24486806^131072+1 968483 L4737 2021 Generalized Fermat 2459 811*2^3216944+1 968400 L5233 2022 2460 24297936^131072+1 968042 L4201 2021 Generalized Fermat 2461 1023*2^3214745+1 967738 L5178 2022 2462 187*2^3212152+1 966957 L5178 2022 2463 301*2^3211281-1 966695 L5545 2022 2464 6*409^369832+1 965900 L4001 2015 2465 23363426^131072+1 965809 L5033 2021 Generalized Fermat 2466 1165*2^3207702+1 965618 L5178 2022 2467 94373*2^3206717+1 965323 L2785 2013 2468 2751*2^3206569-1 965277 L4036 2015 2469 761*2^3206341+1 965208 L5178 2022 2470 23045178^131072+1 965029 L5023 2021 Generalized Fermat 2471 23011666^131072+1 964946 L5273 2021 Generalized Fermat 2472 911*2^3205225+1 964872 L5364 2022 2473 22980158^131072+1 964868 L4201 2021 Generalized Fermat 2474 22901508^131072+1 964673 L4743 2021 Generalized Fermat 2475 22808110^131072+1 964440 L5248 2021 Generalized Fermat 2476 22718284^131072+1 964215 L5254 2021 Generalized Fermat 2477 22705306^131072+1 964183 L5248 2021 Generalized Fermat 2478 113983*2^3201175-1 963655 L613 2008 2479 34*888^326732-1 963343 L4001 2017 2480 899*2^3198219+1 962763 L5503 2022 2481 22007146^131072+1 962405 L4245 2020 Generalized Fermat 2482 4*3^2016951+1 962331 L4965 2020 2483 21917442^131072+1 962173 L4622 2020 Generalized Fermat 2484 987*2^3195883+1 962060 L5282 2022 2485 21869554^131072+1 962048 L5061 2020 Generalized Fermat 2486 21757066^131072+1 961754 L4773 2020 Generalized Fermat 2487 21582550^131072+1 961296 L5068 2020 Generalized Fermat 2488 21517658^131072+1 961125 L5126 2020 Generalized Fermat 2489 20968936^131072+1 959654 L4245 2020 Generalized Fermat 2490 671*2^3185411+1 958908 L5315 2022 2491 20674450^131072+1 958849 L4245 2020 Generalized Fermat 2492 1027*2^3184540+1 958646 L5174 2022 2493 789*2^3183463+1 958321 L5482 2022 2494 855*2^3183158+1 958229 L5161 2022 2495 20234282^131072+1 957624 L4942 2020 Generalized Fermat 2496 20227142^131072+1 957604 L4677 2020 Generalized Fermat 2497 625*2^3180780+1 957513 L5178 2022 Generalized Fermat 2498 20185276^131072+1 957486 L4201 2020 Generalized Fermat 2499 935*2^3180599+1 957459 L5477 2022 2500 573*2^3179293+1 957066 L5226 2022 2501 33*2^3176269+1 956154 L3432 2013 2502 81*2^3174353-1 955578 L3887 2022 2503 19464034^131072+1 955415 L4956 2020 Generalized Fermat 2504 600921*2^3173683-1 955380 g337 2018 2505 587*2^3173567+1 955342 L5301 2022 2506 19216648^131072+1 954687 L5024 2020 Generalized Fermat 2507 1414*95^482691-1 954633 L4877 2019 2508 305*2^3171039+1 954581 L5301 2022 2509 755*2^3170701+1 954479 L5302 2022 2510 775*2^3170580+1 954443 L5449 2022 2511 78*236^402022-1 953965 L5410 2020 2512 18968126^131072+1 953946 L5011 2020 Generalized Fermat 2513 18813106^131072+1 953479 L4201 2020 Generalized Fermat 2514 18608780^131072+1 952857 L4488 2020 Generalized Fermat 2515 1087*2^3164677-1 952666 L1828 2012 2516 18509226^131072+1 952552 L4884 2020 Generalized Fermat 2517 18501600^131072+1 952528 L4875 2020 Generalized Fermat 2518 459*2^3163175+1 952214 L5178 2022 2519 15*2^3162659+1 952057 p286 2012 2520 18309468^131072+1 951934 L4928 2020 Generalized Fermat 2521 18298534^131072+1 951900 L4201 2020 Generalized Fermat 2522 849*2^3161727+1 951778 L5178 2022 2523 67*2^3161450+1 951694 L3223 2015 2524 119*2^3161195+1 951617 L5320 2022 2525 1759*2^3160863-1 951518 L4965 2021 2526 58*117^460033+1 951436 L5410 2020 2527 417*2^3160443+1 951391 L5302 2022 2528 9231*70^515544+1 951234 L5410 2021 2529 671*2^3159523+1 951115 L5188 2022 2530 17958952^131072+1 950834 L4201 2020 Generalized Fermat 2531 17814792^131072+1 950375 L4752 2020 Generalized Fermat 2532 17643330^131072+1 949824 L4201 2020 Generalized Fermat 2533 19*2^3155009-1 949754 L1828 2012 2534 281*2^3151457+1 948686 L5316 2022 2535 179*2^3150265+1 948327 L5302 2022 2536 17141888^131072+1 948183 L4963 2019 Generalized Fermat 2537 17138628^131072+1 948172 L4963 2019 Generalized Fermat 2538 17119936^131072+1 948110 L4963 2019 Generalized Fermat 2539 17052490^131072+1 947885 L4715 2019 Generalized Fermat 2540 17025822^131072+1 947796 L4870 2019 Generalized Fermat 2541 16985784^131072+1 947662 L4295 2019 Generalized Fermat 2542 865*2^3147482+1 947490 L5178 2021 2543 963*2^3145753+1 946969 L5451 2021 2544 16741226^131072+1 946837 L4201 2019 Generalized Fermat 2545 387*2^3144483+1 946587 L5450 2021 2546 1035*2^3144236+1 946513 L5449 2021 2547 1065*2^3143667+1 946342 L4944 2021 2548 193*2^3142150+1 945884 L5178 2021 2549 915*2^3141942+1 945822 L5448 2021 2550 939*2^3141397+1 945658 L5320 2021 2551 1063*2^3141350+1 945644 L5178 2021 2552 16329572^131072+1 945420 L4201 2019 Generalized Fermat 2553 69*2^3140225-1 945304 L3764 2014 2554 3*2^3136255-1 944108 L256 2007 2555 417*2^3136187+1 944089 L5178 2021 2556 15731520^131072+1 943296 L4245 2019 Generalized Fermat 2557 Phi(3,-62721^98304) 943210 L4506 2016 Generalized unique 2558 15667716^131072+1 943064 L4387 2019 Generalized Fermat 2559 15567144^131072+1 942698 L4918 2019 Generalized Fermat 2560 299*2^3130621+1 942414 L5178 2021 2561 15342502^131072+1 941870 L4245 2019 Generalized Fermat 2562 15237960^131072+1 941481 L4898 2019 Generalized Fermat 2563 571*2^3127388+1 941441 L5440 2021 2564 15147290^131072+1 941141 L4861 2019 Generalized Fermat 2565 197*2^3126343+1 941126 L5178 2021 2566 15091270^131072+1 940930 L4760 2019 Generalized Fermat 2567 1097*2^3124455+1 940558 L5178 2021 2568 3125*2^3124079+1 940445 L1160 2019 2569 495*2^3123624+1 940308 L5438 2021 2570 14790404^131072+1 939784 L4871 2019 Generalized Fermat 2571 1041*2^3120649+1 939412 L5437 2021 2572 14613898^131072+1 939101 L4926 2019 Generalized Fermat 2573 3317*2^3117162-1 938363 L5399 2021 2574 763*2^3115684+1 937918 L4944 2021 2575 581*2^3114611+1 937595 L5178 2021 2576 14217182^131072+1 937534 L4387 2019 Generalized Fermat 2577 134*864^319246-1 937473 L5410 2020 2578 700057*2^3113753-1 937339 L5410 2022 2579 1197*2^3111838+1 936760 L5178 2021 2580 14020004^131072+1 936739 L4249 2019 Generalized Fermat 2581 27777*2^3111027+1 936517 L2777 2014 Generalized Cullen 2582 755*2^3110759+1 936435 L5320 2021 2583 13800346^131072+1 935840 L4880 2019 Generalized Fermat 2584f 866981*12^866981-1 935636 L5765 2023 Generalized Woodall 2585 13613070^131072+1 935062 L4245 2019 Generalized Fermat 2586 628*80^491322+1 935033 L5410 2021 2587 761*2^3105087+1 934728 L5197 2021 2588 13433028^131072+1 934305 L4868 2018 Generalized Fermat 2589 1019*2^3103680-1 934304 L1828 2012 2590 579*2^3102639+1 933991 L5315 2021 2591 99*2^3102401-1 933918 L1862 2017 2592 256612*5^1335485-1 933470 L1056 2013 2593 13083418^131072+1 932803 L4747 2018 Generalized Fermat 2594 69*2^3097340-1 932395 L3764 2014 2595 153*2^3097277+1 932376 L4944 2021 2596 12978952^131072+1 932347 L4849 2018 Generalized Fermat 2597 12961862^131072+1 932272 L4245 2018 Generalized Fermat 2598 207*2^3095391+1 931808 L5178 2021 2599 12851074^131072+1 931783 L4670 2018 Generalized Fermat 2600 45*2^3094632-1 931579 L1862 2018 2601 259*2^3094582+1 931565 L5214 2021 2602 553*2^3094072+1 931412 L4944 2021 2603 57*2^3093440-1 931220 L2484 2020 2604 12687374^131072+1 931054 L4289 2018 Generalized Fermat 2605 513*2^3092705+1 931000 L4329 2016 2606 12661786^131072+1 930939 L4819 2018 Generalized Fermat 2607 933*2^3091825+1 930736 L5178 2021 2608 38*875^316292-1 930536 L4001 2019 2609 5*2^3090860-1 930443 L1862 2012 2610 12512992^131072+1 930266 L4814 2018 Generalized Fermat 2611 4*5^1330541-1 930009 L4965 2022 2612 12357518^131072+1 929554 L4295 2018 Generalized Fermat 2613 12343130^131072+1 929488 L4720 2018 Generalized Fermat 2614 297*2^3087543+1 929446 L5326 2021 2615 1149*2^3087514+1 929438 L5407 2021 2616 745*2^3087428+1 929412 L5178 2021 2617 373*520^342177+1 929357 L3610 2014 2618 19401*2^3086450-1 929119 L541 2015 2619 75*2^3086355+1 929088 L3760 2015 2620 65*2^3080952-1 927461 L2484 2020 2621 11876066^131072+1 927292 L4737 2018 Generalized Fermat 2622 1139*2^3079783+1 927111 L5174 2021 2623 271*2^3079189-1 926931 L2484 2018 2624 766*33^610412+1 926923 L4001 2016 2625 11778792^131072+1 926824 L4672 2018 Generalized Fermat 2626 555*2^3078792+1 926812 L5226 2021 2627 31*332^367560+1 926672 L4294 2018 2628 167*2^3077568-1 926443 L1862 2020 2629 10001*2^3075602-1 925853 L4405 2019 2630 116*107^455562-1 924513 L4064 2021 2631 11292782^131072+1 924425 L4672 2018 Generalized Fermat 2632 14844*430^350980-1 924299 L4001 2016 2633 11267296^131072+1 924297 L4654 2017 Generalized Fermat 2634 4*3^1936890+1 924132 L4965 2020 Generalized Fermat 2635 1105*2^3069884+1 924131 L5314 2021 2636 319*2^3069362+1 923973 L5377 2021 2637 11195602^131072+1 923933 L4706 2017 Generalized Fermat 2638 973*2^3069092+1 923892 L5214 2021 2639 765*2^3068511+1 923717 L5174 2021 2640 60849*2^3067914+1 923539 L591 2014 2641 674*249^385359+1 923400 L5410 2019 2642 499*2^3066970+1 923253 L5373 2021 2643 553*2^3066838+1 923213 L5368 2021 2644 629*2^3066827+1 923210 L5226 2021 2645 11036888^131072+1 923120 L4660 2017 Generalized Fermat 2646 261*2^3066009+1 922964 L5197 2021 2647 10994460^131072+1 922901 L4704 2017 Generalized Fermat 2648f 214916*3^1934246-1 922876 L4965 2023 Generalized Woodall 2649 21*2^3065701+1 922870 p286 2012 2650 10962066^131072+1 922733 L4702 2017 Generalized Fermat 2651 10921162^131072+1 922520 L4559 2017 Generalized Fermat 2652 875*2^3063847+1 922313 L5364 2021 2653 43*2^3063674+1 922260 L3432 2013 2654 677*2^3063403+1 922180 L5346 2021 2655 8460*241^387047-1 921957 L5410 2019 2656 10765720^131072+1 921704 L4695 2017 Generalized Fermat 2657 111*2^3060238-1 921226 L2484 2020 2658 1165*2^3060228+1 921224 L5360 2021 2659 5*2^3059698-1 921062 L503 2008 2660 10453790^131072+1 920031 L4694 2017 Generalized Fermat 2661 453*2^3056181+1 920005 L5320 2021 2662 791*2^3055695+1 919859 L5177 2021 2663 10368632^131072+1 919565 L4692 2017 Generalized Fermat 2664 582971*2^3053414-1 919175 L5410 2022 2665 123*2^3049038+1 917854 L4119 2015 2666 10037266^131072+1 917716 L4691 2017 Generalized Fermat 2667 400*95^463883-1 917435 L4001 2019 2668 9907326^131072+1 916975 L4690 2017 Generalized Fermat 2669 454*383^354814+1 916558 L2012 2020 2670 9785844^131072+1 916272 L4326 2017 Generalized Fermat 2671 435*2^3041954+1 915723 L5320 2021 2672 639*2^3040438+1 915266 L5320 2021 2673 1045*2^3037988+1 914529 L5178 2021 2674 291*2^3037904+1 914503 L3545 2015 2675 311*2^3037565+1 914401 L5178 2021 2676 373*2^3036746+1 914155 L5178 2021 2677 9419976^131072+1 914103 L4591 2017 Generalized Fermat 2678 801*2^3036045+1 913944 L5348 2021 2679 915*2^3033775+1 913261 L5178 2021 2680 38804*3^1913975+1 913203 L5410 2021 2681 9240606^131072+1 913009 L4591 2017 Generalized Fermat 2682 869*2^3030655+1 912322 L5260 2021 2683 643*2^3030650+1 912320 L5320 2021 2684 99*2^3029959-1 912111 L1862 2020 2685 417*2^3029342+1 911926 L5178 2021 2686 345*2^3027769+1 911452 L5343 2021 2687 26*3^1910099+1 911351 L4799 2020 2688 355*2^3027372+1 911333 L5174 2021 2689 99*2^3026660-1 911118 L1862 2020 2690 417*2^3026492+1 911068 L5197 2021 2691 1065*2^3025527+1 910778 L5208 2021 2692 34202*3^1908800+1 910734 L5410 2021 2693 8343*42^560662+1 910099 L4444 2020 2694 699*2^3023263+1 910096 L5335 2021 2695 8770526^131072+1 910037 L4245 2017 Generalized Fermat 2696 8704114^131072+1 909604 L4670 2017 Generalized Fermat 2697 383731*2^3021377-1 909531 L466 2011 2698 46821*2^3021380-374567 909531 p363 2013 2699 2^3021377-1 909526 G3 1998 Mersenne 37 2700 615*2^3019445+1 908947 L5260 2021 2701 389*2^3019025+1 908820 L5178 2021 2702 875*2^3018175+1 908565 L5334 2021 2703c 375*2^3016803-1 908151 L2235 2023 2704 555*2^3016352+1 908016 L5178 2021 2705 7*2^3015762+1 907836 g279 2008 2706 759*2^3015314+1 907703 L5178 2021 2707 32582*3^1901790+1 907389 L5372 2021 2708 75*2^3012342+1 906808 L3941 2015 2709 459*2^3011814+1 906650 L5178 2021 2710 991*2^3010036+1 906115 L5326 2021 2711 583*2^3009698+1 906013 L5325 2021 2712 8150484^131072+1 905863 L4249 2017 Generalized Fermat 2713 593*2^3006969+1 905191 L5178 2021 2714 327*2^3006540-1 905062 L2257 2023 2715 367*2^3004536+1 904459 L5178 2021 2716 7926326^131072+1 904276 L4249 2017 Generalized Fermat 2717 1003*2^3003756+1 904224 L5320 2021 2718 573*2^3002662+1 903895 L5319 2021 2719 7858180^131072+1 903784 L4201 2017 Generalized Fermat 2720 329*2^3002295+1 903784 L5318 2021 2721 4*5^1292915-1 903710 L4965 2022 2722 7832704^131072+1 903599 L4249 2017 Generalized Fermat 2723 268514*5^1292240-1 903243 L3562 2013 2724 7*10^902708+1 902709 p342 2013 2725 435*2^2997453+1 902326 L5167 2021 2726 583*2^2996526+1 902047 L5174 2021 2727 1037*2^2995695+1 901798 L5178 2021 2728 717*2^2995326+1 901686 L5178 2021 2729 885*2^2995274+1 901671 L5178 2021 2730 43*2^2994958+1 901574 L3222 2013 2731 1065*2^2994154+1 901334 L5315 2021 2732 561*2^2994132+1 901327 L5314 2021 2733 1095*2^2992587-1 900862 L1828 2011 2734 519*2^2991849+1 900640 L5311 2021 2735 7379442^131072+1 900206 L4201 2017 Generalized Fermat 2736 459*2^2990134+1 900123 L5197 2021 2737 15*2^2988834+1 899730 p286 2012 2738 29*564^326765+1 899024 L4001 2017 2739 971*2^2982525+1 897833 L5197 2021 2740 1033*2^2980962+1 897362 L5305 2021 2741 357*2^2980540-1 897235 L2257 2023 2742 367*2^2979033-1 896781 L2257 2023 2743 39*2^2978894+1 896739 L2719 2013 2744 38*977^299737+1 896184 L5410 2021 2745 4348099*2^2976221-1 895939 L466 2008 2746 205833*2^2976222-411665 895938 L4667 2017 2747 18976*2^2976221-18975 895937 p373 2014 2748 2^2976221-1 895932 G2 1997 Mersenne 36 2749 1024*3^1877301+1 895704 p378 2014 2750 1065*2^2975442+1 895701 L5300 2021 Divides GF(2975440,3) 2751 24704*3^1877135+1 895626 L5410 2021 2752 591*2^2975069+1 895588 L5299 2021 2753 249*2^2975002+1 895568 L2322 2015 2754 195*2^2972947+1 894949 L3234 2015 2755 6705932^131072+1 894758 L4201 2017 Generalized Fermat 2756 391*2^2971600+1 894544 L5242 2021 2757 46425*2^2971203+1 894426 L2777 2014 Generalized Cullen 2758 625*2^2970336+1 894164 L5233 2021 Generalized Fermat 2759 369*2^2968175-1 893513 L2257 2023 2760 493*72^480933+1 893256 L3610 2014 2761 561*2^2964753+1 892483 L5161 2021 2762 1185*2^2964350+1 892362 L5161 2021 2763 6403134^131072+1 892128 L4510 2016 Generalized Fermat 2764 6391936^131072+1 892028 L4511 2016 Generalized Fermat 2765 395*2^2961370-1 891464 L2257 2023 2766 21*2^2959789-1 890987 L5313 2021 2767 627*2^2959098+1 890781 L5197 2021 2768 45*2^2958002-1 890449 L1862 2017 2769 729*2^2955389+1 889664 L5282 2021 2770 198677*2^2950515+1 888199 L2121 2012 2771 88*985^296644+1 887987 L5410 2020 2772 303*2^2949403-1 887862 L1817 2022 2773 5877582^131072+1 887253 L4245 2016 Generalized Fermat 2774 321*2^2946654-1 887034 L1817 2022 2775 17*2^2946584-1 887012 L3519 2013 2776 489*2^2944673+1 886438 L5167 2021 2777 141*2^2943065+1 885953 L3719 2015 2778 757*2^2942742+1 885857 L5261 2021 2779 5734100^131072+1 885846 L4477 2016 Generalized Fermat 2780 33*2^2939064-5606879602425*2^1290000-1 884748 p423 2021 Arithmetic progression (3,d=33*2^2939063-5606879602425*2^1290000) 2781 33*2^2939063-1 884748 L3345 2013 2782 5903*2^2938744-1 884654 L4036 2015 2783 717*2^2937963+1 884418 L5256 2021 2784 5586416^131072+1 884361 L4454 2016 Generalized Fermat 2785 243*2^2937316+1 884223 L4114 2015 2786 973*2^2937046+1 884142 L5253 2021 2787 61*2^2936967-1 884117 L2484 2017 2788 903*2^2934602+1 883407 L5246 2021 2789 5471814^131072+1 883181 L4362 2016 Generalized Fermat 2790 188*228^374503+1 883056 L4786 2020 2791 53*248^368775+1 883016 L5196 2020 2792 5400728^131072+1 882436 L4201 2016 Generalized Fermat 2793 17*326^350899+1 881887 L4786 2019 2794 855*2^2929550+1 881886 L5200 2021 2795 5326454^131072+1 881648 L4201 2016 Generalized Fermat 2796 839*2^2928551+1 881585 L5242 2021 2797 7019*10^881309-1 881313 L3564 2013 2798 25*2^2927222+1 881184 L1935 2013 Generalized Fermat 2799 391*2^2925759-1 880744 L2257 2023 2800 577*2^2925602+1 880697 L5201 2021 2801 97366*5^1259955-1 880676 L3567 2013 2802 973*2^2923062+1 879933 L5228 2021 2803 1126*177^391360+1 879770 L4955 2020 2804 243944*5^1258576-1 879713 L3566 2013 2805 693*2^2921528+1 879471 L5201 2021 2806 6*10^879313+1 879314 L5009 2019 2807 269*2^2918105+1 878440 L2715 2015 2808 331*2^2917844+1 878362 L5210 2021 2809 169*2^2917805-1 878350 L2484 2018 2810 1085*2^2916967+1 878098 L5174 2020 2811 389*2^2916499+1 877957 L5215 2020 2812 431*2^2916429+1 877936 L5214 2020 2813 1189*2^2916406+1 877929 L5174 2020 2814f 1011*2^2916119-1 877843 L4518 2023 2815 7*2^2915954+1 877791 g279 2008 Divides GF(2915953,12) [g322] 2816 4974408^131072+1 877756 L4380 2016 Generalized Fermat 2817 465*2^2914079+1 877228 L5210 2020 2818 427194*113^427194+1 877069 p310 2012 Generalized Cullen 2819 4893072^131072+1 876817 L4303 2016 Generalized Fermat 2820 493*2^2912552+1 876769 L5192 2021 2821 379*2^2911423-1 876429 L2257 2023 2822 143157*2^2911403+1 876425 L4504 2017 2823 567*2^2910402+1 876122 L5201 2020 2824 683*2^2909217+1 875765 L5199 2020 2825 674*249^365445+1 875682 L5410 2019 2826 475*2^2908802+1 875640 L5192 2021 2827 371*2^2907377+1 875211 L5197 2020 2828 207*2^2903535+1 874054 L3173 2015 2829 851*2^2902731+1 873813 L5177 2020 2830 777*2^2901907+1 873564 L5192 2020 2831 717*2^2900775+1 873224 L5185 2020 2832 99*2^2899303-1 872780 L1862 2017 2833 63*2^2898957+1 872675 L3262 2013 2834 11*2^2897409+1 872209 L2973 2013 Divides GF(2897408,3) 2835 747*2^2895307+1 871578 L5178 2020 2836 403*2^2894566+1 871354 L5180 2020 2837 629*2^2892961+1 870871 L5173 2020 2838 627*2^2891514+1 870436 L5168 2020 2839 325*2^2890955-1 870267 L5545 2022 2840 363*2^2890208+1 870042 L3261 2020 2841 471*2^2890148+1 870024 L5158 2020 2842 4329134^131072+1 869847 L4395 2016 Generalized Fermat 2843 583*2^2889248+1 869754 L5139 2020 2844 353*2^2888332-1 869478 L2257 2023 2845 955*2^2887934+1 869358 L4958 2020 2846c 8300*171^389286+1 869279 L5410 2023 2847 303*2^2887603-1 869258 L5184 2022 2848 937*2^2887130+1 869116 L5134 2020 2849 885*2^2886389+1 868893 L3924 2020 2850 763*2^2885928+1 868754 L2125 2020 2851 1071*2^2884844+1 868428 L3593 2020 2852 1181*2^2883981+1 868168 L3593 2020 2853 327*2^2881349-1 867375 L5545 2022 2854 51*2^2881227+1 867338 L3512 2013 2855 933*2^2879973+1 866962 L4951 2020 2856 261*2^2879941+1 866952 L4119 2015 2857 4085818^131072+1 866554 L4201 2016 Generalized Fermat 2858 65*2^2876718-1 865981 L2484 2016 2859 21*948^290747-1 865500 L4985 2019 2860 4013*2^2873250-1 864939 L1959 2014 2861 41*2^2872058-1 864578 L2484 2013 2862 359*2^2870935+1 864241 L1300 2020 2863 165*2^2870868+1 864220 L4119 2015 2864 961*2^2870596+1 864139 L1300 2020 Generalized Fermat 2865 665*2^2869847+1 863913 L2885 2020 2866 283*2^2868750+1 863583 L3877 2015 2867f 663703*20^663703-1 863504 L5765 2023 Generalized Woodall 2868 845*2^2868291+1 863445 L5100 2020 2869 3125*2^2867399+1 863177 L1754 2019 2870 701*2^2867141+1 863099 L1422 2020 2871 3814944^131072+1 862649 L4201 2016 Generalized Fermat 2872 119*954^289255+1 861852 L5410 2022 2873 307*2^2862962+1 861840 L4740 2020 2874 147*2^2862651+1 861746 L1741 2015 2875 1207*2^2861901-1 861522 L1828 2011 2876 231*2^2860725+1 861167 L2873 2015 2877 193*2^2858812+1 860591 L2997 2015 2878 629*2^2857891+1 860314 L3035 2020 2879 493*2^2857856+1 860304 L5087 2020 2880 241*2^2857313-1 860140 L2484 2018 2881 707*2^2856331+1 859845 L5084 2020 2882 3615210^131072+1 859588 L4201 2016 Generalized Fermat 2883 949*2^2854946+1 859428 L2366 2020 2884 222361*2^2854840+1 859398 g403 2006 2885 725*2^2854661+1 859342 L5031 2020 2886 399*2^2851994+1 858539 L4099 2020 2887 225*2^2851959+1 858528 L3941 2015 2888 247*2^2851602+1 858421 L3865 2015 2889 183*2^2850321+1 858035 L2117 2015 2890 1191*2^2849315+1 857733 L1188 2020 2891 717*2^2848598+1 857517 L1204 2020 2892 795*2^2848360+1 857445 L4099 2020 2893 4242104*15^728840-1 857189 L5410 2023 2894 3450080^131072+1 856927 L4201 2016 Generalized Fermat 2895 705*2^2846638+1 856927 L1808 2020 2896 369*2^2846547+1 856899 L4099 2020 2897 233*2^2846392-1 856852 L2484 2021 2898 955*2^2844974+1 856426 L1188 2020 2899 753*2^2844700+1 856343 L1204 2020 2900 11138*745^297992-1 855884 L4189 2019 2901 111*2^2841992+1 855527 L1792 2015 2902 44*744^297912-1 855478 L5410 2021 2903 649*2^2841318+1 855325 L4732 2020 2904 228*912^288954-1 855305 L5410 2022 2905 305*2^2840155+1 854975 L4907 2020 2906d 914*871^290787-1 854923 L5787 2023 2907 1149*2^2839622+1 854815 L2042 2020 2908 95*2^2837909+1 854298 L3539 2013 2909 199*2^2835667-1 853624 L2484 2019 2910 595*2^2833406+1 852943 L4343 2020 2911 1101*2^2832061+1 852539 L4930 2020 2912 813*2^2831757+1 852447 L4951 2020 2913 435*2^2831709+1 852432 L4951 2020 2914 393*2^2828738-1 851538 L2257 2023 2915 543*2^2828217+1 851381 L4746 2019 2916f 68*1010^283267+1 851027 L5778 2023 2917 704*249^354745+1 850043 L5410 2019 2918 1001*2^2822037+1 849521 L1209 2019 2919 84466*5^1215373-1 849515 L3562 2013 2920 97*2^2820650+1 849103 L2163 2013 2921 381*2^2820157-1 848955 L2257 2023 2922 107*2^2819922-1 848884 L2484 2013 2923 84256*3^1778899+1 848756 L4789 2018 2924 45472*3^1778899-1 848756 L4789 2018 2925 14804*3^1778530+1 848579 L4064 2021 2926 497*2^2818787+1 848543 L4842 2019 2927 97*2^2818306+1 848397 L3262 2013 2928 313*2^2817751-1 848231 L802 2021 2929 177*2^2816050+1 847718 L129 2012 2930 553*2^2815596+1 847582 L4980 2019 2931 1071*2^2814469+1 847243 L3035 2019 2932 105*2^2813000+1 846800 L3200 2015 2933 1115*2^2812911+1 846774 L1125 2019 2934 96*10^846519-1 846521 L2425 2011 Near-repdigit 2935 763*2^2811726+1 846417 L3919 2019 2936 1125*2^2811598+1 846379 L4981 2019 2937 891*2^2810100+1 845928 L4981 2019 2938 441*2^2809881+1 845862 L4980 2019 2939 711*2^2808473+1 845438 L1502 2019 2940 1089*2^2808231+1 845365 L4687 2019 2941 63*2^2807130+1 845033 L3262 2013 2942 1083*2^2806536+1 844855 L3035 2019 2943 675*2^2805669+1 844594 L1932 2019 2944 819*2^2805389+1 844510 L3372 2019 2945 1027*2^2805222+1 844459 L3035 2019 2946 437*2^2803775+1 844024 L3168 2019 2947 381*2^2801281-1 843273 L2257 2023 2948 4431*372^327835-1 842718 L5410 2019 2949 150344*5^1205508-1 842620 L3547 2013 2950 311*2^2798459+1 842423 L4970 2019 2951 81*2^2797443-1 842117 L3887 2021 2952 400254*127^400254+1 842062 g407 2013 Generalized Cullen 2953 2639850^131072+1 841690 L4249 2016 Generalized Fermat 2954 43*2^2795582+1 841556 L2842 2013 2955 1001*2^2794357+1 841189 L1675 2019 2956 117*2^2794014+1 841085 L1741 2015 2957 1057*2^2792700+1 840690 L1675 2019 2958 345*2^2792269+1 840560 L1754 2019 2959 711*2^2792072+1 840501 L4256 2019 2960 315*2^2791414-1 840302 L2235 2021 2961 973*2^2789516+1 839731 L3372 2019 2962 27602*3^1759590+1 839543 L4064 2021 2963 2187*2^2786802+1 838915 L1745 2019 2964 15*2^2785940+1 838653 p286 2012 2965 333*2^2785626-1 838560 L802 2021 2966 1337*2^2785444-1 838506 L4518 2017 2967 711*2^2784213+1 838135 L4687 2019 2968 58582*91^427818+1 838118 L5410 2020 2969 923*2^2783153+1 837816 L1675 2019 2970 1103*2^2783149+1 837815 L3784 2019 2971 485*2^2778151+1 836310 L1745 2019 2972 600921*2^2776014-1 835670 g337 2017 2973 1129*2^2774934+1 835342 L1774 2019 2974 750*1017^277556-1 834703 L4955 2021 2975 8700*241^350384-1 834625 L5410 2019 2976 1023*2^2772512+1 834613 L4724 2019 2977 656*249^348030+1 833953 L5410 2019 2978 92*10^833852-1 833854 L4789 2018 Near-repdigit 2979 437*2^2769299+1 833645 L3760 2019 2980 967*2^2768408+1 833377 L3760 2019 2981 2280466^131072+1 833359 L4201 2016 Generalized Fermat 2982 1171*2^2768112+1 833288 L2676 2019 2983 57*2^2765963+1 832640 L3262 2013 2984 1323*2^2764024+1 832058 L1115 2019 2985 77*2^2762047+1 831461 L3430 2013 2986 745*2^2761514+1 831302 L1204 2019 2987 2194180^131072+1 831164 L4276 2016 Generalized Fermat 2988 7*10^830865+1 830866 p342 2014 2989 893*2^2758841+1 830497 L4826 2019 2990 537*2^2755164+1 829390 L3035 2019 2991 579*2^2754370+1 829151 L1823 2019 2992 441*2^2754188+1 829096 L2564 2019 Generalized Fermat 2993b 677*792^285769-1 828369 L541 2023 2994 215*2^2751022-1 828143 L2484 2018 2995 337*2^2750860+1 828094 L4854 2019 2996 701*2^2750267+1 827916 L3784 2019 2997 467*2^2749195+1 827593 L1745 2019 2998 245*2^2748663+1 827433 L3173 2015 2999 591*2^2748315+1 827329 L3029 2019 3000 57*2^2747499+1 827082 L3514 2013 Divides Fermat F(2747497) 3001 1007*2^2747268-1 827014 L4518 2022 3002 1089*2^2746155+1 826679 L2583 2019 3003 707*2^2745815+1 826576 L3760 2019 3004 459*2^2742310+1 825521 L4582 2019 3005 777*2^2742196+1 825487 L3919 2019 3006 609*2^2741078+1 825150 L3091 2019 3007 684*157^375674+1 824946 L5112 2022 3008 639*2^2740186+1 824881 L4958 2019 3009 905*2^2739805+1 824767 L4958 2019 3010 119*954^276761+1 824625 L5410 2022 3011 1955556^131072+1 824610 L4250 2015 Generalized Fermat 3012 777*2^2737282+1 824007 L1823 2019 3013 765*2^2735232+1 823390 L1823 2019 3014 609*2^2735031+1 823330 L1823 2019 3015 305*2^2733989+1 823016 L1823 2019 3016 165*2^2732983+1 822713 L1741 2015 3017 1133*2^2731993+1 822415 L4687 2019 3018 251*2^2730917+1 822091 L3924 2015 3019 1185*2^2730620+1 822002 L4948 2019 3020 (10^410997+1)^2-2 821995 p405 2022 3021 173*2^2729905+1 821786 L3895 2015 3022 1981*2^2728877-1 821478 L1134 2018 3023 693*2^2728537+1 821375 L3035 2019 3024 501*2^2728224+1 821280 L3035 2019 3025 763*2^2727928+1 821192 L3924 2019 3026 10*743^285478+1 819606 L4955 2019 3027 17*2^2721830-1 819354 p279 2010 3028 1006*639^291952+1 819075 L4444 2021 3029 1101*2^2720091+1 818833 L4935 2019 3030 1766192^131072+1 818812 L4231 2015 Generalized Fermat 3031 165*2^2717378-1 818015 L2055 2012 3032 68633*2^2715609+1 817485 L5105 2020 3033 1722230^131072+1 817377 L4210 2015 Generalized Fermat 3034 9574*5^1169232+1 817263 L5410 2021 3035 1717162^131072+1 817210 L4226 2015 Generalized Fermat 3036 133*2^2713410+1 816820 L3223 2015 3037 45*2^2711732+1 816315 L1349 2012 3038 569*2^2711451+1 816231 L4568 2019 3039 12830*3^1709456+1 815622 L5410 2021 3040 335*2^2708958-1 815481 L2235 2020 3041 93*2^2708718-1 815408 L1862 2016 3042 1660830^131072+1 815311 L4207 2015 Generalized Fermat 3043 837*2^2708160+1 815241 L4314 2019 3044 1005*2^2707268+1 814972 L4687 2019 3045 13*458^306196+1 814748 L3610 2015 3046 253*2^2705844+1 814543 L4083 2015 3047 657*2^2705620+1 814476 L4907 2019 3048 39*2^2705367+1 814399 L1576 2013 Divides GF(2705360,3) 3049 303*2^2703864+1 813947 L1204 2019 3050 141*2^2702160+1 813434 L1741 2015 3051 753*2^2701925+1 813364 L4314 2019 3052 133*2^2701452+1 813221 L3173 2015 3053 521*2^2700095+1 812813 L4854 2019 3054 393*2^2698956+1 812470 L1823 2019 3055 417*2^2698652+1 812378 L3035 2019 3056 525*2^2698118+1 812218 L1823 2019 3057 3125*2^2697651+1 812078 L3924 2019 3058 153*2^2697173+1 811933 L3865 2015 3059 1560730^131072+1 811772 L4201 2015 Generalized Fermat 3060 26*3^1700041+1 811128 L4799 2020 3061 Phi(3,-1538654^65536) 810961 L4561 2017 Generalized unique 3062 11*2^2691961+1 810363 p286 2013 Divides GF(2691960,12) 3063 58*536^296735-1 809841 L5410 2021 3064 33016*3^1696980+1 809670 L5366 2021 3065 7335*2^2689080-1 809498 L4036 2015 3066 1049*2^2688749+1 809398 L4869 2018 3067b 120*957^271487-1 809281 L541 2023 3068 329*2^2688221+1 809238 L3035 2018 3069 865*2^2687434+1 809002 L4844 2018 3070 989*2^2686591+1 808748 L2805 2018 3071 136*904^273532+1 808609 L5410 2020 3072 243*2^2685873+1 808531 L3865 2015 3073 909*2^2685019+1 808275 L3431 2018 3074 1455*2^2683954-6325241166627*2^1290000-1 807954 p423 2021 Arithmetic progression (3,d=1455*2^2683953-6325241166627*2^1290000) 3075 1455*2^2683953-1 807954 L1134 2020 3076 11210*241^339153-1 807873 L5410 2019 3077 Phi(3,-1456746^65536) 807848 L4561 2017 Generalized unique 3078 975*2^2681840+1 807318 L4155 2018 3079 999*2^2681353-1 807171 L4518 2022 3080 295*2^2680932+1 807044 L1741 2015 3081 Phi(3,-1427604^65536) 806697 L4561 2017 Generalized unique 3082 575*2^2679711+1 806677 L2125 2018 3083 2386*52^469972+1 806477 L4955 2019 3084a 2778*991^269162+1 806433 p433 2023 3085 10*80^423715-1 806369 p247 2023 3086 219*2^2676229+1 805628 L1792 2015 3087 637*2^2675976+1 805552 L3035 2018 3088 Phi(3,-1395583^65536) 805406 L4561 2017 Generalized unique 3089 951*2^2674564+1 805127 L1885 2018 3090 1372930^131072+1 804474 g236 2003 Generalized Fermat 3091 662*1009^267747-1 804286 L5410 2020 3092 261*2^2671677+1 804258 L3035 2015 3093 895*2^2671520+1 804211 L3035 2018 3094 1361244^131072+1 803988 g236 2004 Generalized Fermat 3095 789*2^2670409+1 803877 L3035 2018 3096 256*11^771408+1 803342 L3802 2014 Generalized Fermat 3097 503*2^2668529+1 803310 L4844 2018 3098 255*2^2668448+1 803286 L1129 2015 3099 4189*2^2666639-1 802742 L1959 2017 3100 539*2^2664603+1 802129 L4717 2018 3101 3^1681130+3^445781+1 802103 CH9 2022 3102 26036*745^279261-1 802086 L4189 2020 3103 1396*5^1146713-1 801522 L3547 2013 3104 676*687^282491-1 801418 L5426 2023 3105 267*2^2662090+1 801372 L3234 2015 Divides Fermat F(2662088) 3106 51*892^271541+1 801147 L5410 2019 3107 297*2^2660048+1 800757 L3865 2015 3108 99*2^2658496-1 800290 L1862 2021 3109 851*2^2656411+1 799663 L4717 2018 3110 487*2^2655008+1 799240 L3760 2018 3111 371*2^2651663+1 798233 L3760 2018 3112 69*2^2649939-1 797713 L3764 2014 3113 207*2^2649810+1 797675 L1204 2015 3114 505*2^2649496+1 797581 L3760 2018 3115 993*2^2649256+1 797509 L3760 2018 3116 517*2^2648698+1 797341 L3760 2018 3117 340*703^280035+1 797250 L4001 2018 3118 441*2^2648307+1 797223 L3760 2018 3119 1129*2^2646590+1 796707 L3760 2018 3120 128*518^293315+1 796156 L4001 2019 3121 211*744^277219-1 796057 L5410 2021 3122 Phi(3,-1181782^65536) 795940 L4142 2015 Generalized unique 3123 1176694^131072+1 795695 g236 2003 Generalized Fermat 3124 13*2^2642943-1 795607 L1862 2012 3125 119*410^304307+1 795091 L4294 2019 3126 501*2^2641052+1 795039 L3035 2018 3127 879*2^2639962+1 794711 L3760 2018 3128 57*2^2639528-1 794579 L2484 2016 3129 342673*2^2639439-1 794556 L53 2007 3130 813*2^2639092+1 794449 L2158 2018 3131 Phi(3,-1147980^65536) 794288 L4142 2015 Generalized unique 3132 197*972^265841-1 794247 L4955 2022 3133 1027*2^2638186+1 794177 L3760 2018 3134 889*2^2637834+1 794071 L3545 2018 3135 92182*5^1135262+1 793520 L3547 2013 3136 5608*70^429979+1 793358 L5390 2021 3137 741*2^2634385+1 793032 L1204 2018 3138 465*2^2630496+1 791861 L1444 2018 3139 189*2^2630487+1 791858 L3035 2015 3140 87*2^2630468+1 791852 L3262 2013 3141 4*5^1132659-1 791696 L4965 2022 3142 1131*2^2629345+1 791515 L4826 2018 3143 967*2^2629344+1 791515 L3760 2018 3144 267*2^2629210+1 791474 L3035 2015 3145 154*883^268602+1 791294 L5410 2020 3146 819*2^2627529+1 790968 L1387 2018 3147 17152*5^1131205-1 790683 L3552 2013 3148 183*2^2626442+1 790641 L3035 2015 3149 813*2^2626224+1 790576 L4830 2018 3150 807*2^2625044+1 790220 L1412 2018 3151 1063730^131072+1 789949 g260 2013 Generalized Fermat 3152 1243*2^2623707-1 789818 L1828 2011 3153 693*2^2623557+1 789773 L3278 2018 3154 981*2^2622032+1 789314 L1448 2018 3155 145*2^2621020+1 789008 L3035 2015 3156 963*792^271959-1 788338 L5410 2021 3157 541*2^2614676+1 787099 L4824 2018 3158 (10^393063-1)^2-2 786126 p405 2022 Near-repdigit 3159 1061*268^323645-1 785857 L5410 2019 3160 1662*483^292719-1 785646 L5410 2022 3161 Phi(3,-984522^65536) 785545 p379 2015 Generalized unique 3162 1071*2^2609316+1 785486 L3760 2018 3163 87*2^2609046+1 785404 L2520 2013 3164 18922*111^383954+1 785315 L4927 2021 3165 543*2^2608129+1 785128 L4822 2018 3166 377*2^2607856-1 785046 L2257 2023 3167 329584*5^1122935-1 784904 L3553 2013 3168 10*311^314806+1 784737 L3610 2014 3169 1019*2^2606525+1 784646 L1201 2018 3170 977*2^2606211+1 784551 L4746 2018 3171 13*2^2606075-1 784508 L1862 2011 3172 693*2^2605905+1 784459 L4821 2018 3173 147*2^2604275+1 783968 L1741 2015 3174 105*2^2603631+1 783774 L3459 2015 3175 93*2^2602483-1 783428 L1862 2016 3176 155*2^2602213+1 783347 L2719 2015 3177a 545*2^2602018-1 783289 L5516 2023 3178 303*2^2601525+1 783140 L4816 2018 3179 711*2^2600535+1 782842 L4815 2018 3180 1133*2^2599345+1 782484 L4796 2018 3181 397*2^2598796+1 782319 L3877 2018 3182a 421*2^2597273-1 781860 L5516 2023 3183a 585*2^2596523-1 781635 L5819 2023 3184 1536*177^347600+1 781399 L5410 2020 3185 1171*2^2595736+1 781398 L3035 2018 3186 (146^180482+1)^2-2 781254 p405 2022 3187a 579*2^2595159-1 781224 L5516 2023 3188a 543*2^2594975-1 781169 L5516 2023 3189 909548^131072+1 781036 p387 2015 Generalized Fermat 3190 2*218^333925+1 780870 L4683 2017 3191e 15690*841^266965+1 780823 L5787 2023 3192 1149*2^2593359+1 780682 L1125 2018 3193 225*2^2592918+1 780549 L1792 2015 Generalized Fermat 3194a 495*2^2592802-1 780514 L5516 2023 3195 333*2^2591874-1 780235 L2017 2019 3196 Phi(3,-883969^65536) 779412 p379 2015 Generalized unique 3197 2154*687^274573-1 778956 L5752 2023 3198 Phi(3,-872989^65536) 778700 p379 2015 Generalized unique 3199 703*2^2586728+1 778686 L4256 2018 3200 2642*372^302825-1 778429 L5410 2019 3201 120*825^266904+1 778416 L4001 2018 3202 337*2^2585660+1 778364 L2873 2018 3203 31*2^2585311-1 778258 L4521 2022 3204 393*2^2584957+1 778153 L4600 2018 3205 151*2^2584480+1 778009 L4043 2015 3206 Phi(3,-862325^65536) 778001 p379 2015 Generalized unique 3207 385*2^2584280+1 777949 L4600 2018 3208 Phi(3,-861088^65536) 777919 p379 2015 Generalized unique 3209 65*2^2583720-1 777780 L2484 2015 3210 25*2^2583690+1 777770 L3249 2013 Generalized Fermat 3211 82*920^262409-1 777727 L4064 2015 3212 1041*2^2582112+1 777297 L1456 2018 3213 334310*211^334310-1 777037 p350 2012 Generalized Woodall 3214 229*2^2581111-1 776995 L1862 2017 3215 61*2^2580689-1 776867 L2484 2015 3216 1113*2^2580205+1 776723 L4724 2018 3217 51*2^2578652+1 776254 L3262 2013 3218 173*2^2578197+1 776117 L3035 2015 3219 833*2^2578029+1 776067 L4724 2018 3220 80*394^298731-1 775358 L541 2020 3221 302*423^295123-1 775096 L5413 2021 3222 460*628^276994+1 775021 L5410 2020 3223 459*2^2573899+1 774824 L1204 2018 3224b 593*2^2572634-1 774443 L5516 2023 3225 Phi(3,-806883^65536) 774218 p379 2015 Generalized unique 3226 357*2^2568110-1 773081 L2257 2023 3227 627*2^2567718+1 772963 L3803 2018 3228 933*2^2567598+1 772927 L4724 2018 3229 757*2^2566468+1 772587 L2606 2018 3230b 471*2^2566323-1 772543 L5516 2023 3231 231*2^2565263+1 772224 L3035 2015 3232 4*737^269302+1 772216 L4294 2016 Generalized Fermat 3233 941*2^2564867+1 772105 L4724 2018 3234 923*2^2563709+1 771757 L1823 2018 3235 151*596^278054+1 771671 L4876 2019 3236 Phi(3,-770202^65536) 771570 p379 2015 Generalized unique 3237 303*2^2562423-1 771369 L2017 2018 3238 75*2^2562382-1 771356 L2055 2011 3239 147559*2^2562218+1 771310 L764 2012 3240 117*412^294963+1 771300 p268 2021 3241 829*2^2561730+1 771161 L1823 2018 3242 404*12^714558+1 771141 L1471 2011 3243 Phi(3,-757576^65536) 770629 p379 2015 Generalized unique 3244 295*80^404886+1 770537 L5410 2021 3245 1193*2^2559453+1 770476 L2030 2018 3246 19*984^257291+1 770072 L5410 2020 3247 116*950^258458-1 769619 L5410 2021 3248e 612497*18^612497+1 768857 L5765 2023 Generalized Cullen 3249 Phi(3,-731582^65536) 768641 p379 2015 Generalized unique 3250b 479*2^2553152-1 768579 L5516 2023 3251 65*752^267180-1 768470 L5410 2020 3252 419*2^2552363+1 768341 L4713 2018 3253 369*2^2551955-1 768218 L2257 2023 3254 34*759^266676-1 768093 L4001 2019 3255 315*2^2550412+1 767754 L4712 2017 3256 415*2^2549590+1 767506 L4710 2017 3257 1152*792^264617-1 767056 L4955 2021 3258 693*2^2547752+1 766953 L4600 2017 3259 673*2^2547226+1 766795 L2873 2017 3260 169*2^2545526+1 766282 L2125 2015 Divides GF(2545525,10), generalized Fermat 3261 196*814^263256+1 766242 L5410 2021 Generalized Fermat 3262 183*2^2545116+1 766159 L3035 2015 3263 311*2^2544778-1 766058 L2017 2018 3264 9*2^2543551+1 765687 L1204 2011 Divides Fermat F(2543548), GF(2543549,3), GF(2543549,6), GF(2543549,12) 3265 67*446^288982+1 765612 L4273 2020 3266 663*2^2542990+1 765520 L4703 2017 3267 705*2^2542464+1 765361 L2873 2017 3268 689186^131072+1 765243 g429 2013 Generalized Fermat 3269 745*2^2540726+1 764838 L4696 2017 3270 Phi(3,-682504^65536) 764688 p379 2015 Generalized unique 3271 64*177^340147-1 764644 L3610 2015 3272 421*2^2539336+1 764419 L4148 2017 3273 123287*2^2538167+1 764070 L3054 2012 3274 305716*5^1093095-1 764047 L3547 2013 3275 223*2^2538080+1 764041 L2125 2015 3276 83*2^2537641+1 763908 L1300 2013 3277 543539*2^2536028-1 763427 L4187 2022 3278b 473*2^2533376-1 762625 L5516 2023 3279 645*2^2532811+1 762455 L4600 2017 3280 953*2^2531601+1 762091 L4404 2017 3281 694*567^276568-1 761556 L4444 2021 3282 545*2^2528179+1 761061 L1502 2017 3283c 517*2^2527857-1 760964 L5516 2023 3284 203*2^2526505+1 760557 L3910 2015 3285 967*2^2526276+1 760488 L1204 2017 3286 3317*2^2523366-1 759613 L5399 2021 3287 241*2^2522801-1 759442 L2484 2018 3288 360307*6^975466-1 759066 p255 2017 3289 326*80^398799+1 758953 L4444 2021 3290 749*2^2519457+1 758436 L1823 2017 3291 199*2^2518871-1 758259 L2484 2018 3292 6*10^758068+1 758069 L5009 2019 3293 87*2^2518122-1 758033 L2484 2014 3294c 515*2^2517626-1 757884 L5516 2023 3295 Phi(3,-605347^65536) 757859 p379 2015 Generalized unique 3296 711*2^2516187+1 757451 L3035 2017 3297 967*2^2514698+1 757003 L4600 2017 3298 33*2^2513872-1 756753 L3345 2013 3299 973*2^2511920+1 756167 L1823 2017 3300 679*2^2511814+1 756135 L4598 2017 3301 1093*2^2511384+1 756005 L1823 2017 3302 38*875^256892-1 755780 L4001 2019 3303 45*2^2507894+1 754953 L1349 2012 3304 130484*5^1080012-1 754902 L3547 2013 3305 572186^131072+1 754652 g0 2004 Generalized Fermat 3306 242*501^279492-1 754586 L4911 2019 3307 883*2^2506382+1 754500 L1823 2017 3308 847*2^2505540+1 754246 L4600 2017 3309 191*2^2504121+1 753818 L3035 2015 3310 783*2^2500912+1 752853 L1823 2017 3311d 133*488^279973-1 752688 L541 2023 3312 165*2^2500130-1 752617 L2055 2011 3313 33*2^2499883-1 752542 L3345 2013 3314 319*2^2498685-1 752182 L2017 2018 3315a 215206*5^1076031-1 752119 L20 2023 Generalized Woodall 3316c 477*2^2496685-1 751580 L5516 2023 3317 321*2^2496594-1 751553 L2235 2018 3318c 531*2^2495930-1 751353 L5516 2023 3319 365*2^2494991+1 751070 L3035 2017 3320 213*2^2493004-1 750472 L1863 2017 3321 777*2^2492560+1 750339 L3035 2017 3322 57*2^2492031+1 750178 L1230 2013 3323 879*2^2491342+1 749972 L4600 2017 3324 14*152^343720-1 749945 L3610 2015 3325 231*2^2489083+1 749292 L3035 2015 3326 255*2^2488562+1 749135 L3035 2015 3327c 483*2^2488154-1 749012 L5516 2023 3328 708*48^445477-1 748958 L5410 2022 3329 221*780^258841-1 748596 L4001 2018 3330 303*2^2486629+1 748553 L3035 2017 3331 6*433^283918-1 748548 L3610 2015 3332c 413*2^2486596-1 748543 L5516 2023 3333 617*2^2485919+1 748339 L1885 2017 3334 515*2^2484885+1 748028 L3035 2017 3335 1095*2^2484828+1 748011 L3035 2017 3336 1113*2^2484125+1 747800 L3035 2017 3337 607*2^2483616+1 747646 L3035 2017 3338 625*2^2483272+1 747543 L2487 2017 Generalized Fermat 3339c 527*2^2482876-1 747423 L5516 2023 3340 723*2^2482064+1 747179 L3035 2017 3341 2154*687^263317-1 747023 L5410 2023 3342 26*3^1565545+1 746957 L4799 2020 3343 14336*3^1563960+1 746203 L5410 2021 3344 3*2^2478785+1 746190 g245 2003 Divides Fermat F(2478782), GF(2478782,3), GF(2478776,6), GF(2478782,12) 3345c 483*2^2478266-1 746036 L5516 2023 3346c 429*2^2478139-1 745997 L5516 2023 3347 1071*2^2477584+1 745831 L3035 2017 3348 22*30^504814-1 745673 p355 2014 3349 2074*483^277812-1 745637 L5410 2022 3350 11*2^2476839+1 745604 L2691 2011 3351 825*2^2474996+1 745051 L1300 2017 3352 1061*2^2474282-1 744837 L1828 2012 3353 435*2^2473905+1 744723 L3035 2017 3354 1005*2^2473724-1 744669 L4518 2021 3355 1121*2^2473401+1 744571 L3924 2017 3356 325*2^2473267-1 744531 L2017 2018 3357 400*639^265307-1 744322 L5410 2022 3358 11996*3^1559395+1 744025 L5410 2021 3359 889*2^2471082+1 743873 L1300 2017 3360 529*2^2470514+1 743702 L3924 2017 Generalized Fermat 3361d 561*2^2469713-1 743461 L5516 2023 3362 883*2^2469268+1 743327 L4593 2017 3363 5754*313^297824-1 743237 L5089 2020 3364 81*2^2468789+1 743182 g418 2009 3365 55154*5^1063213+1 743159 L3543 2013 3366 119*2^2468556-1 743112 L2484 2018 3367 2136*396^285974+1 742877 L5410 2021 3368 525*2^2467658+1 742842 L3035 2017 3369d 465*2^2467625-1 742832 L5516 2023 3370 715*2^2465640+1 742235 L3035 2017 3371 26773*2^2465343-1 742147 L197 2006 3372 581*550^270707-1 741839 L5410 2020 3373 993*2^2464082+1 741766 L3035 2017 3374 1179*2^2463746+1 741665 L3035 2017 3375 857*2^2463411+1 741564 L3662 2017 3376 103*2^2462567-1 741309 L2484 2014 3377 12587*2^2462524-1 741298 L2012 2017 3378 5*2^2460482-1 740680 L503 2008 3379 763*2^2458592+1 740113 L1823 2017 3380 453*2^2458461+1 740074 L3035 2017 3381 519*2^2458058+1 739952 L3803 2017 3382 373*2^2457859-1 739892 L2257 2023 3383d 545*2^2457692-1 739842 L5516 2023 3384 137*2^2457639+1 739826 L4021 2014 3385d 411*2^2457241-1 739706 L5516 2023 3386 41676*7^875197-1 739632 L2777 2012 Generalized Woodall 3387 2688*991^246849+1 739582 L5410 2021 3388 133*2^2455666+1 739232 L2322 2014 3389 99*2^2455541-1 739194 L1862 2015 3390 377*2^2452639+1 738321 L3035 2017 3391 2189*138^345010+1 738284 L5410 2020 3392 1129*2^2452294+1 738218 L3035 2017 3393 1103*2^2451133+1 737868 L4531 2017 3394 65*2^2450614-1 737711 L2074 2014 3395 549*2^2450523+1 737684 L3035 2017 3396 4*789^254595+1 737582 L4955 2019 3397 3942*55^423771-1 737519 L4955 2019 3398d 441*2^2449825-1 737474 L5516 2023 3399b Phi(3,-3*2^1224895) 737462 A3 2023 Generalized unique 3400 2166*483^274670-1 737204 L5410 2022 3401 765*2^2448660+1 737123 L4412 2017 3402 607*2^2447836+1 736875 L4523 2017 3403 1261*988^246031+1 736807 L5342 2021 3404 1005*2^2446722+1 736540 L4522 2017 3405 703*2^2446472+1 736465 L2805 2017 3406 75*2^2446050+1 736337 L3035 2013 3407 115*26^520277-1 736181 L1471 2014 3408 114986*5^1052966-1 735997 L3528 2013 3409 1029*2^2444707+1 735934 L3035 2017 3410 4*5^1052422+1 735613 L4965 2023 Generalized Fermat 3411 1035*2^2443369+1 735531 L3173 2017 3412a 1052072*5^1052072-1 735373 L20 2023 Generalized Woodall 3413 1017*2^2442723+1 735336 L4417 2017 3414d 489*2^2442281-1 735203 L5516 2023 3415 962*3^1540432+1 734976 L5410 2021 3416 1065*2^2441132+1 734857 L1823 2017 3417 369*2^2436949-1 733598 L2257 2023 3418 393*2^2436849+1 733568 L3035 2016 3419 1425*2^2435607-1 733194 L1134 2020 3420 386892^131072+1 732377 p259 2009 Generalized Fermat 3421 465*2^2431455+1 731944 L3035 2016 3422 905*2^2430509+1 731660 L4408 2016 3423 223*2^2430490+1 731653 L4016 2014 3424 8*410^279991+1 731557 L4700 2019 3425 69*2^2428251-1 730979 L384 2014 3426 6070*466^273937+1 730974 L5410 2021 3427d 541*2^2427667-1 730804 L5516 2023 3428 233*2^2426512-1 730456 L2484 2020 3429 645*2^2426494+1 730451 L3035 2016 3430 665*2^2425789+1 730239 L3173 2016 3431d 539*2^2425704-1 730213 L5516 2023 3432 23*2^2425641+1 730193 L2675 2011 3433d 527*2^2424868-1 729961 L5516 2023 3434 361*2^2424232+1 729770 L3035 2016 Generalized Fermat 3435e 433*2^2423839-1 729651 L5516 2023 3436 753*2^2422914+1 729373 L3035 2016 3437 5619*52^424922+1 729172 L5410 2019 3438 105*2^2422105+1 729129 L2520 2014 3439 62*962^244403+1 729099 L5409 2021 3440 3338*396^280633+1 729003 L5410 2021 3441e 539*2^2421556-1 728964 L5516 2023 3442 201*2^2421514-1 728951 L1862 2016 3443 1084*7^862557+1 728949 L5211 2021 3444 239*2^2421404-1 728918 L2484 2018 3445 577*2^2420868+1 728757 L4489 2016 3446 929*2^2417767+1 727824 L3924 2016 3447 4075*2^2417579-1 727768 L1959 2017 3448 303*2^2417452-1 727729 L2235 2018 3449 895*2^2417396+1 727712 L3035 2016 3450d 113*1010^242194-1 727631 L5789 2023 3451 1764*327^289322+1 727518 L5410 2020 Generalized Fermat 3452 3317*2^2415998-1 727292 L5399 2021 3453 5724*313^291243-1 726814 L4444 2020 3454 1081*2^2412780+1 726323 L1203 2016 3455 333*2^2412735-1 726309 L2017 2018 3456 6891*52^423132+1 726100 L5410 2019 3457 83*2^2411962-1 726075 L1959 2018 3458 69*2^2410035-1 725495 L2074 2013 3459 12362*1027^240890-1 725462 L4444 2018 3460 143157*2^2409056+1 725204 L4504 2016 3461 Phi(3,-340594^65536) 725122 p379 2015 Generalized unique 3462 339*2^2408337+1 724985 L3029 2016 3463 811*2^2408096+1 724913 L2526 2016 3464 157*2^2407958+1 724870 L1741 2014 3465 243686*5^1036954-1 724806 L3549 2013 3466 3660*163^327506+1 724509 L4955 2019 3467 303*2^2406433+1 724411 L4425 2016 3468 345*2^2405701+1 724191 L3035 2016 3469 921*2^2405056+1 723997 L2805 2016 3470 673*2^2403606+1 723561 L3035 2016 3471 475*2^2403220+1 723444 L4445 2016 3472 837*2^2402798+1 723318 L3372 2016 3473 Phi(3,-329886^65536) 723303 p379 2015 Generalized unique 3474 231*2^2402748+1 723302 L3995 2014 3475 375*2^2401881+1 723041 L2805 2016 3476e 511*2^2401795-1 723016 L5516 2023 3477 107*2^2401731+1 722996 L3998 2014 3478e 419*2^2401672-1 722978 L5516 2023 3479 1023*2^2398601+1 722054 L4414 2016 3480 539*2^2398227+1 721941 L4061 2016 3481 659*2^2397567+1 721743 L4441 2016 3482 40*844^246524+1 721416 L4001 2017 3483e 453*2^2395836-1 721222 L5516 2023 3484 465*2^2395133+1 721010 L4088 2016 3485 56*318^288096+1 720941 L1471 2019 3486 667*2^2394430+1 720799 L4408 2016 3487 15*2^2393365+1 720476 L1349 2010 3488 1642*273^295670+1 720304 L5410 2019 3489 8*908^243439+1 720115 L5410 2021 3490e 427*2^2391685-1 719972 L5516 2023 3491 633*2^2391222+1 719833 L3743 2016 3492 273*2^2388104+1 718894 L3668 2014 3493 118*558^261698+1 718791 L4877 2019 3494 1485*2^2386037-1 718272 L1134 2017 3495 399*2^2384115+1 717693 L4412 2016 3496 99*2^2383846+1 717612 L1780 2013 3497 737*2^2382804-1 717299 L191 2007 3498 111*2^2382772+1 717288 L3810 2014 3499e 423*2^2382134-1 717097 L2519 2023 3500 61*2^2381887-1 717022 L2432 2012 3501 202*249^299162+1 716855 L5410 2019 3502 321*2^2378535-1 716013 L2017 2018 3503 435*2^2378522+1 716010 L1218 2016 3504 4*3^1499606+1 715495 L4962 2020 Generalized Fermat 3505 147*2^2375995+1 715248 L1130 2014 3506 915*2^2375923+1 715228 L1741 2016 3507 1981*2^2375591-1 715128 L1134 2017 3508 81*2^2375447-1 715083 L3887 2021 3509 1129*2^2374562+1 714818 L3035 2016 3510 97*2^2374485-1 714794 L2484 2018 3511 1117*2^2373977-1 714642 L1828 2012 3512 949*2^2372902+1 714318 L4408 2016 3513 1005*2^2372754-1 714274 L4518 2021 3514 659*2^2372657+1 714244 L3035 2016 3515 1365*2^2372586+1 714223 L1134 2016 3516 509*2^2370721+1 713661 L1792 2016 3517 99*2^2370390+1 713561 L1204 2013 3518 959*2^2370077+1 713468 L1502 2016 3519 1135*2^2369808+1 713387 L2520 2016 3520 125*2^2369461+1 713281 L3035 2014 3521f 475*2^2369411-1 713267 L5516 2023 3522 1183953*2^2367907-1 712818 L447 2007 Woodall 3523 57671892869766803925...(712708 other digits)...06520121133805600769 712748 p360 2013 3524 119878*5^1019645-1 712707 L3528 2013 3525 453*2^2367388+1 712658 L3035 2016 3526 150209!+1 712355 p3 2011 Factorial 3527 281*2^2363327+1 711435 L1741 2014 3528 2683*2^2360743-1 710658 L1959 2012 3529 409*2^2360166+1 710484 L1199 2016 3530f 465*2^2360088-1 710460 L5516 2023 3531f 561*2^2359543-1 710296 L5516 2023 3532 305*2^2358854-1 710089 L2017 2018 3533 1706*123^339764+1 710078 L5410 2021 3534 403*2^2357572+1 709703 L3029 2016 3535 155*2^2357111+1 709564 L3975 2014 3536f 523*2^2356047-1 709244 L2519 2023 3537 365*2^2355607+1 709111 L2117 2016 3538 33706*6^910462+1 708482 L587 2014 3539f 423*2^2353447-1 708461 L5516 2023 3540 1087*2^2352830+1 708276 L1492 2016 3541 152*1002^235971+1 708120 L5410 2019 3542 179*2^2352291+1 708113 L1741 2014 3543 559*2^2351894+1 707994 L3924 2016 3544 24573*2^2350824+1 707673 p168 2018 3545 1035*2^2350388+1 707541 L2526 2016 3546f 513*2^2348508-1 706975 L5516 2023 3547 433*2^2348252+1 706897 L2322 2016 3548 329*2^2348105+1 706853 L3029 2016 3549 45*2^2347187+1 706576 L1349 2012 3550 7675*46^424840+1 706410 L5410 2019 3551 127*2^2346377-1 706332 L282 2009 3552 933*2^2345893+1 706188 L3035 2016 3553 903*2^2345013+1 705923 L2006 2016 3554 33*2^2345001+1 705918 L2322 2013 3555 Phi(3,-242079^65536) 705687 p379 2015 Generalized unique 3556f 495*2^2343641-1 705509 L5516 2023 3557 627*2^2343140+1 705359 L3125 2016 3558 83*2^2342345+1 705119 L2626 2013 3559d 914*871^239796-1 705008 L5410 2023 3560 61*380^273136+1 704634 L5410 2019 3561 277*2^2340182+1 704468 L1158 2014 3562 159*2^2339566+1 704282 L3035 2014 3563 335*2^2338972-1 704104 L2235 2017 3564 535*2^2338971-1 704104 L2519 2023 3565 22*422^268038+1 703685 L4955 2019 3566 9602*241^295318-1 703457 L5410 2019 3567 1149*2^2336638+1 703402 L4388 2016 3568 339*2^2336421-1 703336 L2519 2017 3569 231*2^2335281-1 702992 L1862 2019 3570 275293*2^2335007-1 702913 L193 2006 3571 105*2^2334755-1 702834 L1959 2018 3572 228188^131072+1 702323 g124 2010 Generalized Fermat 3573 809*2^2333017+1 702312 L2675 2016 3574 795*2^2332488+1 702152 L3029 2016 3575 3^1471170-3^529291+1 701927 p269 2019 3576 351*2^2331311-1 701798 L2257 2023 3577 229*2^2331017-1 701709 L1862 2021 3578 118*761^243458+1 701499 L5410 2019 3579 435*2^2329948+1 701387 L2322 2016 3580 585*2^2329350+1 701207 L2707 2016 3581 213*2^2328530-1 700960 L1863 2017 3582 1482*327^278686+1 700773 L5410 2020 3583 26472*91^357645+1 700646 L5410 2020 3584 1107*2^2327472+1 700642 L3601 2016 3585 435*2^2327152+1 700546 L2337 2016 3586 413*2^2327048-1 700514 L5516 2023 3587 4161*2^2326875-1 700463 L1959 2016 3588 427*2^2326288+1 700286 L2719 2016 3589 438*19^547574-1 700215 L5410 2020 3590 147855!-1 700177 p362 2013 Factorial 3591 5872*3^1467401+1 700132 L4444 2021 3592 421*2^2324375-1 699710 L5516 2023 3593 451*2^2323952+1 699582 L3173 2016 3594 431*2^2323633+1 699486 L3260 2016 3595d 3084*871^237917-1 699484 L5790 2023 3596 228*912^236298-1 699444 L5366 2022 3597 1085*2^2323291+1 699384 L1209 2016 3598 15*2^2323205-1 699356 L2484 2011 3599 7566*46^420563+1 699299 L5410 2019 3600 1131*2^2322167+1 699045 L1823 2016 3601 385*2^2321502+1 698845 L1129 2016 3602 8348*3^1464571+1 698782 L5367 2021 3603 645*2^2320231+1 698462 L3377 2016 3604 1942*877^237267+1 698280 L5410 2022 3605 165*2^2319575+1 698264 L2627 2014 3606 809*2^2319373+1 698204 L3924 2016 3607 125098*6^896696+1 697771 L587 2014 3608 65536*5^997872+1 697488 L3802 2014 Generalized Fermat 3609 381*2^2314743+1 696810 L4358 2016 3610 120*825^238890+1 696714 L4837 2018 3611 3375*2^2314297+1 696677 L1745 2019 3612 4063*2^2313843-1 696540 L1959 2016 3613 345*2^2313720-1 696502 L2017 2017 3614 74*830^238594-1 696477 L5410 2020 3615 495*2^2313462-1 696425 L5545 2023 3616 926*639^248221-1 696388 L4444 2022 3617 361*2^2312832+1 696235 L3415 2016 Generalized Fermat 3618 1983*366^271591-1 696222 L2054 2012 3619 3*2^2312734-1 696203 L158 2005 3620 2643996*7^823543-1 695981 p396 2021 3621 53653*2^2311848+1 695941 L2012 2017 3622 873*2^2311086+1 695710 L2526 2016 3623 1033*2^2310976+1 695677 L4352 2016 3624 4063*2^2310187-1 695440 L1959 2016 3625 4063*2^2309263-1 695162 L1959 2016 3626 565*2^2308984+1 695077 L2322 2016 3627 447*2^2308104-1 694812 L5516 2023 3628 450457*2^2307905-1 694755 L172 2006 3629 1018*3^1455600+1 694501 L5410 2021 3630 553*2^2306343-1 694282 L5516 2023 3631 1185*2^2306324+1 694276 L4347 2016 3632 3267*2^2305266+1 693958 L1204 2019 3633 107*770^240408-1 693938 L4955 2020 3634 467*2^2304298-1 693666 L5516 2023 3635 537*2^2304115+1 693611 L3267 2016 3636 842*1017^230634-1 693594 L4001 2017 3637 729*2^2303162+1 693324 L1204 2016 Generalized Fermat 3638 641*2^2302879+1 693239 L2051 2016 3639 729*2^2300290+1 692460 L1204 2016 Generalized Fermat 3640 189*2^2299959+1 692359 L2627 2014 3641 2582*111^338032-1 691389 L4786 2021 3642 659*2^2294393+1 690684 L3378 2016 3643 1087*2^2293345-1 690369 L1828 2011 3644 97768*5^987383-1 690157 L1016 2013 3645 4761657101009*2^2292504-1 690126 L257 2019 3646 3*2^2291610+1 689844 L753 2008 Divides GF(2291607,3), GF(2291609,5) 3647 319*2^2290722+1 689579 L1792 2015 3648e 3066*697^242498-1 689482 L5410 2023 3649 779*2^2290273+1 689444 L3034 2016 3650 1001*2^2289438-1 689193 L4518 2020 3651 971*2^2289135+1 689102 L4198 2016 3652 399*2^2288691+1 688968 L1990 2015 3653 1425*2^2288483-1 688906 L1134 2021 3654 Phi(3,-180139^65536) 688864 p379 2015 Generalized unique 3655 74270*151^315734-1 687982 L4001 2018 3656 23902*52^400831+1 687832 L5410 2019 3657 417*2^2284402+1 687677 L2322 2015 3658 130*686^242244+1 687085 L4064 2018 3659 427*2^2282080+1 686978 L3260 2015 3660 109*2^2280194+1 686409 L2520 2014 3661 105*2^2280078-1 686374 L2444 2014 3662 1019*2^2278467+1 685890 L4323 2016 3663 213*2^2277870-1 685710 L1863 2017 3664 904*957^229937-1 685425 L5410 2022 3665 547*2^2276648+1 685343 L3260 2015 3666 26*3^1435875+1 685088 L4799 2020 3667 7913*2^2275664-1 685048 L4036 2015 3668 5*6^880336+1 685036 p420 2023 3669 651*2^2275040+1 684859 L4082 2016 3670 155877*2^2273465-1 684387 L541 2014 3671 16*710^240014+1 684344 L5410 2019 Generalized Fermat 3672 739*2^2272938+1 684226 L1209 2016 3673 279*798^235749-1 684147 L541 2021 3674 4821*396^263301+1 683980 L5410 2021 3675 (362^133647+1)^2-2 683928 p403 2019 3676 943*2^2269594+1 683219 L1823 2016 3677 493*2^2269427-1 683169 L5516 2023 3678 182*792^235539+1 682766 L4837 2019 3679 1286*603^245567+1 682758 L4444 2019 3680 50*893^231310-1 682564 L4975 2019 3681 329*2^2266631+1 682327 L4109 2015 3682 739*2^2266602+1 682319 L2520 2016 3683 19683*2^2265896+1 682107 L2914 2019 3684 1151*2^2265761+1 682066 L1823 2016 3685 851*2^2265691+1 682044 L3173 2016 3686 977*2^2265655+1 682034 L2413 2016 3687 2*11171^168429+1 681817 g427 2014 Divides Phi(11171^168429,2) 3688 185*2^2264906-1 681807 L2484 2022 3689 31924*3^1428855+1 681742 L5410 2021 3690 217*2^2264546+1 681699 L3179 2014 3691 178*821^233901-1 681671 L5410 2022 3692 841*2^2264184+1 681591 L1823 2016 Generalized Fermat 3693 93*2^2263894+1 681502 L2826 2013 3694 34*912^230098+1 681091 L5410 2022 3695 377*2^2262094-1 680961 L2257 2023 3696 74*932^229308-1 680913 L4444 2021 3697 217499*28^470508-1 680905 p366 2013 3698 963*2^2261357+1 680740 L1300 2016 3699 2138*3^1426626+1 680677 L5410 2021 3700 1065*2^2260193+1 680389 L1204 2016 3701 837*2^2259470+1 680172 L1823 2016 3702 927*2^2258112+1 679763 L4287 2016 3703 265*2^2258071-1 679750 L2484 2018 3704e 430157*38^430157+1 679561 L5765 2023 Generalized Cullen 3705 561*2^2256600+1 679308 L3877 2015 3706 495*2^2255944+1 679110 L4119 2015 3707 489*2^2255331-1 678925 L5516 2023 3708 129*2^2255199+1 678885 L3049 2014 3709 735*2^2254660+1 678724 L4283 2016 3710 162*814^233173+1 678682 L5410 2021 3711 403*2^2254355-1 678632 L5516 2023 3712 973*2^2254320+1 678621 L1204 2016 3713 275102*151^311399-1 678537 L4001 2018 3714 603*2^2252402+1 678044 L1803 2016 3715 1029*2^2252198+1 677983 L3125 2016 3716 39*2^2251104-1 677652 L177 2015 3717 575*2^2250751+1 677547 L1741 2015 3718 2838*88^348438+1 677536 L5410 2020 3719 725*2^2250697+1 677531 L2859 2016 3720 65*2^2250637+1 677512 L3487 2013 3721 14641*2^2250096+1 677351 L181 2017 Generalized Fermat 3722 187*2^2249974+1 677312 L2322 2014 3723 141*2^2249967+1 677310 L3877 2014 3724 459*2^2249183+1 677075 L3877 2015 3725 904*957^227111-1 677001 L5410 2022 3726 319*2^2248914+1 676994 L2322 2015 3727 569*2^2248709+1 676932 L4133 2015 3728 571*2^2248701-1 676930 L5516 2023 3729 221*2^2248363+1 676828 L1130 2014 3730 144912*151^310514-1 676609 L4001 2018 3731 649*2^2247490+1 676565 L1204 2016 3732 374565*2^2247391+1 676538 L3532 2013 Generalized Cullen 3733 721*2^2246420+1 676243 L3037 2016 3734 875*2^2246363+1 676226 L2859 2016 3735 3888*931^227714-1 676075 L4001 2018 3736 347*2^2245598-1 675995 L2519 2017 3737 1199*2^2244631+1 675705 L3593 2016 3738 137*2^2244398-1 675634 L2484 2022 3739 197*2^2244347+1 675619 L1129 2014 3740 6510*565^245490+1 675605 L5410 2022 3741 507*2^2244237-1 675586 L5516 2023 3742 5055*2^2242777-1 675147 L4036 2015 3743 651*2^2241783+1 674847 L3260 2016 3744 35*2^2241049+1 674625 L2742 2013 3745 4161*2^2240358-1 674419 L1959 2016 3746 164978*151^309413-1 674210 L4001 2018 3747 493*2^2238775-1 673942 L5516 2023 3748 2354*138^314727+1 673482 L5410 2020 3749 20*698^236810-1 673455 L5410 2020 3750 146*447^254042-1 673292 L4001 2018 3751 675*2^2236244+1 673180 L4191 2016 3752 615*2^2235833+1 673056 L1823 2016 3753 53069*28^465060-1 673021 p257 2016 3754 831*2^2235253+1 672882 L3432 2013 3755 185*2^2235003+1 672806 L2322 2014 3756 103*2^2234536+1 672665 L3865 2014 3757 885*2^2234318+1 672600 L3125 2016 3758 963*2^2234249+1 672579 L1823 2016 3759 305*2^2233655+1 672400 L4118 2015 3760 267*2^2233376+1 672316 L1792 2014 3761 221*994^224221-1 672080 L5410 2020 3762 103*2^2232551-1 672067 L2484 2013 3763 889*2^2231034+1 671612 L2526 2016 3764 1779*88^345359+1 671548 L5410 2020 3765 907*2^2230776+1 671534 L4269 2016 3766 11*2^2230369+1 671410 L2561 2011 Divides GF(2230368,3) 3767 1425*2^2229009+1 671002 L1134 2016 3768 747*2^2228814+1 670943 L2526 2016 3769 9760*3^1406070+1 670870 L4444 2021 3770 969*2^2228379+1 670812 L4262 2016 3771 887*2^2228179+1 670752 L2840 2015 3772 130816^131072+1 670651 g308 2003 Generalized Fermat 3773 1123*2^2227338+1 670499 L3924 2015 3774 3478*378^260076+1 670348 L4955 2021 3775 213*2^2226329+1 670195 L2125 2014 3776 505*2^2225296+1 669884 L4111 2015 3777 11*878^227481+1 669591 L5410 2019 3778 271*2^2223601-1 669374 L2484 2018 3779 325*2^2223243-1 669266 L2235 2016 3780 (10^334568-1)^2-2 669136 p405 2022 Near-repdigit 3781 84363*2^2222321+1 668991 L541 2014 3782 2516745*2^2222222+1 668962 p396 2017 3783 7043*48^397817-1 668831 p255 2016 3784 1137*2^2221062+1 668610 L4040 2015 3785 471*2^2220478-1 668434 L5516 2023 3786 152*806^229984-1 668413 L4001 2018 3787 1425*2^2219664-1 668189 L1134 2021 3788 1031*2^2218785+1 667924 L1204 2015 3789 911*2^2218151+1 667733 L3260 2015 3790 27*2^2218064+1 667706 L690 2009 3791 587*2^2217355+1 667494 L4109 2015 3792 547*2^2216110+1 667119 L2322 2015 3793 67*2^2215581-1 666959 L268 2010 3794 33*2^2215291-1 666871 L3345 2013 3795 157533*2^2214598-1 666666 L3494 2013 3796 1105*2^2213846+1 666438 L2321 2015 3797 33*2^2212971-1 666173 L3345 2013 3798 101*2^2212769+1 666112 L1741 2014 3799 3*10^665829+1 665830 p300 2012 3800 4207801666259*2^2211084-1 665616 L257 2019 3801 298*912^224846+1 665546 L5410 2022 3802 631*2^2210260+1 665358 L2322 2015 3803 479*2^2209541+1 665141 L4106 2015 3804 165*2^2207550-1 664541 L2055 2011 3805 819*2^2206370+1 664187 L2526 2015 3806 19*2^2206266+1 664154 p189 2006 3807 45*2^2205977-1 664067 L1862 2015 3808 1323*2^2205832+1 664025 L4893 2019 3809 2*179^294739+1 664004 g424 2011 Divides Phi(179^294739,2) 3810 73*416^253392+1 663660 L3610 2015 3811 531*2^2203439-1 663304 L5516 2022 3812 790*821^227461-1 662903 L5410 2022 3813b Phi(3,3*2^1100957) 662844 A3 2023 Generalized unique 3814 Phi(3,-16159^78732) 662674 p294 2014 Generalized unique 3815 1041*2^2201196+1 662630 L3719 2015 3816 481*2^2201148+1 662615 L1741 2015 3817 1344*73^355570+1 662545 L3610 2014 3818 551*2^2200462-1 662408 L5516 2022 3819 783*2^2200256+1 662346 L3924 2015 3820 969*2^2200223+1 662337 L1209 2015 3821 173*2^2199301+1 662058 L1204 2014 3822 5077*2^2198565-1 661838 L251 2008 3823 114487*2^2198389-1 661787 L179 2006 3824 1035*2^2197489+1 661514 L2517 2014 3825 903*2^2197294+1 661455 L2322 2014 3826 404882*43^404882-1 661368 p310 2011 Generalized Woodall 3827 638*520^243506-1 661366 L4877 2019 3828 537*2^2196693-1 661274 L5516 2022 3829 12192710656^65536+1 661003 L5218 2021 Generalized Fermat 3830 256*3^1384608+1 660629 L3802 2014 Generalized Fermat 3831 2*10271^164621+1 660397 g427 2014 Divides Phi(10271^164621,2) 3832 10880*151^302997-1 660228 L4001 2018 3833 1073*2^2193069+1 660183 L2487 2014 3834 169*2^2193049-1 660176 L2484 2018 3835 26040*421^251428+1 659823 L5410 2021 3836 202064*151^302700-1 659582 L4001 2018 3837 2*659^233973+1 659544 g424 2015 Divides Phi(659^233973,2) 3838 819*2^2190853+1 659516 L3234 2014 3839 591*2^2190433-1 659389 L5516 2022 3840 1179*2^2189870+1 659220 L2517 2014 3841 385*2^2189441-1 659091 L2235 2022 3842 269*2^2189235+1 659028 L1204 2014 3843 39*2^2188855+1 658913 p286 2013 3844 433*2^2188076+1 658680 L3855 2014 3845 1323*2^2186806+1 658298 L4974 2019 3846 815*2^2185439+1 657886 L3035 2014 3847 249*2^2185003+1 657754 L1300 2014 3848 585*2^2184510+1 657606 L3838 2014 3849 1033*2^2183858+1 657410 L3865 2014 3850 1035*2^2183770+1 657384 L3514 2014 3851 193020*151^301686-1 657373 L4001 2018 3852 353938*7^777777+1 657304 L4789 2020 3853 1179*2^2182691+1 657059 L2163 2014 3854 2*191^287901+1 656713 g424 2015 Divides Phi(191^287901,2) 3855 23902*52^382687+1 656697 L4876 2019 3856 525*2^2180848+1 656504 L3797 2014 3857 135*2^2180256-1 656325 L1959 2019 3858 1107*2^2180142+1 656292 L1741 2014 3859 447*2^2180102+1 656279 L3760 2014 3860 315*2^2179612-1 656132 L2235 2015 3861 1423*2^2179023-1 655955 L3887 2015 3862 995*2^2178819+1 655893 L1741 2014 3863 219*2^2178673-1 655849 L5313 2021 3864 1423*2^2178363-1 655756 L3887 2015 3865 196597*2^2178109-1 655682 L175 2006 3866 6*10^655642+1 655643 L5009 2019 3867 879*2^2177186+1 655402 L2981 2014 3868 573*2^2176326-1 655143 L5516 2022 3869 67*410^250678+1 654970 L4444 2019 3870 587*2^2175602-1 654925 L5516 2022 3871 70082*5^936972-1 654921 L3523 2013 3872 699*2^2175031+1 654753 L3865 2014 3873 1260*991^218477+1 654577 L5410 2021 3874 69*2^2174213-1 654506 L2055 2012 3875 1069*2^2174122+1 654479 L3865 2014 3876 793*2^2173720+1 654358 L2322 2014 3877 3267*2^2173170+1 654193 L1204 2019 3878 651*2^2173159+1 654189 L3864 2014 3879 187*2^2172693-1 654049 L1959 2019 3880 10001*2^2172615+1 654027 L4405 2018 3881 1011*2^2172063+1 653860 L2826 2014 3882 1105*2^2171956+1 653827 L3035 2014 3883 4165*2^2171145-1 653584 L1959 2017 3884 Phi(3,-96873^65536) 653552 L4026 2014 Generalized unique 3885 739*2^2170786+1 653475 L2121 2014 3886 134*937^219783-1 653140 L5410 2021 3887 701*2^2169041+1 652950 L3863 2014 3888 1779*88^335783+1 652928 L5410 2020 3889 295*2^2168448+1 652771 L1935 2014 3890 7*2^2167800+1 652574 g279 2007 Divides Fermat F(2167797), GF(2167799,5), GF(2167799,10) 3891 359*2^2165551+1 651899 L3838 2014 3892 453*2^2165267-1 651813 L5516 2022 3893 1059*2^2164149+1 651477 L2322 2014 3894 329*2^2163717+1 651347 L2117 2014 3895 559*2^2163382+1 651246 L1741 2014 3896 235*2^2163273-1 651213 L5313 2021 3897 775*2^2162344+1 650934 L3588 2014 3898 21*2^2160479-1 650371 L2074 2012 3899 399*2^2160379-1 650342 L5545 2022 3900 102976*5^929801-1 649909 L3313 2013 3901 1007*2^2158720-1 649843 L4518 2021 3902 1179*2^2158475+1 649769 L3035 2014 Divides GF(2158470,6) 3903 617*2^2156699+1 649234 L1675 2014 3904 65536*3^1360576+1 649165 L3802 2014 Generalized Fermat 3905f 551878*15^551878+1 649065 L5765 2023 Generalized Cullen 3906 57*572^235362+1 648989 L4444 2021 3907 2*3^1360104-1 648935 p390 2015 3908 483*2^2155456+1 648860 L3760 2014 3909 105*2^2155392+1 648840 L3580 2014 3910 40*1017^215605+1 648396 L4927 2018 3911 1005*2^2153712-1 648335 L4518 2021 3912 31340*6^833096+1 648280 p271 2013 3913 537*2^2153392-1 648239 L5516 2022 3914 415*2^2153341-1 648223 L5516 2022 3915 427*2^2153306+1 648213 L3838 2014 3916 834*709^227380-1 648183 L5410 2021 3917 395*2^2152816-1 648065 L5598 2022 3918 261*2^2152805+1 648062 L1125 2014 3919 405*2^2152377-1 647933 L1862 2022 3920 371*2^2150871+1 647480 L2545 2014 3921 111*2^2150802-1 647458 L2484 2013 3922 357*2^2148518+1 646771 L1741 2014 3923 993*2^2148205+1 646678 L1741 2014 3924 67*2^2148060+1 646633 L3276 2013 3925 243*2^2147387-1 646431 L2444 2014 3926 693*2^2147024+1 646322 L3862 2014 3927 567*2^2146332-1 646114 L5516 2022 3928 3*2^2145353+1 645817 g245 2003 Divides Fermat F(2145351), GF(2145351,3), GF(2145352,5), GF(2145348,6), GF(2145352,10), GF(2145351,12) 3929 143157*2^2144728+1 645633 L4504 2016 3930 509*2^2144181+1 645466 L3035 2014 3931 753*2^2143388+1 645227 L2583 2014 Divides GF(2143383,3) 3932 161*2^2142431+1 644939 L3105 2014 3933 587*2^2142136-1 644850 L5516 2022 3934 25*2^2141884+1 644773 L1741 2011 Divides Fermat F(2141872), GF(2141871,5), GF(2141872,10); generalized Fermat 3935 571*2^2141727-1 644727 L5516 2022 3936 23*2^2141626-1 644696 L545 2008 3937 519*2^2140311+1 644301 L2659 2014 3938 7*2^2139912+1 644179 g279 2007 Divides GF(2139911,12) 3939 315*2^2139665+1 644106 L3838 2014 3940 193*2^2139400+1 644026 L3538 2014 3941 1113*2^2139060+1 643925 L3914 2014 3942 292402*159^292402+1 643699 g407 2012 Generalized Cullen 3943 307*2^2137553-1 643471 L2235 2015 3944 1051*2^2137440+1 643437 L3865 2014 3945 1185*2^2137344+1 643408 L3877 2014 3946 405*2^2137280-1 643388 L1862 2016 3947 483*2^2136414-1 643128 L5516 2022 3948 513*2^2135642+1 642896 L3843 2014 3949 241*2^2135279-1 642786 L2484 2018 3950 915*2^2135151+1 642748 L2322 2014 3951 61*2^2134577-1 642574 L2055 2011 3952 2*3^1346542+1 642465 L5043 2020 3953 93*10^642225-1 642227 L4789 2020 Near-repdigit 3954 26362*421^244658+1 642057 L5388 2021 3955 5428*378^249058+1 641949 L5410 2021 3956 711*2^2132477+1 641943 L2125 2014 3957 81*984^214452+1 641856 L5410 2020 Generalized Fermat 3958 215*2^2131988-1 641795 L2484 2018 3959 473*2^2130944-1 641481 L5516 2022 3960 319*2^2130729-1 641416 L1817 2015 3961 78792*151^294324-1 641331 L4001 2018 3962 75*2^2130432-1 641326 L2055 2011 3963 1145*2^2130307+1 641290 L3909 2014 3964 110488*5^917100+1 641031 L3354 2013 3965 37*2^2128328+1 640693 L3422 2013 3966 103*2^2128242+1 640667 L3787 2014 3967 185*2^2127966-1 640584 L1959 2019 3968 3762*70^347127+1 640487 L4876 2019 3969 253*2^2126968+1 640284 L1935 2014 3970 583*2^2126166+1 640043 L1741 2014 3971 999*2^2125575+1 639865 L1741 2014 3972 7*848^218439-1 639677 L5410 2020 3973 587*2^2124947+1 639676 L3838 2014 3974 451*2^2124636+1 639582 L1741 2014 3975 887*2^2124027+1 639399 L3865 2014 3976 721751*2^2123838-1 639345 L4001 2022 3977 545*2^2122250-1 638864 L5516 2022 3978c 745*2^2121591-1 638666 L2519 2023 3979 693*2^2121393+1 638606 L3278 2014 3980 118*107^314663-1 638575 L5227 2021 3981 8331405*2^2120345-1 638295 L2055 2013 3982 975*2^2119209+1 637949 L1158 2014 3983 33*2^2118570-1 637755 L3345 2013 3984 117*2^2117600-1 637464 L1959 2019 3985 254*5^911506-1 637118 p292 2010 3986 579*2^2116044-1 636996 L5516 2022 3987 1139*2^2115949+1 636968 L3865 2014 3988 771*2^2115741+1 636905 L1675 2014 3989 411*2^2115559+1 636850 L2840 2014 3990 34*3^1334729+1 636830 L4799 2021 3991 189*2^2115473+1 636824 L3784 2014 Divides GF(2115468,6) 3992 929*2^2114679+1 636585 L3035 2014 3993 571*2^2113491-1 636227 L5516 2022 3994 1065*2^2113463+1 636219 L2826 2014 3995d 753*2^2112554-1 635945 L1817 2023 3996 609179*2^2111132-1 635520 L5410 2022 3997 591*2^2111001+1 635478 L1360 2014 3998 357*2^2109585-1 635051 L5546 2022 3999 1051*2^2109344+1 634979 L3035 2014 4000 433*2^2109146+1 634919 L1935 2014 4001 519*2^2108910+1 634848 L1356 2014 4002 1047*2^2108751+1 634801 L3824 2014 4003 257*2^2108554-1 634741 L5313 2021 4004 3261*46^381439+1 634245 L5000 2019 4005 765*2^2106027+1 633981 L3838 2014 4006 503*2^2106013+1 633976 L1741 2014 4007 316903*10^633806+1 633812 L3532 2014 Generalized Cullen 4008 113*2^2104825+1 633618 L3785 2014 4009f 981*2^2104657-1 633568 L2257 2023 4010 381*2^2103999+1 633370 L2322 2014 4011 1246461300659*2^2103424-1 633206 L2484 2015 4012 57*2^2103370-1 633180 L2055 2011 4013 539*2^2102167+1 632819 L3125 2014 4014 1425*2^2101260-1 632546 L1134 2020 4015 1001*2^2101062-1 632486 L4518 2020 4016 179*894^214290-1 632445 L5209 2020 4017 633*2^2100738-1 632388 L2257 2023 4018 687*2^2100243+1 632239 L3867 2014 4019 329*2^2099771+1 632097 L2507 2014 4020 35*2^2099769+1 632095 L3432 2013 4021 405*2^2099716+1 632081 L3154 2014 4022 575*2^2098483+1 631710 L3168 2014 4023 523*2^2098043-1 631577 L5516 2022 4024 1005*2^2097683-1 631469 L4518 2021 4025 919*2^2097543-1 631427 L1817 2023 4026 729*2^2097449-1 631398 L2257 2023 4027 2509589*2^2097152-1 631313 L466 2022 4028 522335*2^2097154-1 631312 L466 2022 4029 695265*2^2097153-1 631312 L466 2020 4030 208703*2^2097153+1 631312 L466 2018 4031 28401*2^2097152+1 631311 L4547 2017 4032 399*2^2096857-1 631220 L5546 2022 4033 907*2^2095896+1 630931 L1129 2014 4034 815730721*2^2095440+1 630800 L466 2019 Generalized Fermat 4035 2503*2^2094587-1 630537 L4113 2017 4036 14641*2^2093384+1 630176 L181 2017 Generalized Fermat 4037 103*2^2093350+1 630164 L3432 2013 4038 4001*2^2093286-1 630146 L1959 2014 4039 14172*1027^209226-1 630103 L4001 2018 4040 369*2^2093022+1 630065 L3514 2014 4041 217*2^2092673-1 629960 L2484 2018 4042 2188*253^262084+1 629823 L5410 2020 4043 68*920^212407+1 629532 L4001 2017 4044 165*2^2090645+1 629350 L1209 2014 4045 1119*2^2090509+1 629309 L2520 2014 4046 941*2^2090243+1 629229 L1356 2014 4047 435*2^2089948-1 629140 L5516 2022 4048 615*2^2089329-1 628954 L2257 2023 4049 62722^131072+1 628808 g308 2003 Generalized Fermat 4050 401*2^2088713+1 628768 L3035 2014 4051 1702*1021^208948+1 628734 L5410 2021 4052 819*2^2088423+1 628681 L3890 2014 4053 363*2^2088182-1 628608 L5545 2022 4054 423*2^2088102-1 628584 L5516 2022 4055 1009*2^2087690+1 628461 L3728 2014 4056 85*2^2087651-1 628448 L2338 2013 4057 467*2^2085835+1 627902 L3625 2014 4058 563528*13^563528-1 627745 p262 2009 Generalized Woodall 4059 55*2^2084305-1 627441 L3887 2021 4060 (146^144882-1)^2-2 627152 p405 2022 4061 437960*3^1313880+1 626886 L2777 2012 Generalized Cullen 4062 18*984^209436-1 626843 L5410 2019 4063 247*2^2082202+1 626808 L3294 2014 4064 107*2^2081775+1 626679 L3432 2013 Divides GF(2081774,6) 4065 159*2^2081069-1 626467 L1959 2019 4066 27*634^223550+1 626409 L4001 2018 4067 399*2^2080579-1 626320 L5546 2022 4068 655*2^2080562+1 626315 L3859 2014 4069 201*2^2080464+1 626285 L1741 2014 4070 269328*211^269328+1 626000 p354 2012 Generalized Cullen 4071 153*2^2079401+1 625965 L3601 2014 4072 279*2^2079167+1 625895 L2413 2014 4073 692*95^316400-1 625755 L4444 2019 4074 643*2^2078306+1 625636 L3035 2014 4075 79*2^2078162+1 625591 L2117 2013 4076 1485*2^2077172+1 625295 L1134 2015 4077 777*2^2076841-1 625195 L2257 2023 4078 405*2^2076673-1 625144 L5516 2022 4079 239*2^2076663+1 625141 L2413 2014 4080 1003*2^2076535-1 625103 L51 2008 4081 2186*7^739474-1 624932 p258 2011 4082 73*2^2075936+1 624921 L3464 2013 4083 825*2^2075800-1 624881 L2257 2023 4084 807*2^2075519+1 624797 L3555 2014 4085 585*2^2075384-1 624756 L5516 2022 4086 1425*2^2075382+1 624756 L1134 2015 4087c 1308596*3^1308596+1 624366 p137 2023 Generalized Cullen 4088 65*2^2073229+1 624106 L1480 2013 4089 693*2^2072564+1 623907 L3290 2014 4090 55*552^227540-1 623903 L4786 2019 4091 867*2^2072142-1 623780 L2257 2023 4092 375*2^2071598+1 623616 L2413 2014 4093 73*2^2071592+1 623614 L1480 2013 4094 125*2^2071555+1 623603 L3432 2013 4095 1107*2^2071480+1 623581 L2520 2014 4096 6207*28^430803-1 623444 L1471 2014 4097 299*2^2070979+1 623430 L1741 2014 4098 99*2^2070908-1 623408 L1862 2015 4099 831*2^2070622-1 623323 L5545 2023 4100 19062*1027^206877-1 623029 L4444 2018 4101 891*2^2069024+1 622842 L2520 2014 4102 943*2^2068944+1 622818 L1741 2014 4103 579*2^2068647+1 622728 L2967 2014 4104 911*2^2068497+1 622683 L1741 2014 4105 501*2^2067915-1 622508 L5551 2022 4106 1005*2^2067272+1 622314 L3895 2014 4107 441*2^2067233-1 622302 L5516 2022 4108 3474*5^890253+1 622264 L5410 2021 4109 393*2^2066540+1 622094 L3700 2014 4110 44*950^208860-1 621929 L4187 2021 4111 951*2^2065180+1 621685 L1403 2014 4112 915*2^2064663+1 621529 L3035 2014 4113 213*2^2064426-1 621457 L1863 2017 4114 29*468^232718+1 621416 L4832 2018 4115 1455*2^2064103-1 621361 L1134 2016 4116 983*2^2064020-1 621335 L2257 2023 4117 824*423^236540-1 621238 L5410 2021 4118 447*2^2063218-1 621094 L5551 2022 4119 9756404*15^527590-1 620501 L5630 2022 4120 9*2^2060941-1 620407 L503 2008 4121 813*2^2060392-1 620243 L2257 2023 4122 1455*2^2059553+1 619991 L1134 2015 4123 659*2^2058623+1 619711 L3860 2014 4124 128448*151^284308-1 619506 L4001 2018 4125 477*2^2057225-1 619290 L5516 2022 4126 909*2^2056937-1 619203 L2257 2023 4127 575*2^2056081+1 618945 L1935 2014 4128 1095*2^2055975+1 618914 L3518 2014 4129 589*2^2055877-1 618884 L5516 2022 4130 3*10^618853+1 618854 p300 2012 4131 225*2^2055433-1 618750 L2484 2022 4132 819*2^2054470+1 618461 L2826 2014 4133 969*2^2054054+1 618335 L3668 2014 4134 3394*28^427262+1 618320 p385 2015 4135 318564*151^283711-1 618206 L4444 2018 4136 675*2^2053578+1 618192 L1792 2014 4137 178998*151^283702-1 618186 L4001 2018 4138 551*2^2051922-1 617693 L5516 2022 4139 281*2^2051865+1 617676 L5519 2022 4140 5916*277^252878-1 617654 L5410 2020 4141 739*2^2051658+1 617614 L3838 2014 4142 71*2^2051313+1 617509 L1480 2013 4143 265*2^2051155-1 617462 L2484 2018 4144 779*2^2050881+1 617380 L3453 2014 4145 75*2^2050637-1 617306 L2055 2011 4146 377*2^2050148-1 617159 L2235 2022 4147 935*2^2050113+1 617149 L3696 2014 4148 847*2^2049400+1 616934 L2322 2014 4149 4998*235^260170-1 616885 L5410 2019 4150 541*2^2049193-1 616872 L5516 2022 4151 73*2^2048754+1 616739 L3432 2013 4152 30*712^215913+1 615889 L4444 2022 4153 527*2^2045751+1 615836 L4123 2014 4154 785*2^2045419+1 615736 L3861 2014 4155 195*2^2044789+1 615546 L3744 2014 4156 537*2^2044162+1 615357 L1741 2014 4157 413*2^2043829+1 615257 L1300 2014 4158 1682*655^218457-1 615231 L4925 2022 4159 431*2^2043666-1 615208 L5516 2022 4160 1334*567^223344-1 615000 L5410 2021 4161 345*2^2042295+1 614795 L2562 2014 4162 777*2^2041710-1 614619 L2257 2023 4163 216848*151^282017-1 614514 L4700 2018 4164 104*579^222402-1 614428 L4001 2018 4165 57257*2^2040062-1 614125 L4812 2019 4166 1069*2^2039562+1 613973 L1741 2014 4167 625*2^2039416+1 613929 L1741 2014 Generalized Fermat 4168 7188*313^245886-1 613624 L5410 2020 4169 1085*2^2038005+1 613504 L2520 2014 4170 125*2^2037752-1 613427 L2444 2014 4171 1069*2^2036902+1 613172 L3876 2014 4172 10020*171^274566+1 613109 L5410 2019 4173 417*2^2036482+1 613045 L1847 2014 4174 701*2^2035955+1 612887 L2823 2014 4175 1025*2^2034405+1 612420 L1741 2014 4176 651*2^2034352+1 612404 L3459 2014 4177 121*2^2033941-1 612280 L162 2006 4178 19683*2^2033900+1 612270 L1823 2019 4179 57*2^2033643+1 612190 L3432 2013 4180 4175*2^2032552-1 611863 L1959 2017 4181 249*2^2031803+1 611637 L2327 2014 4182 783*2^2031629+1 611585 L2126 2014 4183 10005*2^2031284+1 611482 p168 2022 4184 (290^124116-1)^2-2 611246 p403 2019 4185 767*2^2030354-1 611201 L2257 2023 4186 872*268^251714-1 611199 L5410 2019 4187 921*2^2030231-1 611164 L2257 2023 4188 4157*2^2029894-1 611063 L1959 2017 4189 293028*151^280273-1 610714 L4001 2018 4190 285*2^2028495+1 610641 L2594 2014 4191 615*2^2028140-1 610534 L2257 2023 4192 775*2^2027562+1 610360 L1204 2014 4193 199*686^215171-1 610297 L4001 2018 4194 4190*235^257371-1 610248 L5410 2019 4195 621*2^2026864+1 610150 L3446 2014 4196 357*2^2026846+1 610144 L2163 2014 4197 425*2^2026610-1 610074 L5516 2022 4198 122112*151^279966-1 610045 L4001 2018 4199 879*2^2026501+1 610041 L1139 2014 4200 4185*2^2026400-1 610011 L1959 2017 4201 787*2^2026242+1 609963 L2122 2014 4202 2*3^1277862+1 609696 L5043 2020 4203 273*2^2024810-1 609531 L5118 2020 4204 919*2^2024094+1 609316 L1741 2014 4205 325*2^2024035-1 609298 L4076 2015 4206 811*2^2023885-1 609254 L2257 2023 4207 235*2^2023486+1 609133 L2594 2014 4208 559*2^2023437-1 609118 L5516 2022 4209 195*2^2023030+1 608996 L4122 2014 4210 8*10^608989-1 608990 p297 2011 Near-repdigit 4211 1485*2^2022873+1 608949 L1134 2015 4212 233*2^2022801+1 608927 L3767 2014 4213 521*2^2022059+1 608704 L3760 2014 4214 569*2^2021884-1 608651 L5516 2022 4215 5678*1027^202018-1 608396 L4001 2018 4216 94*790^209857+1 608090 L4001 2018 4217 19650619*2^2019807-1 608030 L3432 2022 4218 431*2^2019693+1 607991 L2100 2014 4219 1155*2^2019244+1 607857 L3873 2014 4220 195*2^2018866+1 607742 L2413 2014 4221 59506*6^780877+1 607646 p254 2013 4222 4101*2^2018133-1 607523 L1959 2017 4223 2152*177^270059+1 607089 L5410 2020 4224 5844*693^213666+1 606972 L5410 2022 4225e (2634^88719+1)^2-2 606948 p432 2023 4226 4081*2^2015959-1 606868 L1959 2017 4227 4191*2^2015150-1 606625 L1959 2017 4228 45*2^2014557+1 606444 L1349 2012 Divides GF(2014552,10) 4229 251749*2^2013995-1 606279 L436 2007 Woodall 4230e 77777*2^2013487+1 606125 p420 2023 4231 126*523^222906-1 605973 L4001 2017 4232 1023*2^2012570+1 605847 L1741 2014 4233 403*2^2012412+1 605799 L3538 2014 4234 1173*2^2012185+1 605732 L1413 2014 4235 85*730^211537+1 605701 L4001 2018 4236 Phi(3,-1449889^49152) 605684 L4142 2017 Generalized unique 4237 751*2^2010924+1 605352 L3859 2014 4238 101*2^2009735+1 604993 L3432 2013 4239 915*2^2009048-1 604787 L2257 2023 4240 1069*2^2008558+1 604640 L1595 2014 4241 881*2^2008309+1 604565 L3260 2014 4242 959*2^2008035+1 604482 L1422 2014 4243 633*2^2007897+1 604441 L3857 2014 4244 143*2^2007888-1 604437 L384 2016 4245 4*5^864751-1 604436 L4881 2019 4246 223*2^2007748+1 604395 L1741 2014 4247 461*2^2007631+1 604360 L1300 2014 4248 1731*352^237258-1 604191 L5410 2022 4249 477*2^2006719+1 604086 L3803 2014 4250 428551*2^2006520+1 604029 g411 2011 4251 6844*565^219383+1 603757 L5580 2022 4252 1097*2^2005203+1 603630 L3868 2014 4253 Phi(3,-1373894^49152) 603386 L4142 2016 Generalized unique 4254 6*5^862923+1 603159 L4965 2020 4255 493*2^2002964+1 602955 L3800 2014 4256 315*2^2002904+1 602937 L3790 2014 4257 77*2^2002742-1 602888 L2074 2013 4258 585*2^2002589+1 602843 L3035 2014 4259 1059*2^2001821+1 602612 L2103 2014 4260 249*2^2001627-1 602553 L1862 2015 4261 47*158^273942-1 602307 L541 2020 4262 1115*2^2000291+1 602151 L3588 2014 4263 891*2^2000268+1 602144 L3440 2014 4264 1067*792^207705-1 602083 L5410 2021 4265 841*2^1999951-1 602049 L2257 2023 4266 17872*430^228564+1 601921 L4955 2020 4267 343388*151^276191-1 601820 L4700 2018 4268 537*2^1999105-1 601794 L5516 2022 4269 657*2^1998854+1 601718 L2520 2013 Divides GF(1998852,10) 4270 Phi(3,-1316236^49152) 601555 L4142 2016 Generalized unique 4271 573*2^1998232+1 601531 L1300 2013 4272 1323*2^1998103-1 601493 L1828 2016 4273 Phi(3,-1310544^49152) 601370 L4142 2016 Generalized unique 4274e 2588*697^211483-1 601299 L5410 2023 4275 1274*3^1260173+1 601259 L5410 2021 4276 561*2^1996865-1 601120 L5516 2022 4277 669*2^1995918+1 600835 L2659 2013 4278 19861029*2^1995311-1 600656 L895 2013 4279 261*2^1995105+1 600589 L3378 2013 4280 68398*1027^199397+1 600503 L4001 2018 4281 1031*2^1994741+1 600480 L2626 2014 4282 577*2^1994634+1 600448 L3035 2013 4283a 550935*2^1994609+1 600443 A4 2023 4284a 193365*2^1994609+1 600443 A4 2023 4285 497*2^1994051+1 600272 L2413 2013 4286 8331405*2^1993674-1 600163 L260 2011 4287 655*2^1993685-1 600162 L5598 2023 4288 1965*2^1993666-1 600157 L4113 2022 4289 467917*2^1993429-1 600088 L160 2005 4290 137137*2^1993201-1 600019 L321 2007 4291 781*2^1993173-1 600008 L2257 2023 4292 2*7^709976+2*7^211441+1 600000 CH9 2023 4293 589*2^1992774+1 599888 L2322 2013 4294 209*2^1992071+1 599676 L3422 2013 4295 2955*2^1991780-1 599589 L1862 2019 4296 317*2^1991592-1 599532 L1809 2014 4297 Phi(3,-1249158^49152) 599322 L4142 2016 Generalized unique 4298 547*2^1990606+1 599235 L3173 2013 4299 17*2^1990299+1 599141 g267 2006 Divides GF(1990298,3) 4300 508*1017^199220-1 599122 L4700 2017 4301 885*2^1990215-1 599118 L5184 2023 4302 1606*877^203564+1 599092 L5410 2022 4303 105*2^1989208-1 598814 L1959 2014 4304 1925975*2^1989191+1 598813 L5327 2022 4305 1019*2^1988959+1 598740 L3514 2013 4306 1455*2^1988795-1 598691 L1134 2015 4307 629*2^1988579+1 598625 L2117 2013 4308 101*2^1988279+1 598534 L3141 2013 Divides GF(1988278,12) 4309 733*2^1988086+1 598477 L3502 2013 4310 135*2^1987735+1 598370 L1300 2013 4311 162434*5^856004-1 598327 L3410 2013 4312 749*2^1986977+1 598143 L1492 2013 4313 4141*2^1986959-1 598138 L1959 2016 4314e 2172*697^210354-1 598089 L5410 2023 4315 34*3^1253399+1 598025 L4799 2020 4316 3792*217^255934-1 597984 L5410 2020 4317 32*236^251993+1 597959 L4786 2019 4318 174344*5^855138-1 597722 L3354 2013 4319 6292*1027^198459+1 597678 L4001 2018 4320 4125*2^1984855-1 597505 L1959 2017 4321 8331405*2^1984565-1 597421 L260 2011 4322 1133*2^1984488-1 597394 L1828 2016 4323 195*2^1983875-1 597209 L1828 2014 4324 2631730144*10^597115+1 597125 L4789 2022 4325 675*2^1982779-1 596879 L2257 2023 4326d 4442553*2^1981910-1 596622 L5340 2023 4327a 3350787*2^1981910-1 596621 L5340 2023 4328a 3256715*2^1981910-1 596621 L5340 2023 4329a 2851821*2^1981910-1 596621 L5340 2023 4330 1071855*2^1981910-1 596621 L5340 2021 4331 523895*2^1981910-1 596621 L5340 2021 4332 496177*2^1981910+1 596621 L5340 2021 4333 445*2^1980900+1 596313 L3577 2013 4334 731*2^1980503+1 596194 L3035 2013 4335 1147*2^1978390+1 595558 L1741 2013 4336 5758*211^256223+1 595539 L5410 2020 4337 4*5^851878+1 595438 L4965 2023 Generalized Fermat 4338 25*2^1977369-1 595249 L426 2008 4339 245478*151^273168-1 595233 L4001 2018 4340 1197*2^1977152-1 595186 L1828 2016 4341 43*780^205685+1 594863 L5410 2019 4342 1234*95^300749-1 594802 L4444 2019 4343 866*183^262883+1 594763 L3610 2015 4344 386*117^287544+1 594698 L5410 2020 4345 1149*2^1975451-1 594674 L1828 2016 4346 651*2^1974918-1 594513 L2257 2023 4347 381*2^1974841-1 594489 L1809 2014 4348 19920911*2^1974666-1 594441 L806 2017 4349 Phi(3,-1109580^49152) 594264 L4142 2016 Generalized unique 4350 148323*2^1973319-1 594034 L587 2011 4351 705*2^1972428+1 593763 L3043 2013 4352 549*2^1971947-1 593618 L5516 2022 4353 74*894^201093+1 593496 L5410 2022 4354 549*2^1971183+1 593388 L2840 2013 4355f 549721*12^549721-1 593255 L5765 2023 Generalized Woodall 4356 4197*2^1970430-1 593163 L1959 2016 4357 1387*2^1970033-1 593043 L1828 2016 4358 92163*2^1969778+1 592968 L5115 2022 4359 1616*277^242731-1 592869 L5410 2020 4360 84969*2^1969323+1 592831 L5115 2022 4361 1693*396^228140+1 592642 L5410 2021 4362 441*2^1968431+1 592560 L3035 2013 4363 1485*2^1968400-1 592551 L1134 2014 4364 1159*2^1968190+1 592488 L3035 2013 4365 731*2^1968039+1 592442 L3682 2013 4366 833*2^1967841+1 592383 L3744 2013 4367 989*2^1967819+1 592376 L3738 2013 4368 1035*2^1967708+1 592343 L3739 2013 4369 148*789^204455+1 592325 L5410 2019 4370 1309*2^1967613-1 592314 L1828 2016 4371 449*2^1967140-1 592171 L5516 2022 4372 611*2^1966866-1 592089 L2257 2023 4373 4025*2^1966732-1 592049 L1959 2016 4374 203*2^1966689+1 592035 L1408 2013 4375 101594*151^271697-1 592027 L4001 2018 4376 921*2^1966634-1 592019 L2257 2023 4377 273*2^1966630+1 592018 L2532 2013 4378 93*2^1965880+1 591791 L1210 2011 4379 465*2^1965363-1 591636 L5516 2022 4380 253*2^1965215-1 591592 L3345 2012 4381 1089*2^1964781+1 591462 L3737 2013 4382 657*2^1964578-1 591400 L2257 2023 4383 10*173^264234+1 591369 L1471 2015 4384 1089*2^1964474+1 591369 L3736 2013 Generalized Fermat 4385 125*2^1963964-1 591215 L1959 2014 4386b 265*110^289460+1 590904 L4789 2023 4387 Phi(3,-1020993^49152) 590711 L4142 2016 Generalized unique 4388 175*2^1962288+1 590710 L2137 2013 Divides GF(1962284,10) 4389 102088*6^759012-1 590632 L4521 2019 4390 4065*2^1961907-1 590597 L1959 2016 4391 609*2^1961889-1 590591 L2257 2023 4392 113*2^1960341+1 590124 L3091 2013 4393 57406*5^844253-1 590113 L3313 2012 4394 1010036096^65536+1 590109 L4704 2022 Generalized Fermat 4395 225*2^1960083+1 590047 L3548 2013 Divides GF(1960078,6) 4396 1111*2^1959625-1 589909 L1828 2016 4397 24838*421^224768+1 589860 L5410 2021 4398 803*2^1959445+1 589855 L2724 2013 4399 552*360^230680+1 589691 L5410 2021 4400 915*2^1958653-1 589617 L2257 2023 4401 6166*3^1235741+1 589603 L5365 2021 4402 727*2^1958505-1 589572 L2257 2023 4403 45*2^1957377-1 589231 L1862 2014 4404 1065*2^1957291-1 589207 L1828 2016 4405 1149*2^1957223+1 589186 L1935 2013 4406 6326*333^233552+1 589126 L4001 2017 4407 129*2^1956915+1 589093 L2826 2013 4408 229*2^1956294+1 588906 L3548 2013 4409 74*500^218184-1 588874 p355 2013 4410 27*342^232379+1 588856 L5410 2021 4411 801*2^1956058-1 588836 L2257 2023 4412 525*2^1955409-1 588640 L5516 2022 4413 1045*2^1955356+1 588624 L1186 2013 4414 112*113^286643-1 588503 L426 2012 4415 1137*2^1954730+1 588436 L3733 2013 4416 673*2^1954456+1 588353 L3666 2013 4417 Phi(3,-965206^49152) 588313 L4142 2017 Generalized unique 4418 121*2^1954243-1 588288 L162 2006 4419 351*2^1954003+1 588217 L2413 2013 4420 829*2^1953661-1 588114 L2257 2023 4421 539*2^1953060-1 587933 L5516 2022 4422 641*2^1952941+1 587897 L3487 2013 4423 188378*151^269725-1 587730 L4001 2018 4424 4027*2^1951909-1 587587 L1959 2016 4425 1019*138^274533+1 587471 L5410 2020 4426 Phi(3,94259^59049) 587458 p269 2014 Generalized unique 4427 1173*2^1951169+1 587364 L3171 2013 4428 1101*2^1950812+1 587256 L2719 2013 4429 P587124 587124 p414 2020 4430 3317*2^1949958-1 587000 L5399 2021 4431 4007*2^1949916-1 586987 L1959 2016 4432 313*2^1949544+1 586874 L2520 2013 4433 391*2^1949159-1 586758 L2519 2014 4434 539*2^1949135+1 586751 L1130 2013 4435 675*2^1949015-1 586715 L2257 2023 4436 1167*2^1949013-1 586715 L1828 2016 4437 351*2^1947281-1 586193 L1809 2014 4438 3068*5^838561+1 586133 L5410 2021 4439 4892*693^206286+1 586008 L5410 2022 4440 21290*745^203998-1 585919 L4189 2017 4441 111*2^1946322-1 585904 L2484 2012 4442 1209*2^1946260-1 585886 L1828 2016 4443 1339*2^1945965-1 585797 L1828 2016 4444 149*2^1945668-1 585707 L3967 2015 4445 4011*2^1945630-1 585697 L1959 2016 4446 639*2^1945473+1 585649 L2649 2013 4447 675*2^1945232+1 585577 L3688 2013 4448 949*2^1944741-1 585429 L2257 2023 4449 603*2^1944086-1 585231 L2257 2023 4450 30364*1027^194319+1 585210 L4001 2018 4451 417*2^1943755+1 585132 L3173 2013 4452 89*2^1943337+1 585005 L2413 2011 4453 Phi(3,-889529^49152) 584827 L4142 2016 Generalized unique 4454 607*2^1942565-1 584774 L2257 2023 4455 269*2^1942389+1 584720 L3548 2013 4456 549*2^1942139-1 584645 L5545 2022 4457 4173*2^1941820-1 584550 L1959 2016 4458 1093*2^1941672+1 584505 L2322 2013 4459 144*471^218627-1 584397 L4064 2021 4460 193*2^1940804+1 584243 L3418 2013 4461 827*2^1940747+1 584226 L3206 2013 4462 221*2^1940211+1 584065 L2327 2013 4463 421*138^272919-1 584017 L5410 2020 4464 Phi(3,-872232^49152) 583988 L4142 2017 Generalized unique 4465 9105446*15^496499-1 583936 L5629 2022 4466 9*10^583696+1 583697 L4789 2020 Generalized Fermat 4467 575*2^1938673+1 583602 L2019 2013 4468 1179*2^1938570+1 583571 L1300 2013 4469 743*2^1938344-1 583503 L2257 2023 4470 865*2^1938180+1 583454 L3233 2013 4471 17702*1027^193732-1 583442 L4700 2018 4472 1091*2^1937857+1 583357 L3731 2013 4473 555*2^1937595+1 583277 L2826 2013 4474 765*2^1937364-1 583208 L2257 2023 4475 9299*2^1937309+1 583193 L3886 2014 4476 30*386^225439+1 583120 L3610 2015 4477 34910*430^221380-1 583002 L4001 2015 4478 56064*1027^193573+1 582964 L4700 2018 4479 239*2^1936025+1 582804 L1741 2013 4480 1191*2^1935613-1 582681 L1828 2016 4481 859*2^1935299-1 582586 L2257 2023 4482 4047*2^1934881-1 582461 L1959 2016 4483 357*2^1934704-1 582407 L1809 2014 4484 182627*2^1934664-1 582398 L3336 2012 4485 64*497^215875-1 582078 L4925 2019 4486 771*2^1933543-1 582058 L2257 2023 4487 14172*1027^193213-1 581879 L4001 2018 4488 363*2^1932724+1 581811 L3171 2013 4489 1265*2^1932660-1 581792 L1828 2016 4490 134*383^225187+1 581705 L2012 2019 4491 143*2^1932112-1 581626 L1828 2012 4492 48764*5^831946-1 581510 L3313 2012 4493 1095*2^1931213-1 581357 L1828 2016 4494 1365*2^1931200+1 581353 L1134 2016 4495 1789*138^271671+1 581347 L5211 2020 4496 387*2^1930200+1 581051 L1129 2013 4497 2135489665061*2^1929362-1 580809 L2484 2015 4498 1101*2^1929297-1 580780 L1828 2016 4499 735*2^1929225+1 580758 L3378 2013 4500 214519*2^1929114+1 580727 g346 2006 4501 481*2^1928773-1 580622 L5516 2022 4502 1071*2^1928515-1 580544 L1828 2016 4503 877*2^1927713-1 580303 L2257 2023 4504 2*47^346759+1 579816 g424 2011 Divides Phi(47^346759,2) 4505 3871*2^1925976+1 579781 L5327 2022 4506 633*2^1925684+1 579692 L1408 2013 4507 3580*408^222030+1 579649 L5410 2021 4508 5724*313^232269-1 579642 L5410 2020 4509 1965*2^1925248-1 579561 L4113 2022 4510 968*288^235591+1 579414 L5410 2020 4511 1283*2^1924402-1 579306 L1828 2016 4512 1005*2^1923658+1 579082 L3514 2013 4513 243*2^1923567-1 579054 L2055 2011 4514 4005*2^1923385-1 579001 L1959 2016 4515 4508*687^204090-1 578999 L5410 2023 4516 319*2^1923378+1 578997 L3548 2013 4517 1620198*7^684923-1 578834 L4786 2021 4518 815*2^1922594-1 578762 L2257 2023 4519 280992*151^265553-1 578640 L4001 2018 4520 851*2^1922179+1 578637 L3180 2013 4521 685*2^1921923-1 578560 L2257 2023 4522 625*2^1921056+1 578299 L3378 2013 Generalized Fermat 4523 314159*2^1920875+1 578247 L4994 2019 4524 157*2^1920152+1 578026 L2494 2013 4525 14066*60^324990+1 577886 L4444 2018 4526 689*2^1919392-1 577798 L2257 2023 4527 143171*2^1918679+1 577586 L4504 2017 4528 1187*2^1918188-1 577436 L1828 2015 4529 Phi(3,-747624^49152) 577407 L4142 2016 Generalized unique 4530 75492*151^264966-1 577360 L4444 2018 4531 459*2^1917881-1 577343 L5551 2022 4532 1071*2^1917749-1 577304 L1828 2015 4533 335*2^1917610-1 577261 L1809 2014 4534 51*712^202369-1 577256 L4001 2018 4535 133631*28^398790-1 577118 p255 2013 4536 783*2^1916988-1 577074 L2257 2023 4537 191*2^1916611+1 576960 L1792 2013 4538 1087*2^1916212+1 576841 L2719 2013 4539 1065*2^1916200-1 576837 L1828 2015 4540 1682*161^261371+1 576804 L5410 2020 4541 861*2^1915741-1 576699 L2257 2023 4542 1125*2^1915695+1 576685 L3719 2013 4543 Phi(3,-731896^49152) 576499 L4142 2016 Generalized unique 4544 63348*1027^191392+1 576396 L4001 2018 4545 93788*151^264402-1 576131 L4001 2018 4546 461*2^1913118-1 575909 L5551 2022 4547 207*2^1913067+1 575893 L1741 2013 4548 80618*151^264291-1 575889 L4001 2018 4549 849*2^1913021+1 575880 L2413 2013 4550 72844*1027^191206+1 575836 L4001 2018 4551 859*430^218562+1 575580 L5410 2020 4552 535*2^1911715-1 575487 L5545 2022 4553 280*53^333574+1 575177 L4294 2021 4554 85*2^1910520+1 575126 L2703 2011 4555 267*2^1909876-1 574933 L1828 2013 4556 4103*2^1909766-1 574901 L1959 2016 4557 621*2^1909716+1 574885 L2117 2013 4558 611*2^1909525+1 574828 L2413 2013 4559 379*2^1909097-1 574699 L1809 2014 4560 435*2^1908579+1 574543 L3385 2013 4561 4035*2^1907685-1 574275 L1959 2016 4562 291*2^1907541-1 574230 L2484 2013 4563 573*2^1907450+1 574203 L2520 2013 4564 10005*2^1906876-1 574031 L4405 2019 4565 14*814^197138-1 573796 L4001 2018 4566 751*2^1905889-1 573733 L2257 2022 4567 19061965*2^1905351-1 573576 p286 2022 4568 263*2^1904406-1 573286 L2484 2015 4569 969*2^1904357+1 573272 L2719 2013 4570 17*962^192155+1 573234 L4786 2020 4571 699*2^1903573-1 573036 L2257 2022 4572 27*2^1902689-1 572768 L1153 2009 4573 553*2^1902102+1 572593 L2520 2013 4574 1112*423^218014-1 572583 L5410 2021 4575 4171*2^1901433-1 572392 L1959 2016 4576 86*394^220461-1 572208 L541 2020 4577 20707410481*2^1900579-1 572142 L5327 2021 4578 825*2^1899868-1 571921 L2257 2022 4579 271562*151^262431-1 571837 L4001 2018 4580 1323*2^1899548-1 571825 L1828 2014 4581 10005*2^1898938-1 571642 L4405 2019 4582 4806*37^364466-1 571560 L4001 2015 4583 314159*2^1898333+1 571461 L4994 2019 4584 2707*352^224386+1 571412 L5410 2021 4585 633*2^1897632+1 571247 L1741 2013 4586 451*2^1897621-1 571244 L5516 2022 4587 1131*2^1897379-1 571172 L1828 2014 4588d 137*1010^190044-1 570956 L5410 2023 4589 7092*313^228770-1 570910 L5410 2020 4590 707*2^1895035+1 570466 L3035 2013 4591 429*2^1894947-1 570439 L5516 2022 4592 781*2^1894473-1 570297 L2257 2022 4593 3945*2^1894329-1 570254 L4036 2015 4594 5732*29^389934-1 570243 L5660 2023 4595 Phi(3,-628716^49152) 570012 L4142 2016 Generalized unique 4596 4157*2^1892772-1 569785 L1959 2015 4597 154*730^198988+1 569770 L4001 2018 4598 10005*2^1892466-1 569694 L4405 2019 4599 1053*2^1891799-1 569492 L1828 2014 4600 687*2^1891730+1 569471 L3221 2013 4601 5758*211^244970+1 569384 L5410 2020 4602 87*2^1891391+1 569368 L2673 2011 4603 929*2^1890324-1 569048 L2257 2022 4604 85287*2^1890011+1 568955 p254 2011 4605 221*2^1889983+1 568944 L1741 2013 4606 597*2^1889088-1 568675 L5516 2022 4607 607*2^1888525-1 568506 L2257 2022 4608f 379*954^190738-1 568316 L5410 2023 4609 585*2^1887819+1 568293 L3171 2013 4610 347*2^1887507+1 568199 L3548 2013 4611 391*2^1886863-1 568005 L1809 2014 4612 759*2^1886119-1 567782 L2257 2022 4613 791*2^1885961+1 567734 L3075 2013 4614 975*2^1885724+1 567663 L1129 2013 4615 22*615^203539-1 567647 L4001 2018 4616 987*2^1885160+1 567493 L2070 2013 4617 Phi(3,-590826^49152) 567358 L4142 2017 Generalized unique 4618 744716047603963*2^1884575-1 567329 L257 2013 4619 485*2^1884579+1 567318 L3548 2013 4620 14296*421^216090+1 567086 L5410 2021 4621 879*2^1883385+1 566959 L3223 2013 4622 815730721*2^1882432+1 566678 L466 2018 Generalized Fermat 4623 693*2^1881882+1 566506 L2322 2013 4624 30*7^670289+1 566462 L3610 2014 4625 639*2^1880451+1 566075 L3141 2013 4626 927*2^1880136-1 565981 L2257 2022 4627 277*2^1880022+1 565946 L3418 2013 4628 46498*1027^187913+1 565918 L4001 2018 4629 747*2^1879749-1 565864 L2257 2022 4630 2655*2^1879275-1 565722 L2484 2018 4631 89*2^1879132-1 565678 L1828 2013 4632 441*2^1879067+1 565659 L2840 2013 4633 283*2^1879051-1 565654 L2484 2015 4634 214*378^219424-1 565566 L5410 2020 4635 729*2^1877995+1 565336 L1792 2013 4636 645*2^1877756+1 565264 L2981 2013 4637 Phi(3,-561180^49152) 565160 L4142 2017 Generalized unique 4638 613*2^1876758+1 564964 L2413 2013 4639 10005*2^1876648-1 564932 L4405 2019 4640 267*2^1876604+1 564917 L1792 2013 4641 345067*2^1876573-1 564911 g59 2005 4642 1063*2^1876427-1 564864 L1828 2014 4643 1389*2^1876376-1 564849 L1828 2014 4644 1183414*3^1183414+1 564639 L2841 2014 Generalized Cullen 4645 4015*2^1875453-1 564572 L1959 2014 4646 1043*2^1875213+1 564499 L2413 2013 4647 1209*2^1874804-1 564376 L1828 2014 4648 4125*2^1874718-1 564350 L1959 2015 4649 1199*2^1874495+1 564283 L2827 2013 4650 495*2^1874077+1 564157 L1344 2013 4651 505*2^1873631-1 564022 L5516 2022 4652 71*2^1873569+1 564003 L1223 2011 Divides GF(1873568,5) 4653 Phi(3,-544951^49152) 563907 L4142 2017 Generalized unique 4654 1958*687^198762-1 563883 L4955 2023 4655 21*2^1872923-1 563808 L2074 2012 4656 4039*2^1872875-1 563796 L1959 2015 4657 789*2^1872863-1 563791 L2257 2022 4658 439*2^1872789-1 563769 L5516 2022 4659 399878576^65536+1 563736 L4964 2019 Generalized Fermat 4660 357*2^1871600-1 563411 L2519 2014 4661 1309*2^1871045-1 563244 L1828 2014 4662 901*2^1870997-1 563230 L2257 2022 4663 859*2^1870639-1 563122 L2519 2022 4664 Phi(3,-533612^49152) 563010 L4142 2017 Generalized unique 4665 735*2^1870118+1 562965 L3075 2013 4666 575*2^1869989+1 562926 L3650 2013 4667 315*2^1869119-1 562664 L2235 2012 4668 19683*2^1868828+1 562578 L3784 2019 4669 400*315^225179-1 562570 L4444 2021 4670 933*2^1868602+1 562509 L3709 2013 4671 503*2^1868417+1 562453 L3378 2013 4672 1073*2^1867944-1 562311 L1828 2014 4673 2*1595^175532-1 562188 L4961 2019 4674 13162*3^1177896+1 562004 L5410 2021 4675 1115*2^1866094-1 561754 L1828 2014 4676 955*2^1865553-1 561591 L2257 2022 4677 621*2^1865542-1 561587 L2257 2022 4678 70*905^189879-1 561408 L541 2017 4679 407*2^1864735+1 561344 L2520 2013 4680f 627912!6+1 561315 p397 2023 Multifactorial 4681 10005*2^1864432-1 561254 L4405 2019 4682 489*2^1864339+1 561225 L2520 2013 4683 427*2^1863702+1 561033 L3586 2013 4684 1161*2^1863637+1 561014 L3213 2013 4685 653*2^1862782-1 560757 L2257 2022 4686 2*3^1175232+1 560729 p199 2010 4687 347*2^1861974-1 560513 L2519 2014 4688 13*2^1861732+1 560439 g267 2005 Divides GF(1861731,6) 4689 411*2^1861627+1 560409 L1741 2013 4690 281*2^1860862-1 560178 L2484 2015 4691 1165*2^1860749-1 560145 L1828 2014 4692 231*2^1860743-1 560142 L1862 2015 4693 103*2^1860103-1 559949 L2484 2012 4694 350006744^65536+1 559945 L4964 2019 Generalized Fermat 4695 11726*1027^185913-1 559895 L4001 2018 4696 2655*2^1859692-1 559827 L1862 2018 4697 161*2^1859586-1 559794 L177 2013 4698 813*2^1859419-1 559744 L2519 2022 4699 981*2^1859266-1 559698 L2257 2022 4700 51*2^1859193+1 559675 L1204 2011 4701 1177*2^1859144+1 559662 L3625 2013 4702 1818*378^217098+1 559572 L5410 2021 4703 1455*2^1858634-1 559508 L1134 2015 4704 8331405*2^1858587-1 559498 L260 2011 4705 8*3^1172480+1 559417 L4799 2020 4706 663*2^1858195-1 559376 L1817 2022 4707 671*2^1857950-1 559302 L1817 2022 4708 145*590^201814+1 559199 L5410 2022 4709 435*2^1857332-1 559116 L5551 2022 4710 669*2^1857223+1 559083 L2413 2013 4711 296990*151^256535-1 558990 L4700 2018 4712 525*2^1856834-1 558966 L5516 2022 4713 1125*2^1856703-1 558927 L1828 2014 4714 429*2^1856373-1 558827 L5516 2022 4715 52600*91^285235+1 558792 L5410 2020 4716 1155*2^1855389-1 558531 L1828 2014 4717 4031*2^1855338-1 558516 L1959 2014 4718 229*372^217261-1 558482 L4876 2019 4719 Phi(3,-478421^49152) 558349 L4142 2017 Generalized unique 4720 917*2^1854642-1 558306 L1817 2022 4721 126072*31^374323-1 558257 L2054 2012 4722 3^1170000+3^364398+1 558232 x44 2017 4723 4918*3^1169850+1 558164 L5410 2021 4724 19*932^187910+1 557985 L5410 2022 4725 435*2^1853363-1 557921 L4036 2015 4726 1229*2^1853192-1 557870 L1828 2014 4727 3161*618^199877+1 557858 L4714 2018 4728 333*2^1853115-1 557846 L1830 2012 4729 87*2^1852590-1 557688 L2055 2011 4730 765*2^1849609+1 556791 L1792 2013 4731 137*2^1849238-1 556679 L321 2007 4732 639*2^1848903+1 556579 L3439 2013 4733 1061*268^229202-1 556537 L5410 2019 4734 261*2^1848217+1 556372 L1983 2013 4735 Phi(3,-456551^49152) 556351 L4142 2017 Generalized unique 4736 917*2^1847872-1 556268 L2519 2022 4737 465*2^1847589-1 556183 L5516 2022 4738 663*2^1847319-1 556102 L1817 2022 4739 775*2^1846945-1 555989 L1817 2022 4740 88*107^273915-1 555881 L4444 2021 4741 275*2^1846390-1 555822 L2444 2014 4742 1011*2^1846173+1 555757 L3221 2013 4743 575*2^1845718-1 555620 L5516 2022 4744 1029*2^1844975+1 555396 L2626 2013 4745 133*2^1843619-1 554987 L1959 2014 4746 261*2^1843555-1 554968 L1828 2013 4747 655*2^1843379-1 554916 L1817 2022 4748 2^120*611953#*611957^50000+1 554832 p383 2015 4749 73246*1027^184192+1 554713 L4001 2018 4750a 289324904^65536+1 554526 L5639 2023 Generalized Fermat 4751a 289194516^65536+1 554513 L5639 2023 Generalized Fermat 4752 503*2^1842034-1 554511 L5516 2022 4753a 289131432^65536+1 554507 L5772 2023 Generalized Fermat 4754a 289084224^65536+1 554502 L5797 2023 Generalized Fermat 4755a 288721164^65536+1 554466 L5772 2023 Generalized Fermat 4756a 288686746^65536+1 554463 L5639 2023 Generalized Fermat 4757a 288683836^65536+1 554463 L5823 2023 Generalized Fermat 4758a 288675878^65536+1 554462 L5772 2023 Generalized Fermat 4759a 288647290^65536+1 554459 L5772 2023 Generalized Fermat 4760a 288387034^65536+1 554433 L5416 2023 Generalized Fermat 4761a 288212888^65536+1 554416 L5772 2023 Generalized Fermat 4762a 288163930^65536+1 554411 L5620 2023 Generalized Fermat 4763a 288090918^65536+1 554404 L5772 2023 Generalized Fermat 4764a 287967504^65536+1 554392 L4933 2023 Generalized Fermat 4765a 287895384^65536+1 554385 L4968 2023 Generalized Fermat 4766a 287877392^65536+1 554383 L5822 2023 Generalized Fermat 4767a 287747230^65536+1 554370 L5639 2023 Generalized Fermat 4768a 287571970^65536+1 554353 L5620 2023 Generalized Fermat 4769 953*2^1841461+1 554338 L3612 2013 4770a 287423798^65536+1 554338 L4371 2023 Generalized Fermat 4771a 287286178^65536+1 554325 L4933 2023 Generalized Fermat 4772a 287234044^65536+1 554319 L5077 2023 Generalized Fermat 4773a 287196594^65536+1 554316 L5070 2023 Generalized Fermat 4774a 287130118^65536+1 554309 L5639 2023 Generalized Fermat 4775a 287114344^65536+1 554308 L5077 2023 Generalized Fermat 4776a 287028470^65536+1 554299 L5070 2023 Generalized Fermat 4777a 286986062^65536+1 554295 L5070 2023 Generalized Fermat 4778a 286897030^65536+1 554286 L4477 2023 Generalized Fermat 4779a 286844394^65536+1 554281 L5634 2023 Generalized Fermat 4780b 286591074^65536+1 554256 L5639 2023 Generalized Fermat 4781 713*2^1841166-1 554250 L1817 2022 4782 4171*2^1841157-1 554248 L1959 2016 4783b 286487634^65536+1 554245 L5070 2023 Generalized Fermat 4784b 286130010^65536+1 554210 L5816 2023 Generalized Fermat 4785b 286096802^65536+1 554207 L5077 2023 Generalized Fermat 4786b 285911424^65536+1 554188 L5022 2023 Generalized Fermat 4787b 285894112^65536+1 554186 L5077 2023 Generalized Fermat 4788 19061965*2^1840922+1 554181 p286 2022 4789b 285744852^65536+1 554172 L4249 2023 Generalized Fermat 4790b 285657432^65536+1 554163 L5347 2023 Generalized Fermat 4791b 285568918^65536+1 554154 L5077 2023 Generalized Fermat 4792b 285303034^65536+1 554127 L5022 2023 Generalized Fermat 4793b 285249588^65536+1 554122 L5077 2023 Generalized Fermat 4794b 285162248^65536+1 554113 L5432 2023 Generalized Fermat 4795 1089*2^1840695-1 554108 L1828 2014 4796b 284839974^65536+1 554081 L4928 2023 Generalized Fermat 4797b 284492270^65536+1 554046 L5815 2023 Generalized Fermat 4798b 284435642^65536+1 554041 L5813 2023 Generalized Fermat 4799b 284425404^65536+1 554040 L4933 2023 Generalized Fermat 4800b 284328160^65536+1 554030 L5070 2023 Generalized Fermat 4801 705*2^1840379-1 554013 L1817 2022 4802b 284130644^65536+1 554010 L5022 2023 Generalized Fermat 4803b 284063728^65536+1 554004 L4737 2023 Generalized Fermat 4804b 284039224^65536+1 554001 L5627 2023 Generalized Fermat 4805 105*2^1840262-1 553977 L1959 2014 4806 1009*2^1840225-1 553966 L1828 2014 4807b 283636836^65536+1 553961 L5627 2023 Generalized Fermat 4808b 283489024^65536+1 553946 L4933 2023 Generalized Fermat 4809b 283267288^65536+1 553924 L5772 2023 Generalized Fermat 4810b 283137222^65536+1 553911 L5077 2023 Generalized Fermat 4811b 282940616^65536+1 553891 L5620 2023 Generalized Fermat 4812b 282868132^65536+1 553884 L5077 2023 Generalized Fermat 4813b 282771412^65536+1 553874 L5070 2023 Generalized Fermat 4814b 282596850^65536+1 553856 L5784 2023 Generalized Fermat 4815c 282493816^65536+1 553846 L5627 2023 Generalized Fermat 4816c 282464682^65536+1 553843 L5634 2023 Generalized Fermat 4817c 282143224^65536+1 553810 L5809 2023 Generalized Fermat 4818 1323*2^1839623-1 553785 L1828 2014 4819c 281862512^65536+1 553782 L5526 2023 Generalized Fermat 4820c 281859504^65536+1 553782 L4933 2023 Generalized Fermat 4821c 281833104^65536+1 553779 L5639 2023 Generalized Fermat 4822c 281588454^65536+1 553754 L5806 2023 Generalized Fermat 4823c 281522310^65536+1 553748 L5760 2023 Generalized Fermat 4824c 281292474^65536+1 553725 L5403 2023 Generalized Fermat 4825c 281286938^65536+1 553724 L5805 2023 Generalized Fermat 4826c 281151930^65536+1 553710 L5347 2023 Generalized Fermat 4827c 281128342^65536+1 553708 L5070 2023 Generalized Fermat 4828 681*2^1839269+1 553678 L3141 2013 4829c 280735020^65536+1 553668 L5639 2023 Generalized Fermat 4830c 280662244^65536+1 553661 L4737 2023 Generalized Fermat 4831 667*2^1839205-1 553659 L1817 2022 4832c 280558854^65536+1 553650 L4387 2023 Generalized Fermat 4833c 280491706^65536+1 553643 L5639 2023 Generalized Fermat 4834c 280388348^65536+1 553633 L5760 2023 Generalized Fermat 4835c 280295540^65536+1 553623 L5347 2023 Generalized Fermat 4836c 280240520^65536+1 553618 L5143 2023 Generalized Fermat 4837c 280233868^65536+1 553617 L5801 2023 Generalized Fermat 4838 399*2^1839019-1 553603 L1809 2014 4839c 280073642^65536+1 553601 L5143 2023 Generalized Fermat 4840c 279934378^65536+1 553587 L4933 2023 Generalized Fermat 4841 779*2^1838955+1 553584 L3640 2013 4842c 279828194^65536+1 553576 L5051 2023 Generalized Fermat 4843c 279710598^65536+1 553564 L5800 2023 Generalized Fermat 4844c 279526044^65536+1 553545 L5143 2023 Generalized Fermat 4845c 279337808^65536+1 553526 L4933 2023 Generalized Fermat 4846c 279168686^65536+1 553509 L5077 2023 Generalized Fermat 4847c 279168218^65536+1 553509 L5143 2023 Generalized Fermat 4848c 279065654^65536+1 553498 L5797 2023 Generalized Fermat 4849c 278914560^65536+1 553483 L5797 2023 Generalized Fermat 4850c 278901336^65536+1 553482 L5143 2023 Generalized Fermat 4851c 278573258^65536+1 553448 L5070 2023 Generalized Fermat 4852c 278480374^65536+1 553439 L5797 2023 Generalized Fermat 4853 503*2^1838444-1 553430 L5545 2022 4854c 278378566^65536+1 553428 L5784 2023 Generalized Fermat 4855c 278311344^65536+1 553421 L4933 2023 Generalized Fermat 4856c 278271548^65536+1 553417 L5416 2023 Generalized Fermat 4857d 278263718^65536+1 553416 L5070 2023 Generalized Fermat 4858d 278185106^65536+1 553408 L5761 2023 Generalized Fermat 4859d 278131874^65536+1 553403 L4928 2023 Generalized Fermat 4860d 278124408^65536+1 553402 L4359 2023 Generalized Fermat 4861d 278002954^65536+1 553390 L5639 2023 Generalized Fermat 4862d 277985464^65536+1 553388 L5347 2023 Generalized Fermat 4863d 277821740^65536+1 553371 L5070 2023 Generalized Fermat 4864d 277816522^65536+1 553371 L5143 2023 Generalized Fermat 4865d 277779168^65536+1 553367 L4672 2023 Generalized Fermat 4866d 277680222^65536+1 553357 L5795 2023 Generalized Fermat 4867d 277676682^65536+1 553356 L4387 2023 Generalized Fermat 4868d 277619668^65536+1 553350 L5794 2023 Generalized Fermat 4869d 277513352^65536+1 553340 L4387 2023 Generalized Fermat 4870 135*2^1838124+1 553333 L3472 2013 4871d 277403366^65536+1 553328 L4387 2023 Generalized Fermat 4872d 277344684^65536+1 553322 L4387 2023 Generalized Fermat 4873d 277304596^65536+1 553318 L4359 2023 Generalized Fermat 4874d 276966990^65536+1 553283 L5627 2023 Generalized Fermat 4875d 276846832^65536+1 553271 L4933 2023 Generalized Fermat 4876d 276779720^65536+1 553264 L5416 2023 Generalized Fermat 4877 15*2^1837873-1 553257 L632 2008 4878d 276513748^65536+1 553237 L4672 2023 Generalized Fermat 4879d 276312804^65536+1 553216 L4629 2023 Generalized Fermat 4880d 276289408^65536+1 553214 L5793 2023 Generalized Fermat 4881d 276196344^65536+1 553204 L5772 2023 Generalized Fermat 4882d 276109738^65536+1 553195 L5077 2023 Generalized Fermat 4883d 275981748^65536+1 553182 L5792 2023 Generalized Fermat 4884d 275744042^65536+1 553158 L5772 2023 Generalized Fermat 4885d 275702614^65536+1 553153 L4359 2023 Generalized Fermat 4886d 275560040^65536+1 553139 L5639 2023 Generalized Fermat 4887 28*392^213295-1 553137 L4001 2017 4888d 275518122^65536+1 553134 L4933 2023 Generalized Fermat 4889d 275336392^65536+1 553115 L5416 2023 Generalized Fermat 4890d 275029884^65536+1 553084 L5791 2023 Generalized Fermat 4891 1111*792^190801-1 553083 L5426 2021 4892 379*2^1837291-1 553083 L1809 2014 4893d 274885318^65536+1 553069 L4933 2023 Generalized Fermat 4894d 274737458^65536+1 553053 L5634 2023 Generalized Fermat 4895d 274690448^65536+1 553049 L5143 2023 Generalized Fermat 4896 333*2^1837105+1 553027 L3470 2013 4897d 274372420^65536+1 553016 L5639 2023 Generalized Fermat 4898 825*2^1837054-1 553012 L1817 2022 4899d 274269120^65536+1 553005 L5639 2023 Generalized Fermat 4900d 274179144^65536+1 552996 L5526 2023 Generalized Fermat 4901d 274171652^65536+1 552995 L5070 2023 Generalized Fermat 4902d 273780490^65536+1 552954 L5077 2023 Generalized Fermat 4903d 273679286^65536+1 552944 L4999 2023 Generalized Fermat 4904d 273498220^65536+1 552925 L5788 2023 Generalized Fermat 4905e 273465348^65536+1 552921 L5143 2023 Generalized Fermat 4906e 273412686^65536+1 552916 L5785 2023 Generalized Fermat 4907e 272667828^65536+1 552838 L5526 2023 Generalized Fermat 4908 4167*2^1836466-1 552835 L1959 2015 4909d 272445424^65536+1 552815 L5416 2023 Generalized Fermat 4910e 272335146^65536+1 552803 L4933 2023 Generalized Fermat 4911 523061!5+1 552801 x46 2022 Multifactorial 4912e 272284168^65536+1 552798 L5070 2023 Generalized Fermat 4913e 272096382^65536+1 552778 L5784 2023 Generalized Fermat 4914e 272064584^65536+1 552775 L5760 2023 Generalized Fermat 4915e 272034326^65536+1 552772 L5620 2023 Generalized Fermat 4916e 272033228^65536+1 552772 L5070 2023 Generalized Fermat 4917e 271870308^65536+1 552755 L5639 2023 Generalized Fermat 4918e 271761074^65536+1 552743 L5784 2023 Generalized Fermat 4919e 271742714^65536+1 552741 L5786 2023 Generalized Fermat 4920 309*2^1836139+1 552736 L3460 2013 4921e 271645276^65536+1 552731 L5077 2023 Generalized Fermat 4922e 271633032^65536+1 552730 L4201 2023 Generalized Fermat 4923e 271481852^65536+1 552714 L5599 2023 Generalized Fermat 4924e 271450498^65536+1 552711 L5490 2023 Generalized Fermat 4925e 271396206^65536+1 552705 L5634 2023 Generalized Fermat 4926e 271317774^65536+1 552697 L5077 2023 Generalized Fermat 4927d 271079666^65536+1 552672 L5416 2023 Generalized Fermat 4928e 271031136^65536+1 552667 L5781 2023 Generalized Fermat 4929 271018852^65536+1 552666 L4704 2019 Generalized Fermat 4930e 270953578^65536+1 552659 L5779 2023 Generalized Fermat 4931e 270900338^65536+1 552653 L5643 2023 Generalized Fermat 4932e 270881478^65536+1 552651 L4387 2023 Generalized Fermat 4933e 270870834^65536+1 552650 L5639 2023 Generalized Fermat 4934e 270738766^65536+1 552636 L4933 2023 Generalized Fermat 4935d 270729942^65536+1 552635 L5416 2023 Generalized Fermat 4936d 270650780^65536+1 552627 L5416 2023 Generalized Fermat 4937e 270226036^65536+1 552582 L5627 2023 Generalized Fermat 4938e 270152854^65536+1 552574 L4933 2023 Generalized Fermat 4939e 270118384^65536+1 552571 L5654 2023 Generalized Fermat 4940 4061*2^1835582-1 552569 L1959 2014 4941 423*2^1835585+1 552569 L2873 2013 4942 621*2^1835567-1 552564 L1817 2022 4943e 270017480^65536+1 552560 L5070 2023 Generalized Fermat 4944e 269455002^65536+1 552501 L5416 2023 Generalized Fermat 4945e 269348314^65536+1 552490 L4839 2023 Generalized Fermat 4946e 269192112^65536+1 552473 L5777 2023 Generalized Fermat 4947e 269177540^65536+1 552472 L4933 2023 Generalized Fermat 4948e 269095066^65536+1 552463 L5639 2023 Generalized Fermat 4949e 269088864^65536+1 552462 L5485 2023 Generalized Fermat 4950e 268778680^65536+1 552429 L5143 2023 Generalized Fermat 4951e 268758496^65536+1 552427 L5654 2023 Generalized Fermat 4952e 268667968^65536+1 552418 L5717 2023 Generalized Fermat 4953e 268581226^65536+1 552408 L5654 2023 Generalized Fermat 4954e 268580560^65536+1 552408 L5639 2023 Generalized Fermat 4955e 268526572^65536+1 552403 L5654 2023 Generalized Fermat 4956e 268501802^65536+1 552400 L4387 2023 Generalized Fermat 4957f 268337126^65536+1 552383 L5143 2023 Generalized Fermat 4958f 267890702^65536+1 552335 L5627 2023 Generalized Fermat 4959 1181*2^1834802-1 552334 L1828 2014 4960f 267754986^65536+1 552321 L4933 2023 Generalized Fermat 4961f 267633214^65536+1 552308 L5761 2023 Generalized Fermat 4962f 267535458^65536+1 552297 L4933 2023 Generalized Fermat 4963f 267275536^65536+1 552270 L5634 2023 Generalized Fermat 4964f 267203854^65536+1 552262 L4933 2023 Generalized Fermat 4965 73*2^1834526+1 552250 L1513 2011 4966f 267077662^65536+1 552249 L5634 2023 Generalized Fermat 4967f 267075766^65536+1 552248 L5070 2023 Generalized Fermat 4968f 267010136^65536+1 552241 L5156 2023 Generalized Fermat 4969 309*2^1834379+1 552206 L3471 2013 4970f 266524754^65536+1 552190 L5747 2023 Generalized Fermat 4971 3748*333^218908+1 552187 L4575 2017 4972f 266186666^65536+1 552154 L5673 2023 Generalized Fermat 4973f 266185914^65536+1 552153 L5673 2023 Generalized Fermat 4974f 265916906^65536+1 552125 L5416 2023 Generalized Fermat 4975 87*2^1834098+1 552121 L1513 2011 4976f 265876478^65536+1 552120 L4933 2023 Generalized Fermat 4977f 265830698^65536+1 552115 L4672 2023 Generalized Fermat 4978f 265641702^65536+1 552095 L5669 2023 Generalized Fermat 4979f 265498354^65536+1 552080 L5771 2023 Generalized Fermat 4980 26*578^199886-1 552073 L5415 2021 4981f 265337706^65536+1 552063 L5620 2023 Generalized Fermat 4982f 265119988^65536+1 552039 L5457 2023 Generalized Fermat 4983f 265085200^65536+1 552035 L5717 2023 Generalized Fermat 4984f 265072156^65536+1 552034 L5717 2023 Generalized Fermat 4985f 264996308^65536+1 552026 L5759 2023 Generalized Fermat 4986f 264906106^65536+1 552016 L5769 2023 Generalized Fermat 4987f 264769234^65536+1 552002 L5620 2023 Generalized Fermat 4988f 264664796^65536+1 551990 L5347 2023 Generalized Fermat 4989f 264647588^65536+1 551988 L5070 2023 Generalized Fermat 4990f 264551432^65536+1 551978 L5768 2023 Generalized Fermat 4991f 264535130^65536+1 551976 L5457 2023 Generalized Fermat 4992f 264499238^65536+1 551973 L5767 2023 Generalized Fermat 4993f 264497192^65536+1 551972 L5762 2023 Generalized Fermat 4994f 264438670^65536+1 551966 L5459 2023 Generalized Fermat 4995f 264426558^65536+1 551965 L5460 2023 Generalized Fermat 4996f 264301176^65536+1 551951 L5143 2023 Generalized Fermat 4997f 264203868^65536+1 551941 L5632 2023 Generalized Fermat 4998 1021*2^1833459-1 551930 L1828 2014 4999 34*813^189659-1 551927 L4001 2018 5000f 264072794^65536+1 551927 L5370 2023 Generalized Fermat 5001 3*2^1832496+1 551637 p189 2007 Divides GF(1832490,3), GF(1832494,5) 5002 39*2^1824871+1 549343 L2664 2011 Divides GF(1824867,6) 5003 45*2^1779971+1 535827 L1223 2011 Divides GF(1779969,5) 5004 5*2^1777515+1 535087 p148 2005 Divides GF(1777511,5), GF(1777514,6) 5005 129*2^1774709+1 534243 L2526 2013 Divides GF(1774705,12) 5006 2*191^232149+1 529540 g424 2011 Divides Phi(191^232149,2) 5007 183*2^1747660+1 526101 L2163 2013 Divides Fermat F(1747656) 5008 63*2^1686050+1 507554 L2085 2011 Divides GF(1686047,12) 5009 110059!+1 507082 p312 2011 Factorial 5010 55*2^1669798+1 502662 L2518 2011 Divides GF(1669797,12) 5011 2^1667321-2^833661+1 501914 L137 2011 Gaussian Mersenne norm 38, generalized unique 5012 2*359^192871+1 492804 g424 2014 Divides Phi(359^192871,2) 5013 10^490000+3*(10^7383-1)/9*10^241309+1 490001 p413 2021 Palindrome 5014 1098133#-1 476311 p346 2012 Primorial 5015 10^474500+999*10^237249+1 474501 p363 2014 Palindrome 5016 103040!-1 471794 p301 2010 Factorial 5017 3803*2^1553013+1 467508 L1957 2020 Divides GF(1553012,5) 5018 135*2^1515894+1 456332 L1129 2013 Divides GF(1515890,10) 5019 2*839^155785+1 455479 g424 2014 Divides Phi(839^155785,2) 5020 131*2^1494099+1 449771 L2959 2012 Divides Fermat F(1494096) 5021 1467763*2^1467763-1 441847 L381 2007 Woodall 5022 4125*2^1445205-1 435054 L1959 2014 Arithmetic progression (2,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5023 5529*2^1430926+1 430756 L3035 2017 Divides GF(1430925,5) 5024 94550!-1 429390 p290 2010 Factorial 5025 15*2^1418605+1 427044 g279 2006 Divides GF(1418600,5), GF(1418601,6) 5026 2415*2^1413627-1 425548 L1959 2014 Arithmetic progression (2,d=2415*2^1413627-1489088842587*2^1290000) [p199] 5027 2985*2^1404274-1 422733 L1959 2014 Arithmetic progression (2,d=2985*2^1404274-770527213395*2^1290000) [p199] 5028 2^1398269-1 420921 G1 1996 Mersenne 35 5029 17*2^1388355+1 417938 g267 2005 Divides GF(1388354,10) 5030 338707*2^1354830+1 407850 L124 2005 Cullen 5031 107*2^1337019+1 402485 L2659 2012 Divides GF(1337018,10) 5032 1389*2^1335434+1 402009 L1209 2015 Divides GF(1335433,10) 5033 10^400000+4*(10^102381-1)/9*10^148810+1 400001 p413 2021 Palindrome 5034 5*2^1320487+1 397507 g55 2002 Divides GF(1320486,12) 5035 10^390636+999*10^195317+1 390637 p363 2014 Palindrome 5036 6325241166627*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=1455*2^2683953-6325241166627*2^1290000) 5037 5606879602425*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=33*2^2939063-5606879602425*2^1290000) 5038 2618163402417*2^1290001-1 388342 L927 2016 Sophie Germain (2p+1) 5039 4966510140375*2^1290000-1 388342 L3573 2020 Arithmetic progression (2,d=2227792035315*2^1290001) 5040 2996863034895*2^1290000+1 388342 L2035 2016 Twin (p+2) 5041 2996863034895*2^1290000-1 388342 L2035 2016 Twin (p) 5042 2723880039837*2^1290000-1 388342 L3829 2016 Arithmetic progression (1,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5043 2618163402417*2^1290000-1 388342 L927 2016 Sophie Germain (p) 5044 2060323099527*2^1290000-1 388342 L3606 2015 Arithmetic progression (2,d=69718264533*2^1290002) [p199] 5045 1938662032575*2^1290000-1 388341 L927 2015 Arithmetic progression (1,d=10032831585*2^1290001) [p199] 5046 1781450041395*2^1290000-1 388341 L3203 2015 Arithmetic progression (1,d=69718264533*2^1290002) [p199] 5047 15*2^1276177+1 384169 g279 2006 Divides GF(1276174,3), GF(1276174,10) 5048 1268979*2^1268979-1 382007 L201 2007 Woodall 5049 2^1257787-1 378632 SG 1996 Mersenne 34 5050 329*2^1246017+1 375092 L2085 2012 Divides Fermat F(1246013) 5051 843301#-1 365851 p302 2010 Primorial 5052 25*2^1211488+1 364696 g279 2005 Generalized Fermat, divides GF(1211487,12) 5053 10^362600+666*10^181299+1 362601 p363 2014 Palindrome 5054 2^1203793-2^601897+1 362378 L192 2006 Gaussian Mersenne norm 37, generalized unique 5055 1195203*2^1195203-1 359799 L124 2005 Woodall 5056 29*2^1152765+1 347019 g300 2005 Divides GF(1152760,10) 5057 2145*2^1099064+1 330855 L1792 2013 Divides Fermat F(1099061) 5058 Phi(3,10^160118)+(137*10^160119+731*10^159275)*(10^843-1)/999 320237 p44 2014 Palindrome 5059 Phi(3,10^160048)+(137*10^160049+731*10^157453)*(10^2595-1)/999 320097 p44 2014 Palindrome 5060 10^314727-8*10^157363-1 314727 p235 2013 Near-repdigit, palindrome 5061 10^300000+5*(10^48153-1)/9*10^125924+1 300001 p413 2021 Palindrome 5062 2^991961-2^495981+1 298611 x28 2005 Gaussian Mersenne norm 36, generalized unique 5063 10^290253-2*10^145126-1 290253 p235 2012 Near-repdigit, Palindrome 5064 11*2^960901+1 289262 g277 2005 Divides Fermat F(960897) 5065 10^283355-737*10^141676-1 283355 p399 2020 Palindrome 5066 Phi(3,10^137747)+(137*10^137748+731*10^129293)*(10^8454-1)/999 275495 p44 2012 Palindrome 5067 1705*2^906110+1 272770 L3174 2012 Divides Fermat F(906108) 5068 10^269479-7*10^134739-1 269479 p235 2012 Near-repdigit, Palindrome 5069 10^262144+7*(10^5193-1)/9*10^128476+1 262145 p413 2021 Palindrome 5070 2^859433-1 258716 SG 1994 Mersenne 33 5071 2^756839-1 227832 SG 1992 Mersenne 32 5072 10^223663-454*10^111830-1 223663 p363 2016 Palindrome 5073c 13243*2^699764+1 210655 L5808 2023 Divides Fermat F(699760) 5074 27*2^672007+1 202296 g279 2005 Divides Fermat F(672005) 5075 667071*2^667071-1 200815 g55 2000 Woodall 5076 18543637900515*2^666668-1 200701 L2429 2012 Sophie Germain (2p+1) 5077 18543637900515*2^666667-1 200701 L2429 2012 Sophie Germain (p) 5078 3756801695685*2^666669+1 200700 L1921 2011 Twin (p+2) 5079 3756801695685*2^666669-1 200700 L1921 2011 Twin (p) 5080 392113#+1 169966 p16 2001 Primorial 5081 213778324725*2^561418+1 169015 p430 2023 Cunningham chain 2nd kind (2p-1) 5082 213778324725*2^561417+1 169015 p430 2023 Cunningham chain 2nd kind (p) 5083 366439#+1 158936 p16 2001 Primorial 5084 2*893962950^16384+1 146659 p428 2023 Cunningham chain 2nd kind (2p-1) 5085 893962950^16384+1 146659 p427 2023 Cunningham chain 2nd kind (p), generalized Fermat 5086 481899*2^481899+1 145072 gm 1998 Cullen 5087 34790!-1 142891 p85 2002 Factorial 5088 2^364289-2^182145+1 109662 p58 2001 Gaussian Mersenne norm 35, generalized unique 5089 361275*2^361275+1 108761 DS 1998 Cullen 5090 26951!+1 107707 p65 2002 Factorial 5091 65516468355*2^333333+1 100355 L923 2009 Twin (p+2) 5092 65516468355*2^333333-1 100355 L923 2009 Twin (p) 5093 (7176^24691-1)/7175 95202 CH2 2017 Generalized repunit 5094e R(86453) 86453 E3 2023 Repunit, ECPP, unique 5095 21480!-1 83727 p65 2001 Factorial 5096 183027*2^265441-1 79911 L983 2010 Sophie Germain (2p+1) 5097 183027*2^265440-1 79911 L983 2010 Sophie Germain (p) 5098 262419*2^262419+1 79002 DS 1998 Cullen 5099 160204065*2^262148+1 78923 L5115 2021 Twin (p+2) 5100 160204065*2^262148-1 78923 L5115 2021 Twin (p) 5101 3622179275715*2^256003+1 77078 x47 2020 Cunningham chain 2nd kind (2p-1) 5102 3622179275715*2^256002+1 77077 x47 2020 Cunningham chain 2nd kind (p) 5103 648621027630345*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5104 620366307356565*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5105 648621027630345*2^253824-1 76424 x24 2009 Sophie Germain (p) 5106 620366307356565*2^253824-1 76424 x24 2009 Sophie Germain (p) 5107 2570606397*2^252763+1 76099 p364 2020 Cunningham chain 2nd kind (2p-1) 5108 2570606397*2^252762+1 76099 p364 2020 Cunningham chain 2nd kind (p) 5109 (40734^16111-1)/40733 74267 CH2 2015 Generalized repunit 5110 (64758^15373-1)/64757 73960 p170 2018 Generalized repunit 5111 5^104824+104824^5 73269 E4 2023 ECPP 5112 primV(111534,1,27000) 72683 x25 2013 Generalized Lucas primitive part 5113 (58729^15091-1)/58728 71962 CH2 2017 Generalized repunit 5114 2*352666770^8192+1 70021 p409 2020 Cunningham chain 2nd kind (2p-1) 5115 352666770^8192+1 70021 p411 2020 Cunningham chain 2nd kind (p), generalized Fermat 5116 (27987^15313-1)/27986 68092 CH12 2020 Generalized repunit 5117 (23340^15439-1)/23339 67435 p170 2020 Generalized repunit 5118 12770275971*2^222225+1 66907 L527 2017 Twin (p+2) 5119 12770275971*2^222225-1 66907 L527 2017 Twin (p) 5120 (24741^15073-1)/24740 66218 p170 2020 Generalized repunit 5121 (63847^13339-1)/63846 64091 p170 2013 Generalized repunit 5122 12599682117*2^211088+1 63554 L4166 2022 Twin (p+2) 5123 12599682117*2^211088-1 63554 L4166 2022 Twin (p) 5124 12566577633*2^211088+1 63554 L4166 2022 Twin (p+2) 5125 12566577633*2^211088-1 63554 L4166 2022 Twin (p) 5126 1068669447*2^211089-1 63554 L4166 2020 Sophie Germain (2p+1) 5127 1068669447*2^211088-1 63553 L4166 2020 Sophie Germain (p) 5128 145823#+1 63142 p21 2000 Primorial 5129 U(15694,1,14700)+U(15694,1,14699) 61674 x45 2019 Lehmer number 5130 (28507^13831-1)/28506 61612 CH12 2020 Generalized repunit 5131 2^203789+2^101895+1 61347 O 2000 Gaussian Mersenne norm 34, generalized unique 5132 (26371^13681-1)/26370 60482 p170 2012 Generalized repunit 5133 U(24,-25,43201) 60391 CH12 2020 Generalized Lucas number 5134 99064503957*2^200009-1 60220 L95 2016 Sophie Germain (2p+1) 5135 99064503957*2^200008-1 60220 L95 2016 Sophie Germain (p) 5136 70965694293*2^200006+1 60219 L95 2016 Twin (p+2) 5137 70965694293*2^200006-1 60219 L95 2016 Twin (p) 5138 66444866235*2^200003+1 60218 L95 2016 Twin (p+2) 5139 66444866235*2^200003-1 60218 L95 2016 Twin (p) 5140 (4529^16381-1)/4528 59886 CH2 2012 Generalized repunit 5141 4884940623*2^198800+1 59855 L4166 2015 Twin (p+2) 5142 4884940623*2^198800-1 59855 L4166 2015 Twin (p) 5143 3^125330+1968634623437000 59798 E4 2022 ECPP 5144 (9082^15091-1)/9081 59729 CH2 2014 Generalized repunit 5145 2003663613*2^195000+1 58711 L202 2007 Twin (p+2) 5146 2003663613*2^195000-1 58711 L202 2007 Twin (p) 5147 primV(27655,1,19926) 57566 x25 2013 Generalized Lucas primitive part 5148 Ramanujan tau function at 199^4518 57125 E3 2022 ECPP 5149 (43326^12041-1)/43325 55827 p170 2017 Generalized repunit 5150 12443794755*2^184517-1 55556 L3494 2021 Sophie Germain (2p+1) 5151 21749869755*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 5152 14901867165*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 5153 12443794755*2^184516-1 55555 L3494 2021 Sophie Germain (p) 5154 21749869755*2^184515-1 55555 L3494 2021 Sophie Germain (p) 5155 14901867165*2^184515-1 55555 L3494 2021 Sophie Germain (p) 5156 17976255129*2^183241+1 55172 p415 2021 Twin (p+2) 5157 17976255129*2^183241-1 55172 p415 2021 Twin (p) 5158 607095*2^176312-1 53081 L983 2009 Sophie Germain (2p+1) 5159 607095*2^176311-1 53081 L983 2009 Sophie Germain (p) 5160 (38284^11491-1)/38283 52659 CH2 2013 Generalized repunit 5161 (2^174533-1)/193594572654550537/91917886778031629891960890057 52494 E5 2022 Mersenne cofactor, ECPP 5162 191547657*2^173372+1 52199 L5116 2020 Twin (p+2) 5163 191547657*2^173372-1 52199 L5116 2020 Twin (p) 5164 38529154785*2^173250+1 52165 L3494 2014 Twin (p+2) 5165 38529154785*2^173250-1 52165 L3494 2014 Twin (p) 5166 29055814795*(2^172486-2^86243)+2^86245+1 51934 p408 2022 Consecutive primes arithmetic progression (2,d=4) 5167 11922002779*(2^172486-2^86243)+2^86245+1 51934 p408 2022 Consecutive primes arithmetic progression (2,d=6) 5168 48047305725*2^172404-1 51910 L99 2007 Sophie Germain (2p+1) 5169 48047305725*2^172403-1 51910 L99 2007 Sophie Germain (p) 5170 137211941292195*2^171961-1 51780 x24 2006 Sophie Germain (2p+1) 5171 194772106074315*2^171960+1 51780 x24 2007 Twin (p+2) 5172 194772106074315*2^171960-1 51780 x24 2007 Twin (p) 5173 137211941292195*2^171960-1 51780 x24 2006 Sophie Germain (p) 5174 100314512544015*2^171960+1 51780 x24 2006 Twin (p+2) 5175 100314512544015*2^171960-1 51780 x24 2006 Twin (p) 5176 16869987339975*2^171960+1 51779 x24 2005 Twin (p+2) 5177 16869987339975*2^171960-1 51779 x24 2005 Twin (p) 5178 (34120^11311-1)/34119 51269 CH2 2011 Generalized repunit 5179 33218925*2^169690+1 51090 g259 2002 Twin (p+2) 5180 33218925*2^169690-1 51090 g259 2002 Twin (p) 5181 U(809,1,17325)-U(809,1,17324) 50378 x45 2019 Lehmer number 5182 10^50000+65859 50001 E3 2022 ECPP 5183 R(49081) 49081 c70 2022 Repunit, unique, ECPP 5184 (50091^10357-1)/50090 48671 p170 2016 Generalized repunit 5185 268981272*5^69421+1 48532 L5695 2023 Twin (p+2) 5186 268981272*5^69421-1 48532 L5695 2023 Twin (p) 5187 2^160423-2^80212+1 48293 O 2000 Gaussian Mersenne norm 33, generalized unique 5188 U(67,-1,26161) 47773 x45 2019 Generalized Lucas number 5189 primV(40395,-1,15588) 47759 x23 2007 Generalized Lucas primitive part 5190 110427610*3^100003+1 47722 p415 2021 Twin (p+2) 5191 110427610*3^100003-1 47722 p415 2021 Twin (p) 5192 primV(53394,-1,15264) 47200 CH4 2007 Generalized Lucas primitive part 5193 (44497^10093-1)/44496 46911 p170 2016 Generalized repunit 5194 4931286045*2^152850-1 46023 L5389 2021 Sophie Germain (2p+1) 5195 4318624617*2^152850-1 46023 L5389 2021 Sophie Germain (2p+1) 5196 4931286045*2^152849-1 46022 L5389 2021 Sophie Germain (p) 5197 4318624617*2^152849-1 46022 L5389 2021 Sophie Germain (p) 5198 151023*2^151023-1 45468 g25 1998 Woodall 5199 (1852^13477-1)/1851 44035 p170 2015 Generalized repunit 5200 U(52245,1,9241)+U(52245,1,9240) 43595 x45 2019 Lehmer number 5201 17147299833*2^143732-1 43278 L3494 2023 Sophie Germain (2p+1) 5202 17147299833*2^143731-1 43278 L3494 2023 Sophie Germain (p) 5203 21195711*2^143631-1 43245 L3494 2019 Sophie Germain (2p+1) 5204 21195711*2^143630-1 43245 L3494 2019 Sophie Germain (p) 5205 (42417^9337-1)/42416 43203 p170 2015 Generalized repunit 5206 838269645*2^143166-1 43107 L3494 2019 Sophie Germain (2p+1) 5207 838269645*2^143165-1 43106 L3494 2019 Sophie Germain (p) 5208 570409245*2^143164-1 43106 L3494 2019 Sophie Germain (2p+1) 5209 570409245*2^143163-1 43106 L3494 2019 Sophie Germain (p) 5210 2830598517*2^143113-1 43091 L3494 2019 Sophie Germain (2p+1) 5211 2830598517*2^143112-1 43091 L3494 2019 Sophie Germain (p) 5212 71509*2^143019-1 43058 g23 1998 Woodall, arithmetic progression (2,d=(143018*2^83969-80047)*2^59049) [x12] 5213 U(2449,-1,12671) 42939 x45 2018 Generalized Lucas number, cyclotomy 5214 (36210^9319-1)/36209 42480 p170 2019 Generalized repunit 5215a U(201107) 42029 E11 2023 Fibonacci number, ECPP 5216 E(11848)/7910215 40792 E8 2022 Euler irregular, ECPP 5217 10^40000+14253 40001 E3 2022 ECPP 5218 p(1289844341) 40000 c84 2020 Partitions, ECPP 5219 primV(4836,1,16704) 39616 x25 2013 Generalized Lucas primitive part 5220 (2^130439-1)/260879 39261 E9 2023 Mersenne cofactor, ECPP 5221 U(21041,-1,9059) 39159 x45 2018 Generalized Lucas number, cyclotomy 5222 tau(47^4176) 38404 E3 2022 ECPP 5223 (2^127031+1)/3 38240 E5 2023 Wagstaff, ECPP, generalized Lucas number 5224 3^78296+479975120078336 37357 E4 2022 ECPP 5225 63^20018+20018^63 36020 E4 2023 ECPP 5226 U(5617,-1,9539) 35763 x45 2019 Generalized Lucas number, cyclotomy 5227 (2^117239+1)/3 35292 E2 2022 Wagstaff, ECPP, generalized Lucas number 5228 p(1000007396) 35219 E4 2022 Partitions, ECPP 5229 2^116224-15905 34987 c87 2017 ECPP 5230 (V(60145,1,7317)-1)/(V(60145,1,27)-1) 34841 x45 2019 Lehmer primitive part 5231 primV(38513,-1,11502) 34668 x23 2006 Generalized Lucas primitive part 5232 primV(9008,1,16200) 34168 x23 2005 Generalized Lucas primitive part 5233 (14665*10^34110-56641)/9999 34111 c89 2018 ECPP, Palindrome 5234 (V(28138,1,7587)-1)/(V(28138,1,27)-1) 33637 x45 2019 Lehmer primitive part 5235 U(35896,1,7260)+U(35896,1,7259) 33066 x45 2019 Lehmer number 5236 primV(6586,1,16200) 32993 x25 2013 Generalized Lucas primitive part 5237 U(1624,-1,10169) 32646 x45 2018 Generalized Lucas number, cyclotomy 5238 (V(48395,1,6921)-1)/(V(48395,1,9)-1) 32382 x45 2019 Lehmer primitive part 5239 2^106693+2^53347+1 32118 O 2000 Gaussian Mersenne norm 32, generalized unique 5240 primV(28875,1,13500) 32116 x25 2016 Generalized Lucas primitive part 5241 (2^106391-1)/286105171290931103 32010 c95 2022 Mersenne cofactor, ECPP 5242 (V(77786,1,6453)+1)/(V(77786,1,27)+1) 31429 x25 2012 Lehmer primitive part 5243 primV(10987,1,14400) 31034 x25 2005 Generalized Lucas primitive part 5244 V(148091) 30950 c81 2015 Lucas number, ECPP 5245 U(148091) 30949 x49 2021 Fibonacci number, ECPP 5246e -E(9266)/(61657889*34536574993) 30900 E10 2023 Euler irregular, ECPP 5247 Phi(11589,-10000) 30897 E1 2022 Unique,ECPP 5248 (V(73570,1,6309)-1)/(V(73570,1,9)-1) 30661 x25 2016 Lehmer primitive part 5249 1524633857*2^99902-1 30083 p364 2022 Arithmetic progression (4,d=928724769*2^99901) 5250 Phi(36547,-10) 29832 E1 2022 Unique, ECPP 5251 49363*2^98727-1 29725 Y 1997 Woodall 5252 U(2341,-1,8819) 29712 x25 2008 Generalized Lucas number 5253 primV(24127,-1,6718) 29433 CH3 2005 Generalized Lucas primitive part 5254 primV(12215,-1,13500) 29426 x25 2016 Generalized Lucas primitive part 5255 V(140057) 29271 c76 2014 Lucas number,ECPP 5256 U(1404,-1,9209) 28981 CH10 2018 Generalized Lucas number, cyclotomy 5257 U(23396,1,6615)+U(23396,1,6614) 28898 x45 2019 Lehmer number 5258 (2^95369+1)/3 28709 x49 2021 Generalized Lucas number, Wagstaff, ECPP 5259 primV(45922,1,11520) 28644 x25 2011 Generalized Lucas primitive part 5260 primV(205011) 28552 x39 2009 Lucas primitive part 5261 -30*Bern(10264)/(1040513*252354668864651) 28506 c94 2021 Irregular, ECPP 5262 U(16531,1,6721)-U(16531,1,6720) 28347 x36 2007 Lehmer number 5263 (V(28286,1,6309)+1)/(V(28286,1,9)+1) 28045 x25 2016 Lehmer primitive part 5264 U(5092,1,7561)+U(5092,1,7560) 28025 x25 2014 Lehmer number 5265 90825*2^90825+1 27347 Y 1997 Cullen 5266 U(5239,1,7350)-U(5239,1,7349) 27333 CH10 2017 Lehmer number 5267 U(130021) 27173 x48 2021 Fibonacci number, ECPP 5268 primV(5673,1,13500) 27028 CH3 2005 Generalized Lucas primitive part 5269 primV(44368,1,9504) 26768 CH3 2005 Generalized Lucas primitive part 5270 546351925018076058*Bern(9702)/129255048976106804786904258880518941 26709 c77 2021 Irregular, ECPP 5271 22359307*60919#+1 26383 p364 2022 Arithmetic progression (4,d=5210718*60919#) 5272 17029817*60919#+1 26383 p364 2022 Arithmetic progression (4,d=1809778*60919#) 5273 (2^87691-1)/806957040167570408395443233 26371 E1 2022 Mersenne cofactor, ECPP 5274 primV(10986,-1,9756) 26185 x23 2005 Generalized Lucas primitive part 5275 1043945909*60013#+1 25992 p155 2019 Arithmetic progression (4,d=7399459*60013#) 5276 1041073153*60013#+1 25992 p155 2019 Arithmetic progression (4,d=10142823*60013#) 5277 (2^86371-1)/41681512921035887 25984 E2 2022 Mersenne cofactor, ECPP 5278 (2^86137-1)/2584111/7747937967916174363624460881 25896 c84 2022 Mersenne cofactor, ECPP 5279 primV(11076,-1,12000) 25885 x25 2005 Generalized Lucas primitive part 5280e -E(7894)/19 25790 E10 2023 Euler irregular, ECPP 5281 2^85237+2^42619+1 25659 x16 2000 Gaussian Mersenne norm 31, generalized unique 5282 primV(17505,1,11250) 25459 x25 2011 Generalized Lucas primitive part 5283 U(2325,-1,7561) 25451 x20 2013 Generalized Lucas number 5284 U(13084,-13085,6151) 25319 x45 2018 Generalized Lucas number, cyclotomy 5285 (2^84211-1)/1347377/31358793176711980763958121/33146416760423478241695\ 91561 25291 c95 2020 Mersenne cofactor, ECPP 5286 primV(42,-1,23376) 25249 x23 2007 Generalized Lucas primitive part 5287 U(1064,-1065,8311) 25158 CH10 2018 Generalized Lucas number, cyclotomy 5288 primV(7577,-1,10692) 25140 x33 2007 Generalized Lucas primitive part 5289 (2^83339+1)/3 25088 c54 2014 ECPP, generalized Lucas number, Wagstaff 5290 (2^82939-1)/883323903012540278033571819073 24938 c84 2021 Mersenne cofactor, ECPP 5291e -E(7634)/1559 24828 E10 2023 Euler irregular, ECPP 5292 U(1766,1,7561)-U(1766,1,7560) 24548 x25 2013 Lehmer number 5293 U(1383,1,7561)+U(1383,1,7560) 23745 x25 2013 Lehmer number 5294 798*Bern(8766)/(2267959*6468702182951641) 23743 c94 2021 Irregular, ECPP 5295 Phi(11867,-100) 23732 c47 2021 Unique, ECPP 5296 (2^78737-1)/1590296767505866614563328548192658003295567890593 23654 E2 2022 Mersenne cofactor, ECPP 5297 Phi(35421,-10) 23613 c77 2021 Unique, ECPP 5298 6917!-1 23560 g1 1998 Factorial 5299 2^77291+2^38646+1 23267 O 2000 Gaussian Mersenne norm 30, generalized unique 5300 (V(59936,1,4863)+1)/(V(59936,1,3)+1) 23220 x25 2013 Lehmer primitive part 5301 U(1118,1,7561)-U(1118,1,7560) 23047 x25 2013 Lehmer number 5302 (V(45366,1,4857)+1)/(V(45366,1,3)+1) 22604 x25 2013 Lehmer primitive part 5303 348054*Bern(8286)/1570865077944473903275073668721 22234 E1 2022 Irregular, ECPP 5304 p(398256632) 22223 E1 2022 Partitions, ECPP 5305 U(105509)/144118801533126010445795676378394340544227572822879081 21997 E1 2022 Fibonacci cofactor, ECPP 5306 U(104911) 21925 c82 2015 Fibonacci number, ECPP 5307 Phi(1203,10^27) 21600 c47 2021 Unique, ECPP 5308 U(19258,-1,5039) 21586 x23 2007 Generalized Lucas number 5309 6380!+1 21507 g1 1998 Factorial 5310 U(43100,1,4620)+U(43100,1,4619) 21407 x25 2016 Lehmer number 5311 -E(6658)/85079 21257 c77 2020 Euler irregular, ECPP 5312 Phi(39855,-10) 21248 c95 2020 Unique, ECPP 5313 (V(23354,1,4869)-1)/(V(23354,1,9)-1) 21231 x25 2013 Lehmer primitive part 5314 U(15631,1,5040)-U(15631,1,5039) 21134 x25 2003 Lehmer number 5315a primA(413205) 21127 E1 2023 Lucas Aurifeuillian primitive part, ECPP 5316 U(35759,1,4620)+U(35759,1,4619) 21033 x25 2016 Lehmer number 5317 p(355646102) 21000 E1 2022 Partitions, ECPP 5318 p(350199893) 20838 E7 2022 Partitions, ECPP 5319 U(31321,1,4620)-U(31321,1,4619) 20767 x25 2016 Lehmer number 5320 primU(105821) 20598 E1 2022 Fibonacci primitive part, ECPP 5321 primU(172179) 20540 E1 2022 Fibonacci primitive part, ECPP 5322 U(11200,-1,5039) 20400 x25 2004 Generalized Lucas number, cyclotomy 5323 Phi(23749,-10) 20160 c47 2014 Unique, ECPP 5324 U(22098,1,4620)+U(22098,1,4619) 20067 x25 2016 Lehmer number 5325 primV(112028) 20063 E1 2022 Lucas primitive part, ECPP 5326 1128330746865*2^66441-1 20013 p158 2020 Cunningham chain (4p+3) 5327 1128330746865*2^66440-1 20013 p158 2020 Cunningham chain (2p+1) 5328 1128330746865*2^66439-1 20013 p158 2020 Cunningham chain (p) 5329 4111286921397*2^66420+5 20008 c88 2019 Triplet (3) 5330 4111286921397*2^66420+1 20008 L4808 2019 Triplet (2) 5331 4111286921397*2^66420-1 20008 L4808 2019 Triplet (1) 5332 U(21412,1,4620)-U(21412,1,4619) 20004 x25 2016 Lehmer number 5333 p(322610098) 20000 E1 2022 Partitions, ECPP 5334 primV(151521) 19863 E1 2022 Lucas primitive part, ECPP 5335 V(94823) 19817 c73 2014 Lucas number, ECPP 5336 U(19361,1,4620)+U(19361,1,4619) 19802 x25 2016 Lehmer number 5337 U(8454,-1,5039) 19785 x25 2013 Generalized Lucas number 5338 U(6584,-1,5039) 19238 x23 2007 Generalized Lucas number 5339 V(91943)/551659/2390519/9687119153094919 19187 E1 2022 Lucas cofactor, ECPP 5340 (V(428,1,8019)-1)/(V(428,1,729)-1) 19184 E1 2022 Lehmer primitive part, ECPP 5341 V(91873)/3674921/193484539/167745030829 19175 E1 2022 Lucas cofactor, ECPP 5342 (2^63703-1)/42808417 19169 c59 2014 Mersenne cofactor, ECPP 5343 primU(137439) 19148 E1 2022 Fibonacci primitive part, ECPP 5344 primU(107779) 18980 E1 2022 Fibonacci primitive part, ECPP 5345 (U(162,1,8581)+U(162,1,8580))/(U(162,1,66)+U(162,1,65)) 18814 E1 2022 Lehmer primitive part, ECPP 5346 V(89849) 18778 c70 2014 Lucas number, ECPP 5347 primV(145353) 18689 c69 2013 ECPP, Lucas primitive part 5348 Phi(14943,-100) 18688 c47 2014 Unique, ECPP 5349 (U(859,1,6385)-U(859,1,6384))/(U(859,1,57)-U(859,1,56)) 18567 E1 2022 Lehmer primitive part, ECPP 5350 Phi(18827,10) 18480 c47 2014 Unique, ECPP 5351 primB(220895) 18465 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5352 primV(153279) 18283 E1 2022 Lucas primitive part, ECPP 5353 42209#+1 18241 p8 1999 Primorial 5354 (V(46662,1,3879)-1)/(V(46662,1,9)-1) 18069 x25 2012 Lehmer primitive part 5355 V(86477)/1042112515940998434071039 18049 c77 2020 Lucas cofactor, ECPP 5356 7457*2^59659+1 17964 Y 1997 Cullen 5357 primB(235015) 17856 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5358 primV(148197) 17696 E1 2022 Lucas primitive part, ECPP 5359 (V(447,1,6723)+1)/(V(447,1,81)+1) 17604 E1 2022 Lehmer primitive part, ECPP 5360 (2^58199-1)/237604901713907577052391 17497 c59 2015 Mersenne cofactor, ECPP 5361 Phi(26031,-10) 17353 c47 2014 Unique, ECPP 5362 primV(169830) 17335 E1 2022 Lucas primitive part, ECPP 5363 (V(561,1,6309)+1)/(V(561,1,9)+1) 17319 x25 2016 Lehmer primitive part 5364 U(5768,-5769,4591) 17264 x45 2018 Generalized Lucas number, cyclotomy 5365 U(9657,1,4321)-U(9657,1,4320) 17215 x23 2005 Lehmer number 5366 (2^57131-1)/61481396117165983261035042726614288722959856631 17152 c59 2015 Mersenne cofactor, ECPP 5367 U(81839) 17103 p54 2001 Fibonacci number 5368 (V(1578,1,5589)+1)/(V(1578,1,243)+1) 17098 E1 2022 Lehmer primitive part, ECPP 5369 V(81671) 17069 c66 2013 Lucas number, ECPP 5370 primV(101510) 16970 E1 2022 Lucas primitive part, ECPP 5371 primV(86756) 16920 c74 2015 Lucas primitive part, ECPP 5372 V(80761)/(23259169*24510801979) 16861 c77 2020 Lucas cofactor, ECPP 5373 6521953289619*2^55555+1 16737 p296 2013 Triplet (3) 5374 6521953289619*2^55555-1 16737 p296 2013 Triplet (2) 5375 6521953289619*2^55555-5 16737 c58 2013 Triplet (1), ECPP 5376 primV(122754) 16653 c77 2021 Lucas primitive part, ECPP 5377 U(15823,1,3960)-U(15823,1,3959) 16625 x25 2002 Lehmer number, cyclotomy 5378 p(221444161) 16569 c77 2017 Partitions, ECPP 5379 (V(1240,1,5589)-1)/(V(1240,1,243)-1) 16538 E1 2022 Lehmer primitive part, ECPP 5380 primA(201485) 16535 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5381 U(78919)/15574900936381642440917 16471 c77 2020 Fibonacci cofactor, ECPP 5382 (U(800,1,5725)-U(800,1,5724))/(U(800,1,54)-U(800,1,53)) 16464 E1 2022 Lehmer primitive part, ECPP 5383 (V(21151,1,3777)-1)/(V(21151,1,3)-1) 16324 x25 2011 Lehmer primitive part 5384 primV(123573) 16198 c77 2019 Lucas primitive part, ECPP 5385 primB(225785) 16176 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5386 V(77417)/313991497376559420151 16159 c77 2020 Lucas cofactor, ECPP 5387 (2^53381-1)/15588960193/38922536168186976769/1559912715971690629450336\ 68006103 16008 c84 2017 Mersenne cofactor, ECPP 5388 -E(5186)/(704695260558899*578291717*726274378546751504461) 15954 c63 2018 Euler irregular, ECPP 5389 primV(121227) 15890 c77 2019 Lucas primitive part, ECPP 5390 Phi(2949,-100000000) 15713 c47 2013 Unique, ECPP 5391 primU(131481) 15695 c77 2019 Fibonacci primitive part, ECPP 5392 primV(120258) 15649 c77 2019 Lucas primitive part, ECPP 5393 (U(9275,1,3961)+U(9275,1,3960))/(U(9275,1,45)+U(9275,1,44)) 15537 x38 2009 Lehmer primitive part 5394 (2^51487-1)/57410994232247/17292148963401772464767849635553 15455 c77 2018 Mersenne cofactor, ECPP 5395 primB(183835) 15368 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5396 primU(77387) 15319 c77 2019 Fibonacci primitive part, ECPP 5397 primB(181705) 15189 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5398 primV(76568) 15034 c74 2015 Lucas primitive part, ECPP 5399 U(71983)/5614673/363946049 15028 c77 2018 Fibonacci cofactor, ECPP 5400 2494779036241*2^49800+13 15004 c93 2022 Consecutive primes arithmetic progression (3,d=6) 5401 2494779036241*2^49800+7 15004 c93 2022 Consecutive primes arithmetic progression (2,d=6) 5402 2494779036241*2^49800+1 15004 p408 2022 Consecutive primes arithmetic progression (1,d=6) 5403 primB(268665) 14972 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5404 primV(75316) 14897 c74 2015 Lucas primitive part, ECPP 5405 Phi(5015,-10000) 14848 c47 2013 Unique, ECPP 5406 primV(91322) 14847 c74 2016 Lucas primitive part, ECPP 5407 2^49207-2^24604+1 14813 x16 2000 Gaussian Mersenne norm 29, generalized unique 5408 primV(110676) 14713 c74 2016 Lucas primitive part, ECPP 5409 primA(284895) 14626 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5410 U(69239)/1384781 14464 c77 2018 Fibonacci cofactor, ECPP 5411 primV(112914) 14446 c74 2016 Lucas primitive part, ECPP 5412 primA(170575) 14258 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5413 V(68213)/7290202116115634431 14237 c77 2018 Lucas cofactor, ECPP 5414 p(158375386) 14011 E1 2022 Partitions, ECPP 5415 p(158295265) 14007 E1 2022 Partitions, ECPP 5416 p(158221457) 14004 E1 2022 Partitions, ECPP 5417 primU(67703) 13954 c77 2018 Fibonacci primitive part, ECPP 5418 U(66947)/12485272838388758877279873712131648167413 13951 c77 2017 Fibonacci cofactor, ECPP 5419 V(66533)/2128184670585621839884209100279 13875 c77 2018 Lucas cofactor, ECPP 5420 6*Bern(5534)/(89651360098907*22027790155387*114866371) 13862 c71 2014 Irregular, ECPP 5421 4410546*Bern(5526)/(4931516285027*1969415121333695957254369297) 13840 c63 2018 Irregular,ECPP 5422 primV(82630) 13814 c74 2014 Lucas primitive part, ECPP 5423 primB(163595) 13675 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5424 6*Bern(5462)/(724389557*8572589*3742097186099) 13657 c64 2013 Irregular, ECPP 5425 56667641271*2^44441+5 13389 c99 2022 Triplet (3), ECPP 5426 56667641271*2^44441+1 13389 p426 2022 Triplet (2) 5427 56667641271*2^44441-1 13389 p426 2022 Triplet (1) 5428 512792361*30941#+1 13338 p364 2022 Arithmetic progression (5,d=18195056*30941#) 5429 1815615642825*2^44046-1 13272 p395 2016 Cunningham chain (4p+3) 5430 1815615642825*2^44045-1 13272 p395 2016 Cunningham chain (2p+1) 5431 1815615642825*2^44044-1 13271 p395 2016 Cunningham chain (p) 5432 p(141528106) 13244 E6 2022 Partitions, ECPP 5433 p(141513546) 13244 E6 2022 Partitions, ECPP 5434 p(141512238) 13244 E6 2022 Partitions, ECPP 5435 p(141255053) 13232 E6 2022 Partitions, ECPP 5436 p(141150528) 13227 E6 2022 Partitions, ECPP 5437 p(141112026) 13225 E6 2022 Partitions, ECPP 5438 p(141111278) 13225 E6 2022 Partitions, ECPP 5439 p(140859260) 13213 E6 2022 Partitions, ECPP 5440 p(140807155) 13211 E6 2022 Partitions, ECPP 5441 p(140791396) 13210 E6 2022 Partitions, ECPP 5442 primU(94551) 13174 c77 2018 Fibonacci primitive part, ECPP 5443 primB(242295) 13014 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5444 U(61813)/594517433/3761274442997 12897 c77 2018 Fibonacci cofactor, ECPP 5445 (2^42737+1)/3 12865 M 2007 ECPP, generalized Lucas number, Wagstaff 5446 primU(62771) 12791 c77 2018 Fibonacci primitive part, ECPP 5447 primA(154415) 12728 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5448 primA(263865) 12570 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5449 6*Bern(5078)/(64424527603*9985070580644364287) 12533 c63 2013 Irregular, ECPP 5450 (2^41681-1)/1052945423/16647332713153/2853686272534246492102086015457 12495 c77 2015 Mersenne cofactor, ECPP 5451 (2^41521-1)/41602235382028197528613357724450752065089 12459 c54 2012 Mersenne cofactor, ECPP 5452 (2^41263-1)/(1402943*983437775590306674647) 12395 c59 2012 Mersenne cofactor, ECPP 5453 U(59369)/2442423669148466039458303756169988568809269383644075940757020\ 9763004757 12337 c79 2015 Fibonacci cofactor, ECPP 5454 primV(73549) 12324 c74 2015 Lucas primitive part, ECPP 5455 742478255901*2^40069+1 12074 p395 2016 Cunningham chain 2nd kind (4p-3) 5456 996824343*2^40074+1 12073 p395 2016 Cunningham chain 2nd kind (4p-3) 5457 664342014133*2^39840+1 12005 p408 2020 Consecutive primes arithmetic progression (3,d=30) 5458 664342014133*2^39840-29 12005 c93 2020 Consecutive primes arithmetic progression (2,d=30), ECPP 5459 664342014133*2^39840-59 12005 c93 2020 Consecutive primes arithmetic progression (1,d=30), ECPP 5460 V(56003) 11704 p193 2006 Lucas number 5461 primA(143705) 11703 c77 2017 Lucas Aurifeuillian primitive part, ECPP 5462 4207993863*2^38624+5 11637 L5354 2021 Triplet (3), ECPP 5463 4207993863*2^38624+1 11637 L5354 2021 Triplet (2) 5464 4207993863*2^38624-1 11637 L5354 2021 Triplet (1) 5465 primU(73025) 11587 c77 2015 Fibonacci primitive part, ECPP 5466 primU(67781) 11587 c77 2015 Fibonacci primitive part, ECPP 5467 primB(219165) 11557 c77 2015 Lucas Aurifeuillian primitive part, ECPP 5468 198429723072*11^11005+1 11472 L3323 2016 Cunningham chain 2nd kind (4p-3) 5469 U(54799)/4661437953906084533621577211561 11422 c8 2015 Fibonacci cofactor, ECPP 5470 U(54521)/6403194135342743624071073 11370 c8 2015 Fibonacci cofactor, ECPP 5471 primU(67825) 11336 x23 2007 Fibonacci primitive part 5472 3610!-1 11277 C 1993 Factorial 5473 U(53189)/69431662887136064191105625570683133711989 11075 c8 2014 Fibonacci cofactor, ECPP 5474 primU(61733) 11058 c77 2015 Fibonacci primitive part, ECPP 5475 14059969053*2^36672+1 11050 p364 2018 Triplet (3) 5476 14059969053*2^36672-1 11050 p364 2018 Triplet (2) 5477 14059969053*2^36672-5 11050 c67 2018 Triplet (1), ECPP 5478 778965587811*2^36627-1 11038 p395 2016 Cunningham chain (4p+3) 5479 778965587811*2^36626-1 11038 p395 2016 Cunningham chain (2p+1) 5480 778965587811*2^36625-1 11038 p395 2016 Cunningham chain (p) 5481 272879344275*2^36622-1 11036 p395 2016 Cunningham chain (4p+3) 5482 272879344275*2^36621-1 11036 p395 2016 Cunningham chain (2p+1) 5483 272879344275*2^36620-1 11036 p395 2016 Cunningham chain (p) 5484 V(52859)/1124137922466041911 11029 c8 2014 Lucas cofactor, ECPP 5485 3507!-1 10912 C 1992 Factorial 5486 V(52201)/70585804042896975505694709575919458733851279868446609 10857 c8 2015 Lucas cofactor, ECPP 5487 V(52009)/39772636393178951550299332730909 10838 c8 2015 Lucas cofactor, ECPP 5488 V(51941)/2808052157610902114547210696868337380250300924116591143641642\ 866931 10789 c8 2015 Lucas cofactor, ECPP 5489 1258566*Bern(4462)/(2231*596141126178107*4970022131749) 10763 c64 2013 Irregular, ECPP 5490 3428602715439*2^35678+13 10753 c93 2020 Consecutive primes arithmetic progression (3,d=6), ECPP 5491 3428602715439*2^35678+7 10753 c93 2020 Consecutive primes arithmetic progression (2,d=6), ECPP 5492 3428602715439*2^35678+1 10753 p408 2020 Consecutive primes arithmetic progression (1,d=6) 5493 333645655005*2^35549-1 10713 p364 2015 Cunningham chain (4p+3) 5494 333645655005*2^35548-1 10713 p364 2015 Cunningham chain (2p+1) 5495 333645655005*2^35547-1 10713 p364 2015 Cunningham chain (p) 5496 V(51349)/224417260052884218046541 10708 c8 2014 Lucas cofactor, ECPP 5497 V(51169) 10694 p54 2001 Lucas number 5498 U(51031)/95846689435051369 10648 c8 2014 Fibonacci cofactor, ECPP 5499 V(50989)/69818796119453411 10640 c8 2014 Lucas cofactor, ECPP 5500 Phi(13285,-10) 10625 c47 2012 Unique, ECPP 5501 U(50833) 10624 CH4 2005 Fibonacci number 5502 2683143625525*2^35176+13 10602 c92 2019 Consecutive primes arithmetic progression (3,d=6),ECPP 5503 2683143625525*2^35176+1 10602 p407 2019 Consecutive primes arithmetic progression (1,d=6) 5504 3020616601*24499#+1 10593 p422 2021 Arithmetic progression (6,d=56497325*24499#) 5505 2964119276*24499#+1 10593 p422 2021 Arithmetic progression (5,d=56497325*24499#) 5506 (2^35339-1)/4909884303849890402839544048623503366767426783548098123390\ 4512709297747031041 10562 c77 2015 Mersenne cofactor, ECPP 5507 1213266377*2^35000+4859 10546 c4 2014 ECPP, consecutive primes arithmetic progression (3,d=2430) 5508 1213266377*2^35000-1 10546 p44 2014 Consecutive primes arithmetic progression (1,d=2430) 5509 primU(55297) 10483 c8 2014 Fibonacci primitive part, ECPP 5510 primA(219135) 10462 c8 2014 Lucas Aurifeuillian primitive part, ECPP 5511 24029#+1 10387 C 1993 Primorial 5512 400791048*24001#+1 10378 p155 2018 Arithmetic progression (5,d=59874860*24001#) 5513 393142614*24001#+1 10378 p155 2018 Arithmetic progression (5,d=54840724*24001#) 5514 221488788*24001#+1 10377 p155 2018 Arithmetic progression (5,d=22703701*24001#) 5515 6*Bern(4306)/2153 10342 FE8 2009 Irregular, ECPP 5516 V(49391)/298414424560419239 10305 c8 2013 Lucas cofactor, ECPP 5517 23801#+1 10273 C 1993 Primorial 5518 667674063382677*2^33608+7 10132 c88 2019 Quadruplet (4), ECPP 5519 667674063382677*2^33608+5 10132 c88 2019 Quadruplet (3), ECPP 5520 667674063382677*2^33608+1 10132 L4808 2019 Quadruplet (2) 5521 667674063382677*2^33608-1 10132 L4808 2019 Quadruplet (1) 5522 Phi(427,-10^28) 10081 FE9 2009 Unique, ECPP 5523 9649755890145*2^33335+1 10048 p364 2015 Cunningham chain 2nd kind (4p-3) 5524 15162914750865*2^33219+1 10014 p364 2015 Cunningham chain 2nd kind (4p-3) 5525 32469*2^32469+1 9779 MM 1997 Cullen 5526 (2^32531-1)/(65063*25225122959) 9778 c60 2012 Mersenne cofactor, ECPP 5527 (2^32611-1)/1514800731246429921091778748731899943932296901864652928732\ 838910515860494755367311 9736 c90 2018 Mersenne cofactor, ECPP 5528 8073*2^32294+1 9726 MM 1997 Cullen 5529 V(45953)/4561241750239 9591 c56 2012 Lucas cofactor, ECPP 5530 E(3308)/39308792292493140803643373186476368389461245 9516 c8 2014 Euler irregular, ECPP 5531 Phi(5161,-100) 9505 c47 2012 Unique, ECPP 5532 primA(196035) 9359 c8 2014 Lucas Aurifeuillian primitive part, ECPP 5533 V(44507) 9302 CH3 2005 Lucas number 5534 V(43987)/175949 9188 c8 2014 Lucas cofactor, ECPP 5535 U(43399)/470400609575881344601538056264109423291827366228494341196421 9010 c8 2013 Fibonacci cofactor, ECPP 5536 primU(44113) 8916 c8 2014 Fibonacci primitive part, ECPP 5537 U(42829)/107130175995197969243646842778153077 8916 c8 2014 Fibonacci cofactor, ECPP 5538 primA(159165) 8803 c8 2013 Lucas Aurifeuillian primitive part, ECPP 5539 U(42043)/1681721 8780 c56 2012 Fibonacci cofactor, ECPP 5540 Phi(6105,-1000) 8641 c47 2010 Unique, ECPP 5541 Phi(4667,-100) 8593 c47 2009 Unique, ECPP 5542 U(40763)/643247084652261620737 8498 c8 2013 Fibonacci cofactor, ECPP 5543 primU(46711) 8367 c8 2013 Fibonacci primitive part, ECPP 5544 V(39769)/18139109172816581 8295 c8 2013 Lucas cofactor, ECPP 5545 2^27529-2^13765+1 8288 O 2000 Gaussian Mersenne norm 28, generalized unique 5546 primB(148605) 8282 c8 2013 Lucas Aurifeuillian primitive part, ECPP 5547 V(39607)/158429 8273 c46 2011 Lucas cofactor, ECPP 5548 primU(62373) 8173 c8 2013 Fibonacci primitive part, ECPP 5549 18523#+1 8002 D 1990 Primorial 5550 primU(43121) 7975 c8 2013 Fibonacci primitive part, ECPP 5551 6*Bern(3458)/28329084584758278770932715893606309 7945 c8 2013 Irregular, ECPP 5552 U(37987)/(16117960073*94533840409*1202815961509) 7906 c39 2012 Fibonacci cofactor, ECPP 5553 U(37511) 7839 x13 2005 Fibonacci number 5554 V(37357)/20210113386303842894568629 7782 c8 2013 Lucas cofactor, ECPP 5555 U(37217)/4466041 7771 c46 2011 Fibonacci cofactor, ECPP 5556 -E(2762)/2670541 7760 c11 2004 Euler irregular, ECPP 5557 V(36779) 7687 CH3 2005 Lucas number 5558 U(35999) 7523 p54 2001 Fibonacci number, cyclotomy 5559 Phi(4029,-1000) 7488 c47 2009 Unique, ECPP 5560 V(35449) 7409 p12 2001 Lucas number 5561 V(35107)/525110138418084707309 7317 c8 2013 Lucas cofactor, ECPP 5562 U(34897)/4599458691503517435329 7272 c8 2013 Fibonacci cofactor, ECPP 5563 U(34807)/551750980997908879677508732866536453 7239 c8 2013 Fibonacci cofactor, ECPP 5564 U(34607)/13088506284255296513 7213 c8 2013 Fibonacci cofactor, ECPP 5565 -30*Bern(3176)/(169908471493279*905130251538800883547330531*4349908093\ 09147283469396721753169) 7138 c63 2016 Irregular, ECPP 5566 2154675239*16301#+1 7036 p155 2018 Arithmetic progression (6,d=141836149*16301#) 5567 primU(48965) 7012 c8 2013 Fibonacci primitive part, ECPP 5568 -10365630*Bern(3100)/(140592076277*66260150981141825531862457*17930747\ 9508256366206520177467103) 6943 c63 2016 Irregular ECPP 5569 23005*2^23005-1 6930 Y 1997 Woodall 5570 22971*2^22971-1 6920 Y 1997 Woodall 5571 15877#-1 6845 CD 1992 Primorial 5572 primU(58773) 6822 c8 2013 Fibonacci primitive part, ECPP 5573 6*Bern(2974)/19622040971147542470479091157507 6637 c8 2013 Irregular, ECPP 5574 U(30757) 6428 p54 2001 Fibonacci number, cyclotomy 5575 E(2220)/392431891068600713525 6011 c8 2013 Euler irregular, ECPP 5576 -E(2202)/53781055550934778283104432814129020709 5938 c8 2013 Euler irregular, ECPP 5577 13649#+1 5862 D 1988 Primorial 5578 274386*Bern(2622)/8518594882415401157891061256276973722693 5701 c8 2013 Irregular, ECPP 5579 18885*2^18885-1 5690 K 1988 Woodall 5580 1963!-1 5614 CD 1992 Factorial 5581 13033#-1 5610 CD 1992 Primorial 5582 289*2^18502+1 5573 K 1985 Cullen, generalized Fermat 5583 E(2028)/11246153954845684745 5412 c55 2011 Euler irregular, ECPP 5584 -30*Bern(2504)/(313*424524649821233650433*117180678030577350578887*801\ 6621720796146291948744439) 5354 c63 2013 Irregular ECPP 5585 U(25561) 5342 p54 2001 Fibonacci number 5586 -E(1990)/8338208577950624722417016286765473477033741642105671913 5258 c8 2013 Euler irregular, ECPP 5587 33957462*Bern(2370)/40685 5083 c11 2003 Irregular, ECPP 5588 4122429552750669*2^16567+7 5003 c83 2016 Quadruplet (4), ECPP 5589 4122429552750669*2^16567+5 5003 c83 2016 Quadruplet (3), ECPP 5590 4122429552750669*2^16567+1 5003 L4342 2016 Quadruplet (2) 5591 4122429552750669*2^16567-1 5003 L4342 2016 Quadruplet (1) 5592 11549#+1 4951 D 1987 Primorial 5593 E(1840)/31237282053878368942060412182384934425 4812 c4 2011 Euler irregular, ECPP 5594 7911*2^15823-1 4768 K 1988 Woodall 5595 E(1736)/(55695515*75284987831*3222089324971117) 4498 c4 2004 Euler irregular, ECPP 5596 2^14699+2^7350+1 4425 O 2000 Gaussian Mersenne norm 27, generalized unique 5597 (2^14479+1)/3 4359 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5598 62399583639*9923#-3399421517 4285 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5599 49325406476*9811#*8+1 4234 p382 2019 Cunningham chain 2nd kind (8p-7) 5600 276474*Bern(2030)/(19426085*24191786327543) 4200 c8 2003 Irregular, ECPP 5601 V(19469) 4069 x25 2002 Lucas number, cyclotomy, APR-CL assisted 5602 1477!+1 4042 D 1985 Factorial 5603 -2730*Bern(1884)/100983617849 3844 c8 2003 Irregular, ECPP 5604 2840178*Bern(1870)/85 3821 c8 2003 Irregular, ECPP 5605c (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+9 3753 c101 2023 Quadruplet (4),ECPP 5606c (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+7 3753 c101 2023 Quadruplet (3),ECPP 5607c (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+3 3753 c101 2023 Quadruplet (2),ECPP 5608c (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+1 3753 c101 2023 Quadruplet (1),ECPP 5609 12379*2^12379-1 3731 K 1985 Woodall 5610 (2^12391+1)/3 3730 M 1996 Generalized Lucas number, Wagstaff 5611 -E(1466)/167900532276654417372106952612534399239 3682 c8 2013 Euler irregular, ECPP 5612 E(1468)/(95*217158949445380764696306893*597712879321361736404369071) 3671 c4 2003 Euler irregular, ECPP 5613 101406820312263*2^12042+7 3640 c67 2018 Quadruplet (4) 5614 101406820312263*2^12042+5 3640 c67 2018 Quadruplet (3) 5615 101406820312263*2^12042+1 3640 p364 2018 Quadruplet (2) 5616 101406820312263*2^12042-1 3640 p364 2018 Quadruplet (1) 5617 2673092556681*15^3048+4 3598 c67 2015 Quadruplet (4) 5618 2673092556681*15^3048+2 3598 c67 2015 Quadruplet (3) 5619 2673092556681*15^3048-2 3598 c67 2015 Quadruplet (2) 5620 2673092556681*15^3048-4 3598 c67 2015 Quadruplet (1) 5621 6016459977*7927#-1 3407 p364 2022 Arithmetic progression (7,d=577051223*7927#) 5622 5439408754*7927#-1 3407 p364 2022 Arithmetic progression (6,d=577051223*7927#) 5623 62753735335*7919#+3399421667 3404 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5624 (2^11279+1)/3 3395 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 5625 109766820328*7877#-1 3385 p395 2016 Cunningham chain (8p+7) 5626 585150568069684836*7757#/85085+17 3344 c88 2022 Quintuplet (5), ECPP 5627 585150568069684836*7757#/85085+13 3344 c88 2022 Quintuplet (4), ECPP 5628 585150568069684836*7757#/85085+11 3344 c88 2022 Quintuplet (3), ECPP 5629 585150568069684836*7757#/85085+7 3344 c88 2022 Quintuplet (2), ECPP 5630 585150568069684836*7757#/85085+5 3344 c88 2022 Quintuplet (1), ECPP 5631 104052837*7759#-1 3343 p398 2017 Arithmetic progression (6,d=12009836*7759#) 5632 2072453060816*7699#+1 3316 p364 2019 Cunningham chain 2nd kind (8p-7) 5633 (2^10691+1)/3 3218 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5634 231692481512*7517#-1 3218 p395 2016 Cunningham chain (8p+7) 5635c (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+19 3207 c100 2023 Consecutive primes arithmetic progression (4,d=6),ECPP 5636 (2^10501+1)/3 3161 M 1996 Generalized Lucas number, Wagstaff 5637 2^10141+2^5071+1 3053 O 2000 Gaussian Mersenne norm 26, generalized unique 5638 121152729080*7019#/1729+19 3025 c92 2019 Consecutive primes arithmetic progression (4,d=6), ECPP 5639 62037039993*7001#+7811555813 3021 x38 2013 Consecutive primes arithmetic progression (4,d=30), ECPP 5640 V(14449) 3020 DK 1995 Lucas number 5641 3124777373*7001#+1 3019 p155 2012 Arithmetic progression (7,d=481789017*7001#) 5642 2996180304*7001#+1 3019 p155 2012 Arithmetic progression (6,d=46793757*7001#) 5643 U(14431) 3016 p54 2001 Fibonacci number 5644 138281163736*6977#+1 3006 p395 2016 Cunningham chain 2nd kind (8p-7) 5645 375967981369*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5646 354362289656*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5647 285993323512*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5648 V(13963) 2919 c11 2002 Lucas number, ECPP 5649 284787490256*6701#+1 2879 p364 2015 Cunningham chain 2nd kind (8p-7) 5650 9531*2^9531-1 2874 K 1985 Woodall 5651 -E(1174)/50550511342697072710795058639332351763 2829 c8 2013 Euler irregular, ECPP 5652 6569#-1 2811 D 1992 Primorial 5653 -E(1142)/6233437695283865492412648122953349079446935570718422828539863\ 59013986902240869 2697 c77 2015 Euler irregular, ECPP 5654 -E(1078)/361898544439043 2578 c4 2002 Euler irregular, ECPP 5655 V(12251) 2561 p54 2001 Lucas number 5656 974!-1 2490 CD 1992 Factorial 5657 E(1028)/(6415*56837916301577) 2433 c4 2002 Euler irregular, ECPP 5658 7755*2^7755-1 2339 K 1985 Woodall 5659 772463767240*5303#+1 2272 p308 2019 Cunningham chain 2nd kind (8p-7) 5660 116814018316*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10892863626*5303#) 5661 116746086504*5303#+1 2271 p406 2019 Arithmetic progression (7,d=9726011684*5303#) 5662 116242725347*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10388428124*5303#) 5663 69285767989*5303#+1 2271 p406 2019 Arithmetic progression (8,d=3026809034*5303#) 5664 V(10691) 2235 DK 1996 Lucas number 5665 872!+1 2188 D 1984 Factorial 5666 4787#+1 2038 D 1985 Primorial 5667 566761969187*4733#/2+4 2034 c67 2020 Quintuplet (5) 5668 566761969187*4733#/2+2 2034 c67 2020 Quintuplet (4) 5669 566761969187*4733#/2-2 2034 c67 2020 Quintuplet (3) 5670 566761969187*4733#/2-4 2034 c67 2020 Quintuplet (2) 5671 566761969187*4733#/2-8 2034 c67 2020 Quintuplet (1) 5672 U(9677) 2023 c2 2000 Fibonacci number, ECPP 5673 126831252923413*4657#/273+13 2002 c88 2020 Quintuplet (5) 5674 126831252923413*4657#/273+9 2002 c88 2020 Quintuplet (4) 5675 126831252923413*4657#/273+7 2002 c88 2020 Quintuplet (3) 5676 126831252923413*4657#/273+3 2002 c88 2020 Quintuplet (2) 5677 126831252923413*4657#/273+1 2002 c88 2020 Quintuplet (1) 5678 6611*2^6611+1 1994 K 1985 Cullen 5679 4583#-1 1953 D 1992 Primorial 5680 U(9311) 1946 DK 1995 Fibonacci number 5681 4547#+1 1939 D 1985 Primorial 5682 4297#-1 1844 D 1992 Primorial 5683 2738129459017*4211#+3399421637 1805 c98 2022 Consecutive primes arithmetic progression (5,d=30) 5684 V(8467) 1770 c2 2000 Lucas number, ECPP 5685 4093#-1 1750 CD 1992 Primorial 5686 5795*2^5795+1 1749 K 1985 Cullen 5687 (2^5807+1)/3 1748 PM 1999 Cyclotomy, generalized Lucas number, Wagstaff 5688 54201838768*3917#-1 1681 p395 2016 Cunningham chain (16p+15) 5689 102619722624*3797#+1 1631 p395 2016 Cunningham chain 2nd kind (16p-15) 5690 V(7741) 1618 DK 1995 Lucas number 5691 394254311495*3733#/2+4 1606 c67 2017 Quintuplet (5) 5692 394254311495*3733#/2+2 1606 c67 2017 Quintuplet (4) 5693 394254311495*3733#/2-2 1606 c67 2017 Quintuplet (3) 5694 394254311495*3733#/2-4 1606 c67 2017 Quintuplet (2) 5695 394254311495*3733#/2-8 1606 c67 2017 Quintuplet (1) 5696 83*2^5318-1 1603 K 1985 Woodall 5697 2316765173284*3593#+16073 1543 c18 2016 Quintuplet (5), ECPP 5698 2316765173284*3593#+16069 1543 c18 2016 Quintuplet (4), ECPP 5699 2316765173284*3593#+16067 1543 c18 2016 Quintuplet (3), ECPP 5700 2316765173284*3593#+16063 1543 c18 2016 Quintuplet (2), ECPP 5701 2316765173284*3593#+16061 1543 c18 2016 Quintuplet (1), ECPP 5702 652229318541*3527#+3399421637 1504 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5703 16*199949435137*3499#-1 1494 p382 2016 Cunningham chain (16p+15) 5704 4713*2^4713+1 1423 K 1985 Cullen 5705 449209457832*3307#+1633050403 1408 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5706 5780736564512*3023#-1 1301 p364 2015 Cunningham chain (16p+15) 5707 2746496109133*3001#+27011 1290 c97 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5708 898966996992*3001#+1 1289 p364 2015 Cunningham chain 2nd kind (16p-15) 5709 16*2658132486528*2969#+1 1281 p382 2017 Cunningham chain 2nd kind (16p-15) 5710 16*1413951139648*2969#+1 1280 p382 2017 Cunningham chain 2nd kind (16p-15) 5711b 1542946580224*2851#-1 1231 p364 2023 Cunningham chain (16p+15) 5712 V(5851) 1223 DK 1995 Lucas number 5713 406463527990*2801#+1633050403 1209 x38 2013 Consecutive primes arithmetic progression (5,d=30) 5714 16*(257578748915*2777#-1)+15 1197 p429 2023 Cunningham chain (16p+15) 5715 1290733709840*2677#+1 1141 p295 2011 Cunningham chain 2nd kind (16p-15) 5716 U(5387) 1126 WM 1991 Fibonacci number 5717 1176100079*2591#+1 1101 p252 2019 Arithmetic progression (8,d=60355670*2591#) 5718 (2^3539+1)/3 1065 M 1990 First titanic by ECPP, generalized Lucas number, Wagstaff 5719 2968802755*2459#+1 1057 p155 2009 Arithmetic progression (8,d=359463429*2459#) 5720 28993093368077*2399#+19433 1037 c18 2016 Sextuplet (6), ECPP 5721 28993093368077*2399#+19429 1037 c18 2016 Sextuplet (5), ECPP 5722 28993093368077*2399#+19427 1037 c18 2016 Sextuplet (4), ECPP 5723 28993093368077*2399#+19423 1037 c18 2016 Sextuplet (3), ECPP 5724 28993093368077*2399#+19421 1037 c18 2016 Sextuplet (2), ECPP 5725 6179783529*2411#+1 1037 p102 2003 Arithmetic progression (8,d=176836494*2411#) 5726 R(1031) 1031 WD 1986 Repunit 5727 89595955370432*2371#-1 1017 p364 2015 Cunningham chain (32p+31) 5728 116040452086*2371#+1 1014 p308 2012 Arithmetic progression (9,d=6317280828*2371#) 5729 115248484057*2371#+1 1014 p308 2013 Arithmetic progression (8,d=7327002535*2371#) 5730 97336164242*2371#+1 1014 p308 2013 Arithmetic progression (9,d=6350457699*2371#) 5731 93537753980*2371#+1 1014 p308 2013 Arithmetic progression (9,d=3388165411*2371#) 5732 92836168856*2371#+1 1014 p308 2013 Arithmetic progression (9,d=127155673*2371#) 5733 69318339141*2371#+1 1014 p308 2011 Arithmetic progression (9,d=1298717501*2371#) 5734 533098369554*2357#+3399421667 1012 c98 2021 Consecutive primes arithmetic progression (6,d=30), ECPP 5735 V(4793) 1002 DK 1995 Lucas number 5736 113225039190926127209*2339#/57057+21 1002 c88 2021 Septuplet (7) 5737 113225039190926127209*2339#/57057+19 1002 c88 2021 Septuplet (6) 5738 113225039190926127209*2339#/57057+13 1002 c88 2021 Septuplet (5) 5739 113225039190926127209*2339#/57057+9 1002 c88 2021 Septuplet (4) 5740 113225039190926127209*2339#/57057+7 1002 c88 2021 Septuplet (3) 5741 V(4787) 1001 DK 1995 Lucas number ----- ------------------------------- -------- ----- ---- -------------- KEY TO PROOF-CODES (primality provers): A1 Propper, Srsieve, PrimeGrid, PRST A2 Propper, Srsieve, PRST A3 Atnashev, PRST A4 Gingrich1, LLR2, MultiSieve, PRST C Caldwell, Cruncher c2 Water, Primo c4 Broadhurst, Primo c8 Broadhurst, Water, Primo c11 Oakes, Primo c18 Luhn, Primo c39 Minovic, OpenPFGW, Primo c46 Boncompagni, Primo c47 Chandler, Primo c54 Wu_T, Primo c55 Gramolin, Primo c56 Soule, Minovic, OpenPFGW, Primo c58 Kaiser1, NewPGen, OpenPFGW, Primo c59 Metcalfe, OpenPFGW, Primo c60 Lemsafer, Primo c63 Ritschel, TOPS, Primo c64 Metcalfe, Minovic, Ritschel, TOPS, Primo c66 Steine, Primo c67 Batalov, NewPGen, OpenPFGW, Primo c69 Jacobsen, Primo c70 Underwood, Dubner, Primo c71 Metcalfe, Ritschel, Andersen, TOPS, Primo c73 Underwood, Lifchitz, Primo c74 Lasher, Dubner, Primo c76 Kaiser1, Water, Underwood, Primo c77 Batalov, Primo c79 Batalov, Broadhurst, Water, Primo c81 Water, Underwood, Primo c82 Steine, Water, Primo c83 Kaiser1, PolySieve, NewPGen, Primo c84 Underwood, Primo c87 Kaiser1, OpenPFGW, Primo c88 Kaiser1, PolySieve, Primo c89 Broadhurst, Underwood, Primo c90 Palameta, Batalov, Primo c92 Lamprecht, Luhn, Primo c93 Batalov, PolySieve, Primo c94 Gelhar, Ritschel, TOPS, Primo c95 Gelhar, Primo c97 Lamprecht, Luhn, APSieve, OpenPFGW, Primo c98 Batalov, EMsieve, Primo c99 Kruse, Schoeler, Primo c100 DavisK, APTreeSieve, NewPGen, OpenPFGW, Primo c101 DavisK, APTreeSieve, OpenPFGW, Primo CD Caldwell, Dubner, Cruncher CH10 Batalov, OpenPFGW, Primo, CHG CH12 Propper, Batalov, OpenPFGW, Primo, CHG CH13 Propper, Batalov, EMsieve, OpenPFGW, CHG CH2 Wu_T, OpenPFGW, Primo, CHG CH3 Broadhurst, Water, OpenPFGW, Primo, CHG CH4 Irvine, Broadhurst, Water, OpenPFGW, Primo, CHG CH9 Zhou, OpenPFGW, CHG D Dubner, Cruncher DK Dubner, Keller, Cruncher DS Smith_Darren, Proth.exe E1 Batalov, CM E2 Propper, CM E3 Enge, CM E4 Childers, CM E5 Underwood, CM E6 Lasher, Broadhurst, Underwood, CM E7 Lasher, CM E8 Broadhurst, Underwood, CM E9 Mock, CM E10 Doornink, CM E11 Karpovich, CM FE8 Oakes, Broadhurst, Water, Morain, FastECPP FE9 Broadhurst, Water, Morain, FastECPP g0 Gallot, Proth.exe G1 Armengaud, GIMPS, Prime95 g1 Caldwell, Proth.exe G2 Spence, GIMPS, Prime95 G3 Clarkson, Kurowski, GIMPS, Prime95 G4 Hajratwala, Kurowski, GIMPS, Prime95 G5 Cameron, Kurowski, GIMPS, Prime95 G6 Shafer, GIMPS, Prime95 G7 Findley_J, GIMPS, Prime95 G8 Nowak, GIMPS, Prime95 G9 Boone, Cooper, GIMPS, Prime95 G10 Smith_E, GIMPS, Prime95 G11 Elvenich, GIMPS, Prime95 G12 Strindmo, GIMPS, Prime95 G13 Cooper, GIMPS, Prime95 G14 Cooper, GIMPS, Prime95 G15 Pace, GIMPS, Prime95 G16 Laroche, GIMPS, Prime95 g23 Ballinger, Proth.exe g25 OHare, Proth.exe g55 Toplic, Proth.exe g59 Linton, Proth.exe g124 Crickman, Proth.exe g236 Heuer, GFN17Sieve, GFNSearch, Proth.exe g245 Cosgrave, NewPGen, PRP, Proth.exe g259 Papp, Proth.exe g260 AYENI, Proth.exe g267 Grobstich, NewPGen, PRP, Proth.exe g277 Eaton, NewPGen, PRP, Proth.exe g279 Cooper, NewPGen, PRP, Proth.exe g300 Zilmer, Proth.exe g308 Angel, GFN17Sieve, GFNSearch, Proth.exe g337 Hsieh, NewPGen, PRP, Proth.exe g346 Dausch, ProthSieve, PrimeSierpinski, PRP, Proth.exe g403 Yoshimura, ProthSieve, PrimeSierpinski, LLR, Proth.exe g407 HermleGC, MultiSieve, PRP, Proth.exe g411 Brittenham, NewPGen, PRP, Proth.exe g413 Scott, AthGFNSieve, Proth.exe g414 Gilvey, Srsieve, PrimeGrid, PrimeSierpinski, LLR, Proth.exe g418 Taura, NewPGen, PRP, Proth.exe g424 Broadhurst, NewPGen, OpenPFGW, Proth.exe g427 Batalov, Srsieve, LLR, Proth.exe g429 Underbakke, GenefX64, AthGFNSieve, PrimeGrid, Proth.exe gm Morii, Proth.exe K Keller L20 Kapek, LLR L51 Hedges, NewPGen, PRP, LLR L53 Zaveri, ProthSieve, RieselSieve, PRP, LLR L95 Urushi, LLR L99 Underbakke, TwinGen, LLR L124 Rodenkirch, MultiSieve, LLR L129 Snyder, LLR L137 Jaworski, Rieselprime, LLR L158 Underwood, NewPGen, 321search, LLR L160 Wong, ProthSieve, RieselSieve, LLR L162 Banka, NewPGen, 12121search, LLR L172 Smith, ProthSieve, RieselSieve, LLR L175 Duggan, ProthSieve, RieselSieve, LLR L177 Kwok, Rieselprime, LLR L179 White, ProthSieve, RieselSieve, LLR L181 Siegert, LLR L185 Hassler, NewPGen, LLR L191 Banka, NewPGen, LLR L192 Jaworski, LLR L193 Rosink, ProthSieve, RieselSieve, LLR L197 DaltonJ, ProthSieve, RieselSieve, LLR L201 Siemelink, LLR L202 Vautier, McKibbon, Gribenko, NewPGen, PrimeGrid, TPS, LLR L251 Burt, NewPGen, Rieselprime, LLR L256 Underwood, Srsieve, NewPGen, 321search, LLR L257 Ritschel, Srsieve, Rieselprime, LLR L260 Soule, Srsieve, Rieselprime, LLR L268 Metcalfe, Srsieve, Rieselprime, LLR L282 Curtis, Srsieve, Rieselprime, LLR L321 Broadhurst, NewPGen, OpenPFGW, LLR L381 Mate, Siemelink, Rodenkirch, MultiSieve, LLR L384 Pinho, Srsieve, Rieselprime, LLR L426 Jaworski, Srsieve, Rieselprime, LLR L436 Andersen2, Gcwsieve, MultiSieve, PrimeGrid, LLR L447 Kohlman, Gcwsieve, MultiSieve, PrimeGrid, LLR L466 Zhou, NewPGen, LLR L503 Benson, Srsieve, LLR L521 Thompson1, Gcwsieve, MultiSieve, PrimeGrid, LLR L527 Tornberg, TwinGen, LLR L541 Barnes, Srsieve, CRUS, LLR L545 AndersonM, NewPGen, Rieselprime, LLR L587 Dettweiler, Srsieve, CRUS, LLR L591 Penne, Srsieve, CRUS, LLR L606 Bennett, Srsieve, NewPGen, PrimeGrid, 321search, LLR L613 Keogh, Srsieve, ProthSieve, RieselSieve, LLR L622 Cardall, Srsieve, ProthSieve, RieselSieve, LLR L632 Stokkedalen, Rieselprime, LLR L671 Wong, Srsieve, PrimeGrid, LLR L689 Brown1, Srsieve, PrimeGrid, LLR L690 Cholt, Srsieve, PrimeGrid, LLR L753 Wolfram, Srsieve, PrimeGrid, LLR L760 Riesen, Srsieve, Rieselprime, LLR L764 Ewing, Srsieve, PrimeGrid, LLR L780 Brady, Srsieve, PrimeGrid, LLR L801 Gesker, Gcwsieve, MultiSieve, PrimeGrid, LLR L802 Zachariassen, Srsieve, NPLB, LLR L806 Stevens, Srsieve, LLR L875 Hatland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L895 Dinkel, Srsieve, LLR L917 Bergman1, Gcwsieve, MultiSieve, PrimeGrid, LLR L923 Kaiser1, Klahn, NewPGen, PrimeGrid, TPS, SunGard, LLR L927 Brown1, TwinGen, PrimeGrid, LLR L983 Wu_T, LLR L1016 Hartel, Srsieve, PrimeGrid, LLR L1056 Schwieger, Srsieve, PrimeGrid, LLR L1115 Splain, PSieve, Srsieve, PrimeGrid, LLR L1125 Laluk, PSieve, Srsieve, PrimeGrid, LLR L1129 Slomma, PSieve, Srsieve, PrimeGrid, LLR L1130 Adolfsson, PSieve, Srsieve, PrimeGrid, LLR L1134 Ogawa, Srsieve, NewPGen, LLR L1139 Harvey1, PSieve, Srsieve, PrimeGrid, LLR L1141 Ogawa, NewPGen, LLR L1153 Kaiser1, Srsieve, PrimeGrid, 12121search, LLR L1158 Vogel, PSieve, Srsieve, PrimeGrid, LLR L1160 Sunderland, PSieve, Srsieve, PrimeGrid, LLR L1186 Richard1, PSieve, Srsieve, PrimeGrid, LLR L1188 Faith, PSieve, Srsieve, PrimeGrid, LLR L1199 DeRidder, PSieve, Srsieve, PrimeGrid, LLR L1201 Carpenter1, PSieve, Srsieve, PrimeGrid, LLR L1203 Mauno, PSieve, Srsieve, PrimeGrid, LLR L1204 Brown1, PSieve, Srsieve, PrimeGrid, LLR L1209 Wong, PSieve, Srsieve, PrimeGrid, LLR L1210 Rhodes, PSieve, Srsieve, PrimeGrid, LLR L1218 Winslow, PSieve, Srsieve, PrimeGrid, LLR L1223 Courty, PSieve, Srsieve, PrimeGrid, LLR L1230 Yooil1, PSieve, Srsieve, PrimeGrid, LLR L1300 Yama, PSieve, Srsieve, PrimeGrid, LLR L1301 Sorbera, Srsieve, CRUS, LLR L1344 Kobara, PSieve, Srsieve, PrimeGrid, LLR L1349 Wallace, Srsieve, NewPGen, PrimeGrid, LLR L1353 Mumper, Srsieve, PrimeGrid, LLR L1355 Beck, PSieve, Srsieve, PrimeGrid, LLR L1356 Gockel, PSieve, Srsieve, PrimeGrid, LLR L1360 Tatterson, PSieve, Srsieve, PrimeGrid, LLR L1372 Glennie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L1387 Anonymous, PSieve, Srsieve, PrimeGrid, LLR L1403 Andrews1, PSieve, Srsieve, PrimeGrid, LLR L1408 Emery, PSieve, Srsieve, PrimeGrid, LLR L1412 Jones_M, PSieve, Srsieve, PrimeGrid, LLR L1413 Morton, PSieve, Srsieve, PrimeGrid, LLR L1422 Steichen, PSieve, Srsieve, PrimeGrid, LLR L1444 Davies, PSieve, Srsieve, PrimeGrid, LLR L1448 Hron, PSieve, Srsieve, PrimeGrid, LLR L1455 Heikkila, PSieve, Srsieve, PrimeGrid, LLR L1456 Webster, PSieve, Srsieve, PrimeGrid, LLR L1460 Salah, Srsieve, PrimeGrid, PrimeSierpinski, LLR L1471 Gunn, Srsieve, CRUS, LLR L1474 Brown6, PSieve, Srsieve, PrimeGrid, LLR L1480 Goudie, PSieve, Srsieve, PrimeGrid, LLR L1486 Dinkel, PSieve, Srsieve, PrimeGrid, LLR L1492 Eiterig, PSieve, Srsieve, PrimeGrid, LLR L1502 Champ, PSieve, Srsieve, PrimeGrid, LLR L1513 Miller1, PSieve, Srsieve, PrimeGrid, LLR L1576 Craig, PSieve, Srsieve, PrimeGrid, LLR L1595 Cilliers, PSieve, Srsieve, PrimeGrid, LLR L1675 Schwieger, PSieve, Srsieve, PrimeGrid, LLR L1728 Gasewicz, PSieve, Srsieve, PrimeGrid, LLR L1741 Granowski, PSieve, Srsieve, PrimeGrid, LLR L1745 Cholt, PSieve, Srsieve, PrimeGrid, LLR L1754 Hubbard, PSieve, Srsieve, PrimeGrid, LLR L1774 Schoefer, PSieve, Srsieve, PrimeGrid, LLR L1780 Ming, PSieve, Srsieve, PrimeGrid, LLR L1792 Tang, PSieve, Srsieve, PrimeGrid, LLR L1803 Puppi, PSieve, Srsieve, PrimeGrid, LLR L1808 Reynolds1, PSieve, Srsieve, PrimeGrid, LLR L1809 Vogel, PSieve, Srsieve, NPLB, LLR L1817 Barnes, PSieve, Srsieve, NPLB, LLR L1823 Larsson, PSieve, Srsieve, PrimeGrid, LLR L1828 Benson, PSieve, Srsieve, Rieselprime, LLR L1830 Bonath, PSieve, Srsieve, NPLB, LLR L1847 Liu1, PSieve, Srsieve, PrimeGrid, LLR L1862 Curtis, PSieve, Srsieve, Rieselprime, LLR L1863 Wozny, PSieve, Srsieve, Rieselprime, LLR L1884 Jaworski, PSieve, Srsieve, Rieselprime, LLR L1885 Ostaszewski, PSieve, Srsieve, PrimeGrid, LLR L1921 Winslow, TwinGen, PrimeGrid, LLR L1932 Dragnev, PSieve, Srsieve, PrimeGrid, LLR L1935 Channing, PSieve, Srsieve, PrimeGrid, LLR L1949 Pritchard, Srsieve, PrimeGrid, RieselSieve, LLR L1957 Hemsley, PSieve, Srsieve, PrimeGrid, LLR L1959 Metcalfe, PSieve, Srsieve, Rieselprime, LLR L1979 Tibbott, PSieve, Srsieve, PrimeGrid, LLR L1983 Safford, PSieve, Srsieve, PrimeGrid, LLR L1990 Makowski, PSieve, Srsieve, PrimeGrid, LLR L2006 Rix, PSieve, Srsieve, PrimeGrid, LLR L2012 Pedersen_K, Srsieve, CRUS, OpenPFGW, LLR L2017 Hubbard, PSieve, Srsieve, NPLB, LLR L2019 Wood_D, PSieve, Srsieve, PrimeGrid, LLR L2030 Tonner, PSieve, Srsieve, PrimeGrid, LLR L2035 Greer, TwinGen, PrimeGrid, LLR L2042 Lachance, PSieve, Srsieve, PrimeGrid, LLR L2046 Melvold, Srsieve, PrimeGrid, LLR L2051 Reich, PSieve, Srsieve, PrimeGrid, LLR L2054 Kaiser1, Srsieve, CRUS, LLR L2055 Soule, PSieve, Srsieve, Rieselprime, LLR L2070 Schemmel, PSieve, Srsieve, PrimeGrid, LLR L2074 Minovic, PSieve, Srsieve, Rieselprime, LLR L2085 Dodson1, PSieve, Srsieve, PrimeGrid, LLR L2086 Sveen, PSieve, Srsieve, PrimeGrid, LLR L2100 Christensen, PSieve, Srsieve, PrimeGrid, LLR L2103 Schmidt1, PSieve, Srsieve, PrimeGrid, LLR L2117 Karlsteen, PSieve, Srsieve, PrimeGrid, LLR L2121 VanRangelrooij, PSieve, Srsieve, PrimeGrid, LLR L2122 Megele, PSieve, Srsieve, PrimeGrid, LLR L2125 Greer, PSieve, Srsieve, PrimeGrid, LLR L2126 Senftleben, PSieve, Srsieve, PrimeGrid, LLR L2137 Hayashi1, PSieve, Srsieve, PrimeGrid, LLR L2142 Hajek, PSieve, Srsieve, PrimeGrid, LLR L2158 Krauss, PSieve, Srsieve, PrimeGrid, LLR L2163 VanRooijen1, PSieve, Srsieve, PrimeGrid, LLR L2233 Herder, Srsieve, PrimeGrid, LLR L2235 Mullage, PSieve, Srsieve, NPLB, LLR L2257 Dettweiler, PSieve, Srsieve, NPLB, LLR L2269 Schori, Srsieve, PrimeGrid, LLR L2321 Medcalf, PSieve, Srsieve, PrimeGrid, LLR L2322 Szafranski, PSieve, Srsieve, PrimeGrid, LLR L2327 Oh, PSieve, Srsieve, PrimeGrid, LLR L2337 Schmalen, PSieve, Srsieve, PrimeGrid, LLR L2338 Burt, PSieve, Srsieve, Rieselprime, LLR L2366 Satoh, PSieve, Srsieve, PrimeGrid, LLR L2371 Luszczek, Srsieve, PrimeGrid, LLR L2373 Tarasov1, Srsieve, PrimeGrid, LLR L2408 Reinman, Srsieve, PrimeGrid, LLR L2413 Blyth, PSieve, Srsieve, PrimeGrid, LLR L2425 DallOsto, LLR L2429 Bliedung, TwinGen, PrimeGrid, LLR L2432 Sutton1, PSieve, Srsieve, Rieselprime, LLR L2444 Batalov, PSieve, Srsieve, Rieselprime, LLR L2484 Ritschel, PSieve, Srsieve, Rieselprime, LLR L2487 Liao, PSieve, Srsieve, PrimeGrid, LLR L2494 Javtokas, PSieve, Srsieve, PrimeGrid, LLR L2507 Geis, PSieve, Srsieve, PrimeGrid, LLR L2517 McPherson, PSieve, Srsieve, PrimeGrid, LLR L2518 Karevik, PSieve, Srsieve, PrimeGrid, LLR L2519 Schmidt2, PSieve, Srsieve, NPLB, LLR L2520 Mamanakis, PSieve, Srsieve, PrimeGrid, LLR L2526 Martinik, PSieve, Srsieve, PrimeGrid, LLR L2532 Papp2, PSieve, Srsieve, PrimeGrid, LLR L2545 Nose, PSieve, Srsieve, PrimeGrid, LLR L2549 McKay, PSieve, Srsieve, PrimeGrid, LLR L2552 Foulher, PSieve, Srsieve, PrimeGrid, LLR L2561 Vinklat, PSieve, Srsieve, PrimeGrid, LLR L2562 Jones3, PSieve, Srsieve, PrimeGrid, LLR L2564 Bravin, PSieve, Srsieve, PrimeGrid, LLR L2583 Nakamura, PSieve, Srsieve, PrimeGrid, LLR L2594 Sheridan, PSieve, Srsieve, PrimeGrid, LLR L2602 Mueller4, PSieve, Srsieve, PrimeGrid, LLR L2603 Hoffman, PSieve, Srsieve, PrimeGrid, LLR L2606 Slakans, PSieve, Srsieve, PrimeGrid, LLR L2626 DeKlerk, PSieve, Srsieve, PrimeGrid, LLR L2627 Graham2, PSieve, Srsieve, PrimeGrid, LLR L2629 Becker2, PSieve, Srsieve, PrimeGrid, LLR L2649 Brandstaetter, PSieve, Srsieve, PrimeGrid, LLR L2659 Reber, PSieve, Srsieve, PrimeGrid, LLR L2664 Koluvere, PSieve, Srsieve, PrimeGrid, LLR L2673 Burningham, PSieve, Srsieve, PrimeGrid, LLR L2675 Ling, PSieve, Srsieve, PrimeGrid, LLR L2676 Cox2, PSieve, Srsieve, PrimeGrid, LLR L2691 Pettersen, PSieve, Srsieve, PrimeGrid, LLR L2703 Armstrong, PSieve, Srsieve, PrimeGrid, LLR L2707 Out, PSieve, Srsieve, PrimeGrid, LLR L2714 Piotrowski, PSieve, Srsieve, PrimeGrid, LLR L2715 Donovan, PSieve, Srsieve, PrimeGrid, LLR L2719 Yost, PSieve, Srsieve, PrimeGrid, LLR L2724 AverayJones, PSieve, Srsieve, PrimeGrid, LLR L2742 Fluttert, PSieve, Srsieve, PrimeGrid, LLR L2777 Ritschel, Gcwsieve, TOPS, LLR L2785 Meili, PSieve, Srsieve, PrimeGrid, LLR L2805 Barr, PSieve, Srsieve, PrimeGrid, LLR L2823 Loureiro, PSieve, Srsieve, PrimeGrid, LLR L2826 Jeudy, PSieve, Srsieve, PrimeGrid, LLR L2827 Melzer, PSieve, Srsieve, PrimeGrid, LLR L2840 Santana, PSieve, Srsieve, PrimeGrid, LLR L2841 Minovic, Gcwsieve, MultiSieve, TOPS, LLR L2842 English1, PSieve, Srsieve, PrimeGrid, LLR L2859 Keenan, PSieve, Srsieve, PrimeGrid, LLR L2873 Jurach, PSieve, Srsieve, PrimeGrid, LLR L2885 Busacker, PSieve, Srsieve, PrimeGrid, LLR L2891 Lacroix, PSieve, Srsieve, PrimeGrid, LLR L2914 Merrylees, PSieve, Srsieve, PrimeGrid, LLR L2959 Derrera, PSieve, Srsieve, PrimeGrid, LLR L2967 Ryjkov, PSieve, Srsieve, PrimeGrid, LLR L2973 Kurtovic, Srsieve, PrimeGrid, LLR L2975 Loureiro, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L2981 Yoshigoe, PSieve, Srsieve, PrimeGrid, LLR L2992 Boehm, PSieve, Srsieve, PrimeGrid, LLR L2997 Williams2, PSieve, Srsieve, PrimeGrid, LLR L3023 Winslow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3029 Walsh, PSieve, Srsieve, PrimeGrid, LLR L3033 Snow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3034 Wakolbinger, PSieve, Srsieve, PrimeGrid, LLR L3035 Scalise, PSieve, Srsieve, PrimeGrid, LLR L3037 Noltensmeier, PSieve, Srsieve, PrimeGrid, LLR L3043 Hayase, PSieve, Srsieve, PrimeGrid, LLR L3048 Breslin, PSieve, Srsieve, PrimeGrid, LLR L3049 Tardy, PSieve, Srsieve, PrimeGrid, LLR L3054 Winslow, Srsieve, PrimeGrid, LLR L3075 Goellner, PSieve, Srsieve, PrimeGrid, LLR L3091 Ridgway, PSieve, Srsieve, PrimeGrid, LLR L3101 Reichard, PSieve, Srsieve, PrimeGrid, LLR L3105 Eldredge, PSieve, Srsieve, PrimeGrid, LLR L3118 Yama, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3125 Rizman, PSieve, Srsieve, PrimeGrid, LLR L3141 Kus, PSieve, Srsieve, PrimeGrid, LLR L3154 Hentrich, PSieve, Srsieve, PrimeGrid, LLR L3168 Schwegler, PSieve, Srsieve, PrimeGrid, LLR L3171 Bergelt, PSieve, Srsieve, PrimeGrid, LLR L3173 Zhou2, PSieve, Srsieve, PrimeGrid, LLR L3174 Boniecki, PSieve, Srsieve, PrimeGrid, LLR L3179 Hamada, PSieve, Srsieve, PrimeGrid, LLR L3180 Poon, PSieve, Srsieve, PrimeGrid, LLR L3183 Haller, Srsieve, PrimeGrid, LLR L3184 Hayslette, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3200 Athanas, PSieve, Srsieve, PrimeGrid, LLR L3203 Scalise, TwinGen, PrimeGrid, LLR L3206 Chang2, PSieve, Srsieve, PrimeGrid, LLR L3209 McArdle, GenefX64, AthGFNSieve, PrimeGrid, LLR L3213 OBrien1, PSieve, Srsieve, PrimeGrid, LLR L3221 Vicena, PSieve, Srsieve, PrimeGrid, LLR L3222 Yamamoto, PSieve, Srsieve, PrimeGrid, LLR L3223 Yurgandzhiev, PSieve, Srsieve, PrimeGrid, LLR L3230 Kumagai, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3233 Nadeau, PSieve, Srsieve, PrimeGrid, LLR L3234 Parangalan, PSieve, Srsieve, PrimeGrid, LLR L3249 Lind, PSieve, Srsieve, PrimeGrid, LLR L3260 Stanko, PSieve, Srsieve, PrimeGrid, LLR L3261 Batalov, PSieve, Srsieve, PrimeGrid, LLR L3262 Molder, PSieve, Srsieve, PrimeGrid, LLR L3267 Cain, PSieve, Srsieve, PrimeGrid, LLR L3276 Jeka, PSieve, Srsieve, PrimeGrid, LLR L3278 Fischer1, PSieve, Srsieve, PrimeGrid, LLR L3290 Bednar1, PSieve, Srsieve, PrimeGrid, LLR L3294 Bartlett, PSieve, Srsieve, PrimeGrid, LLR L3313 Yost, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3323 Ritschel, NewPGen, TOPS, LLR L3325 Elvy, PSieve, Srsieve, PrimeGrid, LLR L3329 Tatearka, PSieve, Srsieve, PrimeGrid, LLR L3336 Dongen, Siemelink, Srsieve, LLR L3345 Domanov1, PSieve, Rieselprime, LLR L3354 Willig, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3372 Ryan, PSieve, Srsieve, PrimeGrid, LLR L3377 Ollivier, PSieve, Srsieve, PrimeGrid, LLR L3378 Glasgow, PSieve, Srsieve, PrimeGrid, LLR L3385 Rassokhin, PSieve, Srsieve, PrimeGrid, LLR L3410 Kurtovic, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3415 Johnston1, PSieve, Srsieve, PrimeGrid, LLR L3418 Stein, PSieve, Srsieve, PrimeGrid, LLR L3422 Micom, PSieve, Srsieve, PrimeGrid, LLR L3430 Durstewitz, PSieve, Srsieve, PrimeGrid, LLR L3431 Gahan, PSieve, Srsieve, PrimeGrid, LLR L3432 Batalov, Srsieve, LLR L3439 Huang, PSieve, Srsieve, PrimeGrid, LLR L3440 Pelikan, PSieve, Srsieve, PrimeGrid, LLR L3446 Marshall3, PSieve, Srsieve, PrimeGrid, LLR L3453 Benes, PSieve, Srsieve, PrimeGrid, LLR L3458 Jia, PSieve, Srsieve, PrimeGrid, LLR L3459 Boruvka, PSieve, Srsieve, PrimeGrid, LLR L3460 Ottusch, PSieve, Srsieve, PrimeGrid, LLR L3464 Ferrell, PSieve, Srsieve, PrimeGrid, LLR L3470 Fisan, PSieve, Srsieve, PrimeGrid, LLR L3471 Gieorgijewski, PSieve, Srsieve, PrimeGrid, LLR L3472 Hernas, PSieve, Srsieve, PrimeGrid, LLR L3483 Farrow, PSieve, Srsieve, PrimeGrid, LLR L3487 Ziemann, PSieve, Srsieve, PrimeGrid, LLR L3494 Batalov, NewPGen, LLR L3502 Ristic, PSieve, Srsieve, PrimeGrid, LLR L3512 Tsuji, PSieve, Srsieve, PrimeGrid, LLR L3514 Bishop1, PSieve, Srsieve, PrimeGrid, OpenPFGW, LLR L3518 Papendick, PSieve, Srsieve, PrimeGrid, LLR L3519 Kurtovic, PSieve, Srsieve, Rieselprime, LLR L3523 Brown1, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3528 Batalov, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3532 Batalov, Gcwsieve, LLR L3538 Beard1, PSieve, Srsieve, PrimeGrid, LLR L3539 Jacobs, PSieve, Srsieve, PrimeGrid, LLR L3543 Yama, PrimeGrid, LLR L3545 Eskam1, PSieve, Srsieve, PrimeGrid, LLR L3547 Ready, Srsieve, PrimeGrid, LLR L3548 Ready, PSieve, Srsieve, PrimeGrid, LLR L3549 Hirai, Srsieve, PrimeGrid, LLR L3552 Benson2, Srsieve, PrimeGrid, LLR L3553 Cilliers, Srsieve, PrimeGrid, LLR L3555 Cervelle, PSieve, Srsieve, PrimeGrid, LLR L3562 Schouten, Srsieve, PrimeGrid, LLR L3564 Jaworski, Srsieve, CRUS, LLR L3566 Slakans, Srsieve, PrimeGrid, LLR L3567 Meili, Srsieve, PrimeGrid, LLR L3573 Batalov, TwinGen, PrimeGrid, LLR L3577 Sriworarat, PSieve, Srsieve, PrimeGrid, LLR L3580 Nelson1, PSieve, Srsieve, PrimeGrid, LLR L3586 Wharton, PSieve, Srsieve, PrimeGrid, LLR L3588 Matousek, PSieve, Srsieve, PrimeGrid, LLR L3593 Veit, PSieve, Srsieve, PrimeGrid, LLR L3601 Jablonski1, PSieve, Srsieve, PrimeGrid, LLR L3606 Sander, TwinGen, PrimeGrid, LLR L3610 Batalov, Srsieve, CRUS, LLR L3612 Smits, PSieve, Srsieve, PrimeGrid, LLR L3625 Haymoz, PSieve, Srsieve, PrimeGrid, LLR L3640 Stopper, PSieve, Srsieve, PrimeGrid, LLR L3650 Smit, PSieve, Srsieve, PrimeGrid, LLR L3659 Volynsky, Srsieve, PrimeGrid, LLR L3662 Schawe, PSieve, Srsieve, PrimeGrid, LLR L3665 Kelava1, PSieve, Srsieve, Rieselprime, LLR L3666 Bielecki, PSieve, Srsieve, PrimeGrid, LLR L3668 Prokopchuk, PSieve, Srsieve, PrimeGrid, LLR L3682 Schaible, PSieve, Srsieve, PrimeGrid, LLR L3686 Yost, Srsieve, PrimeGrid, LLR L3688 Hasznos, PSieve, Srsieve, PrimeGrid, LLR L3696 Linderson, PSieve, Srsieve, PrimeGrid, LLR L3700 Kim4, PSieve, Srsieve, PrimeGrid, LLR L3709 Buss, PSieve, Srsieve, PrimeGrid, LLR L3719 Skinner, PSieve, Srsieve, PrimeGrid, LLR L3720 Ohno, Srsieve, PrimeGrid, LLR L3728 Rietveld, PSieve, Srsieve, PrimeGrid, LLR L3731 Deram, PSieve, Srsieve, PrimeGrid, LLR L3733 Bryniarski, PSieve, Srsieve, PrimeGrid, LLR L3735 Kurtovic, Srsieve, LLR L3736 Lukosevisius, PSieve, Srsieve, PrimeGrid, LLR L3737 Cartiaux, PSieve, Srsieve, PrimeGrid, LLR L3738 Larsson1, PSieve, Srsieve, PrimeGrid, LLR L3739 Gournay, PSieve, Srsieve, PrimeGrid, LLR L3743 Parker1, PSieve, Srsieve, PrimeGrid, LLR L3744 Green1, PSieve, Srsieve, PrimeGrid, LLR L3749 Meador, Srsieve, PrimeGrid, LLR L3760 Okazaki, PSieve, Srsieve, PrimeGrid, LLR L3763 Martin4, PSieve, Srsieve, PrimeGrid, LLR L3764 Diepeveen, PSieve, Srsieve, Rieselprime, LLR L3767 Huang1, PSieve, Srsieve, PrimeGrid, LLR L3770 Tang, Srsieve, PrimeGrid, LLR L3772 Ottusch, Srsieve, PrimeGrid, LLR L3784 Cavnaugh, PSieve, Srsieve, PrimeGrid, LLR L3785 Reichel, PSieve, Srsieve, PrimeGrid, LLR L3787 Palumbo, PSieve, Srsieve, PrimeGrid, LLR L3789 Toda, Srsieve, PrimeGrid, LLR L3790 Tamagawa, PSieve, Srsieve, PrimeGrid, LLR L3797 Schmidt3, PSieve, Srsieve, PrimeGrid, LLR L3800 Amschl, PSieve, Srsieve, PrimeGrid, LLR L3802 Aggarwal, Srsieve, LLR L3803 Bredl, PSieve, Srsieve, PrimeGrid, LLR L3810 Radle, PSieve, Srsieve, PrimeGrid, LLR L3813 Chambers2, PSieve, Srsieve, PrimeGrid, LLR L3824 Mazzucato, PSieve, Srsieve, PrimeGrid, LLR L3829 Abrahmi, TwinGen, PrimeGrid, LLR L3838 Boyden, PSieve, Srsieve, PrimeGrid, LLR L3839 Batalov, EMsieve, LLR L3843 Whiteley, PSieve, Srsieve, PrimeGrid, LLR L3849 Smith10, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3855 Lunner, PSieve, Srsieve, PrimeGrid, LLR L3857 Hudec, PSieve, Srsieve, PrimeGrid, LLR L3859 Clifton, PSieve, Srsieve, PrimeGrid, LLR L3860 Cimrman, PSieve, Srsieve, PrimeGrid, LLR L3861 Roemer, PSieve, Srsieve, PrimeGrid, LLR L3862 Gudenschwager, PSieve, Srsieve, PrimeGrid, LLR L3863 WaldenForrest, PSieve, Srsieve, PrimeGrid, LLR L3864 Piantoni, PSieve, Srsieve, PrimeGrid, LLR L3865 Silva, PSieve, Srsieve, PrimeGrid, LLR L3867 Traebert, PSieve, Srsieve, PrimeGrid, LLR L3868 Miller3, PSieve, Srsieve, PrimeGrid, LLR L3869 Cholt, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3873 Sala, PSieve, Srsieve, PrimeGrid, LLR L3876 Apreutesei, PSieve, Srsieve, PrimeGrid, LLR L3877 Jarne, PSieve, Srsieve, PrimeGrid, LLR L3886 Vogel, Srsieve, CRUS, LLR L3887 Byerly, PSieve, Rieselprime, LLR L3890 Beeson, PSieve, Srsieve, PrimeGrid, LLR L3895 Englehard, PSieve, Srsieve, PrimeGrid, LLR L3898 Christy, PSieve, Srsieve, PrimeGrid, LLR L3903 Miao, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3904 Darimont, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3909 Taylor2, PSieve, Srsieve, PrimeGrid, LLR L3910 Bischof, PSieve, Srsieve, PrimeGrid, LLR L3914 Matsuda, PSieve, Srsieve, PrimeGrid, LLR L3917 Rodenkirch, PSieve, Srsieve, LLR L3919 Pickering, PSieve, Srsieve, PrimeGrid, LLR L3924 Kim5, PSieve, Srsieve, PrimeGrid, LLR L3925 Okazaki, Srsieve, PrimeGrid, LLR L3933 Batalov, PSieve, Srsieve, CRUS, Rieselprime, LLR L3941 Lee8, PSieve, Srsieve, PrimeGrid, LLR L3961 Darimont, Srsieve, PrimeGrid, LLR L3964 Iakovlev, Srsieve, PrimeGrid, LLR L3967 Inouye, PSieve, Srsieve, Rieselprime, LLR L3975 Hou, PSieve, Srsieve, PrimeGrid, LLR L3993 Gushchak, Srsieve, PrimeGrid, LLR L3995 Unbekannt, PSieve, Srsieve, PrimeGrid, LLR L3998 Rossman, PSieve, Srsieve, PrimeGrid, LLR L4001 Willig, Srsieve, CRUS, LLR L4016 Bedenbaugh, PSieve, Srsieve, PrimeGrid, LLR L4021 Busse, PSieve, Srsieve, PrimeGrid, LLR L4026 Batalov, Cyclo, EMsieve, PIES, LLR L4031 Darney, PSieve, Srsieve, PrimeGrid, LLR L4034 Vanc, Srsieve, PrimeGrid, LLR L4036 Domanov1, PSieve, Srsieve, CRUS, LLR L4040 Oddone, PSieve, Srsieve, PrimeGrid, LLR L4043 Niedbala, PSieve, Srsieve, PrimeGrid, LLR L4045 Chew, PSieve, Srsieve, PrimeGrid, LLR L4061 Lee, PSieve, Srsieve, PrimeGrid, LLR L4064 Davies, Srsieve, CRUS, LLR L4076 Lacroix, PSieve, Srsieve, NPLB, LLR L4082 Zimmerman, PSieve, Srsieve, PrimeGrid, LLR L4083 Charrondiere, PSieve, Srsieve, PrimeGrid, LLR L4087 Kecic, PSieve, Srsieve, PrimeGrid, LLR L4088 Graeber, PSieve, Srsieve, PrimeGrid, LLR L4099 Nietering, PSieve, Srsieve, PrimeGrid, LLR L4103 Klopffleisch, Srsieve, PrimeGrid, LLR L4106 Ga, PSieve, Srsieve, PrimeGrid, LLR L4108 Yoshioka, PSieve, Srsieve, PrimeGrid, LLR L4109 Palmer1, PSieve, Srsieve, PrimeGrid, LLR L4111 Leps1, PSieve, Srsieve, PrimeGrid, LLR L4113 Batalov, PSieve, Srsieve, LLR L4114 Bubloski, PSieve, Srsieve, PrimeGrid, LLR L4118 Slegel, PSieve, Srsieve, PrimeGrid, LLR L4119 Nelson3, PSieve, Srsieve, PrimeGrid, LLR L4122 Sasaki1, PSieve, Srsieve, PrimeGrid, LLR L4123 Bush, PSieve, Srsieve, PrimeGrid, LLR L4133 Ito, PSieve, Srsieve, PrimeGrid, LLR L4139 Hawker, Srsieve, CRUS, LLR L4142 Batalov, CycloSv, EMsieve, PIES, LLR L4146 Schmidt1, Srsieve, PrimeGrid, LLR L4147 Mohacsy, PSieve, Srsieve, PrimeGrid, LLR L4148 Glatte, PSieve, Srsieve, PrimeGrid, LLR L4155 Jones4, PSieve, Srsieve, PrimeGrid, LLR L4159 Schulz5, Srsieve, PrimeGrid, LLR L4166 Kwok, PSieve, LLR L4185 Hoefliger, PSieve, Srsieve, PrimeGrid, LLR L4187 Schmidt2, Srsieve, CRUS, LLR L4189 Lawrence, Powell, Srsieve, CRUS, LLR L4190 Fnasek, PSieve, Srsieve, PrimeGrid, LLR L4191 Mahan, PSieve, Srsieve, PrimeGrid, LLR L4197 Kumagai1, Srsieve, PrimeGrid, LLR L4198 Rawles, PSieve, Srsieve, PrimeGrid, LLR L4200 Harste, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4201 Brown1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4203 Azarenko, PSieve, Srsieve, PrimeGrid, LLR L4204 Winslow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4205 Bischof, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4207 Jaamann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4208 Farrow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4210 Cholt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4226 Heath, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4231 Schneider1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4245 Greer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4249 Larsson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4250 Vogt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4252 Nietering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4256 Gniesmer, PSieve, Srsieve, PrimeGrid, LLR L4262 Hutchins, PSieve, Srsieve, PrimeGrid, LLR L4267 Batalov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4269 Romanov, PSieve, Srsieve, PrimeGrid, LLR L4273 Rangelrooij, Srsieve, CRUS, LLR L4274 AhlforsDahl, Srsieve, PrimeGrid, LLR L4276 Borbely, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4283 Crawford1, PSieve, Srsieve, PrimeGrid, LLR L4285 Bravin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4286 Zimmerman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4287 Suzuki1, PSieve, Srsieve, PrimeGrid, LLR L4289 Ito2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4293 Trunov, PSieve, Srsieve, PrimeGrid, LLR L4294 Kurtovic, Srsieve, CRUS, Prime95, LLR L4295 Splain, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4303 Thorson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4307 Keller1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4308 Matillek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4309 Kecic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4314 DeThomas, PSieve, Srsieve, PrimeGrid, LLR L4316 Nilsson1, PSieve, Srsieve, PrimeGrid, LLR L4323 Seisums, PSieve, Srsieve, PrimeGrid, LLR L4326 Steel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4329 Okon, Srsieve, LLR L4334 Miller5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4340 Becker4, Srsieve, PrimeGrid, LLR L4342 Kaiser1, PolySieve, NewPGen, LLR L4343 Norton, PSieve, Srsieve, PrimeGrid, LLR L4347 Schaeffer, PSieve, Srsieve, PrimeGrid, LLR L4348 Burridge, Srsieve, PrimeGrid, LLR L4352 Fahlenkamp1, PSieve, Srsieve, PrimeGrid, LLR L4358 Tesarz, PSieve, Srsieve, PrimeGrid, LLR L4359 Andou, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4362 Mochizuki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4364 Steinbach, PSieve, Srsieve, PrimeGrid, LLR L4371 Schmidt2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4380 Rix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4387 Davies, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4388 Mena, PSieve, Srsieve, PrimeGrid, LLR L4393 Veit1, Srsieve, CRUS, LLR L4395 Nilsson1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4398 Greer, Srsieve, PrimeGrid, LLR L4404 Stepnicka, PSieve, Srsieve, PrimeGrid, LLR L4405 Eckhard, Srsieve, LLR L4406 Mathers, PSieve, Srsieve, PrimeGrid, LLR L4408 Fricke, PSieve, Srsieve, PrimeGrid, LLR L4410 Andresson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4412 Simpson3, PSieve, Srsieve, PrimeGrid, LLR L4414 Falk, PSieve, Srsieve, PrimeGrid, LLR L4417 Rasp, PSieve, Srsieve, PrimeGrid, LLR L4424 Miyauchi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4425 Weber1, PSieve, Srsieve, PrimeGrid, LLR L4435 Larsson, Srsieve, PrimeGrid, LLR L4441 Miyauchi, PSieve, Srsieve, PrimeGrid, LLR L4444 Terber, Srsieve, CRUS, LLR L4445 Leudesdorff, PSieve, Srsieve, PrimeGrid, LLR L4454 Clark5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4456 Chambers2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4457 Geiger, PSieve, Srsieve, PrimeGrid, LLR L4459 Biscop, PSieve, Srsieve, PrimeGrid, LLR L4466 Falk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4472 Harvanek, Gcwsieve, MultiSieve, PrimeGrid, LLR L4476 Shane, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4477 Tennant, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4482 Mena, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4488 Vrontakis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4489 Szreter, PSieve, Srsieve, PrimeGrid, LLR L4490 Mazumdar, PSieve, Srsieve, PrimeGrid, LLR L4499 Ohsugi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4501 Eskam1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4504 Sesok, NewPGen, LLR L4505 Lind, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4506 Propper, Batalov, CycloSv, EMsieve, PIES, Prime95, LLR L4510 Ming, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4511 Donovan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4518 Primecrunch.com, Hedges, Srsieve, LLR L4521 Curtis, Srsieve, CRUS, LLR L4522 Lorsung, PSieve, Srsieve, PrimeGrid, LLR L4523 Mull, PSieve, Srsieve, PrimeGrid, LLR L4525 Kong1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4526 Schoefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4527 Fruzynski, PSieve, Srsieve, PrimeGrid, LLR L4530 Reynolds1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4531 Butez, PSieve, Srsieve, PrimeGrid, LLR L4544 Krauss, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4547 Nair, TwinGen, NewPGen, LLR L4548 Sydekum, Srsieve, CRUS, Prime95, LLR L4550 Terry, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4552 Koski, PSieve, Srsieve, PrimeGrid, LLR L4559 Okazaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4561 Propper, Batalov, CycloSv, Cyclo, EMsieve, PIES, LLR L4562 Donovan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4564 DeThomas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4568 Vrontakis, PSieve, Srsieve, PrimeGrid, LLR L4575 Gingrich2, Srsieve, CRUS, LLR L4582 Kinney, PSieve, Srsieve, PrimeGrid, LLR L4583 Rohmann, PSieve, Srsieve, PrimeGrid, LLR L4584 Goforth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4585 Schawe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4591 Schwieger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4593 Mangio, PSieve, Srsieve, PrimeGrid, LLR L4595 Mangio, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4598 Connaughty, PSieve, Srsieve, PrimeGrid, LLR L4600 Simbarsky, PSieve, Srsieve, PrimeGrid, LLR L4609 Elgetz, PSieve, Srsieve, PrimeGrid, LLR L4620 Kinney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4622 Jurach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4623 Dugger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4626 Iltus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4629 Chen2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4645 McKibbon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4649 Humphries, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4654 Voskoboynikov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4656 Beck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4658 Maguin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4659 AverayJones, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4660 Snow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4664 Toledo, PSieve, Srsieve, PrimeGrid, LLR L4665 Szeluga, Kupidura, Banka, LLR L4666 Slade, PSieve, Srsieve, PrimeGrid, LLR L4667 Morelli, LLR L4668 Okazaki, Gcwsieve, MultiSieve, PrimeGrid, LLR L4669 Schwegler, Srsieve, PrimeGrid, LLR L4670 Drumm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4672 Slade, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4673 Okhrimouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4675 Lind, Srsieve, PrimeGrid, LLR L4676 Maloney, Srsieve, PrimeGrid, PrimeSierpinski, LLR L4677 Provencher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4683 Bird2, Srsieve, CRUS, LLR L4684 Sveen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4685 Masser, Srsieve, CRUS, LLR L4687 Campbell1, PSieve, Srsieve, PrimeGrid, LLR L4689 Gordon2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4690 Brandt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4691 Fruzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4692 Hajek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4694 Schapendonk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4695 Goudie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4696 Plottel, PSieve, Srsieve, PrimeGrid, LLR L4697 Sellsted, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4699 Parsonnet, PSieve, Srsieve, PrimeGrid, LLR L4700 Liu4, Srsieve, CRUS, LLR L4701 Kalus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4702 Charette, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4703 Pacini, PSieve, Srsieve, PrimeGrid, LLR L4704 Kurtovic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4706 Kraemer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4710 Wiedemann, PSieve, Srsieve, PrimeGrid, LLR L4711 Closs, PSieve, Srsieve, PrimeGrid, LLR L4712 Gravemeyer, PSieve, Srsieve, PrimeGrid, LLR L4713 Post, PSieve, Srsieve, PrimeGrid, LLR L4714 James1, Srsieve, CRUS, LLR L4715 Skinner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4717 Wypych, PSieve, Srsieve, PrimeGrid, LLR L4718 Brown1, Gcwsieve, MultiSieve, PrimeGrid, LLR L4720 Gahan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4723 Lexut, PSieve, Srsieve, PrimeGrid, LLR L4724 Thonon, PSieve, Srsieve, PrimeGrid, LLR L4726 Miller7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4729 Wimmer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4730 Bowe, PSieve, Srsieve, PrimeGrid, LLR L4732 Miller7, PSieve, Srsieve, PrimeGrid, LLR L4737 Reinhardt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4738 Gelhar, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4740 Silva1, PSieve, Srsieve, PrimeGrid, LLR L4741 Wong, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4742 Schlereth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4743 Plsak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4745 Cavnaugh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4746 Brech, PSieve, Srsieve, PrimeGrid, LLR L4747 Brech, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4752 Harvey2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4753 Riemann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4754 Calvin, PSieve, Srsieve, PrimeGrid, LLR L4755 Glatte, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4757 Johnson9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4758 Walling, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4760 Sipes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4761 Romaidis, PSieve, Srsieve, PrimeGrid, LLR L4763 Guilleminot, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4764 McLean2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4765 Kumsta, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4773 Tohmola, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4774 Boehm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4775 Steinbach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4776 Lee7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4783 Marini, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4784 Bertolotti, Gcwsieve, MultiSieve, PrimeGrid, LLR L4786 Sydekum, Srsieve, CRUS, LLR L4787 Sunderland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4789 Kurtovic, Srsieve, Prime95, LLR L4791 Vaisanen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4793 Koski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4795 Lawson2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4796 White2, PSieve, Srsieve, PrimeGrid, LLR L4799 Vanderveen1, LLR L4800 Doenges, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4802 Jones5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4806 Rajala, Srsieve, CRUS, LLR L4807 Tsuji, Srsieve, PrimeGrid, LLR L4808 Kaiser1, PolySieve, LLR L4809 Bocan, Srsieve, PrimeGrid, LLR L4810 Dhuyvetters, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4812 Nezumi, LLR L4814 Telesz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4815 Kozisek, PSieve, Srsieve, PrimeGrid, LLR L4816 Doenges, PSieve, Srsieve, PrimeGrid, LLR L4819 Inci, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4821 Svantner, PSieve, Srsieve, PrimeGrid, LLR L4822 Magklaras, PSieve, Srsieve, PrimeGrid, LLR L4823 Helm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4824 Allivato, PSieve, Srsieve, PrimeGrid, LLR L4826 Soraku, PSieve, Srsieve, PrimeGrid, LLR L4830 Eisler1, PSieve, Srsieve, PrimeGrid, LLR L4832 Meekins, Srsieve, CRUS, LLR L4834 Helm, PSieve, Srsieve, PrimeGrid, LLR L4835 Katzur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4837 Hines, Srsieve, CRUS, LLR L4839 Harris, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4840 Ylijoki, PSieve, Srsieve, PrimeGrid, LLR L4841 Baur, PSieve, Srsieve, PrimeGrid, LLR L4842 Smith11, PSieve, Srsieve, PrimeGrid, LLR L4843 Hutchins, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4844 Valentino, PSieve, Srsieve, PrimeGrid, LLR L4848 Adamec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4849 Burt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4850 Jones5, PSieve, Srsieve, PrimeGrid, LLR L4851 Schioler, PSieve, Srsieve, PrimeGrid, LLR L4854 Gory, PSieve, Srsieve, PrimeGrid, LLR L4858 Koriabine, PSieve, Srsieve, PrimeGrid, LLR L4859 Wang4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4861 Thonon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4864 Freihube, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4868 Bergmann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4869 Ogata, PSieve, Srsieve, PrimeGrid, LLR L4870 Wharton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4871 Gory, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4875 Parsonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4876 Tennant, Srsieve, CRUS, LLR L4877 Cherenkov, Srsieve, CRUS, LLR L4879 Propper, Batalov, Srsieve, LLR L4880 Goossens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4881 Bonath, Srsieve, LLR L4884 Somer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4889 Hundhausen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4892 Hewitt1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4893 Little, PSieve, Srsieve, PrimeGrid, LLR L4898 Kozisek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4903 Laurent1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4904 Dunchouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4905 Niegocki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4907 Reinhardt, PSieve, Srsieve, PrimeGrid, LLR L4909 Hall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4911 Calveley, Srsieve, CRUS, LLR L4914 Bishop_D, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4917 Corlatti, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4918 Weiss1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4920 Walsh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4922 Bulba, Sesok, LLR L4923 Koriabine, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4925 Korolev, Srsieve, CRUS, LLR L4926 Shenton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4927 Smith12, Srsieve, SRBase, CRUS, LLR L4928 Doornink, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4929 Givoni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4930 Shintani, PSieve, Srsieve, PrimeGrid, LLR L4932 Schroeder2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4933 Jacques, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4935 Simard, PSieve, Srsieve, PrimeGrid, LLR L4937 Ito2, Srsieve, PrimeGrid, LLR L4939 Coscia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4942 Matheis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4944 Schori, LLR2, PSieve, Srsieve, PrimeGrid, LLR L4945 Meili, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4948 SchwartzLowe, PSieve, Srsieve, PrimeGrid, LLR L4951 Niegocki, PSieve, Srsieve, PrimeGrid, LLR L4954 Romaidis, Srsieve, PrimeGrid, LLR L4955 Grosvenor, Srsieve, CRUS, LLR L4956 Merrylees, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4958 Shenton, PSieve, Srsieve, PrimeGrid, LLR L4959 Deakin, PSieve, Srsieve, PrimeGrid, LLR L4960 Kaiser1, NewPGen, TPS, LLR L4961 Vornicu, LLR L4962 Baur, Srsieve, NewPGen, LLR L4963 Mortimore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4964 Doescher, GFNSvCUDA, GeneFer, LLR L4965 Propper, LLR L4968 Kaczala, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4970 Michael, PSieve, Srsieve, PrimeGrid, LLR L4972 Greer, Gcwsieve, MultiSieve, PrimeGrid, LLR L4973 Landrum, PSieve, Srsieve, PrimeGrid, LLR L4974 Monroe, PSieve, Srsieve, PrimeGrid, LLR L4975 Thompson5, Srsieve, CRUS, LLR L4976 Propper, Batalov, Gcwsieve, LLR L4977 Miller8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4979 Matheis, PSieve, Srsieve, PrimeGrid, LLR L4980 Poon1, PSieve, Srsieve, PrimeGrid, LLR L4981 MartinezCucalon, PSieve, Srsieve, PrimeGrid, LLR L4984 Hemsley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4985 Veit, Srsieve, CRUS, LLR L4987 Canossi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4988 Harris3, PSieve, Srsieve, PrimeGrid, LLR L4990 Heindl, PSieve, Srsieve, PrimeGrid, LLR L4994 Wong, Srsieve, NewPGen, LLR L4997 Gardner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4999 Andrews1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5000 Wimmer2, Srsieve, CRUS, LLR L5001 Mamonov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5002 Kato, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5005 Hass, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5007 Faith, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5008 Niegocki, Srsieve, PrimeGrid, LLR L5009 Jungmann, Srsieve, LLR L5011 Strajt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5013 Wypych, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5014 Strokov, PSieve, Srsieve, PrimeGrid, LLR L5018 Nielsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5019 Ayiomamitis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5020 Eikelenboom, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5021 Svantner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5022 Manz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5023 Schulz6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5024 Schumacher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5025 Lexut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5027 Moudy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5029 Krompolc, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5030 Calvin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5031 Schumacher, PSieve, Srsieve, PrimeGrid, LLR L5033 Ni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5036 Jung2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5037 Diepeveen, Underwood, PSieve, Srsieve, Rieselprime, LLR L5039 Gilliland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5041 Wallbaum, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5043 Vanderveen1, Propper, LLR L5044 Bergelt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5047 Little, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5051 Veit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5053 Yoshigoe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5056 Chu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5057 Hauhia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5061 Cooper5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5063 Wendelboe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5067 Tirkkonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5068 Silva1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5069 Friedrichsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5070 Millerick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5071 McLean2, Srsieve, CRUS, LLR L5072 Romaidis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5076 Atnashev, Srsieve, PrimeGrid, LLR L5077 Martinelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5078 McDonald4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5079 Meditz, PSieve, Srsieve, PrimeGrid, LLR L5080 Gahan, GFNSvCUDA, PrivGfnServer, LLR L5081 Howell, Srsieve, PrimeGrid, LLR L5083 Pickering, Srsieve, PrimeGrid, LLR L5084 Yagi, PSieve, Srsieve, PrimeGrid, LLR L5085 Strajt, PSieve, Srsieve, PrimeGrid, LLR L5087 Coscia, PSieve, Srsieve, PrimeGrid, LLR L5088 Hall1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5089 MARSIN, Srsieve, CRUS, LLR L5090 Jourdan, PSieve, Srsieve, PrimeGrid, LLR L5094 Th�mmler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5099 Lobring, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5100 Stephens, PSieve, Srsieve, PrimeGrid, LLR L5102 Liu6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5104 Gahan, LLR2, NewPGen, LLR L5105 Helm, LLR2, Srsieve, PrivGfnServer, LLR L5106 Glennie, PSieve, Srsieve, PrimeGrid, LLR L5110 Provencher, PSieve, Srsieve, PrimeGrid, LLR L5112 Vanderveen1, Srsieve, CRUS, LLR L5115 Doescher, LLR L5116 Schoeler, MultiSieve, LLR L5118 Vanderveen1, PSieve, Srsieve, PrimeGrid, Rieselprime, LLR L5120 Greer, LLR2, PrivGfnServer, LLR L5122 Tennant, LLR2, PrivGfnServer, LLR L5123 Propper, Batalov, EMsieve, LLR L5125 Tirkkonen, PSieve, Srsieve, PrimeGrid, LLR L5126 Warach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5127 Kemenes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5129 Veit, Srsieve, PrimeGrid, LLR L5130 Jourdan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5134 Cooper5, PSieve, Srsieve, PrimeGrid, LLR L5139 Belozersky, PSieve, Srsieve, PrimeGrid, LLR L5143 Dickinson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5144 McNary, PSieve, Srsieve, PrimeGrid, LLR L5155 Harju, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5156 Dinkel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5157 Asano, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5158 Zuschlag, PSieve, Srsieve, PrimeGrid, LLR L5159 Huetter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5161 Greer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5162 Th�mmler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5166 Jaros1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5167 Gelhar, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5168 Hawkinson, PSieve, Srsieve, PrimeGrid, LLR L5169 Atnashev, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5171 Brown1, LLR2, Srsieve, PrimeGrid, LLR L5172 McNary, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5173 Bishop_D, PSieve, Srsieve, PrimeGrid, LLR L5174 Scalise, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5175 Liiv, PSieve, Srsieve, Rieselprime, LLR L5176 Early, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5177 Tapper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5178 Larsson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5179 Okazaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5180 Laluk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5181 Atnashev, LLR2, Srsieve, PrimeGrid, LLR L5183 Winskill1, PSieve, Srsieve, PrimeGrid, 12121search, LLR L5184 Byerly, PSieve, Srsieve, NPLB, LLR L5185 Elgetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5186 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, United, PrimeGrid, LLR L5188 Wong, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5189 Jackson1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5191 Kaiser1, NewPGen, LLR L5192 Anonymous, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5194 Jonas, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5195 Ridgway, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5196 Sielemann, Srsieve, CRUS, LLR L5197 Propper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5198 Elgetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5199 Romaidis, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5200 Terry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5201 Ford, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5202 Molne, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5203 Topham, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5206 Wiseler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5207 Atnashev, LLR2, PrivGfnServer, LLR L5208 Schnur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5209 Hansen1, Srsieve, CRUS, LLR L5210 Brech, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5211 Orpen1, Srsieve, CRUS, LLR L5214 Dinkel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5215 Hawkinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5216 Brazier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5217 Wiseler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5218 Atnashev, LLR2, LLR L5220 Jones4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5223 Vera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5226 Brown1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5227 Nagayama, Srsieve, CRUS, LLR L5228 Jacques, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5229 Karpenko, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5230 Tapper, LLR2, Srsieve, PrimeGrid, LLR L5231 Veit, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5232 Bliedung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5233 Sipes, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5235 Karpinski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5236 Shenton, LLR2, PSieve, Srsieve, PrivGfnServer, PrimeGrid, LLR L5237 Schwieger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5238 Jourdan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5239 Strajt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5242 Krompolc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5246 Vaisanen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5248 Delgado, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5249 Racanelli, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5250 Nakamura, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5253 Burt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5254 Gerstenberger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5256 Snow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5260 Ostaszewski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5261 Kim5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5262 Clark5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5263 Ito2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5264 Cholt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5265 Fleischman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5266 Sheridan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5267 Schnur, LLR2, Srsieve, PrimeGrid, LLR L5269 Clemence, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5270 Hennebert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5272 Conner, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5273 McGonegal, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5276 Schawe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5277 McDevitt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5278 Nose, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5279 Schick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5282 Somer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5283 Hua, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5284 Fischer1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5285 Merrylees, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5286 Reynolds1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5287 Thonon, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5288 Heindl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5290 Cooper5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5294 Hewitt1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5295 Gilliland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5296 Piaive, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5297 Nakamura, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5298 Kaczmarek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5299 Corlatti, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5300 Hajek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5301 Harju, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5302 Davies, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5305 Thanry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5307 Bauer2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5308 Krauss, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5309 Bishop_D, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5310 Hubbard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5311 Reich, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5312 Tyndall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5313 Barnes, PSieve, Srsieve, Rieselprime, LLR L5314 Satoh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5315 Dec, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5316 Walsh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5317 Freeze, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5318 Ruber, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5319 Abbey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5320 Niegocki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5321 Dark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5323 Chan1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5324 Boehm, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5325 Drager, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5326 Deakin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5327 Shenton, LLR2, Srsieve, LLR L5332 Mizusawa, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5334 Jones6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5335 Harvey1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5336 Leblanc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5337 Kawamura1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5338 Deakin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5340 Ogawa, MultiSieve, NewPGen, LLR L5342 Rodenkirch, Srsieve, CRUS, LLR L5343 Tajika, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5344 Lowe1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5345 Johnson8, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5346 Polansky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5347 Whyte, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5348 Adam, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5350 McDevitt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5352 Eklof, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5353 Belolipetskiy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5354 Doornink, NewPGen, OpenPFGW, LLR L5356 Hsu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5358 Gmirkin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5359 Ridgway, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5360 Leitch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5362 Domanov1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5364 Blyth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5365 Racanelli, Srsieve, CRUS, LLR L5366 Michael, Srsieve, CRUS, LLR L5367 Hsu2, Srsieve, CRUS, LLR L5368 Valentino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5370 Piotrowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5372 Vitiello, Srsieve, CRUS, LLR L5373 Baranchikov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5375 Blanchard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5376 Ranch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5377 Yasuhisa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5378 Seeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5379 Smith4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5380 Campulka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5381 Meppiel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5382 Bulanov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5384 Riemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5387 Johns, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5388 Dewar, Srsieve, CRUS, LLR L5389 Doornink, TwinGen, LLR L5390 Lemkau, Srsieve, CRUS, LLR L5392 McDonald4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5393 Lu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5395 Early, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5399 Kolesov, LLR L5400 Hefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5401 Champ, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5402 Greer, LLR2, Gcwsieve, MultiSieve, PrimeGrid, LLR L5403 Slade1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5404 Wiseler, LLR2, Srsieve, PrimeGrid, LLR L5405 Gerstenberger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5406 Jaros, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5407 Mahnken, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5408 Kreth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5409 Lu, Srsieve, CRUS, LLR L5410 Anonymous, Srsieve, CRUS, LLR L5413 David1, Srsieve, CRUS, LLR L5414 Mollerus, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5415 VanHullebusch, Srsieve, CRUS, LLR L5416 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5418 Pollak, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5421 Iwasaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5425 Lichtenwimmer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5426 Gilliland, Srsieve, CRUS, LLR L5427 Hewitt1, LLR2, Srsieve, PrimeGrid, LLR L5429 Meditz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5432 Tatsianenka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5433 Hatanaka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5434 Parsonnet, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5435 Murphy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5437 Rijfers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5438 Tang, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5439 Batalov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5440 McGonegal, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5441 Cherenkov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5442 Moreira, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5443 Venjakob, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5444 Platz, LLR2, Srsieve, PrimeGrid, LLR L5448 Rubin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5449 Reinhardt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5450 Mizusawa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5451 Wilkins, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5452 Morera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5453 Slaets, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5456 Gundermann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5457 Iwasaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5459 Sekanina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5460 Headrick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5461 Anonymous, LLR2, Srsieve, PrimeGrid, LLR L5462 Raimist, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5463 Goforth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5464 Pickering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5465 Hubbard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5466 Furushima, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5467 Tamai1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5469 Bishopp, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5471 Dunchouk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5472 Ready, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5476 Steinbach, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5477 Meador, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5480 Boddener, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5482 Raimist, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5485 Mahnken, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5488 Kecic, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5490 Vasiliu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5492 Slaets, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5493 Liu6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5497 Goetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5499 Osada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5500 Racanelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5501 Seeley, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5502 Floyd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5503 Soule, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5504 Cerny, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5505 Chovanec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5507 Brandt2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5508 Gauch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5509 Nietering, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5512 Akesson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5514 Cavnaugh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5516 Piesker, PSieve, Srsieve, NPLB, LLR L5517 Cavecchia, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5518 Eisler1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5519 Atnashev, LLR2, PSieve, Srsieve, PrivGfnServer, PrimeGrid, LLR L5523 Sekanina, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5524 Matillek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5526 Kickler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5527 Doornink, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5529 Baur1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5530 Matillek, LLR2, Srsieve, PrimeGrid, LLR L5531 Koci, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5532 Morera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5534 Cervelle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5535 Skahill, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5536 Bennett1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5537 Schafer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5540 Brown6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5541 Parker, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5543 Lucendo, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5544 Byerly, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5545 Kruse, PSieve, Srsieve, NPLB, LLR L5546 Steinwedel, PSieve, Srsieve, NPLB, LLR L5547 Hoonoki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5548 Steinberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5549 Zhang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5550 Provencher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5551 Marler, PSieve, Srsieve, NPLB, LLR L5553 DAmico, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5554 Lucendo, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5555 Parangalan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5556 Javens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5557 Drake, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5558 Lee7, LLR2, Srsieve, PrimeGrid, LLR L5559 Roberts, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5560 Amberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5562 Cheung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5563 Akesson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5564 Lee7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5565 Bailey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5566 Latge, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5567 Marshall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5568 Schioler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5569 Michael, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5570 Arnold, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5571 Williams7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5572 Sveen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5573 Friedrichsen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5574 Laboisne, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5575 Blanchard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5576 Amorim, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5578 Jablonski1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5579 Cox2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5580 Ivanek1, Srsieve, CRUS, LLR L5581 Pickles, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5582 Einvik, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5583 Tanaka3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5584 Barr, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5585 Faith, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5586 Vultur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5587 AverayJones, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5588 Shi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5589 Kupka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5590 Schumacher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5592 Shintani, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5594 Brown7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5595 Hyvonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5596 Kozisek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5598 Rodermond, PSieve, Srsieve, NPLB, LLR L5599 Jayaputera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5600 Steinberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5601 Sato1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5606 Clark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5607 Rodermond, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5608 Pieritz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5609 Sielemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5610 Katzur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5611 Smith13, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5612 Lugowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5613 Delisle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5614 Becker2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5615 Dodd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5616 Miller7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5618 Wilson4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5619 Piotrowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5620 He, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5621 Millerick, LLR2, Srsieve, PrimeGrid, LLR L5624 Farrow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5625 Sellsted, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5626 Clark, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5627 Bulanov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5629 Dickinson, Srsieve, CRUS, LLR L5630 Orpen1, LLR L5631 Mittelstadt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5632 Marler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5634 Gao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5636 Santosa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5637 Bestor, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5638 Piskun, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5639 Cavecchia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5640 Xu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5641 Kwok, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5643 Fisher1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5645 Orpen1, SRBase, LLR L5646 Dickey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5647 Soraku, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5648 York, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5649 Dietsch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5650 Ketamino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5651 Lexut, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5652 Wilson5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5653 Beck1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5654 DeJesus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5655 Hoffman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5656 McAdams, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5657 Alden, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5658 Sloan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5660 Andrews2, LLR L5662 OMalley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5663 Li5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5666 Wendelboe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5668 Finn, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5669 Song, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5670 Heindl1, Srsieve, CRUS, LLR L5671 Rauh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5673 Lepri, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5676 Fnasek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5679 Shane, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5683 Glatte, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5685 Bestor, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5686 Pistorius, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5693 Huan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5694 Petersen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5695 Steinberg, NewPGen, LLR L5698 Stenschke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5703 Koudelka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5704 Hampicke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5705 Wharton, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5706 Wallbaum, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5710 Hass, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5714 Loucks, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5715 Calvin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5717 Natividad, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5720 Trigueiro, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5724 Pilz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5725 Gingrich1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5726 Noxe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5727 Headrick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5732 Monroe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5735 Kobrzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5736 Riva, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5738 Schaeffer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5740 Chu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5742 Steinmetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5745 Saladin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5746 Meister1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5747 Pettit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5748 Norbert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5749 Gahan, LLR2, LLR L5750 Shi, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5752 Wissel, LLR L5754 Abad, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5755 Kwiatkowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5756 Wei, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5758 Bishop1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5759 Benz1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5760 West, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5761 Sawyer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5762 Liskay, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5763 Williams7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5764 Tirkkonen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5765 Propper, Gcwsieve, LLR L5766 Takahashi2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5767 Xu2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5768 Lewis2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5769 Welsh1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5770 Silva1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5771 Becker-Bergemann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5772 Tarson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5773 Lugowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5774 Chambers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5775 Garambois, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5776 Anonymous, LLR2, PSieve, Srsieve, United, PrimeGrid, LLR L5777 New, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5778 Sarok, Srsieve, CRUS, LLR L5779 Wakeland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5780 Blanchard, Srsieve, CRUS, LLR L5781 Cesarini, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5782 Kang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5783 Bishop1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5784 Coplin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5785 Kelley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5786 Madarasz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5787 Johnson10, Srsieve, CRUS, LLR L5788 Gordon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5789 Williams8, LLR L5790 Kolencik, Srsieve, CRUS, LLR L5791 Rindahl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5792 Puada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5793 Wang5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5794 Morgan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5795 VandeVelde, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5796 Hall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5797 Ivanovski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5798 Schoeberl, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5799 Lehmann1, LLR2, Srsieve, PrimeGrid, LLR L5800 Geiger1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5801 Rozkosz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5802 Borgerding, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5803 Kwok, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5804 Bowe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5805 Belozersky, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5806 Georgell, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5807 Krauss, Srsieve, PrimeGrid, PRST, LLR L5808 Propper, Batalov, PSieve, Srsieve, LLR L5809 Zhao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5810 Meister1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5811 Dettweiler, LLR2, Srsieve, CRUS, LLR L5812 Song, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5813 Griffiths, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5814 Chodzinski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5815 Huerta, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5816 Guenter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5817 Kilstromer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5818 Belozersky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5819 Schmidt2, LLR2, PSieve, Srsieve, NPLB, LLR L5820 Hoonoki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5821 Elmore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5822 Kulbanau, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5823 Xu1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR M Morain MM Morii O Oakes p3 Dohmen, OpenPFGW p8 Caldwell, OpenPFGW p12 Water, OpenPFGW p16 Heuer, OpenPFGW p21 Anderson, Robinson, OpenPFGW p44 Broadhurst, OpenPFGW p49 Berg, OpenPFGW p54 Broadhurst, Water, OpenPFGW p58 Glover, Oakes, OpenPFGW p65 DavisK, Kuosa, OpenPFGW p85 Marchal, Carmody, Kuosa, OpenPFGW p102 Frind, Underwood, OpenPFGW p137 Rodenkirch, MultiSieve, OpenPFGW p148 Yama, Noda, Nohara, NewPGen, MatGFN, PRP, OpenPFGW p155 DavisK, NewPGen, OpenPFGW p158 Paridon, NewPGen, OpenPFGW p168 Cami, OpenPFGW p170 Wu_T, Primo, OpenPFGW p189 Bohanon, LLR, OpenPFGW p193 Irvine, Broadhurst, Primo, OpenPFGW p199 Broadhurst, NewPGen, OpenPFGW p235 Bedwell, OpenPFGW p236 Cooper, NewPGen, PRP, OpenPFGW p247 Bonath, Srsieve, CRUS, LLR, OpenPFGW p252 Oakes, NewPGen, OpenPFGW p254 Vogel, Srsieve, CRUS, OpenPFGW p255 Siemelink, Srsieve, CRUS, OpenPFGW p257 Siemelink, Srsieve, OpenPFGW p258 Batalov, Srsieve, CRUS, OpenPFGW p259 Underbakke, GenefX64, AthGFNSieve, OpenPFGW p262 Vogel, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p268 Rodenkirch, Srsieve, CRUS, OpenPFGW p269 Zhou, OpenPFGW p271 Dettweiler, Srsieve, CRUS, OpenPFGW p279 Domanov1, Srsieve, Rieselprime, Prime95, OpenPFGW p286 Batalov, Srsieve, OpenPFGW p290 Domanov1, Fpsieve, PrimeGrid, OpenPFGW p292 Dausch, Srsieve, SierpinskiRiesel, OpenPFGW p294 Batalov, EMsieve, PIES, LLR, OpenPFGW p295 Angel, NewPGen, OpenPFGW p296 Kaiser1, Srsieve, LLR, OpenPFGW p297 Broadhurst, Srsieve, NewPGen, LLR, OpenPFGW p300 Gramolin, NewPGen, OpenPFGW p301 Winskill1, Fpsieve, PrimeGrid, OpenPFGW p302 Gasewicz, Fpsieve, PrimeGrid, OpenPFGW p308 DavisK, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p309 Yama, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p310 Hubbard, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p312 Doggart, Fpsieve, PrimeGrid, OpenPFGW p314 Hubbard, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p332 Johnson6, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p334 Goetz, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p338 Tomecko, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p342 Trice, OpenPFGW p346 Burt, Fpsieve, PrimeGrid, OpenPFGW p350 Koen, Gcwsieve, GenWoodall, OpenPFGW p354 Koen, Gcwsieve, OpenPFGW p355 Domanov1, Srsieve, CRUS, OpenPFGW p360 Kinne, Exoo, OpenPFGW p362 Snow, Fpsieve, PrimeGrid, OpenPFGW p363 Batalov, OpenPFGW p364 Batalov, NewPGen, OpenPFGW p366 Demeyer, Siemelink, Srsieve, CRUS, OpenPFGW p373 Morelli, OpenPFGW p378 Batalov, Srsieve, CRUS, LLR, OpenPFGW p379 Batalov, CycloSv, Cyclo, EMsieve, PIES, OpenPFGW p382 Oestlin, NewPGen, OpenPFGW p383 Maloy, OpenPFGW p384 Booker, OpenPFGW p385 Rajala, Srsieve, CRUS, OpenPFGW p387 Zimmerman, GeneFer, AthGFNSieve, PrimeGrid, OpenPFGW p390 Jaworski, Srsieve, Rieselprime, Prime95, OpenPFGW p391 Keiser, NewPGen, OpenPFGW p394 Fukui, MultiSieve, OpenPFGW p395 Angel, Augustin, NewPGen, OpenPFGW p396 Ikisugi, OpenPFGW p397 Rodenkirch, Fpsieve, OpenPFGW p398 Stocker, OpenPFGW p399 Kebbaj, OpenPFGW p403 Bonath, Cksieve, OpenPFGW p405 Propper, Cksieve, OpenPFGW p406 DavisK, Luhn, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p407 Lamprecht, Luhn, OpenPFGW p408 Batalov, PolySieve, OpenPFGW p409 Nielsen1, OpenPFGW p411 Larsson, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p413 Morimoto, OpenPFGW p414 Naimi, OpenPFGW p415 Doornink, TwinGen, OpenPFGW p416 Monnin, LLR2, PrivGfnServer, OpenPFGW p417 Tennant, LLR2, PrivGfnServer, OpenPFGW p418 Sielemann, LLR2, PrivGfnServer, OpenPFGW p419 Bird1, LLR2, PrivGfnServer, OpenPFGW p420 Alex, OpenPFGW p421 Gahan, LLR2, PrivGfnServer, OpenPFGW p422 Kaiser1, PolySieve, OpenPFGW p423 Propper, Batalov, EMsieve, OpenPFGW p425 Propper, MultiSieve, OpenPFGW p426 Schoeler, NewPGen, OpenPFGW p427 Niegocki, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p428 Trunov, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p429 Steinberg, MultiSieve, OpenPFGW p430 Propper, Batalov, NewPGen, OpenPFGW p431 Piesker, Srsieve, CRUS, OpenPFGW p432 Rodermond, Cksieve, OpenPFGW p433 Dettweiler, LLR2, Srsieve, CRUS, OpenPFGW PM Mihailescu SB10 Agafonov, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB11 Sunde, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB12 Szabolcs, Srsieve, SoBSieve, ProthSieve, Ksieve, PrimeGrid, LLR, SB SB6 Sundquist, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB7 Team_Prime_Rib, SoBSieve, ProthSieve, Ksieve, PRP, SB SB8 Gordon, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB9 Hassler, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SG Slowinski, Gage WD Williams, Dubner, Cruncher WM Morain, Williams x13 Renze x16 Doumen, Beelen, Unknown x20 Irvine, Broadhurst, Water x23 Broadhurst, Water, Renze, OpenPFGW, Primo x24 Jarai_Z, Farkas, Csajbok, Kasza, Jarai, Unknown x25 Broadhurst, Water, OpenPFGW, Primo x28 Iskra x33 Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x36 Irvine, Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x38 Broadhurst, OpenPFGW, Primo x39 Broadhurst, Dubner, Keller, OpenPFGW, Primo x44 Zhou, Unknown x45 Batalov, OpenPFGW, Primo, Unknown x46 Otremba, Fpsieve, OpenPFGW, Unknown x47 Szekeres, Magyar, Gevay, Farkas, Jarai, Unknown x48 Asuncion, Allombert, Unknown x49 Facq, Asuncion, Allombert, Unknown x50 Propper, GFNSvCUDA, GeneFer, Unknown Y Young