THE LARGEST KNOWN PRIMES (The 5,000 largest known primes) (selected smaller primes which have comments are included) Originally Compiled by Samuel Yates -- Continued by Chris Caldwell and now maintained by Reginald McLean (Tue Oct 28 06:37:34 UTC 2025) So that I can maintain this database of the 5,000 largest known primes (plus selected smaller primes with 1,000 or more digits), please send any new primes (that are large enough) to: https://t5k.org/bios/submission.php This list in a searchable form (plus information such as how to find large primes and how to prove primality) is available at the interactive web site: https://t5k.org/primes/ See the last pages for information about the provers. The letters after the rank refer to when the prime was submitted. 'a' is this month, 'b' last month... ----- ------------------------------- -------- ----- ---- -------------- rank description digits who year comment ----- ------------------------------- -------- ----- ---- -------------- 1 2^136279841-1 41024320 MP1 2024 Mersenne 52? 2 2^82589933-1 24862048 G16 2018 Mersenne 51? 3 2^77232917-1 23249425 G15 2018 Mersenne 50 4 2^74207281-1 22338618 G14 2016 Mersenne 49 5 2^57885161-1 17425170 G13 2013 Mersenne 48 6a 2524190^2097152+1 13426224 L4245 2025 Generalized Fermat 7 2^43112609-1 12978189 G10 2008 Mersenne 47 8 2^42643801-1 12837064 G12 2009 Mersenne 46 9 516693^2097152-516693^1048576+1 11981518 L4561 2023 Generalized unique 10 465859^2097152-465859^1048576+1 11887192 L4561 2023 Generalized unique 11 2^37156667-1 11185272 G11 2008 Mersenne 45 12 2^32582657-1 9808358 G9 2006 Mersenne 44 13 10223*2^31172165+1 9383761 SB12 2016 14 2^30402457-1 9152052 G9 2005 Mersenne 43 15 4*5^11786358+1 8238312 A2 2024 Generalized Fermat 16 2^25964951-1 7816230 G8 2005 Mersenne 42 17 4052186*69^4052186+1 7451366 A61 2025 Generalized Cullen 18 69*2^24612729-1 7409172 A2 2024 19 2^24036583-1 7235733 G7 2004 Mersenne 41 20 107347*2^23427517-1 7052391 A2 2024 21e 3*2^23157875-1 6971216 L5171 2025 22 3843236^1048576+1 6904556 L6094 2024 Generalized Fermat 23 3*2^22103376-1 6653780 L6075 2024 24 1963736^1048576+1 6598776 L4245 2022 Generalized Fermat 25 1951734^1048576+1 6595985 L5583 2022 Generalized Fermat 26 202705*2^21320516+1 6418121 L5181 2021 27 2^20996011-1 6320430 G6 2003 Mersenne 40 28 1059094^1048576+1 6317602 L4720 2018 Generalized Fermat 29 3*2^20928756-1 6300184 L5799 2023 30 919444^1048576+1 6253210 L4286 2017 Generalized Fermat 31 81*2^20498148+1 6170560 L4965 2023 Generalized Fermat 32 7*2^20267500+1 6101127 L4965 2022 Divides GF(20267499,12) [GG] 33 4*5^8431178+1 5893142 A2 2024 Generalized Fermat 34 168451*2^19375200+1 5832522 L4676 2017 35 69*2^19374980-1 5832452 L4965 2022 36 3*2^18924988-1 5696990 L5530 2022 37 69*2^18831865-1 5668959 L4965 2021 38 2*3^11879700+1 5668058 A2 2024 39 97139*2^18397548-1 5538219 L4965 2023 40 7*2^18233956+1 5488969 L4965 2020 Divides Fermat F(18233954) 41 3*2^18196595-1 5477722 L5461 2022 42 4*3^11279466+1 5381674 A2 2024 Generalized Fermat 43 3*2^17748034-1 5342692 L5404 2021 44 123447^1048576-123447^524288+1 5338805 L4561 2017 Generalized unique 45 3622*5^7558139-1 5282917 L4965 2022 46 7*6^6772401+1 5269954 L4965 2019 47 2*3^10852677+1 5178044 L4965 2023 Divides Phi(3^10852674,2) 48 8508301*2^17016603-1 5122515 L4784 2018 Woodall 49 8*10^5112847-1 5112848 A19 2024 Near-repdigit 50 13*2^16828072+1 5065756 A2 2023 51 3*2^16819291-1 5063112 L5230 2021 52 5287180*3^10574360-1 5045259 A20 2024 Generalized Woodall 53 3*2^16408818+1 4939547 L5171 2020 Divides GF(16408814,3), GF(16408817,5) 54 2329989*2^16309923-1 4909783 A20 2024 Generalized Woodall 55 69*2^15866556-1 4776312 L4965 2021 56 2036*3^10009192+1 4775602 A2 2024 57 2525532*73^2525532+1 4705888 L5402 2021 Generalized Cullen 58 1419499*2^15614489-1 4700436 A20 2024 Generalized Woodall 59 11*2^15502315+1 4666663 L4965 2023 Divides GF(15502313,10) [GG] 60 (10^2332974+1)^2-2 4665949 p405 2024 61 37*2^15474010+1 4658143 L4965 2022 62 93839*2^15337656-1 4617100 L4965 2022 63 2^15317227+2^7658614+1 4610945 L5123 2020 Gaussian Mersenne norm 41?, generalized unique 64 13*2^15294536+1 4604116 A2 2023 65 6*5^6546983+1 4576146 L4965 2020 66 4788920*3^9577840-1 4569798 A20 2024 Generalized Woodall 67 31*2^15145093-1 4559129 A2 2025 68 69*2^14977631-1 4508719 L4965 2021 69 192971*2^14773498-1 4447272 L4965 2021 70 4*3^9214845+1 4396600 A2 2024 71 9145334*3^9145334+1 4363441 A6 2023 Generalized Cullen 72 4*5^6181673-1 4320805 L4965 2022 73 396101*2^14259638-1 4292585 A20 2024 Generalized Woodall 74 6962*31^2863120-1 4269952 L5410 2020 75 37*2^14166940+1 4264676 L4965 2022 76 99739*2^14019102+1 4220176 L5008 2019 77 69*2^13832885-1 4164116 L4965 2022 78e 9562633#+1 4151498 p451 2025 Primorial 79 404849*2^13764867+1 4143644 L4976 2021 Generalized Cullen 80 25*2^13719266+1 4129912 L4965 2022 Generalized Fermat 81 81*2^13708272+1 4126603 L4965 2022 Generalized Fermat 82 2740879*2^13704395-1 4125441 L4976 2019 Generalized Woodall 83 479216*3^8625889-1 4115601 L4976 2019 Generalized Woodall 84f 13*2^13584543-1 4089357 A2 2025 85 31*2^13514933-1 4068402 A2 2025 86 143332^786432-143332^393216+1 4055114 L4506 2017 Generalized unique 87 81*2^13470584+1 4055052 L4965 2022 Generalized Fermat 88 2^13466917-1 4053946 G5 2001 Mersenne 39 89 5778486*5^5778486+1 4038996 A6 2024 Generalized Cullen 90 9*2^13334487+1 4014082 L4965 2020 Divides GF(13334485,3) 91 206039*2^13104952-1 3944989 L4965 2021 92 2805222*5^5610444+1 3921539 L4972 2019 Generalized Cullen 93 5128*22^2919993+1 3919869 L5811 2024 94 19249*2^13018586+1 3918990 SB10 2007 95 2293*2^12918431-1 3888839 L4965 2021 96 81*2^12804541+1 3854553 L4965 2022 97 67612*5^5501582+1 3845446 A60 2025 98b 18099898^524288+1 3805113 x50 2025 Generalized Fermat 99a 17177670^524288+1 3793205 L5186 2025 Generalized Fermat 100c 16211276^524288+1 3780021 L6006 2025 Generalized Fermat 101d 15958750^524288+1 3776446 L5639 2025 Generalized Fermat 102d 15852200^524288+1 3774921 L5526 2025 Generalized Fermat 103 4*5^5380542+1 3760839 L4965 2023 Generalized Fermat 104 13520762^524288+1 3738699 L6221 2025 Generalized Fermat 105 13427472^524288+1 3737122 L5775 2025 Generalized Fermat 106 9*2^12406887+1 3734847 L4965 2020 Divides GF(12406885,3) 107 12900356^524288+1 3728004 L5639 2025 Generalized Fermat 108 12693488^524288+1 3724323 L6096 2025 Generalized Fermat 109 11937916^524288+1 3710349 L6080 2024 Generalized Fermat 110 7*2^12286041-1 3698468 L4965 2023 111 10913140^524288+1 3689913 L6043 2024 Generalized Fermat 112 69*2^12231580-1 3682075 L4965 2021 113 27*2^12184319+1 3667847 L4965 2021 114 9332124^524288+1 3654278 L5025 2024 Generalized Fermat 115 8630170^524288+1 3636472 L5543 2024 Generalized Fermat 116 863282*5^5179692-1 3620456 A20 2024 Generalized Woodall 117 670490*12^3352450-1 3617907 A20 2024 Generalized Woodall 118 4*3^7578378+1 3615806 A2 2024 Generalized Fermat 119 11*2^11993994-1 3610554 A2 2024 120 3761*2^11978874-1 3606004 L4965 2022 121 95*2^11954552-1 3598681 A29 2024 122 259072*5^5136295-1 3590122 A45 2024 123 3*2^11895718-1 3580969 L4159 2015 124 37*2^11855148+1 3568757 L4965 2022 125 6339004^524288+1 3566218 L1372 2023 Generalized Fermat 126 763795*6^4582771+1 3566095 A6 2023 Generalized Cullen 127 5897794^524288+1 3549792 x50 2022 Generalized Fermat 128 3*2^11731850-1 3531640 L4103 2015 129 69*2^11718455-1 3527609 L4965 2020 130 8629*2^11708579-1 3524638 A2 2024 131 41*2^11676439+1 3514960 L4965 2022 132 4896418^524288+1 3507424 L4245 2022 Generalized Fermat 133 81*2^11616017+1 3496772 L4965 2022 134 69*2^11604348-1 3493259 L4965 2020 135 4450871*6^4450871+1 3463458 L5765 2023 Generalized Cullen 136 9*2^11500843+1 3462100 L4965 2020 Divides GF(11500840,12) 137 3*2^11484018-1 3457035 L3993 2014 138 193997*2^11452891+1 3447670 L4398 2018 139 29914*5^4930904+1 3446559 A41 2024 140 3638450^524288+1 3439810 L4591 2020 Generalized Fermat 141 9221*2^11392194-1 3429397 L5267 2021 142 9*2^11366286+1 3421594 L4965 2020 Generalized Fermat 143 5*2^11355764-1 3418427 L4965 2021 144 732050*6^4392301+1 3417881 L5765 2023 Generalized Cullen 145 3214654^524288+1 3411613 L4309 2019 Generalized Fermat 146 632760!-1 3395992 A43 2024 Factorial 147 146561*2^11280802-1 3395865 L5181 2020 148 51208*5^4857576+1 3395305 A30 2024 149 2985036^524288+1 3394739 L4752 2019 Generalized Fermat 150 4591*2^11270837-1 3392864 A2 2025 151 6929*2^11255424-1 3388225 L4965 2022 152 2877652^524288+1 3386397 L4250 2019 Generalized Fermat 153 2788032^524288+1 3379193 L4584 2019 Generalized Fermat 154 2733014^524288+1 3374655 L4929 2019 Generalized Fermat 155 9*2^11158963+1 3359184 L4965 2020 Divides GF(11158962,5) 156 9271*2^11134335-1 3351773 L4965 2021 157 136804*5^4777253-1 3339162 A23 2024 158 2312092^524288+1 3336572 L4720 2018 Generalized Fermat 159 987324*48^1974648-1 3319866 A20 2024 Generalized Woodall 160 2061748^524288+1 3310478 L4783 2018 Generalized Fermat 161 1880370^524288+1 3289511 L4201 2018 Generalized Fermat 162 27*2^10902757-1 3282059 L4965 2022 163 3*2^10829346+1 3259959 L3770 2014 Divides GF(10829343,3), GF(10829345,5) 164 11*2^10803449+1 3252164 L4965 2022 Divides GF(10803448,6) 165 11*2^10797109+1 3250255 L4965 2022 166 7*2^10612737-1 3194754 L4965 2022 167 7351117#+1 3191401 p448 2024 Primorial 168 37*2^10599476+1 3190762 L4965 2022 Divides GF(10599475,10) 169 5*2^10495620-1 3159498 L4965 2021 170 3^6608603-3^3304302+1 3153105 L5123 2023 Generalized unique 171 5*2^10349000-1 3115361 L4965 2021 172 844833^524288-844833^262144+1 3107335 L4506 2017 Generalized unique 173c 17*2^10248660-1 3085156 A2 2025 174 52922*5^4399812-1 3075342 A1 2023 175 712012^524288-712012^262144+1 3068389 L4506 2017 Generalized unique 176 177742*5^4386703-1 3066180 L5807 2023 177 4*3^6402015+1 3054539 A2 2024 178 874208*54^1748416-1 3028951 L4976 2019 Generalized Woodall 179 475856^524288+1 2976633 L3230 2012 Generalized Fermat 180 2*3^6236772+1 2975697 L4965 2022 181 15*2^9830108+1 2959159 A2 2023 182 9*2^9778263+1 2943552 L4965 2020 183 198*558^1061348+1 2915138 A28 2024 184 1806676*41^1806676+1 2913785 L4668 2018 Generalized Cullen 185 356926^524288+1 2911151 L3209 2012 Generalized Fermat 186 341112^524288+1 2900832 L3184 2012 Generalized Fermat 187 213988*5^4138363-1 2892597 L5621 2022 188 43*2^9596983-1 2888982 L4965 2022 189 121*2^9584444+1 2885208 L5183 2020 Generalized Fermat 190 15*2^9482269-1 2854449 A2 2024 191 6533299#-1 2835864 p447 2024 Primorial 192 11*2^9381365+1 2824074 L4965 2020 Divides GF(9381364,6) 193 15*2^9312889+1 2803461 L4965 2023 194f 97*2^9305542+1 2801250 A2 2025 195f 93*2^9235048+1 2780029 A2 2025 196 49*2^9187790+1 2765803 L4965 2022 Generalized Fermat 197 6369619#+1 2765105 p445 2024 Primorial 198 27653*2^9167433+1 2759677 SB8 2005 199 6354977#-1 2758832 p446 2024 Primorial 200 90527*2^9162167+1 2758093 L1460 2010 201 6795*2^9144320-1 2752719 L4965 2021 202 31*2^9088085-1 2735788 A2 2024 203 75*2^9079482+1 2733199 L4965 2023 204 1323365*116^1323365+1 2732038 L4718 2018 Generalized Cullen 205 57*2^9075622-1 2732037 L4965 2022 206 10^2718281-5*10^1631138-5*10^1087142-1 2718281 p423 2024 Palindrome 207 63838*5^3887851-1 2717497 L5558 2022 208 13*2^8989858+1 2706219 L4965 2020 209a 271357*2^8943013-1 2692121 A33 2025 210 4159*2^8938471-1 2690752 L4965 2022 211 273809*2^8932416-1 2688931 L1056 2017 212 93*2^8898285+1 2678653 A2 2024 213 2*3^5570081+1 2657605 L4965 2020 Divides Phi(3^5570081,2) [g427] 214 25*2^8788628+1 2645643 L5161 2021 Generalized Fermat 215 2038*366^1028507-1 2636562 L2054 2016 216 64598*5^3769854-1 2635020 L5427 2022 217 63*2^8741225+1 2631373 A2 2024 218 8*785^900325+1 2606325 L4786 2022 219 17*2^8636199+1 2599757 L5161 2021 Divides GF(8636198,10) 220 75898^524288+1 2558647 p334 2011 Generalized Fermat 221 25*2^8456828+1 2545761 L5237 2021 Divides GF(8456827,12), generalized Fermat 222 39*2^8413422+1 2532694 L5232 2021 223 31*2^8348000+1 2513000 L5229 2021 224 27*2^8342438-1 2511326 L3483 2021 225d 17*2^8330892-1 2507850 A2 2025 226 3687*2^8261084-1 2486838 L4965 2021 227 101*2^8152967+1 2454290 A2 2023 Divides GF(8152966,12) 228d 9*2^8128075-1 2446796 L3345 2025 229 273662*5^3493296-1 2441715 L5444 2021 230 81*2^8109236+1 2441126 L4965 2022 Generalized Fermat 231 11*2^8103463+1 2439387 L4965 2020 Divides GF(8103462,12) 232 102818*5^3440382-1 2404729 L5427 2021 233d 9*2^7979119-1 2401956 L3345 2025 234 11*2^7971110-1 2399545 L2484 2019 235 27*2^7963247+1 2397178 L5161 2021 Divides Fermat F(7963245) 236 3177*2^7954621-1 2394584 L4965 2021 237 39*2^7946769+1 2392218 L5226 2021 Divides GF(7946767,12) 238 7*6^3072198+1 2390636 L4965 2019 239 3765*2^7904593-1 2379524 L4965 2021 240 29*2^7899985+1 2378134 L5161 2021 Divides GF(7899984,6) 241 5113*2^7895471-1 2376778 L4965 2022 242 861*2^7895451-1 2376771 L4965 2021 243 75*2^7886683+1 2374131 A2 2023 244 2661*2^7861390-1 2366518 A2 2024 245c 21*2^7838882-1 2359740 A2 2025 246c 30397*2^7838120+1 2359514 A71 2025 247 99*2^7830910+1 2357341 A2 2024 248 28433*2^7830457+1 2357207 SB7 2004 249 2589*2^7803339-1 2349043 L4965 2022 250 59*2^7792307+1 2345720 A2 2024 251 101*2^7784453+1 2343356 A2 2024 252 95*2^7778585+1 2341590 A2 2024 253 8401*2^7767655-1 2338302 L4965 2023 254 9693*2^7767343-1 2338208 A2 2023 255 5*2^7755002-1 2334489 L4965 2021 256 2945*2^7753232-1 2333959 L4965 2022 257 2*836^798431+1 2333181 L4294 2024 258 63*2^7743186+1 2330934 A2 2024 259 2545*2^7732265-1 2327648 L4965 2021 260 5539*2^7730709-1 2327180 L4965 2021 261 4817*2^7719584-1 2323831 L4965 2021 262 183*558^842752+1 2314734 A28 2024 263 1341174*53^1341174+1 2312561 L4668 2017 Generalized Cullen 264 9467*2^7680034-1 2311925 L4965 2022 265 45*2^7661004+1 2306194 L5200 2020 266 15*2^7619838+1 2293801 L5192 2020 267c 3645*2^7610003-1 2290843 A2 2025 268 3597*2^7580693-1 2282020 L4965 2021 269 5256037#+1 2281955 p444 2024 Primorial 270a 38118498221*2^7552807+1 2273633 L5327 2025 271 3129*2^7545557-1 2271443 L4965 2023 272 7401*2^7523295-1 2264742 L4965 2021 273 45*2^7513661+1 2261839 L5179 2020 274 558640^393216-558640^196608+1 2259865 L4506 2017 Generalized unique 275f 2739*2^7483537-1 2252773 A2 2025 276 9*2^7479919-1 2251681 L3345 2023 277 1875*2^7474308-1 2249995 L4965 2022 278 69*2^7452023+1 2243285 L4965 2023 Divides GF(7452020,3) [GG] 279 1281979*2^7447178+1 2241831 A8 2023 280f 9107*2^7417464-1 2232884 A2 2025 281 4*5^3189669-1 2229484 L4965 2022 282d 19*2^7383785-1 2222743 A2 2025 283 29*2^7374577+1 2219971 L5169 2020 Divides GF(7374576,3) 284 2653*2^7368343-1 2218096 A2 2024 285 21555*2^7364128-1 2216828 A11 2024 286 3197*2^7359542-1 2215447 L4965 2022 287 109838*5^3168862-1 2214945 L5129 2020 288 95*2^7354869+1 2214039 A2 2023 289 101*2^7345194-1 2211126 L1884 2019 290 85*2^7333444+1 2207589 A2 2023 291 15*2^7300254+1 2197597 L5167 2020 292 422429!+1 2193027 p425 2022 Factorial 293 1759*2^7284439-1 2192838 L4965 2021 294 1909683*14^1909683+1 2188748 L5765 2023 Generalized Cullen 295 737*2^7269322-1 2188287 L4665 2017 296 6909*2^7258896-1 2185150 A2 2024 297 93*2^7241494+1 2179909 A2 2023 298 118568*5^3112069+1 2175248 L690 2020 299 4215*2^7221386-1 2173858 A2 2024 300 40*257^901632+1 2172875 A11 2024 301 1685*2^7213108-1 2171366 A2 2025 302 580633*2^7208783-1 2170066 A11 2024 303 6039*2^7207973-1 2169820 L4965 2021 304b 1871*2^7207954-1 2169814 L6283 2025 305 502573*2^7181987-1 2162000 L3964 2014 306 402539*2^7173024-1 2159301 L3961 2014 307 3343*2^7166019-1 2157191 L1884 2016 308 4137*2^7132569-1 2147121 A2 2025 309 161041*2^7107964+1 2139716 L4034 2015 310 294*213^918952-1 2139672 L5811 2023 311d 17*2^7101254-1 2137692 A2 2025 312 27*2^7046834+1 2121310 L3483 2018 313 1759*2^7046791-1 2121299 L4965 2021 314 327*2^7044001-1 2120459 L4965 2021 315 5*2^7037188-1 2118406 L4965 2021 316 3*2^7033641+1 2117338 L2233 2011 Divides GF(7033639,3) 317 625783*2^7031319-1 2116644 A11 2024 318 33661*2^7031232+1 2116617 SB11 2007 319 237804^393216-237804^196608+1 2114016 L4506 2017 Generalized unique 320 207494*5^3017502-1 2109149 L5083 2020 321 15*2^6993631-1 2105294 L4965 2021 322 8943501*2^6972593-1 2098967 L466 2022 323 6020095*2^6972593-1 2098967 L466 2022 324 2^6972593-1 2098960 G4 1999 Mersenne 38 325 273*2^6963847-1 2096330 L4965 2022 326 6219*2^6958945-1 2094855 L4965 2021 327 51*2^6945567+1 2090826 L4965 2020 Divides GF(6945564,12) [p286] 328e 8*10^2084563-1 2084564 A2 2025 Near-repdigit 329 3323*2^6921196-1 2083492 A2 2024 330 238694*5^2979422-1 2082532 L5081 2020 331 4*72^1119849-1 2079933 L4444 2016 332e 129*2^6900230+1 2077179 L5517 2025 333 33*2^6894190-1 2075360 L4965 2021 334 4778027#-1 2073926 p442 2024 Primorial 335e 105*2^6884697+1 2072503 L5178 2025 336 2345*2^6882320-1 2071789 L4965 2022 337 57*2^6857990+1 2064463 A2 2023 338 146264*5^2953282-1 2064261 L1056 2020 339a 72071732^262144+1 2059866 L5543 2025 Generalized Fermat 340a 71737620^262144+1 2059337 L5543 2025 Generalized Fermat 341a 71380700^262144+1 2058770 L6015 2025 Generalized Fermat 342 69*2^6838971-1 2058738 L5037 2020 343 35816*5^2945294-1 2058677 L5076 2020 344a 71107798^262144+1 2058333 L5370 2025 Generalized Fermat 345 127*2^6836153-1 2057890 L1862 2018 346f 105*2^6835099+1 2057572 L5517 2025 347b 70520422^262144+1 2057389 L5057 2025 Generalized Fermat 348b 70349734^262144+1 2057113 L4400 2025 Generalized Fermat 349 19*2^6833086+1 2056966 L5166 2020 350b 69844790^262144+1 2056293 L4387 2025 Generalized Fermat 351b 69810332^262144+1 2056237 L4387 2025 Generalized Fermat 352b 69290228^262144+1 2055386 L4387 2025 Generalized Fermat 353b 69170386^262144+1 2055189 L5700 2025 Generalized Fermat 354c 68717884^262144+1 2054441 L6278 2025 Generalized Fermat 355c 68000464^262144+1 2053246 L4670 2025 Generalized Fermat 356c 67886950^262144+1 2053056 L6266 2025 Generalized Fermat 357c 67673558^262144+1 2052698 L5755 2025 Generalized Fermat 358c 67535128^262144+1 2052465 L5755 2025 Generalized Fermat 359c 67433562^262144+1 2052293 L5697 2025 Generalized Fermat 360c 67167678^262144+1 2051844 L5416 2025 Generalized Fermat 361d 67141518^262144+1 2051799 L4477 2025 Generalized Fermat 362d 67062340^262144+1 2051665 L5057 2025 Generalized Fermat 363d 66498472^262144+1 2050704 L6085 2025 Generalized Fermat 364d 66342922^262144+1 2050437 L5639 2025 Generalized Fermat 365d 66266188^262144+1 2050305 L5127 2025 Generalized Fermat 366 65*2^6810465+1 2050157 A2 2023 367 40597*2^6808509-1 2049571 L3749 2013 368 283*2^6804731-1 2048431 L2484 2020 369e 65136498^262144+1 2048348 L5639 2025 Generalized Fermat 370e 64989720^262144+1 2048091 L4477 2025 Generalized Fermat 371f 64074894^262144+1 2046477 L5696 2025 Generalized Fermat 372f 64010198^262144+1 2046362 L5361 2025 Generalized Fermat 373f 63833640^262144+1 2046047 L6006 2025 Generalized Fermat 374f 8*10^2045966-1 2045967 A2 2025 Near-repdigit 375f 63784742^262144+1 2045960 L4387 2025 Generalized Fermat 376f 63558122^262144+1 2045555 L6255 2025 Generalized Fermat 377f 63448958^262144+1 2045359 L5019 2025 Generalized Fermat 378f 63286690^262144+1 2045068 L4387 2025 Generalized Fermat 379f 62767176^262144+1 2044129 L5639 2025 Generalized Fermat 380f 62747994^262144+1 2044095 L5639 2025 Generalized Fermat 381 1861709*2^6789999+1 2044000 L5191 2020 382 5781*2^6789459-1 2043835 L4965 2021 383f 62311952^262144+1 2043301 L5156 2025 Generalized Fermat 384f 62199610^262144+1 2043095 L5697 2025 Generalized Fermat 385f 62152830^262144+1 2043010 L5639 2025 Generalized Fermat 386f 62136706^262144+1 2042980 L5639 2025 Generalized Fermat 387 8435*2^6786180-1 2042848 L4965 2021 388 61238184^262144+1 2041322 L5526 2025 Generalized Fermat 389f 119*2^6777781+1 2040318 L5517 2025 390 59145944^262144+1 2037364 L4591 2025 Generalized Fermat 391 58936230^262144+1 2036960 L5465 2025 Generalized Fermat 392 58870004^262144+1 2036832 L6238 2025 Generalized Fermat 393 58846688^262144+1 2036787 L4591 2025 Generalized Fermat 394 58333324^262144+1 2035789 L4591 2025 Generalized Fermat 395 58288282^262144+1 2035701 L4526 2025 Generalized Fermat 396 57643582^262144+1 2034435 L4772 2025 Generalized Fermat 397 57594478^262144+1 2034338 L5464 2025 Generalized Fermat 398 57478518^262144+1 2034108 L6085 2025 Generalized Fermat 399 57429230^262144+1 2034011 L5639 2025 Generalized Fermat 400 51*2^6753404+1 2032979 L4965 2020 401 93*2^6750726+1 2032173 A2 2023 402 56303352^262144+1 2031757 L4920 2025 Generalized Fermat 403 56295176^262144+1 2031740 L5378 2025 Generalized Fermat 404 55952434^262144+1 2031045 L5586 2025 Generalized Fermat 405 55892864^262144+1 2030923 L5948 2025 Generalized Fermat 406 69*2^6745775+1 2030683 L4965 2023 407 55702322^262144+1 2030535 L4772 2025 Generalized Fermat 408 55695224^262144+1 2030520 L4387 2025 Generalized Fermat 409 55169618^262144+1 2029441 L6236 2025 Generalized Fermat 410 55007338^262144+1 2029105 L4201 2025 Generalized Fermat 411 54852328^262144+1 2028784 L5375 2025 Generalized Fermat 412 54528918^262144+1 2028111 L5375 2025 Generalized Fermat 413 54044092^262144+1 2027094 L5069 2025 Generalized Fermat 414 53903472^262144+1 2026797 L5543 2025 Generalized Fermat 415 53750036^262144+1 2026473 L4309 2025 Generalized Fermat 416 53616962^262144+1 2026191 L4889 2025 Generalized Fermat 417 53311612^262144+1 2025540 L6235 2025 Generalized Fermat 418c 4681*2^6728157-1 2025381 A2 2025 419 53008094^262144+1 2024890 L6036 2025 Generalized Fermat 420 52648144^262144+1 2024115 L5088 2025 Generalized Fermat 421 52599274^262144+1 2024009 L4776 2025 Generalized Fermat 422 52592976^262144+1 2023995 L5543 2025 Generalized Fermat 423f 117*2^6719464+1 2022763 L5995 2025 424 51992174^262144+1 2022687 L5639 2025 Generalized Fermat 425 51852794^262144+1 2022382 L4387 2025 Generalized Fermat 426 51714136^262144+1 2022077 L4591 2025 Generalized Fermat 427 51283286^262144+1 2021124 L4884 2025 Generalized Fermat 428 51125138^262144+1 2020773 L5543 2025 Generalized Fermat 429 9995*2^6711008-1 2020219 L4965 2021 430 50454356^262144+1 2019269 L5543 2025 Generalized Fermat 431 50449664^262144+1 2019259 L5586 2025 Generalized Fermat 432 50366208^262144+1 2019070 L5275 2025 Generalized Fermat 433 50121532^262144+1 2018516 L4904 2025 Generalized Fermat 434 49536902^262144+1 2017180 L5639 2025 Generalized Fermat 435 49235348^262144+1 2016485 L5543 2025 Generalized Fermat 436 49209090^262144+1 2016424 L5275 2025 Generalized Fermat 437 48055302^262144+1 2013723 L5069 2025 Generalized Fermat 438 47707672^262144+1 2012896 L4939 2025 Generalized Fermat 439 39*2^6684941+1 2012370 L5162 2020 440 47351862^262144+1 2012044 L6204 2025 Generalized Fermat 441 47281922^262144+1 2011876 L5974 2025 Generalized Fermat 442 47255958^262144+1 2011813 L5948 2025 Generalized Fermat 443 6679881*2^6679881+1 2010852 L917 2009 Cullen 444 46831458^262144+1 2010786 L4456 2025 Generalized Fermat 445 46378776^262144+1 2009680 L6178 2025 Generalized Fermat 446 45073202^262144+1 2006429 L6129 2025 Generalized Fermat 447 45007104^262144+1 2006262 L5639 2025 Generalized Fermat 448 44819108^262144+1 2005786 L5632 2025 Generalized Fermat 449 44666524^262144+1 2005397 L5775 2025 Generalized Fermat 450 37*2^6660841-1 2005115 L3933 2014 451 44144624^262144+1 2004059 L5974 2024 Generalized Fermat 452 44030166^262144+1 2003764 L5974 2024 Generalized Fermat 453 43330794^262144+1 2001941 L5588 2024 Generalized Fermat 454 39*2^6648997+1 2001550 L5161 2020 455 42781592^262144+1 2000489 L5460 2024 Generalized Fermat 456 10^2000007-10^1127194-10^872812-1 2000007 p423 2024 Palindrome 457 10^2000005-10^1051046-10^948958-1 2000005 p423 2024 Palindrome 458 304207*2^6643565-1 1999918 L3547 2013 459 42474318^262144+1 1999668 L5416 2024 Generalized Fermat 460 69*2^6639971-1 1998833 L5037 2020 461 42006214^262144+1 1998406 L5512 2024 Generalized Fermat 462 6471*2^6631137-1 1996175 L4965 2021 463 40460760^262144+1 1994139 L5460 2024 Generalized Fermat 464 39896728^262144+1 1992541 L6047 2024 Generalized Fermat 465 39164812^262144+1 1990433 L6038 2024 Generalized Fermat 466f 8*10^1990324-1 1990325 A2 2025 Near-repdigit 467 38786786^262144+1 1989328 L6035 2024 Generalized Fermat 468 38786700^262144+1 1989328 L4245 2024 Generalized Fermat 469 38738332^262144+1 1989186 L6033 2024 Generalized Fermat 470 9935*2^6603610-1 1987889 L4965 2023 471 38214850^262144+1 1987637 L5412 2024 Generalized Fermat 472 38108804^262144+1 1987321 L4764 2024 Generalized Fermat 473 37986650^262144+1 1986955 L6027 2024 Generalized Fermat 474 37787006^262144+1 1986355 L4622 2024 Generalized Fermat 475 37700936^262144+1 1986096 L5416 2024 Generalized Fermat 476 37689944^262144+1 1986063 L5416 2024 Generalized Fermat 477 37349040^262144+1 1985028 L5543 2024 Generalized Fermat 478 37047448^262144+1 1984105 L5746 2024 Generalized Fermat 479 36778106^262144+1 1983274 L5998 2024 Generalized Fermat 480 36748386^262144+1 1983182 L5998 2024 Generalized Fermat 481 36717890^262144+1 1983088 L4760 2024 Generalized Fermat 482 36210400^262144+1 1981503 L6006 2024 Generalized Fermat 483 35196086^262144+1 1978269 L5543 2024 Generalized Fermat 484 34443124^262144+1 1975807 L5639 2024 Generalized Fermat 485 33798406^262144+1 1973655 L4656 2024 Generalized Fermat 486 33491530^262144+1 1972617 L5030 2024 Generalized Fermat 487 33061466^262144+1 1971146 L5275 2024 Generalized Fermat 488 32497152^262144+1 1969186 L5586 2024 Generalized Fermat 489 32171198^262144+1 1968038 L4892 2024 Generalized Fermat 490 32067848^262144+1 1967672 L4684 2024 Generalized Fermat 491 31371484^262144+1 1965172 L5847 2024 Generalized Fermat 492 30941436^262144+1 1963601 L4362 2024 Generalized Fermat 493 554051*2^6517658-1 1962017 L5811 2023 494 115*2^6515714+1 1961428 L5161 2025 495 29645358^262144+1 1958729 L5024 2023 Generalized Fermat 496 29614286^262144+1 1958610 L5870 2023 Generalized Fermat 497 1319*2^6506224-1 1958572 L4965 2021 498 3163*2^6504943-1 1958187 L4965 2023 499 29445800^262144+1 1957960 L4726 2023 Generalized Fermat 500 322498*5^2800819-1 1957694 L4954 2019 501 29353924^262144+1 1957604 L4387 2023 Generalized Fermat 502 99*2^6502814+1 1957545 A2 2023 503 29333122^262144+1 1957524 L5869 2023 Generalized Fermat 504 88444*5^2799269-1 1956611 L3523 2019 505 29097000^262144+1 1956604 L5375 2023 Generalized Fermat 506 28342134^262144+1 1953611 L5864 2023 Generalized Fermat 507 28259150^262144+1 1953277 L4898 2023 Generalized Fermat 508c 68311*2^6487924+1 1953065 L5327 2025 509 28004468^262144+1 1952246 L5586 2023 Generalized Fermat 510 27789002^262144+1 1951367 L5860 2023 Generalized Fermat 511 13*2^6481780+1 1951212 L4965 2020 512 27615064^262144+1 1950652 L4201 2023 Generalized Fermat 513 21*2^6468257-1 1947141 L4965 2021 514 26640150^262144+1 1946560 L5839 2023 Generalized Fermat 515 26128000^262144+1 1944350 L5821 2023 Generalized Fermat 516 25875054^262144+1 1943243 L5070 2023 Generalized Fermat 517 25690360^262144+1 1942427 L5809 2023 Generalized Fermat 518 25635940^262144+1 1942186 L4307 2023 Generalized Fermat 519 25461468^262144+1 1941408 L4210 2023 Generalized Fermat 520 25333402^262144+1 1940834 L5802 2023 Generalized Fermat 521 24678636^262144+1 1937853 L5586 2023 Generalized Fermat 522 138514*5^2771922+1 1937496 L4937 2019 523 24429706^262144+1 1936699 L4670 2023 Generalized Fermat 524 33*2^6432160-1 1936275 L4965 2022 525 15*2^6429089-1 1935350 L4965 2021 526 23591460^262144+1 1932724 L5720 2023 Generalized Fermat 527 23479122^262144+1 1932181 L5773 2023 Generalized Fermat 528 398023*2^6418059-1 1932034 L3659 2013 529 22984886^262144+1 1929758 L4928 2023 Generalized Fermat 530 3^4043119+3^2021560+1 1929059 L5123 2023 Generalized unique 531 22790808^262144+1 1928793 L5047 2023 Generalized Fermat 532 141*2^6406088+1 1928427 L5783 2025 Divides GF(6406084,6) 533 22480000^262144+1 1927230 L4307 2023 Generalized Fermat 534 22479752^262144+1 1927229 L5159 2023 Generalized Fermat 535 22470828^262144+1 1927183 L4201 2023 Generalized Fermat 536 55*2^6395254+1 1925166 A2 2023 537 20866766^262144+1 1918752 L4245 2023 Generalized Fermat 538 4*3^4020126+1 1918089 A2 2024 Generalized Fermat 539 20710506^262144+1 1917896 L5676 2023 Generalized Fermat 540 20543682^262144+1 1916975 L5663 2023 Generalized Fermat 541 20105956^262144+1 1914523 L5005 2023 Generalized Fermat 542 631*2^6359347-1 1914357 L4965 2021 543 4965*2^6356707-1 1913564 L4965 2022 544 19859450^262144+1 1913119 L5025 2023 Generalized Fermat 545 19527922^262144+1 1911202 L4745 2023 Generalized Fermat 546 19322744^262144+1 1910000 L4775 2023 Generalized Fermat 547 1995*2^6333396-1 1906546 L4965 2021 548 1582137*2^6328550+1 1905090 L801 2009 Cullen 549 18395930^262144+1 1904404 x50 2022 Generalized Fermat 550 17191822^262144+1 1896697 x50 2022 Generalized Fermat 551 87*2^6293522+1 1894541 A2 2023 552 16769618^262144+1 1893866 L4677 2022 Generalized Fermat 553 141*2^6286573+1 1892450 L5178 2025 554 16048460^262144+1 1888862 L5127 2022 Generalized Fermat 555 10^1888529-10^944264-1 1888529 p423 2021 Near-repdigit, palindrome 556 15913772^262144+1 1887902 L4387 2022 Generalized Fermat 557 15859176^262144+1 1887511 L5544 2022 Generalized Fermat 558 3303*2^6264946-1 1885941 L4965 2021 559 15417192^262144+1 1884293 L5051 2022 Generalized Fermat 560 14741470^262144+1 1879190 L4204 2022 Generalized Fermat 561 4328927#+1 1878843 p442 2024 Primorial 562 165*2^6237224+1 1877594 L5178 2025 563 14399216^262144+1 1876516 L4745 2021 Generalized Fermat 564 1344935*2^6231985+1 1876021 L161 2023 565 14103144^262144+1 1874151 L5254 2021 Generalized Fermat 566 13911580^262144+1 1872594 L5068 2021 Generalized Fermat 567 165*2^6213489+1 1870449 L5517 2025 568 13640376^262144+1 1870352 L4307 2021 Generalized Fermat 569 13553882^262144+1 1869628 L4307 2021 Generalized Fermat 570 8825*2^6199424-1 1866217 A2 2023 571 13039868^262144+1 1865227 L5273 2021 Generalized Fermat 572 7*6^2396573+1 1864898 L4965 2019 573 12959788^262144+1 1864525 L4591 2021 Generalized Fermat 574 69*2^6186659+1 1862372 L4965 2023 575 12582496^262144+1 1861162 L5202 2021 Generalized Fermat 576 12529818^262144+1 1860684 L4871 2020 Generalized Fermat 577 141*2^6175704+1 1859075 L5969 2025 578 12304152^262144+1 1858615 L4591 2020 Generalized Fermat 579 12189878^262144+1 1857553 L4905 2020 Generalized Fermat 580 39*2^6164630+1 1855741 L4087 2020 Divides GF(6164629,5) 581 119*2^6150335+1 1851438 L5178 2025 582 11081688^262144+1 1846702 L5051 2020 Generalized Fermat 583 10979776^262144+1 1845650 L5088 2020 Generalized Fermat 584 10829576^262144+1 1844082 L4677 2020 Generalized Fermat 585 194368*5^2638045-1 1843920 L690 2018 586 10793312^262144+1 1843700 L4905 2020 Generalized Fermat 587 10627360^262144+1 1841936 L4956 2020 Generalized Fermat 588 10578478^262144+1 1841411 L4307 2020 Generalized Fermat 589 66916*5^2628609-1 1837324 L690 2018 590 521921*2^6101122-1 1836627 L5811 2023 591 3*2^6090515-1 1833429 L1353 2010 592 9812766^262144+1 1832857 L4245 2020 Generalized Fermat 593 9750938^262144+1 1832137 L4309 2020 Generalized Fermat 594 8349*2^6082397-1 1830988 L4965 2021 595 9450844^262144+1 1828578 L5020 2020 Generalized Fermat 596 71*2^6070943+1 1827538 L4965 2023 597 32*470^683151+1 1825448 L4064 2021 598 9125820^262144+1 1824594 L5002 2019 Generalized Fermat 599 8883864^262144+1 1821535 L4715 2019 Generalized Fermat 600 21*2^6048861+1 1820890 L5106 2020 Divides GF(6048860,5) 601 9999*2^6037057-1 1817340 L4965 2021 602 8521794^262144+1 1816798 L4289 2019 Generalized Fermat 603 6285*2^6027986-1 1814609 A2 2024 604 33*2^6019138-1 1811943 L4965 2022 605 67*2^6018626+1 1811789 L4965 2023 606 122*123^865890+1 1809631 L4294 2024 607f 6*10^1807300-1 1807301 A2 2025 Near-repdigit 608 1583*2^5989282-1 1802957 L4036 2015 609 55*2^5982526+1 1800922 L5554 2025 Divides GF(5982524,10) 610 101806*15^1527091-1 1796004 L5765 2023 Generalized Woodall 611 91*2^5960816+1 1794387 L5969 2025 612 163*2^5945098+1 1789656 L5554 2025 613 189*2^5932506+1 1785865 L5995 2025 614 6291332^262144+1 1782250 L4864 2018 Generalized Fermat 615 6287774^262144+1 1782186 L4726 2018 Generalized Fermat 616 32*402^683113-1 1778983 A11 2025 617 327926*5^2542838-1 1777374 L4807 2018 618 81556*5^2539960+1 1775361 L4809 2018 619 179*2^5894939+1 1774556 L5261 2025 620 5828034^262144+1 1773542 L4720 2018 Generalized Fermat 621 993*10^1768283-1 1768286 L4879 2019 Near-repdigit 622 135*2^5854694+1 1762441 L5997 2025 623 9*10^1762063-1 1762064 L4879 2020 Near-repdigit 624 93606^354294+93606^177147+1 1761304 p437 2023 Generalized unique 625 5205422^262144+1 1760679 L4201 2018 Generalized Fermat 626 5152128^262144+1 1759508 L4720 2018 Generalized Fermat 627 195*2^5841059+1 1758337 L5178 2025 628 183*2^5814122+1 1750228 L5612 2025 629 205*2^5805562+1 1747651 L5261 2025 630 99*2^5798449+1 1745510 L5517 2025 Divides Fermat F(5798447) 631 4489246^262144+1 1743828 L4591 2018 Generalized Fermat 632 2240501*6^2240501+1 1743456 L5765 2023 Generalized Cullen 633 57*2^5785428+1 1741590 L5302 2025 634 2*3^3648969+1 1741001 L5043 2020 Divides Phi(3^3648964,2) [g427] 635 7*2^5775996+1 1738749 L3325 2012 636 101*2^5774879+1 1738414 L5537 2025 637 4246258^262144+1 1737493 L4720 2018 Generalized Fermat 638f 13*2^5769387-1 1736760 L1862 2025 639 57*2^5759943+1 1733918 L5517 2025 640 3933508^262144+1 1728783 L4309 2018 Generalized Fermat 641 3853792^262144+1 1726452 L4715 2018 Generalized Fermat 642 3673932^262144+1 1721010 L4649 2017 Generalized Fermat 643 (10^859669-1)^2-2 1719338 p405 2022 Near-repdigit 644 3596074^262144+1 1718572 L4689 2017 Generalized Fermat 645 3547726^262144+1 1717031 L4201 2017 Generalized Fermat 646 8*10^1715905-1 1715906 L4879 2020 Near-repdigit 647 1243*2^5686715-1 1711875 L1828 2016 648 65*2^5671355+1 1707250 L5294 2024 649 25*2^5658915-1 1703505 L1884 2021 650 1486287*14^1486287+1 1703482 L5765 2023 Generalized Cullen 651 41*2^5651731+1 1701343 L1204 2020 652 3060772^262144+1 1700222 L4649 2017 Generalized Fermat 653 9*2^5642513+1 1698567 L3432 2013 654 165*2^5633373+1 1695817 L5178 2024 655 10*3^3550446+1 1693995 L4965 2020 656 2622*11^1621920-1 1689060 L2054 2015 657 141*2^5600116+1 1685806 L6089 2024 658 81*2^5600028+1 1685779 L4965 2022 Generalized Fermat 659 2676404^262144+1 1684945 L4591 2017 Generalized Fermat 660 301562*5^2408646-1 1683577 L4675 2017 661 2611294^262144+1 1682141 L4250 2017 Generalized Fermat 662 55599^354294+55599^177147+1 1681149 p437 2023 Generalized unique 663 171362*5^2400996-1 1678230 L4669 2017 664 2514168^262144+1 1677825 L4564 2017 Generalized Fermat 665 31*2^5560820+1 1673976 L1204 2020 Divides GF(5560819,6) 666 163*2^5550632+1 1670909 L5517 2024 667 205*2^5532904+1 1665573 L5517 2024 668 191*2^5531015+1 1665004 L5517 2024 669 13*2^5523860+1 1662849 L1204 2020 Divides Fermat F(5523858) 670 89*2^5519481+1 1661532 L5178 2024 671 252191*2^5497878-1 1655032 L3183 2012 672 2042774^262144+1 1654187 L4499 2016 Generalized Fermat 673f 8*10^1652593-1 1652594 A2 2025 Near-repdigit 674 247*2^5477512+1 1648898 L5373 2024 675 129*2^5453363+1 1641628 L6083 2024 676 1828858^262144+1 1641593 L4200 2016 Generalized Fermat 677 258317*2^5450519+1 1640776 g414 2008 678 7*6^2104746+1 1637812 L4965 2019 679 91*2^5435752+1 1636327 L5214 2024 680 159*2^5432226+1 1635266 L6082 2024 681 193*2^5431414+1 1635021 L5214 2024 682 5*2^5429494-1 1634442 L3345 2017 683 77*2^5422903+1 1632459 A2 2024 Divides GF(5422902,12) 684 165*2^5416628+1 1630570 L5537 2024 685 147*2^5410159+1 1628623 L5517 2024 686 285*2^5408709+1 1628187 L5178 2024 687 43*2^5408183-1 1628027 L1884 2018 688 8*815^559138-1 1627740 A26 2024 689 1615588^262144+1 1627477 L4200 2016 Generalized Fermat 690 245*2^5404089+1 1626796 L5282 2024 691 2*296598^296598-1 1623035 L4965 2022 692 127*2^5391378+1 1622969 L5178 2024 693 1349*2^5385004-1 1621051 L1828 2017 694 1488256^262144+1 1618131 L4249 2016 Generalized Fermat 695b 1243041*2^5371459-1 1616977 L5327 2025 696 153*2^5369765+1 1616463 L5969 2024 697 1415198^262144+1 1612400 L4308 2016 Generalized Fermat 698 84*730^560037+1 1603569 A12 2024 699 93*2^5323466+1 1602525 L5537 2024 700 237*2^5315983+1 1600273 L6064 2024 701 45*2^5308037+1 1597881 L4761 2019 702 5468*70^864479-1 1595053 L5410 2022 703 131*2^5298475+1 1595003 L5517 2024 704 237*2^5291999+1 1593053 L5532 2024 705 221*2^5284643+1 1590839 L5517 2024 706 92*10^1585996-1 1585998 L4789 2023 Near-repdigit 707f 9*10^1585829-1 1585830 A2 2025 Near-repdigit 708 1082083^262144-1082083^131072+1 1581846 L4506 2017 Generalized unique 709 247*2^5254234+1 1581685 L5923 2024 710 273*2^5242597+1 1578182 L5192 2024 711 7*2^5229669-1 1574289 L4965 2021 712 180062*5^2249192-1 1572123 L4435 2016 713 124125*6^2018254+1 1570512 L4001 2019 714 27*2^5213635+1 1569462 L3760 2015 715 227*2^5213195+1 1569331 L5517 2024 716 9992*10^1567410-1 1567414 L4879 2020 Near-repdigit 717 27*252^652196+1 1566186 A21 2024 718 149*2^5196375+1 1564267 L5174 2024 719 277*2^5185268+1 1560924 L5888 2024 720 308084!+1 1557176 p425 2022 Factorial 721 843575^262144-843575^131072+1 1553498 L4506 2017 Generalized unique 722 25*2^5152151-1 1550954 L1884 2020 723 125*2^5149981+1 1550301 L6042 2024 724 147*2^5146964+1 1549393 L5559 2024 725 53546*5^2216664-1 1549387 L4398 2016 726 773620^262144+1 1543643 L3118 2012 Generalized Fermat 727 39*2^5119458+1 1541113 L1204 2019 728 607*26^1089034+1 1540957 L5410 2021 729 81*2^5115131+1 1539810 L4965 2022 Divides GF(5115128,12) [GG] 730 223*2^5105835-1 1537012 L2484 2019 731 99*10^1536527-1 1536529 L4879 2019 Near-repdigit 732 81*2^5100331+1 1535355 L4965 2022 Divides GF(5100327,6) [GG] 733 992*10^1533933-1 1533936 L4879 2019 Near-repdigit 734 51*2^5085142-1 1530782 L760 2014 735 3*2^5082306+1 1529928 L780 2009 Divides GF(5082303,3), GF(5082305,5) 736 676754^262144+1 1528413 L2975 2012 Generalized Fermat 737 296024*5^2185270-1 1527444 L671 2016 738 181*2^5057960+1 1522600 L5178 2024 739 5359*2^5054502+1 1521561 SB6 2003 740 175*2^5049344+1 1520007 L5178 2024 741 183*2^5042357+1 1517903 L5178 2024 742 1405486*12^1405486-1 1516781 L5765 2023 Generalized Woodall 743 53*2^5019181+1 1510926 L4965 2023 744a 6*7^1786775-1 1510001 A2 2025 745 131*2^5013361+1 1509175 L5178 2024 746 13*2^4998362+1 1504659 L3917 2014 747a 136*859^512270+1 1502999 A11 2025 748 525094^262144+1 1499526 p338 2012 Generalized Fermat 749 92158*5^2145024+1 1499313 L4348 2016 750 499238*10^1497714-1 1497720 L4976 2019 Generalized Woodall 751 357*2^4972628+1 1496913 L5783 2024 752e 2127231*2^4972165-1 1496778 L5327 2025 753 77072*5^2139921+1 1495746 L4340 2016 754 175*2^4965756+1 1494844 L5888 2024 755 221*2^4960867+1 1493373 L5178 2024 756 375*2^4950021+1 1490108 L5178 2024 757 2*3^3123036+1 1490068 L5043 2020 758 75*2^4940218+1 1487156 L5517 2024 Divides GF(4940214,12) 759 95*2^4929067+1 1483799 L5172 2024 760 161*2^4928111+1 1483512 L5961 2024 761 51*2^4923905+1 1482245 L4965 2023 762 289*2^4911870+1 1478623 L5178 2024 Generalized Fermat 763 519397*2^4908893-1 1477730 L5410 2022 764 306398*5^2112410-1 1476517 L4274 2016 765 183*2^4894125+1 1473281 L5961 2024 Divides GF(4894123,3), GF(4894124,5) 766 39*684^519468-1 1472723 L5410 2023 767 195*2^4887935+1 1471418 L5261 2024 768 281*2^4886723+1 1471053 L5971 2024 769 281*2^4879761+1 1468957 L5961 2024 770 96*789^506568+1 1467569 A14 2024 771 243*2^4872108+1 1466654 L5178 2024 772 213*2^4865126+1 1464552 L5803 2024 773 265711*2^4858008+1 1462412 g414 2008 774 154222*5^2091432+1 1461854 L3523 2015 775 1271*2^4850526-1 1460157 L1828 2012 776 333*2^4846958-1 1459083 L5546 2022 777 357*2^4843507+1 1458044 L5178 2024 778 156*532^534754-1 1457695 L5410 2023 779 362978^262144-362978^131072+1 1457490 p379 2015 Generalized unique 780 361658^262144+1 1457075 p332 2011 Generalized Fermat 781 231*2^4836124+1 1455821 L5517 2024 782 7*10^1454508+1 1454509 p439 2024 783 303*2^4829593+1 1453855 L5706 2024 784 100186*5^2079747-1 1453686 L4197 2015 785 375*2^4824253+1 1452248 L5625 2024 786 288465!+1 1449771 p3 2022 Factorial 787 15*2^4800315+1 1445040 L1754 2019 Divides GF(4800313,3), GF(4800310,5) 788 235*2^4799708+1 1444859 L5971 2024 789 347*2^4798851+1 1444601 L5554 2024 790 239*2^4795541+1 1443605 L5995 2024 791 2^4792057-2^2396029+1 1442553 L3839 2014 Gaussian Mersenne norm 40, generalized unique 792 92*10^1439761-1 1439763 L4789 2020 Near-repdigit 793 269*2^4777025+1 1438031 L5683 2024 794d 1365*2^4768348+1 1435419 L6264 2025 795 653*10^1435026-1 1435029 p355 2014 796 197*2^4765318-1 1434506 L5175 2021 797 1401*2^4759435-1 1432736 L4965 2023 798 2169*2^4754343-1 1431204 L4965 2023 799 188*468^535963+1 1431156 L4832 2019 800 1809*2^4752792-1 1430737 L4965 2022 801 61*2^4749928+1 1429873 L5285 2024 802 2427*2^4749044-1 1429609 L4965 2022 803 303*2^4748019-1 1429299 L5545 2023 804 2259*2^4746735-1 1428913 L4965 2022 805 309*2^4745713-1 1428605 L5545 2023 806e 44035*2^4743708+1 1428004 A68 2025 807 183*2^4740056+1 1426902 L5945 2024 808 2223*2^4729304-1 1423666 L4965 2022 809 1851*2^4727663-1 1423172 L4965 2022 810 1725*2^4727375-1 1423085 L4965 2022 811 1611*2^4724014-1 1422074 L4965 2022 812 1383*2^4719270-1 1420645 L4965 2022 813 1749*2^4717431-1 1420092 L4965 2022 814 321*2^4715725+1 1419578 L5178 2024 815 371*2^4715211+1 1419423 L5527 2024 816 2325*2^4713991-1 1419057 L4965 2022 817 3267113#-1 1418398 p301 2021 Primorial 818 291*2^4708553+1 1417419 L5308 2024 819 100*406^543228+1 1417027 L5410 2020 Generalized Fermat 820 2337*2^4705660-1 1416549 L4965 2022 821 1229*2^4703492-1 1415896 L1828 2018 822e 1425*2^4700603+1 1415026 L6264 2025 823 303*2^4694937+1 1413320 L5977 2024 824 3719*30^956044-1 1412197 L5410 2023 825 6*894^478421-1 1411983 L4294 2023 826 263*2^4688269+1 1411313 L5904 2024 827 155*2^4687127+1 1410969 L5969 2024 828 144052*5^2018290+1 1410730 L4146 2015 829 195*2^4685711-1 1410542 L5175 2021 830 9*2^4683555-1 1409892 L1828 2012 831 31*2^4673544+1 1406879 L4990 2019 832 34*993^469245+1 1406305 L4806 2018 833 197*2^4666979+1 1404903 L5233 2024 834 79*2^4658115-1 1402235 L1884 2018 835 39*2^4657951+1 1402185 L1823 2019 836 4*650^498101-1 1401116 L4294 2021 837 11*2^4643238-1 1397755 L2484 2014 838 884411*38^884411+1 1397184 L5765 2023 Generalized Cullen 839 68*995^465908-1 1396712 L4001 2017 840 7*6^1793775+1 1395830 L4965 2019 841 269*2^4636583+1 1395753 L5509 2024 842 117*2^4632990+1 1394672 L5960 2024 843 213*2^4625484+1 1392412 L5956 2024 844 2*914^469757+1 1390926 A11 2025 845 1425*2^4618342+1 1390263 L1134 2024 846 4*7^1640811+1 1386647 A2 2024 847 192098^262144-192098^131072+1 1385044 p379 2015 Generalized unique 848 339*2^4592225+1 1382401 L5302 2024 849 6*10^1380098+1 1380099 L5009 2023 850 27*2^4583717-1 1379838 L2992 2014 851 221*2^4578577+1 1378292 L5710 2024 852 359*2^4578161+1 1378167 L5894 2024 853 3^2888387-3^1444194+1 1378111 L5123 2023 Generalized unique 854 1198433*14^1198433+1 1373564 L5765 2023 Generalized Cullen 855 67*2^4561350+1 1373105 L5614 2024 856 121*2^4553899-1 1370863 L3023 2012 857 231*2^4552115+1 1370326 L5302 2024 858 223*2^4549924+1 1369666 L5904 2024 859e 46278*5^1957771+1 1368428 A69 2025 860 9473*2^4543680-1 1367788 L5037 2022 861 27*2^4542344-1 1367384 L1204 2014 862 29*2^4532463+1 1364409 L4988 2019 863 4*797^468702+1 1359920 L4548 2017 Generalized Fermat 864 145310^262144+1 1353265 p314 2011 Generalized Fermat 865 2*3^2834778-1 1352534 A2 2024 866 479*2^4492481+1 1352375 L5882 2024 867 373*2^4487274+1 1350807 L5320 2024 868 527*2^4486247+1 1350498 L5178 2024 869 25*2^4481024+1 1348925 L4364 2019 Generalized Fermat 870 83*2^4479409+1 1348439 L5178 2024 871 417*2^4473466+1 1346651 L5178 2024 872 81*536^493229+1 1346106 p431 2023 873 303*2^4471002-1 1345909 L5545 2022 874 1425*2^4469783+1 1345542 L1134 2023 875 2*1283^432757+1 1345108 L4879 2019 Divides Phi(1283^432757,2) 876 1-V(-2,-2,3074821)-2^3074821 1342125 p437 2024 877 447*2^4457132+1 1341734 L5875 2024 878 36772*6^1723287-1 1340983 L1301 2014 879 583854*14^1167708-1 1338349 L4976 2019 Generalized Woodall 880 20*634^476756-1 1335915 L4975 2023 881 297*2^4432947+1 1334453 L5178 2023 882 85*2^4432870+1 1334429 L4965 2023 883 151*2^4424321-1 1331856 L1884 2016 884 231*2^4422227+1 1331226 L5192 2023 885 131*2^4421071+1 1330878 L5178 2023 886 225*2^4419349+1 1330359 L5866 2023 887 1485*2^4416137+1 1329393 L1134 2024 888 469*2^4414802+1 1328991 L5830 2023 889 549*2^4411029+1 1327855 L5862 2023 890 445*2^4410256+1 1327622 L5537 2023 891 259*2^4395550+1 1323195 L5858 2023 892 219*2^4394846+1 1322983 L5517 2023 893 165*2^4379097+1 1318242 L5852 2023 894 183*2^4379002+1 1318214 L5476 2023 895 1455*2^4376470+1 1317452 L1134 2023 896 165*2^4375458+1 1317147 L5851 2023 897 195*2^4373994-1 1316706 L5175 2020 898 381*2^4373129+1 1316446 L5421 2023 899 2008551*2^4371904+1 1316081 g431 2025 900 (10^657559-1)^2-2 1315118 p405 2022 Near-repdigit 901 49*2^4365175-1 1314051 L1959 2017 902 49*2^4360869-1 1312755 L1959 2017 903 253*2^4358512+1 1312046 L875 2023 904 219*2^4354805+1 1310930 L5848 2023 905 249*2^4351621+1 1309971 L5260 2023 906 159*2^4348734+1 1309102 L5421 2023 907 115*2^4347620+1 1308767 L5178 2023 908 533*2^4338237+1 1305943 L5260 2023 909 141*2^4337804+1 1305812 L5178 2023 910 363*2^4334518+1 1304823 L5261 2023 911 299*2^4333939+1 1304649 L5517 2023 912 13*2^4333087-1 1304391 L1862 2018 913 353159*2^4331116-1 1303802 L2408 2011 914 195*2^4330189+1 1303520 L5178 2023 915 145*2^4327756+1 1302787 L5517 2023 916 31*980^433853-1 1297754 A11 2025 917 9959*2^4308760-1 1297071 L5037 2022 918 195*2^4304861+1 1295895 L5178 2023 919 23*2^4300741+1 1294654 L4147 2019 920 682156*79^682156+1 1294484 L4472 2016 Generalized Cullen 921 141941*2^4299438-1 1294265 L689 2011 922 87*2^4297718+1 1293744 L4965 2023 923 22*905^437285-1 1292900 L5342 2024 924 435*2^4292968+1 1292315 L5783 2023 925 993149*20^993149+1 1292123 L5765 2023 Generalized Cullen 926 415*2^4280864+1 1288672 L5818 2023 927 79*2^4279006+1 1288112 L4965 2023 928 205*2^4270310+1 1285494 L5517 2023 929 483*2^4270112+1 1285435 L5178 2023 930 123*2^4266441+1 1284329 L5178 2023 931 612749*2^4254500-1 1280738 L5410 2022 932 3883403*2^4254462-1 1280728 L5327 2025 933 223*2^4252660+1 1280181 L5178 2023 934 1644731*6^1644731+1 1279856 L5765 2023 Generalized Cullen 935 38*380^495986-1 1279539 L5410 2023 936 2*1151^417747+1 1278756 L4879 2019 Divides Phi(1151^417747,2) 937 15*2^4246384+1 1278291 L3432 2013 Divides GF(4246381,6) 938 3*2^4235414-1 1274988 L606 2008 939 2*1259^411259+1 1274914 L4879 2020 Divides Phi(1259^411259,2) 940 93*2^4232892+1 1274230 L4965 2023 941 131*2^4227493+1 1272605 L5226 2023 942 45*436^481613+1 1271213 L5410 2020 943 109208*5^1816285+1 1269534 L3523 2014 944 435*2^4216447+1 1269280 L5178 2023 945 1091*2^4215518-1 1269001 L1828 2018 946 191*2^4203426-1 1265360 L2484 2012 947a 10666*24^916019-1 1264304 A63 2025 948 269*2^4198809+1 1263970 L5226 2023 949 545*2^4198333+1 1263827 L5804 2023 950 53*2^4197093+1 1263453 L5563 2023 951 1259*2^4196028-1 1263134 L1828 2016 952 329*2^4193199+1 1262282 L5226 2023 953 141*2^4192911+1 1262195 L5226 2023 Divides Fermat F(4192909) 954d 20219*24^914407+1 1262080 A70 2025 955 325918*5^1803339-1 1260486 L3567 2014 956 1160*745^438053-1 1258160 L4189 2025 957 16723*820^431579+1 1257546 A11 2025 958 345*2^4173969+1 1256493 L5226 2023 959 161*2^4164267+1 1253572 L5178 2023 960a 20611*24^908013-1 1253255 A11 2025 961 135*2^4162529+1 1253049 L5178 2023 Divides GF(4162525,10) 962 177*2^4162494+1 1253038 L5796 2023 963 237*2^4153348+1 1250285 L5178 2023 964 69*2^4151165+1 1249628 L4965 2023 965 133778*5^1785689+1 1248149 L3903 2014 966 201*2^4146003+1 1248074 L5161 2023 967c 15921*24^903076+1 1246440 A68 2025 968 329*2^4136019+1 1245069 L5178 2023 969 81*2^4131975+1 1243851 L4965 2022 970 459*2^4129577+1 1243130 L5226 2023 971 551*2^4126303+1 1242144 L5226 2023 972 363*2^4119017+1 1239951 L5226 2023 973d 20731*24^897326+1 1238504 A11 2025 974 105*2^4113039+1 1238151 L5178 2023 975 204*532^454080-1 1237785 L5410 2023 976 41*684^436354+1 1237090 L4444 2023 977 17*2^4107544-1 1236496 L4113 2015 978 261*2^4106385+1 1236148 L5178 2023 979 24032*5^1768249+1 1235958 L3925 2014 980 172*159^561319-1 1235689 L4001 2017 981 10^1234567-20342924302*10^617278-1 1234567 p423 2021 Palindrome 982 10^1234567-1927633367291*10^617277-1 1234567 p423 2023 Palindrome 983 10^1234567-3626840486263*10^617277-1 1234567 p423 2021 Palindrome 984 10^1234567-4708229228074*10^617277-1 1234567 p423 2021 Palindrome 985 67*2^4100746+1 1234450 L5178 2023 986 191*2^4099097+1 1233954 L5563 2023 987 325*2^4097700+1 1233534 L5226 2023 988 519*2^4095491+1 1232869 L5226 2023 989 111*2^4091044+1 1231530 L5783 2023 Divides GF(4091041,3) 990 1182072*11^1182072-1 1231008 L5765 2023 Generalized Woodall 991 64*425^467857-1 1229712 p268 2021 992c 1007*2^4084946-1 1229695 A46 2025 993c 9721*24^890258+1 1228749 A68 2025 994 8*558^447047+1 1227876 A28 2024 995 163*778^424575+1 1227440 A11 2024 996 381*2^4069617+1 1225080 L5226 2023 997f 9*10^1224889-1 1224890 A2 2025 Near-repdigit 998 97*2^4066717-1 1224206 L2484 2019 999 95*2^4063895+1 1223357 L5226 2023 1000 79*2^4062818+1 1223032 L5178 2023 1001 1031*2^4054974-1 1220672 L1828 2017 1002 309*2^4054114+1 1220413 L5178 2023 1003 2022202116^131072+1 1219734 L4704 2022 Generalized Fermat 1004 37*2^4046360+1 1218078 L2086 2019 1005 141*2^4043116+1 1217102 L5517 2023 1006e 21744*5^1740189+1 1216345 A57 2025 1007 172*360^474814+1 1213771 A28 2025 1008 39653*430^460397-1 1212446 L4187 2016 1009 1777034894^131072+1 1212377 L4704 2022 Generalized Fermat 1010 141*2^4024411+1 1211471 L5226 2023 1011 515*2^4021165+1 1210494 L5174 2023 1012 73*2^4016912+1 1209213 L5226 2023 1013 40734^262144+1 1208473 p309 2011 Generalized Fermat 1014 235*2^4013398+1 1208156 L5178 2023 1015 9*2^4005979-1 1205921 L1828 2012 1016 417*2^4003224+1 1205094 L5764 2023 1017e 18576*5^1723294+1 1204536 A68 2025 1018 12*68^656921+1 1203815 L4001 2016 1019 67*688^423893+1 1202836 L4001 2017 1020 221*2^3992723+1 1201932 L5178 2023 1021 213*2^3990702+1 1201324 L5216 2023 1022 1993191*2^3986382-1 1200027 L3532 2015 Generalized Woodall 1023f 1429787556^131072+1 1200000 x54 2025 Generalized Fermat 1024 163*2^3984604+1 1199488 L5756 2023 1025 725*2^3983355+1 1199113 L5706 2023 1026 (146^276995+1)^2-2 1199030 p405 2022 1027 455*2^3981067+1 1198424 L5724 2023 1028 138172*5^1714207-1 1198185 L3904 2014 1029 50*383^463313+1 1196832 L2012 2021 1030 339*2^3974295+1 1196385 L5178 2023 1031 699*2^3974045+1 1196310 L5750 2023 1032 1202113^196608-1202113^98304+1 1195366 L4506 2016 Generalized unique 1033 29*2^3964697+1 1193495 L1204 2019 1034 599*2^3963655+1 1193182 L5226 2023 1035 683*2^3962937+1 1192966 L5226 2023 1036 39*2^3961129+1 1192421 L1486 2019 1037 165*2^3960664+1 1192281 L5178 2023 1038 79*2^3957238+1 1191250 L5745 2023 1039 687*2^3955918+1 1190853 L5554 2023 Divides GF(3955915,6) 1040 163*2^3954818+1 1190522 L5178 2023 1041 431*2^3953647+1 1190169 L5554 2023 1042 466542*355^466542-1 1189795 L6249 2025 Generalized Woodall 1043 1110815^196608-1110815^98304+1 1188622 L4506 2016 Generalized unique 1044e 127162!^2+1 1187715 p450 2025 1045 341*2^3938565+1 1185629 L5554 2023 1046 503*2^3936845+1 1185112 L5706 2023 1047 717*2^3934760+1 1184484 L5285 2023 1048 493*2^3929192+1 1182808 L5161 2023 1049 273*2^3929128+1 1182788 L5554 2023 1050 609*2^3928682+1 1182654 L5178 2023 1051 609*2^3928441+1 1182582 L5527 2023 1052d 1334*7^1398969-1 1182270 A68 2025 1053 281*2^3926467+1 1181987 L5174 2023 1054 153*2^3922478+1 1180786 L5554 2023 1055 69*2^3920863+1 1180300 L5554 2023 1056 273*2^3919321+1 1179836 L5706 2023 1057 531*2^3918985+1 1179735 L5706 2023 1058 1000032472^131072+1 1179650 L4704 2022 Generalized Fermat 1059 555*2^3916875+1 1179100 L5302 2023 1060 571*2^3910616+1 1177216 L5178 2023 1061 421*2^3905144+1 1175569 L5600 2023 1062 P1174253 1174253 p414 2022 1063 567*2^3897588+1 1173294 L5600 2023 1064 417*2^3895404+1 1172637 L5600 2023 1065 539*2^3894953+1 1172501 L5285 2023 1066 645*2^3893849+1 1172169 L5600 2023 1067 818764*3^2456293-1 1171956 L4965 2023 Generalized Woodall 1068 22478*5^1675150-1 1170884 L3903 2014 1069 1199*2^3889576-1 1170883 L1828 2018 1070 298989*2^3886857+1 1170067 L2777 2014 Generalized Cullen 1071 93*10^1170023-1 1170025 L4789 2022 Near-repdigit 1072 711*2^3886480+1 1169950 L5320 2023 1073 375*2^3884634+1 1169394 L5600 2023 1074 445583*2^3883406-1 1169028 L5327 2025 1075 94*872^397354+1 1168428 L5410 2019 1076e 571140*111^571140+1 1168172 A67 2025 Generalized Cullen 1077 269*2^3877485+1 1167242 L5649 2023 1078a 111*2^3875095-1 1166522 A76 2025 1079 163*2^3874556+1 1166360 L5646 2023 Divides GF(3874552,5) 1080 1365*2^3872811+1 1165836 L1134 2023 1081 313*2^3869536+1 1164849 L5600 2023 1082 159*2^3860863+1 1162238 L5226 2023 1083 445*2^3860780+1 1162214 L5640 2023 1084 397*2^3859450+1 1161813 L5226 2023 1085 685*2^3856790+1 1161013 L5226 2023 1086 27*2^3855094-1 1160501 L3033 2012 1087 537*2^3853860+1 1160131 L5636 2022 1088 164*978^387920-1 1160015 L4700 2018 1089 175*2^3850344+1 1159072 L5226 2022 1090 685*2^3847268+1 1158146 L5226 2022 1091 655*2^3846352+1 1157871 L5282 2022 1092 583*2^3846196+1 1157824 L5226 2022 1093 615*2^3844151+1 1157208 L5226 2022 1094 14772*241^485468-1 1156398 L5410 2022 1095 525*2^3840963+1 1156248 L5613 2022 1096 313*2^3837304+1 1155147 L5298 2022 1097 49*2^3837090+1 1155081 L4979 2019 Generalized Fermat 1098 431*2^3835247+1 1154528 L5161 2022 1099 97*2^3833722+1 1154068 L5226 2022 1100 2*839^394257+1 1152714 L4879 2019 Divides Phi(839^394257,2) 1101 125*392^444161+1 1151839 L4832 2022 1102d 12969*24^834325+1 1151549 A62 2025 1103 255*2^3824348+1 1151246 L5226 2022 1104 30*514^424652-1 1151218 L4001 2017 1105 569*2^3823191+1 1150898 L5226 2022 1106 24518^262144+1 1150678 g413 2008 Generalized Fermat 1107a 959*2^3821971+1 1150531 L5261 2025 1108 563*2^3819237+1 1149708 L5178 2022 1109 345*2^3817949+1 1149320 L5373 2022 1110 700219^196608-700219^98304+1 1149220 L4506 2016 Generalized unique 1111 241*2^3815727-1 1148651 L2484 2019 1112 351*2^3815467+1 1148573 L5226 2022 1113f 9*10^1148275-1 1148276 A2 2025 Near-repdigit 1114 109*980^383669-1 1147643 L4001 2018 1115 427*2^3811610+1 1147412 L5614 2022 1116 569*2^3810475+1 1147071 L5610 2022 1117 213*2^3807864+1 1146284 L5609 2022 1118a 765*2^3807519+1 1146181 L6253 2025 1119 87*2^3806438+1 1145854 L5607 2022 1120 369*2^3805321+1 1145519 L5541 2022 1121 123547*2^3804809-1 1145367 L2371 2011 1122 2564*75^610753+1 1145203 L3610 2014 1123 539*2^3801705+1 1144430 L5161 2022 1124 159*2^3801463+1 1144357 L5197 2022 1125 235*2^3801284+1 1144303 L5608 2022 1126 660955^196608-660955^98304+1 1144293 L4506 2016 Generalized unique 1127a 893*2^3800793+1 1144156 L5825 2025 1128 519*2^3800625+1 1144105 L5315 2022 1129a 779*2^3799613+1 1143801 L5302 2025 1130a 855*2^3798877+1 1143579 L6289 2025 1131 281*2^3798465+1 1143455 L5178 2022 1132a 1061*2^3798429+1 1143445 L6247 2025 1133 166*443^432000+1 1143249 L5410 2020 1134 85*2^3797698+1 1143223 L5161 2022 1135 326834*5^1634978-1 1142807 L3523 2014 1136a 873*2^3796065+1 1142733 L6209 2025 1137 459*2^3795969+1 1142704 L5161 2022 1138a 789*2^3795409+1 1142535 L5517 2025 1139 105*298^461505-1 1141866 L5841 2023 1140a 945*2^3786772+1 1139935 L6257 2025 1141a 963*2^3786073+1 1139725 L5302 2025 1142 447*2^3780151+1 1137942 L5596 2022 1143 345*2^3779921+1 1137873 L5557 2022 1144 477*2^3779871+1 1137858 L5197 2022 1145a 1145*2^3778331+1 1137395 L5614 2025 1146 251*2^3774587+1 1136267 L5592 2022 1147a 1017*2^3774168+1 1136141 L6246 2025 1148 439*2^3773958+1 1136078 L5557 2022 1149 43*182^502611-1 1135939 L4064 2020 1150 415267*2^3771929-1 1135470 L2373 2011 1151 11*2^3771821+1 1135433 p286 2013 1152 427*2^3768104+1 1134315 L5192 2022 1153 1455*2^3768024-1 1134292 L1134 2022 1154 711*2^3767492+1 1134131 L5161 2022 1155a 765*2^3767432+1 1134113 L5178 2025 1156d 250224!/250199#+1 1133656 p450 2025 Compositorial 1157 265*2^3765189-1 1133438 L2484 2018 1158 297*2^3765140+1 1133423 L5197 2022 1159 381*2^3764189+1 1133137 L5589 2022 1160 115*2^3763650+1 1132974 L5554 2022 1161 411*2^3759067+1 1131595 L5589 2022 1162b 1115*2^3758721+1 1131491 L5302 2025 Divides GF(3758718,5) 1163 405*2^3757192+1 1131031 L5590 2022 1164 1981*2^3754984+1 1130367 A24 2025 Divides GF(3754983,12) [GG] 1165b 817*2^3753850+1 1130025 L6013 2025 1166 938237*2^3752950-1 1129757 L521 2007 Woodall 1167f 21*2^3745951-1 1127645 L4881 2025 1168 399866798^131072+1 1127471 L4964 2019 Generalized Fermat 1169 701*2^3744713+1 1127274 L5554 2022 1170 207394*5^1612573-1 1127146 L3869 2014 1171 684*10^1127118+1 1127121 L4036 2017 1172 535386^196608-535386^98304+1 1126302 L4506 2016 Generalized unique 1173 104944*5^1610735-1 1125861 L3849 2014 1174 23451*2^3739388+1 1125673 L591 2015 1175 78*622^402915-1 1125662 L5645 2023 1176b 907*2^3738564+1 1125423 L6018 2025 Divides GF(3738563,3) 1177 615*2^3738023+1 1125260 L5161 2022 1178 347*2^3737875+1 1125216 L5178 2022 1179 163*2^3735726+1 1124568 L5477 2022 Divides GF(3735725,6) 1180 375*2^3733510+1 1123902 L5584 2022 1181 25*2^3733144+1 1123790 L2125 2019 Generalized Fermat 1182e 18576*5^1607646+1 1123701 A62 2025 1183 629*2^3731479+1 1123290 L5283 2022 1184a 367403680^131072+1 1122651 L6092 2025 Generalized Fermat 1185a 366889726^131072+1 1122571 L6290 2025 Generalized Fermat 1186a 366390832^131072+1 1122494 L6281 2025 Generalized Fermat 1187a 366239240^131072+1 1122470 L4984 2025 Generalized Fermat 1188a 365995134^131072+1 1122432 L6277 2025 Generalized Fermat 1189a 365962846^131072+1 1122427 L4387 2025 Generalized Fermat 1190a 365233422^131072+1 1122314 L6288 2025 Generalized Fermat 1191a 365076078^131072+1 1122289 L4672 2025 Generalized Fermat 1192 113*2^3728113+1 1122276 L5161 2022 1193a 364868948^131072+1 1122257 L5457 2025 Generalized Fermat 1194a 364593526^131072+1 1122214 L4672 2025 Generalized Fermat 1195a 364500114^131072+1 1122199 L5755 2025 Generalized Fermat 1196a 364246694^131072+1 1122160 L6129 2025 Generalized Fermat 1197a 363776570^131072+1 1122086 L5457 2025 Generalized Fermat 1198a 363423146^131072+1 1122031 L5416 2025 Generalized Fermat 1199a 363276136^131072+1 1122008 L5101 2025 Generalized Fermat 1200b 939*2^3727057+1 1121959 L6246 2025 1201b 362256066^131072+1 1121848 L6272 2025 Generalized Fermat 1202b 362246504^131072+1 1121846 L6129 2025 Generalized Fermat 1203b 361913206^131072+1 1121794 L5816 2025 Generalized Fermat 1204b 361776104^131072+1 1121772 L6285 2025 Generalized Fermat 1205b 361544758^131072+1 1121736 L5639 2025 Generalized Fermat 1206b 361467126^131072+1 1121724 L6284 2025 Generalized Fermat 1207b 361402590^131072+1 1121714 L5850 2025 Generalized Fermat 1208a 361170018^131072+1 1121677 L5416 2025 Generalized Fermat 1209b 361129912^131072+1 1121671 L5755 2025 Generalized Fermat 1210b 360976084^131072+1 1121646 L5639 2025 Generalized Fermat 1211b 360926726^131072+1 1121639 L5755 2025 Generalized Fermat 1212b 360333892^131072+1 1121545 L5755 2025 Generalized Fermat 1213b 360331718^131072+1 1121545 L4726 2025 Generalized Fermat 1214b 360194030^131072+1 1121523 L5639 2025 Generalized Fermat 1215a 360172726^131072+1 1121519 L6287 2025 Generalized Fermat 1216b 360078180^131072+1 1121505 L5755 2025 Generalized Fermat 1217b 359903130^131072+1 1121477 L5755 2025 Generalized Fermat 1218 303*2^3725438+1 1121472 L5161 2022 1219b 359693996^131072+1 1121444 L5755 2025 Generalized Fermat 1220b 359533444^131072+1 1121418 L4726 2025 Generalized Fermat 1221b 359529844^131072+1 1121418 L4984 2025 Generalized Fermat 1222b 359511110^131072+1 1121415 L6282 2025 Generalized Fermat 1223b 359465736^131072+1 1121408 L4559 2025 Generalized Fermat 1224b 359012068^131072+1 1121336 L5639 2025 Generalized Fermat 1225b 358863220^131072+1 1121312 L4559 2025 Generalized Fermat 1226b 358747772^131072+1 1121294 L5755 2025 Generalized Fermat 1227b 358465776^131072+1 1121249 L5755 2025 Generalized Fermat 1228b 357751492^131072+1 1121136 L6281 2025 Generalized Fermat 1229b 357702788^131072+1 1121128 L6092 2025 Generalized Fermat 1230b 357575604^131072+1 1121108 L6281 2025 Generalized Fermat 1231 187*2^3723972+1 1121030 L5178 2022 1232b 357070956^131072+1 1121027 L4387 2025 Generalized Fermat 1233b 356295678^131072+1 1120903 L6090 2025 Generalized Fermat 1234c 355982986^131072+1 1120853 L4753 2025 Generalized Fermat 1235c 355489216^131072+1 1120774 L4898 2025 Generalized Fermat 1236 2*1103^368361+1 1120767 L4879 2019 Divides Phi(1103^368361,2) 1237c 355369712^131072+1 1120755 L6259 2025 Generalized Fermat 1238c 355196086^131072+1 1120727 L5396 2025 Generalized Fermat 1239c 354983678^131072+1 1120693 L5056 2025 Generalized Fermat 1240c 354747846^131072+1 1120656 L6273 2025 Generalized Fermat 1241c 354666958^131072+1 1120643 L6036 2025 Generalized Fermat 1242c 354569968^131072+1 1120627 L6277 2025 Generalized Fermat 1243c 353899590^131072+1 1120519 L6276 2025 Generalized Fermat 1244c 353637166^131072+1 1120477 L6275 2025 Generalized Fermat 1245c 353457578^131072+1 1120448 L4387 2025 Generalized Fermat 1246c 353261310^131072+1 1120417 L4387 2025 Generalized Fermat 1247c 353226578^131072+1 1120411 L4387 2025 Generalized Fermat 1248c 353120152^131072+1 1120394 L6274 2025 Generalized Fermat 1249c 352906026^131072+1 1120359 L4387 2025 Generalized Fermat 1250c 352766996^131072+1 1120337 L4387 2025 Generalized Fermat 1251c 352444404^131072+1 1120285 L5628 2025 Generalized Fermat 1252c 352035688^131072+1 1120219 L4984 2025 Generalized Fermat 1253c 351867654^131072+1 1120192 L4898 2025 Generalized Fermat 1254d 351352524^131072+1 1120108 L4559 2025 Generalized Fermat 1255d 350812044^131072+1 1120021 L6273 2025 Generalized Fermat 1256 105*2^3720512+1 1119988 L5493 2022 1257d 350518526^131072+1 1119973 L5465 2025 Generalized Fermat 1258d 349848992^131072+1 1119864 L6090 2025 Generalized Fermat 1259d 349655888^131072+1 1119833 L4875 2025 Generalized Fermat 1260d 349569992^131072+1 1119819 L5602 2025 Generalized Fermat 1261d 348958392^131072+1 1119719 L5974 2025 Generalized Fermat 1262d 348716246^131072+1 1119679 L5606 2025 Generalized Fermat 1263d 348550920^131072+1 1119652 L6073 2025 Generalized Fermat 1264b 915*2^3719305+1 1119626 L5783 2025 1265d 348331024^131072+1 1119616 L6272 2025 Generalized Fermat 1266d 348138302^131072+1 1119585 L6271 2025 Generalized Fermat 1267d 347869428^131072+1 1119541 L5974 2025 Generalized Fermat 1268 447*2^3719024+1 1119541 L5493 2022 1269d 347654842^131072+1 1119506 L5974 2025 Generalized Fermat 1270d 347652016^131072+1 1119505 L6270 2025 Generalized Fermat 1271d 347642266^131072+1 1119504 L5634 2025 Generalized Fermat 1272d 347533108^131072+1 1119486 L5974 2025 Generalized Fermat 1273d 347218234^131072+1 1119434 L5974 2025 Generalized Fermat 1274d 347205260^131072+1 1119432 L4898 2025 Generalized Fermat 1275d 346910756^131072+1 1119384 L5974 2025 Generalized Fermat 1276b 1183*2^3718480+1 1119378 L5969 2025 1277d 346785118^131072+1 1119363 L6269 2025 Generalized Fermat 1278d 346590566^131072+1 1119331 L5782 2025 Generalized Fermat 1279d 345832974^131072+1 1119207 L4984 2025 Generalized Fermat 1280d 345735266^131072+1 1119191 L6036 2025 Generalized Fermat 1281d 345526904^131072+1 1119156 L6268 2025 Generalized Fermat 1282 177*2^3717746+1 1119156 L5279 2022 1283e 345277562^131072+1 1119115 L5205 2025 Generalized Fermat 1284e 345222826^131072+1 1119106 L4659 2025 Generalized Fermat 1285e 344953718^131072+1 1119062 L4899 2025 Generalized Fermat 1286e 344920764^131072+1 1119056 L5974 2025 Generalized Fermat 1287e 344891620^131072+1 1119052 L5755 2025 Generalized Fermat 1288e 344632060^131072+1 1119009 L5755 2025 Generalized Fermat 1289e 344487298^131072+1 1118985 L5755 2025 Generalized Fermat 1290e 344261660^131072+1 1118948 L4387 2025 Generalized Fermat 1291e 344203526^131072+1 1118938 L5697 2025 Generalized Fermat 1292 2*131^528469+1 1118913 L4879 2019 Divides Phi(131^528469,2) 1293 123*2^3716758+1 1118858 L5563 2022 1294 313*2^3716716+1 1118846 L5237 2022 1295e 342944058^131072+1 1118729 L4387 2025 Generalized Fermat 1296e 342928514^131072+1 1118727 L5396 2025 Generalized Fermat 1297e 342390794^131072+1 1118637 L4387 2025 Generalized Fermat 1298e 342324252^131072+1 1118626 L6266 2025 Generalized Fermat 1299e 342321746^131072+1 1118626 L4387 2025 Generalized Fermat 1300e 342261232^131072+1 1118616 L4387 2025 Generalized Fermat 1301e 342195906^131072+1 1118605 L4387 2025 Generalized Fermat 1302e 342100874^131072+1 1118589 L4984 2025 Generalized Fermat 1303e 341948210^131072+1 1118564 L6265 2025 Generalized Fermat 1304e 341497492^131072+1 1118489 L4201 2025 Generalized Fermat 1305b 1093*2^3715306+1 1118422 L5226 2025 1306e 340623306^131072+1 1118343 L6263 2025 Generalized Fermat 1307e 340569992^131072+1 1118334 L4387 2025 Generalized Fermat 1308e 340505972^131072+1 1118323 L6262 2025 Generalized Fermat 1309e 340054480^131072+1 1118248 L6261 2025 Generalized Fermat 1310e 339945476^131072+1 1118229 L4387 2025 Generalized Fermat 1311e 339584204^131072+1 1118169 L4387 2025 Generalized Fermat 1312e 339503122^131072+1 1118155 L4387 2025 Generalized Fermat 1313e 339477102^131072+1 1118151 L4387 2025 Generalized Fermat 1314e 339175788^131072+1 1118100 L4387 2025 Generalized Fermat 1315e 339137184^131072+1 1118094 L5697 2025 Generalized Fermat 1316e 338934862^131072+1 1118060 L4201 2025 Generalized Fermat 1317e 338918848^131072+1 1118057 L5974 2025 Generalized Fermat 1318e 338800734^131072+1 1118037 L6073 2025 Generalized Fermat 1319e 338188646^131072+1 1117934 L4387 2025 Generalized Fermat 1320e 337982668^131072+1 1117900 L4387 2025 Generalized Fermat 1321e 337667556^131072+1 1117847 L6260 2025 Generalized Fermat 1322b 779*2^3713283+1 1117813 L5980 2025 1323f 337377976^131072+1 1117798 L6259 2025 Generalized Fermat 1324f 337239448^131072+1 1117774 L4387 2025 Generalized Fermat 1325f 336909928^131072+1 1117719 L6256 2025 Generalized Fermat 1326 367*2^3712952+1 1117713 L5264 2022 1327f 336776604^131072+1 1117696 L6080 2025 Generalized Fermat 1328f 336659214^131072+1 1117676 L5467 2025 Generalized Fermat 1329f 336511772^131072+1 1117651 L4387 2025 Generalized Fermat 1330b 1005*2^3712712+1 1117641 L5226 2025 1331f 336225072^131072+1 1117603 L4387 2025 Generalized Fermat 1332f 336163680^131072+1 1117593 L4387 2025 Generalized Fermat 1333f 336061324^131072+1 1117575 L4387 2025 Generalized Fermat 1334f 335827642^131072+1 1117536 L4201 2025 Generalized Fermat 1335f 335774748^131072+1 1117527 L5697 2025 Generalized Fermat 1336f 335651494^131072+1 1117506 L4387 2025 Generalized Fermat 1337f 335493020^131072+1 1117479 L4387 2025 Generalized Fermat 1338f 335369868^131072+1 1117458 L4387 2025 Generalized Fermat 1339f 334704486^131072+1 1117345 L4387 2025 Generalized Fermat 1340f 333992848^131072+1 1117224 L5639 2025 Generalized Fermat 1341f 333867048^131072+1 1117202 L4387 2025 Generalized Fermat 1342f 333848570^131072+1 1117199 L4387 2025 Generalized Fermat 1343f 333782588^131072+1 1117188 L4387 2025 Generalized Fermat 1344f 333605722^131072+1 1117158 L6237 2025 Generalized Fermat 1345f 333589186^131072+1 1117155 L4387 2025 Generalized Fermat 1346f 333291568^131072+1 1117104 L5697 2025 Generalized Fermat 1347f 332896652^131072+1 1117037 L4387 2025 Generalized Fermat 1348f 332642368^131072+1 1116993 L5639 2025 Generalized Fermat 1349f 332518718^131072+1 1116972 L5639 2025 Generalized Fermat 1350f 332328704^131072+1 1116939 L5767 2025 Generalized Fermat 1351f 332234952^131072+1 1116923 L4387 2025 Generalized Fermat 1352f 331873856^131072+1 1116861 L5639 2025 Generalized Fermat 1353f 331689568^131072+1 1116830 L4201 2025 Generalized Fermat 1354f 331213936^131072+1 1116748 L5416 2025 Generalized Fermat 1355f 331012838^131072+1 1116714 L4899 2025 Generalized Fermat 1356f 330733978^131072+1 1116666 L6036 2025 Generalized Fermat 1357f 330629260^131072+1 1116648 L5606 2025 Generalized Fermat 1358 53*2^3709297+1 1116612 L5197 2022 1359f 329898286^131072+1 1116522 L6252 2025 Generalized Fermat 1360b 861*2^3708816+1 1116468 L5226 2025 1361f 329482500^131072+1 1116450 L4387 2025 Generalized Fermat 1362 329433542^131072+1 1116441 L4201 2025 Generalized Fermat 1363 329320574^131072+1 1116422 L5696 2025 Generalized Fermat 1364 329310030^131072+1 1116420 L4201 2025 Generalized Fermat 1365 329136932^131072+1 1116390 L4892 2025 Generalized Fermat 1366 328941060^131072+1 1116356 L5974 2025 Generalized Fermat 1367 328110906^131072+1 1116212 L4387 2025 Generalized Fermat 1368 328048726^131072+1 1116202 L6250 2025 Generalized Fermat 1369 328036906^131072+1 1116200 L4201 2025 Generalized Fermat 1370 327703514^131072+1 1116142 L5974 2025 Generalized Fermat 1371 327549800^131072+1 1116115 L6129 2025 Generalized Fermat 1372 327476480^131072+1 1116102 L4201 2025 Generalized Fermat 1373 327239720^131072+1 1116061 L4984 2025 Generalized Fermat 1374b 1163*2^3707397+1 1116041 L5161 2025 1375 326302488^131072+1 1115898 L5722 2025 Generalized Fermat 1376 326104126^131072+1 1115863 L4684 2025 Generalized Fermat 1377 325957720^131072+1 1115838 L5186 2025 Generalized Fermat 1378 325927678^131072+1 1115832 L6245 2025 Generalized Fermat 1379 325913944^131072+1 1115830 L4387 2025 Generalized Fermat 1380 325084378^131072+1 1115685 L4201 2025 Generalized Fermat 1381 325043708^131072+1 1115678 L4201 2025 Generalized Fermat 1382 324844530^131072+1 1115643 L4939 2025 Generalized Fermat 1383 324830528^131072+1 1115640 L4599 2025 Generalized Fermat 1384 324563740^131072+1 1115594 L5639 2025 Generalized Fermat 1385 324342882^131072+1 1115555 L4201 2025 Generalized Fermat 1386 323718292^131072+1 1115445 L4201 2025 Generalized Fermat 1387 323626506^131072+1 1115429 L4201 2025 Generalized Fermat 1388 323033558^131072+1 1115325 L6073 2025 Generalized Fermat 1389 322955442^131072+1 1115311 L5767 2025 Generalized Fermat 1390 322525546^131072+1 1115235 L4201 2025 Generalized Fermat 1391 322451080^131072+1 1115222 L5452 2025 Generalized Fermat 1392 322434876^131072+1 1115219 L4201 2025 Generalized Fermat 1393 322396080^131072+1 1115212 L6237 2025 Generalized Fermat 1394 322011364^131072+1 1115144 L4201 2025 Generalized Fermat 1395 321847328^131072+1 1115115 L4387 2025 Generalized Fermat 1396 321745654^131072+1 1115097 L4201 2025 Generalized Fermat 1397 321738090^131072+1 1115096 L4760 2025 Generalized Fermat 1398 321725062^131072+1 1115094 L6090 2025 Generalized Fermat 1399 321586916^131072+1 1115069 L4201 2025 Generalized Fermat 1400 2^3704053+2^1852027+1 1115032 L3839 2014 Gaussian Mersenne norm 39, generalized unique 1401 321054002^131072+1 1114975 L6092 2025 Generalized Fermat 1402 320959460^131072+1 1114958 L4774 2025 Generalized Fermat 1403 320925816^131072+1 1114952 L6229 2025 Generalized Fermat 1404 320693846^131072+1 1114911 L6230 2025 Generalized Fermat 1405 320244692^131072+1 1114831 L6227 2025 Generalized Fermat 1406 319727682^131072+1 1114739 L4477 2025 Generalized Fermat 1407 319569620^131072+1 1114711 L5156 2025 Generalized Fermat 1408 319473204^131072+1 1114694 L6085 2025 Generalized Fermat 1409 319461008^131072+1 1114692 L4760 2025 Generalized Fermat 1410 317844906^131072+1 1114403 L5069 2025 Generalized Fermat 1411 317488260^131072+1 1114339 L5069 2025 Generalized Fermat 1412 395*2^3701693+1 1114324 L5536 2022 1413 317365236^131072+1 1114317 L6036 2025 Generalized Fermat 1414 317303160^131072+1 1114306 L5707 2025 Generalized Fermat 1415 317185514^131072+1 1114285 L4201 2025 Generalized Fermat 1416 317005818^131072+1 1114252 L5069 2025 Generalized Fermat 1417 316699096^131072+1 1114197 L5234 2025 Generalized Fermat 1418 316650634^131072+1 1114189 L5698 2025 Generalized Fermat 1419 316586358^131072+1 1114177 L4747 2025 Generalized Fermat 1420 316525620^131072+1 1114166 L4835 2025 Generalized Fermat 1421 316291718^131072+1 1114124 L4835 2025 Generalized Fermat 1422 315974676^131072+1 1114067 L5069 2025 Generalized Fermat 1423 315889316^131072+1 1114052 L5234 2025 Generalized Fermat 1424 315747878^131072+1 1114026 L5989 2025 Generalized Fermat 1425 315608702^131072+1 1114001 L5577 2025 Generalized Fermat 1426 315329034^131072+1 1113950 L5378 2025 Generalized Fermat 1427 315314084^131072+1 1113948 L5718 2025 Generalized Fermat 1428 315134738^131072+1 1113915 L5697 2025 Generalized Fermat 1429 314548296^131072+1 1113809 L4774 2025 Generalized Fermat 1430 314518672^131072+1 1113804 L5720 2025 Generalized Fermat 1431 589*2^3699954+1 1113800 L5576 2022 1432 314283852^131072+1 1113761 L6220 2025 Generalized Fermat 1433 314187728^131072+1 1113744 L4704 2019 Generalized Fermat 1434 313957156^131072+1 1113702 L4201 2025 Generalized Fermat 1435 313807832^131072+1 1113675 L4309 2025 Generalized Fermat 1436 313698494^131072+1 1113655 L4791 2025 Generalized Fermat 1437 313043470^131072+1 1113536 L4870 2025 Generalized Fermat 1438b 889*2^3699050+1 1113528 L5161 2025 1439 312959344^131072+1 1113521 L5989 2025 Generalized Fermat 1440 312907040^131072+1 1113512 L4835 2025 Generalized Fermat 1441 312372774^131072+1 1113414 L5732 2025 Generalized Fermat 1442 312306760^131072+1 1113402 L5782 2025 Generalized Fermat 1443 119*2^3698412-1 1113336 L2484 2018 1444b 1169*2^3698399+1 1113333 L5226 2025 1445 311769070^131072+1 1113304 L5378 2025 Generalized Fermat 1446 311345600^131072+1 1113227 L4201 2025 Generalized Fermat 1447 311340274^131072+1 1113226 L5234 2025 Generalized Fermat 1448 311041040^131072+1 1113171 L5974 2025 Generalized Fermat 1449 310877094^131072+1 1113141 L5378 2025 Generalized Fermat 1450b 1189*2^3697618+1 1113098 L5517 2025 1451 310324620^131072+1 1113040 L5069 2025 Generalized Fermat 1452 310092052^131072+1 1112997 L4201 2025 Generalized Fermat 1453 310040910^131072+1 1112988 L5989 2025 Generalized Fermat 1454 310039364^131072+1 1112987 L5452 2025 Generalized Fermat 1455 309765652^131072+1 1112937 L5069 2025 Generalized Fermat 1456 309739652^131072+1 1112932 L4201 2025 Generalized Fermat 1457 309664690^131072+1 1112919 L4904 2025 Generalized Fermat 1458 309512820^131072+1 1112891 L4672 2025 Generalized Fermat 1459 309489574^131072+1 1112886 L4285 2025 Generalized Fermat 1460 309442124^131072+1 1112878 L4763 2025 Generalized Fermat 1461 309322056^131072+1 1112856 L5763 2025 Generalized Fermat 1462 309290162^131072+1 1112850 L4984 2025 Generalized Fermat 1463 309274552^131072+1 1112847 L4870 2025 Generalized Fermat 1464 309198216^131072+1 1112833 L6220 2025 Generalized Fermat 1465 309023380^131072+1 1112801 L5586 2025 Generalized Fermat 1466 308604278^131072+1 1112723 L5814 2025 Generalized Fermat 1467 308406372^131072+1 1112687 L5069 2025 Generalized Fermat 1468 308191838^131072+1 1112647 L4411 2025 Generalized Fermat 1469 308154186^131072+1 1112640 L4672 2025 Generalized Fermat 1470 308065536^131072+1 1112624 L5617 2025 Generalized Fermat 1471 307819786^131072+1 1112579 L4733 2025 Generalized Fermat 1472 307711366^131072+1 1112558 L5375 2025 Generalized Fermat 1473 307525070^131072+1 1112524 L5234 2025 Generalized Fermat 1474 307305996^131072+1 1112483 L5871 2025 Generalized Fermat 1475 307211976^131072+1 1112466 L5234 2025 Generalized Fermat 1476 306999614^131072+1 1112427 L6215 2025 Generalized Fermat 1477 306293130^131072+1 1112295 L4252 2025 Generalized Fermat 1478 306021044^131072+1 1112245 L5029 2025 Generalized Fermat 1479 305985812^131072+1 1112238 L4672 2025 Generalized Fermat 1480 305909498^131072+1 1112224 L5869 2025 Generalized Fermat 1481 305710338^131072+1 1112187 L5155 2025 Generalized Fermat 1482 305485026^131072+1 1112145 L6217 2025 Generalized Fermat 1483 305470708^131072+1 1112142 L4245 2025 Generalized Fermat 1484 305377046^131072+1 1112125 L4775 2025 Generalized Fermat 1485 305014830^131072+1 1112057 L5041 2025 Generalized Fermat 1486 304591806^131072+1 1111978 L5069 2025 Generalized Fermat 1487 391*2^3693728+1 1111926 L5493 2022 1488 303660042^131072+1 1111804 L5548 2025 Generalized Fermat 1489 303569754^131072+1 1111787 L5041 2025 Generalized Fermat 1490 303297636^131072+1 1111736 L5069 2025 Generalized Fermat 1491 303057534^131072+1 1111691 L5797 2025 Generalized Fermat 1492 302824086^131072+1 1111647 L4252 2025 Generalized Fermat 1493 302491876^131072+1 1111585 L5273 2025 Generalized Fermat 1494 302240442^131072+1 1111537 L5375 2025 Generalized Fermat 1495 302186970^131072+1 1111527 L5030 2025 Generalized Fermat 1496 302150100^131072+1 1111520 L5586 2025 Generalized Fermat 1497 301715144^131072+1 1111438 L5234 2025 Generalized Fermat 1498 301702734^131072+1 1111436 L6205 2025 Generalized Fermat 1499 301006780^131072+1 1111304 L5375 2025 Generalized Fermat 1500 300951448^131072+1 1111294 L6092 2025 Generalized Fermat 1501 300789064^131072+1 1111263 L5041 2025 Generalized Fermat 1502 300359914^131072+1 1111182 L6207 2025 Generalized Fermat 1503 1089049*2^3691010+1 1111111 A51 2024 1504 299617962^131072+1 1111041 L6170 2025 Generalized Fermat 1505 299465954^131072+1 1111012 L5378 2025 Generalized Fermat 1506 299453316^131072+1 1111010 L6207 2025 Generalized Fermat 1507 299319324^131072+1 1110984 L5378 2025 Generalized Fermat 1508 298464340^131072+1 1110822 L5019 2025 Generalized Fermat 1509 298459970^131072+1 1110821 L4477 2025 Generalized Fermat 1510 297844594^131072+1 1110703 L5029 2025 Generalized Fermat 1511 297797756^131072+1 1110694 L6096 2025 Generalized Fermat 1512 297561734^131072+1 1110649 L5070 2025 Generalized Fermat 1513 297347764^131072+1 1110608 L4201 2025 Generalized Fermat 1514 297200042^131072+1 1110580 L5143 2025 Generalized Fermat 1515 296855808^131072+1 1110514 L6205 2025 Generalized Fermat 1516b 879*2^3688853+1 1110459 L5161 2025 1517 296366230^131072+1 1110420 L6019 2025 Generalized Fermat 1518 296322752^131072+1 1110412 L5462 2025 Generalized Fermat 1519 296139756^131072+1 1110377 L5696 2025 Generalized Fermat 1520 296013472^131072+1 1110352 L5156 2025 Generalized Fermat 1521 295817758^131072+1 1110315 L5974 2025 Generalized Fermat 1522 485*2^3688111+1 1110235 L5237 2022 1523 295265516^131072+1 1110208 L5391 2025 Generalized Fermat 1524 295158064^131072+1 1110188 L4201 2025 Generalized Fermat 1525 295116084^131072+1 1110179 L6202 2025 Generalized Fermat 1526 295038452^131072+1 1110164 L6201 2025 Generalized Fermat 1527 294901286^131072+1 1110138 L5880 2025 Generalized Fermat 1528 294581562^131072+1 1110076 L4933 2025 Generalized Fermat 1529 294287308^131072+1 1110019 L5029 2025 Generalized Fermat 1530 294282868^131072+1 1110018 L5069 2025 Generalized Fermat 1531 293950920^131072+1 1109954 L5019 2025 Generalized Fermat 1532 293846126^131072+1 1109934 L4387 2025 Generalized Fermat 1533 293634610^131072+1 1109893 L4659 2025 Generalized Fermat 1534 293593596^131072+1 1109885 L5457 2025 Generalized Fermat 1535 293229954^131072+1 1109814 L5069 2025 Generalized Fermat 1536 341*2^3686613+1 1109784 L5573 2022 1537 87*2^3686558+1 1109767 L5573 2022 1538 292906440^131072+1 1109752 L5069 2025 Generalized Fermat 1539 292462072^131072+1 1109665 L5586 2025 Generalized Fermat 1540b 965*2^3685969+1 1109591 L5161 2025 1541 291939158^131072+1 1109563 L5586 2025 Generalized Fermat 1542 291644784^131072+1 1109506 L4201 2025 Generalized Fermat 1543 291616626^131072+1 1109500 L5676 2025 Generalized Fermat 1544 291515852^131072+1 1109481 L5697 2025 Generalized Fermat 1545 291463322^131072+1 1109470 L5025 2025 Generalized Fermat 1546 291165334^131072+1 1109412 L5637 2025 Generalized Fermat 1547 290922092^131072+1 1109365 L5069 2025 Generalized Fermat 1548 290470932^131072+1 1109276 L5069 2025 Generalized Fermat 1549 290470146^131072+1 1109276 L5069 2025 Generalized Fermat 1550 290289574^131072+1 1109241 L5586 2025 Generalized Fermat 1551 290289300^131072+1 1109241 L5491 2025 Generalized Fermat 1552 290203860^131072+1 1109224 L4835 2025 Generalized Fermat 1553 290075834^131072+1 1109199 L5234 2025 Generalized Fermat 1554 289805958^131072+1 1109146 L5234 2025 Generalized Fermat 1555 289390778^131072+1 1109064 L5639 2025 Generalized Fermat 1556b 877*2^3684190+1 1109055 L6013 2025 1557 289176522^131072+1 1109022 L5041 2025 Generalized Fermat 1558 288601570^131072+1 1108909 L6189 2025 Generalized Fermat 1559 288168976^131072+1 1108823 L6187 2025 Generalized Fermat 1560 287625360^131072+1 1108716 L4747 2025 Generalized Fermat 1561 675*2^3682616+1 1108581 L5231 2022 1562 286460772^131072+1 1108485 L5069 2025 Generalized Fermat 1563 286434328^131072+1 1108480 L4904 2025 Generalized Fermat 1564 569*2^3682167+1 1108446 L5488 2022 1565 285803202^131072+1 1108354 L5473 2025 Generalized Fermat 1566 285447574^131072+1 1108283 L5586 2025 Generalized Fermat 1567 285446536^131072+1 1108283 L5687 2025 Generalized Fermat 1568 284918308^131072+1 1108178 L4201 2025 Generalized Fermat 1569 284831742^131072+1 1108160 L6085 2025 Generalized Fermat 1570 284805838^131072+1 1108155 L5025 2025 Generalized Fermat 1571 284753240^131072+1 1108145 L6185 2025 Generalized Fermat 1572 284745724^131072+1 1108143 L5869 2025 Generalized Fermat 1573a 57*2^3681002-1 1108094 A78 2025 1574 284001924^131072+1 1107994 L5416 2025 Generalized Fermat 1575 283824490^131072+1 1107959 L5470 2025 Generalized Fermat 1576 283699626^131072+1 1107934 L5234 2025 Generalized Fermat 1577 283216606^131072+1 1107837 L5711 2025 Generalized Fermat 1578b 765*2^3680091+1 1107821 L6280 2025 1579 282839136^131072+1 1107761 L4756 2025 Generalized Fermat 1580 281755198^131072+1 1107542 L5234 2025 Generalized Fermat 1581 281635050^131072+1 1107518 L5697 2025 Generalized Fermat 1582 330286*5^1584399-1 1107453 L3523 2014 1583 281238556^131072+1 1107438 L5041 2025 Generalized Fermat 1584 281131678^131072+1 1107416 L4584 2025 Generalized Fermat 1585 34*951^371834-1 1107391 L5410 2019 1586 280984376^131072+1 1107386 L5844 2025 Generalized Fermat 1587 280877312^131072+1 1107364 L6178 2025 Generalized Fermat 1588 280515348^131072+1 1107291 L5029 2025 Generalized Fermat 1589 280391126^131072+1 1107266 L5011 2025 Generalized Fermat 1590 280207586^131072+1 1107229 L5322 2025 Generalized Fermat 1591 279991058^131072+1 1107185 L5526 2025 Generalized Fermat 1592 279987304^131072+1 1107184 L5974 2025 Generalized Fermat 1593 279919024^131072+1 1107170 L4672 2025 Generalized Fermat 1594 45*2^3677787+1 1107126 L1204 2019 1595 279594222^131072+1 1107104 L5814 2025 Generalized Fermat 1596 279533226^131072+1 1107091 L6176 2025 Generalized Fermat 1597 279393398^131072+1 1107063 L5637 2025 Generalized Fermat 1598 279257150^131072+1 1107035 L6177 2025 Generalized Fermat 1599 278715552^131072+1 1106925 L6129 2025 Generalized Fermat 1600 278620322^131072+1 1106905 L5069 2025 Generalized Fermat 1601 278619282^131072+1 1106905 L5378 2025 Generalized Fermat 1602 278524906^131072+1 1106886 L4249 2025 Generalized Fermat 1603 278507178^131072+1 1106882 L5682 2025 Generalized Fermat 1604 278237250^131072+1 1106827 L6182 2025 Generalized Fermat 1605 278204564^131072+1 1106820 L5948 2025 Generalized Fermat 1606 278190840^131072+1 1106817 L6183 2025 Generalized Fermat 1607 277919980^131072+1 1106762 L5974 2025 Generalized Fermat 1608 625*2^3676300+1 1106680 L5302 2022 Generalized Fermat 1609 277256590^131072+1 1106626 L6170 2025 Generalized Fermat 1610 277085600^131072+1 1106591 L5974 2025 Generalized Fermat 1611 276836574^131072+1 1106540 L4760 2025 Generalized Fermat 1612 276775868^131072+1 1106527 L5549 2025 Generalized Fermat 1613 276740330^131072+1 1106520 L6166 2025 Generalized Fermat 1614 276607388^131072+1 1106492 L5782 2025 Generalized Fermat 1615 276446036^131072+1 1106459 L5011 2025 Generalized Fermat 1616 276329786^131072+1 1106435 L5718 2025 Generalized Fermat 1617 13*2^3675223-1 1106354 L1862 2016 1618 275170262^131072+1 1106196 L5378 2025 Generalized Fermat 1619 274919976^131072+1 1106144 L5378 2025 Generalized Fermat 1620 274816000^131072+1 1106123 L6163 2025 Generalized Fermat 1621 274753140^131072+1 1106110 L5974 2025 Generalized Fermat 1622 274535798^131072+1 1106065 L5816 2025 Generalized Fermat 1623 274280236^131072+1 1106012 L5070 2025 Generalized Fermat 1624 273579644^131072+1 1105866 L6129 2025 Generalized Fermat 1625 273503630^131072+1 1105850 L4309 2025 Generalized Fermat 1626 273438512^131072+1 1105837 L5718 2025 Generalized Fermat 1627 273327598^131072+1 1105813 L5512 2025 Generalized Fermat 1628 273306974^131072+1 1105809 L4892 2025 Generalized Fermat 1629 273272188^131072+1 1105802 L5543 2025 Generalized Fermat 1630 273237906^131072+1 1105795 L6159 2025 Generalized Fermat 1631 273140040^131072+1 1105774 L4210 2025 Generalized Fermat 1632 273036074^131072+1 1105753 L5069 2025 Generalized Fermat 1633 272998912^131072+1 1105745 L4245 2025 Generalized Fermat 1634b 947*2^3673183+1 1105742 L5614 2025 1635 272788310^131072+1 1105701 L4720 2025 Generalized Fermat 1636 272041540^131072+1 1105545 L5069 2025 Generalized Fermat 1637 271643232^131072+1 1105462 L4704 2019 Generalized Fermat 1638 271370312^131072+1 1105404 L4591 2025 Generalized Fermat 1639 271135152^131072+1 1105355 L5718 2025 Generalized Fermat 1640 270979532^131072+1 1105322 L5639 2025 Generalized Fermat 1641 270832760^131072+1 1105292 L5027 2025 Generalized Fermat 1642 270822160^131072+1 1105289 L4726 2025 Generalized Fermat 1643 270789102^131072+1 1105282 L5051 2025 Generalized Fermat 1644 270682284^131072+1 1105260 L6129 2025 Generalized Fermat 1645 270581690^131072+1 1105239 L4870 2025 Generalized Fermat 1646 270284868^131072+1 1105176 L5027 2025 Generalized Fermat 1647 463*2^3671262+1 1105163 L5524 2022 1648 269993492^131072+1 1105115 L6129 2025 Generalized Fermat 1649 735*2^3670991+1 1105082 L5575 2022 1650 269812742^131072+1 1105077 L6129 2025 Generalized Fermat 1651 268685690^131072+1 1104838 L4898 2025 Generalized Fermat 1652 475*2^3670046+1 1104797 L5524 2022 1653 267783532^131072+1 1104647 L5974 2025 Generalized Fermat 1654 267768162^131072+1 1104644 L5974 2025 Generalized Fermat 1655 267416848^131072+1 1104569 L5707 2025 Generalized Fermat 1656 267414744^131072+1 1104569 L5771 2025 Generalized Fermat 1657 266639610^131072+1 1104403 L5069 2025 Generalized Fermat 1658 266330322^131072+1 1104337 L5707 2025 Generalized Fermat 1659 266249522^131072+1 1104320 L5069 2025 Generalized Fermat 1660 15*2^3668194-1 1104238 L3665 2013 1661 265866252^131072+1 1104238 L4591 2025 Generalized Fermat 1662 265837862^131072+1 1104232 L5069 2025 Generalized Fermat 1663 265643056^131072+1 1104190 L5069 2025 Generalized Fermat 1664 265621592^131072+1 1104186 L4201 2025 Generalized Fermat 1665 265478490^131072+1 1104155 L5069 2025 Generalized Fermat 1666 264860372^131072+1 1104022 L5639 2025 Generalized Fermat 1667 264624458^131072+1 1103971 L5416 2025 Generalized Fermat 1668 264541844^131072+1 1103954 L5332 2025 Generalized Fermat 1669 264360218^131072+1 1103915 L4875 2025 Generalized Fermat 1670 264269230^131072+1 1103895 L5526 2025 Generalized Fermat 1671 263861882^131072+1 1103807 L5639 2025 Generalized Fermat 1672 263506158^131072+1 1103730 L6102 2025 Generalized Fermat 1673 262824942^131072+1 1103583 L5586 2025 Generalized Fermat 1674 262754910^131072+1 1103568 L4774 2025 Generalized Fermat 1675 262470710^131072+1 1103506 L5974 2025 Generalized Fermat 1676 273*2^3665736+1 1103499 L5192 2022 1677 262298138^131072+1 1103469 L5864 2025 Generalized Fermat 1678 262041482^131072+1 1103413 L5457 2025 Generalized Fermat 1679 262005898^131072+1 1103405 L4774 2025 Generalized Fermat 1680 261858724^131072+1 1103373 L5639 2025 Generalized Fermat 1681 261114224^131072+1 1103211 L4939 2025 Generalized Fermat 1682 13*2^3664703-1 1103187 L1862 2016 1683 1486*165^497431+1 1103049 A11 2024 1684 260265300^131072+1 1103026 L5586 2024 Generalized Fermat 1685 260050122^131072+1 1102979 L5586 2024 Generalized Fermat 1686 259881684^131072+1 1102942 L4245 2024 Generalized Fermat 1687 259576262^131072+1 1102875 L4672 2024 Generalized Fermat 1688c 250*859^375877+1 1102823 A11 2025 1689 406515^196608-406515^98304+1 1102790 L4506 2016 Generalized unique 1690 259130312^131072+1 1102777 L5156 2024 Generalized Fermat 1691 259042144^131072+1 1102758 L5457 2024 Generalized Fermat 1692b 111*2^3663234-1 1102746 A76 2025 1693 609*2^3662931+1 1102655 L5573 2022 1694 258337266^131072+1 1102603 L5457 2024 Generalized Fermat 1695 258336436^131072+1 1102602 L5586 2024 Generalized Fermat 1696 258197916^131072+1 1102572 L5473 2024 Generalized Fermat 1697 258109576^131072+1 1102552 L4672 2024 Generalized Fermat 1698 257401382^131072+1 1102396 L5586 2024 Generalized Fermat 1699 257047620^131072+1 1102318 L4892 2024 Generalized Fermat 1700 256963326^131072+1 1102299 L6093 2024 Generalized Fermat 1701 256943534^131072+1 1102295 L4892 2024 Generalized Fermat 1702 256089378^131072+1 1102105 L4892 2024 Generalized Fermat 1703 255856074^131072+1 1102053 L4747 2024 Generalized Fermat 1704 255812078^131072+1 1102044 L6091 2024 Generalized Fermat 1705 255666546^131072+1 1102011 L6092 2024 Generalized Fermat 1706 255648100^131072+1 1102007 L4245 2024 Generalized Fermat 1707 255555468^131072+1 1101986 L5639 2024 Generalized Fermat 1708 255339392^131072+1 1101938 L5707 2024 Generalized Fermat 1709 255189240^131072+1 1101905 L5782 2024 Generalized Fermat 1710 254954350^131072+1 1101852 L5467 2024 Generalized Fermat 1711 254731916^131072+1 1101803 L6090 2024 Generalized Fermat 1712 254713668^131072+1 1101799 L5782 2024 Generalized Fermat 1713 254450722^131072+1 1101740 L5620 2024 Generalized Fermat 1714 254193678^131072+1 1101682 L5634 2024 Generalized Fermat 1715 253875014^131072+1 1101611 L5707 2024 Generalized Fermat 1716 253866454^131072+1 1101609 L5457 2024 Generalized Fermat 1717 253210808^131072+1 1101462 L4968 2024 Generalized Fermat 1718 252934920^131072+1 1101400 L6036 2024 Generalized Fermat 1719 252637312^131072+1 1101333 L5526 2024 Generalized Fermat 1720 252545864^131072+1 1101312 L5467 2024 Generalized Fermat 1721 252369374^131072+1 1101272 L5452 2024 Generalized Fermat 1722 252171992^131072+1 1101228 L5639 2024 Generalized Fermat 1723 251361006^131072+1 1101044 L5127 2024 Generalized Fermat 1724 251085988^131072+1 1100982 L4201 2024 Generalized Fermat 1725 250775680^131072+1 1100912 L6073 2024 Generalized Fermat 1726 249754922^131072+1 1100679 L4898 2024 Generalized Fermat 1727 249751100^131072+1 1100679 L6088 2024 Generalized Fermat 1728 249735514^131072+1 1100675 L4201 2024 Generalized Fermat 1729 249634320^131072+1 1100652 L6087 2024 Generalized Fermat 1730 118*892^373012+1 1100524 L5071 2020 1731 248934378^131072+1 1100492 L5974 2024 Generalized Fermat 1732 248857694^131072+1 1100475 L6086 2024 Generalized Fermat 1733 248820272^131072+1 1100466 L5768 2024 Generalized Fermat 1734 248632632^131072+1 1100423 L5416 2024 Generalized Fermat 1735 248621940^131072+1 1100421 L5051 2024 Generalized Fermat 1736 248617468^131072+1 1100420 L5416 2024 Generalized Fermat 1737 33300*430^417849-1 1100397 L4393 2016 1738 247389350^131072+1 1100138 L6085 2024 Generalized Fermat 1739 247342010^131072+1 1100127 L6073 2024 Generalized Fermat 1740 247145256^131072+1 1100082 L4939 2024 Generalized Fermat 1741 246980946^131072+1 1100044 L4249 2024 Generalized Fermat 1742 246952054^131072+1 1100037 L6084 2024 Generalized Fermat 1743 246943520^131072+1 1100035 L5746 2024 Generalized Fermat 1744 (2^2976221-1)*(10^204068-1172064)+1 1100000 p449 2024 1745 246677978^131072+1 1099974 L5512 2024 Generalized Fermat 1746 246634478^131072+1 1099964 L5117 2024 Generalized Fermat 1747b 1175*2^3653893+1 1099935 L6243 2025 1748 246394910^131072+1 1099908 L6038 2024 Generalized Fermat 1749 246207020^131072+1 1099865 L5606 2024 Generalized Fermat 1750 246012578^131072+1 1099820 L5606 2024 Generalized Fermat 1751 245507802^131072+1 1099703 L5606 2024 Generalized Fermat 1752 245461196^131072+1 1099692 L6078 2024 Generalized Fermat 1753 655*2^3653008+1 1099668 L5574 2022 1754 244873604^131072+1 1099556 L6076 2024 Generalized Fermat 1755 244660242^131072+1 1099506 L6038 2024 Generalized Fermat 1756 244342390^131072+1 1099432 L5416 2024 Generalized Fermat 1757 244202408^131072+1 1099400 L4371 2024 Generalized Fermat 1758 291*268^452750-1 1099341 L5410 2022 1759 243786926^131072+1 1099303 L6073 2024 Generalized Fermat 1760 243427990^131072+1 1099219 L4892 2024 Generalized Fermat 1761 242973858^131072+1 1099113 L6072 2024 Generalized Fermat 1762 242950108^131072+1 1099107 L4387 2024 Generalized Fermat 1763 242933064^131072+1 1099103 L5782 2024 Generalized Fermat 1764 242926826^131072+1 1099102 L5826 2024 Generalized Fermat 1765 242855212^131072+1 1099085 L4591 2024 Generalized Fermat 1766 242494358^131072+1 1099000 L5416 2024 Generalized Fermat 1767 242295536^131072+1 1098953 L5205 2024 Generalized Fermat 1768 242161196^131072+1 1098922 L6070 2024 Generalized Fermat 1769 241765100^131072+1 1098829 L6067 2024 Generalized Fermat 1770 241550882^131072+1 1098778 L6065 2024 Generalized Fermat 1771b 869*2^3650049+1 1098778 L5161 2025 1772 241438172^131072+1 1098752 L4591 2024 Generalized Fermat 1773 241338084^131072+1 1098728 L4591 2024 Generalized Fermat 1774 241249426^131072+1 1098707 L5526 2024 Generalized Fermat 1775 33*2^3649810+1 1098704 L4958 2019 1776 241151312^131072+1 1098684 L4387 2024 Generalized Fermat 1777 241000970^131072+1 1098648 L5707 2024 Generalized Fermat 1778 240966866^131072+1 1098640 L4559 2024 Generalized Fermat 1779 240965802^131072+1 1098640 L6058 2024 Generalized Fermat 1780 240910640^131072+1 1098627 L5101 2024 Generalized Fermat 1781 240856112^131072+1 1098614 L4875 2024 Generalized Fermat 1782 240307734^131072+1 1098484 L4249 2024 Generalized Fermat 1783 240190808^131072+1 1098457 L5056 2024 Generalized Fermat 1784 239927858^131072+1 1098394 L4477 2024 Generalized Fermat 1785 239545562^131072+1 1098304 L4591 2024 Generalized Fermat 1786 239520486^131072+1 1098298 L5634 2024 Generalized Fermat 1787e 262614*5^1571158-1 1098198 A11 2025 1788 238968056^131072+1 1098166 L4477 2024 Generalized Fermat 1789 238871106^131072+1 1098143 L6058 2024 Generalized Fermat 1790 238852190^131072+1 1098139 L5526 2024 Generalized Fermat 1791 238698190^131072+1 1098102 L5077 2024 Generalized Fermat 1792 238653710^131072+1 1098091 L6057 2024 Generalized Fermat 1793 238627390^131072+1 1098085 L5871 2024 Generalized Fermat 1794 238438430^131072+1 1098040 L5707 2024 Generalized Fermat 1795 238381768^131072+1 1098026 L5707 2024 Generalized Fermat 1796 238193230^131072+1 1097981 L4201 2024 Generalized Fermat 1797 238168282^131072+1 1097975 L4201 2024 Generalized Fermat 1798 238109742^131072+1 1097961 L4559 2024 Generalized Fermat 1799 237601644^131072+1 1097840 L5782 2024 Generalized Fermat 1800 237260908^131072+1 1097758 L4201 2024 Generalized Fermat 1801 237185928^131072+1 1097740 L5755 2024 Generalized Fermat 1802 237108488^131072+1 1097722 L5639 2024 Generalized Fermat 1803 236924362^131072+1 1097677 L5639 2024 Generalized Fermat 1804 236602468^131072+1 1097600 L6038 2024 Generalized Fermat 1805 236500052^131072+1 1097575 L5198 2024 Generalized Fermat 1806 236417078^131072+1 1097555 L5588 2024 Generalized Fermat 1807 236278180^131072+1 1097522 L5416 2024 Generalized Fermat 1808 236240868^131072+1 1097513 L6038 2024 Generalized Fermat 1809 235947986^131072+1 1097442 L4201 2024 Generalized Fermat 1810 235577802^131072+1 1097353 L5077 2024 Generalized Fermat 1811 235566676^131072+1 1097350 L5416 2024 Generalized Fermat 1812 235108160^131072+1 1097239 L4898 2024 Generalized Fermat 1813 234962380^131072+1 1097204 L4201 2024 Generalized Fermat 1814 234806100^131072+1 1097166 L5088 2024 Generalized Fermat 1815 234661134^131072+1 1097131 L5416 2024 Generalized Fermat 1816 234566344^131072+1 1097108 L5974 2024 Generalized Fermat 1817 234523400^131072+1 1097098 L4201 2024 Generalized Fermat 1818 234385314^131072+1 1097064 L4285 2024 Generalized Fermat 1819 234307964^131072+1 1097045 L4559 2024 Generalized Fermat 1820 234291722^131072+1 1097041 L4999 2024 Generalized Fermat 1821 233937376^131072+1 1096955 L6044 2024 Generalized Fermat 1822 233903532^131072+1 1096947 L4559 2024 Generalized Fermat 1823 233559012^131072+1 1096863 L5416 2024 Generalized Fermat 1824 233447012^131072+1 1096836 L4477 2024 Generalized Fermat 1825 233349574^131072+1 1096812 L5432 2024 Generalized Fermat 1826 233034976^131072+1 1096735 L5101 2024 Generalized Fermat 1827 232796676^131072+1 1096677 L6040 2024 Generalized Fermat 1828 232485778^131072+1 1096601 L4477 2024 Generalized Fermat 1829 232050760^131072+1 1096494 L5782 2024 Generalized Fermat 1830 295*2^3642206+1 1096416 L5161 2022 1831 231583998^131072+1 1096380 L4477 2024 Generalized Fermat 1832 231295516^131072+1 1096309 L5634 2024 Generalized Fermat 1833 230663736^131072+1 1096153 L4774 2024 Generalized Fermat 1834 230655072^131072+1 1096151 L5526 2024 Generalized Fermat 1835 230396424^131072+1 1096087 L4928 2024 Generalized Fermat 1836 230275166^131072+1 1096057 L6011 2024 Generalized Fermat 1837 230267830^131072+1 1096055 L6036 2024 Generalized Fermat 1838 989*2^3640585+1 1095929 L5115 2020 1839 567*2^3639287+1 1095538 L4959 2019 1840 227669832^131072+1 1095409 L5707 2024 Generalized Fermat 1841e 79788*5^1567080-1 1095347 A11 2025 1842 227406222^131072+1 1095343 L4371 2024 Generalized Fermat 1843 227239620^131072+1 1095302 L4559 2024 Generalized Fermat 1844 227135580^131072+1 1095276 L5974 2024 Generalized Fermat 1845 227009830^131072+1 1095244 L4359 2024 Generalized Fermat 1846 226881840^131072+1 1095212 L5784 2024 Generalized Fermat 1847 226782570^131072+1 1095187 L6026 2024 Generalized Fermat 1848 226710488^131072+1 1095169 L5588 2024 Generalized Fermat 1849 226639300^131072+1 1095151 L5634 2024 Generalized Fermat 1850 226453444^131072+1 1095104 L4559 2024 Generalized Fermat 1851 226341130^131072+1 1095076 L4341 2024 Generalized Fermat 1852 226249042^131072+1 1095053 L5370 2024 Generalized Fermat 1853 226100602^131072+1 1095016 L4429 2024 Generalized Fermat 1854 225580118^131072+1 1094884 L5056 2024 Generalized Fermat 1855 225124888^131072+1 1094769 L4591 2024 Generalized Fermat 1856 224635814^131072+1 1094646 L4875 2024 Generalized Fermat 1857 224347630^131072+1 1094572 L5512 2024 Generalized Fermat 1858 224330804^131072+1 1094568 L6019 2024 Generalized Fermat 1859 224249932^131072+1 1094548 L4371 2024 Generalized Fermat 1860 224072278^131072+1 1094503 L5974 2024 Generalized Fermat 1861 639*2^3635707+1 1094460 L1823 2019 1862 223490796^131072+1 1094355 L5332 2024 Generalized Fermat 1863 223074802^131072+1 1094249 L5416 2024 Generalized Fermat 1864 223010262^131072+1 1094232 L6015 2024 Generalized Fermat 1865 222996490^131072+1 1094229 L5731 2024 Generalized Fermat 1866 222888506^131072+1 1094201 L5974 2024 Generalized Fermat 1867 222593516^131072+1 1094126 L6011 2024 Generalized Fermat 1868 222486400^131072+1 1094098 L5332 2024 Generalized Fermat 1869 221636362^131072+1 1093880 L4904 2024 Generalized Fermat 1870 221528336^131072+1 1093853 L5721 2024 Generalized Fermat 1871 221330854^131072+1 1093802 L6010 2024 Generalized Fermat 1872 221325712^131072+1 1093801 L4201 2024 Generalized Fermat 1873 221174400^131072+1 1093762 L4201 2024 Generalized Fermat 1874 221008432^131072+1 1093719 L5974 2024 Generalized Fermat 1875 220956326^131072+1 1093705 L5731 2024 Generalized Fermat 1876 220838206^131072+1 1093675 L5974 2024 Generalized Fermat 1877 220325976^131072+1 1093543 L5690 2024 Generalized Fermat 1878 220317996^131072+1 1093541 L5989 2024 Generalized Fermat 1879 220288248^131072+1 1093533 L5721 2024 Generalized Fermat 1880 219984494^131072+1 1093455 L6005 2024 Generalized Fermat 1881 219556482^131072+1 1093344 L5721 2024 Generalized Fermat 1882 219525472^131072+1 1093336 L4898 2024 Generalized Fermat 1883 219447698^131072+1 1093315 L4933 2024 Generalized Fermat 1884 219430370^131072+1 1093311 L4774 2024 Generalized Fermat 1885 219331584^131072+1 1093285 L5746 2024 Generalized Fermat 1886 753*2^3631472+1 1093185 L1823 2019 1887 2*205731^205731-1 1093111 L4965 2022 1888 218012734^131072+1 1092942 L4928 2024 Generalized Fermat 1889 217820568^131072+1 1092892 L5690 2024 Generalized Fermat 1890 217559364^131072+1 1092823 L4898 2024 Generalized Fermat 1891 217458668^131072+1 1092797 L5989 2024 Generalized Fermat 1892 217423702^131072+1 1092788 L5998 2024 Generalized Fermat 1893 217176690^131072+1 1092723 L5637 2024 Generalized Fermat 1894 217170570^131072+1 1092722 L4371 2024 Generalized Fermat 1895 65531*2^3629342-1 1092546 L2269 2011 1896 1121*2^3629201+1 1092502 L4761 2019 1897 216307766^131072+1 1092495 L4387 2024 Generalized Fermat 1898 216084296^131072+1 1092436 L4201 2024 Generalized Fermat 1899 215*2^3628962-1 1092429 L2484 2018 1900 216039994^131072+1 1092425 L5880 2024 Generalized Fermat 1901 216027436^131072+1 1092421 L5277 2024 Generalized Fermat 1902 216018002^131072+1 1092419 L5586 2024 Generalized Fermat 1903 215949788^131072+1 1092401 L4537 2024 Generalized Fermat 1904 215945398^131072+1 1092400 L4245 2024 Generalized Fermat 1905 215783788^131072+1 1092357 L5711 2024 Generalized Fermat 1906 215717854^131072+1 1092340 L4245 2024 Generalized Fermat 1907 215462154^131072+1 1092272 L4387 2024 Generalized Fermat 1908 215237318^131072+1 1092213 L5693 2024 Generalized Fermat 1909 215004526^131072+1 1092151 L4928 2024 Generalized Fermat 1910 113*2^3628034-1 1092150 L2484 2014 1911 214992758^131072+1 1092148 L5974 2024 Generalized Fermat 1912 1009*2^3627911-1 1092114 A46 2025 1913 214814516^131072+1 1092101 L5746 2024 Generalized Fermat 1914 1175*2^3627541+1 1092002 L4840 2019 1915 214403112^131072+1 1091992 L4905 2024 Generalized Fermat 1916 214321816^131072+1 1091970 L5989 2024 Generalized Fermat 1917 214134178^131072+1 1091920 L5297 2024 Generalized Fermat 1918 214059556^131072+1 1091900 L4362 2024 Generalized Fermat 1919 2*431^414457+1 1091878 L4879 2019 Divides Phi(431^414457,2) 1920 213879170^131072+1 1091852 L5986 2024 Generalized Fermat 1921 19116*24^791057-1 1091831 A44 2024 1922 213736552^131072+1 1091814 L4289 2024 Generalized Fermat 1923 213656000^131072+1 1091793 L4892 2024 Generalized Fermat 1924 213580840^131072+1 1091773 L4201 2024 Generalized Fermat 1925 213425082^131072+1 1091731 L4892 2024 Generalized Fermat 1926 213162592^131072+1 1091661 L4549 2024 Generalized Fermat 1927 213151104^131072+1 1091658 L4763 2024 Generalized Fermat 1928 212912634^131072+1 1091595 L5639 2024 Generalized Fermat 1929 212894100^131072+1 1091590 L5470 2024 Generalized Fermat 1930 212865234^131072+1 1091582 L5782 2024 Generalized Fermat 1931 212862096^131072+1 1091581 L4870 2024 Generalized Fermat 1932 212838152^131072+1 1091575 L5718 2024 Generalized Fermat 1933 212497738^131072+1 1091483 L5051 2024 Generalized Fermat 1934 212121206^131072+1 1091383 L4774 2024 Generalized Fermat 1935 211719438^131072+1 1091275 L4775 2024 Generalized Fermat 1936 211448294^131072+1 1091202 L5929 2024 Generalized Fermat 1937 211407740^131072+1 1091191 L4341 2024 Generalized Fermat 1938 211326826^131072+1 1091169 L5143 2024 Generalized Fermat 1939 210908700^131072+1 1091056 L5639 2024 Generalized Fermat 1940 210564358^131072+1 1090963 L5639 2024 Generalized Fermat 1941 210434680^131072+1 1090928 L4380 2024 Generalized Fermat 1942 210397166^131072+1 1090918 L4870 2024 Generalized Fermat 1943 210160342^131072+1 1090854 L5974 2024 Generalized Fermat 1944 210088618^131072+1 1090834 L5041 2024 Generalized Fermat 1945 209917216^131072+1 1090788 L5755 2024 Generalized Fermat 1946 209839940^131072+1 1090767 L5639 2024 Generalized Fermat 1947 209637998^131072+1 1090712 L4544 2024 Generalized Fermat 1948 951*2^3623185+1 1090691 L1823 2019 1949 209494470^131072+1 1090673 L5869 2024 Generalized Fermat 1950 209385420^131072+1 1090644 L5720 2024 Generalized Fermat 1951 209108558^131072+1 1090568 L5460 2024 Generalized Fermat 1952 209101202^131072+1 1090566 L5011 2024 Generalized Fermat 1953 208565926^131072+1 1090420 L5016 2024 Generalized Fermat 1954 208497360^131072+1 1090402 L5234 2024 Generalized Fermat 1955 208392300^131072+1 1090373 L5030 2024 Generalized Fermat 1956 208374066^131072+1 1090368 L5869 2024 Generalized Fermat 1957 208352366^131072+1 1090362 L5044 2024 Generalized Fermat 1958 208236434^131072+1 1090330 L5984 2024 Generalized Fermat 1959 208003690^131072+1 1090267 L5639 2024 Generalized Fermat 1960 207985150^131072+1 1090262 L5791 2024 Generalized Fermat 1961 207753480^131072+1 1090198 L5974 2024 Generalized Fermat 1962 207514736^131072+1 1090133 L4477 2024 Generalized Fermat 1963 207445740^131072+1 1090114 L5273 2024 Generalized Fermat 1964 29*920^367810-1 1090113 L4064 2015 1965 207296788^131072+1 1090073 L5234 2024 Generalized Fermat 1966 207264358^131072+1 1090064 L5758 2024 Generalized Fermat 1967 207213640^131072+1 1090050 L5077 2024 Generalized Fermat 1968 206709064^131072+1 1089911 L5639 2024 Generalized Fermat 1969 206640054^131072+1 1089892 L5288 2024 Generalized Fermat 1970 206594738^131072+1 1089880 L5707 2024 Generalized Fermat 1971 206585726^131072+1 1089877 L5667 2024 Generalized Fermat 1972 206473754^131072+1 1089846 L5855 2024 Generalized Fermat 1973 206230080^131072+1 1089779 L5143 2024 Generalized Fermat 1974 206021166^131072+1 1089722 L5639 2024 Generalized Fermat 1975 205990406^131072+1 1089713 L4755 2024 Generalized Fermat 1976 205963322^131072+1 1089706 L5844 2024 Generalized Fermat 1977 205339678^131072+1 1089533 L4905 2024 Generalized Fermat 1978 205160722^131072+1 1089483 L5639 2024 Generalized Fermat 1979 205150506^131072+1 1089480 L5543 2024 Generalized Fermat 1980 205010004^131072+1 1089441 L5025 2024 Generalized Fermat 1981 14641*2^3618876+1 1089395 L181 2018 Generalized Fermat 1982 204695540^131072+1 1089354 L4905 2024 Generalized Fermat 1983 485*2^3618563+1 1089299 L3924 2019 1984 204382086^131072+1 1089267 L4477 2024 Generalized Fermat 1985 204079052^131072+1 1089182 L4763 2024 Generalized Fermat 1986 204016062^131072+1 1089165 L5712 2024 Generalized Fermat 1987 203275588^131072+1 1088958 L5041 2024 Generalized Fermat 1988 203250558^131072+1 1088951 L4210 2024 Generalized Fermat 1989 203238918^131072+1 1088948 L5586 2024 Generalized Fermat 1990 202515696^131072+1 1088745 L4549 2024 Generalized Fermat 1991 202391964^131072+1 1088710 L4835 2024 Generalized Fermat 1992 202251688^131072+1 1088670 L5288 2024 Generalized Fermat 1993 202114688^131072+1 1088632 L5711 2024 Generalized Fermat 1994 202045732^131072+1 1088612 L4537 2024 Generalized Fermat 1995 201593074^131072+1 1088485 L5027 2024 Generalized Fermat 1996 201536524^131072+1 1088469 L5769 2024 Generalized Fermat 1997 201389466^131072+1 1088427 L4537 2024 Generalized Fermat 1998 201249512^131072+1 1088388 L5234 2024 Generalized Fermat 1999 201239624^131072+1 1088385 L5732 2024 Generalized Fermat 2000 200519642^131072+1 1088181 L5712 2024 Generalized Fermat 2001 200459670^131072+1 1088164 L5948 2024 Generalized Fermat 2002 200433382^131072+1 1088156 L5948 2024 Generalized Fermat 2003 200280100^131072+1 1088113 L4892 2024 Generalized Fermat 2004 200053318^131072+1 1088048 L5586 2024 Generalized Fermat 2005 199971120^131072+1 1088025 L5030 2024 Generalized Fermat 2006 95*2^3614033+1 1087935 L1474 2019 2007 199502780^131072+1 1087891 L5878 2024 Generalized Fermat 2008 198402358^131072+1 1087577 L5606 2024 Generalized Fermat 2009 198320982^131072+1 1087553 L5938 2024 Generalized Fermat 2010 198319118^131072+1 1087553 L4737 2024 Generalized Fermat 2011b 65*2^3612630-1 1087512 L2017 2025 2012 1005*2^3612300+1 1087414 L1823 2019 2013 197752702^131072+1 1087390 L5355 2024 Generalized Fermat 2014 197607368^131072+1 1087348 L5041 2024 Generalized Fermat 2015 197352408^131072+1 1087275 L4861 2024 Generalized Fermat 2016 861*2^3611815+1 1087268 L1745 2019 2017 197230100^131072+1 1087239 L4753 2024 Generalized Fermat 2018 197212998^131072+1 1087234 L6123 2024 Generalized Fermat 2019 197197506^131072+1 1087230 L4753 2024 Generalized Fermat 2020 197018872^131072+1 1087178 L4884 2024 Generalized Fermat 2021 1087*2^3611476+1 1087166 L4834 2019 2022 196722548^131072+1 1087093 L5782 2024 Generalized Fermat 2023 196703802^131072+1 1087087 L4742 2024 Generalized Fermat 2024 196687752^131072+1 1087082 L5051 2024 Generalized Fermat 2025 195950620^131072+1 1086869 L5929 2024 Generalized Fermat 2026 195834796^131072+1 1086835 L5070 2024 Generalized Fermat 2027 195048992^131072+1 1086606 L5143 2024 Generalized Fermat 2028 194911702^131072+1 1086566 L5948 2024 Generalized Fermat 2029 194819864^131072+1 1086539 L5690 2024 Generalized Fermat 2030 485767*2^3609357-1 1086531 L622 2008 2031 194730404^131072+1 1086513 L5782 2024 Generalized Fermat 2032 194644872^131072+1 1086488 L4720 2024 Generalized Fermat 2033 194584114^131072+1 1086470 L4201 2024 Generalized Fermat 2034 194263106^131072+1 1086376 L4892 2024 Generalized Fermat 2035 194202254^131072+1 1086359 L4835 2024 Generalized Fermat 2036 194159546^131072+1 1086346 L4387 2024 Generalized Fermat 2037 193935716^131072+1 1086280 L4835 2024 Generalized Fermat 2038 193247784^131072+1 1086078 L5234 2024 Generalized Fermat 2039 192866222^131072+1 1085966 L5913 2024 Generalized Fermat 2040 192651588^131072+1 1085902 L5880 2024 Generalized Fermat 2041 192606308^131072+1 1085889 L4476 2024 Generalized Fermat 2042 675*2^3606447+1 1085652 L3278 2019 2043 191678526^131072+1 1085614 L5234 2024 Generalized Fermat 2044 669*2^3606266+1 1085598 L1675 2019 2045 191567332^131072+1 1085581 L4309 2024 Generalized Fermat 2046 65077*2^3605944+1 1085503 L4685 2020 2047 191194450^131072+1 1085470 L4245 2024 Generalized Fermat 2048 1365*2^3605491+1 1085365 L1134 2022 2049 190810274^131072+1 1085356 L5460 2024 Generalized Fermat 2050 190309640^131072+1 1085206 L5880 2024 Generalized Fermat 2051 190187176^131072+1 1085169 L5470 2024 Generalized Fermat 2052 190144032^131072+1 1085156 L4341 2024 Generalized Fermat 2053 851*2^3604395+1 1085034 L2125 2019 2054 189411830^131072+1 1084937 L5578 2024 Generalized Fermat 2055 189240324^131072+1 1084885 L4892 2024 Generalized Fermat 2056 188766416^131072+1 1084743 L5639 2024 Generalized Fermat 2057 188655374^131072+1 1084709 L5842 2024 Generalized Fermat 2058 188646712^131072+1 1084706 L4905 2024 Generalized Fermat 2059 187961358^131072+1 1084499 L5881 2024 Generalized Fermat 2060 1143*2^3602429+1 1084443 L4754 2019 2061 187731580^131072+1 1084430 L5847 2024 Generalized Fermat 2062 187643362^131072+1 1084403 L5707 2024 Generalized Fermat 2063 187584550^131072+1 1084385 L5526 2024 Generalized Fermat 2064 187330820^131072+1 1084308 L5879 2024 Generalized Fermat 2065 1183*2^3601898+1 1084283 L1823 2019 2066 187231212^131072+1 1084278 L4550 2024 Generalized Fermat 2067 187184006^131072+1 1084263 L5051 2024 Generalized Fermat 2068 187007398^131072+1 1084210 L5604 2024 Generalized Fermat 2069 185411044^131072+1 1083722 L5044 2023 Generalized Fermat 2070 185248324^131072+1 1083672 L4371 2023 Generalized Fermat 2071 185110536^131072+1 1083629 L4559 2023 Generalized Fermat 2072 185015722^131072+1 1083600 L5723 2023 Generalized Fermat 2073 184855564^131072+1 1083551 L5748 2023 Generalized Fermat 2074 184835362^131072+1 1083545 L5416 2024 Generalized Fermat 2075 184814078^131072+1 1083538 L4559 2023 Generalized Fermat 2076 184653266^131072+1 1083488 L5606 2023 Generalized Fermat 2077 184523024^131072+1 1083448 L4550 2023 Generalized Fermat 2078 184317182^131072+1 1083385 L5863 2023 Generalized Fermat 2079 184310672^131072+1 1083383 L5863 2023 Generalized Fermat 2080 184119204^131072+1 1083324 L5863 2023 Generalized Fermat 2081 183839694^131072+1 1083237 L5865 2023 Generalized Fermat 2082 183591732^131072+1 1083160 L5586 2023 Generalized Fermat 2083 183392536^131072+1 1083098 L5044 2023 Generalized Fermat 2084 183383118^131072+1 1083096 L4371 2023 Generalized Fermat 2085 183157240^131072+1 1083025 L5853 2023 Generalized Fermat 2086 182252536^131072+1 1082744 L5854 2023 Generalized Fermat 2087 182166824^131072+1 1082717 L5854 2023 Generalized Fermat 2088 181969816^131072+1 1082655 L4591 2023 Generalized Fermat 2089 181913260^131072+1 1082637 L5853 2023 Generalized Fermat 2090 189*2^3596375+1 1082620 L3760 2016 2091 181302244^131072+1 1082446 L4550 2023 Generalized Fermat 2092 180680920^131072+1 1082251 L5639 2023 Generalized Fermat 2093 180455838^131072+1 1082180 L5847 2023 Generalized Fermat 2094 180111908^131072+1 1082071 L5844 2023 Generalized Fermat 2095 180084608^131072+1 1082062 L5056 2023 Generalized Fermat 2096 180045220^131072+1 1082050 L4550 2023 Generalized Fermat 2097 180002474^131072+1 1082036 L5361 2023 Generalized Fermat 2098 179913814^131072+1 1082008 L4875 2023 Generalized Fermat 2099 1089*2^3593267+1 1081685 L3035 2019 2100 178743858^131072+1 1081637 L5051 2023 Generalized Fermat 2101 178437884^131072+1 1081539 L4591 2023 Generalized Fermat 2102 178435022^131072+1 1081538 L5639 2023 Generalized Fermat 2103 178311240^131072+1 1081499 L5369 2023 Generalized Fermat 2104 178086108^131072+1 1081427 L4939 2023 Generalized Fermat 2105 178045832^131072+1 1081414 L5836 2023 Generalized Fermat 2106 177796222^131072+1 1081334 L5834 2023 Generalized Fermat 2107 177775606^131072+1 1081328 L5794 2023 Generalized Fermat 2108 177648552^131072+1 1081287 L5782 2023 Generalized Fermat 2109 177398652^131072+1 1081207 L4559 2023 Generalized Fermat 2110 177319028^131072+1 1081181 L5526 2023 Generalized Fermat 2111 177296064^131072+1 1081174 L5831 2023 Generalized Fermat 2112 177129922^131072+1 1081121 L4559 2023 Generalized Fermat 2113 176799404^131072+1 1081014 L4775 2023 Generalized Fermat 2114 176207346^131072+1 1080823 L5805 2023 Generalized Fermat 2115 176085282^131072+1 1080784 L5805 2023 Generalized Fermat 2116 175482140^131072+1 1080589 L5639 2023 Generalized Fermat 2117 175271418^131072+1 1080520 L5051 2023 Generalized Fermat 2118 19581121*2^3589357-1 1080512 p49 2022 2119 175200596^131072+1 1080497 L5817 2023 Generalized Fermat 2120 1101*2^3589103+1 1080431 L1823 2019 2121 174728608^131072+1 1080344 L5416 2023 Generalized Fermat 2122 174697724^131072+1 1080334 L4747 2023 Generalized Fermat 2123 174534362^131072+1 1080280 L5814 2023 Generalized Fermat 2124 174142738^131072+1 1080152 L4249 2023 Generalized Fermat 2125 174103532^131072+1 1080140 L4249 2023 Generalized Fermat 2126 173962482^131072+1 1080093 L4249 2023 Generalized Fermat 2127 35*2^3587843+1 1080050 L1979 2014 Divides GF(3587841,5) 2128 173717408^131072+1 1080013 L5634 2023 Generalized Fermat 2129 173561300^131072+1 1079962 L4249 2023 Generalized Fermat 2130 173343810^131072+1 1079891 L4249 2023 Generalized Fermat 2131 172026454^131072+1 1079456 L4737 2023 Generalized Fermat 2132 172004036^131072+1 1079449 L5512 2023 Generalized Fermat 2133 275*2^3585539+1 1079358 L3803 2016 2134 171677924^131072+1 1079341 L5512 2023 Generalized Fermat 2135 171610156^131072+1 1079319 L4249 2023 Generalized Fermat 2136 171518672^131072+1 1079288 L5586 2023 Generalized Fermat 2137 171128300^131072+1 1079158 L4249 2023 Generalized Fermat 2138 170982934^131072+1 1079110 L4201 2023 Generalized Fermat 2139 170626040^131072+1 1078991 L5748 2023 Generalized Fermat 2140 169929578^131072+1 1078758 L5748 2023 Generalized Fermat 2141 169369502^131072+1 1078570 L4410 2023 Generalized Fermat 2142 169299904^131072+1 1078547 L4559 2023 Generalized Fermat 2143 169059224^131072+1 1078466 L5746 2023 Generalized Fermat 2144 168885632^131072+1 1078408 L5793 2023 Generalized Fermat 2145 168602250^131072+1 1078312 L5782 2023 Generalized Fermat 2146 168576546^131072+1 1078303 L5639 2023 Generalized Fermat 2147 167845698^131072+1 1078056 L5735 2023 Generalized Fermat 2148 167604930^131072+1 1077974 L4859 2023 Generalized Fermat 2149 2*59^608685+1 1077892 g427 2014 Divides Phi(59^608685,2) 2150 167206862^131072+1 1077839 L5641 2023 Generalized Fermat 2151 166964502^131072+1 1077756 L5627 2023 Generalized Fermat 2152 651*2^3579843+1 1077643 L3035 2018 2153 166609122^131072+1 1077635 L5782 2023 Generalized Fermat 2154 166397330^131072+1 1077563 L5578 2023 Generalized Fermat 2155 166393356^131072+1 1077561 L5782 2023 Generalized Fermat 2156 166288612^131072+1 1077525 L4672 2023 Generalized Fermat 2157 166277052^131072+1 1077521 L5755 2023 Generalized Fermat 2158 166052226^131072+1 1077444 L4670 2023 Generalized Fermat 2159 165430644^131072+1 1077231 L4672 2023 Generalized Fermat 2160 165427494^131072+1 1077230 L4249 2023 Generalized Fermat 2161 583*2^3578402+1 1077210 L3035 2018 2162 165361824^131072+1 1077207 L5586 2023 Generalized Fermat 2163 165258594^131072+1 1077172 L4884 2023 Generalized Fermat 2164 165036358^131072+1 1077095 L5156 2023 Generalized Fermat 2165 164922680^131072+1 1077056 L4249 2023 Generalized Fermat 2166 164800594^131072+1 1077014 L5775 2023 Generalized Fermat 2167 164660428^131072+1 1076965 L4249 2023 Generalized Fermat 2168 309*2^3577339+1 1076889 L4406 2016 2169 164440734^131072+1 1076889 L5485 2023 Generalized Fermat 2170 163871194^131072+1 1076692 L5772 2023 Generalized Fermat 2171 163838506^131072+1 1076680 L5758 2023 Generalized Fermat 2172 163821336^131072+1 1076674 L5544 2023 Generalized Fermat 2173 163820256^131072+1 1076674 L5452 2023 Generalized Fermat 2174 163666380^131072+1 1076621 L5030 2023 Generalized Fermat 2175 163585288^131072+1 1076592 L4928 2023 Generalized Fermat 2176 163359994^131072+1 1076514 L5769 2023 Generalized Fermat 2177 163214942^131072+1 1076463 L4933 2023 Generalized Fermat 2178 163193584^131072+1 1076456 L5595 2023 Generalized Fermat 2179 163152818^131072+1 1076442 L5639 2023 Generalized Fermat 2180 163044252^131072+1 1076404 L5775 2023 Generalized Fermat 2181 162950466^131072+1 1076371 L5694 2023 Generalized Fermat 2182 162874590^131072+1 1076345 L5586 2023 Generalized Fermat 2183 162850104^131072+1 1076336 L5769 2023 Generalized Fermat 2184 162817576^131072+1 1076325 L5772 2023 Generalized Fermat 2185 1185*2^3574583+1 1076060 L4851 2018 2186 251*2^3574535+1 1076045 L3035 2016 2187 1485*2^3574333+1 1075985 L1134 2022 2188 161706626^131072+1 1075935 L4870 2023 Generalized Fermat 2189 161619620^131072+1 1075904 L5586 2023 Generalized Fermat 2190 161588716^131072+1 1075893 L4928 2023 Generalized Fermat 2191 161571504^131072+1 1075887 L5030 2023 Generalized Fermat 2192 161569668^131072+1 1075887 L5639 2023 Generalized Fermat 2193 160998114^131072+1 1075685 L5586 2023 Generalized Fermat 2194 160607310^131072+1 1075547 L5763 2023 Generalized Fermat 2195 160325616^131072+1 1075447 L5586 2023 Generalized Fermat 2196 160228242^131072+1 1075412 L5632 2023 Generalized Fermat 2197 160146172^131072+1 1075383 L4773 2023 Generalized Fermat 2198 159800918^131072+1 1075260 L5586 2023 Generalized Fermat 2199 159794566^131072+1 1075258 L4249 2023 Generalized Fermat 2200 159784836^131072+1 1075254 L5639 2023 Generalized Fermat 2201 159784822^131072+1 1075254 L5637 2023 Generalized Fermat 2202 1019*2^3571635+1 1075173 L1823 2018 2203 159509138^131072+1 1075156 L5637 2023 Generalized Fermat 2204 119*2^3571416-1 1075106 L2484 2018 2205 159214418^131072+1 1075051 L5755 2023 Generalized Fermat 2206 158831096^131072+1 1074914 L5022 2023 Generalized Fermat 2207 35*2^3570777+1 1074913 L2891 2014 2208 158696888^131072+1 1074865 L5030 2023 Generalized Fermat 2209 158472238^131072+1 1074785 L5586 2023 Generalized Fermat 2210 33*2^3570132+1 1074719 L2552 2014 2211 157923226^131072+1 1074587 L4249 2023 Generalized Fermat 2212 157541220^131072+1 1074449 L5416 2023 Generalized Fermat 2213 5*2^3569154-1 1074424 L503 2009 2214 157374268^131072+1 1074389 L5578 2023 Generalized Fermat 2215 81*492^399095-1 1074352 L4001 2015 2216 156978838^131072+1 1074246 L5332 2023 Generalized Fermat 2217 156789840^131072+1 1074177 L4747 2023 Generalized Fermat 2218 156756400^131072+1 1074165 L4249 2023 Generalized Fermat 2219 22934*5^1536762-1 1074155 L3789 2014 2220 156625064^131072+1 1074117 L5694 2023 Generalized Fermat 2221 156519708^131072+1 1074079 L5746 2023 Generalized Fermat 2222 156468140^131072+1 1074060 L4249 2023 Generalized Fermat 2223 156203340^131072+1 1073964 L5578 2023 Generalized Fermat 2224 156171526^131072+1 1073952 L5698 2023 Generalized Fermat 2225 155778562^131072+1 1073809 L4309 2023 Generalized Fermat 2226 155650426^131072+1 1073762 L5668 2023 Generalized Fermat 2227 155536474^131072+1 1073720 L4249 2023 Generalized Fermat 2228 155339878^131072+1 1073648 L5206 2023 Generalized Fermat 2229 155305266^131072+1 1073636 L5549 2023 Generalized Fermat 2230 155006218^131072+1 1073526 L4742 2023 Generalized Fermat 2231 154553092^131072+1 1073359 L4920 2023 Generalized Fermat 2232 154492166^131072+1 1073337 L4326 2023 Generalized Fermat 2233 154478286^131072+1 1073332 L4544 2023 Generalized Fermat 2234 154368914^131072+1 1073291 L5738 2023 Generalized Fermat 2235 153966766^131072+1 1073143 L5732 2023 Generalized Fermat 2236 3437687*2^3564664-1 1073078 L5327 2024 2237 265*2^3564373-1 1072986 L2484 2018 2238 153485148^131072+1 1072965 L5736 2023 Generalized Fermat 2239 153432848^131072+1 1072945 L5030 2023 Generalized Fermat 2240 153413432^131072+1 1072938 L4835 2023 Generalized Fermat 2241 771*2^3564109+1 1072907 L2125 2018 2242 17665*820^368211+1 1072903 A11 2024 2243 381*2^3563676+1 1072776 L4190 2016 2244 152966530^131072+1 1072772 L5070 2023 Generalized Fermat 2245 555*2^3563328+1 1072672 L4850 2018 2246 152542626^131072+1 1072614 L5460 2023 Generalized Fermat 2247 151999396^131072+1 1072411 L5586 2023 Generalized Fermat 2248 151609814^131072+1 1072265 L5663 2023 Generalized Fermat 2249 151218242^131072+1 1072118 L5588 2023 Generalized Fermat 2250 151108236^131072+1 1072076 L4672 2023 Generalized Fermat 2251 151044622^131072+1 1072052 L5544 2023 Generalized Fermat 2252 151030068^131072+1 1072047 L4774 2023 Generalized Fermat 2253 150908454^131072+1 1072001 L4758 2023 Generalized Fermat 2254 150863054^131072+1 1071984 L5720 2023 Generalized Fermat 2255 1183*2^3560584+1 1071846 L1823 2018 2256 150014492^131072+1 1071663 L4476 2023 Generalized Fermat 2257 149972788^131072+1 1071647 L4559 2023 Generalized Fermat 2258 415*2^3559614+1 1071554 L3035 2016 2259 149665588^131072+1 1071530 L4892 2023 Generalized Fermat 2260 149142686^131072+1 1071331 L4684 2023 Generalized Fermat 2261 149057554^131072+1 1071298 L4933 2023 Generalized Fermat 2262 148598024^131072+1 1071123 L4476 2023 Generalized Fermat 2263 1103*2^3558177-503*2^1092022-1 1071122 p423 2022 Arithmetic progression (3,d=1103*2^3558176-503*2^1092022) 2264 1103*2^3558176-1 1071121 L1828 2018 2265 148592576^131072+1 1071121 L4476 2023 Generalized Fermat 2266 148425726^131072+1 1071057 L4289 2023 Generalized Fermat 2267 148154288^131072+1 1070952 L5714 2023 Generalized Fermat 2268 148093952^131072+1 1070929 L4720 2023 Generalized Fermat 2269 148070542^131072+1 1070920 L5155 2023 Generalized Fermat 2270 147988292^131072+1 1070889 L5155 2023 Generalized Fermat 2271 147816036^131072+1 1070822 L5634 2023 Generalized Fermat 2272 1379*2^3557072-1 1070789 L1828 2018 2273 147539992^131072+1 1070716 L4917 2023 Generalized Fermat 2274 147433824^131072+1 1070675 L4753 2023 Generalized Fermat 2275 147310498^131072+1 1070627 L5403 2023 Generalized Fermat 2276 147265916^131072+1 1070610 L5543 2023 Generalized Fermat 2277 146994540^131072+1 1070505 L5634 2023 Generalized Fermat 2278 146520528^131072+1 1070321 L6123 2023 Generalized Fermat 2279 146465338^131072+1 1070300 L5704 2023 Generalized Fermat 2280 146031082^131072+1 1070131 L4697 2023 Generalized Fermat 2281 145949782^131072+1 1070099 L5029 2023 Generalized Fermat 2282 145728478^131072+1 1070013 L5543 2023 Generalized Fermat 2283 145245346^131072+1 1069824 L5586 2023 Generalized Fermat 2284 145137270^131072+1 1069781 L4742 2023 Generalized Fermat 2285 145132288^131072+1 1069779 L4774 2023 Generalized Fermat 2286 144926960^131072+1 1069699 L5036 2023 Generalized Fermat 2287 144810806^131072+1 1069653 L5543 2023 Generalized Fermat 2288 681*2^3553141+1 1069605 L3035 2018 2289 144602744^131072+1 1069571 L5543 2023 Generalized Fermat 2290 143844356^131072+1 1069272 L5693 2023 Generalized Fermat 2291 599*2^3551793+1 1069200 L3824 2018 2292c 55*2^3551791-1 1069198 L2017 2025 2293 143421820^131072+1 1069104 L4904 2023 Generalized Fermat 2294 621*2^3551472+1 1069103 L4687 2018 2295 143416574^131072+1 1069102 L4591 2023 Generalized Fermat 2296 143126384^131072+1 1068987 L5288 2023 Generalized Fermat 2297 142589776^131072+1 1068773 L4201 2023 Generalized Fermat 2298 773*2^3550373+1 1068772 L1808 2018 2299 142527792^131072+1 1068748 L4387 2023 Generalized Fermat 2300 142207386^131072+1 1068620 L5694 2023 Generalized Fermat 2301 142195844^131072+1 1068616 L5548 2023 Generalized Fermat 2302 141636602^131072+1 1068391 L5639 2023 Generalized Fermat 2303 141554190^131072+1 1068358 L4956 2023 Generalized Fermat 2304c 95*2^3548546-1 1068221 L2017 2025 2305 1199*2^3548380-1 1068172 L1828 2018 2306 140928044^131072+1 1068106 L4870 2023 Generalized Fermat 2307 191*2^3548117+1 1068092 L4203 2015 2308 140859866^131072+1 1068078 L5011 2023 Generalized Fermat 2309 140824516^131072+1 1068064 L4760 2023 Generalized Fermat 2310 140649396^131072+1 1067993 L5578 2023 Generalized Fermat 2311 867*2^3547711+1 1067971 L4155 2018 2312 140473436^131072+1 1067922 L4210 2023 Generalized Fermat 2313 140237690^131072+1 1067826 L5051 2023 Generalized Fermat 2314 139941370^131072+1 1067706 L5671 2023 Generalized Fermat 2315 3^2237561+3^1118781+1 1067588 L3839 2014 Generalized unique 2316 139352402^131072+1 1067466 L5663 2023 Generalized Fermat 2317 351*2^3545752+1 1067381 L4082 2016 2318 138896860^131072+1 1067279 L4745 2023 Generalized Fermat 2319 138894074^131072+1 1067278 L5041 2023 Generalized Fermat 2320 138830036^131072+1 1067252 L5662 2023 Generalized Fermat 2321 138626864^131072+1 1067169 L5663 2023 Generalized Fermat 2322 138527284^131072+1 1067128 L5663 2023 Generalized Fermat 2323 93*2^3544744+1 1067077 L1728 2014 2324f 26279*24^773017+1 1066932 A11 2025 2325 138000006^131072+1 1066911 L5051 2023 Generalized Fermat 2326 137900696^131072+1 1066870 L4249 2023 Generalized Fermat 2327 137878102^131072+1 1066860 L5051 2023 Generalized Fermat 2328 1159*2^3543702+1 1066764 L1823 2018 2329 137521726^131072+1 1066713 L4672 2023 Generalized Fermat 2330 137486564^131072+1 1066699 L5586 2023 Generalized Fermat 2331 136227118^131072+1 1066175 L5416 2023 Generalized Fermat 2332 136192168^131072+1 1066160 L5556 2023 Generalized Fermat 2333 136124076^131072+1 1066132 L5041 2023 Generalized Fermat 2334 136122686^131072+1 1066131 L5375 2023 Generalized Fermat 2335 2*3^2234430-1 1066095 A2 2023 2336 178658*5^1525224-1 1066092 L3789 2014 2337 135744154^131072+1 1065973 L5068 2023 Generalized Fermat 2338 135695350^131072+1 1065952 L4249 2023 Generalized Fermat 2339 135623220^131072+1 1065922 L5657 2023 Generalized Fermat 2340 135513092^131072+1 1065876 L5656 2023 Generalized Fermat 2341 135497678^131072+1 1065869 L4387 2023 Generalized Fermat 2342 135458028^131072+1 1065852 L5051 2023 Generalized Fermat 2343 135332960^131072+1 1065800 L5655 2023 Generalized Fermat 2344 135135930^131072+1 1065717 L4387 2023 Generalized Fermat 2345 1085*2^3539671+1 1065551 L3035 2018 2346 134706086^131072+1 1065536 L5378 2023 Generalized Fermat 2347 134459616^131072+1 1065431 L5658 2023 Generalized Fermat 2348 134447516^131072+1 1065426 L4387 2023 Generalized Fermat 2349 134322272^131072+1 1065373 L4387 2023 Generalized Fermat 2350 134206304^131072+1 1065324 L4684 2023 Generalized Fermat 2351 134176868^131072+1 1065311 L5375 2023 Generalized Fermat 2352 133954018^131072+1 1065217 L5088 2023 Generalized Fermat 2353 133676500^131072+1 1065099 L4387 2023 Generalized Fermat 2354 133569020^131072+1 1065053 L5277 2023 Generalized Fermat 2355 133345154^131072+1 1064958 L4210 2023 Generalized Fermat 2356 133180238^131072+1 1064887 L5586 2023 Generalized Fermat 2357 133096042^131072+1 1064851 L4755 2023 Generalized Fermat 2358 465*2^3536871+1 1064707 L4459 2016 2359 1019*2^3536312-1 1064539 L1828 2012 2360 131820886^131072+1 1064303 L5069 2023 Generalized Fermat 2361 131412078^131072+1 1064126 L5653 2023 Generalized Fermat 2362 131370186^131072+1 1064108 L5036 2023 Generalized Fermat 2363 131309874^131072+1 1064082 L5069 2023 Generalized Fermat 2364 131112524^131072+1 1063996 L4245 2023 Generalized Fermat 2365 1179*2^3534450+1 1063979 L3035 2018 2366 130907540^131072+1 1063907 L4526 2023 Generalized Fermat 2367 130593462^131072+1 1063771 L4559 2023 Generalized Fermat 2368 447*2^3533656+1 1063740 L4457 2016 2369 130518578^131072+1 1063738 L5029 2023 Generalized Fermat 2370 1059*2^3533550+1 1063708 L1823 2018 2371 130198372^131072+1 1063598 L5416 2023 Generalized Fermat 2372 130148002^131072+1 1063576 L4387 2023 Generalized Fermat 2373 130128232^131072+1 1063567 L5029 2023 Generalized Fermat 2374 130051980^131072+1 1063534 L5416 2023 Generalized Fermat 2375 130048816^131072+1 1063533 L4245 2023 Generalized Fermat 2376 345*2^3532957+1 1063529 L4314 2016 2377 553*2^3532758+1 1063469 L1823 2018 2378 129292212^131072+1 1063201 L4285 2023 Generalized Fermat 2379 129159632^131072+1 1063142 L5051 2023 Generalized Fermat 2380 128558886^131072+1 1062877 L5518 2023 Generalized Fermat 2381 128520182^131072+1 1062860 L4745 2023 Generalized Fermat 2382 543131*2^3529754-1 1062568 L4925 2022 2383 127720948^131072+1 1062504 L5378 2023 Generalized Fermat 2384 141*2^3529287+1 1062424 L4185 2015 2385 127093036^131072+1 1062224 L4591 2023 Generalized Fermat 2386 24950*745^369781-1 1062074 L4189 2024 2387 126611934^131072+1 1062008 L4776 2023 Generalized Fermat 2388 126423276^131072+1 1061923 L4201 2023 Generalized Fermat 2389 126334514^131072+1 1061883 L4249 2023 Generalized Fermat 2390 13*2^3527315-1 1061829 L1862 2016 2391 126199098^131072+1 1061822 L4591 2023 Generalized Fermat 2392 126189358^131072+1 1061818 L4704 2023 Generalized Fermat 2393 125966884^131072+1 1061717 L4747 2023 Generalized Fermat 2394 125714084^131072+1 1061603 L4745 2023 Generalized Fermat 2395 125141096^131072+1 1061343 L4559 2023 Generalized Fermat 2396 1393*2^3525571-1 1061306 L1828 2017 2397 125006494^131072+1 1061282 L5639 2023 Generalized Fermat 2398 124877454^131072+1 1061223 L4245 2023 Generalized Fermat 2399 124875502^131072+1 1061222 L4591 2023 Generalized Fermat 2400 124749274^131072+1 1061164 L4591 2023 Generalized Fermat 2401 124586054^131072+1 1061090 L4249 2023 Generalized Fermat 2402 124582356^131072+1 1061088 L5606 2023 Generalized Fermat 2403 124543852^131072+1 1061071 L4249 2023 Generalized Fermat 2404 124393514^131072+1 1061002 L4774 2023 Generalized Fermat 2405 124219534^131072+1 1060922 L4249 2023 Generalized Fermat 2406 124133348^131072+1 1060883 L5088 2023 Generalized Fermat 2407 124080788^131072+1 1060859 L5639 2023 Generalized Fermat 2408 1071*2^3523944+1 1060816 L1675 2018 2409 123910270^131072+1 1060780 L4249 2023 Generalized Fermat 2410 123856592^131072+1 1060756 L4201 2023 Generalized Fermat 2411 123338660^131072+1 1060517 L4905 2022 Generalized Fermat 2412 123306230^131072+1 1060502 L5638 2023 Generalized Fermat 2413 123195196^131072+1 1060451 L5029 2022 Generalized Fermat 2414 122941512^131072+1 1060333 L4559 2022 Generalized Fermat 2415 122869094^131072+1 1060300 L4939 2022 Generalized Fermat 2416 122481106^131072+1 1060120 L4704 2022 Generalized Fermat 2417 122414564^131072+1 1060089 L5627 2022 Generalized Fermat 2418 122372192^131072+1 1060069 L5099 2022 Generalized Fermat 2419 121854624^131072+1 1059828 L5051 2022 Generalized Fermat 2420 121462664^131072+1 1059645 L5632 2022 Generalized Fermat 2421 121158848^131072+1 1059502 L4774 2022 Generalized Fermat 2422 2220172*3^2220172+1 1059298 p137 2023 Generalized Cullen 2423 329*2^3518451+1 1059162 L1823 2016 2424 135*2^3518338+1 1059128 L4045 2015 2425 120106930^131072+1 1059006 L4249 2022 Generalized Fermat 2426 2*10^1059002-1 1059003 L3432 2013 Near-repdigit 2427 119744014^131072+1 1058833 L4249 2022 Generalized Fermat 2428 64*10^1058794+1 1058796 L4036 2017 Generalized Fermat 2429 119604848^131072+1 1058767 L4201 2022 Generalized Fermat 2430 119541900^131072+1 1058737 L4747 2022 Generalized Fermat 2431 119510296^131072+1 1058722 L4201 2022 Generalized Fermat 2432 119246256^131072+1 1058596 L4249 2022 Generalized Fermat 2433 119137704^131072+1 1058544 L4201 2022 Generalized Fermat 2434 118888350^131072+1 1058425 L4999 2022 Generalized Fermat 2435 599*2^3515959+1 1058412 L1823 2018 2436 118583824^131072+1 1058279 L4210 2022 Generalized Fermat 2437 118109876^131072+1 1058051 L4550 2022 Generalized Fermat 2438 117906758^131072+1 1057953 L4249 2022 Generalized Fermat 2439 117687318^131072+1 1057847 L4245 2022 Generalized Fermat 2440 117375862^131072+1 1057696 L4774 2022 Generalized Fermat 2441 117345018^131072+1 1057681 L4848 2022 Generalized Fermat 2442 117196584^131072+1 1057609 L4559 2022 Generalized Fermat 2443 117153716^131072+1 1057588 L4774 2022 Generalized Fermat 2444 117088740^131072+1 1057557 L4559 2022 Generalized Fermat 2445 116936156^131072+1 1057483 L5332 2022 Generalized Fermat 2446 116402336^131072+1 1057222 L4760 2022 Generalized Fermat 2447 7*2^3511774+1 1057151 p236 2008 Divides GF(3511773,6) 2448 116036228^131072+1 1057043 L4773 2022 Generalized Fermat 2449 116017862^131072+1 1057034 L4559 2022 Generalized Fermat 2450 115992582^131072+1 1057021 L4835 2022 Generalized Fermat 2451 115873312^131072+1 1056963 L4677 2022 Generalized Fermat 2452 1135*2^3510890+1 1056887 L1823 2018 2453 115704568^131072+1 1056880 L4559 2022 Generalized Fermat 2454 115479166^131072+1 1056769 L4774 2022 Generalized Fermat 2455 115409608^131072+1 1056735 L4774 2022 Generalized Fermat 2456 115256562^131072+1 1056659 L4559 2022 Generalized Fermat 2457 114687250^131072+1 1056377 L5007 2022 Generalized Fermat 2458 114643510^131072+1 1056356 L4659 2022 Generalized Fermat 2459 114340846^131072+1 1056205 L4559 2022 Generalized Fermat 2460 114159720^131072+1 1056115 L4787 2022 Generalized Fermat 2461 114055498^131072+1 1056063 L4387 2022 Generalized Fermat 2462 114009952^131072+1 1056040 L4387 2022 Generalized Fermat 2463 113904214^131072+1 1055987 L4559 2022 Generalized Fermat 2464 113807058^131072+1 1055939 L5157 2022 Generalized Fermat 2465 113550956^131072+1 1055810 L5578 2022 Generalized Fermat 2466 113521888^131072+1 1055796 L4387 2022 Generalized Fermat 2467 113431922^131072+1 1055751 L4559 2022 Generalized Fermat 2468 113328940^131072+1 1055699 L4787 2022 Generalized Fermat 2469 113327472^131072+1 1055698 L5467 2022 Generalized Fermat 2470 113325850^131072+1 1055698 L4559 2022 Generalized Fermat 2471 113313172^131072+1 1055691 L5005 2022 Generalized Fermat 2472 113191714^131072+1 1055630 L5056 2022 Generalized Fermat 2473 113170004^131072+1 1055619 L4584 2022 Generalized Fermat 2474 428639*2^3506452-1 1055553 L2046 2011 2475 112996304^131072+1 1055532 L5544 2022 Generalized Fermat 2476 112958834^131072+1 1055513 L5512 2022 Generalized Fermat 2477 112852910^131072+1 1055459 L5157 2022 Generalized Fermat 2478 112719374^131072+1 1055392 L4793 2022 Generalized Fermat 2479 112580428^131072+1 1055322 L5512 2022 Generalized Fermat 2480 112248096^131072+1 1055154 L5359 2022 Generalized Fermat 2481 112053266^131072+1 1055055 L5359 2022 Generalized Fermat 2482 112023072^131072+1 1055039 L5156 2022 Generalized Fermat 2483 111673524^131072+1 1054861 L5548 2022 Generalized Fermat 2484 111181588^131072+1 1054610 L4550 2022 Generalized Fermat 2485 104*383^408249+1 1054591 L2012 2021 2486 110866802^131072+1 1054449 L5547 2022 Generalized Fermat 2487 555*2^3502765+1 1054441 L1823 2018 2488 110824714^131072+1 1054427 L4201 2022 Generalized Fermat 2489 8300*171^472170+1 1054358 L5780 2023 2490 110428380^131072+1 1054223 L5543 2022 Generalized Fermat 2491 110406480^131072+1 1054212 L5051 2022 Generalized Fermat 2492 643*2^3501974+1 1054203 L1823 2018 2493 2*23^774109+1 1054127 g427 2014 Divides Phi(23^774109,2) 2494 1159*2^3501490+1 1054057 L2125 2018 2495 1001*2^3501038-1 1053921 A46 2024 2496 109678642^131072+1 1053835 L4559 2022 Generalized Fermat 2497 109654098^131072+1 1053823 L5143 2022 Generalized Fermat 2498 109142690^131072+1 1053557 L4201 2022 Generalized Fermat 2499 109082020^131072+1 1053525 L4773 2022 Generalized Fermat 2500 1189*2^3499042+1 1053320 L4724 2018 2501 108584736^131072+1 1053265 L5057 2022 Generalized Fermat 2502 108581414^131072+1 1053263 L5088 2022 Generalized Fermat 2503 108195632^131072+1 1053060 L5025 2022 Generalized Fermat 2504 108161744^131072+1 1053043 L4945 2022 Generalized Fermat 2505d 35*2^3498070-1 1053026 L1817 2025 2506 108080390^131072+1 1053000 L4945 2022 Generalized Fermat 2507 107979316^131072+1 1052947 L4559 2022 Generalized Fermat 2508 107922308^131072+1 1052916 L5025 2022 Generalized Fermat 2509 609*2^3497474+1 1052848 L1823 2018 2510 9*2^3497442+1 1052836 L1780 2012 Generalized Fermat, divides GF(3497441,10) 2511 107732730^131072+1 1052816 L5518 2022 Generalized Fermat 2512 107627678^131072+1 1052761 L5025 2022 Generalized Fermat 2513 107492880^131072+1 1052689 L4550 2022 Generalized Fermat 2514 107420312^131072+1 1052651 L4550 2022 Generalized Fermat 2515 107404768^131072+1 1052643 L4267 2022 Generalized Fermat 2516 107222132^131072+1 1052546 L5019 2022 Generalized Fermat 2517 107126228^131072+1 1052495 L5025 2022 Generalized Fermat 2518 87*2^3496188+1 1052460 L1576 2014 2519 106901434^131072+1 1052375 L4760 2022 Generalized Fermat 2520 106508704^131072+1 1052166 L5505 2022 Generalized Fermat 2521 106440698^131072+1 1052130 L4245 2022 Generalized Fermat 2522 106019242^131072+1 1051904 L5025 2022 Generalized Fermat 2523 105937832^131072+1 1051860 L4745 2022 Generalized Fermat 2524 783*2^3494129+1 1051841 L3824 2018 2525 105861526^131072+1 1051819 L5500 2022 Generalized Fermat 2526 105850338^131072+1 1051813 L5504 2022 Generalized Fermat 2527 105534478^131072+1 1051643 L5025 2022 Generalized Fermat 2528 105058710^131072+1 1051386 L5499 2022 Generalized Fermat 2529 104907548^131072+1 1051304 L4245 2022 Generalized Fermat 2530 104808996^131072+1 1051250 L4591 2022 Generalized Fermat 2531 104641854^131072+1 1051159 L4245 2022 Generalized Fermat 2532 51*2^3490971+1 1050889 L1823 2014 2533 1485*2^3490746+1 1050823 L1134 2021 2534 103828182^131072+1 1050715 L5072 2022 Generalized Fermat 2535 103605376^131072+1 1050593 L5056 2022 Generalized Fermat 2536f 3609*24^761179+1 1050592 A11 2025 2537 103289324^131072+1 1050419 L5044 2022 Generalized Fermat 2538 103280694^131072+1 1050414 L4745 2022 Generalized Fermat 2539 103209792^131072+1 1050375 L5025 2022 Generalized Fermat 2540 103094212^131072+1 1050311 L4245 2022 Generalized Fermat 2541 103013294^131072+1 1050266 L4745 2022 Generalized Fermat 2542 753*2^3488818+1 1050242 L1823 2018 2543 102507732^131072+1 1049986 L4245 2022 Generalized Fermat 2544 102469684^131072+1 1049965 L4245 2022 Generalized Fermat 2545 102397132^131072+1 1049925 L4720 2022 Generalized Fermat 2546 102257714^131072+1 1049847 L4245 2022 Generalized Fermat 2547 699*2^3487253+1 1049771 L1204 2018 2548 102050324^131072+1 1049732 L5036 2022 Generalized Fermat 2549 102021074^131072+1 1049716 L4245 2022 Generalized Fermat 2550 101915106^131072+1 1049656 L6123 2022 Generalized Fermat 2551 101856256^131072+1 1049623 L4774 2022 Generalized Fermat 2552 1001*2^3486566-1 1049564 L4518 2024 2553 249*2^3486411+1 1049517 L4045 2015 2554 195*2^3486379+1 1049507 L4108 2015 2555 101607438^131072+1 1049484 L4591 2022 Generalized Fermat 2556 4687*2^3485926+1 1049372 L5302 2023 2557 2691*2^3485924+1 1049372 L5302 2023 2558 6083*2^3485877+1 1049358 L5837 2023 2559 101328382^131072+1 1049328 L4591 2022 Generalized Fermat 2560 101270816^131072+1 1049295 L4245 2022 Generalized Fermat 2561 9757*2^3485666+1 1049295 L5284 2023 2562 8859*2^3484982+1 1049089 L5833 2023 2563 100865034^131072+1 1049067 L4387 2022 Generalized Fermat 2564 59912*5^1500861+1 1049062 L3772 2014 2565 495*2^3484656+1 1048989 L3035 2016 2566 100719472^131072+1 1048985 L5270 2022 Generalized Fermat 2567 100534258^131072+1 1048880 L4245 2022 Generalized Fermat 2568 100520930^131072+1 1048872 L4201 2022 Generalized Fermat 2569 4467*2^3484204+1 1048854 L5189 2023 2570 4873*2^3484142+1 1048835 L5710 2023 2571 100441116^131072+1 1048827 L4309 2022 Generalized Fermat 2572 (3*2^1742059)^2-3*2^1742059+1 1048825 A3 2023 Generalized unique 2573 3891*2^3484099+1 1048822 L5260 2023 2574 7833*2^3484060+1 1048811 L5830 2023 2575 100382228^131072+1 1048794 L4308 2022 Generalized Fermat 2576 100369508^131072+1 1048786 L5157 2022 Generalized Fermat 2577 100324226^131072+1 1048761 L4201 2022 Generalized Fermat 2578 3097*2^3483800+1 1048732 L5829 2023 2579 5873*2^3483573+1 1048664 L5710 2023 2580 2895*2^3483455+1 1048628 L5480 2023 2581 9029*2^3483337+1 1048593 L5393 2023 2582 100010426^131072+1 1048582 L5375 2022 Generalized Fermat 2583 5531*2^3483263+1 1048571 L5825 2023 2584 323*2^3482789+1 1048427 L1204 2016 2585 3801*2^3482723+1 1048408 L5517 2023 2586 99665972^131072+1 1048386 L4201 2022 Generalized Fermat 2587 99650934^131072+1 1048377 L5375 2022 Generalized Fermat 2588 99557826^131072+1 1048324 L5466 2022 Generalized Fermat 2589 8235*2^3482277+1 1048274 L5820 2023 2590 9155*2^3482129+1 1048230 L5226 2023 2591 99351950^131072+1 1048206 L5143 2022 Generalized Fermat 2592 4325*2^3481969+1 1048181 L5434 2023 2593 99189780^131072+1 1048113 L4201 2022 Generalized Fermat 2594 1149*2^3481694+1 1048098 L1823 2018 2595 98978354^131072+1 1047992 L5465 2022 Generalized Fermat 2596 6127*2^3481244+1 1047963 L5226 2023 2597 98922946^131072+1 1047960 L5453 2022 Generalized Fermat 2598 8903*2^3481217+1 1047955 L5226 2023 2599 3595*2^3481178+1 1047943 L5214 2023 2600 3799*2^3480810+1 1047832 L5226 2023 2601 6101*2^3480801+1 1047830 L5226 2023 2602 98652282^131072+1 1047804 L4201 2022 Generalized Fermat 2603 1740349*2^3480698+1 1047801 L5765 2023 Generalized Cullen 2604 98557818^131072+1 1047750 L5464 2022 Generalized Fermat 2605 98518362^131072+1 1047727 L5460 2022 Generalized Fermat 2606 5397*2^3480379+1 1047703 L5226 2023 2607 5845*2^3479972+1 1047580 L5517 2023 2608 98240694^131072+1 1047566 L4720 2022 Generalized Fermat 2609 98200338^131072+1 1047543 L4559 2022 Generalized Fermat 2610 701*2^3479779+1 1047521 L2125 2018 2611 98137862^131072+1 1047507 L4525 2022 Generalized Fermat 2612 813*2^3479728+1 1047506 L4724 2018 2613 7125*2^3479509+1 1047441 L5812 2023 2614 1971*2^3479061+1 1047306 L5226 2023 2615 1215*2^3478543+1 1047149 L5226 2023 2616 97512766^131072+1 1047143 L5460 2022 Generalized Fermat 2617 5985*2^3478217+1 1047052 L5387 2023 2618 3093*2^3478148+1 1047031 L5261 2023 2619 2145*2^3478095+1 1047015 L5387 2023 2620 6685*2^3478086+1 1047013 L5237 2023 2621 9603*2^3478084+1 1047012 L5178 2023 2622 1315*2^3477718+1 1046901 L5316 2023 2623 97046574^131072+1 1046870 L4956 2022 Generalized Fermat 2624 197*2^3477399+1 1046804 L2125 2015 2625 8303*2^3477201+1 1046746 L5387 2023 2626 96821302^131072+1 1046738 L5453 2022 Generalized Fermat 2627 5925*2^3477009+1 1046688 L5810 2023 2628 96734274^131072+1 1046686 L5297 2022 Generalized Fermat 2629 7825*2^3476524+1 1046542 L5174 2023 2630 96475576^131072+1 1046534 L4424 2022 Generalized Fermat 2631 8197*2^3476332+1 1046485 L5174 2023 2632 8529*2^3476111+1 1046418 L5387 2023 2633 8411*2^3476055+1 1046401 L5783 2023 2634 4319*2^3475955+1 1046371 L5803 2023 2635 96111850^131072+1 1046319 L4245 2022 Generalized Fermat 2636 95940796^131072+1 1046218 L4591 2022 Generalized Fermat 2637 6423*2^3475393+1 1046202 L5174 2023 2638 2281*2^3475340+1 1046185 L5302 2023 2639 7379*2^3474983+1 1046078 L5798 2023 2640 4*5^1496566+1 1046056 L4965 2023 Generalized Fermat 2641 95635202^131072+1 1046036 L5452 2021 Generalized Fermat 2642 95596816^131072+1 1046013 L4591 2021 Generalized Fermat 2643 4737*2^3474562+1 1045952 L5302 2023 2644 2407*2^3474406+1 1045904 L5557 2023 2645 95308284^131072+1 1045841 L4584 2021 Generalized Fermat 2646 491*2^3473837+1 1045732 L4343 2016 2647 2693*2^3473721+1 1045698 L5174 2023 2648 94978760^131072+1 1045644 L4201 2021 Generalized Fermat 2649 3375*2^3473210+1 1045544 L5294 2023 2650 8835*2^3472666+1 1045381 L5178 2023 2651 5615*2^3472377+1 1045294 L5174 2023 2652 1785*2^3472229+1 1045249 L875 2023 2653 8997*2^3472036+1 1045191 L5302 2023 2654 9473*2^3471885+1 1045146 L5294 2023 2655 7897*2^3471568+1 1045050 L5294 2023 2656 93950924^131072+1 1045025 L5425 2021 Generalized Fermat 2657 93886318^131072+1 1044985 L5433 2021 Generalized Fermat 2658 1061*2^3471354-1 1044985 L1828 2017 2659 1913*2^3471177+1 1044932 L5189 2023 2660 93773904^131072+1 1044917 L4939 2021 Generalized Fermat 2661 7723*2^3471074+1 1044902 L5189 2023 2662 4195*2^3470952+1 1044865 L5294 2023 2663 93514592^131072+1 1044760 L4591 2021 Generalized Fermat 2664 5593*2^3470520+1 1044735 L5387 2023 2665 3665*2^3469955+1 1044565 L5189 2023 2666 3301*2^3469708+1 1044490 L5261 2023 2667 6387*2^3469634+1 1044468 L5192 2023 2668 93035888^131072+1 1044467 L4245 2021 Generalized Fermat 2669 8605*2^3469570+1 1044449 L5387 2023 2670 1359*2^3468725+1 1044194 L5197 2023 2671 92460588^131072+1 1044114 L5254 2021 Generalized Fermat 2672 7585*2^3468338+1 1044078 L5197 2023 2673 1781*2^3468335+1 1044077 L5387 2023 2674 6885*2^3468181+1 1044031 L5197 2023 2675 4372*30^706773-1 1043994 L4955 2023 2676 7287*2^3467938+1 1043958 L5776 2023 2677 92198216^131072+1 1043953 L4738 2021 Generalized Fermat 2678 3163*2^3467710+1 1043889 L5517 2023 2679 6099*2^3467689+1 1043883 L5197 2023 2680 6665*2^3467627+1 1043864 L5174 2023 2681 4099*2^3467462+1 1043814 L5774 2023 2682 5285*2^3467445+1 1043809 L5189 2023 2683 1001*2^3467258-1 1043752 L4518 2024 2684 91767880^131072+1 1043686 L5051 2021 Generalized Fermat 2685 91707732^131072+1 1043649 L4591 2021 Generalized Fermat 2686 5935*2^3466880+1 1043639 L5197 2023 2687 91689894^131072+1 1043638 L4591 2021 Generalized Fermat 2688 91685784^131072+1 1043635 L4591 2021 Generalized Fermat 2689 8937*2^3466822+1 1043622 L5174 2023 2690 91655310^131072+1 1043616 L4659 2021 Generalized Fermat 2691 8347*2^3466736+1 1043596 L5770 2023 2692 8863*2^3465780+1 1043308 L5766 2023 2693 3895*2^3465744+1 1043297 L5640 2023 2694 91069366^131072+1 1043251 L5277 2021 Generalized Fermat 2695 91049202^131072+1 1043239 L4591 2021 Generalized Fermat 2696 91033554^131072+1 1043229 L4591 2021 Generalized Fermat 2697 8561*2^3465371+1 1043185 L5197 2023 2698 90942952^131072+1 1043172 L4387 2021 Generalized Fermat 2699 90938686^131072+1 1043170 L4387 2021 Generalized Fermat 2700 9971*2^3465233+1 1043144 L5488 2023 2701 90857490^131072+1 1043119 L4591 2021 Generalized Fermat 2702 3801*2^3464980+1 1043067 L5197 2023 2703 3099*2^3464739+1 1042994 L5284 2023 2704 90382348^131072+1 1042820 L4267 2021 Generalized Fermat 2705 641*2^3464061+1 1042790 L1444 2018 2706 6717*2^3463735+1 1042692 L5754 2023 2707 6015*2^3463561+1 1042640 L5387 2023 2708d 57*2^3463424-1 1042597 L1817 2025 2709 90006846^131072+1 1042583 L4773 2021 Generalized Fermat 2710 1667*2^3463355+1 1042577 L5226 2023 2711 2871*2^3463313+1 1042565 L5189 2023 2712 89977312^131072+1 1042565 L5070 2021 Generalized Fermat 2713 6007*2^3463048+1 1042486 L5226 2023 2714 89790434^131072+1 1042446 L5007 2021 Generalized Fermat 2715 9777*2^3462742+1 1042394 L5197 2023 2716 5215*2^3462740+1 1042393 L5174 2023 2717 8365*2^3462722+1 1042388 L5320 2023 2718 3597*2^3462056+1 1042187 L5174 2023 2719 2413*2^3461890+1 1042137 L5197 2023 2720 89285798^131072+1 1042125 L5157 2021 Generalized Fermat 2721 453*2^3461688+1 1042075 L3035 2016 2722 89113896^131072+1 1042016 L5338 2021 Generalized Fermat 2723 4401*2^3461476+1 1042012 L5197 2023 2724 9471*2^3461305+1 1041961 L5594 2023 2725 7245*2^3461070+1 1041890 L5449 2023 2726 3969*2^3460942+1 1041851 L5471 2023 Generalized Fermat 2727 4365*2^3460914+1 1041843 L5197 2023 2728 4613*2^3460861+1 1041827 L5614 2023 2729 88760062^131072+1 1041789 L4903 2021 Generalized Fermat 2730 5169*2^3460553+1 1041734 L5742 2023 2731 8395*2^3460530+1 1041728 L5284 2023 2732 5835*2^3460515+1 1041723 L5740 2023 2733 8059*2^3460246+1 1041642 L5350 2023 2734 571*2^3460216+1 1041632 L3035 2018 2735 6065*2^3460205+1 1041630 L5683 2023 2736 88243020^131072+1 1041457 L4774 2021 Generalized Fermat 2737 88166868^131072+1 1041408 L5277 2021 Generalized Fermat 2738 6237*2^3459386+1 1041383 L5509 2023 2739 88068088^131072+1 1041344 L4933 2021 Generalized Fermat 2740 4029*2^3459062+1 1041286 L5727 2023 2741 87920992^131072+1 1041249 L4249 2021 Generalized Fermat 2742 7055*2^3458909+1 1041240 L5509 2023 2743 7297*2^3458768+1 1041197 L5726 2023 2744 2421*2^3458432+1 1041096 L5725 2023 2745 7907*2^3458207+1 1041028 L5509 2023 2746 87547832^131072+1 1041006 L4591 2021 Generalized Fermat 2747 87454694^131072+1 1040946 L4672 2021 Generalized Fermat 2748 7839*2^3457846+1 1040920 L5231 2023 2749 87370574^131072+1 1040891 L5297 2021 Generalized Fermat 2750 87352356^131072+1 1040879 L4387 2021 Generalized Fermat 2751 87268788^131072+1 1040825 L4917 2021 Generalized Fermat 2752 87192538^131072+1 1040775 L4861 2021 Generalized Fermat 2753 5327*2^3457363+1 1040774 L5715 2023 2754 87116452^131072+1 1040725 L5297 2021 Generalized Fermat 2755 87039658^131072+1 1040675 L5297 2021 Generalized Fermat 2756 6059*2^3457001+1 1040665 L5197 2023 2757 8953*2^3456938+1 1040646 L5724 2023 2758 8669*2^3456759+1 1040593 L5710 2023 2759 86829162^131072+1 1040537 L5265 2021 Generalized Fermat 2760 4745*2^3456167+1 1040414 L5705 2023 2761 8213*2^3456141+1 1040407 L5703 2023 2762 86413544^131072+1 1040264 L4914 2021 Generalized Fermat 2763 86347638^131072+1 1040221 L4848 2021 Generalized Fermat 2764 86295564^131072+1 1040186 L5030 2021 Generalized Fermat 2765 1155*2^3455254+1 1040139 L4711 2017 2766 37292*5^1487989+1 1040065 L3553 2013 2767 86060696^131072+1 1040031 L5057 2021 Generalized Fermat 2768 5525*2^3454069+1 1039783 L5651 2023 2769 4235*2^3453573+1 1039633 L5650 2023 2770 6441*2^3453227+1 1039529 L5683 2023 2771 4407*2^3453195+1 1039519 L5650 2023 2772 9867*2^3453039+1 1039473 L5686 2023 2773 85115888^131072+1 1039403 L4909 2021 Generalized Fermat 2774 4857*2^3452675+1 1039363 L5600 2023 2775 8339*2^3452667+1 1039361 L5651 2023 2776 84924212^131072+1 1039275 L4309 2021 Generalized Fermat 2777 7079*2^3452367+1 1039270 L5650 2023 2778 5527*2^3452342+1 1039263 L5679 2023 2779 84817722^131072+1 1039203 L4726 2021 Generalized Fermat 2780 84765338^131072+1 1039168 L4245 2021 Generalized Fermat 2781 84757790^131072+1 1039163 L5051 2021 Generalized Fermat 2782 84723284^131072+1 1039140 L5051 2021 Generalized Fermat 2783 84715930^131072+1 1039135 L4963 2021 Generalized Fermat 2784 84679936^131072+1 1039111 L4864 2021 Generalized Fermat 2785 3719*2^3451667+1 1039059 L5294 2023 2786 6725*2^3451455+1 1038996 L5685 2023 2787 8407*2^3451334+1 1038959 L5524 2023 2788 84445014^131072+1 1038952 L4909 2021 Generalized Fermat 2789 84384358^131072+1 1038912 L4622 2021 Generalized Fermat 2790 4*10^1038890+1 1038891 L4789 2024 Generalized Fermat 2791 1623*2^3451109+1 1038891 L5308 2023 2792 8895*2^3450982+1 1038854 L5666 2023 2793 84149050^131072+1 1038753 L5033 2021 Generalized Fermat 2794 2899*2^3450542+1 1038721 L5600 2023 2795 6337*2^3449506+1 1038409 L5197 2023 2796 4381*2^3449456+1 1038394 L5392 2023 2797 2727*2^3449326+1 1038355 L5421 2023 2798 2877*2^3449311+1 1038350 L5517 2023 2799 7507*2^3448920+1 1038233 L5284 2023 2800 3629*2^3448919+1 1038232 L5192 2023 2801 83364886^131072+1 1038220 L4591 2021 Generalized Fermat 2802 83328182^131072+1 1038195 L5051 2021 Generalized Fermat 2803 1273*2^3448551-1 1038121 L1828 2012 2804 1461*2^3448423+1 1038082 L4944 2023 2805 3235*2^3448352+1 1038061 L5571 2023 2806 4755*2^3448344+1 1038059 L5524 2023 2807 5655*2^3448288+1 1038042 L5651 2023 2808 4873*2^3448176+1 1038009 L5524 2023 2809 83003850^131072+1 1037973 L4963 2021 Generalized Fermat 2810 8139*2^3447967+1 1037946 L5652 2023 2811 1065*2^3447906+1 1037927 L4664 2017 2812 1717*2^3446756+1 1037581 L5517 2023 2813 6357*2^3446434+1 1037484 L5284 2023 2814 1155*2^3446253+1 1037429 L3035 2017 2815 9075*2^3446090+1 1037381 L5648 2023 2816 82008736^131072+1 1037286 L4963 2021 Generalized Fermat 2817 82003030^131072+1 1037282 L4410 2021 Generalized Fermat 2818 1483*2^3445724+1 1037270 L5650 2023 2819 81976506^131072+1 1037264 L4249 2021 Generalized Fermat 2820 2223*2^3445682+1 1037257 L5647 2023 2821 8517*2^3445488+1 1037200 L5302 2023 2822 2391*2^3445281+1 1037137 L5596 2023 2823 6883*2^3444784+1 1036988 L5264 2023 2824 81477176^131072+1 1036916 L4245 2020 Generalized Fermat 2825 81444036^131072+1 1036893 L4245 2020 Generalized Fermat 2826 8037*2^3443920+1 1036728 L5626 2023 2827 1375*2^3443850+1 1036706 L5192 2023 2828 81096098^131072+1 1036649 L4249 2020 Generalized Fermat 2829 27288429267119080686...(1036580 other digits)...83679577406643267931 1036620 p384 2015 2830 943*2^3442990+1 1036447 L4687 2017 2831 7743*2^3442814+1 1036395 L5514 2023 2832 5511*2^3442468+1 1036290 L5514 2022 2833 80284312^131072+1 1036076 L5051 2020 Generalized Fermat 2834 6329*2^3441717+1 1036064 L5631 2022 2835b 243*2^3441659-1 1036045 A76 2025 2836 3957*2^3441568+1 1036019 L5476 2022 2837 80146408^131072+1 1035978 L5051 2020 Generalized Fermat 2838 4191*2^3441427+1 1035977 L5189 2022 2839 2459*2^3441331+1 1035948 L5514 2022 2840 4335*2^3441306+1 1035940 L5178 2022 2841 2331*2^3441249+1 1035923 L5626 2022 2842 79912550^131072+1 1035812 L5186 2020 Generalized Fermat 2843 79801426^131072+1 1035733 L4245 2020 Generalized Fermat 2844 79789806^131072+1 1035725 L4658 2020 Generalized Fermat 2845 2363*2^3440385+1 1035663 L5625 2022 2846 5265*2^3440332+1 1035647 L5421 2022 2847 6023*2^3440241+1 1035620 L5517 2022 2848 943*2^3440196+1 1035606 L1448 2017 2849 6663*2^3439901+1 1035518 L5624 2022 2850 79485098^131072+1 1035507 L5130 2020 Generalized Fermat 2851 79428414^131072+1 1035466 L4793 2020 Generalized Fermat 2852 79383608^131072+1 1035434 L4387 2020 Generalized Fermat 2853 5745*2^3439450+1 1035382 L5178 2022 2854f 5889*24^750125+1 1035335 A32 2025 2855 79201682^131072+1 1035303 L5051 2020 Generalized Fermat 2856 5109*2^3439090+1 1035273 L5594 2022 2857 543*2^3438810+1 1035188 L3035 2017 2858 625*2^3438572+1 1035117 L1355 2017 Generalized Fermat 2859 3325*2^3438506+1 1035097 L5619 2022 2860 78910032^131072+1 1035093 L5051 2020 Generalized Fermat 2861 78880690^131072+1 1035072 L5159 2020 Generalized Fermat 2862 78851276^131072+1 1035051 L4928 2020 Generalized Fermat 2863 4775*2^3438217+1 1035011 L5618 2022 2864 78714954^131072+1 1034953 L5130 2020 Generalized Fermat 2865 6963*2^3437988+1 1034942 L5616 2022 2866 74*941^348034-1 1034913 L5410 2020 2867 7423*2^3437856+1 1034902 L5192 2022 2868 6701*2^3437801+1 1034886 L5615 2022 2869 5741*2^3437773+1 1034877 L5517 2022 2870 488639*2^3437688-1 1034853 L5327 2024 2871 78439440^131072+1 1034753 L5051 2020 Generalized Fermat 2872 5601*2^3437259+1 1034722 L5612 2022 2873 7737*2^3437192+1 1034702 L5611 2022 2874 113*2^3437145+1 1034686 L4045 2015 2875 78240016^131072+1 1034608 L4245 2020 Generalized Fermat 2876 6387*2^3436719+1 1034560 L5613 2022 2877 78089172^131072+1 1034498 L4245 2020 Generalized Fermat 2878 2921*2^3436299+1 1034433 L5231 2022 2879 9739*2^3436242+1 1034416 L5178 2022 2880 77924964^131072+1 1034378 L5051 2020 Generalized Fermat 2881 77918854^131072+1 1034374 L4760 2020 Generalized Fermat 2882 1147*2^3435970+1 1034334 L3035 2017 2883 4589*2^3435707+1 1034255 L5174 2022 2884 7479*2^3435683+1 1034248 L5421 2022 2885 2863*2^3435616+1 1034227 L5197 2022 2886 77469882^131072+1 1034045 L4591 2020 Generalized Fermat 2887 9863*2^3434697+1 1033951 L5189 2022 2888 4065*2^3434623+1 1033929 L5197 2022 2889 77281404^131072+1 1033906 L4963 2020 Generalized Fermat 2890 9187*2^3434126+1 1033779 L5600 2022 2891 9531*2^3434103+1 1033772 L5601 2022 2892 1757*2^3433547+1 1033604 L5594 2022 2893 1421*2^3433099+1 1033469 L5237 2022 2894 3969*2^3433007+1 1033442 L5189 2022 2895 6557*2^3433003+1 1033441 L5261 2022 2896 7335*2^3432982+1 1033435 L5231 2022 2897 7125*2^3432836+1 1033391 L5594 2022 2898 2517*2^3432734+1 1033360 L5231 2022 2899 911*2^3432643+1 1033332 L1355 2017 2900 5413*2^3432626+1 1033328 L5231 2022 2901 76416048^131072+1 1033265 L4672 2020 Generalized Fermat 2902 3753*2^3432413+1 1033263 L5261 2022 2903f 2164*24^748621+1 1033259 A62 2025 2904 2691*2^3432191+1 1033196 L5585 2022 2905 3933*2^3432125+1 1033177 L5387 2022 2906 76026988^131072+1 1032975 L5094 2020 Generalized Fermat 2907 76018874^131072+1 1032969 L4774 2020 Generalized Fermat 2908f 5889*24^748409+1 1032967 A15 2025 2909 1435*2^3431284+1 1032923 L5587 2022 2910 75861530^131072+1 1032851 L5053 2020 Generalized Fermat 2911 6783*2^3430781+1 1032772 L5261 2022 2912 8079*2^3430683+1 1032743 L5585 2022 2913 75647276^131072+1 1032690 L4677 2020 Generalized Fermat 2914 75521414^131072+1 1032595 L4584 2020 Generalized Fermat 2915 6605*2^3430187+1 1032593 L5463 2022 2916 3761*2^3430057+1 1032554 L5582 2022 2917 6873*2^3429937+1 1032518 L5294 2022 2918 8067*2^3429891+1 1032504 L5581 2022 2919 3965*2^3429719+1 1032452 L5579 2022 2920 3577*2^3428812+1 1032179 L5401 2022 2921 8747*2^3428755+1 1032163 L5493 2022 2922 9147*2^3428638+1 1032127 L5493 2022 2923 3899*2^3428535+1 1032096 L5174 2022 2924 74833516^131072+1 1032074 L5102 2020 Generalized Fermat 2925 74817490^131072+1 1032062 L4591 2020 Generalized Fermat 2926 8891*2^3428303+1 1032026 L5532 2022 2927 793181*20^793181+1 1031959 L5765 2023 Generalized Cullen 2928 2147*2^3427371+1 1031745 L5189 2022 2929 74396818^131072+1 1031741 L4791 2020 Generalized Fermat 2930 74381296^131072+1 1031729 L4550 2020 Generalized Fermat 2931 74363146^131072+1 1031715 L4898 2020 Generalized Fermat 2932 1127*2^3427219+1 1031699 L3035 2017 2933 74325990^131072+1 1031687 L5024 2020 Generalized Fermat 2934 3021*2^3427059+1 1031652 L5554 2022 2935 3255*2^3426983+1 1031629 L5231 2022 2936 1733*2^3426753+1 1031559 L5565 2022 2937 2339*2^3426599+1 1031513 L5237 2022 2938 4729*2^3426558+1 1031501 L5493 2022 2939 73839292^131072+1 1031313 L4550 2020 Generalized Fermat 2940 5445*2^3425839+1 1031285 L5237 2022 2941 159*2^3425766+1 1031261 L4045 2015 2942 73690464^131072+1 1031198 L4884 2020 Generalized Fermat 2943 3405*2^3425045+1 1031045 L5261 2022 2944 73404316^131072+1 1030976 L5011 2020 Generalized Fermat 2945 1695*2^3424517+1 1030886 L5387 2022 2946 4715*2^3424433+1 1030861 L5557 2022 2947 5525*2^3424423+1 1030858 L5387 2022 2948 8615*2^3424231+1 1030801 L5261 2022 2949 5805*2^3424200+1 1030791 L5237 2022 2950 73160610^131072+1 1030787 L4550 2020 Generalized Fermat 2951 73132228^131072+1 1030765 L4905 2020 Generalized Fermat 2952 73099962^131072+1 1030740 L5068 2020 Generalized Fermat 2953 2109*2^3423798-3027*2^988658+1 1030670 CH13 2023 Arithmetic progression (3,d=2109*2^3423797-3027*2^988658) 2954 2109*2^3423797+1 1030669 L5197 2022 2955 4929*2^3423494+1 1030579 L5554 2022 2956 2987*2^3422911+1 1030403 L5226 2022 2957 72602370^131072+1 1030351 L4201 2020 Generalized Fermat 2958 4843*2^3422644+1 1030323 L5553 2022 2959 5559*2^3422566+1 1030299 L5555 2022 2960 7583*2^3422501+1 1030280 L5421 2022 2961 1119*2^3422189+1 1030185 L1355 2017 2962 2895*2^3422031-143157*2^2144728+1 1030138 p423 2023 Arithmetic progression (3,d=2895*2^3422030-143157*2^2144728) 2963 2895*2^3422030+1 1030138 L5237 2022 2964 2835*2^3421697+1 1030037 L5387 2022 2965 3363*2^3421353+1 1029934 L5226 2022 2966 72070092^131072+1 1029932 L4201 2020 Generalized Fermat 2967 9147*2^3421264+1 1029908 L5237 2022 2968 9705*2^3420915+1 1029803 L5540 2022 2969 1005*2^3420846+1 1029781 L2714 2017 Divides GF(3420844,10) 2970 8919*2^3420758+1 1029755 L5226 2022 2971 71732900^131072+1 1029665 L5053 2020 Generalized Fermat 2972 71679108^131072+1 1029623 L5072 2020 Generalized Fermat 2973 5489*2^3420137+1 1029568 L5174 2022 2974 9957*2^3420098+1 1029557 L5237 2022 2975 93*10^1029523-1 1029525 L4789 2019 Near-repdigit 2976 71450224^131072+1 1029440 L5029 2020 Generalized Fermat 2977e 1962*5^1472736-1 1029402 A11 2025 2978 7213*2^3419370+1 1029337 L5421 2022 2979 7293*2^3419264+1 1029305 L5192 2022 2980 975*2^3419230+1 1029294 L3545 2017 2981 4191*2^3419227+1 1029294 L5421 2022 2982 28080*745^358350-1 1029242 L4189 2024 2983 2393*2^3418921+1 1029202 L5197 2022 2984 999*2^3418885+1 1029190 L3035 2017 2985 2925*2^3418543+1 1029088 L5174 2022 2986 70960658^131072+1 1029049 L5039 2020 Generalized Fermat 2987 70948704^131072+1 1029039 L4660 2020 Generalized Fermat 2988 70934282^131072+1 1029028 L5067 2020 Generalized Fermat 2989 7383*2^3418297+1 1029014 L5189 2022 2990 70893680^131072+1 1028995 L5063 2020 Generalized Fermat 2991 907*2^3417890+1 1028891 L3035 2017 2992 5071*2^3417884+1 1028890 L5237 2022 2993 3473*2^3417741+1 1028847 L5541 2022 2994 191249*2^3417696-1 1028835 L1949 2010 2995 70658696^131072+1 1028806 L5051 2020 Generalized Fermat 2996 3299*2^3417329+1 1028723 L5421 2022 2997 6947*2^3416979+1 1028618 L5540 2022 2998 70421038^131072+1 1028615 L4984 2020 Generalized Fermat 2999 8727*2^3416652+1 1028519 L5226 2022 3000 8789*2^3416543+1 1028486 L5197 2022 3001 70050828^131072+1 1028315 L5021 2020 Generalized Fermat 3002 7917*2^3415947+1 1028307 L5537 2022 3003 70022042^131072+1 1028291 L4201 2020 Generalized Fermat 3004 2055*2^3415873+1 1028284 L5535 2022 3005 4731*2^3415712+1 1028236 L5192 2022 3006 2219*2^3415687+1 1028228 L5178 2022 3007 69915032^131072+1 1028204 L4591 2020 Generalized Fermat 3008 5877*2^3415419+1 1028148 L5532 2022 3009 3551*2^3415275+1 1028104 L5231 2022 3010 69742382^131072+1 1028063 L5053 2020 Generalized Fermat 3011 2313*2^3415046+1 1028035 L5226 2022 3012 69689592^131072+1 1028020 L4387 2020 Generalized Fermat 3013 7637*2^3414875+1 1027984 L5507 2022 3014 2141*2^3414821+1 1027967 L5226 2022 3015 69622572^131072+1 1027965 L4909 2020 Generalized Fermat 3016 3667*2^3414686+1 1027927 L5226 2022 3017 69565722^131072+1 1027919 L4387 2020 Generalized Fermat 3018 6159*2^3414623+1 1027908 L5226 2022 3019 69534788^131072+1 1027894 L5029 2020 Generalized Fermat 3020f 4606*24^744714+1 1027867 A11 2025 3021f 2586*24^744604+1 1027715 A11 2025 3022 4577*2^3413539+1 1027582 L5387 2022 3023 5137*2^3413524+1 1027577 L5261 2022 3024 8937*2^3413364+1 1027529 L5527 2022 3025 8829*2^3413339+1 1027522 L5531 2022 3026 7617*2^3413315+1 1027515 L5197 2022 3027 68999820^131072+1 1027454 L5044 2020 Generalized Fermat 3028 3141*2^3413112+1 1027453 L5463 2022 3029 8831*2^3412931+1 1027399 L5310 2022 3030 68924112^131072+1 1027391 L4745 2020 Generalized Fermat 3031 68918852^131072+1 1027387 L5021 2020 Generalized Fermat 3032 5421*2^3412877+1 1027383 L5310 2022 3033 9187*2^3412700+1 1027330 L5337 2022 3034 68811158^131072+1 1027298 L4245 2020 Generalized Fermat 3035 8243*2^3412577+1 1027292 L5524 2022 3036 1751*2^3412565+1 1027288 L5523 2022 3037 9585*2^3412318+1 1027215 L5197 2022 3038 9647*2^3412247+1 1027193 L5178 2022 3039 3207*2^3412108+1 1027151 L5189 2022 3040 479*2^3411975+1 1027110 L2873 2016 3041 245*2^3411973+1 1027109 L1935 2015 3042 177*2^3411847+1 1027071 L4031 2015 3043 68536972^131072+1 1027071 L5027 2020 Generalized Fermat 3044 9963*2^3411566+1 1026988 L5237 2022 3045 68372810^131072+1 1026934 L4956 2020 Generalized Fermat 3046 9785*2^3411223+1 1026885 L5189 2022 3047 5401*2^3411136+1 1026858 L5261 2022 3048 68275006^131072+1 1026853 L4963 2020 Generalized Fermat 3049 9431*2^3411105+1 1026849 L5237 2022 3050 8227*2^3410878+1 1026781 L5316 2022 3051 4735*2^3410724+1 1026734 L5226 2022 3052 9515*2^3410707+1 1026730 L5237 2022 3053 6783*2^3410690+1 1026724 L5434 2022 3054 8773*2^3410558+1 1026685 L5261 2022 3055 4629*2^3410321+1 1026613 L5517 2022 3056 67894288^131072+1 1026535 L5025 2020 Generalized Fermat 3057 113*2^3409934-1 1026495 L2484 2014 3058 5721*2^3409839+1 1026468 L5226 2022 3059 67725850^131072+1 1026393 L5029 2020 Generalized Fermat 3060 6069*2^3409493+1 1026364 L5237 2022 3061 1981*910^346850+1 1026347 L1141 2021 3062 5317*2^3409236+1 1026287 L5471 2022 3063 7511*2^3408985+1 1026211 L5514 2022 3064 7851*2^3408909+1 1026188 L5176 2022 3065 67371416^131072+1 1026094 L4550 2020 Generalized Fermat 3066 6027*2^3408444+1 1026048 L5239 2022 3067 59*2^3408416-1 1026038 L426 2010 3068 2153*2^3408333+1 1026014 L5237 2022 3069 9831*2^3408056+1 1025932 L5233 2022 3070 3615*2^3408035+1 1025925 L5217 2022 3071 6343*2^3407950+1 1025899 L5226 2022 3072 8611*2^3407516+1 1025769 L5509 2022 3073 66982940^131072+1 1025765 L4249 2020 Generalized Fermat 3074 7111*2^3407452+1 1025750 L5508 2022 3075 66901180^131072+1 1025696 L5018 2020 Generalized Fermat 3076 6945*2^3407256+1 1025691 L5507 2022 3077 6465*2^3407229+1 1025682 L5301 2022 3078 1873*2^3407156+1 1025660 L5440 2022 3079 7133*2^3406377+1 1025426 L5279 2022 3080 7063*2^3406122+1 1025349 L5178 2022 3081 3105*2^3405800+1 1025252 L5502 2022 3082 953*2^3405729+1 1025230 L3035 2017 3083 66272848^131072+1 1025159 L5013 2020 Generalized Fermat 3084 66131722^131072+1 1025037 L4530 2020 Generalized Fermat 3085 373*2^3404702+1 1024921 L3924 2016 3086 7221*2^3404507+1 1024863 L5231 2022 3087 6641*2^3404259+1 1024788 L5501 2022 3088 9225*2^3404209+1 1024773 L5250 2022 3089 65791182^131072+1 1024743 L4623 2019 Generalized Fermat 3090 833*2^3403765+1 1024639 L3035 2017 3091 65569854^131072+1 1024552 L4210 2019 Generalized Fermat 3092 2601*2^3403459+1 1024547 L5350 2022 3093 8835*2^3403266+1 1024490 L5161 2022 3094 7755*2^3403010+1 1024412 L5161 2022 3095 3123*2^3402834+1 1024359 L5260 2022 3096 65305572^131072+1 1024322 L5001 2019 Generalized Fermat 3097 65200798^131072+1 1024230 L4999 2019 Generalized Fermat 3098 1417*2^3402246+1 1024182 L5497 2022 3099 5279*2^3402241+1 1024181 L5250 2022 3100 6651*2^3402137+1 1024150 L5476 2022 3101 1779*2^3401715+1 1024022 L5493 2022 3102 64911056^131072+1 1023977 L4870 2019 Generalized Fermat 3103 8397*2^3401502+1 1023959 L5476 2022 3104 4057*2^3401472+1 1023949 L5492 2022 3105 64791668^131072+1 1023872 L4905 2019 Generalized Fermat 3106 4095*2^3401174+1 1023860 L5418 2022 3107 5149*2^3400970+1 1023798 L5176 2022 3108 4665*2^3400922+1 1023784 L5308 2022 3109 24*414^391179+1 1023717 L4273 2016 3110 64568930^131072+1 1023676 L4977 2019 Generalized Fermat 3111 64506894^131072+1 1023621 L4977 2019 Generalized Fermat 3112 1725*2^3400371+1 1023617 L5197 2022 3113 64476916^131072+1 1023595 L4997 2019 Generalized Fermat 3114 9399*2^3400243+1 1023580 L5488 2022 3115 1241*2^3400127+1 1023544 L5279 2022 3116 1263*2^3399876+1 1023468 L5174 2022 3117 1167*2^3399748+1 1023430 L3545 2017 3118 64024604^131072+1 1023194 L4591 2019 Generalized Fermat 3119f 3526*24^741308+1 1023166 A66 2025 3120 7679*2^3398569+1 1023076 L5295 2022 3121 6447*2^3398499+1 1023054 L5302 2022 3122 63823568^131072+1 1023015 L4585 2019 Generalized Fermat 3123 2785*2^3398332+1 1023004 L5250 2022 3124 611*2^3398273+1 1022985 L3035 2017 3125 2145*2^3398034+1 1022914 L5302 2022 3126 3385*2^3397254+1 1022679 L5161 2022 3127 4*3^2143374+1 1022650 L4965 2020 Generalized Fermat 3128 4463*2^3396657+1 1022500 L5476 2022 3129 2889*2^3396450+1 1022437 L5178 2022 3130 8523*2^3396448+1 1022437 L5231 2022 3131 63168480^131072+1 1022428 L4861 2019 Generalized Fermat 3132 63165756^131072+1 1022425 L4987 2019 Generalized Fermat 3133 3349*2^3396326+1 1022400 L5480 2022 3134 63112418^131072+1 1022377 L4201 2019 Generalized Fermat 3135 4477*2^3395786+1 1022238 L5161 2022 3136 3853*2^3395762+1 1022230 L5302 2022 3137 2693*2^3395725+1 1022219 L5284 2022 3138 8201*2^3395673+1 1022204 L5178 2022 3139 255*2^3395661+1 1022199 L3898 2014 3140 1049*2^3395647+1 1022195 L3035 2017 3141 9027*2^3395623+1 1022189 L5263 2022 3142 2523*2^3395549+1 1022166 L5472 2022 3143 3199*2^3395402+1 1022122 L5264 2022 3144 342924651*2^3394939-1 1021988 L4166 2017 3145 3825*2^3394947+1 1021985 L5471 2022 3146 1895*2^3394731+1 1021920 L5174 2022 3147 62276102^131072+1 1021618 L4715 2019 Generalized Fermat 3148 555*2^3393389+1 1021515 L2549 2017 3149 1865*2^3393387+1 1021515 L5237 2022 3150 4911*2^3393373+1 1021511 L5231 2022 3151 62146946^131072+1 1021500 L4720 2019 Generalized Fermat 3152 5229*2^3392587+1 1021275 L5463 2022 3153 61837354^131072+1 1021215 L4656 2019 Generalized Fermat 3154 609*2^3392301+1 1021188 L3035 2017 3155 9787*2^3392236+1 1021169 L5350 2022 3156 303*2^3391977+1 1021090 L2602 2016 3157 805*2^3391818+1 1021042 L4609 2017 3158 6475*2^3391496+1 1020946 L5174 2022 3159 67*2^3391385-1 1020911 L1959 2014 3160 61267078^131072+1 1020688 L4923 2019 Generalized Fermat 3161 4639*2^3390634+1 1020687 L5189 2022 3162 5265*2^3390581+1 1020671 L5456 2022 3163 663*2^3390469+1 1020636 L4316 2017 3164 6945*2^3390340+1 1020598 L5174 2022 3165 5871*2^3390268+1 1020577 L5231 2022 3166 7443*2^3390141+1 1020539 L5226 2022 3167 5383*2^3389924+1 1020473 L5350 2021 3168 61030988^131072+1 1020468 L4898 2019 Generalized Fermat 3169 9627*2^3389331+1 1020295 L5231 2021 3170 60642326^131072+1 1020104 L4591 2019 Generalized Fermat 3171 8253*2^3388624+1 1020082 L5226 2021 3172 3329*2^3388472-1 1020036 L4841 2020 3173 4695*2^3388393+1 1020012 L5237 2021 3174 60540024^131072+1 1020008 L4591 2019 Generalized Fermat 3175 7177*2^3388144+1 1019937 L5174 2021 3176 60455792^131072+1 1019929 L4760 2019 Generalized Fermat 3177 9611*2^3388059+1 1019912 L5435 2021 3178 1833*2^3387760+1 1019821 L5226 2021 3179 9003*2^3387528+1 1019752 L5189 2021 3180 3161*2^3387141+1 1019635 L5226 2021 3181 7585*2^3387110+1 1019626 L5189 2021 3182 60133106^131072+1 1019624 L4942 2019 Generalized Fermat 3183 453*2^3387048+1 1019606 L2602 2016 3184 5177*2^3386919+1 1019568 L5226 2021 3185 8739*2^3386813+1 1019537 L5226 2021 3186 2875*2^3386638+1 1019484 L5226 2021 3187 7197*2^3386526+1 1019450 L5178 2021 3188 1605*2^3386229+1 1019360 L5226 2021 3189 8615*2^3386181+1 1019346 L5442 2021 3190 3765*2^3386141+1 1019334 L5174 2021 3191 5379*2^3385806+1 1019233 L5237 2021 3192 59720358^131072+1 1019232 L4656 2019 Generalized Fermat 3193 59692546^131072+1 1019206 L4747 2019 Generalized Fermat 3194 59515830^131072+1 1019037 L4737 2019 Generalized Fermat 3195 173198*5^1457792-1 1018959 L3720 2013 3196 59405420^131072+1 1018931 L4645 2019 Generalized Fermat 3197 2109*2^3384733+1 1018910 L5261 2021 3198 7067*2^3384667+1 1018891 L5439 2021 3199 59362002^131072+1 1018890 L4249 2019 Generalized Fermat 3200 59305348^131072+1 1018835 L4932 2019 Generalized Fermat 3201 2077*2^3384472+1 1018831 L5237 2021 3202 59210784^131072+1 1018745 L4926 2019 Generalized Fermat 3203 59161754^131072+1 1018697 L4928 2019 Generalized Fermat 3204 9165*2^3383917+1 1018665 L5435 2021 3205 5579*2^3383209+1 1018452 L5434 2021 3206 8241*2^3383131+1 1018428 L5387 2021 3207 7409*2^3382869+1 1018349 L5161 2021 3208 4883*2^3382813+1 1018332 L5161 2021 3209 9783*2^3382792+1 1018326 L5189 2021 3210 58589880^131072+1 1018145 L4923 2019 Generalized Fermat 3211 58523466^131072+1 1018080 L4802 2019 Generalized Fermat 3212 8877*2^3381936+1 1018069 L5429 2021 3213 58447816^131072+1 1018006 L4591 2019 Generalized Fermat 3214 58447642^131072+1 1018006 L4591 2019 Generalized Fermat 3215 6675*2^3381688+1 1017994 L5197 2021 3216 2445*2^3381129+1 1017825 L5231 2021 3217 58247118^131072+1 1017811 L4309 2019 Generalized Fermat 3218 3381*2^3380585+1 1017662 L5237 2021 3219 7899*2^3380459+1 1017624 L5421 2021 3220 5945*2^3379933+1 1017465 L5418 2021 3221 1425*2^3379921+1 1017461 L1134 2020 3222 4975*2^3379420+1 1017311 L5161 2021 3223 57704312^131072+1 1017278 L4591 2019 Generalized Fermat 3224 57694224^131072+1 1017268 L4656 2019 Generalized Fermat 3225 57594734^131072+1 1017169 L4656 2019 Generalized Fermat 3226 9065*2^3378851+1 1017140 L5414 2021 3227 2369*2^3378761+1 1017112 L5197 2021 3228 57438404^131072+1 1017015 L4745 2019 Generalized Fermat 3229 621*2^3378148+1 1016927 L3035 2017 3230 7035*2^3378141+1 1016926 L5408 2021 3231 2067*2^3378115+1 1016918 L5405 2021 3232 1093*2^3378000+1 1016883 L4583 2017 3233 9577*2^3377612+1 1016767 L5406 2021 3234 861*2^3377601+1 1016763 L4582 2017 3235 5811*2^3377016+1 1016587 L5261 2021 3236 2285*2^3376911+1 1016555 L5261 2021 3237 4199*2^3376903+1 1016553 L5174 2021 3238 6405*2^3376890+1 1016549 L5269 2021 3239 1783*2^3376810+1 1016525 L5261 2021 3240 5401*2^3376768+1 1016513 L5174 2021 3241 56917336^131072+1 1016496 L4729 2019 Generalized Fermat 3242 2941*2^3376536+1 1016443 L5174 2021 3243 1841*2^3376379+1 1016395 L5401 2021 3244 6731*2^3376133+1 1016322 L5261 2021 3245 56735576^131072+1 1016314 L4760 2019 Generalized Fermat 3246 8121*2^3375933+1 1016262 L5356 2021 3247 5505*2^3375777+1 1016214 L5174 2021 3248 56584816^131072+1 1016162 L4289 2019 Generalized Fermat 3249 3207*2^3375314+1 1016075 L5237 2021 3250 56459558^131072+1 1016036 L4892 2019 Generalized Fermat 3251 5307*2^3374939+1 1015962 L5392 2021 3252 56383242^131072+1 1015959 L4889 2019 Generalized Fermat 3253 56307420^131072+1 1015883 L4843 2019 Generalized Fermat 3254 208003!-1 1015843 p394 2016 Factorial 3255 6219*2^3374198+1 1015739 L5393 2021 3256 3777*2^3374072+1 1015701 L5261 2021 3257 9347*2^3374055+1 1015696 L5387 2021 3258 1461*2^3373383+1 1015493 L5384 2021 3259 6395*2^3373135+1 1015419 L5382 2021 3260 7869*2^3373021+1 1015385 L5381 2021 3261 55645700^131072+1 1015210 L4745 2019 Generalized Fermat 3262 4905*2^3372216+1 1015142 L5261 2021 3263 55579418^131072+1 1015142 L4745 2019 Generalized Fermat 3264 2839*2^3372034+1 1015087 L5174 2021 3265 7347*2^3371803+1 1015018 L5217 2021 3266 9799*2^3371378+1 1014890 L5261 2021 3267 4329*2^3371201+1 1014837 L5197 2021 3268 3657*2^3371183+1 1014831 L5360 2021 3269 55268442^131072+1 1014822 L4525 2019 Generalized Fermat 3270 179*2^3371145+1 1014819 L3763 2014 3271 5155*2^3371016+1 1014781 L5237 2021 3272 7575*2^3371010+1 1014780 L5237 2021 3273 55184170^131072+1 1014736 L4871 2018 Generalized Fermat 3274 9195*2^3370798+1 1014716 L5178 2021 3275 1749*2^3370786+1 1014711 L5362 2021 3276 8421*2^3370599+1 1014656 L5174 2021 3277 55015050^131072+1 1014561 L4205 2018 Generalized Fermat 3278 4357*2^3369572+1 1014346 L5231 2021 3279 6073*2^3369544+1 1014338 L5358 2021 3280 839*2^3369383+1 1014289 L2891 2017 3281 65*2^3369359+1 1014280 L5236 2021 3282 8023*2^3369228+1 1014243 L5356 2021 3283 677*2^3369115+1 1014208 L2103 2017 3284 1437*2^3369083+1 1014199 L5282 2021 3285 9509*2^3368705+1 1014086 L5237 2021 3286 54548788^131072+1 1014076 L4726 2018 Generalized Fermat 3287 4851*2^3368668+1 1014074 L5307 2021 3288 7221*2^3368448+1 1014008 L5353 2021 3289 5549*2^3368437+1 1014005 L5217 2021 3290 715*2^3368210+1 1013936 L4527 2017 3291 617*2^3368119+1 1013908 L4552 2017 3292 54361742^131072+1 1013881 L4210 2018 Generalized Fermat 3293 1847*2^3367999+1 1013872 L5352 2021 3294 54334044^131072+1 1013852 L4745 2018 Generalized Fermat 3295 17819*24^734523+1 1013802 A11 2025 3296 6497*2^3367743+1 1013796 L5285 2021 3297 2533*2^3367666+1 1013772 L5326 2021 3298 6001*2^3367552+1 1013738 L5350 2021 3299 54212352^131072+1 1013724 L4307 2018 Generalized Fermat 3300 54206254^131072+1 1013718 L4249 2018 Generalized Fermat 3301 777*2^3367372+1 1013683 L4408 2017 3302 9609*2^3367351+1 1013678 L5285 2021 3303 54161106^131072+1 1013670 L4307 2018 Generalized Fermat 3304 2529*2^3367317+1 1013667 L5237 2021 3305 5941*2^3366960+1 1013560 L5189 2021 3306 5845*2^3366956+1 1013559 L5197 2021 3307 54032538^131072+1 1013535 L4591 2018 Generalized Fermat 3308 9853*2^3366608+1 1013454 L5178 2021 3309 61*2^3366033-1 1013279 L4405 2017 3310 7665*2^3365896+1 1013240 L5345 2021 3311 8557*2^3365648+1 1013165 L5346 2021 3312 369*2^3365614+1 1013154 L4364 2016 3313 53659976^131072+1 1013141 L4823 2018 Generalized Fermat 3314 8201*2^3365283+1 1013056 L5345 2021 3315 9885*2^3365151+1 1013016 L5344 2021 3316 5173*2^3365096+1 1012999 L5285 2021 3317 8523*2^3364918+1 1012946 L5237 2021 3318 3985*2^3364776+1 1012903 L5178 2021 3319 9711*2^3364452+1 1012805 L5192 2021 3320 7003*2^3364172+1 1012721 L5217 2021 3321 6703*2^3364088+1 1012696 L5337 2021 3322 7187*2^3364011+1 1012673 L5217 2021 3323 53161266^131072+1 1012610 L4307 2018 Generalized Fermat 3324 53078434^131072+1 1012521 L4835 2018 Generalized Fermat 3325 2345*2^3363157+1 1012415 L5336 2021 3326 6527*2^3363135+1 1012409 L5167 2021 3327 9387*2^3363088+1 1012395 L5161 2021 3328 8989*2^3362986+1 1012364 L5161 2021 3329 533*2^3362857+1 1012324 L3171 2017 3330 619*2^3362814+1 1012311 L4527 2017 3331 2289*2^3362723+1 1012284 L5161 2021 3332 7529*2^3362565+1 1012237 L5161 2021 3333 7377*2^3362366+1 1012177 L5161 2021 3334 4509*2^3362311+1 1012161 L5324 2021 3335 7021*2^3362208+1 1012130 L5178 2021 3336 52712138^131072+1 1012127 L4819 2018 Generalized Fermat 3337 104*873^344135-1 1012108 L4700 2018 3338 4953*2^3362054+1 1012083 L5323 2021 3339 8575*2^3361798+1 1012006 L5237 2021 3340 2139*2^3361706+1 1011978 L5174 2021 3341 6939*2^3361203+1 1011827 L5217 2021 3342 52412612^131072+1 1011802 L4289 2018 Generalized Fermat 3343 3^2120580-3^623816-1 1011774 CH9 2019 3344 8185*2^3360896+1 1011735 L5189 2021 3345 2389*2^3360882+1 1011730 L5317 2021 3346 2787*2^3360631+1 1011655 L5197 2021 3347 6619*2^3360606+1 1011648 L5316 2021 3348 2755*2^3360526+1 1011623 L5174 2021 3349 1445*2^3360099+1 1011494 L5261 2021 3350 2846*67^553905-1 1011476 L4955 2023 3351 8757*2^3359788+1 1011401 L5197 2021 3352 52043532^131072+1 1011400 L4810 2018 Generalized Fermat 3353 5085*2^3359696+1 1011373 L5261 2021 3354 51954384^131072+1 1011303 L4720 2018 Generalized Fermat 3355 6459*2^3359457+1 1011302 L5310 2021 3356 51872628^131072+1 1011213 L4591 2018 Generalized Fermat 3357 6115*2^3358998+1 1011163 L5309 2021 3358 7605*2^3358929+1 1011143 L5308 2021 3359 2315*2^3358899+1 1011133 L5197 2021 3360 6603*2^3358525+1 1011021 L5307 2021 3361 51580416^131072+1 1010891 L4765 2018 Generalized Fermat 3362 51570250^131072+1 1010880 L4591 2018 Generalized Fermat 3363 51567684^131072+1 1010877 L4800 2018 Generalized Fermat 3364 5893*2^3357490+1 1010709 L5285 2021 3365 6947*2^3357075+1 1010585 L5302 2021 3366 4621*2^3357068+1 1010582 L5301 2021 3367 51269192^131072+1 1010547 L4795 2018 Generalized Fermat 3368b 104*468^378388-1 1010392 A11 2025 3369 1479*2^3356275+1 1010343 L5178 2021 3370 3645*2^3356232+1 1010331 L5296 2021 3371 1259*2^3356215+1 1010325 L5298 2021 3372 2075*2^3356057+1 1010278 L5174 2021 3373 4281*2^3356051+1 1010276 L5295 2021 3374 1275*2^3356045+1 1010274 L5294 2021 3375 50963598^131072+1 1010206 L4726 2018 Generalized Fermat 3376 4365*2^3355770+1 1010192 L5261 2021 3377 50844724^131072+1 1010074 L4656 2018 Generalized Fermat 3378 2183*2^3355297+1 1010049 L5266 2021 3379 3087*2^3355000+1 1009960 L5226 2021 3380 8673*2^3354760+1 1009888 L5233 2021 3381 50495632^131072+1 1009681 L4591 2018 Generalized Fermat 3382 3015*2^3353943+1 1009641 L5290 2021 3383 6819*2^3353877+1 1009622 L5174 2021 3384 9*10^1009567-1 1009568 L3735 2016 Near-repdigit 3385 6393*2^3353366+1 1009468 L5287 2021 3386 3573*2^3353273+1 1009440 L5161 2021 3387 4047*2^3353222+1 1009425 L5286 2021 3388 1473*2^3353114+1 1009392 L5161 2021 3389 1183*2^3353058+1 1009375 L3824 2017 3390 50217306^131072+1 1009367 L4720 2018 Generalized Fermat 3391 81*2^3352924+1 1009333 L1728 2012 Generalized Fermat 3392 50110436^131072+1 1009245 L4591 2018 Generalized Fermat 3393 50055102^131072+1 1009183 L4309 2018 Generalized Fermat 3394 7123*2^3352180+1 1009111 L5161 2021 3395 2757*2^3352180+1 1009111 L5285 2021 3396b 243*2^3352138-1 1009097 A76 2025 3397 9307*2^3352014+1 1009061 L5284 2021 3398 2217*2^3351732+1 1008976 L5283 2021 3399 543*2^3351686+1 1008961 L4198 2017 3400 4419*2^3351666+1 1008956 L5279 2021 3401 49817700^131072+1 1008912 L4760 2018 Generalized Fermat 3402 3059*2^3351379+1 1008870 L5278 2021 3403 7789*2^3351046+1 1008770 L5276 2021 3404 9501*2^3350668+1 1008656 L5272 2021 3405 49530004^131072+1 1008582 L4591 2018 Generalized Fermat 3406 9691*2^3349952+1 1008441 L5242 2021 3407 49397682^131072+1 1008430 L4764 2018 Generalized Fermat 3408 3209*2^3349719+1 1008370 L5269 2021 3409 49331672^131072+1 1008354 L4763 2018 Generalized Fermat 3410 393*2^3349525+1 1008311 L3101 2016 3411 49243622^131072+1 1008252 L4741 2018 Generalized Fermat 3412 5487*2^3349303+1 1008245 L5266 2021 3413 49225986^131072+1 1008232 L4757 2018 Generalized Fermat 3414 2511*2^3349104+1 1008185 L5264 2021 3415 1005*2^3349046-1 1008167 L4518 2021 3416 7659*2^3348894+1 1008122 L5263 2021 3417 9703*2^3348872+1 1008115 L5262 2021 3418 49090656^131072+1 1008075 L4752 2018 Generalized Fermat 3419 7935*2^3348578+1 1008027 L5161 2021 3420 49038514^131072+1 1008015 L4743 2018 Generalized Fermat 3421 7821*2^3348400+1 1007973 L5260 2021 3422 7911*2^3347532+1 1007712 L5250 2021 3423 8295*2^3347031+1 1007561 L5249 2021 3424 48643706^131072+1 1007554 L4691 2018 Generalized Fermat 3425 4029*2^3346729+1 1007470 L5239 2021 3426 9007*2^3346716+1 1007466 L5161 2021 3427 8865*2^3346499+1 1007401 L5238 2021 3428 6171*2^3346480+1 1007395 L5174 2021 3429 6815*2^3346045+1 1007264 L5235 2021 3430 5*326^400785+1 1007261 L4786 2019 3431 5951*2^3345977+1 1007244 L5233 2021 3432 48370248^131072+1 1007234 L4701 2018 Generalized Fermat 3433 1257*2^3345843+1 1007203 L5192 2021 3434 4701*2^3345815+1 1007195 L5192 2021 3435 48273828^131072+1 1007120 L4456 2018 Generalized Fermat 3436 7545*2^3345355+1 1007057 L5231 2021 3437 5559*2^3344826+1 1006897 L5223 2021 3438 6823*2^3344692+1 1006857 L5223 2021 3439 4839*2^3344453+1 1006785 L5188 2021 3440 7527*2^3344332+1 1006749 L5220 2021 3441 7555*2^3344240+1 1006721 L5188 2021 3442 6265*2^3344080+1 1006673 L5197 2021 3443 1299*2^3343943+1 1006631 L5217 2021 3444 2815*2^3343754+1 1006574 L5216 2021 3445 5349*2^3343734+1 1006568 L5174 2021 3446 2863*2^3342920+1 1006323 L5179 2020 3447 7387*2^3342848+1 1006302 L5208 2020 3448 9731*2^3342447+1 1006181 L5203 2020 3449 7725*2^3341708+1 1005959 L5195 2020 3450 7703*2^3341625+1 1005934 L5178 2020 3451 7047*2^3341482+1 1005891 L5194 2020 3452 4839*2^3341309+1 1005838 L5192 2020 3453 47179704^131072+1 1005815 L4673 2017 Generalized Fermat 3454 47090246^131072+1 1005707 L4654 2017 Generalized Fermat 3455 8989*2^3340866+1 1005705 L5189 2020 3456 6631*2^3340808+1 1005688 L5188 2020 3457 1341*2^3340681+1 1005649 L5188 2020 3458 733*2^3340464+1 1005583 L3035 2016 3459 2636*138^469911+1 1005557 L5410 2021 3460 3679815*2^3340001+1 1005448 L4922 2019 3461 57*2^3339932-1 1005422 L3519 2015 3462 46776558^131072+1 1005326 L4659 2017 Generalized Fermat 3463 46736070^131072+1 1005277 L4245 2017 Generalized Fermat 3464 46730280^131072+1 1005270 L4656 2017 Generalized Fermat 3465 3651*2^3339341+1 1005246 L5177 2020 3466 3853*2^3339296+1 1005232 L5178 2020 3467 8015*2^3339267+1 1005224 L5176 2020 3468 3027*2^3339182+1 1005198 L5174 2020 3469 9517*2^3339002+1 1005144 L5172 2020 3470 4003*2^3338588+1 1005019 L3035 2020 3471 6841*2^3338336+1 1004944 L1474 2020 3472 2189*2^3338209+1 1004905 L5031 2020 3473 46413358^131072+1 1004883 L4626 2017 Generalized Fermat 3474 46385310^131072+1 1004848 L4622 2017 Generalized Fermat 3475 46371508^131072+1 1004831 L4620 2017 Generalized Fermat 3476 2957*2^3337667+1 1004742 L5144 2020 3477 1515*2^3337389+1 1004658 L1474 2020 3478 7933*2^3337270+1 1004623 L4666 2020 3479 1251*2^3337116+1 1004576 L4893 2020 3480 651*2^3337101+1 1004571 L3260 2016 3481 46077492^131072+1 1004469 L4595 2017 Generalized Fermat 3482 8397*2^3336654+1 1004437 L5125 2020 3483 8145*2^3336474+1 1004383 L5110 2020 3484 1087*2^3336385-1 1004355 L1828 2012 3485 5325*2^3336120+1 1004276 L2125 2020 3486 849*2^3335669+1 1004140 L3035 2016 3487 8913*2^3335216+1 1004005 L5079 2020 3488 7725*2^3335213+1 1004004 L3035 2020 3489 611*2^3334875+1 1003901 L3813 2016 3490 45570624^131072+1 1003840 L4295 2017 Generalized Fermat 3491 403*2^3334410+1 1003761 L4293 2016 3492 5491*2^3334392+1 1003756 L4815 2020 3493 6035*2^3334341+1 1003741 L2125 2020 3494 1725*2^3334341+1 1003740 L2125 2020 3495 4001*2^3334031+1 1003647 L1203 2020 3496 2315*2^3333969+1 1003629 L2125 2020 3497 6219*2^3333810+1 1003581 L4582 2020 3498 8063*2^3333721+1 1003554 L1823 2020 3499 9051*2^3333677+1 1003541 L3924 2020 3500 45315256^131072+1 1003520 L4562 2017 Generalized Fermat 3501 4091*2^3333153+1 1003383 L1474 2020 3502 9949*2^3332750+1 1003262 L5090 2020 3503 3509*2^3332649+1 1003231 L5085 2020 3504 3781*2^3332436+1 1003167 L1823 2020 3505 4425*2^3332394+1 1003155 L3431 2020 3506 6459*2^3332086+1 1003062 L2629 2020 3507 44919410^131072+1 1003020 L4295 2017 Generalized Fermat 3508 5257*2^3331758+1 1002963 L1188 2020 3509 2939*2^3331393+1 1002853 L1823 2020 3510 6959*2^3331365+1 1002845 L1675 2020 3511 8815*2^3330748+1 1002660 L3329 2020 3512 4303*2^3330652+1 1002630 L4730 2020 3513 8595*2^3330649+1 1002630 L4723 2020 3514 673*2^3330436+1 1002564 L3035 2016 3515 8163*2^3330042+1 1002447 L3278 2020 3516 44438760^131072+1 1002408 L4505 2016 Generalized Fermat 3517 193*2^3329782+1 1002367 L3460 2014 Divides Fermat F(3329780) 3518 44330870^131072+1 1002270 L4501 2016 Generalized Fermat 3519 2829*2^3329061+1 1002151 L4343 2020 3520 5775*2^3329034+1 1002143 L1188 2020 3521 7101*2^3328905+1 1002105 L4568 2020 3522 7667*2^3328807+1 1002075 L4087 2020 3523 129*2^3328805+1 1002073 L3859 2014 3524 7261*2^3328740+1 1002055 L2914 2020 3525 4395*2^3328588+1 1002009 L3924 2020 3526 44085096^131072+1 1001953 L4482 2016 Generalized Fermat 3527 143183*2^3328297+1 1001923 L4504 2017 3528 44049878^131072+1 1001908 L4466 2016 Generalized Fermat 3529 9681*2^3327987+1 1001828 L1204 2020 3530 2945*2^3327987+1 1001828 L2158 2020 3531 5085*2^3327789+1 1001769 L1823 2020 3532 8319*2^3327650+1 1001727 L1204 2020 3533 4581*2^3327644+1 1001725 L2142 2020 3534 655*2^3327518+1 1001686 L4490 2016 3535 8863*2^3327406+1 1001653 L1675 2020 3536 659*2^3327371+1 1001642 L3502 2016 3537 3411*2^3327343+1 1001634 L1675 2020 3538 4987*2^3327294+1 1001619 L3924 2020 3539 821*2^3327003+1 1001531 L3035 2016 3540 2435*2^3326969+1 1001521 L3035 2020 3541 1931*2^3326850-1 1001485 L4113 2022 3542 2277*2^3326794+1 1001469 L5014 2020 3543 6779*2^3326639+1 1001422 L3924 2020 3544 31*2^3326149-1 1001273 L1862 2024 3545 6195*2^3325993+1 1001228 L1474 2019 3546 555*2^3325925+1 1001206 L4414 2016 3547 9041*2^3325643+1 1001123 L3924 2019 3548 1965*2^3325639-1 1001121 L4113 2022 3549 1993*2^3325302+1 1001019 L3662 2019 3550 6179*2^3325027+1 1000937 L3048 2019 3551 4485*2^3324900+1 1000899 L1355 2019 3552 3559*2^3324650+1 1000823 L3035 2019 3553 12512*13^898392-1 1000762 L2425 2024 3554 43165206^131072+1 1000753 L4309 2016 Generalized Fermat 3555 43163894^131072+1 1000751 L4334 2016 Generalized Fermat 3556 6927*2^3324387+1 1000745 L3091 2019 3557 9575*2^3324287+1 1000715 L3824 2019 3558 1797*2^3324259+1 1000705 L3895 2019 3559 4483*2^3324048+1 1000642 L3035 2019 3560 791*2^3323995+1 1000626 L3035 2016 3561 6987*2^3323926+1 1000606 L4973 2019 3562 3937*2^3323886+1 1000593 L3035 2019 3563 2121*2^3323852+1 1000583 L1823 2019 3564 1571*2^3323493+1 1000475 L3035 2019 3565 2319*2^3323402+1 1000448 L4699 2019 3566 2829*2^3323341+1 1000429 L4754 2019 3567 4335*2^3323323+1 1000424 L1823 2019 3568 8485*2^3322938+1 1000308 L4858 2019 3569 6505*2^3322916+1 1000302 L4858 2019 3570 597*2^3322871+1 1000287 L3035 2016 3571 9485*2^3322811+1 1000270 L2603 2019 3572 8619*2^3322774+1 1000259 L3035 2019 3573 387*2^3322763+1 1000254 L1455 2016 3574 1965*2^3322579-1 1000200 L4113 2022 3575 42654182^131072+1 1000075 L4208 2015 Generalized Fermat 3576 6366*745^348190-1 1000060 L4189 2022 3577b 224331639195*2^3322000-1 1000033 A75 2025 3578 13841792445*2^3322000-1 1000032 L5827 2023 3579 5553507*2^3322000+1 1000029 p391 2016 3580 5029159647*2^3321910-1 1000005 L4960 2021 3581 5009522505*2^3321910-1 1000005 L4960 2021 3582 4766298357*2^3321910-1 1000005 L4960 2021 3583 4759383915*2^3321910-1 1000005 L4960 2021 3584 4635733263*2^3321910-1 1000005 L4960 2021 3585 4603393047*2^3321910-1 1000005 L4960 2021 3586 4550053935*2^3321910-1 1000005 L4960 2021 3587 4288198767*2^3321910-1 1000005 L4960 2021 3588 4229494557*2^3321910-1 1000005 L4960 2021 3589 4110178197*2^3321910-1 1000005 L4960 2021 3590 4022490843*2^3321910-1 1000005 L4960 2021 3591 3936623697*2^3321910-1 1000005 L4960 2021 3592 3751145343*2^3321910-1 1000005 L4960 2021 3593 3715773735*2^3321910-1 1000005 L4960 2021 3594 3698976057*2^3321910-1 1000005 L4960 2021 3595 3659465685*2^3321910-1 1000005 L4960 2020 3596 3652932033*2^3321910-1 1000005 L4960 2020 3597 3603204333*2^3321910-1 1000005 L4960 2020 3598 3543733545*2^3321910-1 1000005 L4960 2020 3599 3191900133*2^3321910-1 1000005 L4960 2020 3600 3174957723*2^3321910-1 1000005 L4960 2020 3601 2973510903*2^3321910-1 1000005 L4960 2019 3602 2848144257*2^3321910-1 1000005 L4960 2019 3603 2820058827*2^3321910-1 1000005 L4960 2019 3604 2611553775*2^3321910-1 1000004 L4960 2020 3605 2601087525*2^3321910-1 1000004 L4960 2019 3606 2386538565*2^3321910-1 1000004 L4960 2019 3607 2272291887*2^3321910-1 1000004 L4960 2019 3608 2167709265*2^3321910-1 1000004 L4960 2019 3609 2087077797*2^3321910-1 1000004 L4960 2019 3610 1848133623*2^3321910-1 1000004 L4960 2019 3611 1825072257*2^3321910-1 1000004 L4960 2019 3612 1633473837*2^3321910-1 1000004 L4960 2019 3613 1228267623*2^3321910-1 1000004 L4808 2019 3614 1148781333*2^3321910-1 1000004 L4808 2019 3615 1065440787*2^3321910-1 1000004 L4808 2019 3616 1055109357*2^3321910-1 1000004 L4960 2019 3617 992309607*2^3321910-1 1000004 L4808 2019 3618 926102325*2^3321910-1 1000004 L4808 2019 3619 892610007*2^3321910-1 1000004 L4960 2019 3620 763076757*2^3321910-1 1000004 L4960 2019 3621 607766997*2^3321910-1 1000004 L4808 2019 3622 539679177*2^3321910-1 1000004 L4808 2019 3623 425521077*2^3321910-1 1000004 L4808 2019 3624 132940575*2^3321910-1 1000003 L4808 2019 3625 239378138685*2^3321891+1 1000001 L5104 2020 3626 464253*2^3321908-1 1000000 L466 2013 3627 3^2095902+3^647322-1 1000000 x44 2018 3628 191273*2^3321908-1 1000000 L466 2013 3629 1814570322984178^65536+1 1000000 L5080 2020 Generalized Fermat 3630 1814570322977518^65536+1 1000000 L5080 2020 Generalized Fermat 3631 3292665455999520712131952624640^32768+1 1000000 L5749 2023 Generalized Fermat 3632 3292665455999520712131951642528^32768+1 1000000 L5120 2020 Generalized Fermat 3633 3292665455999520712131951625894^32768+1 1000000 L5122 2020 Generalized Fermat 3634 10841645805132531666786792405311319418846637043199917731999190^16384+1 1000000 L5749 2023 Generalized Fermat 3635 10841645805132531666786792405311319418846637043199917731311876^16384+1 1000000 L5207 2020 Generalized Fermat 3636 10841645805132531666786792405311319418846637043199917731150000^16384+1 1000000 L5122 2020 Generalized Fermat 3637 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729599864^8192+1 1000000 L5749 2023 Generalized Fermat 3638 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729375350^8192+1 1000000 p417 2021 Generalized Fermat 3639 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729240092^8192+1 1000000 p419 2021 Generalized Fermat 3640 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729154678^8192+1 1000000 p418 2021 Generalized Fermat 3641 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729122666^8192+1 1000000 p417 2021 Generalized Fermat 3642 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729023786^8192+1 1000000 p416 2021 Generalized Fermat 3643 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097875144^4096+1 1000000 p421 2021 Generalized Fermat 3644 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097840702^4096+1 1000000 p417 2021 Generalized Fermat 3645 ((sqrtnint(10^999999,2048)+2)+7748134)^2048+1 1000000 A55 2025 Generalized Fermat 3646 ((sqrtnint(10^999999,2048)+2)+364176)^2048+1 1000000 p417 2022 Generalized Fermat 3647 10^999999+10^840885+10^333333+1 1000000 p436 2023 3648 10^999999+308267*10^292000+1 1000000 CH10 2021 3649 10^999999-1022306*10^287000-1 999999 CH13 2021 3650 10^999999-1087604*10^287000-1 999999 CH13 2021 3651 531631540026641*6^1285077+1 999999 L3494 2021 3652 3139*2^3321905-1 999997 L185 2008 3653 702*507^369680+1 999991 A28 2024 3654 42550702^131072+1 999937 L4309 2022 Generalized Fermat 3655 42414020^131072+1 999753 L5030 2022 Generalized Fermat 3656 4847*2^3321063+1 999744 SB9 2005 3657 42254832^131072+1 999539 L5375 2022 Generalized Fermat 3658 42243204^131072+1 999524 L4898 2022 Generalized Fermat 3659 42230406^131072+1 999506 L5453 2022 Generalized Fermat 3660 42168978^131072+1 999424 L5462 2022 Generalized Fermat 3661 439*2^3318318+1 998916 L5573 2022 3662 201382*5^1428998+1 998833 A11 2024 3663 41688706^131072+1 998772 L5270 2022 Generalized Fermat 3664 41364744^131072+1 998327 L5453 2022 Generalized Fermat 3665 41237116^131072+1 998152 L5459 2022 Generalized Fermat 3666 47714*17^811139+1 998070 L5765 2023 Generalized Cullen 3667 41102236^131072+1 997965 L4245 2022 Generalized Fermat 3668 41007562^131072+1 997834 L4210 2022 Generalized Fermat 3669 41001148^131072+1 997825 L4210 2022 Generalized Fermat 3670 975*2^3312951+1 997301 L5231 2022 3671 40550398^131072+1 997196 L4245 2022 Generalized Fermat 3672 11796*46^599707+1 997172 L5670 2023 3673 40463598^131072+1 997074 L4591 2022 Generalized Fermat 3674 689*2^3311423+1 996841 L5226 2022 3675 40151896^131072+1 996633 L4245 2022 Generalized Fermat 3676 593*2^3309333+1 996212 L5572 2022 3677 383*2^3309321+1 996208 L5570 2022 3678 49*2^3309087-1 996137 L1959 2013 3679 39746366^131072+1 996056 L4201 2022 Generalized Fermat 3680 139413*6^1279992+1 996033 L4001 2015 3681 1274*67^545368-1 995886 L5410 2023 3682 51*2^3308171+1 995861 L2840 2015 3683 719*2^3308127+1 995849 L5192 2022 3684 39597790^131072+1 995842 L4737 2022 Generalized Fermat 3685 39502358^131072+1 995705 L5453 2022 Generalized Fermat 3686 39324372^131072+1 995448 L5202 2022 Generalized Fermat 3687 245114*5^1424104-1 995412 L3686 2013 3688 39100746^131072+1 995123 L5441 2022 Generalized Fermat 3689 38824296^131072+1 994719 L4245 2022 Generalized Fermat 3690 38734748^131072+1 994588 L4249 2021 Generalized Fermat 3691 175124*5^1422646-1 994393 L3686 2013 3692 453*2^3303073+1 994327 L5568 2022 3693 856*75^530221-1 994200 A11 2024 3694 38310998^131072+1 993962 L4737 2021 Generalized Fermat 3695 531*2^3301693+1 993912 L5226 2022 3696 38196496^131072+1 993791 L4861 2021 Generalized Fermat 3697 38152876^131072+1 993726 L4245 2021 Generalized Fermat 3698 195*2^3301018+1 993708 L5569 2022 3699 341*2^3300789+1 993640 L5192 2022 3700 37909914^131072+1 993363 L4249 2021 Generalized Fermat 3701 849*2^3296427+1 992327 L5571 2022 3702 1611*22^738988+1 992038 L4139 2015 3703 36531196^131072+1 991254 L4249 2021 Generalized Fermat 3704 2017*2^3292325-1 991092 L3345 2017 3705 36422846^131072+1 991085 L4245 2021 Generalized Fermat 3706 36416848^131072+1 991076 L5202 2021 Generalized Fermat 3707 885*2^3290927+1 990671 L5161 2022 3708 36038176^131072+1 990481 L4245 2021 Generalized Fermat 3709 35997532^131072+1 990416 L4245 2021 Generalized Fermat 3710 35957420^131072+1 990353 L4245 2021 Generalized Fermat 3711 107970^196608-107970^98304+1 989588 L4506 2016 Generalized unique 3712 35391288^131072+1 989449 L5070 2021 Generalized Fermat 3713 35372304^131072+1 989419 L5443 2021 Generalized Fermat 3714 219*2^3286614+1 989372 L5567 2022 3715 61*2^3286535-1 989348 L4405 2016 3716 35327718^131072+1 989347 L4591 2021 Generalized Fermat 3717 35282096^131072+1 989274 L4245 2021 Generalized Fermat 3718 35141602^131072+1 989046 L4729 2021 Generalized Fermat 3719 35139782^131072+1 989043 L4245 2021 Generalized Fermat 3720 35047222^131072+1 988893 L4249 2021 Generalized Fermat 3721 531*2^3284944+1 988870 L5536 2022 3722 34957136^131072+1 988747 L5321 2021 Generalized Fermat 3723 301*2^3284232+1 988655 L5564 2022 3724 34871942^131072+1 988608 L4245 2021 Generalized Fermat 3725 34763644^131072+1 988431 L4737 2021 Generalized Fermat 3726 34585314^131072+1 988138 L4201 2021 Generalized Fermat 3727 311*2^3282455+1 988120 L5568 2022 3728 34530386^131072+1 988048 L5070 2021 Generalized Fermat 3729 833*2^3282181+1 988038 L5564 2022 3730 561*2^3281889+1 987950 L5477 2022 3731 34087952^131072+1 987314 L4764 2021 Generalized Fermat 3732 87*2^3279368+1 987191 L3458 2015 3733 965*2^3279151+1 987126 L5564 2022 3734 33732746^131072+1 986717 L4359 2021 Generalized Fermat 3735 33474284^131072+1 986279 L5051 2021 Generalized Fermat 3736 33395198^131072+1 986145 L4658 2021 Generalized Fermat 3737 427*2^3275606+1 986059 L5566 2022 3738 33191418^131072+1 985796 L4201 2021 Generalized Fermat 3739 337*2^3274106+1 985607 L5564 2022 3740e 19861029*2^3273589-1 985456 A31 2025 3741 357*2^3273543+1 985438 L5237 2022 Divides GF(3273542,10) 3742 1045*2^3273488+1 985422 L5192 2022 3743 32869172^131072+1 985241 L4285 2021 Generalized Fermat 3744 32792696^131072+1 985108 L5198 2021 Generalized Fermat 3745 1047*2^3272351+1 985079 L5563 2022 3746 32704348^131072+1 984955 L5312 2021 Generalized Fermat 3747 6781*24^713573-1 984886 A11 2024 3748 32608738^131072+1 984788 L5395 2021 Generalized Fermat 3749 75*2^3271125-1 984709 A38 2024 3750 933*2^3270993+1 984670 L5562 2022 3751 311*2^3270759+1 984600 L5560 2022 3752 32430486^131072+1 984476 L4245 2021 Generalized Fermat 3753 32417420^131072+1 984453 L4245 2021 Generalized Fermat 3754 65*2^3270127+1 984409 L3924 2015 3755 32348894^131072+1 984333 L4245 2021 Generalized Fermat 3756 579*2^3269850+1 984326 L5226 2022 3757 32286660^131072+1 984223 L5400 2021 Generalized Fermat 3758 32200644^131072+1 984071 L4387 2021 Generalized Fermat 3759 32137342^131072+1 983959 L4559 2021 Generalized Fermat 3760 32096608^131072+1 983887 L4559 2021 Generalized Fermat 3761 32055422^131072+1 983814 L4559 2021 Generalized Fermat 3762 31821360^131072+1 983397 L4861 2021 Generalized Fermat 3763 31768014^131072+1 983301 L4252 2021 Generalized Fermat 3764 335*2^3266237+1 983238 L5559 2022 3765e 981493*2^3266031-1 983180 p420 2025 3766 1031*2^3265915+1 983142 L5364 2022 3767 31469984^131072+1 982765 L5078 2021 Generalized Fermat 3768 5*2^3264650-1 982759 L384 2013 3769 223*2^3264459-1 982703 L1884 2012 3770 1101*2^3264400+1 982686 L5231 2022 3771 483*2^3264181+1 982620 L5174 2022 3772 525*2^3263227+1 982332 L5231 2022 3773 31145080^131072+1 982174 L4201 2021 Generalized Fermat 3774 622*48^584089+1 981998 L5629 2023 3775 31044982^131072+1 981991 L5041 2021 Generalized Fermat 3776 683*2^3262037+1 981974 L5192 2022 3777 923*2^3261401+1 981783 L5477 2022 3778 30844300^131072+1 981622 L5102 2021 Generalized Fermat 3779 30819256^131072+1 981575 L4201 2021 Generalized Fermat 3780 9*2^3259381-1 981173 L1828 2011 3781 31*2^3259185-1 981114 L1862 2024 3782 1059*2^3258751+1 980985 L5231 2022 3783 6*5^1403337+1 980892 L4965 2020 3784 30318724^131072+1 980643 L4309 2021 Generalized Fermat 3785 30315072^131072+1 980636 L5375 2021 Generalized Fermat 3786 30300414^131072+1 980609 L4755 2021 Generalized Fermat 3787 30225714^131072+1 980468 L4201 2021 Generalized Fermat 3788 875*2^3256589+1 980334 L5550 2022 3789 30059800^131072+1 980155 L4928 2021 Generalized Fermat 3790e 176268*5^1402258-1 980142 A11 2025 3791 30022816^131072+1 980085 L5273 2021 Generalized Fermat 3792 29959190^131072+1 979964 L4905 2021 Generalized Fermat 3793 968*75^522276-1 979303 A11 2024 3794 29607314^131072+1 979292 L5378 2021 Generalized Fermat 3795 779*2^3253063+1 979273 L5192 2022 3796 29505368^131072+1 979095 L5378 2021 Generalized Fermat 3797 163*2^3250978+1 978645 L5161 2022 Divides GF(3250977,6) 3798 29169314^131072+1 978443 L5380 2021 Generalized Fermat 3799 417*2^3248255+1 977825 L5178 2022 3800 28497098^131072+1 977116 L4308 2021 Generalized Fermat 3801 28398204^131072+1 976918 L5379 2021 Generalized Fermat 3802 28294666^131072+1 976710 L5375 2021 Generalized Fermat 3803 28175634^131072+1 976470 L5378 2021 Generalized Fermat 3804 33*2^3242126-1 975979 L3345 2014 3805 27822108^131072+1 975752 L4760 2021 Generalized Fermat 3806 39*2^3240990+1 975637 L3432 2014 3807 27758510^131072+1 975621 L4289 2021 Generalized Fermat 3808 3706*103^484644+1 975514 A11 2024 3809 27557876^131072+1 975208 L4245 2021 Generalized Fermat 3810 27544748^131072+1 975181 L4387 2021 Generalized Fermat 3811 27408050^131072+1 974898 L4210 2021 Generalized Fermat 3812 14275*60^548133-1 974668 x51 2024 3813 225*2^3236967+1 974427 L5529 2022 3814 27022768^131072+1 974092 L4309 2021 Generalized Fermat 3815 26896670^131072+1 973826 L5376 2021 Generalized Fermat 3816 1075*2^3234606+1 973717 L5192 2022 3817 26757382^131072+1 973530 L5375 2021 Generalized Fermat 3818f 8091*24^705188+1 973313 A64 2025 3819 26599558^131072+1 973194 L4245 2021 Generalized Fermat 3820 6*5^1392287+1 973168 L4965 2020 3821 26500832^131072+1 972982 L4956 2021 Generalized Fermat 3822 325*2^3231474+1 972774 L5536 2022 3823 933*2^3231438+1 972763 L5197 2022 3824 123*2^3230548+1 972494 L5178 2022 Divides GF(3230546,12) 3825 26172278^131072+1 972272 L4245 2021 Generalized Fermat 3826 697*2^3229518+1 972185 L5534 2022 3827 22598*745^338354-1 971810 L4189 2022 3828 385*2^3226814+1 971371 L5178 2022 3829 211195*2^3224974+1 970820 L2121 2013 3830 1173*2^3223546+1 970388 L5178 2022 3831 7*6^1246814+1 970211 L4965 2019 3832 25128150^131072+1 969954 L4738 2021 Generalized Fermat 3833 25124378^131072+1 969946 L5102 2021 Generalized Fermat 3834 1089*2^3221691+1 969829 L5178 2022 3835 35*832^332073-1 969696 L4001 2019 3836 600921*2^3219922-1 969299 g337 2018 3837 939*2^3219319+1 969115 L5178 2022 3838 24734116^131072+1 969055 L5070 2021 Generalized Fermat 3839 76896*5^1386360+1 969029 A42 2024 3840 24644826^131072+1 968849 L5070 2021 Generalized Fermat 3841 24642712^131072+1 968844 L5070 2021 Generalized Fermat 3842 24641166^131072+1 968840 L5070 2021 Generalized Fermat 3843 129*2^3218214+1 968782 L5529 2022 3844 24522386^131072+1 968565 L5070 2021 Generalized Fermat 3845 24486806^131072+1 968483 L4737 2021 Generalized Fermat 3846 811*2^3216944+1 968400 L5233 2022 3847 24297936^131072+1 968042 L4201 2021 Generalized Fermat 3848 1023*2^3214745+1 967738 L5178 2022 3849 187*2^3212152+1 966957 L5178 2022 3850 301*2^3211281-1 966695 L5545 2022 3851 6*409^369832+1 965900 L4001 2015 3852 23363426^131072+1 965809 L5033 2021 Generalized Fermat 3853 1165*2^3207702+1 965618 L5178 2022 3854 94373*2^3206717+1 965323 L2785 2013 3855 2751*2^3206569-1 965277 L4036 2015 3856 761*2^3206341+1 965208 L5178 2022 3857 23045178^131072+1 965029 L5023 2021 Generalized Fermat 3858 23011666^131072+1 964946 L5273 2021 Generalized Fermat 3859 911*2^3205225+1 964872 L5364 2022 3860 22980158^131072+1 964868 L4201 2021 Generalized Fermat 3861 22901508^131072+1 964673 L4743 2021 Generalized Fermat 3862 22808110^131072+1 964440 L5248 2021 Generalized Fermat 3863 22718284^131072+1 964215 L5254 2021 Generalized Fermat 3864 22705306^131072+1 964183 L5248 2021 Generalized Fermat 3865 113983*2^3201175-1 963655 L613 2008 3866 34*888^326732-1 963343 L4001 2017 3867 899*2^3198219+1 962763 L5503 2022 3868 22007146^131072+1 962405 L4245 2020 Generalized Fermat 3869 4*3^2016951+1 962331 L4965 2020 3870 21917442^131072+1 962173 L4622 2020 Generalized Fermat 3871 987*2^3195883+1 962060 L5282 2022 3872 21869554^131072+1 962048 L5061 2020 Generalized Fermat 3873 21757066^131072+1 961754 L4773 2020 Generalized Fermat 3874e 68*828^329490-1 961464 A62 2025 3875 21582550^131072+1 961296 L5068 2020 Generalized Fermat 3876 21517658^131072+1 961125 L5126 2020 Generalized Fermat 3877 20968936^131072+1 959654 L4245 2020 Generalized Fermat 3878b 13*422^365511-1 959582 A11 2025 3879 671*2^3185411+1 958908 L5315 2022 3880 20674450^131072+1 958849 L4245 2020 Generalized Fermat 3881 1027*2^3184540+1 958646 L5174 2022 3882b 118*493^355898+1 958381 A68 2025 3883 789*2^3183463+1 958321 L5482 2022 3884 855*2^3183158+1 958229 L5161 2022 3885 20234282^131072+1 957624 L4942 2020 Generalized Fermat 3886 20227142^131072+1 957604 L4677 2020 Generalized Fermat 3887 625*2^3180780+1 957513 L5178 2022 Generalized Fermat 3888 20185276^131072+1 957486 L4201 2020 Generalized Fermat 3889 935*2^3180599+1 957459 L5477 2022 3890 573*2^3179293+1 957066 L5226 2022 3891 33*2^3176269+1 956154 L3432 2013 3892 81*2^3174353-1 955578 L3887 2022 3893 19464034^131072+1 955415 L4956 2020 Generalized Fermat 3894 600921*2^3173683-1 955380 g337 2018 3895 587*2^3173567+1 955342 L5301 2022 3896 19216648^131072+1 954687 L5024 2020 Generalized Fermat 3897 1414*95^482691-1 954633 L4877 2019 3898 305*2^3171039+1 954581 L5301 2022 3899 755*2^3170701+1 954479 L5302 2022 3900 775*2^3170580+1 954443 L5449 2022 3901 78*236^402022-1 953965 L5410 2020 3902 18968126^131072+1 953946 L5011 2020 Generalized Fermat 3903 18813106^131072+1 953479 L4201 2020 Generalized Fermat 3904 18608780^131072+1 952857 L4488 2020 Generalized Fermat 3905 1087*2^3164677-1 952666 L1828 2012 3906 18509226^131072+1 952552 L4884 2020 Generalized Fermat 3907 18501600^131072+1 952528 L4875 2020 Generalized Fermat 3908 459*2^3163175+1 952214 L5178 2022 3909 15*2^3162659+1 952057 p286 2012 3910 18309468^131072+1 951934 L4928 2020 Generalized Fermat 3911 18298534^131072+1 951900 L4201 2020 Generalized Fermat 3912 849*2^3161727+1 951778 L5178 2022 3913 67*2^3161450+1 951694 L3223 2015 3914 119*2^3161195+1 951617 L5320 2022 3915 1759*2^3160863-1 951518 L4965 2021 3916 58*117^460033+1 951436 L5410 2020 3917 417*2^3160443+1 951391 L5302 2022 3918 9231*70^515544+1 951234 L5410 2021 3919 671*2^3159523+1 951115 L5188 2022 3920 17958952^131072+1 950834 L4201 2020 Generalized Fermat 3921 1001*2^3158422-1 950783 L4518 2023 3922 17814792^131072+1 950375 L4752 2020 Generalized Fermat 3923 17643330^131072+1 949824 L4201 2020 Generalized Fermat 3924 19*2^3155009-1 949754 L1828 2012 3925 281*2^3151457+1 948686 L5316 2022 3926 179*2^3150265+1 948327 L5302 2022 3927 17141888^131072+1 948183 L4963 2019 Generalized Fermat 3928 17138628^131072+1 948172 L4963 2019 Generalized Fermat 3929 17119936^131072+1 948110 L4963 2019 Generalized Fermat 3930 17052490^131072+1 947885 L4715 2019 Generalized Fermat 3931 17025822^131072+1 947796 L4870 2019 Generalized Fermat 3932 16985784^131072+1 947662 L4295 2019 Generalized Fermat 3933 865*2^3147482+1 947490 L5178 2021 3934 963*2^3145753+1 946969 L5451 2021 3935 16741226^131072+1 946837 L4201 2019 Generalized Fermat 3936 387*2^3144483+1 946587 L5450 2021 3937 1035*2^3144236+1 946513 L5449 2021 3938 1065*2^3143667+1 946342 L4944 2021 3939 1598*187^416536-1 946308 A11 2025 3940 193*2^3142150+1 945884 L5178 2021 3941 915*2^3141942+1 945822 L5448 2021 3942 939*2^3141397+1 945658 L5320 2021 3943 1063*2^3141350+1 945644 L5178 2021 3944 16329572^131072+1 945420 L4201 2019 Generalized Fermat 3945 69*2^3140225-1 945304 L3764 2014 3946 3*2^3136255-1 944108 L256 2007 3947 417*2^3136187+1 944089 L5178 2021 3948 15731520^131072+1 943296 L4245 2019 Generalized Fermat 3949 62721^196608-62721^98304+1 943210 L4506 2016 Generalized unique 3950 15667716^131072+1 943064 L4387 2019 Generalized Fermat 3951 15567144^131072+1 942698 L4918 2019 Generalized Fermat 3952 299*2^3130621+1 942414 L5178 2021 3953 15342502^131072+1 941870 L4245 2019 Generalized Fermat 3954 15237960^131072+1 941481 L4898 2019 Generalized Fermat 3955 571*2^3127388+1 941441 L5440 2021 3956c 349*2^3126971-1 941315 L2235 2025 3957 107*2^3126660-1 941221 A38 2024 3958 15147290^131072+1 941141 L4861 2019 Generalized Fermat 3959 197*2^3126343+1 941126 L5178 2021 3960 15091270^131072+1 940930 L4760 2019 Generalized Fermat 3961 1097*2^3124455+1 940558 L5178 2021 3962 3125*2^3124079+1 940445 L1160 2019 3963 495*2^3123624+1 940308 L5438 2021 3964 14790404^131072+1 939784 L4871 2019 Generalized Fermat 3965 1041*2^3120649+1 939412 L5437 2021 3966e 325*2^3120105-1 939248 L2017 2025 3967 14613898^131072+1 939101 L4926 2019 Generalized Fermat 3968 3317*2^3117162-1 938363 L5399 2021 3969a 6*7^1109897+1 937973 A2 2025 3970 763*2^3115684+1 937918 L4944 2021 3971 25*746^326451-1 937810 A28 2024 3972 581*2^3114611+1 937595 L5178 2021 3973 14217182^131072+1 937534 L4387 2019 Generalized Fermat 3974 134*864^319246-1 937473 L5410 2020 3975 700057*2^3113753-1 937339 L5410 2022 3976c 383748*277^383748+1 937303 A67 2025 Generalized Cullen 3977 5*6^1204077-1 936955 A2 2023 3978 1197*2^3111838+1 936760 L5178 2021 3979 14020004^131072+1 936739 L4249 2019 Generalized Fermat 3980 27777*2^3111027+1 936517 L2777 2014 Generalized Cullen 3981 755*2^3110759+1 936435 L5320 2021 3982 13800346^131072+1 935840 L4880 2019 Generalized Fermat 3983 866981*12^866981-1 935636 L5765 2023 Generalized Woodall 3984 313*2^3107219-1 935369 L5819 2024 3985 13613070^131072+1 935062 L4245 2019 Generalized Fermat 3986 628*80^491322+1 935033 L5410 2021 3987 761*2^3105087+1 934728 L5197 2021 3988 13433028^131072+1 934305 L4868 2018 Generalized Fermat 3989 1019*2^3103680-1 934304 L1828 2012 3990 12*978^312346+1 934022 L4294 2023 3991 579*2^3102639+1 933991 L5315 2021 3992 99*2^3102401-1 933918 L1862 2017 3993 256612*5^1335485-1 933470 L1056 2013 3994a 88*7^1104001+1 932992 A11 2025 3995 13083418^131072+1 932803 L4747 2018 Generalized Fermat 3996 882*1017^310074+1 932495 A10 2024 3997 69*2^3097340-1 932395 L3764 2014 3998 153*2^3097277+1 932376 L4944 2021 3999 12978952^131072+1 932347 L4849 2018 Generalized Fermat 4000 12961862^131072+1 932272 L4245 2018 Generalized Fermat 4001 207*2^3095391+1 931808 L5178 2021 4002 12851074^131072+1 931783 L4670 2018 Generalized Fermat 4003 45*2^3094632-1 931579 L1862 2018 4004 259*2^3094582+1 931565 L5214 2021 4005 553*2^3094072+1 931412 L4944 2021 4006 57*2^3093440-1 931220 L2484 2020 4007 12687374^131072+1 931054 L4289 2018 Generalized Fermat 4008 513*2^3092705+1 931000 L4329 2016 4009 12661786^131072+1 930939 L4819 2018 Generalized Fermat 4010 933*2^3091825+1 930736 L5178 2021 4011 38*875^316292-1 930536 L4001 2019 4012 5*2^3090860-1 930443 L1862 2012 4013 12512992^131072+1 930266 L4814 2018 Generalized Fermat 4014 4*5^1330541-1 930009 L4965 2022 4015 12357518^131072+1 929554 L4295 2018 Generalized Fermat 4016 12343130^131072+1 929488 L4720 2018 Generalized Fermat 4017 297*2^3087543+1 929446 L5326 2021 4018 1149*2^3087514+1 929438 L5407 2021 4019 745*2^3087428+1 929412 L5178 2021 4020 373*520^342177+1 929357 L3610 2014 4021 19401*2^3086450-1 929119 L541 2015 4022 75*2^3086355+1 929088 L3760 2015 4023 65*2^3080952-1 927461 L2484 2020 4024 11876066^131072+1 927292 L4737 2018 Generalized Fermat 4025 1139*2^3079783+1 927111 L5174 2021 4026 271*2^3079189-1 926931 L2484 2018 4027 766*33^610412+1 926923 L4001 2016 4028 11778792^131072+1 926824 L4672 2018 Generalized Fermat 4029 555*2^3078792+1 926812 L5226 2021 4030 31*332^367560+1 926672 L4294 2018 4031 167*2^3077568-1 926443 L1862 2020 4032 10001*2^3075602-1 925853 L4405 2019 4033b 293*2^3075434-1 925801 A77 2025 4034b 100*647^329222+1 925414 A11 2025 Generalized Fermat 4035 116*107^455562-1 924513 L4064 2021 4036 11292782^131072+1 924425 L4672 2018 Generalized Fermat 4037 14844*430^350980-1 924299 L4001 2016 4038 11267296^131072+1 924297 L4654 2017 Generalized Fermat 4039f 19861029*2^3070319+1 924266 A31 2025 4040 4*3^1936890+1 924132 L4965 2020 Generalized Fermat 4041 1105*2^3069884+1 924131 L5314 2021 4042 319*2^3069362+1 923973 L5377 2021 4043 11195602^131072+1 923933 L4706 2017 Generalized Fermat 4044 973*2^3069092+1 923892 L5214 2021 4045 765*2^3068511+1 923717 L5174 2021 4046 60849*2^3067914+1 923539 L591 2014 4047 674*249^385359+1 923400 L5410 2019 4048 499*2^3066970+1 923253 L5373 2021 4049 553*2^3066838+1 923213 L5368 2021 4050 629*2^3066827+1 923210 L5226 2021 4051 11036888^131072+1 923120 L4660 2017 Generalized Fermat 4052 261*2^3066009+1 922964 L5197 2021 4053 10994460^131072+1 922901 L4704 2017 Generalized Fermat 4054 214916*3^1934246-1 922876 L4965 2023 Generalized Woodall 4055 21*2^3065701+1 922870 p286 2012 4056 10962066^131072+1 922733 L4702 2017 Generalized Fermat 4057 10921162^131072+1 922520 L4559 2017 Generalized Fermat 4058 875*2^3063847+1 922313 L5364 2021 4059 43*2^3063674+1 922260 L3432 2013 4060 677*2^3063403+1 922180 L5346 2021 4061 8460*241^387047-1 921957 L5410 2019 4062 10765720^131072+1 921704 L4695 2017 Generalized Fermat 4063 111*2^3060238-1 921226 L2484 2020 4064 1165*2^3060228+1 921224 L5360 2021 4065 5*2^3059698-1 921062 L503 2008 4066 10453790^131072+1 920031 L4694 2017 Generalized Fermat 4067 453*2^3056181+1 920005 L5320 2021 4068 791*2^3055695+1 919859 L5177 2021 4069 10368632^131072+1 919565 L4692 2017 Generalized Fermat 4070 582971*2^3053414-1 919175 L5410 2022 4071 123*2^3049038+1 917854 L4119 2015 4072 10037266^131072+1 917716 L4691 2017 Generalized Fermat 4073 400*95^463883-1 917435 L4001 2019 4074 9907326^131072+1 916975 L4690 2017 Generalized Fermat 4075 454*383^354814+1 916558 L2012 2020 4076 9785844^131072+1 916272 L4326 2017 Generalized Fermat 4077 435*2^3041954+1 915723 L5320 2021 4078 639*2^3040438+1 915266 L5320 2021 4079 13822*115^443832+1 914608 A11 2024 4080 1045*2^3037988+1 914529 L5178 2021 4081 291*2^3037904+1 914503 L3545 2015 4082 311*2^3037565+1 914401 L5178 2021 4083 373*2^3036746+1 914155 L5178 2021 4084 9419976^131072+1 914103 L4591 2017 Generalized Fermat 4085 5706*162^413708+1 914098 A14 2024 4086 341*2^3036506-1 914082 p435 2023 4087 801*2^3036045+1 913944 L5348 2021 4088 915*2^3033775+1 913261 L5178 2021 4089d 203*2^3033614-1 913212 L1817 2025 4090 38804*3^1913975+1 913203 L5410 2021 4091d 161*2^3033558-1 913195 L1817 2025 4092 9240606^131072+1 913009 L4591 2017 Generalized Fermat 4093 869*2^3030655+1 912322 L5260 2021 4094 643*2^3030650+1 912320 L5320 2021 4095 99*2^3029959-1 912111 L1862 2020 4096 417*2^3029342+1 911926 L5178 2021 4097d 207*2^3029112-1 911856 A58 2025 4098 345*2^3027769+1 911452 L5343 2021 4099 26*3^1910099+1 911351 L4799 2020 4100 355*2^3027372+1 911333 L5174 2021 4101 99*2^3026660-1 911118 L1862 2020 4102 417*2^3026492+1 911068 L5197 2021 4103 1065*2^3025527+1 910778 L5208 2021 4104 34202*3^1908800+1 910734 L5410 2021 4105 8343*42^560662+1 910099 L4444 2020 4106 699*2^3023263+1 910096 L5335 2021 4107 8770526^131072+1 910037 L4245 2017 Generalized Fermat 4108 8704114^131072+1 909604 L4670 2017 Generalized Fermat 4109 383731*2^3021377-1 909531 L466 2011 4110 46821*2^3021380-374567 909531 p363 2013 4111 2^3021377-1 909526 G3 1998 Mersenne 37 4112 255*2^3021196-1 909474 L3994 2025 4113 615*2^3019445+1 908947 L5260 2021 4114 389*2^3019025+1 908820 L5178 2021 4115 875*2^3018175+1 908565 L5334 2021 4116 375*2^3016803-1 908151 L2235 2023 4117 555*2^3016352+1 908016 L5178 2021 4118 7*2^3015762+1 907836 g279 2008 4119 759*2^3015314+1 907703 L5178 2021 4120 32582*3^1901790+1 907389 L5372 2021 4121 75*2^3012342+1 906808 L3941 2015 4122 459*2^3011814+1 906650 L5178 2021 4123 171*2^3010938-1 906385 A27 2025 4124 991*2^3010036+1 906115 L5326 2021 4125 583*2^3009698+1 906013 L5325 2021 4126 8150484^131072+1 905863 L4249 2017 Generalized Fermat 4127 593*2^3006969+1 905191 L5178 2021 4128b 53*308^363703+1 905096 A71 2025 4129 327*2^3006540-1 905062 L2257 2023 4130 75*2^3006235-1 904969 A38 2024 4131 367*2^3004536+1 904459 L5178 2021 4132 7926326^131072+1 904276 L4249 2017 Generalized Fermat 4133 1003*2^3003756+1 904224 L5320 2021 4134 626*1017^300576+1 903932 A9 2024 4135 573*2^3002662+1 903895 L5319 2021 4136 7858180^131072+1 903784 L4201 2017 Generalized Fermat 4137 329*2^3002295+1 903784 L5318 2021 4138 4*5^1292915-1 903710 L4965 2022 4139 7832704^131072+1 903599 L4249 2017 Generalized Fermat 4140 268514*5^1292240-1 903243 L3562 2013 4141 7*10^902708+1 902709 p342 2013 4142 435*2^2997453+1 902326 L5167 2021 4143 583*2^2996526+1 902047 L5174 2021 4144 1037*2^2995695+1 901798 L5178 2021 4145 717*2^2995326+1 901686 L5178 2021 4146 885*2^2995274+1 901671 L5178 2021 4147 43*2^2994958+1 901574 L3222 2013 4148 1065*2^2994154+1 901334 L5315 2021 4149 561*2^2994132+1 901327 L5314 2021 4150 147*2^2993165-1 901035 L1817 2025 4151 1095*2^2992587-1 900862 L1828 2011 4152 519*2^2991849+1 900640 L5311 2021 4153c 5077*2^2990757-1 900312 L3519 2025 4154 7379442^131072+1 900206 L4201 2017 Generalized Fermat 4155f 109932*5^1287894-1 900205 A11 2025 4156 459*2^2990134+1 900123 L5197 2021 4157 15*2^2988834+1 899730 p286 2012 4158 29*564^326765+1 899024 L4001 2017 4159 5129*24^650539+1 897885 A11 2024 4160 971*2^2982525+1 897833 L5197 2021 4161 1033*2^2980962+1 897362 L5305 2021 4162 357*2^2980540-1 897235 L2257 2023 4163 367*2^2979033-1 896781 L2257 2023 4164 39*2^2978894+1 896739 L2719 2013 4165 38*977^299737+1 896184 L5410 2021 4166 4348099*2^2976221-1 895939 L466 2008 4167 205833*2^2976222-411665 895938 L4667 2017 4168 593*2^2976226-18975 895937 p373 2014 4169 2^2976221-1 895932 G2 1997 Mersenne 36 4170 1024*3^1877301+1 895704 p378 2014 4171 1065*2^2975442+1 895701 L5300 2021 Divides GF(2975440,3) 4172 24704*3^1877135+1 895626 L5410 2021 4173 591*2^2975069+1 895588 L5299 2021 4174 249*2^2975002+1 895568 L2322 2015 4175 18431*82^467690-1 895076 A14 2024 4176 195*2^2972947+1 894949 L3234 2015 4177 6705932^131072+1 894758 L4201 2017 Generalized Fermat 4178 391*2^2971600+1 894544 L5242 2021 4179 46425*2^2971203+1 894426 L2777 2014 Generalized Cullen 4180 625*2^2970336+1 894164 L5233 2021 Generalized Fermat 4181 369*2^2968175-1 893513 L2257 2023 4182 493*72^480933+1 893256 L3610 2014 4183 561*2^2964753+1 892483 L5161 2021 4184 1185*2^2964350+1 892362 L5161 2021 4185 6403134^131072+1 892128 L4510 2016 Generalized Fermat 4186 6391936^131072+1 892028 L4511 2016 Generalized Fermat 4187 1964*991^297652-1 891791 A11 2025 4188 395*2^2961370-1 891464 L2257 2023 4189 21*2^2959789-1 890987 L5313 2021 4190 627*2^2959098+1 890781 L5197 2021 4191 45*2^2958002-1 890449 L1862 2017 4192 729*2^2955389+1 889664 L5282 2021 4193 706*1017^295508+1 888691 p433 2023 4194 198677*2^2950515+1 888199 L2121 2012 4195 88*985^296644+1 887987 L5410 2020 4196 303*2^2949403-1 887862 L1817 2022 4197 5877582^131072+1 887253 L4245 2016 Generalized Fermat 4198 321*2^2946654-1 887034 L1817 2022 4199 17*2^2946584-1 887012 L3519 2013 4200 489*2^2944673+1 886438 L5167 2021 4201 141*2^2943065+1 885953 L3719 2015 4202 757*2^2942742+1 885857 L5261 2021 4203 5734100^131072+1 885846 L4477 2016 Generalized Fermat 4204 33*2^2939064-5606879602425*2^1290000-1 884748 p423 2021 Arithmetic progression (3,d=33*2^2939063-5606879602425*2^1290000) 4205 33*2^2939063-1 884748 L3345 2013 4206 5903*2^2938744-1 884654 L4036 2015 4207 717*2^2937963+1 884418 L5256 2021 4208 5586416^131072+1 884361 L4454 2016 Generalized Fermat 4209 297*2^2937584-1 884304 L1817 2025 4210 243*2^2937316+1 884223 L4114 2015 4211 973*2^2937046+1 884142 L5253 2021 4212 61*2^2936967-1 884117 L2484 2017 4213 203*2^2935338-1 883628 L1817 2025 4214 903*2^2934602+1 883407 L5246 2021 4215 5471814^131072+1 883181 L4362 2016 Generalized Fermat 4216 188*228^374503+1 883056 L4786 2020 4217 53*248^368775+1 883016 L5196 2020 4218 13613*82^461323-1 882891 A11 2024 4219 5400728^131072+1 882436 L4201 2016 Generalized Fermat 4220 17*326^350899+1 881887 L4786 2019 4221 855*2^2929550+1 881886 L5200 2021 4222 5326454^131072+1 881648 L4201 2016 Generalized Fermat 4223 839*2^2928551+1 881585 L5242 2021 4224 7019*10^881309-1 881313 L3564 2013 4225 25*2^2927222+1 881184 L1935 2013 Generalized Fermat 4226 391*2^2925759-1 880744 L2257 2023 4227 577*2^2925602+1 880697 L5201 2021 4228 97366*5^1259955-1 880676 L3567 2013 4229f 246234*5^1259806-1 880572 A65 2025 4230 19861029*2^2924096-1 880248 A31 2024 4231 973*2^2923062+1 879933 L5228 2021 4232 1126*177^391360+1 879770 L4955 2020 4233 243944*5^1258576-1 879713 L3566 2013 4234 693*2^2921528+1 879471 L5201 2021 4235 6*10^879313+1 879314 L5009 2019 4236 269*2^2918105+1 878440 L2715 2015 4237 331*2^2917844+1 878362 L5210 2021 4238 169*2^2917805-1 878350 L2484 2018 4239 1085*2^2916967+1 878098 L5174 2020 4240 389*2^2916499+1 877957 L5215 2020 4241 431*2^2916429+1 877936 L5214 2020 4242 1189*2^2916406+1 877929 L5174 2020 4243 1011*2^2916119-1 877843 L4518 2023 4244 7*2^2915954+1 877791 g279 2008 Divides GF(2915953,12) [g322] 4245 4974408^131072+1 877756 L4380 2016 Generalized Fermat 4246 465*2^2914079+1 877228 L5210 2020 4247 427194*113^427194+1 877069 p310 2012 Generalized Cullen 4248 322*952^294414+1 876955 A11 2025 4249 4893072^131072+1 876817 L4303 2016 Generalized Fermat 4250 493*2^2912552+1 876769 L5192 2021 4251 379*2^2911423-1 876429 L2257 2023 4252 143157*2^2911403+1 876425 L4504 2017 4253 567*2^2910402+1 876122 L5201 2020 4254 4098*1003^291860+1 875964 A14 2025 4255 683*2^2909217+1 875765 L5199 2020 4256 674*249^365445+1 875682 L5410 2019 4257 475*2^2908802+1 875640 L5192 2021 4258 2351*24^634318+1 875497 A11 2024 4259 117*2^2908312-1 875492 A27 2025 4260 371*2^2907377+1 875211 L5197 2020 4261 8161*24^633274+1 874056 A11 2024 4262 207*2^2903535+1 874054 L3173 2015 4263 851*2^2902731+1 873813 L5177 2020 4264 267*2^2902469-1 873733 A27 2024 4265 777*2^2901907+1 873564 L5192 2020 4266 717*2^2900775+1 873224 L5185 2020 4267 99*2^2899303-1 872780 L1862 2017 4268 63*2^2898957+1 872675 L3262 2013 4269 173*2^2897448-1 872221 A27 2024 4270 11*2^2897409+1 872209 L2973 2013 Divides GF(2897408,3) 4271 187*2^2896841-1 872039 L3994 2024 4272 29601*24^631722+1 871915 A11 2024 4273 747*2^2895307+1 871578 L5178 2020 4274 403*2^2894566+1 871354 L5180 2020 4275f 62022*5^1246456-1 871241 A11 2025 4276 629*2^2892961+1 870871 L5173 2020 4277 627*2^2891514+1 870436 L5168 2020 4278 325*2^2890955-1 870267 L5545 2022 4279 363*2^2890208+1 870042 L3261 2020 4280 471*2^2890148+1 870024 L5158 2020 4281 4329134^131072+1 869847 L4395 2016 Generalized Fermat 4282 583*2^2889248+1 869754 L5139 2020 4283 353*2^2888332-1 869478 L2257 2023 4284 955*2^2887934+1 869358 L4958 2020 4285 8300*171^389286+1 869279 L5410 2023 4286 303*2^2887603-1 869258 L5184 2022 4287 937*2^2887130+1 869116 L5134 2020 4288 885*2^2886389+1 868893 L3924 2020 4289 763*2^2885928+1 868754 L2125 2020 4290 1071*2^2884844+1 868428 L3593 2020 4291 1181*2^2883981+1 868168 L3593 2020 4292 327*2^2881349-1 867375 L5545 2022 4293 51*2^2881227+1 867338 L3512 2013 4294 933*2^2879973+1 866962 L4951 2020 4295 261*2^2879941+1 866952 L4119 2015 4296 4085818^131072+1 866554 L4201 2016 Generalized Fermat 4297 65*2^2876718-1 865981 L2484 2016 4298 21*948^290747-1 865500 L4985 2019 4299 4013*2^2873250-1 864939 L1959 2014 4300 41*2^2872058-1 864578 L2484 2013 4301 359*2^2870935+1 864241 L1300 2020 4302 165*2^2870868+1 864220 L4119 2015 4303 961*2^2870596+1 864139 L1300 2020 Generalized Fermat 4304 665*2^2869847+1 863913 L2885 2020 4305 12*753^300293+1 863883 A59 2025 4306 283*2^2868750+1 863583 L3877 2015 4307 663703*20^663703-1 863504 L5765 2023 Generalized Woodall 4308 845*2^2868291+1 863445 L5100 2020 4309 3125*2^2867399+1 863177 L1754 2019 4310 701*2^2867141+1 863099 L1422 2020 4311 9*10^862868+1 862869 L4789 2024 Generalized Fermat 4312 3814944^131072+1 862649 L4201 2016 Generalized Fermat 4313 81030*91^440109-1 862197 A11 2024 4314 119*954^289255+1 861852 L5410 2022 4315 307*2^2862962+1 861840 L4740 2020 4316 147*2^2862651+1 861746 L1741 2015 4317 1207*2^2861901-1 861522 L1828 2011 4318 231*2^2860725+1 861167 L2873 2015 4319 193*2^2858812+1 860591 L2997 2015 4320f 41079*78^454700-1 860341 A11 2025 4321 629*2^2857891+1 860314 L3035 2020 4322 493*2^2857856+1 860304 L5087 2020 4323 241*2^2857313-1 860140 L2484 2018 4324 707*2^2856331+1 859845 L5084 2020 4325 3615210^131072+1 859588 L4201 2016 Generalized Fermat 4326 949*2^2854946+1 859428 L2366 2020 4327 222361*2^2854840+1 859398 g403 2006 4328 725*2^2854661+1 859342 L5031 2020 4329 178972*5^1228284+1 858539 A42 2024 4330 399*2^2851994+1 858539 L4099 2020 4331 225*2^2851959+1 858528 L3941 2015 4332 247*2^2851602+1 858421 L3865 2015 4333 183*2^2850321+1 858035 L2117 2015 4334 1191*2^2849315+1 857733 L1188 2020 4335 717*2^2848598+1 857517 L1204 2020 4336 795*2^2848360+1 857445 L4099 2020 4337 4242104*15^728840-1 857189 L5410 2023 4338 2*647^304931+1 857133 L550 2025 Divides Phi(647^304931,2) 4339 3450080^131072+1 856927 L4201 2016 Generalized Fermat 4340 705*2^2846638+1 856927 L1808 2020 4341 369*2^2846547+1 856899 L4099 2020 4342 233*2^2846392-1 856852 L2484 2021 4343 223952*91^437353-1 856798 A11 2024 4344 955*2^2844974+1 856426 L1188 2020 4345 753*2^2844700+1 856343 L1204 2020 4346 11138*745^297992-1 855884 L4189 2019 4347 111*2^2841992+1 855527 L1792 2015 4348 44*744^297912-1 855478 L5410 2021 4349 649*2^2841318+1 855325 L4732 2020 4350 228*912^288954-1 855305 L5410 2022 4351 305*2^2840155+1 854975 L4907 2020 4352 914*871^290787-1 854923 L5787 2023 4353 1149*2^2839622+1 854815 L2042 2020 4354 95*2^2837909+1 854298 L3539 2013 4355 199*2^2835667-1 853624 L2484 2019 4356 595*2^2833406+1 852943 L4343 2020 4357 1101*2^2832061+1 852539 L4930 2020 4358 813*2^2831757+1 852447 L4951 2020 4359 435*2^2831709+1 852432 L4951 2020 4360 38*500^315752-1 852207 A21 2024 4361 13613*82^445251-1 852132 A11 2024 4362 393*2^2828738-1 851538 L2257 2023 4363 543*2^2828217+1 851381 L4746 2019 4364b 13*2022^257457+1 851098 L6279 2025 4365 68*1010^283267+1 851027 L5778 2023 4366 704*249^354745+1 850043 L5410 2019 4367 1001*2^2822037+1 849521 L1209 2019 4368 84466*5^1215373-1 849515 L3562 2013 4369 97*2^2820650+1 849103 L2163 2013 4370 381*2^2820157-1 848955 L2257 2023 4371 43814*91^433332-1 848920 A32 2024 4372 107*2^2819922-1 848884 L2484 2013 4373 84256*3^1778899+1 848756 L4789 2018 4374 45472*3^1778899-1 848756 L4789 2018 4375 495*2^2819449-1 848742 L3994 2024 4376 14804*3^1778530+1 848579 L4064 2021 4377 497*2^2818787+1 848543 L4842 2019 4378 97*2^2818306+1 848397 L3262 2013 4379 313*2^2817751-1 848231 L802 2021 4380b 25489*58^480810+1 847879 A11 2025 4381 177*2^2816050+1 847718 L129 2012 4382 585*2^2816000-1 847704 L5819 2024 4383 553*2^2815596+1 847582 L4980 2019 4384 1071*2^2814469+1 847243 L3035 2019 4385 105*2^2813000+1 846800 L3200 2015 4386 1115*2^2812911+1 846774 L1125 2019 4387 96*10^846519-1 846521 L2425 2011 Near-repdigit 4388 763*2^2811726+1 846417 L3919 2019 4389 1125*2^2811598+1 846379 L4981 2019 4390 891*2^2810100+1 845928 L4981 2019 4391 441*2^2809881+1 845862 L4980 2019 4392c 14016*58^479652+1 845836 A73 2025 4393 499*2^2809261-1 845675 L5516 2024 4394 711*2^2808473+1 845438 L1502 2019 4395 1089*2^2808231+1 845365 L4687 2019 4396 63*2^2807130+1 845033 L3262 2013 4397 1083*2^2806536+1 844855 L3035 2019 4398 675*2^2805669+1 844594 L1932 2019 4399 819*2^2805389+1 844510 L3372 2019 4400 1027*2^2805222+1 844459 L3035 2019 4401 437*2^2803775+1 844024 L3168 2019 4402 29113*820^289614+1 843886 A50 2024 4403 381*2^2801281-1 843273 L2257 2023 4404 4431*372^327835-1 842718 L5410 2019 4405 150344*5^1205508-1 842620 L3547 2013 4406 311*2^2798459+1 842423 L4970 2019 4407 81*2^2797443-1 842117 L3887 2021 4408 400254*127^400254+1 842062 g407 2013 Generalized Cullen 4409 2639850^131072+1 841690 L4249 2016 Generalized Fermat 4410 43*2^2795582+1 841556 L2842 2013 4411 1001*2^2794357+1 841189 L1675 2019 4412 117*2^2794014+1 841085 L1741 2015 4413f 1962*5^1203024-1 840881 A63 2025 4414 1057*2^2792700+1 840690 L1675 2019 4415 345*2^2792269+1 840560 L1754 2019 4416 267*2^2792074-1 840501 L1817 2024 4417 711*2^2792072+1 840501 L4256 2019 4418 293*2^2791482-1 840323 A27 2024 4419f 42896*78^444110-1 840303 A11 2025 4420 315*2^2791414-1 840302 L2235 2021 4421 973*2^2789516+1 839731 L3372 2019 4422 27602*3^1759590+1 839543 L4064 2021 4423 2187*2^2786802+1 838915 L1745 2019 4424 15*2^2785940+1 838653 p286 2012 4425 333*2^2785626-1 838560 L802 2021 4426 1337*2^2785444-1 838506 L4518 2017 4427 711*2^2784213+1 838135 L4687 2019 4428 58582*91^427818+1 838118 L5410 2020 4429 923*2^2783153+1 837816 L1675 2019 4430 1103*2^2783149+1 837815 L3784 2019 4431 20708*82^437279-1 836875 A48 2024 4432 297*2^2778276-1 836347 A27 2024 4433 485*2^2778151+1 836310 L1745 2019 4434 600921*2^2776014-1 835670 g337 2017 4435 1129*2^2774934+1 835342 L1774 2019 4436 750*1017^277556-1 834703 L4955 2021 4437 8700*241^350384-1 834625 L5410 2019 4438 1023*2^2772512+1 834613 L4724 2019 4439 656*249^348030+1 833953 L5410 2019 4440 92*10^833852-1 833854 L4789 2018 Near-repdigit 4441 437*2^2769299+1 833645 L3760 2019 4442 967*2^2768408+1 833377 L3760 2019 4443 2280466^131072+1 833359 L4201 2016 Generalized Fermat 4444 1171*2^2768112+1 833288 L2676 2019 4445 57*2^2765963+1 832640 L3262 2013 4446 1323*2^2764024+1 832058 L1115 2019 4447 189*2^2762731-1 831668 A27 2024 4448 471*2^2762718-1 831664 L5516 2023 4449 115*2^2762111-1 831481 A27 2024 4450 77*2^2762047+1 831461 L3430 2013 4451 745*2^2761514+1 831302 L1204 2019 4452 2194180^131072+1 831164 L4276 2016 Generalized Fermat 4453 543*2^2760224-1 830913 L5516 2023 4454 7*10^830865+1 830866 p342 2014 4455 893*2^2758841+1 830497 L4826 2019 4456 593*2^2757554-1 830110 L5516 2023 4457 557*2^2757276-1 830026 L5516 2023 4458 537*2^2755164+1 829390 L3035 2019 4459 225*370^322863-1 829180 A14 2024 4460 579*2^2754370+1 829151 L1823 2019 4461 441*2^2754188+1 829096 L2564 2019 Generalized Fermat 4462 455*2^2754132-1 829080 L5516 2023 4463 139*2^2751839-1 828389 A27 2024 4464 677*792^285769-1 828369 L541 2023 4465 215*2^2751022-1 828143 L2484 2018 4466 337*2^2750860+1 828094 L4854 2019 4467 701*2^2750267+1 827916 L3784 2019 4468 467*2^2749195+1 827593 L1745 2019 4469 245*2^2748663+1 827433 L3173 2015 4470 591*2^2748315+1 827329 L3029 2019 4471 205*2^2747571-1 827104 L1817 2024 4472 57*2^2747499+1 827082 L3514 2013 Divides Fermat F(2747497) 4473 1007*2^2747268-1 827014 L4518 2022 4474 1089*2^2746155+1 826679 L2583 2019 4475 707*2^2745815+1 826576 L3760 2019 4476c 14016*58^468332+1 825874 A68 2025 4477 525*2^2743252-1 825804 L5516 2023 4478 459*2^2742310+1 825521 L4582 2019 4479 777*2^2742196+1 825487 L3919 2019 4480 609*2^2741078+1 825150 L3091 2019 4481 684*157^375674+1 824946 L5112 2022 4482 639*2^2740186+1 824881 L4958 2019 4483 905*2^2739805+1 824767 L4958 2019 4484 119*954^276761+1 824625 L5410 2022 4485 1955556^131072+1 824610 L4250 2015 Generalized Fermat 4486d 1741*168^370406-1 824272 A11 2025 4487 777*2^2737282+1 824007 L1823 2019 4488 224*938^277168-1 823802 A11 2025 4489 765*2^2735232+1 823390 L1823 2019 4490 609*2^2735031+1 823330 L1823 2019 4491 9*10^823037+1 823038 L4789 2024 4492 305*2^2733989+1 823016 L1823 2019 4493 165*2^2732983+1 822713 L1741 2015 4494 1133*2^2731993+1 822415 L4687 2019 4495 251*2^2730917+1 822091 L3924 2015 4496 189*2^2730633-1 822005 A27 2024 4497 1185*2^2730620+1 822002 L4948 2019 4498 (10^410997+1)^2-2 821995 p405 2022 4499 173*2^2729905+1 821786 L3895 2015 4500 285*2^2728979-1 821507 A27 2024 4501 1981*2^2728877-1 821478 L1134 2018 4502 693*2^2728537+1 821375 L3035 2019 4503 501*2^2728224+1 821280 L3035 2019 4504 763*2^2727928+1 821192 L3924 2019 4505 553*2^2727583-1 821088 L5516 2023 4506 5292*820^281664+1 820721 A11 2024 4507 465*2^2726085-1 820637 L5516 2023 4508 291*2^2725533-1 820470 L1817 2024 4509 10*743^285478+1 819606 L4955 2019 4510 17*2^2721830-1 819354 p279 2010 4511 1006*639^291952+1 819075 L4444 2021 4512 1101*2^2720091+1 818833 L4935 2019 4513 1766192^131072+1 818812 L4231 2015 Generalized Fermat 4514 555*2^2719105-1 818535 L5516 2023 4515 165*2^2717378-1 818015 L2055 2012 4516 495*2^2717011-1 817905 L5516 2023 4517 68633*2^2715609+1 817485 L5105 2020 4518 1722230^131072+1 817377 L4210 2015 Generalized Fermat 4519 9574*5^1169232+1 817263 L5410 2021 4520 1717162^131072+1 817210 L4226 2015 Generalized Fermat 4521 133*2^2713410+1 816820 L3223 2015 4522 9022*96^411931-1 816563 L5410 2023 4523f 17423*52^475727-1 816354 A11 2025 4524 45*2^2711732+1 816315 L1349 2012 4525 569*2^2711451+1 816231 L4568 2019 4526 567*2^2710898-1 816065 L5516 2023 4527 12830*3^1709456+1 815622 L5410 2021 4528 335*2^2708958-1 815481 L2235 2020 4529 93*2^2708718-1 815408 L1862 2016 4530 1660830^131072+1 815311 L4207 2015 Generalized Fermat 4531 837*2^2708160+1 815241 L4314 2019 4532 261*2^2707551-1 815057 A27 2024 4533 1005*2^2707268+1 814972 L4687 2019 4534 13*458^306196+1 814748 L3610 2015 4535 253*2^2705844+1 814543 L4083 2015 4536 657*2^2705620+1 814476 L4907 2019 4537 39*2^2705367+1 814399 L1576 2013 Divides GF(2705360,3) 4538 405*2^2704471-1 814130 L5516 2023 4539 303*2^2703864+1 813947 L1204 2019 4540 141*2^2702160+1 813434 L1741 2015 4541 753*2^2701925+1 813364 L4314 2019 4542 133*2^2701452+1 813221 L3173 2015 4543 58434*5^1162930+1 812858 A11 2024 4544 521*2^2700095+1 812813 L4854 2019 4545 393*2^2698956+1 812470 L1823 2019 4546 417*2^2698652+1 812378 L3035 2019 4547 525*2^2698118+1 812218 L1823 2019 4548 3125*2^2697651+1 812078 L3924 2019 4549 287*2^2697536-1 812042 A27 2024 4550 153*2^2697173+1 811933 L3865 2015 4551 1560730^131072+1 811772 L4201 2015 Generalized Fermat 4552 26*3^1700041+1 811128 L4799 2020 4553 1538654^131072-1538654^65536+1 810961 L4561 2017 Generalized unique 4554 11*2^2691961+1 810363 p286 2013 Divides GF(2691960,12) 4555 555*2^2691334-1 810176 L5516 2023 4556 58*536^296735-1 809841 L5410 2021 4557 33016*3^1696980+1 809670 L5366 2021 4558 7335*2^2689080-1 809498 L4036 2015 4559 1049*2^2688749+1 809398 L4869 2018 4560 120*957^271487-1 809281 L541 2023 4561 329*2^2688221+1 809238 L3035 2018 4562 1578*37^515979-1 809163 p443 2024 4563 865*2^2687434+1 809002 L4844 2018 4564 989*2^2686591+1 808748 L2805 2018 4565 136*904^273532+1 808609 L5410 2020 4566 243*2^2685873+1 808531 L3865 2015 4567 909*2^2685019+1 808275 L3431 2018 4568 1455*2^2683954-6325241166627*2^1290000-1 807954 p423 2021 Arithmetic progression (3,d=1455*2^2683953-6325241166627*2^1290000) 4569 1455*2^2683953-1 807954 L1134 2020 4570 11210*241^339153-1 807873 L5410 2019 4571 1456746^131072-1456746^65536+1 807848 L4561 2017 Generalized unique 4572 975*2^2681840+1 807318 L4155 2018 4573 999*2^2681353-1 807171 L4518 2022 4574 295*2^2680932+1 807044 L1741 2015 4575 275*2^2679936-1 806744 A27 2024 4576 1427604^131072-1427604^65536+1 806697 L4561 2017 Generalized unique 4577 575*2^2679711+1 806677 L2125 2018 4578 46533*52^469992-1 806513 L6248 2025 4579 2386*52^469972+1 806477 L4955 2019 4580 2778*991^269162+1 806433 p433 2023 4581 10*80^423715-1 806369 p247 2023 4582 219*2^2676229+1 805628 L1792 2015 4583 637*2^2675976+1 805552 L3035 2018 4584 1395583^131072-1395583^65536+1 805406 L4561 2017 Generalized unique 4585 951*2^2674564+1 805127 L1885 2018 4586 531*2^2673250-1 804732 L5516 2023 4587 1372930^131072+1 804474 g236 2003 Generalized Fermat 4588 662*1009^267747-1 804286 L5410 2020 4589 261*2^2671677+1 804258 L3035 2015 4590 895*2^2671520+1 804211 L3035 2018 4591 1361244^131072+1 803988 g236 2004 Generalized Fermat 4592 789*2^2670409+1 803877 L3035 2018 4593 256*11^771408+1 803342 L3802 2014 Generalized Fermat 4594 503*2^2668529+1 803310 L4844 2018 4595 255*2^2668448+1 803286 L1129 2015 4596 4189*2^2666639-1 802742 L1959 2017 4597 539*2^2664603+1 802129 L4717 2018 4598 3^1681130+3^445781+1 802103 CH9 2022 4599 26036*745^279261-1 802086 L4189 2020 4600 295*2^2663855-1 801903 A27 2024 4601 1396*5^1146713-1 801522 L3547 2013 4602 676*687^282491-1 801418 L5426 2023 4603 267*2^2662090+1 801372 L3234 2015 Divides Fermat F(2662088) 4604 51*892^271541+1 801147 L5410 2019 4605 1851*24^580404+1 801084 A49 2024 4606 12124*477^299035-1 800975 A11 2025 4607 297*2^2660048+1 800757 L3865 2015 4608 133*2^2658587-1 800317 L1817 2024 4609 99*2^2658496-1 800290 L1862 2021 4610 851*2^2656411+1 799663 L4717 2018 4611 487*2^2655008+1 799240 L3760 2018 4612 153*2^2654686-1 799143 A27 2024 4613e 13291*108^392961-1 799061 A11 2025 4614 441*2^2652807-1 798578 L5516 2023 4615f 77594*78^421949-1 798373 A11 2025 4616 371*2^2651663+1 798233 L3760 2018 4617 69*2^2649939-1 797713 L3764 2014 4618 207*2^2649810+1 797675 L1204 2015 4619 505*2^2649496+1 797581 L3760 2018 4620 993*2^2649256+1 797509 L3760 2018 4621 225*718^279185-1 797390 A11 2024 4622 517*2^2648698+1 797341 L3760 2018 4623 340*703^280035+1 797250 L4001 2018 4624 441*2^2648307+1 797223 L3760 2018 4625c 265666*1001^265666+1 797119 A67 2025 Generalized Cullen 4626 1129*2^2646590+1 796707 L3760 2018 4627 128*518^293315+1 796156 L4001 2019 4628 211*744^277219-1 796057 L5410 2021 4629 1181782^131072-1181782^65536+1 795940 L4142 2015 Generalized unique 4630 1176694^131072+1 795695 g236 2003 Generalized Fermat 4631 13*2^2642943-1 795607 L1862 2012 4632f 73406*105^393484+1 795311 A11 2025 4633 119*410^304307+1 795091 L4294 2019 4634 501*2^2641052+1 795039 L3035 2018 4635 267*2^2640554-1 794889 A27 2024 4636 879*2^2639962+1 794711 L3760 2018 4637 57*2^2639528-1 794579 L2484 2016 4638 342673*2^2639439-1 794556 L53 2007 4639 813*2^2639092+1 794449 L2158 2018 4640 1147980^131072-1147980^65536+1 794288 L4142 2015 Generalized unique 4641 197*972^265841-1 794247 L4955 2022 4642 1027*2^2638186+1 794177 L3760 2018 4643 889*2^2637834+1 794071 L3545 2018 4644 175*2^2637399-1 793939 A27 2024 4645e 1098*97^399549+1 793816 A11 2025 4646 421*2^2636975-1 793812 L5516 2023 4647 92182*5^1135262+1 793520 L3547 2013 4648 5608*70^429979+1 793358 L5390 2021 4649c 13107*58^449714+1 793043 A68 2025 4650 741*2^2634385+1 793032 L1204 2018 4651e 99268*105^392060-1 792433 A11 2025 4652 34449*52^461672-1 792236 A11 2025 4653 465*2^2630496+1 791861 L1444 2018 4654 189*2^2630487+1 791858 L3035 2015 4655 87*2^2630468+1 791852 L3262 2013 4656 123454321*2^2630208+1 791780 L6049 2024 Generalized Fermat 4657f 5252*53^459192-1 791778 A63 2025 4658 4*5^1132659-1 791696 L4965 2022 4659 1131*2^2629345+1 791515 L4826 2018 4660 967*2^2629344+1 791515 L3760 2018 4661 267*2^2629210+1 791474 L3035 2015 4662 154*883^268602+1 791294 L5410 2020 4663 237*2^2627713-1 791023 L1817 2024 4664 819*2^2627529+1 790968 L1387 2018 4665 183*2^2626880-1 790772 L1817 2024 4666 17152*5^1131205-1 790683 L3552 2013 4667 183*2^2626442+1 790641 L3035 2015 4668 137*2^2626238-1 790579 A27 2024 4669 813*2^2626224+1 790576 L4830 2018 4670 66*952^265412+1 790568 A52 2025 4671 807*2^2625044+1 790220 L1412 2018 4672 557*2^2624952-1 790193 L5516 2023 4673 4*10^789955+1 789956 L4789 2024 4674 1063730^131072+1 789949 g260 2013 Generalized Fermat 4675 1243*2^2623707-1 789818 L1828 2011 4676 693*2^2623557+1 789773 L3278 2018 4677 981*2^2622032+1 789314 L1448 2018 4678 145*2^2621020+1 789008 L3035 2015 4679 963*792^271959-1 788338 L5410 2021 4680 1798*165^354958+1 787117 p365 2024 4681 541*2^2614676+1 787099 L4824 2018 4682 545*2^2614294-1 786984 L5516 2023 4683 (10^393063-1)^2-2 786126 p405 2022 Near-repdigit 4684 1061*268^323645-1 785857 L5410 2019 4685 1662*483^292719-1 785646 L5410 2022 4686 984522^131072-984522^65536+1 785545 p379 2015 Generalized unique 4687 1071*2^2609316+1 785486 L3760 2018 4688 87*2^2609046+1 785404 L2520 2013 4689 18922*111^383954+1 785315 L4927 2021 4690 543*2^2608129+1 785128 L4822 2018 4691 377*2^2607856-1 785046 L2257 2023 4692 329584*5^1122935-1 784904 L3553 2013 4693 10*311^314806+1 784737 L3610 2014 4694f 85806*52^457298-1 784730 A11 2025 4695 1019*2^2606525+1 784646 L1201 2018 4696 977*2^2606211+1 784551 L4746 2018 4697 13*2^2606075-1 784508 L1862 2011 4698 693*2^2605905+1 784459 L4821 2018 4699 6984*507^289940-1 784294 A54 2025 4700 147*2^2604275+1 783968 L1741 2015 4701 105*2^2603631+1 783774 L3459 2015 4702 93*2^2602483-1 783428 L1862 2016 4703 155*2^2602213+1 783347 L2719 2015 4704 545*2^2602018-1 783289 L5516 2023 4705c 787*58^444113+1 783165 A72 2025 4706 303*2^2601525+1 783140 L4816 2018 4707 711*2^2600535+1 782842 L4815 2018 4708 1133*2^2599345+1 782484 L4796 2018 4709 397*2^2598796+1 782319 L3877 2018 4710 421*2^2597273-1 781860 L5516 2023 4711 585*2^2596523-1 781635 L5819 2023 4712 203*2^2595752-1 781402 A27 2024 4713 1536*177^347600+1 781399 L5410 2020 4714 1171*2^2595736+1 781398 L3035 2018 4715 (146^180482+1)^2-2 781254 p405 2022 4716 579*2^2595159-1 781224 L5516 2023 4717 543*2^2594975-1 781169 L5516 2023 4718 909548^131072+1 781036 p387 2015 Generalized Fermat 4719 7386*82^408082-1 780997 A11 2024 4720 2*218^333925+1 780870 L4683 2017 4721 15690*29^533930+1 780823 L5787 2023 4722 1149*2^2593359+1 780682 L1125 2018 4723 225*2^2592918+1 780549 L1792 2015 Generalized Fermat 4724 495*2^2592802-1 780514 L5516 2023 4725 333*2^2591874-1 780235 L2017 2019 4726 883969^131072-883969^65536+1 779412 p379 2015 Generalized unique 4727 2154*687^274573-1 778956 L5752 2023 4728 872989^131072-872989^65536+1 778700 p379 2015 Generalized unique 4729 703*2^2586728+1 778686 L4256 2018 4730 2642*372^302825-1 778429 L5410 2019 4731 120*825^266904+1 778416 L4001 2018 4732 337*2^2585660+1 778364 L2873 2018 4733 31*2^2585311-1 778258 L4521 2022 4734 393*2^2584957+1 778153 L4600 2018 4735 151*2^2584480+1 778009 L4043 2015 4736 862325^131072-862325^65536+1 778001 p379 2015 Generalized unique 4737 385*2^2584280+1 777949 L4600 2018 4738 861088^131072-861088^65536+1 777919 p379 2015 Generalized unique 4739 65*2^2583720-1 777780 L2484 2015 4740 25*2^2583690+1 777770 L3249 2013 Generalized Fermat 4741 82*920^262409-1 777727 L4064 2015 4742 123*2^2583362-1 777672 L1817 2024 4743 1041*2^2582112+1 777297 L1456 2018 4744 153*2^2581916-1 777237 L1817 2024 4745 334310*211^334310-1 777037 p350 2012 Generalized Woodall 4746 229*2^2581111-1 776995 L1862 2017 4747 61*2^2580689-1 776867 L2484 2015 4748 1113*2^2580205+1 776723 L4724 2018 4749 51*2^2578652+1 776254 L3262 2013 4750 173*2^2578197+1 776117 L3035 2015 4751 833*2^2578029+1 776067 L4724 2018 4752e 43724*105^383786-1 775709 A62 2025 4753f 51729*52^452017-1 775668 A11 2025 4754 80*394^298731-1 775358 L541 2020 4755f 41748*78^409654-1 775109 A11 2025 4756 302*423^295123-1 775096 L5413 2021 4757 460*628^276994+1 775021 L5410 2020 4758 459*2^2573899+1 774824 L1204 2018 4759 593*2^2572634-1 774443 L5516 2023 4760 806883^131072-806883^65536+1 774218 p379 2015 Generalized unique 4761 3*2^2571360-3*2^1285680+1 774057 A3 2023 Generalized unique 4762 181*2^2570921-1 773927 A27 2024 4763 285*2^2570839-1 773903 A27 2024 4764c 34396*58^438577+1 773404 A11 2025 4765 357*2^2568110-1 773081 L2257 2023 4766 627*2^2567718+1 772963 L3803 2018 4767 933*2^2567598+1 772927 L4724 2018 4768 757*2^2566468+1 772587 L2606 2018 4769 471*2^2566323-1 772543 L5516 2023 4770 231*2^2565263+1 772224 L3035 2015 4771 4*737^269302+1 772216 L4294 2016 Generalized Fermat 4772 941*2^2564867+1 772105 L4724 2018 4773 923*2^2563709+1 771757 L1823 2018 4774 151*596^278054+1 771671 L4876 2019 4775 770202^131072-770202^65536+1 771570 p379 2015 Generalized unique 4776 303*2^2562423-1 771369 L2017 2018 4777 75*2^2562382-1 771356 L2055 2011 4778 147559*2^2562218+1 771310 L764 2012 4779 117*412^294963+1 771300 p268 2021 4780 829*2^2561730+1 771161 L1823 2018 4781 404*12^714558+1 771141 L1471 2011 4782 5*308^309755+1 770842 L4294 2024 4783 757576^131072-757576^65536+1 770629 p379 2015 Generalized unique 4784 295*80^404886+1 770537 L5410 2021 4785 1193*2^2559453+1 770476 L2030 2018 4786 205*2^2559417-1 770464 A27 2024 4787 19*984^257291+1 770072 L5410 2020 4788 116*950^258458-1 769619 L5410 2021 4789 147314*91^392798-1 769513 A11 2024 4790 612497*18^612497+1 768857 L5765 2023 Generalized Cullen 4791 19861029*2^2553830+1 768787 A31 2024 4792 175*2^2553699-1 768743 A27 2024 4793 731582^131072-731582^65536+1 768641 p379 2015 Generalized unique 4794 479*2^2553152-1 768579 L5516 2023 4795 65*752^267180-1 768470 L5410 2020 4796 120312*91^392238-1 768416 A15 2024 4797 419*2^2552363+1 768341 L4713 2018 4798 369*2^2551955-1 768218 L2257 2023 4799 34*759^266676-1 768093 L4001 2019 4800 315*2^2550412+1 767754 L4712 2017 4801 415*2^2549590+1 767506 L4710 2017 4802 1152*792^264617-1 767056 L4955 2021 4803e 151210*105^379481-1 767009 A52 2025 4804 693*2^2547752+1 766953 L4600 2017 4805 673*2^2547226+1 766795 L2873 2017 4806 169*2^2545526+1 766282 L2125 2015 Divides GF(2545525,10), generalized Fermat 4807 196*814^263256+1 766242 L5410 2021 Generalized Fermat 4808 183*2^2545116+1 766159 L3035 2015 4809d 29004*45^463428+1 766150 A68 2025 4810 311*2^2544778-1 766058 L2017 2018 4811 9*2^2543551+1 765687 L1204 2011 Divides Fermat F(2543548), GF(2543549,3), GF(2543549,6), GF(2543549,12) 4812 67*446^288982+1 765612 L4273 2020 4813 663*2^2542990+1 765520 L4703 2017 4814 705*2^2542464+1 765361 L2873 2017 4815e 90896*105^378627-1 765282 A11 2025 4816 689186^131072+1 765243 g429 2013 Generalized Fermat 4817 745*2^2540726+1 764838 L4696 2017 4818 682504^131072-682504^65536+1 764688 p379 2015 Generalized unique 4819 64*177^340147-1 764644 L3610 2015 4820 421*2^2539336+1 764419 L4148 2017 4821 (2^64-189)*10^764330+1 764350 p439 2024 4822 123287*2^2538167+1 764070 L3054 2012 4823 305716*5^1093095-1 764047 L3547 2013 4824 223*2^2538080+1 764041 L2125 2015 4825 83*2^2537641+1 763908 L1300 2013 4826 543539*2^2536028-1 763427 L4187 2022 4827 473*2^2533376-1 762625 L5516 2023 4828 645*2^2532811+1 762455 L4600 2017 4829 953*2^2531601+1 762091 L4404 2017 4830 694*567^276568-1 761556 L4444 2021 4831 545*2^2528179+1 761061 L1502 2017 4832 517*2^2527857-1 760964 L5516 2023 4833 203*2^2526505+1 760557 L3910 2015 4834 967*2^2526276+1 760488 L1204 2017 4835 3317*2^2523366-1 759613 L5399 2021 4836 241*2^2522801-1 759442 L2484 2018 4837 153*2^2522271-1 759282 A27 2024 4838 360307*6^975466-1 759066 p255 2017 4839 326*80^398799+1 758953 L4444 2021 4840 749*2^2519457+1 758436 L1823 2017 4841 199*2^2518871-1 758259 L2484 2018 4842 6*10^758068+1 758069 L5009 2019 4843 87*2^2518122-1 758033 L2484 2014 4844 515*2^2517626-1 757884 L5516 2023 4845 605347^131072-605347^65536+1 757859 p379 2015 Generalized unique 4846 711*2^2516187+1 757451 L3035 2017 4847 967*2^2514698+1 757003 L4600 2017 4848 33*2^2513872-1 756753 L3345 2013 4849 1-V(-3,-3,1307101)-3^1307101 756533 p437 2024 4850 973*2^2511920+1 756167 L1823 2017 4851 679*2^2511814+1 756135 L4598 2017 4852 1093*2^2511384+1 756005 L1823 2017 4853 38*875^256892-1 755780 L4001 2019 4854 209*2^2510308-1 755681 A27 2024 4855 45*2^2507894+1 754953 L1349 2012 4856 130484*5^1080012-1 754902 L3547 2013 4857 572186^131072+1 754652 g0 2004 Generalized Fermat 4858 242*501^279492-1 754586 L4911 2019 4859 883*2^2506382+1 754500 L1823 2017 4860 9702*871^256606+1 754431 A44 2025 4861 77*2^2505854-1 754340 A27 2024 4862 847*2^2505540+1 754246 L4600 2017 4863 39768*5^1079005+1 754197 A11 2024 4864 175604*91^384974-1 754186 A16 2024 4865 191*2^2504121+1 753818 L3035 2015 4866 783*2^2500912+1 752853 L1823 2017 4867 133*488^279973-1 752688 L541 2023 4868 165*2^2500130-1 752617 L2055 2011 4869e 12585*2^2500004-1 752581 L6267 2025 4870 33*2^2499883-1 752542 L3345 2013 4871 319*2^2498685-1 752182 L2017 2018 4872 215206*5^1076031-1 752119 L20 2023 Generalized Woodall 4873 41712*52^438229-1 752008 A11 2025 4874 477*2^2496685-1 751580 L5516 2023 4875c 3511*58^426200+1 751577 A11 2025 4876 321*2^2496594-1 751553 L2235 2018 4877 531*2^2495930-1 751353 L5516 2023 4878 365*2^2494991+1 751070 L3035 2017 4879 91*2^2494467-1 750912 L1817 2024 4880 213*2^2493004-1 750472 L1863 2017 4881 777*2^2492560+1 750339 L3035 2017 4882 57*2^2492031+1 750178 L1230 2013 4883 879*2^2491342+1 749972 L4600 2017 4884 14*152^343720-1 749945 L3610 2015 4885 231*2^2489083+1 749292 L3035 2015 4886 255*2^2488562+1 749135 L3035 2015 4887 483*2^2488154-1 749012 L5516 2023 4888 708*48^445477-1 748958 L5410 2022 4889 221*780^258841-1 748596 L4001 2018 4890 303*2^2486629+1 748553 L3035 2017 4891 6*433^283918-1 748548 L3610 2015 4892 413*2^2486596-1 748543 L5516 2023 4893 617*2^2485919+1 748339 L1885 2017 4894 4118*82^390928-1 748168 A11 2024 4895 515*2^2484885+1 748028 L3035 2017 4896 1095*2^2484828+1 748011 L3035 2017 4897 1113*2^2484125+1 747800 L3035 2017 4898 607*2^2483616+1 747646 L3035 2017 4899 625*2^2483272+1 747543 L2487 2017 Generalized Fermat 4900 527*2^2482876-1 747423 L5516 2023 4901 723*2^2482064+1 747179 L3035 2017 4902 2154*687^263317-1 747023 L5410 2023 4903 26*3^1565545+1 746957 L4799 2020 4904 14336*3^1563960+1 746203 L5410 2021 4905 3*2^2478785+1 746190 g245 2003 Divides Fermat F(2478782), GF(2478782,3), GF(2478776,6), GF(2478782,12) 4906 483*2^2478266-1 746036 L5516 2023 4907 429*2^2478139-1 745997 L5516 2023 4908 33324*5^1067123+1 745892 A11 2024 4909 1071*2^2477584+1 745831 L3035 2017 4910 22*30^504814-1 745673 p355 2014 4911 2074*483^277812-1 745637 L5410 2022 4912 11*2^2476839+1 745604 L2691 2011 4913a 895*2^2476209-1 745417 A58 2025 4914 95977*6^957680-1 745225 L4521 2024 4915 825*2^2474996+1 745051 L1300 2017 4916 1061*2^2474282-1 744837 L1828 2012 4917 435*2^2473905+1 744723 L3035 2017 4918 1005*2^2473724-1 744669 L4518 2021 4919a 609*2^2473412-1 744574 A58 2025 4920 1121*2^2473401+1 744571 L3924 2017 4921 325*2^2473267-1 744531 L2017 2018 4922 400*639^265307-1 744322 L5410 2022 4923 11996*3^1559395+1 744025 L5410 2021 4924 889*2^2471082+1 743873 L1300 2017 4925 529*2^2470514+1 743702 L3924 2017 Generalized Fermat 4926a 981*2^2469725-1 743465 A78 2025 4927 561*2^2469713-1 743461 L5516 2023 4928a 673*2^2469295-1 743335 L2017 2025 4929 883*2^2469268+1 743327 L4593 2017 4930 5754*313^297824-1 743237 L5089 2020 4931 81*2^2468789+1 743182 g418 2009 4932 55154*5^1063213+1 743159 L3543 2013 4933 119*2^2468556-1 743112 L2484 2018 4934a 629*2^2468228-1 743014 A58 2025 4935a 873*2^2467786-1 742881 L2017 2025 4936 2136*396^285974+1 742877 L5410 2021 4937 525*2^2467658+1 742842 L3035 2017 4938 465*2^2467625-1 742832 L5516 2023 4939a 837*2^2466348-1 742448 A27 2025 4940 715*2^2465640+1 742235 L3035 2017 4941 26773*2^2465343-1 742147 L197 2006 4942 581*550^270707-1 741839 L5410 2020 4943 993*2^2464082+1 741766 L3035 2017 4944 295*2^2463785-1 741676 L1817 2024 4945 1179*2^2463746+1 741665 L3035 2017 4946 857*2^2463411+1 741564 L3662 2017 4947 227*2^2462914-1 741414 L1817 2024 4948 103*2^2462567-1 741309 L2484 2014 4949 12587*2^2462524-1 741298 L2012 2017 4950 6962*507^273940-1 741014 A11 2025 4951 15592*67^405715+1 740871 A11 2024 4952 5*2^2460482-1 740680 L503 2008 4953 763*2^2458592+1 740113 L1823 2017 4954 453*2^2458461+1 740074 L3035 2017 4955 519*2^2458058+1 739952 L3803 2017 4956 373*2^2457859-1 739892 L2257 2023 4957 545*2^2457692-1 739842 L5516 2023 4958 137*2^2457639+1 739826 L4021 2014 4959 411*2^2457241-1 739706 L5516 2023 4960e 79128*105^365950-1 739660 A14 2025 4961 41676*7^875197-1 739632 L2777 2012 Generalized Woodall 4962 2688*991^246849+1 739582 L5410 2021 4963 6143*82^386291-1 739293 A11 2024 4964 133*2^2455666+1 739232 L2322 2014 4965 99*2^2455541-1 739194 L1862 2015 4966 115*2^2454363-1 738839 L1817 2024 4967 14855*82^385937-1 738616 A11 2024 4968a 763*2^2453263-1 738509 A27 2025 4969 129*2^2452892-1 738397 L1817 2024 4970b 631*2^2452763-1 738359 L6286 2025 4971 377*2^2452639+1 738321 L3035 2017 4972 2189*138^345010+1 738284 L5410 2020 4973 1129*2^2452294+1 738218 L3035 2017 4974 1103*2^2451133+1 737868 L4531 2017 4975 65*2^2450614-1 737711 L2074 2014 4976 549*2^2450523+1 737684 L3035 2017 4977a 969*2^2450213-1 737591 A27 2025 4978 4*789^254595+1 737582 L4955 2019 4979 3942*55^423771-1 737519 L4955 2019 4980 441*2^2449825-1 737474 L5516 2023 4981 (3*2^1224895)^2-3*2^1224895+1 737462 A3 2023 Generalized unique 4982b 703*2^2449579-1 737400 A74 2025 4983b 905*2^2449540-1 737388 A58 2025 4984 2166*483^274670-1 737204 L5410 2022 4985 765*2^2448660+1 737123 L4412 2017 4986 77*2^2448152-1 736970 L5819 2024 4987 607*2^2447836+1 736875 L4523 2017 4988 1261*988^246031+1 736807 L5342 2021 4989 1005*2^2446722+1 736540 L4522 2017 4990 1183953*2^2367907-1 712818 L447 2007 Woodall 4991 150209!+1 712355 p3 2011 Factorial 4992 147855!-1 700177 p362 2013 Factorial 4993b 5321*2^2308643+1 694975 L5517 2025 Divides GF(2308641,5) 4994 3*2^2291610+1 689844 L753 2008 Divides GF(2291607,3), GF(2291609,5) 4995 2*11171^168429+1 681817 g427 2014 Divides Phi(11171^168429,2) 4996 11*2^2230369+1 671410 L2561 2011 Divides GF(2230368,3) 4997 2*179^294739+1 664004 g424 2011 Divides Phi(179^294739,2) 4998 2717*2^2196891+1 661334 L5239 2025 Divides GF(2196890,12) 4999 2*10271^164621+1 660397 g427 2014 Divides Phi(10271^164621,2) 5000 2*659^233973+1 659544 g424 2015 Divides Phi(659^233973,2) 5001 2*191^287901+1 656713 g424 2015 Divides Phi(191^287901,2) 5002 7*2^2167800+1 652574 g279 2007 Divides Fermat F(2167797), GF(2167799,5), GF(2167799,10) 5003 1179*2^2158475+1 649769 L3035 2014 Divides GF(2158470,6) 5004 3*2^2145353+1 645817 g245 2003 Divides Fermat F(2145351), GF(2145351,3), GF(2145352,5), GF(2145348,6), GF(2145352,10), GF(2145351,12) 5005 25*2^2141884+1 644773 L1741 2011 Divides Fermat F(2141872), GF(2141871,5), GF(2141872,10); generalized Fermat 5006 7*2^2139912+1 644179 g279 2007 Divides GF(2139911,12) 5007 189*2^2115473+1 636824 L3784 2014 Divides GF(2115468,6) 5008 107*2^2081775+1 626679 L3432 2013 Divides GF(2081774,6) 5009 2167*2^2050616+1 617301 L6095 2025 Divides GF(2050615,5) 5010 45*2^2014557+1 606444 L1349 2012 Divides GF(2014552,10) 5011 251749*2^2013995-1 606279 L436 2007 Woodall 5012 657*2^1998854+1 601718 L2520 2013 Divides GF(1998852,10) 5013 101*2^1988279+1 598534 L3141 2013 Divides GF(1988278,12) 5014 175*2^1962288+1 590710 L2137 2013 Divides GF(1962284,10) 5015 225*2^1960083+1 590047 L3548 2013 Divides GF(1960078,6) 5016 2*47^346759+1 579816 g424 2011 Divides Phi(47^346759,2) 5017 4401*2^1925824+1 579735 L5309 2024 Divides GF(1925823,5) 5018 71*2^1873569+1 564003 L1223 2011 Divides GF(1873568,5) 5019 13*2^1861732+1 560439 g267 2005 Divides GF(1861731,6) 5020 3*2^1832496+1 551637 p189 2007 Divides GF(1832490,3), GF(1832494,5) 5021 39*2^1824871+1 549343 L2664 2011 Divides GF(1824867,6) 5022 2*191^232149+1 529540 g424 2011 Divides Phi(191^232149,2) 5023 183*2^1747660+1 526101 L2163 2013 Divides Fermat F(1747656) 5024 110059!+1 507082 p312 2011 Factorial 5025 2^1667321-2^833661+1 501914 L137 2011 Gaussian Mersenne norm 38, generalized unique 5026 10^490030+10^309648+12345678987654321*10^245007+10^180382+1 490031 p363 2024 Palindrome 5027 10^490000+3*(10^7383-1)/9*10^241309+1 490001 p413 2021 Palindrome 5028 1098133#-1 476311 p346 2012 Primorial 5029 10^474500+999*10^237249+1 474501 p363 2014 Palindrome 5030 103040!-1 471794 p301 2010 Factorial 5031 135*2^1515894+1 456332 L1129 2013 Divides GF(1515890,10) 5032 131*2^1494099+1 449771 L2959 2012 Divides Fermat F(1494096) 5033 1467763*2^1467763-1 441847 L381 2007 Woodall 5034 4125*2^1445205-1 435054 L1959 2014 Arithmetic progression (2,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5035 94550!-1 429390 p290 2010 Factorial 5036 2415*2^1413627-1 425548 L1959 2014 Arithmetic progression (2,d=2415*2^1413627-1489088842587*2^1290000) [p199] 5037 2985*2^1404274-1 422733 L1959 2014 Arithmetic progression (2,d=2985*2^1404274-770527213395*2^1290000) [p199] 5038 2^1398269-1 420921 G1 1996 Mersenne 35 5039 17*2^1388355+1 417938 g267 2005 Divides GF(1388354,10) 5040 338707*2^1354830+1 407850 L124 2005 Cullen 5041 107*2^1337019+1 402485 L2659 2012 Divides GF(1337018,10) 5042 1389*2^1335434+1 402009 L1209 2015 Divides GF(1335433,10) 5043 10^400000+4*(10^102381-1)/9*10^148810+1 400001 p413 2021 Palindrome 5044 10^390636+999*10^195317+1 390637 p363 2014 Palindrome 5045 6325241166627*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=1455*2^2683953-6325241166627*2^1290000) 5046 5606879602425*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=33*2^2939063-5606879602425*2^1290000) 5047 2618163402417*2^1290001-1 388342 L927 2016 Sophie Germain (2p+1) 5048 4966510140375*2^1290000-1 388342 L3573 2020 Arithmetic progression (2,d=2227792035315*2^1290001) 5049 2996863034895*2^1290000+1 388342 L2035 2016 Twin (p+2) 5050 2996863034895*2^1290000-1 388342 L2035 2016 Twin (p) 5051 2723880039837*2^1290000-1 388342 L3829 2016 Arithmetic progression (1,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5052 2618163402417*2^1290000-1 388342 L927 2016 Sophie Germain (p) 5053 2060323099527*2^1290000-1 388342 L3606 2015 Arithmetic progression (2,d=69718264533*2^1290002) [p199] 5054 1938662032575*2^1290000-1 388341 L927 2015 Arithmetic progression (1,d=10032831585*2^1290001) [p199] 5055 1781450041395*2^1290000-1 388341 L3203 2015 Arithmetic progression (1,d=69718264533*2^1290002) [p199] 5056 15*2^1276177+1 384169 g279 2006 Divides GF(1276174,3), GF(1276174,10) 5057 1268979*2^1268979-1 382007 L201 2007 Woodall 5058 2^1257787-1 378632 SG 1996 Mersenne 34 5059 329*2^1246017+1 375092 L2085 2012 Divides Fermat F(1246013) 5060 843301#-1 365851 p302 2010 Primorial 5061 10^362600+666*10^181299+1 362601 p363 2014 Palindrome 5062 2^1203793-2^601897+1 362378 L192 2006 Gaussian Mersenne norm 37, generalized unique 5063 1195203*2^1195203-1 359799 L124 2005 Woodall 5064 2145*2^1099064+1 330855 L1792 2013 Divides Fermat F(1099061) 5065 10^320236+10^160118+1+(137*10^160119+731*10^159275)*(10^843-1)/999 320237 p44 2014 Palindrome 5066 10^320096+10^160048+1+(137*10^160049+731*10^157453)*(10^2595-1)/999 320097 p44 2014 Palindrome 5067 10^314727-8*10^157363-1 314727 p235 2013 Near-repdigit, palindrome 5068 10^300010+10^204235+12345678987654321*10^149997+10^95775+1 300011 x45 2024 Palindrome 5069 10^300000+5*(10^48153-1)/9*10^125924+1 300001 p413 2021 Palindrome 5070 10^300000+10^158172+11011*10^149998+10^141828+1 300001 p409 2024 Palindrome 5071 2^991961-2^495981+1 298611 x28 2005 Gaussian Mersenne norm 36, generalized unique 5072 11*2^960901+1 289262 g277 2005 Divides Fermat F(960897) 5073 1705*2^906110+1 272770 L3174 2012 Divides Fermat F(906108) 5074 2^859433-1 258716 SG 1994 Mersenne 33 5075 13243*2^699764+1 210655 L5808 2023 Divides Fermat F(699760) 5076 667071*2^667071-1 200815 g55 2000 Woodall 5077 18543637900515*2^666668-1 200701 L2429 2012 Sophie Germain (2p+1) 5078 18543637900515*2^666667-1 200701 L2429 2012 Sophie Germain (p) 5079 3756801695685*2^666669+1 200700 L1921 2011 Twin (p+2) 5080 3756801695685*2^666669-1 200700 L1921 2011 Twin (p) 5081 392113#+1 169966 p16 2001 Primorial 5082 213778324725*2^561418+1 169015 p430 2023 Cunningham chain 2nd kind (2p-1) 5083 213778324725*2^561417+1 169015 p430 2023 Cunningham chain 2nd kind (p) 5084 366439#+1 158936 p16 2001 Primorial 5085 2*893962950^16384+1 146659 p428 2023 Cunningham chain 2nd kind (2p-1) 5086 893962950^16384+1 146659 p427 2023 Cunningham chain 2nd kind (p), generalized Fermat 5087 481899*2^481899+1 145072 gm 1998 Cullen 5088a 100855907240235*2^480480-1 144653 A79 2025 Sophie Germain (2p+1) 5089a 100855907240235*2^480479-1 144653 A79 2025 Sophie Germain (p) 5090 669821552^16384-669821552^8192+1 144605 A18 2024 Twin (p+2), generalized unique 5091 669821552^16384-669821552^8192-1 144605 A18 2024 Twin (p) 5092 34790!-1 142891 p85 2002 Factorial 5093 (124750^27751-1)/124749 141416 p441 2024 Generalized repunit 5094 222710306^16384-222710306^8192+1 136770 A13 2024 Twin (p+2), generalized unique 5095 222710306^16384-222710306^8192-1 136770 A13 2024 Twin (p) 5096 (92365^24691-1)/92364 122599 CH14 2024 Generalized repunit 5097 9955858992*11^111111+1 115721 A25 2025 Twin (p+2) 5098 9955858992*11^111111-1 115721 A25 2025 Twin (p) 5099f 7977227425*(2^368352-2^257849)+2^110505+1 110895 x52 2025 Consecutive primes arithmetic progression (2,d=6) 5100f 7977227425*(2^368352-2^257849)+2^110505-5 110895 x52 2025 Consecutive primes arithmetic progression (1,d=6) 5101 (102936^21961-1)/102935 110076 CH14 2023 Generalized repunit 5102 2^364289-2^182145+1 109662 p58 2001 Gaussian Mersenne norm 35, generalized unique 5103f R(109297) 109297 E12 2025 Repunit, ECPP, unique 5104 361275*2^361275+1 108761 DS 1998 Cullen 5105 26951!+1 107707 p65 2002 Factorial 5106e 15898321815*2^333645+1 100448 p364 2025 Twin (p+2) 5107e 15898321815*2^333645-1 100448 p364 2025 Twin (p) 5108 47356235323005*2^333444-1 100391 L6077 2024 Sophie Germain (2p+1) 5109 47356235323005*2^333443-1 100391 L6077 2024 Sophie Germain (p) 5110 21480284945595*2^333444-1 100390 L6029 2024 Sophie Germain (2p+1) 5111 21480284945595*2^333443-1 100390 L6029 2024 Sophie Germain (p) 5112 65516468355*2^333333+1 100355 L923 2009 Twin (p+2) 5113 65516468355*2^333333-1 100355 L923 2009 Twin (p) 5114 954589277*(2^332267-2^110758)+2^221511+1 100032 p408 2025 Consecutive primes arithmetic progression (2,d=4) 5115 954589277*(2^332267-2^110758)+2^221511-3 100032 p408 2025 Consecutive primes arithmetic progression (1,d=4) 5116b U(65181,1,20770)+U(65181,1,20769) 99985 CH15 2025 Lehmer number 5117a U(48099,1,21000)-U(48099,1,20999) 98321 p452 2025 Lehmer number 5118 8797170843*(2^317583+2^190552)+2^127033+3 95612 p408 2025 Consecutive primes arithmetic progression (2,d=4) 5119 8797170843*(2^317583+2^190552)+2^127033-1 95612 p408 2025 Consecutive primes arithmetic progression (1,d=4) 5120 (7176^24691-1)/7175 95202 CH2 2017 Generalized repunit 5121a U(54381,1,19426)+U(54381,1,19425) 91987 CH15 2025 Lehmer number 5122b (58425^18757-1)/58424 89403 p441 2025 Generalized repunit 5123 R(86453) 86453 E3 2023 Repunit, ECPP, unique 5124 (84741735735*(2^190738-1)+4)*2^95369+5 86138 p408 2024 Consecutive primes arithmetic progression (2,d=6) 5125 (84741735735*(2^190738-1)+4)*2^95369-1 86138 p408 2024 Consecutive primes arithmetic progression (1,d=6) 5126 (74018908351*(2^190738-1)+4)*2^95369+3 86138 p408 2024 Consecutive primes arithmetic progression (2,d=4) 5127 (74018908351*(2^190738-1)+4)*2^95369-1 86138 p408 2024 Consecutive primes arithmetic progression (1,d=4) 5128 21480!-1 83727 p65 2001 Factorial 5129 (74968^17107-1)/74967 83390 p441 2024 Generalized repunit 5130f 66629493*2^269335-1 81086 L3494 2025 Sophie Germain (2p+1) 5131f 66629493*2^269334-1 81086 L3494 2025 Sophie Germain (p) 5132f 1867513233*2^266698+1 80294 L527 2025 Twin (p+2) 5133f 1867513233*2^266698-1 80294 L527 2025 Twin (p) 5134 201926367*2^266668+1 80284 A25 2024 Twin (p+2) 5135 201926367*2^266668-1 80284 A25 2024 Twin (p) 5136 107928275961*2^265876+1 80048 p364 2023 Cunningham chain 2nd kind (2p-1) 5137 107928275961*2^265875+1 80048 p364 2023 Cunningham chain 2nd kind (p) 5138 22942396995*2^265777-1 80018 L3494 2023 Sophie Germain (2p+1) 5139 22942396995*2^265776-1 80017 L3494 2023 Sophie Germain (p) 5140 183027*2^265441-1 79911 L983 2010 Sophie Germain (2p+1) 5141 183027*2^265440-1 79911 L983 2010 Sophie Germain (p) 5142 262419*2^262419+1 79002 DS 1998 Cullen 5143 160204065*2^262148+1 78923 L5115 2021 Twin (p+2) 5144 160204065*2^262148-1 78923 L5115 2021 Twin (p) 5145 3622179275715*2^256003+1 77078 x47 2020 Cunningham chain 2nd kind (2p-1) 5146 3622179275715*2^256002+1 77077 x47 2020 Cunningham chain 2nd kind (p) 5147 648621027630345*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5148 620366307356565*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5149 648621027630345*2^253824-1 76424 x24 2009 Sophie Germain (p) 5150 620366307356565*2^253824-1 76424 x24 2009 Sophie Germain (p) 5151 2570606397*2^252763+1 76099 p364 2020 Cunningham chain 2nd kind (2p-1) 5152 2570606397*2^252762+1 76099 p364 2020 Cunningham chain 2nd kind (p) 5153 1893611985^8192-1893611985^4096+1 76000 A13 2024 Twin (p+2), generalized unique 5154 1893611985^8192-1893611985^4096-1 76000 A13 2024 Twin (p) 5155 1589173270^8192-1589173270^4096+1 75376 A22 2024 Twin (p+2), generalized unique 5156 1589173270^8192-1589173270^4096-1 75376 A22 2024 Twin (p) 5157 (40734^16111-1)/40733 74267 CH2 2015 Generalized repunit 5158 (64758^15373-1)/64757 73960 p170 2018 Generalized repunit 5159 996094234^8192-996094234^4096+1 73715 A18 2024 Twin (p+2), generalized unique 5160 996094234^8192-996094234^4096-1 73715 A18 2024 Twin (p) 5161 895721531^8192-895721531^4096+1 73337 A7 2024 Twin (p+2), generalized unique 5162 895721531^8192-895721531^4096-1 73337 A7 2024 Twin (p) 5163 5^104824+104824^5 73269 E4 2023 ECPP 5164 795507696^8192-795507696^4096+1 72915 A5 2024 Twin (p+2), generalized unique 5165 795507696^8192-795507696^4096-1 72915 A5 2024 Twin (p) 5166 primV(111534,1,27000) 72683 x25 2013 Generalized Lucas primitive part 5167 691595760^8192-691595760^4096+1 72417 A13 2024 Twin (p+2), generalized unique 5168 691595760^8192-691595760^4096-1 72417 A13 2024 Twin (p) 5169 647020826^8192-647020826^4096+1 72180 A5 2024 Twin (p+2), generalized unique 5170 647020826^8192-647020826^4096-1 72180 A5 2024 Twin (p) 5171 629813654^8192-629813654^4096+1 72084 A5 2024 Twin (p+2), generalized unique 5172 629813654^8192-629813654^4096-1 72084 A5 2024 Twin (p) 5173b (V(6489,1,18903)-1)/(V(6489,1,3)-1) 72051 CH15 2025 Lehmer primitive part 5174b (V(27730,1,16209)+1)/(V(27730,1,9)+1) 71976 CH15 2025 Lehmer primitive part 5175 (58729^15091-1)/58728 71962 CH2 2017 Generalized repunit 5176 504983334^8192-504983334^4096+1 71298 A7 2024 Twin (p+2), generalized unique 5177 504983334^8192-504983334^4096-1 71298 A7 2024 Twin (p) 5178c (V(10981,1,17553)+1)/(V(10981,1,3)+1) 70914 CH15 2025 Lehmer primitive part, cyclotomy 5179d (2^216091-1)*(10^4950-15183422626)+1 70000 p449 2025 Twin (p+2) 5180d (2^216091-1)*(10^4950-15183422626)-1 70000 p449 2025 Twin (p) 5181b U(8478,1,17710)+U(8478,1,17709) 69567 p452 2025 Lehmer number 5182 (27987^15313-1)/27986 68092 CH12 2020 Generalized repunit 5183a U(1731,1,21000)-U(1731,1,20999) 68001 p452 2025 Lehmer number 5184 (23340^15439-1)/23339 67435 p170 2020 Generalized repunit 5185 10957126745325*2^222334-1 66943 L5843 2023 Sophie Germain (2p+1) 5186 20690306380455*2^222333-1 66943 L5843 2023 Sophie Germain (2p+1) 5187 10030004436315*2^222334-1 66943 L5843 2023 Sophie Germain (2p+1) 5188 8964472847055*2^222334-1 66943 L5843 2023 Sophie Germain (2p+1) 5189 10957126745325*2^222333-1 66942 L5843 2023 Sophie Germain (p) 5190 20690306380455*2^222332-1 66942 L5843 2023 Sophie Germain (p) 5191 10030004436315*2^222333-1 66942 L5843 2023 Sophie Germain (p) 5192 8964472847055*2^222333-1 66942 L5843 2023 Sophie Germain (p) 5193 (2^221509-1)/292391881 66673 E12 2023 Mersenne cofactor, ECPP 5194 (24741^15073-1)/24740 66218 p170 2020 Generalized repunit 5195 (63847^13339-1)/63846 64091 p170 2013 Generalized repunit 5196 1068669447*2^211089-1 63554 L4166 2020 Sophie Germain (2p+1) 5197 1068669447*2^211088-1 63553 L4166 2020 Sophie Germain (p) 5198 145823#+1 63142 p21 2000 Primorial 5199 U(15694,1,14700)+U(15694,1,14699) 61674 x45 2019 Lehmer number 5200 (28507^13831-1)/28506 61612 CH12 2020 Generalized repunit 5201 2^203789+2^101895+1 61347 O 2000 Gaussian Mersenne norm 34, generalized unique 5202 (26371^13681-1)/26370 60482 p170 2012 Generalized repunit 5203 U(24,-25,43201) 60391 CH12 2020 Generalized Lucas number 5204 99064503957*2^200009-1 60220 L95 2016 Sophie Germain (2p+1) 5205 99064503957*2^200008-1 60220 L95 2016 Sophie Germain (p) 5206 (4529^16381-1)/4528 59886 CH2 2012 Generalized repunit 5207 3^125330+1968634623437000 59798 E4 2022 ECPP 5208 (9082^15091-1)/9081 59729 CH2 2014 Generalized repunit 5209 primV(27655,1,19926) 57566 x25 2013 Generalized Lucas primitive part 5210 Ramanujan tau function at 199^4518 57125 E3 2022 ECPP 5211 (43326^12041-1)/43325 55827 p170 2017 Generalized repunit 5212 12443794755*2^184517-1 55556 L3494 2021 Sophie Germain (2p+1) 5213 21749869755*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 5214 14901867165*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 5215 12443794755*2^184516-1 55555 L3494 2021 Sophie Germain (p) 5216 21749869755*2^184515-1 55555 L3494 2021 Sophie Germain (p) 5217 14901867165*2^184515-1 55555 L3494 2021 Sophie Germain (p) 5218 607095*2^176312-1 53081 L983 2009 Sophie Germain (2p+1) 5219 607095*2^176311-1 53081 L983 2009 Sophie Germain (p) 5220 (38284^11491-1)/38283 52659 CH2 2013 Generalized repunit 5221 (2^174533-1)/193594572654550537/91917886778031629891960890057 52494 E5 2022 Mersenne cofactor, ECPP 5222 (940^17581-1)/939 52268 E2 2025 ECPP generalized repunit 5223 U(809,1,17325)-U(809,1,17324) 50378 x45 2019 Lehmer number 5224 10^50000+65859 50001 E3 2022 ECPP 5225 R(49081) 49081 c70 2022 Repunit, unique, ECPP 5226c (V(8275,1,12447)-1)/(V(8275,1,27)-1) 48659 x45 2025 Lehmer primitive part 5227 2^160423-2^80212+1 48293 O 2000 Gaussian Mersenne norm 33, generalized unique 5228 U(67,-1,26161) 47773 x45 2019 Generalized Lucas number 5229 primV(40395,-1,15588) 47759 x23 2007 Generalized Lucas primitive part 5230c (V(24444,1,10809)+1)/(V(24444,1,9)+1) 47393 x45 2025 Lehmer primitive part 5231 primV(53394,-1,15264) 47200 CH4 2007 Generalized Lucas primitive part 5232 151023*2^151023-1 45468 g25 1998 Woodall 5233b (2^151013-1)/61157791169561859593299975690769 45428 E5 2025 Mersenne cofactor, ECPP 5234 24157096*104561#+1 45260 p364 2025 Arithmetic progression (4,d=6519272*104561#) 5235 17637824*104561#+1 45259 p364 2025 Arithmetic progression (3,d=6519272*104561#) 5236 11118552*104561#+1 45259 p364 2025 Arithmetic progression (2,d=6519272*104561#) 5237 4599280*104561#+1 45259 p364 2025 Arithmetic progression (1,d=6519272*104561#) 5238 2^148227+60443 44621 E11 2024 ECPP 5239 U(52245,1,9241)+U(52245,1,9240) 43595 x45 2019 Lehmer number 5240 71509*2^143019-1 43058 g23 1998 Woodall, arithmetic progression (2,d=(143018*2^83969-80047)*2^59049) [x12] 5241 U(2449,-1,12671) 42939 x45 2018 Generalized Lucas number, cyclotomy 5242a (2^141079+1)/3 42469 E5 2025 Wagstaff, ECPP, generalized Lucas number 5243 V(202667) 42355 E4 2023 Lucas number, ECPP 5244 2^139964+35461 42134 E11 2024 ECPP 5245 U(201107) 42029 E11 2023 Fibonacci number, ECPP 5246c -E(12146)/1226039954339 41943 E1 2025 Euler irregular, ECPP 5247 (2^138937+1)/3 41824 E12 2023 Wagstaff, ECPP, generalized Lucas number 5248c (2^136883-1)/536581361 41198 E5 2025 Mersenne cofactor, ECPP 5249 E(11848)/7910215 40792 E8 2022 Euler irregular, ECPP 5250 V(193201) 40377 E4 2023 Lucas number, ECPP 5251 p(1289844341) 40000 c84 2020 Partitions, ECPP 5252 primV(4836,1,16704) 39616 x25 2013 Generalized Lucas primitive part 5253 (2^130439-1)/260879 39261 E9 2023 Mersenne cofactor, ECPP 5254 U(21041,-1,9059) 39159 x45 2018 Generalized Lucas number, cyclotomy 5255 V(183089) 38264 E4 2023 Lucas number, ECPP 5256 (2^127031+1)/3 38240 E5 2023 Wagstaff, ECPP, generalized Lucas number 5257 U(5617,-1,9539) 35763 x45 2019 Generalized Lucas number, cyclotomy 5258 (2^117239+1)/3 35292 E2 2022 Wagstaff, ECPP, generalized Lucas number 5259 p(1000007396) 35219 E4 2022 Partitions, ECPP 5260d 1864754598*Bern(12306)/7988337402668760859 35160 E1 2025 Irregular, ECPP 5261 (V(60145,1,7317)-1)/(V(60145,1,27)-1) 34841 x45 2019 Lehmer primitive part 5262 primV(38513,-1,11502) 34668 x23 2006 Generalized Lucas primitive part 5263 E(10168)/1097239206089665 34323 E10 2023 Euler irregular, ECPP 5264c Phi(717,-10^72) 34273 E1 2025 Unique, ECPP 5265 primV(9008,1,16200) 34168 x23 2005 Generalized Lucas primitive part 5266 (V(28138,1,7587)-1)/(V(28138,1,27)-1) 33637 x45 2019 Lehmer primitive part 5267 V(159521) 33338 E4 2023 Lucas number, ECPP 5268 U(35896,1,7260)+U(35896,1,7259) 33066 x45 2019 Lehmer number 5269 primV(6586,1,16200) 32993 x25 2013 Generalized Lucas primitive part 5270 U(1624,-1,10169) 32646 x45 2018 Generalized Lucas number, cyclotomy 5271 (V(48395,1,6921)-1)/(V(48395,1,9)-1) 32382 x45 2019 Lehmer primitive part 5272 7300751*74719#-1 32315 p364 2025 Arithmetic progression (4,d=1475275*74719#) 5273 5825476*74719#-1 32314 p364 2025 Arithmetic progression (3,d=1475275*74719#) 5274 4350201*74719#-1 32314 p364 2025 Arithmetic progression (2,d=1475275*74719#) 5275 2874926*74719#-1 32314 p364 2025 Arithmetic progression (1,d=1475275*74719#) 5276 2^106693+2^53347+1 32118 O 2000 Gaussian Mersenne norm 32, generalized unique 5277 primV(28875,1,13500) 32116 x25 2016 Generalized Lucas primitive part 5278c Phi(34051,-10) 32033 E1 2025 Unique, ECPP 5279 (2^106391-1)/286105171290931103 32010 c95 2022 Mersenne cofactor, ECPP 5280c Phi(23023,-100) 31681 E1 2025 Unique, ECPP 5281 (2^105269-1)/308568703561/44450301591671/36340288035156065237111970871\ /304727251426107823036749303510161 31603 E17 2024 Mersenne cofactor, ECPP 5282c Phi(4613,-100000000) 31585 E1 2025 Unique, ECPP 5283 (V(77786,1,6453)+1)/(V(77786,1,27)+1) 31429 x25 2012 Lehmer primitive part 5284d Phi(10295,-10000) 31360 E1 2025 Unique, ECPP 5285 primV(10987,1,14400) 31034 x25 2005 Generalized Lucas primitive part 5286 V(148091) 30950 c81 2015 Lucas number, ECPP 5287 U(148091) 30949 x49 2021 Fibonacci number, ECPP 5288 -E(9266)/2129452307358569777 30900 E10 2023 Euler irregular, ECPP 5289 Phi(11589,-10000) 30897 E1 2022 Unique,ECPP 5290 (V(73570,1,6309)-1)/(V(73570,1,9)-1) 30661 x25 2016 Lehmer primitive part 5291 V(145703)/179214691 30442 E4 2023 Lucas cofactor, ECPP 5292 V(145193)/38621339 30336 E4 2023 Lucas cofactor, ECPP 5293 1524633857*2^99902-1 30083 p364 2022 Arithmetic progression (4,d=928724769*2^99901) 5294 2120542945*2^99901-1 30083 p364 2022 Arithmetic progression (3,d=928724769*2^99901) 5295 18622159*2^99907-1 30083 p364 2022 Arithmetic progression (2,d=928724769*2^99901) 5296 263093407*2^99901-1 30082 p364 2022 Arithmetic progression (1,d=928724769*2^99901) 5297 Phi(36547,-10) 29832 E1 2022 Unique, ECPP 5298 49363*2^98727-1 29725 Y 1997 Woodall 5299 U(2341,-1,8819) 29712 x25 2008 Generalized Lucas number 5300 primV(24127,-1,6718) 29433 CH3 2005 Generalized Lucas primitive part 5301 primV(12215,-1,13500) 29426 x25 2016 Generalized Lucas primitive part 5302 V(140057) 29271 c76 2014 Lucas number,ECPP 5303 U(1404,-1,9209) 28981 CH10 2018 Generalized Lucas number, cyclotomy 5304 U(23396,1,6615)+U(23396,1,6614) 28898 x45 2019 Lehmer number 5305 (2^95369+1)/3 28709 x49 2021 Generalized Lucas number, Wagstaff, ECPP 5306 primV(45922,1,11520) 28644 x25 2011 Generalized Lucas primitive part 5307 primV(205011) 28552 x39 2009 Lucas primitive part 5308 -30*Bern(10264)/262578313564364605963 28506 c94 2021 Irregular, ECPP 5309 U(16531,1,6721)-U(16531,1,6720) 28347 x36 2007 Lehmer number 5310 (V(28286,1,6309)+1)/(V(28286,1,9)+1) 28045 x25 2016 Lehmer primitive part 5311 U(5092,1,7561)+U(5092,1,7560) 28025 x25 2014 Lehmer number 5312 U(132409)/2882138154561602271737 27651 E16 2024 Fibonacci cofactor, ECPP 5313 90825*2^90825+1 27347 Y 1997 Cullen 5314 U(5239,1,7350)-U(5239,1,7349) 27333 CH10 2017 Lehmer number 5315 U(130021) 27173 x48 2021 Fibonacci number, ECPP 5316 primV(5673,1,13500) 27028 CH3 2005 Generalized Lucas primitive part 5317 primV(44368,1,9504) 26768 CH3 2005 Generalized Lucas primitive part 5318 546351925018076058*Bern(9702)/129255048976106804786904258880518941 26709 c77 2021 Irregular, ECPP 5319 22359307*60919#+1 26383 p364 2022 Arithmetic progression (4,d=5210718*60919#) 5320 17148589*60919#+1 26383 p364 2022 Arithmetic progression (3,d=5210718*60919#) 5321 17029817*60919#+1 26383 p364 2022 Arithmetic progression (4,d=1809778*60919#) 5322 15220039*60919#+1 26383 p364 2022 Arithmetic progression (3,d=1809778*60919#) 5323 13410261*60919#+1 26383 p364 2022 Arithmetic progression (2,d=1809778*60919#) 5324 11937871*60919#+1 26382 p364 2022 Arithmetic progression (2,d=5210718*60919#) 5325 11600483*60919#+1 26382 p364 2022 Arithmetic progression (1,d=1809778*60919#) 5326 6727153*60919#+1 26382 p364 2022 Arithmetic progression (1,d=5210718*60919#) 5327 (2^87691-1)/806957040167570408395443233 26371 E1 2022 Mersenne cofactor, ECPP 5328 primV(10986,-1,9756) 26185 x23 2005 Generalized Lucas primitive part 5329 (2^86371-1)/41681512921035887 25984 E2 2022 Mersenne cofactor, ECPP 5330 (2^86137-1)/2584111/7747937967916174363624460881 25896 c84 2022 Mersenne cofactor, ECPP 5331 primV(11076,-1,12000) 25885 x25 2005 Generalized Lucas primitive part 5332 -E(7894)/19 25790 E10 2023 Euler irregular, ECPP 5333 2^85237+2^42619+1 25659 x16 2000 Gaussian Mersenne norm 31, generalized unique 5334 V(122869)/40546771/1243743094029841 25656 E1 2024 Lucas cofactor, ECPP 5335 primU(183537) 25571 E1 2024 Fibonacci primitive part, ECPP 5336 primV(17505,1,11250) 25459 x25 2011 Generalized Lucas primitive part 5337 U(2325,-1,7561) 25451 x20 2013 Generalized Lucas number 5338 U(13084,-13085,6151) 25319 x45 2018 Generalized Lucas number, cyclotomy 5339 (2^84211-1)/1347377/31358793176711980763958121/33146416760423478241695\ 91561 25291 c95 2020 Mersenne cofactor, ECPP 5340 U(120937)/241873/13689853218820385381 25250 E1 2024 Fibonacci cofactor, ECPP 5341 primV(42,-1,23376) 25249 x23 2007 Generalized Lucas primitive part 5342 U(1064,-1065,8311) 25158 CH10 2018 Generalized Lucas number, cyclotomy 5343 primV(7577,-1,10692) 25140 x33 2007 Generalized Lucas primitive part 5344 (2^83339+1)/3 25088 c54 2014 ECPP, generalized Lucas number, Wagstaff 5345 (2^82939-1)/883323903012540278033571819073 24938 c84 2021 Mersenne cofactor, ECPP 5346 primV(194181) 24908 E1 2024 Lucas primitive part, ECPP 5347 primV(119162) 24903 E1 2024 Lucas primitive part, ECPP 5348 -E(7634)/1559 24828 E10 2023 Euler irregular, ECPP 5349 primU(118319) 24553 E1 2024 Fibonacci primitive part, ECPP 5350 U(1766,1,7561)-U(1766,1,7560) 24548 x25 2013 Lehmer number 5351 U(117167)/17658707237 24476 E1 2024 Fibonacci cofactor, ECPP 5352 V(116593)/120790349 24359 E4 2023 Lucas cofactor, ECPP 5353 primV(214470) 23895 E1 2024 Lucas primitive part, ECPP 5354 primU(115373) 23875 E1 2024 Fibonacci primitive part, ECPP 5355 U(1383,1,7561)+U(1383,1,7560) 23745 x25 2013 Lehmer number 5356 798*Bern(8766)/14670751334144820770719 23743 c94 2021 Irregular, ECPP 5357 Phi(11867,-100) 23732 c47 2021 Unique, ECPP 5358 primU(135421) 23725 E1 2024 Fibonacci primitive part, ECPP 5359 primV(143234) 23654 E1 2024 Lucas primitive part, ECPP 5360 (2^78737-1)/1590296767505866614563328548192658003295567890593 23654 E2 2022 Mersenne cofactor, ECPP 5361 Phi(35421,-10) 23613 c77 2021 Unique, ECPP 5362 6917!-1 23560 g1 1998 Factorial 5363 primU(164185) 23524 E1 2024 Fibonacci primitive part, ECPP 5364 2^77291+2^38646+1 23267 O 2000 Gaussian Mersenne norm 30, generalized unique 5365 primU(166737) 23231 E1 2024 Fibonacci primitive part, ECPP 5366 (V(59936,1,4863)+1)/(V(59936,1,3)+1) 23220 x25 2013 Lehmer primitive part 5367 U(1118,1,7561)-U(1118,1,7560) 23047 x25 2013 Lehmer number 5368 primA(275285) 23012 E1 2024 Lucas Aurifeuillian primitive part, ECPP 5369 primV(110723) 22997 E1 2024 Lucas primitive part, ECPP 5370 primV(180906) 22905 E1 2024 Lucas primitive part, ECPP 5371 (V(45366,1,4857)+1)/(V(45366,1,3)+1) 22604 x25 2013 Lehmer primitive part 5372 U(106663)/35892566541651557 22275 E1 2024 Fibonacci cofactor, ECPP 5373 348054*Bern(8286)/1570865077944473903275073668721 22234 E1 2022 Irregular, ECPP 5374 p(398256632) 22223 E1 2022 Partitions, ECPP 5375 U(105509)/144118801533126010445795676378394340544227572822879081 21997 E1 2022 Fibonacci cofactor, ECPP 5376 U(104911) 21925 c82 2015 Fibonacci number, ECPP 5377 primB(282035) 21758 E1 2023 Lucas Aurifeuillian primitive part, ECPP 5378 primA(276335) 21736 E1 2024 Lucas Aurifeuillian primitive part, ECPP 5379 Phi(1203,10^27) 21600 c47 2021 Unique, ECPP 5380 U(19258,-1,5039) 21586 x23 2007 Generalized Lucas number 5381 6380!+1 21507 g1 1998 Factorial 5382 primV(154281) 21495 E4 2023 Lucas primitive part, ECPP 5383 U(43100,1,4620)+U(43100,1,4619) 21407 x25 2016 Lehmer number 5384 -E(6658)/85079 21257 c77 2020 Euler irregular, ECPP 5385 Phi(39855,-10) 21248 c95 2020 Unique, ECPP 5386 (V(23354,1,4869)-1)/(V(23354,1,9)-1) 21231 x25 2013 Lehmer primitive part 5387 primA(296695) 21137 E1 2023 Lucas Aurifeuillian primitive part, ECPP 5388 U(15631,1,5040)-U(15631,1,5039) 21134 x25 2003 Lehmer number 5389 primA(413205) 21127 E1 2023 Lucas Aurifeuillian primitive part, ECPP 5390 U(35759,1,4620)+U(35759,1,4619) 21033 x25 2016 Lehmer number 5391 p(355646102) 21000 E1 2022 Partitions, ECPP 5392 V(100417)/713042903779101607511808799053206435494854433884796747437071\ 9436805470448849 20911 E1 2024 Lucas cofactor, ECPP 5393 p(350199893) 20838 E7 2022 Partitions, ECPP 5394 U(31321,1,4620)-U(31321,1,4619) 20767 x25 2016 Lehmer number 5395 primU(102689) 20715 E1 2024 Fibonacci primitive part, ECPP 5396 primU(105821) 20598 E1 2022 Fibonacci primitive part, ECPP 5397 primU(172179) 20540 E1 2022 Fibonacci primitive part, ECPP 5398 V(98081)/31189759/611955609270431/6902594225498651/641303018340927841 20442 E1 2024 Lucas cofactor, ECPP 5399 U(11200,-1,5039) 20400 x25 2004 Generalized Lucas number, cyclotomy 5400 4404139952163*2^67002+1 20183 p408 2024 Triplet (3) 5401 4404139952163*2^67002-1 20183 p408 2024 Triplet (2) 5402 4404139952163*2^67002-5 20183 E15 2024 Triplet (1), ECPP 5403 Phi(23749,-10) 20160 c47 2014 Unique, ECPP 5404 primV(112028) 20063 E1 2022 Lucas primitive part, ECPP 5405 1128330746865*2^66441-1 20013 p158 2020 Cunningham chain (4p+3) 5406 1128330746865*2^66440-1 20013 p158 2020 Cunningham chain (2p+1) 5407 1128330746865*2^66439-1 20013 p158 2020 Cunningham chain (p) 5408 4111286921397*2^66420+5 20008 c88 2019 Triplet (3) 5409 4111286921397*2^66420+1 20008 L4808 2019 Triplet (2) 5410 4111286921397*2^66420-1 20008 L4808 2019 Triplet (1) 5411 p(322610098) 20000 E1 2022 Partitions, ECPP 5412 primV(151521) 19863 E1 2022 Lucas primitive part, ECPP 5413 V(94823) 19817 c73 2014 Lucas number, ECPP 5414 U(8454,-1,5039) 19785 x25 2013 Generalized Lucas number 5415 (2^64381-1)/1825231878561264571177401910928543898820492254252817499611\ 8699181907547497 19308 E13 2024 Mersenne cofactor, ECPP 5416 V(91943)/551659/2390519/9687119153094919 19187 E1 2022 Lucas cofactor, ECPP 5417 (V(428,1,8019)-1)/(V(428,1,729)-1) 19184 E1 2022 Lehmer primitive part, ECPP 5418 V(91873)/3674921/193484539/167745030829 19175 E1 2022 Lucas cofactor, ECPP 5419 (2^63703-1)/42808417 19169 c59 2014 Mersenne cofactor, ECPP 5420 primU(137439) 19148 E1 2022 Fibonacci primitive part, ECPP 5421 primU(107779) 18980 E1 2022 Fibonacci primitive part, ECPP 5422 (U(162,1,8581)+U(162,1,8580))/(U(162,1,66)+U(162,1,65)) 18814 E1 2022 Lehmer primitive part, ECPP 5423 V(89849) 18778 c70 2014 Lucas number, ECPP 5424 primV(145353) 18689 c69 2013 ECPP, Lucas primitive part 5425 Phi(14943,-100) 18688 c47 2014 Unique, ECPP 5426 (U(859,1,6385)-U(859,1,6384))/(U(859,1,57)-U(859,1,56)) 18567 E1 2022 Lehmer primitive part, ECPP 5427 Phi(18827,10) 18480 c47 2014 Unique, ECPP 5428 primB(220895) 18465 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5429 primV(153279) 18283 E1 2022 Lucas primitive part, ECPP 5430 42209#+1 18241 p8 1999 Primorial 5431 (V(46662,1,3879)-1)/(V(46662,1,9)-1) 18069 x25 2012 Lehmer primitive part 5432 V(86477)/1042112515940998434071039 18049 c77 2020 Lucas cofactor, ECPP 5433 7457*2^59659+1 17964 Y 1997 Cullen 5434 primB(235015) 17856 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5435 primV(148197) 17696 E1 2022 Lucas primitive part, ECPP 5436 (V(447,1,6723)+1)/(V(447,1,81)+1) 17604 E1 2022 Lehmer primitive part, ECPP 5437 (2^58199-1)/237604901713907577052391 17497 c59 2015 Mersenne cofactor, ECPP 5438 Phi(26031,-10) 17353 c47 2014 Unique, ECPP 5439 primV(169830) 17335 E1 2022 Lucas primitive part, ECPP 5440 (V(561,1,6309)+1)/(V(561,1,9)+1) 17319 x25 2016 Lehmer primitive part 5441 (2^57131-1)/61481396117165983261035042726614288722959856631 17152 c59 2015 Mersenne cofactor, ECPP 5442 U(81839) 17103 p54 2001 Fibonacci number 5443 V(81671) 17069 c66 2013 Lucas number, ECPP 5444 primV(101510) 16970 E1 2022 Lucas primitive part, ECPP 5445 primV(86756) 16920 c74 2015 Lucas primitive part, ECPP 5446 V(80761)/570100885555095451 16861 c77 2020 Lucas cofactor, ECPP 5447 6521953289619*2^55555+1 16737 p296 2013 Triplet (3) 5448 6521953289619*2^55555-1 16737 p296 2013 Triplet (2) 5449 6521953289619*2^55555-5 16737 c58 2013 Triplet (1), ECPP 5450 primV(122754) 16653 c77 2021 Lucas primitive part, ECPP 5451 p(221444161) 16569 c77 2017 Partitions, ECPP 5452 primA(201485) 16535 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5453 U(78919)/15574900936381642440917 16471 c77 2020 Fibonacci cofactor, ECPP 5454 17484430616589*2^54201+5 16330 E14 2024 Consecutive primes arithmetic progression (3,d=6), ECPP 5455 17484430616589*2^54201-1 16330 p440 2024 Consecutive primes arithmetic progression (2,d=6) 5456 17484430616589*2^54201-7 16330 E14 2024 Consecutive primes arithmetic progression (1,d=6), ECPP 5457 primV(123573) 16198 c77 2019 Lucas primitive part, ECPP 5458 primB(225785) 16176 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5459 V(77417)/313991497376559420151 16159 c77 2020 Lucas cofactor, ECPP 5460 (2^53381-1)/15588960193/38922536168186976769/1559912715971690629450336\ 68006103 16008 c84 2017 Mersenne cofactor, ECPP 5461 -E(5186)/295970922359784619239409649676896529941379763 15954 c63 2018 Euler irregular, ECPP 5462 primV(121227) 15890 c77 2019 Lucas primitive part, ECPP 5463 Phi(2949,-100000000) 15713 c47 2013 Unique, ECPP 5464 primU(131481) 15695 c77 2019 Fibonacci primitive part, ECPP 5465 primV(120258) 15649 c77 2019 Lucas primitive part, ECPP 5466 (2^51487-1)/57410994232247/17292148963401772464767849635553 15455 c77 2018 Mersenne cofactor, ECPP 5467 primB(183835) 15368 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5468 primU(77387) 15319 c77 2019 Fibonacci primitive part, ECPP 5469 primB(181705) 15189 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5470 U(71983)/5614673/363946049 15028 c77 2018 Fibonacci cofactor, ECPP 5471 2494779036241*2^49800+13 15004 c93 2022 Consecutive primes arithmetic progression (3,d=6) 5472 2494779036241*2^49800+7 15004 c93 2022 Consecutive primes arithmetic progression (2,d=6) 5473 2494779036241*2^49800+1 15004 p408 2022 Consecutive primes arithmetic progression (1,d=6) 5474 primB(268665) 14972 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5475 Phi(5015,-10000) 14848 c47 2013 Unique, ECPP 5476 2^49207-2^24604+1 14813 x16 2000 Gaussian Mersenne norm 29, generalized unique 5477 214923707595*2^49073+1 14784 p364 2025 Cunningham chain 2nd kind (4p-3) 5478 primA(284895) 14626 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5479 U(69239)/1384781 14464 c77 2018 Fibonacci cofactor, ECPP 5480 primA(170575) 14258 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5481 V(68213)/7290202116115634431 14237 c77 2018 Lucas cofactor, ECPP 5482 p(158375386) 14011 E1 2022 Partitions, ECPP 5483 p(158295265) 14007 E1 2022 Partitions, ECPP 5484 p(158221457) 14004 E1 2022 Partitions, ECPP 5485 primU(67703) 13954 c77 2018 Fibonacci primitive part, ECPP 5486 U(66947)/12485272838388758877279873712131648167413 13951 c77 2017 Fibonacci cofactor, ECPP 5487 V(66533)/2128184670585621839884209100279 13875 c77 2018 Lucas cofactor, ECPP 5488 6*Bern(5534)/226840561549600012633271691723599339 13862 c71 2014 Irregular, ECPP 5489 4410546*Bern(5526)/9712202742835546740714595866405369616019 13840 c63 2018 Irregular,ECPP 5490 191279029*32003#+1 13773 p364 2025 Arithmetic progression (5,d=20571563*32003#) 5491 170707466*32003#+1 13773 p364 2025 Arithmetic progression (4,d=20571563*32003#) 5492 150135903*32003#+1 13773 p364 2025 Arithmetic progression (3,d=20571563*32003#) 5493 129564340*32003#+1 13773 p364 2025 Arithmetic progression (2,d=20571563*32003#) 5494 108992777*32003#+1 13773 p364 2025 Arithmetic progression (1,d=20571563*32003#) 5495 primB(163595) 13675 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5496 6*Bern(5462)/23238026668982614152809832227 13657 c64 2013 Irregular, ECPP 5497 56667641271*2^44441+5 13389 c99 2022 Triplet (3), ECPP 5498 56667641271*2^44441+1 13389 p426 2022 Triplet (2) 5499 56667641271*2^44441-1 13389 p426 2022 Triplet (1) 5500 V(64063)/464426465381142115542697818362662865912299 13347 E1 2024 Lucas cofactor, ECPP 5501 512792361*30941#+1 13338 p364 2022 Arithmetic progression (5,d=18195056*30941#) 5502 494597305*30941#+1 13338 p364 2022 Arithmetic progression (4,d=18195056*30941#) 5503 476402249*30941#+1 13338 p364 2022 Arithmetic progression (3,d=18195056*30941#) 5504 458207193*30941#+1 13338 p364 2022 Arithmetic progression (2,d=18195056*30941#) 5505 440012137*30941#+1 13338 p364 2022 Arithmetic progression (1,d=18195056*30941#) 5506 1815615642825*2^44046-1 13272 p395 2016 Cunningham chain (4p+3) 5507 1815615642825*2^44045-1 13272 p395 2016 Cunningham chain (2p+1) 5508 1815615642825*2^44044-1 13271 p395 2016 Cunningham chain (p) 5509 p(141528106) 13244 E6 2022 Partitions, ECPP 5510 p(141513546) 13244 E6 2022 Partitions, ECPP 5511 p(141512238) 13244 E6 2022 Partitions, ECPP 5512 p(141255053) 13232 E6 2022 Partitions, ECPP 5513 p(141150528) 13227 E6 2022 Partitions, ECPP 5514 p(141112026) 13225 E6 2022 Partitions, ECPP 5515 p(141111278) 13225 E6 2022 Partitions, ECPP 5516 p(140859260) 13213 E6 2022 Partitions, ECPP 5517 p(140807155) 13211 E6 2022 Partitions, ECPP 5518 p(140791396) 13210 E6 2022 Partitions, ECPP 5519 primU(94551) 13174 c77 2018 Fibonacci primitive part, ECPP 5520 primB(242295) 13014 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5521 U(61813)/594517433/3761274442997 12897 c77 2018 Fibonacci cofactor, ECPP 5522 (2^42737+1)/3 12865 M 2007 ECPP, generalized Lucas number, Wagstaff 5523 primU(62771) 12791 c77 2018 Fibonacci primitive part, ECPP 5524 primA(154415) 12728 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5525 primA(263865) 12570 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5526 6*Bern(5078)/643283455240626084534218914061 12533 c63 2013 Irregular, ECPP 5527 (2^41681-1)/1052945423/16647332713153/2853686272534246492102086015457 12495 c77 2015 Mersenne cofactor, ECPP 5528 U(59369)/2442423669148466039458303756169988568809269383644075940757020\ 9763004757 12337 c79 2015 Fibonacci cofactor, ECPP 5529 742478255901*2^40069+1 12074 p395 2016 Cunningham chain 2nd kind (4p-3) 5530 996824343*2^40074+1 12073 p395 2016 Cunningham chain 2nd kind (4p-3) 5531 664342014133*2^39840+1 12005 p408 2020 Consecutive primes arithmetic progression (3,d=30) 5532 664342014133*2^39840-29 12005 c93 2020 Consecutive primes arithmetic progression (2,d=30), ECPP 5533 664342014133*2^39840-59 12005 c93 2020 Consecutive primes arithmetic progression (1,d=30), ECPP 5534 V(56003) 11704 p193 2006 Lucas number 5535 primA(143705) 11703 c77 2017 Lucas Aurifeuillian primitive part, ECPP 5536 4207993863*2^38624+5 11637 L5354 2021 Triplet (3), ECPP 5537 4207993863*2^38624+1 11637 L5354 2021 Triplet (2) 5538 4207993863*2^38624-1 11637 L5354 2021 Triplet (1) 5539 primU(73025) 11587 c77 2015 Fibonacci primitive part, ECPP 5540 primU(67781) 11587 c77 2015 Fibonacci primitive part, ECPP 5541 primB(219165) 11557 c77 2015 Lucas Aurifeuillian primitive part, ECPP 5542 198429723072*11^11005+1 11472 L3323 2016 Cunningham chain 2nd kind (4p-3) 5543 U(54799)/4661437953906084533621577211561 11422 c8 2015 Fibonacci cofactor, ECPP 5544 U(54521)/6403194135342743624071073 11370 c8 2015 Fibonacci cofactor, ECPP 5545 primU(67825) 11336 x23 2007 Fibonacci primitive part 5546 3610!-1 11277 C 1993 Factorial 5547 U(53189)/69431662887136064191105625570683133711989 11075 c8 2014 Fibonacci cofactor, ECPP 5548 primU(61733) 11058 c77 2015 Fibonacci primitive part, ECPP 5549 778965587811*2^36627-1 11038 p395 2016 Cunningham chain (4p+3) 5550 778965587811*2^36626-1 11038 p395 2016 Cunningham chain (2p+1) 5551 778965587811*2^36625-1 11038 p395 2016 Cunningham chain (p) 5552 272879344275*2^36622-1 11036 p395 2016 Cunningham chain (4p+3) 5553 272879344275*2^36621-1 11036 p395 2016 Cunningham chain (2p+1) 5554 272879344275*2^36620-1 11036 p395 2016 Cunningham chain (p) 5555 V(52859)/1124137922466041911 11029 c8 2014 Lucas cofactor, ECPP 5556 3507!-1 10912 C 1992 Factorial 5557 V(52201)/70585804042896975505694709575919458733851279868446609 10857 c8 2015 Lucas cofactor, ECPP 5558 V(52009)/39772636393178951550299332730909 10838 c8 2015 Lucas cofactor, ECPP 5559 V(51941)/2808052157610902114547210696868337380250300924116591143641642\ 866931 10789 c8 2015 Lucas cofactor, ECPP 5560 1258566*Bern(4462)/6610083971965402783802518108033 10763 c64 2013 Irregular, ECPP 5561 3428602715439*2^35678+13 10753 c93 2020 Consecutive primes arithmetic progression (3,d=6), ECPP 5562 3428602715439*2^35678+7 10753 c93 2020 Consecutive primes arithmetic progression (2,d=6), ECPP 5563 3428602715439*2^35678+1 10753 p408 2020 Consecutive primes arithmetic progression (1,d=6) 5564 333645655005*2^35549-1 10713 p364 2015 Cunningham chain (4p+3) 5565 333645655005*2^35548-1 10713 p364 2015 Cunningham chain (2p+1) 5566 333645655005*2^35547-1 10713 p364 2015 Cunningham chain (p) 5567 V(51349)/224417260052884218046541 10708 c8 2014 Lucas cofactor, ECPP 5568 V(51169) 10694 p54 2001 Lucas number 5569 U(51031)/95846689435051369 10648 c8 2014 Fibonacci cofactor, ECPP 5570 V(50989)/69818796119453411 10640 c8 2014 Lucas cofactor, ECPP 5571 U(50833) 10624 CH4 2005 Fibonacci number 5572 2683143625525*2^35176+13 10602 c92 2019 Consecutive primes arithmetic progression (3,d=6),ECPP 5573 2683143625525*2^35176+7 10602 c92 2019 Consecutive primes arithmetic progression (2,d=6),ECPP 5574 2683143625525*2^35176+1 10602 p407 2019 Consecutive primes arithmetic progression (1,d=6) 5575 3020616601*24499#+1 10593 p422 2021 Arithmetic progression (6,d=56497325*24499#) 5576 2964119276*24499#+1 10593 p422 2021 Arithmetic progression (5,d=56497325*24499#) 5577 2907621951*24499#+1 10593 p422 2021 Arithmetic progression (4,d=56497325*24499#) 5578 2851124626*24499#+1 10593 p422 2021 Arithmetic progression (3,d=56497325*24499#) 5579 2794627301*24499#+1 10593 p422 2021 Arithmetic progression (2,d=56497325*24499#) 5580 2738129976*24499#+1 10593 p422 2021 Arithmetic progression (1,d=56497325*24499#) 5581 24029#+1 10387 C 1993 Primorial 5582 400791048*24001#+1 10378 p155 2018 Arithmetic progression (5,d=59874860*24001#) 5583 393142614*24001#+1 10378 p155 2018 Arithmetic progression (5,d=54840724*24001#) 5584 340916188*24001#+1 10378 p155 2018 Arithmetic progression (4,d=59874860*24001#) 5585 338301890*24001#+1 10378 p155 2018 Arithmetic progression (4,d=54840724*24001#) 5586 283461166*24001#+1 10377 p155 2018 Arithmetic progression (3,d=54840724*24001#) 5587 281041328*24001#+1 10377 p155 2018 Arithmetic progression (3,d=59874860*24001#) 5588 228620442*24001#+1 10377 p155 2018 Arithmetic progression (2,d=54840724*24001#) 5589 221488788*24001#+1 10377 p155 2018 Arithmetic progression (5,d=22703701*24001#) 5590 221166468*24001#+1 10377 p155 2018 Arithmetic progression (2,d=59874860*24001#) 5591 198785087*24001#+1 10377 p155 2018 Arithmetic progression (4,d=22703701*24001#) 5592 176081386*24001#+1 10377 p155 2018 Arithmetic progression (3,d=22703701*24001#) 5593 173779718*24001#+1 10377 p155 2018 Arithmetic progression (1,d=54840724*24001#) 5594 163456812*24001#+1 10377 p155 2018 Arithmetic progression (2,d=10601738*24001#) 5595 161291608*24001#+1 10377 p155 2018 Arithmetic progression (1,d=59874860*24001#) 5596 152855074*24001#+1 10377 p155 2018 Arithmetic progression (1,d=10601738*24001#) 5597 6*Bern(4306)/2153 10342 FE8 2009 Irregular, ECPP 5598 23801#+1 10273 C 1993 Primorial 5599 667674063382677*2^33608+7 10132 c88 2019 Quadruplet (4), ECPP 5600 667674063382677*2^33608+5 10132 c88 2019 Quadruplet (3), ECPP 5601 667674063382677*2^33608+1 10132 L4808 2019 Quadruplet (2) 5602 667674063382677*2^33608-1 10132 L4808 2019 Quadruplet (1) 5603 9649755890145*2^33335+1 10048 p364 2015 Cunningham chain 2nd kind (4p-3) 5604 32469*2^32469+1 9779 MM 1997 Cullen 5605 8073*2^32294+1 9726 MM 1997 Cullen 5606 E(3308)/39308792292493140803643373186476368389461245 9516 c8 2014 Euler irregular, ECPP 5607 V(44507) 9302 CH3 2005 Lucas number 5608 U(43399)/470400609575881344601538056264109423291827366228494341196421 9010 c8 2013 Fibonacci cofactor, ECPP 5609 U(42829)/107130175995197969243646842778153077 8916 c8 2014 Fibonacci cofactor, ECPP 5610 U(42043)/1681721 8780 c56 2012 Fibonacci cofactor, ECPP 5611 U(40763)/643247084652261620737 8498 c8 2013 Fibonacci cofactor, ECPP 5612 2^27529-2^13765+1 8288 O 2000 Gaussian Mersenne norm 28, generalized unique 5613 18523#+1 8002 D 1989 Primorial 5614 6*Bern(3458)/28329084584758278770932715893606309 7945 c8 2013 Irregular, ECPP 5615 U(37987)/1832721858208455887947958246414213 7906 c39 2012 Fibonacci cofactor, ECPP 5616 U(37511) 7839 x13 2005 Fibonacci number 5617 -E(2762)/2670541 7760 c11 2004 Euler irregular, ECPP 5618 V(36779) 7687 CH3 2005 Lucas number 5619 U(35999) 7523 p54 2001 Fibonacci number, cyclotomy 5620 V(35449) 7409 p12 2001 Lucas number 5621 -30*Bern(3176)/6689693100056872989386833739813089720559189736259127537\ 0617658634396391181 7138 c63 2016 Irregular, ECPP 5622 2154675239*16301#+1 7036 p155 2018 Arithmetic progression (6,d=141836149*16301#) 5623 2012839090*16301#+1 7036 p155 2018 Arithmetic progression (5,d=141836149*16301#) 5624 1871002941*16301#+1 7036 p155 2018 Arithmetic progression (4,d=141836149*16301#) 5625 1729166792*16301#+1 7036 p155 2018 Arithmetic progression (3,d=141836149*16301#) 5626 1587330643*16301#+1 7035 p155 2018 Arithmetic progression (2,d=141836149*16301#) 5627 1445494494*16301#+1 7035 p155 2018 Arithmetic progression (1,d=141836149*16301#) 5628 -10365630*Bern(3100)/1670366116112864481699585217650438278080436881373\ 643007997602585219667 6943 c63 2016 Irregular ECPP 5629 23005*2^23005-1 6930 Y 1997 Woodall 5630 22971*2^22971-1 6920 Y 1997 Woodall 5631 15877#-1 6845 CD 1992 Primorial 5632 6*Bern(2974)/19622040971147542470479091157507 6637 c8 2013 Irregular, ECPP 5633 U(30757) 6428 p54 2001 Fibonacci number, cyclotomy 5634 E(2220)/392431891068600713525 6011 c8 2013 Euler irregular, ECPP 5635 -E(2202)/53781055550934778283104432814129020709 5938 c8 2013 Euler irregular, ECPP 5636 13649#+1 5862 D 1987 Primorial 5637 274386*Bern(2622)/8518594882415401157891061256276973722693 5701 c8 2013 Irregular, ECPP 5638 18885*2^18885-1 5690 K 1987 Woodall 5639 1963!-1 5614 CD 1992 Factorial 5640 289*2^18502+1 5573 K 1984 Cullen, generalized Fermat 5641 E(2028)/11246153954845684745 5412 c55 2011 Euler irregular, ECPP 5642 -30*Bern(2504)/1248230090315232335602406373438221652417581490266755814\ 38903418303340323897 5354 c63 2013 Irregular ECPP 5643 U(25561) 5342 p54 2001 Fibonacci number 5644 -E(1990)/8338208577950624722417016286765473477033741642105671913 5258 c8 2013 Euler irregular, ECPP 5645 33957462*Bern(2370)/40685 5083 c11 2003 Irregular, ECPP 5646 4122429552750669*2^16567+7 5003 c83 2016 Quadruplet (4), ECPP 5647 4122429552750669*2^16567+5 5003 c83 2016 Quadruplet (3), ECPP 5648 4122429552750669*2^16567+1 5003 L4342 2016 Quadruplet (2) 5649 4122429552750669*2^16567-1 5003 L4342 2016 Quadruplet (1) 5650 35734184537*11677#/3+9 5002 c98 2024 Consecutive primes arithmetic progression (4,d=6), ECPP 5651 35734184537*11677#/3+3 5002 c98 2024 Consecutive primes arithmetic progression (3,d=6), ECPP 5652 35734184537*11677#/3-3 5002 c98 2024 Consecutive primes arithmetic progression (2,d=6), ECPP 5653 35734184537*11677#/3-9 5002 c98 2024 Consecutive primes arithmetic progression (1,d=6), ECPP 5654 E(1840)/31237282053878368942060412182384934425 4812 c4 2011 Euler irregular, ECPP 5655 7911*2^15823-1 4768 K 1987 Woodall 5656 E(1736)/13510337079405137518589526468536905 4498 c4 2004 Euler irregular, ECPP 5657 2^14699+2^7350+1 4425 O 2000 Gaussian Mersenne norm 27, generalized unique 5658 744029027072*10111#-1 4362 p364 2025 Cunningham chain (8p+7) 5659 (2^14479+1)/3 4359 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5660 62399583639*9923#-3399421517 4285 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5661 62399583639*9923#-3399421547 4285 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5662 62399583639*9923#-3399421577 4285 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5663 62399583639*9923#-3399421607 4285 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5664 49325406476*9811#*8+1 4234 p382 2019 Cunningham chain 2nd kind (8p-7) 5665 276474*Bern(2030)/469951697500688159155 4200 c8 2003 Irregular, ECPP 5666 V(19469) 4069 x25 2002 Lucas number, cyclotomy, APR-CL assisted 5667 1477!+1 4042 D 1984 Factorial 5668 -2730*Bern(1884)/100983617849 3844 c8 2003 Irregular, ECPP 5669 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+9 3753 c101 2023 Quadruplet (4),ECPP 5670 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+7 3753 c101 2023 Quadruplet (3),ECPP 5671 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+3 3753 c101 2023 Quadruplet (2),ECPP 5672 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+1 3753 c101 2023 Quadruplet (1),ECPP 5673 12379*2^12379-1 3731 K 1984 Woodall 5674 (2^12391+1)/3 3730 M 1996 Generalized Lucas number, Wagstaff 5675 -E(1466)/167900532276654417372106952612534399239 3682 c8 2013 Euler irregular, ECPP 5676 E(1468)/12330876589623053882799895025030461658552339028064108285 3671 c4 2003 Euler irregular, ECPP 5677 1268118079424*8501#-1 3640 p434 2023 Cunningham chain (8p+7) 5678 101406820312263*2^12042+7 3640 c67 2018 Quadruplet (4) 5679 101406820312263*2^12042+5 3640 c67 2018 Quadruplet (3) 5680 101406820312263*2^12042+1 3640 p364 2018 Quadruplet (2) 5681 101406820312263*2^12042-1 3640 p364 2018 Quadruplet (1) 5682 2673092556681*15^3048+4 3598 c67 2015 Quadruplet (4) 5683 2673092556681*15^3048+2 3598 c67 2015 Quadruplet (3) 5684 2673092556681*15^3048-2 3598 c67 2015 Quadruplet (2) 5685 2673092556681*15^3048-4 3598 c67 2015 Quadruplet (1) 5686 6016459977*7927#-1 3407 p364 2022 Arithmetic progression (7,d=577051223*7927#) 5687 5439408754*7927#-1 3407 p364 2022 Arithmetic progression (6,d=577051223*7927#) 5688 4862357531*7927#-1 3407 p364 2022 Arithmetic progression (5,d=577051223*7927#) 5689 4285306308*7927#-1 3407 p364 2022 Arithmetic progression (4,d=577051223*7927#) 5690 3708255085*7927#-1 3407 p364 2022 Arithmetic progression (3,d=577051223*7927#) 5691 3131203862*7927#-1 3407 p364 2022 Arithmetic progression (2,d=577051223*7927#) 5692 2554152639*7927#-1 3407 p364 2022 Arithmetic progression (1,d=577051223*7927#) 5693 62753735335*7919#+3399421667 3404 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5694 62753735335*7919#+3399421637 3404 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5695 62753735335*7919#+3399421607 3404 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5696 62753735335*7919#+3399421577 3404 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5697 (2^11279+1)/3 3395 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 5698 109766820328*7877#-1 3385 p395 2016 Cunningham chain (8p+7) 5699 585150568069684836*7757#/85085+17 3344 c88 2022 Quintuplet (5), ECPP 5700 585150568069684836*7757#/85085+13 3344 c88 2022 Quintuplet (4), ECPP 5701 585150568069684836*7757#/85085+11 3344 c88 2022 Quintuplet (3), ECPP 5702 585150568069684836*7757#/85085+7 3344 c88 2022 Quintuplet (2), ECPP 5703 585150568069684836*7757#/85085+5 3344 c88 2022 Quintuplet (1), ECPP 5704 104052837*7759#-1 3343 p398 2017 Arithmetic progression (6,d=12009836*7759#) 5705 92043001*7759#-1 3343 p398 2017 Arithmetic progression (5,d=12009836*7759#) 5706 80033165*7759#-1 3343 p398 2017 Arithmetic progression (4,d=12009836*7759#) 5707 68023329*7759#-1 3343 p398 2017 Arithmetic progression (3,d=12009836*7759#) 5708 56013493*7759#-1 3343 p398 2017 Arithmetic progression (2,d=12009836*7759#) 5709 44003657*7759#-1 3343 p398 2017 Arithmetic progression (1,d=12009836*7759#) 5710 2072453060816*7699#+1 3316 p364 2019 Cunningham chain 2nd kind (8p-7) 5711 (2^10691+1)/3 3218 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5712 231692481512*7517#-1 3218 p395 2016 Cunningham chain (8p+7) 5713 (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+19 3207 c100 2023 Consecutive primes arithmetic progression (4,d=6),ECPP 5714 (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+13 3207 c100 2023 Consecutive primes arithmetic progression (3,d=6),ECPP 5715 (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+7 3207 c100 2023 Consecutive primes arithmetic progression (2,d=6),ECPP 5716 (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+1 3207 c100 2023 Consecutive primes arithmetic progression (1,d=6),ECPP 5717 (2^10501+1)/3 3161 M 1996 Generalized Lucas number, Wagstaff 5718 2^10141+2^5071+1 3053 O 2000 Gaussian Mersenne norm 26, generalized unique 5719 121152729080*7019#/1729+19 3025 c92 2019 Consecutive primes arithmetic progression (4,d=6), ECPP 5720 121152729080*7019#/1729+13 3025 c92 2019 Consecutive primes arithmetic progression (3,d=6), ECPP 5721 121152729080*7019#/1729+7 3025 c92 2019 Consecutive primes arithmetic progression (2,d=6), ECPP 5722 121152729080*7019#/1729+1 3025 p407 2019 Consecutive primes arithmetic progression (1,d=6) 5723 V(14449) 3020 DK 1995 Lucas number 5724 3124777373*7001#+1 3019 p155 2012 Arithmetic progression (7,d=481789017*7001#) 5725 2996180304*7001#+1 3019 p155 2012 Arithmetic progression (6,d=46793757*7001#) 5726 2949386547*7001#+1 3019 p155 2012 Arithmetic progression (5,d=46793757*7001#) 5727 2946259686*7001#+1 3019 p155 2012 Arithmetic progression (6,d=313558156*7001#) 5728 2911906960*7001#+1 3019 p155 2012 Arithmetic progression (5,d=3093612*7001#) 5729 2908813348*7001#+1 3019 p155 2012 Arithmetic progression (4,d=3093612*7001#) 5730 2905719736*7001#+1 3019 p155 2012 Arithmetic progression (3,d=3093612*7001#) 5731 2902626124*7001#+1 3019 p155 2012 Arithmetic progression (2,d=3093612*7001#) 5732 2902592790*7001#+1 3019 p155 2012 Arithmetic progression (4,d=46793757*7001#) 5733 2899532512*7001#+1 3019 p155 2012 Arithmetic progression (1,d=3093612*7001#) 5734 2855799033*7001#+1 3019 p155 2012 Arithmetic progression (3,d=46793757*7001#) 5735 2809005276*7001#+1 3019 p155 2012 Arithmetic progression (2,d=46793757*7001#) 5736 2762211519*7001#+1 3019 p155 2012 Arithmetic progression (1,d=46793757*7001#) 5737 2642988356*7001#+1 3019 p155 2012 Arithmetic progression (6,d=481789017*7001#) 5738 2161199339*7001#+1 3019 p155 2012 Arithmetic progression (5,d=481789017*7001#) 5739 1679410322*7001#+1 3019 p155 2012 Arithmetic progression (4,d=481789017*7001#) 5740 1197621305*7001#+1 3019 p155 2012 Arithmetic progression (3,d=481789017*7001#) 5741 715832288*7001#+1 3019 p155 2012 Arithmetic progression (2,d=481789017*7001#) 5742 234043271*7001#+1 3018 p155 2012 Arithmetic progression (1,d=481789017*7001#) 5743 U(14431) 3016 p54 2001 Fibonacci number 5744 138281163736*6977#+1 3006 p395 2016 Cunningham chain 2nd kind (8p-7) 5745 375967981369*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5746 V(13963) 2919 c11 2002 Lucas number, ECPP 5747 284787490256*6701#+1 2879 p364 2015 Cunningham chain 2nd kind (8p-7) 5748 9531*2^9531-1 2874 K 1984 Woodall 5749 -E(1174)/50550511342697072710795058639332351763 2829 c8 2013 Euler irregular, ECPP 5750 -E(1142)/6233437695283865492412648122953349079446935570718422828539863\ 59013986902240869 2697 c77 2015 Euler irregular, ECPP 5751 V(12251) 2561 p54 2001 Lucas number 5752 974!-1 2490 CD 1992 Factorial 5753 7755*2^7755-1 2339 K 1984 Woodall 5754 772463767240*5303#+1 2272 p308 2019 Cunningham chain 2nd kind (8p-7) 5755 116814018316*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10892863626*5303#) 5756 116746086504*5303#+1 2271 p406 2019 Arithmetic progression (7,d=9726011684*5303#) 5757 116242725347*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10388428124*5303#) 5758 107020074820*5303#+1 2271 p406 2019 Arithmetic progression (6,d=9726011684*5303#) 5759 105921154690*5303#+1 2271 p406 2019 Arithmetic progression (6,d=10892863626*5303#) 5760 105854297223*5303#+1 2271 p406 2019 Arithmetic progression (6,d=10388428124*5303#) 5761 97867278281*5303#+1 2271 p406 2019 Arithmetic progression (5,d=2972005888*5303#) 5762 97348096836*5303#+1 2271 p406 2019 Arithmetic progression (5,d=5447332033*5303#) 5763 97294063136*5303#+1 2271 p406 2019 Arithmetic progression (5,d=9726011684*5303#) 5764 96461651937*5303#+1 2271 p406 2019 Arithmetic progression (4,d=435232416*5303#) 5765 96026419521*5303#+1 2271 p406 2019 Arithmetic progression (3,d=435232416*5303#) 5766 95664304943*5303#+1 2271 p406 2019 Arithmetic progression (4,d=817534485*5303#) 5767 95591187105*5303#+1 2271 p406 2019 Arithmetic progression (2,d=435232416*5303#) 5768 95155954689*5303#+1 2271 p406 2019 Arithmetic progression (1,d=435232416*5303#) 5769 94895272393*5303#+1 2271 p406 2019 Arithmetic progression (4,d=2972005888*5303#) 5770 94846770458*5303#+1 2271 p406 2019 Arithmetic progression (3,d=817534485*5303#) 5771 94029235973*5303#+1 2271 p406 2019 Arithmetic progression (2,d=817534485*5303#) 5772 93984538785*5303#+1 2271 p406 2019 Arithmetic progression (3,d=387018369*5303#) 5773 93597520416*5303#+1 2271 p406 2019 Arithmetic progression (2,d=387018369*5303#) 5774 93211701488*5303#+1 2271 p406 2019 Arithmetic progression (1,d=817534485*5303#) 5775 93210502047*5303#+1 2271 p406 2019 Arithmetic progression (1,d=387018369*5303#) 5776 69285767989*5303#+1 2271 p406 2019 Arithmetic progression (8,d=3026809034*5303#) 5777 66258958955*5303#+1 2271 p406 2019 Arithmetic progression (7,d=3026809034*5303#) 5778 63232149921*5303#+1 2271 p406 2019 Arithmetic progression (6,d=3026809034*5303#) 5779 60205340887*5303#+1 2271 p406 2019 Arithmetic progression (5,d=3026809034*5303#) 5780 57178531853*5303#+1 2271 p406 2019 Arithmetic progression (4,d=3026809034*5303#) 5781 54151722819*5303#+1 2271 p406 2019 Arithmetic progression (3,d=3026809034*5303#) 5782 51124913785*5303#+1 2271 p406 2019 Arithmetic progression (2,d=3026809034*5303#) 5783 48098104751*5303#+1 2270 p406 2019 Arithmetic progression (1,d=3026809034*5303#) 5784 V(10691) 2235 DK 1995 Lucas number 5785 566761969187*4733#/2+4 2034 c67 2020 Quintuplet (5) 5786 566761969187*4733#/2+2 2034 c67 2020 Quintuplet (4) 5787 566761969187*4733#/2-2 2034 c67 2020 Quintuplet (3) 5788 566761969187*4733#/2-4 2034 c67 2020 Quintuplet (2) 5789 566761969187*4733#/2-8 2034 c67 2020 Quintuplet (1) 5790 U(9677) 2023 c2 2000 Fibonacci number, ECPP 5791 7610828704751636272*4679#-1 2020 p151 2024 Cunningham chain (16p+15) 5792 126831252923413*4657#/273+13 2002 c88 2020 Quintuplet (5) 5793 126831252923413*4657#/273+9 2002 c88 2020 Quintuplet (4) 5794 126831252923413*4657#/273+7 2002 c88 2020 Quintuplet (3) 5795 126831252923413*4657#/273+3 2002 c88 2020 Quintuplet (2) 5796 126831252923413*4657#/273+1 2002 c88 2020 Quintuplet (1) 5797 6611*2^6611+1 1994 K 1984 Cullen 5798 U(9311) 1946 DK 1995 Fibonacci number 5799 2738129459017*4211#+3399421637 1805 c98 2022 Consecutive primes arithmetic progression (5,d=30) 5800 2738129459017*4211#+3399421607 1805 c98 2022 Consecutive primes arithmetic progression (4,d=30) 5801 2738129459017*4211#+3399421577 1805 c98 2022 Consecutive primes arithmetic progression (3,d=30) 5802 2738129459017*4211#+3399421547 1805 c98 2022 Consecutive primes arithmetic progression (2,d=30) 5803 2738129459017*4211#+3399421517 1805 c98 2022 Consecutive primes arithmetic progression (1,d=30) 5804 V(8467) 1770 c2 2000 Lucas number, ECPP 5805 5795*2^5795+1 1749 K 1984 Cullen 5806 (2^5807+1)/3 1748 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 5807 54201838768*3917#-1 1681 p395 2016 Cunningham chain (16p+15) 5808 102619722624*3797#+1 1631 p395 2016 Cunningham chain 2nd kind (16p-15) 5809 394254311495*3733#/2+4 1606 c67 2017 Quintuplet (5) 5810 394254311495*3733#/2+2 1606 c67 2017 Quintuplet (4) 5811 394254311495*3733#/2-2 1606 c67 2017 Quintuplet (3) 5812 394254311495*3733#/2-4 1606 c67 2017 Quintuplet (2) 5813 394254311495*3733#/2-8 1606 c67 2017 Quintuplet (1) 5814 83*2^5318-1 1603 K 1984 Woodall 5815 2316765173284*3593#+16073 1543 c18 2016 Quintuplet (5), ECPP 5816 2316765173284*3593#+16069 1543 c18 2016 Quintuplet (4), ECPP 5817 2316765173284*3593#+16067 1543 c18 2016 Quintuplet (3), ECPP 5818 2316765173284*3593#+16063 1543 c18 2016 Quintuplet (2), ECPP 5819 2316765173284*3593#+16061 1543 c18 2016 Quintuplet (1), ECPP 5820 652229318541*3527#+3399421637 1504 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5821 652229318541*3527#+3399421607 1504 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5822 652229318541*3527#+3399421577 1504 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5823 652229318541*3527#+3399421547 1504 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5824 652229318541*3527#+3399421517 1504 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5825 3199190962192*3499#-1 1494 p382 2016 Cunningham chain (16p+15) 5826 4713*2^4713+1 1423 K 1984 Cullen 5827 449209457832*3307#+1633050403 1408 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5828 449209457832*3307#+1633050373 1408 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5829 449209457832*3307#+1633050343 1408 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5830 449209457832*3307#+1633050313 1408 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5831 449209457832*3307#+1633050283 1408 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5832 5780736564512*3023#-1 1301 p364 2015 Cunningham chain (16p+15) 5833 2746496109133*3001#+27011 1290 c97 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5834 2746496109133*3001#+26981 1290 c97 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5835 2746496109133*3001#+26951 1290 c97 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5836 2746496109133*3001#+26921 1290 c97 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5837 2746496109133*3001#+26891 1290 c97 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5838 898966996992*3001#+1 1289 p364 2015 Cunningham chain 2nd kind (16p-15) 5839 42530119784448*2969#+1 1281 p382 2017 Cunningham chain 2nd kind (16p-15) 5840 22623218234368*2969#+1 1280 p382 2017 Cunningham chain 2nd kind (16p-15) 5841 1542946580224*2851#-1 1231 p364 2023 Cunningham chain (16p+15) 5842 406463527990*2801#+1633050403 1209 x38 2013 Consecutive primes arithmetic progression (5,d=30) 5843 406463527990*2801#+1633050373 1209 x38 2013 Consecutive primes arithmetic progression (4,d=30) 5844 406463527990*2801#+1633050343 1209 x38 2013 Consecutive primes arithmetic progression (3,d=30) 5845 406463527990*2801#+1633050313 1209 x38 2013 Consecutive primes arithmetic progression (2,d=30) 5846 406463527990*2801#+1633050283 1209 x38 2013 Consecutive primes arithmetic progression (1,d=30) 5847 1290733709840*2677#+1 1141 p295 2011 Cunningham chain 2nd kind (16p-15) 5848 U(5387) 1126 WM 1990 Fibonacci number 5849 1176100079*2591#+1 1101 p252 2019 Arithmetic progression (8,d=60355670*2591#) 5850 1115744409*2591#+1 1101 p252 2019 Arithmetic progression (7,d=60355670*2591#) 5851 1055388739*2591#+1 1100 p252 2019 Arithmetic progression (6,d=60355670*2591#) 5852 995033069*2591#+1 1100 p252 2019 Arithmetic progression (5,d=60355670*2591#) 5853 934677399*2591#+1 1100 p252 2019 Arithmetic progression (4,d=60355670*2591#) 5854 874321729*2591#+1 1100 p252 2019 Arithmetic progression (3,d=60355670*2591#) 5855 813966059*2591#+1 1100 p252 2019 Arithmetic progression (2,d=60355670*2591#) 5856 753610389*2591#+1 1100 p252 2019 Arithmetic progression (1,d=60355670*2591#) 5857 (2^3539+1)/3 1065 M 1989 First titanic by ECPP, generalized Lucas number, Wagstaff 5858 2968802755*2459#+1 1057 p155 2009 Arithmetic progression (8,d=359463429*2459#) 5859 2609339326*2459#+1 1057 p155 2009 Arithmetic progression (7,d=359463429*2459#) 5860 2249875897*2459#+1 1057 p155 2009 Arithmetic progression (6,d=359463429*2459#) 5861 1890412468*2459#+1 1056 p155 2009 Arithmetic progression (5,d=359463429*2459#) 5862 1530949039*2459#+1 1056 p155 2009 Arithmetic progression (4,d=359463429*2459#) 5863 1171485610*2459#+1 1056 p155 2009 Arithmetic progression (3,d=359463429*2459#) 5864 812022181*2459#+1 1056 p155 2009 Arithmetic progression (2,d=359463429*2459#) 5865 452558752*2459#+1 1056 p155 2009 Arithmetic progression (1,d=359463429*2459#) 5866 5963982717*2417#-1 1040 p364 2025 Arithmetic progression (8,d=108526765*2417#) 5867 5855455952*2417#-1 1040 p364 2025 Arithmetic progression (7,d=108526765*2417#) 5868 5746929187*2417#-1 1040 p364 2025 Arithmetic progression (6,d=108526765*2417#) 5869 5638402422*2417#-1 1040 p364 2025 Arithmetic progression (5,d=108526765*2417#) 5870 5529875657*2417#-1 1040 p364 2025 Arithmetic progression (4,d=108526765*2417#) 5871 5421348892*2417#-1 1040 p364 2025 Arithmetic progression (3,d=108526765*2417#) 5872 5312822127*2417#-1 1040 p364 2025 Arithmetic progression (2,d=108526765*2417#) 5873 5204295362*2417#-1 1040 p364 2025 Arithmetic progression (1,d=108526765*2417#) 5874 4692090369*2417#-1 1040 p364 2025 Arithmetic progression (8,d=370899838*2417#) 5875 4321190531*2417#-1 1040 p364 2025 Arithmetic progression (7,d=370899838*2417#) 5876 3950290693*2417#-1 1040 p364 2025 Arithmetic progression (6,d=370899838*2417#) 5877 3579390855*2417#-1 1040 p364 2025 Arithmetic progression (5,d=370899838*2417#) 5878 3208491017*2417#-1 1040 p364 2025 Arithmetic progression (4,d=370899838*2417#) 5879 2837591179*2417#-1 1040 p364 2025 Arithmetic progression (3,d=370899838*2417#) 5880 2466691341*2417#-1 1040 p364 2025 Arithmetic progression (2,d=370899838*2417#) 5881 2095791503*2417#-1 1040 p364 2025 Arithmetic progression (1,d=370899838*2417#) 5882 28993093368077*2399#+19433 1037 c18 2016 Sextuplet (6), ECPP 5883 28993093368077*2399#+19429 1037 c18 2016 Sextuplet (5), ECPP 5884 28993093368077*2399#+19427 1037 c18 2016 Sextuplet (4), ECPP 5885 28993093368077*2399#+19423 1037 c18 2016 Sextuplet (3), ECPP 5886 28993093368077*2399#+19421 1037 c18 2016 Sextuplet (2), ECPP 5887 28993093368077*2399#+19417 1037 c18 2016 Sextuplet (1), ECPP 5888f 64158976085*2399#+1 1034 p41 2025 Arithmetic progression (9,d=6383832302*2399#) 5889f 57775143783*2399#+1 1034 p41 2025 Arithmetic progression (8,d=6383832302*2399#) 5890f 51391311481*2399#+1 1034 p41 2025 Arithmetic progression (7,d=6383832302*2399#) 5891f 45007479179*2399#+1 1034 p41 2025 Arithmetic progression (6,d=6383832302*2399#) 5892f 38623646877*2399#+1 1034 p41 2025 Arithmetic progression (5,d=6383832302*2399#) 5893f 32239814575*2399#+1 1034 p41 2025 Arithmetic progression (4,d=6383832302*2399#) 5894f 25855982273*2399#+1 1034 p41 2025 Arithmetic progression (3,d=6383832302*2399#) 5895f 19472149971*2399#+1 1034 p41 2025 Arithmetic progression (2,d=6383832302*2399#) 5896f 13088317669*2399#+1 1034 p41 2025 Arithmetic progression (1,d=6383832302*2399#) 5897 R(1031) 1031 WD 1985 Repunit 5898 89595955370432*2371#-1 1017 p364 2015 Cunningham chain (32p+31) 5899 116040452086*2371#+1 1014 p308 2012 Arithmetic progression (9,d=6317280828*2371#) 5900 109723171258*2371#+1 1014 p308 2012 Arithmetic progression (8,d=6317280828*2371#) 5901 103405890430*2371#+1 1014 p308 2012 Arithmetic progression (7,d=6317280828*2371#) 5902 97336164242*2371#+1 1014 p308 2013 Arithmetic progression (9,d=6350457699*2371#) 5903 97088609602*2371#+1 1014 p308 2012 Arithmetic progression (6,d=6317280828*2371#) 5904 93537753980*2371#+1 1014 p308 2013 Arithmetic progression (9,d=3388165411*2371#) 5905 92836168856*2371#+1 1014 p308 2013 Arithmetic progression (9,d=127155673*2371#) 5906 92709013183*2371#+1 1014 p308 2013 Arithmetic progression (8,d=127155673*2371#) 5907 92581857510*2371#+1 1014 p308 2013 Arithmetic progression (7,d=127155673*2371#) 5908 92454701837*2371#+1 1014 p308 2013 Arithmetic progression (6,d=127155673*2371#) 5909 92327546164*2371#+1 1014 p308 2013 Arithmetic progression (5,d=127155673*2371#) 5910 92200390491*2371#+1 1014 p308 2013 Arithmetic progression (4,d=127155673*2371#) 5911 92073234818*2371#+1 1014 p308 2013 Arithmetic progression (3,d=127155673*2371#) 5912 91946079145*2371#+1 1014 p308 2013 Arithmetic progression (2,d=127155673*2371#) 5913 91818923472*2371#+1 1014 p308 2013 Arithmetic progression (1,d=127155673*2371#) 5914 90985706543*2371#+1 1014 p308 2013 Arithmetic progression (8,d=6350457699*2371#) 5915 90771328774*2371#+1 1014 p308 2012 Arithmetic progression (5,d=6317280828*2371#) 5916 90149588569*2371#+1 1014 p308 2013 Arithmetic progression (8,d=3388165411*2371#) 5917 86761423158*2371#+1 1014 p308 2013 Arithmetic progression (7,d=3388165411*2371#) 5918 84635248844*2371#+1 1014 p308 2013 Arithmetic progression (7,d=6350457699*2371#) 5919 84454047946*2371#+1 1014 p308 2012 Arithmetic progression (4,d=6317280828*2371#) 5920 83373257747*2371#+1 1014 p308 2013 Arithmetic progression (6,d=3388165411*2371#) 5921 79985092336*2371#+1 1014 p308 2013 Arithmetic progression (5,d=3388165411*2371#) 5922 78284791145*2371#+1 1014 p308 2013 Arithmetic progression (6,d=6350457699*2371#) 5923 78136767118*2371#+1 1014 p308 2012 Arithmetic progression (3,d=6317280828*2371#) 5924 76596926925*2371#+1 1014 p308 2013 Arithmetic progression (4,d=3388165411*2371#) 5925 73208761514*2371#+1 1014 p308 2013 Arithmetic progression (3,d=3388165411*2371#) 5926 71934333446*2371#+1 1014 p308 2013 Arithmetic progression (5,d=6350457699*2371#) 5927 71819486290*2371#+1 1014 p308 2012 Arithmetic progression (2,d=6317280828*2371#) 5928 69820596103*2371#+1 1014 p308 2013 Arithmetic progression (2,d=3388165411*2371#) 5929 66432430692*2371#+1 1014 p308 2013 Arithmetic progression (1,d=3388165411*2371#) 5930 65583875747*2371#+1 1014 p308 2013 Arithmetic progression (4,d=6350457699*2371#) 5931 65502205462*2371#+1 1014 p308 2012 Arithmetic progression (1,d=6317280828*2371#) 5932 61526034135*2371#+1 1014 p308 2011 Arithmetic progression (3,d=1298717501*2371#) 5933 60227316634*2371#+1 1014 p308 2011 Arithmetic progression (2,d=1298717501*2371#) 5934 58928599133*2371#+1 1014 p308 2011 Arithmetic progression (1,d=1298717501*2371#) 5935 533098369554*2357#+3399421667 1012 c98 2021 Consecutive primes arithmetic progression (6,d=30), ECPP 5936 533098369554*2357#+3399421637 1012 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5937 533098369554*2357#+3399421607 1012 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5938 533098369554*2357#+3399421577 1012 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5939 533098369554*2357#+3399421547 1012 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5940 533098369554*2357#+3399421517 1012 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5941 113225039190926127209*2339#/57057+21 1002 c88 2021 Septuplet (7) 5942 113225039190926127209*2339#/57057+19 1002 c88 2021 Septuplet (6) 5943 113225039190926127209*2339#/57057+13 1002 c88 2021 Septuplet (5) 5944 113225039190926127209*2339#/57057+9 1002 c88 2021 Septuplet (4) 5945 113225039190926127209*2339#/57057+7 1002 c88 2021 Septuplet (3) 5946 1184490310627008*2339#+1 1001 p364 2025 Cunningham chain 2nd kind (32p-31) ----- ------------------------------- -------- ----- ---- -------------- KEY TO PROOF-CODES (primality provers): A1 Propper, Srsieve, PrimeGrid, PRST A2 Propper, Srsieve, PRST A3 Atnashev, PRST A5 Gahan, Cyclo, PRST A6 Propper, Gcwsieve, PRST A7 Baur, Cyclo, PRST A8 Baur1, Srsieve, PRST A9 Wright1, Srsieve, CRUS, PRST A10 Grosvenor, Srsieve, CRUS, PRST A11 Anonymous, Srsieve, CRUS, PRST A12 Kruse, Srsieve, CRUS, PRST A13 Marler, Cyclo, PRST A14 Thompson5, Srsieve, CRUS, PRST A15 Sielemann, Srsieve, CRUS, PRST A16 Broer, Srsieve, CRUS, PRST A18 Trunov, Cyclo, PRST A19 Propper, Batalov, Srsieve, PRST A20 Propper, Batalov, Gcwsieve, PRST A21 Piesker, Srsieve, CRUS, PRST A22 Doornink, Cyclo, PRST A23 Brown1, Srsieve, PrimeGrid, PRST A24 Ogawa, MultiSieve, NewPGen, PRST A25 Schmidt2, NewPGen, PRST A26 VISCAPI, Srsieve, CRUS, PRST A27 Piesker, PSieve, Srsieve, NPLB, PRST A28 Gingrich1, Srsieve, CRUS, PRST A29 Kelava1, Srsieve, Prime95, PRST A30 Silva2, Srsieve, PrimeGrid, PRST A31 Dinkel, MultiSieve, PRST A32 Cedric, Srsieve, CRUS, PRST A33 Przystawik, Srsieve, CRUS, PRST A38 Batalov, PSieve, Srsieve, PRST A41 Gmirkin, Srsieve, PrimeGrid, PRST A42 Dadocad72, Srsieve, CRUS, PRST A43 Propper, MultiSieve, PRST A44 Smith12, Srsieve, CRUS, PRST A45 Kaczala, Srsieve, PrimeGrid, PRST A46 Primecrunch.com, Hedges, Srsieve, PRST A48 Peteri, Srsieve, CRUS, PRST A49 Swerczek, Srsieve, CRUS, PRST A50 Bird2, Srsieve, CRUS, PRST A51 Gahan, NewPGen, PRST A52 Schumacher, Srsieve, CRUS, PRST A54 Lynch, Srsieve, CRUS, PRST A55 Nielsen1, Gahan, PRST A57 Busler, Srsieve, CRUS, PRST A58 Schmidt2, PSieve, Srsieve, NPLB, PRST A59 Straleger, Srsieve, CRUS, PRST A60 Presler, Srsieve, PrimeGrid, PRST A61 Williams7, Gcwsieve, MultiSieve, PrimeGrid, PRST A62 Gehrke, Srsieve, CRUS, PRST A63 Davies, Srsieve, CRUS, PRST A64 Freeman.kennethgmail.com, Srsieve, CRUS, PRST A65 Dickinson, Srsieve, CRUS, PRST A66 Terber, Srsieve, CRUS, PRST A67 Gahan, Gcwsieve, PRST A68 Schroeder3, Srsieve, CRUS, PRST A69 Chodzinski, Srsieve, CRUS, PRST A70 Korolev, Srsieve, CRUS, PRST A71 Harju, Srsieve, CRUS, PRST A72 Brase, Srsieve, CRUS, PRST A73 Brooks2, Srsieve, CRUS, PRST A74 Dettweiler, PSieve, Srsieve, NPLB, PRST A75 Yasuhisa, TwinGen, NewPGen, TPS, PRST A76 Brockwell, PSieve, Srsieve, NPLB, PRST A77 Barnes, PSieve, Srsieve, NPLB, PRST A78 Wen, PSieve, Srsieve, NPLB, PRST A79 Vink, Brockwell, Schmidt2, TwinGen, NewPGen, TPS, PRST C Caldwell, Cruncher c2 Water, Primo c4 Broadhurst, Primo c8 Broadhurst, Water, Primo c11 Oakes, Primo c18 Luhn, Primo c39 Minovic, OpenPFGW, Primo c47 Chandler, Primo c54 Wu_T, Primo c55 Gramolin, Primo c56 Soule, Minovic, OpenPFGW, Primo c58 Kaiser1, NewPGen, OpenPFGW, Primo c59 Metcalfe, OpenPFGW, Primo c63 Ritschel, TOPS, Primo c64 Metcalfe, Minovic, Ritschel, TOPS, Primo c66 Steine, Primo c67 Batalov, NewPGen, OpenPFGW, Primo c69 Jacobsen, Primo c70 Underwood, Dubner, Primo c71 Metcalfe, Ritschel, Andersen, TOPS, Primo c73 Underwood, Lifchitz, Primo c74 Lasher, Dubner, Primo c76 Kaiser1, Water, Underwood, Primo c77 Batalov, Primo c79 Batalov, Broadhurst, Water, Primo c81 Water, Underwood, Primo c82 Steine, Water, Primo c83 Kaiser1, PolySieve, NewPGen, Primo c84 Underwood, Primo c88 Kaiser1, PolySieve, Primo c92 Lamprecht, Luhn, Primo c93 Batalov, PolySieve, Primo c94 Gelhar, Ritschel, TOPS, Primo c95 Gelhar, Primo c97 Lamprecht, Luhn, APSieve, OpenPFGW, Primo c98 Batalov, EMsieve, Primo c99 Kruse, Schoeler, Primo c100 DavisK, APTreeSieve, NewPGen, OpenPFGW, Primo c101 DavisK, APTreeSieve, OpenPFGW, Primo CD Caldwell, Dubner, Cruncher CH10 Batalov, OpenPFGW, Primo, CHG CH12 Propper, Batalov, OpenPFGW, Primo, CHG CH13 Propper, Batalov, EMsieve, OpenPFGW, CHG CH14 Wu_T, CM, OpenPFGW, CHG CH15 Propper, Batalov, CM, OpenPFGW, CHG CH2 Wu_T, OpenPFGW, Primo, CHG CH3 Broadhurst, Water, OpenPFGW, Primo, CHG CH4 Irvine, Broadhurst, Water, OpenPFGW, Primo, CHG CH9 Zhou, OpenPFGW, CHG D Dubner, Cruncher DK Dubner, Keller, Cruncher DS Smith_Darren, Proth.exe E1 Batalov, CM E2 Propper, CM E3 Enge, CM E4 Childers, CM E5 Underwood, CM E6 Lasher, Broadhurst, Underwood, CM E7 Lasher, CM E8 Broadhurst, Underwood, CM E9 Mock, CM E10 Doornink, CM E11 Karpovich, CM E12 Enge, Underwood, CM E13 Batalov, Masser, CM E14 Batalov, EMsieve, CM E15 Batalov, PolySieve, CM E16 Propper, Batalov, CM E17 Foreman, Batalov, CM FE8 Oakes, Broadhurst, Water, Morain, FastECPP g0 Gallot, Proth.exe G1 Armengaud, GIMPS, Prime95 g1 Caldwell, Proth.exe G2 Spence, GIMPS, Prime95 G3 Clarkson, Kurowski, GIMPS, Prime95 G4 Hajratwala, Kurowski, GIMPS, Prime95 G5 Cameron, Kurowski, GIMPS, Prime95 G6 Shafer, GIMPS, Prime95 G7 Findley_J, GIMPS, Prime95 G8 Nowak, GIMPS, Prime95 G9 Boone, Cooper, GIMPS, Prime95 G10 Smith_E, GIMPS, Prime95 G11 Elvenich, GIMPS, Prime95 G12 Strindmo, GIMPS, Prime95 G13 Cooper, GIMPS, Prime95 G14 Cooper, GIMPS, Prime95 G15 Pace, GIMPS, Prime95 G16 Laroche, GIMPS, Prime95 g23 Ballinger, Proth.exe g25 OHare, Proth.exe g55 Toplic, Proth.exe g236 Heuer, GFN17Sieve, GFNSearch, Proth.exe g245 Cosgrave, NewPGen, PRP, Proth.exe g260 AYENI, Proth.exe g267 Grobstich, NewPGen, PRP, Proth.exe g277 Eaton, NewPGen, PRP, Proth.exe g279 Cooper, NewPGen, PRP, Proth.exe g337 Hsieh, NewPGen, PRP, Proth.exe g403 Yoshimura, ProthSieve, PrimeSierpinski, LLR, Proth.exe g407 HermleGC, MultiSieve, PRP, Proth.exe g413 Scott, AthGFNSieve, Proth.exe g414 Gilvey, Srsieve, PrimeGrid, PrimeSierpinski, LLR, Proth.exe g418 Taura, NewPGen, PRP, Proth.exe g424 Broadhurst, NewPGen, OpenPFGW, Proth.exe g427 Batalov, Srsieve, LLR, Proth.exe g429 Underbakke, GenefX64, AthGFNSieve, PrimeGrid, Proth.exe g431 Shenton, Srsieve, Proth.exe gm Morii, Proth.exe K Keller L20 Kapek, LLR L53 Zaveri, ProthSieve, RieselSieve, PRP, LLR L95 Urushi, LLR L124 Rodenkirch, MultiSieve, LLR L129 Snyder, LLR L137 Jaworski, Rieselprime, LLR L161 Schafer, NewPGen, LLR L181 Siegert, LLR L185 Hassler, NewPGen, LLR L192 Jaworski, LLR L197 DaltonJ, ProthSieve, RieselSieve, LLR L201 Siemelink, LLR L256 Underwood, Srsieve, NewPGen, 321search, LLR L381 Mate, Siemelink, Rodenkirch, MultiSieve, LLR L384 Pinho, Srsieve, Rieselprime, LLR L426 Jaworski, Srsieve, Rieselprime, LLR L436 Andersen2, Gcwsieve, MultiSieve, PrimeGrid, LLR L447 Kohlman, Gcwsieve, MultiSieve, PrimeGrid, LLR L466 Zhou, NewPGen, LLR L503 Benson, Srsieve, LLR L521 Thompson1, Gcwsieve, MultiSieve, PrimeGrid, LLR L527 Tornberg, TwinGen, LLR L541 Barnes, Srsieve, CRUS, LLR L550 Bonath, Srsieve, CRUS, LLR L591 Penne, Srsieve, CRUS, LLR L606 Bennett, Srsieve, NewPGen, PrimeGrid, 321search, LLR L613 Keogh, Srsieve, ProthSieve, RieselSieve, LLR L622 Cardall, Srsieve, ProthSieve, RieselSieve, LLR L671 Wong, Srsieve, PrimeGrid, LLR L689 Brown1, Srsieve, PrimeGrid, LLR L690 Cholt, Srsieve, PrimeGrid, LLR L753 Wolfram, Srsieve, PrimeGrid, LLR L760 Riesen, Srsieve, Rieselprime, LLR L764 Ewing, Srsieve, PrimeGrid, LLR L780 Brady, Srsieve, PrimeGrid, LLR L801 Gesker, Gcwsieve, MultiSieve, PrimeGrid, LLR L802 Zachariassen, Srsieve, NPLB, LLR L875 Hatland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L917 Bergman1, Gcwsieve, MultiSieve, PrimeGrid, LLR L923 Kaiser1, Klahn, NewPGen, PrimeGrid, TPS, SunGard, LLR L927 Brown1, TwinGen, PrimeGrid, LLR L983 Wu_T, LLR L1056 Schwieger, Srsieve, PrimeGrid, LLR L1115 Splain, PSieve, Srsieve, PrimeGrid, LLR L1125 Laluk, PSieve, Srsieve, PrimeGrid, LLR L1129 Slomma, PSieve, Srsieve, PrimeGrid, LLR L1134 Ogawa, Srsieve, NewPGen, LLR L1141 Ogawa, NewPGen, LLR L1160 Sunderland, PSieve, Srsieve, PrimeGrid, LLR L1188 Faith, PSieve, Srsieve, PrimeGrid, LLR L1201 Carpenter1, PSieve, Srsieve, PrimeGrid, LLR L1203 Mauno, PSieve, Srsieve, PrimeGrid, LLR L1204 Brown1, PSieve, Srsieve, PrimeGrid, LLR L1209 Wong, PSieve, Srsieve, PrimeGrid, LLR L1223 Courty, PSieve, Srsieve, PrimeGrid, LLR L1230 Yooil1, PSieve, Srsieve, PrimeGrid, LLR L1300 Yama, PSieve, Srsieve, PrimeGrid, LLR L1301 Sorbera, Srsieve, CRUS, LLR L1349 Wallace, Srsieve, NewPGen, PrimeGrid, LLR L1353 Mumper, Srsieve, PrimeGrid, LLR L1355 Beck, PSieve, Srsieve, PrimeGrid, LLR L1372 Glennie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L1387 Anonymous, PSieve, Srsieve, PrimeGrid, LLR L1412 Jones_M, PSieve, Srsieve, PrimeGrid, LLR L1422 Steichen, PSieve, Srsieve, PrimeGrid, LLR L1444 Davies, PSieve, Srsieve, PrimeGrid, LLR L1448 Hron, PSieve, Srsieve, PrimeGrid, LLR L1455 Heikkila, PSieve, Srsieve, PrimeGrid, LLR L1456 Webster, PSieve, Srsieve, PrimeGrid, LLR L1460 Salah, Srsieve, PrimeGrid, PrimeSierpinski, LLR L1471 Gunn, Srsieve, CRUS, LLR L1474 Brown6, PSieve, Srsieve, PrimeGrid, LLR L1486 Dinkel, PSieve, Srsieve, PrimeGrid, LLR L1502 Champ, PSieve, Srsieve, PrimeGrid, LLR L1576 Craig, PSieve, Srsieve, PrimeGrid, LLR L1675 Schwieger, PSieve, Srsieve, PrimeGrid, LLR L1728 Gasewicz, PSieve, Srsieve, PrimeGrid, LLR L1741 Granowski, PSieve, Srsieve, PrimeGrid, LLR L1745 Cholt, PSieve, Srsieve, PrimeGrid, LLR L1754 Hubbard, PSieve, Srsieve, PrimeGrid, LLR L1774 Schoefer, PSieve, Srsieve, PrimeGrid, LLR L1780 Ming, PSieve, Srsieve, PrimeGrid, LLR L1792 Tang, PSieve, Srsieve, PrimeGrid, LLR L1808 Reynolds1, PSieve, Srsieve, PrimeGrid, LLR L1817 Barnes, PSieve, Srsieve, NPLB, LLR L1823 Larsson, PSieve, Srsieve, PrimeGrid, LLR L1828 Benson, PSieve, Srsieve, Rieselprime, LLR L1862 Curtis, PSieve, Srsieve, Rieselprime, LLR L1863 Wozny, PSieve, Srsieve, Rieselprime, LLR L1884 Jaworski, PSieve, Srsieve, Rieselprime, LLR L1885 Ostaszewski, PSieve, Srsieve, PrimeGrid, LLR L1921 Winslow, TwinGen, PrimeGrid, LLR L1932 Dragnev, PSieve, Srsieve, PrimeGrid, LLR L1935 Channing, PSieve, Srsieve, PrimeGrid, LLR L1949 Pritchard, Srsieve, PrimeGrid, RieselSieve, LLR L1959 Metcalfe, PSieve, Srsieve, Rieselprime, LLR L1979 Tibbott, PSieve, Srsieve, PrimeGrid, LLR L2012 Pedersen_K, Srsieve, CRUS, OpenPFGW, LLR L2017 Hubbard, PSieve, Srsieve, NPLB, LLR L2030 Tonner, PSieve, Srsieve, PrimeGrid, LLR L2035 Greer, TwinGen, PrimeGrid, LLR L2042 Lachance, PSieve, Srsieve, PrimeGrid, LLR L2046 Melvold, Srsieve, PrimeGrid, LLR L2054 Kaiser1, Srsieve, CRUS, LLR L2055 Soule, PSieve, Srsieve, Rieselprime, LLR L2074 Minovic, PSieve, Srsieve, Rieselprime, LLR L2085 Dodson1, PSieve, Srsieve, PrimeGrid, LLR L2086 Sveen, PSieve, Srsieve, PrimeGrid, LLR L2103 Schmidt1, PSieve, Srsieve, PrimeGrid, LLR L2117 Karlsteen, PSieve, Srsieve, PrimeGrid, LLR L2121 VanRangelrooij, PSieve, Srsieve, PrimeGrid, LLR L2125 Greer, PSieve, Srsieve, PrimeGrid, LLR L2137 Hayashi1, PSieve, Srsieve, PrimeGrid, LLR L2142 Hajek, PSieve, Srsieve, PrimeGrid, LLR L2158 Krauss, PSieve, Srsieve, PrimeGrid, LLR L2163 VanRooijen1, PSieve, Srsieve, PrimeGrid, LLR L2233 Herder, Srsieve, PrimeGrid, LLR L2235 Mullage, PSieve, Srsieve, NPLB, LLR L2257 Dettweiler, PSieve, Srsieve, NPLB, LLR L2269 Schori, Srsieve, PrimeGrid, LLR L2322 Szafranski, PSieve, Srsieve, PrimeGrid, LLR L2366 Satoh, PSieve, Srsieve, PrimeGrid, LLR L2371 Luszczek, Srsieve, PrimeGrid, LLR L2373 Tarasov1, Srsieve, PrimeGrid, LLR L2408 Reinman, Srsieve, PrimeGrid, LLR L2425 DallOsto, LLR L2429 Bliedung, TwinGen, PrimeGrid, LLR L2484 Ritschel, PSieve, Srsieve, Rieselprime, LLR L2487 Liao, PSieve, Srsieve, PrimeGrid, LLR L2520 Mamanakis, PSieve, Srsieve, PrimeGrid, LLR L2549 McKay, PSieve, Srsieve, PrimeGrid, LLR L2552 Foulher, PSieve, Srsieve, PrimeGrid, LLR L2561 Vinklat, PSieve, Srsieve, PrimeGrid, LLR L2564 Bravin, PSieve, Srsieve, PrimeGrid, LLR L2583 Nakamura, PSieve, Srsieve, PrimeGrid, LLR L2602 Mueller4, PSieve, Srsieve, PrimeGrid, LLR L2603 Hoffman, PSieve, Srsieve, PrimeGrid, LLR L2606 Slakans, PSieve, Srsieve, PrimeGrid, LLR L2629 Becker2, PSieve, Srsieve, PrimeGrid, LLR L2659 Reber, PSieve, Srsieve, PrimeGrid, LLR L2664 Koluvere, PSieve, Srsieve, PrimeGrid, LLR L2676 Cox2, PSieve, Srsieve, PrimeGrid, LLR L2691 Pettersen, PSieve, Srsieve, PrimeGrid, LLR L2714 Piotrowski, PSieve, Srsieve, PrimeGrid, LLR L2715 Donovan, PSieve, Srsieve, PrimeGrid, LLR L2719 Yost, PSieve, Srsieve, PrimeGrid, LLR L2777 Ritschel, Gcwsieve, TOPS, LLR L2785 Meili, PSieve, Srsieve, PrimeGrid, LLR L2805 Barr, PSieve, Srsieve, PrimeGrid, LLR L2840 Santana, PSieve, Srsieve, PrimeGrid, LLR L2842 English1, PSieve, Srsieve, PrimeGrid, LLR L2873 Jurach, PSieve, Srsieve, PrimeGrid, LLR L2885 Busacker, PSieve, Srsieve, PrimeGrid, LLR L2891 Lacroix, PSieve, Srsieve, PrimeGrid, LLR L2914 Merrylees, PSieve, Srsieve, PrimeGrid, LLR L2959 Derrera, PSieve, Srsieve, PrimeGrid, LLR L2973 Kurtovic, Srsieve, PrimeGrid, LLR L2975 Loureiro, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L2992 Boehm, PSieve, Srsieve, PrimeGrid, LLR L2997 Williams2, PSieve, Srsieve, PrimeGrid, LLR L3023 Winslow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3029 Walsh, PSieve, Srsieve, PrimeGrid, LLR L3033 Snow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3035 Scalise, PSieve, Srsieve, PrimeGrid, LLR L3048 Breslin, PSieve, Srsieve, PrimeGrid, LLR L3054 Winslow, Srsieve, PrimeGrid, LLR L3091 Ridgway, PSieve, Srsieve, PrimeGrid, LLR L3101 Reichard, PSieve, Srsieve, PrimeGrid, LLR L3118 Yama, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3141 Kus, PSieve, Srsieve, PrimeGrid, LLR L3168 Schwegler, PSieve, Srsieve, PrimeGrid, LLR L3171 Bergelt, PSieve, Srsieve, PrimeGrid, LLR L3173 Zhou2, PSieve, Srsieve, PrimeGrid, LLR L3174 Boniecki, PSieve, Srsieve, PrimeGrid, LLR L3183 Haller, Srsieve, PrimeGrid, LLR L3184 Hayslette, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3200 Athanas, PSieve, Srsieve, PrimeGrid, LLR L3203 Scalise, TwinGen, PrimeGrid, LLR L3209 McArdle, GenefX64, AthGFNSieve, PrimeGrid, LLR L3222 Yamamoto, PSieve, Srsieve, PrimeGrid, LLR L3223 Yurgandzhiev, PSieve, Srsieve, PrimeGrid, LLR L3230 Kumagai, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3234 Parangalan, PSieve, Srsieve, PrimeGrid, LLR L3249 Lind, PSieve, Srsieve, PrimeGrid, LLR L3260 Stanko, PSieve, Srsieve, PrimeGrid, LLR L3261 Batalov, PSieve, Srsieve, PrimeGrid, LLR L3262 Molder, PSieve, Srsieve, PrimeGrid, LLR L3278 Fischer1, PSieve, Srsieve, PrimeGrid, LLR L3323 Ritschel, NewPGen, TOPS, LLR L3325 Elvy, PSieve, Srsieve, PrimeGrid, LLR L3329 Tatearka, PSieve, Srsieve, PrimeGrid, LLR L3345 Domanov1, PSieve, Rieselprime, LLR L3372 Ryan, PSieve, Srsieve, PrimeGrid, LLR L3430 Durstewitz, PSieve, Srsieve, PrimeGrid, LLR L3431 Gahan, PSieve, Srsieve, PrimeGrid, LLR L3432 Batalov, Srsieve, LLR L3458 Jia, PSieve, Srsieve, PrimeGrid, LLR L3459 Boruvka, PSieve, Srsieve, PrimeGrid, LLR L3460 Ottusch, PSieve, Srsieve, PrimeGrid, LLR L3483 Farrow, PSieve, Srsieve, PrimeGrid, LLR L3494 Batalov, NewPGen, LLR L3502 Ristic, PSieve, Srsieve, PrimeGrid, LLR L3512 Tsuji, PSieve, Srsieve, PrimeGrid, LLR L3514 Bishop1, PSieve, Srsieve, PrimeGrid, OpenPFGW, LLR L3519 Kurtovic, PSieve, Srsieve, Rieselprime, LLR L3523 Brown1, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3532 Batalov, Gcwsieve, LLR L3539 Jacobs, PSieve, Srsieve, PrimeGrid, LLR L3543 Yama, PrimeGrid, LLR L3545 Eskam1, PSieve, Srsieve, PrimeGrid, LLR L3547 Ready, Srsieve, PrimeGrid, LLR L3548 Ready, PSieve, Srsieve, PrimeGrid, LLR L3552 Benson2, Srsieve, PrimeGrid, LLR L3553 Cilliers, Srsieve, PrimeGrid, LLR L3562 Schouten, Srsieve, PrimeGrid, LLR L3564 Jaworski, Srsieve, CRUS, LLR L3566 Slakans, Srsieve, PrimeGrid, LLR L3567 Meili, Srsieve, PrimeGrid, LLR L3573 Batalov, TwinGen, PrimeGrid, LLR L3593 Veit, PSieve, Srsieve, PrimeGrid, LLR L3606 Sander, TwinGen, PrimeGrid, LLR L3610 Batalov, Srsieve, CRUS, LLR L3659 Volynsky, Srsieve, PrimeGrid, LLR L3662 Schawe, PSieve, Srsieve, PrimeGrid, LLR L3665 Kelava1, PSieve, Srsieve, Rieselprime, LLR L3686 Yost, Srsieve, PrimeGrid, LLR L3719 Skinner, PSieve, Srsieve, PrimeGrid, LLR L3720 Ohno, Srsieve, PrimeGrid, LLR L3735 Kurtovic, Srsieve, LLR L3749 Meador, Srsieve, PrimeGrid, LLR L3760 Okazaki, PSieve, Srsieve, PrimeGrid, LLR L3763 Martin4, PSieve, Srsieve, PrimeGrid, LLR L3764 Diepeveen, PSieve, Srsieve, Rieselprime, LLR L3770 Tang, Srsieve, PrimeGrid, LLR L3772 Ottusch, Srsieve, PrimeGrid, LLR L3784 Cavnaugh, PSieve, Srsieve, PrimeGrid, LLR L3789 Toda, Srsieve, PrimeGrid, LLR L3802 Aggarwal, Srsieve, LLR L3803 Bredl, PSieve, Srsieve, PrimeGrid, LLR L3813 Chambers2, PSieve, Srsieve, PrimeGrid, LLR L3824 Mazzucato, PSieve, Srsieve, PrimeGrid, LLR L3829 Abrahmi, TwinGen, PrimeGrid, LLR L3839 Batalov, EMsieve, LLR L3849 Smith10, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3859 Clifton, PSieve, Srsieve, PrimeGrid, LLR L3865 Silva, PSieve, Srsieve, PrimeGrid, LLR L3869 Cholt, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3877 Jarne, PSieve, Srsieve, PrimeGrid, LLR L3887 Byerly, PSieve, Rieselprime, LLR L3895 Englehard, PSieve, Srsieve, PrimeGrid, LLR L3898 Christy, PSieve, Srsieve, PrimeGrid, LLR L3903 Miao, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3904 Darimont, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3910 Bischof, PSieve, Srsieve, PrimeGrid, LLR L3917 Rodenkirch, PSieve, Srsieve, LLR L3919 Pickering, PSieve, Srsieve, PrimeGrid, LLR L3924 Kim5, PSieve, Srsieve, PrimeGrid, LLR L3925 Okazaki, Srsieve, PrimeGrid, LLR L3933 Batalov, PSieve, Srsieve, CRUS, Rieselprime, LLR L3941 Lee8, PSieve, Srsieve, PrimeGrid, LLR L3961 Darimont, Srsieve, PrimeGrid, LLR L3964 Iakovlev, Srsieve, PrimeGrid, LLR L3993 Gushchak, Srsieve, PrimeGrid, LLR L3994 Domanov1, PSieve, Srsieve, NPLB, LLR L4001 Willig, Srsieve, CRUS, LLR L4021 Busse, PSieve, Srsieve, PrimeGrid, LLR L4031 Darney, PSieve, Srsieve, PrimeGrid, LLR L4034 Vanc, Srsieve, PrimeGrid, LLR L4036 Domanov1, PSieve, Srsieve, CRUS, LLR L4043 Niedbala, PSieve, Srsieve, PrimeGrid, LLR L4045 Chew, PSieve, Srsieve, PrimeGrid, LLR L4064 Davies, Srsieve, CRUS, LLR L4082 Zimmerman, PSieve, Srsieve, PrimeGrid, LLR L4083 Charrondiere, PSieve, Srsieve, PrimeGrid, LLR L4087 Kecic, PSieve, Srsieve, PrimeGrid, LLR L4099 Nietering, PSieve, Srsieve, PrimeGrid, LLR L4103 Klopffleisch, Srsieve, PrimeGrid, LLR L4108 Yoshioka, PSieve, Srsieve, PrimeGrid, LLR L4113 Batalov, PSieve, Srsieve, LLR L4114 Bubloski, PSieve, Srsieve, PrimeGrid, LLR L4119 Nelson3, PSieve, Srsieve, PrimeGrid, LLR L4139 Hawker, Srsieve, CRUS, LLR L4142 Batalov, CycloSv, EMsieve, PIES, LLR L4146 Schmidt1, Srsieve, PrimeGrid, LLR L4147 Mohacsy, PSieve, Srsieve, PrimeGrid, LLR L4148 Glatte, PSieve, Srsieve, PrimeGrid, LLR L4155 Jones4, PSieve, Srsieve, PrimeGrid, LLR L4159 Schulz5, Srsieve, PrimeGrid, LLR L4166 Kwok, PSieve, LLR L4185 Hoefliger, PSieve, Srsieve, PrimeGrid, LLR L4187 Schmidt2, Srsieve, CRUS, LLR L4189 Lawrence, Powell, Srsieve, CRUS, LLR L4190 Fnasek, PSieve, Srsieve, PrimeGrid, LLR L4197 Kumagai1, Srsieve, PrimeGrid, LLR L4198 Rawles, PSieve, Srsieve, PrimeGrid, LLR L4200 Harste, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4201 Brown1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4203 Azarenko, PSieve, Srsieve, PrimeGrid, LLR L4204 Winslow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4205 Bischof, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4207 Jaamann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4208 Farrow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4210 Cholt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4226 Heath, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4231 Schneider1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4245 Greer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4249 Larsson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4250 Vogt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4252 Nietering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4256 Gniesmer, PSieve, Srsieve, PrimeGrid, LLR L4267 Batalov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4273 Rangelrooij, Srsieve, CRUS, LLR L4274 AhlforsDahl, Srsieve, PrimeGrid, LLR L4276 Borbely, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4285 Bravin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4286 Zimmerman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4289 Ito2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4293 Trunov, PSieve, Srsieve, PrimeGrid, LLR L4294 Kurtovic, Srsieve, CRUS, Prime95, LLR L4295 Splain, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4303 Thorson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4307 Keller1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4308 Matillek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4309 Kecic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4314 DeThomas, PSieve, Srsieve, PrimeGrid, LLR L4316 Nilsson1, PSieve, Srsieve, PrimeGrid, LLR L4326 Steel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4329 Okon, Srsieve, LLR L4334 Miller5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4340 Becker4, Srsieve, PrimeGrid, LLR L4341 Goetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4342 Kaiser1, PolySieve, NewPGen, LLR L4343 Norton, PSieve, Srsieve, PrimeGrid, LLR L4348 Burridge, Srsieve, PrimeGrid, LLR L4359 Andou, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4362 Mochizuki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4364 Steinbach, PSieve, Srsieve, PrimeGrid, LLR L4371 Schmidt2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4380 Rix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4387 Davies, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4393 Veit1, Srsieve, CRUS, LLR L4395 Nilsson1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4398 Greer, Srsieve, PrimeGrid, LLR L4400 Norman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4404 Stepnicka, PSieve, Srsieve, PrimeGrid, LLR L4405 Eckhard, Srsieve, LLR L4406 Mathers, PSieve, Srsieve, PrimeGrid, LLR L4408 Fricke, PSieve, Srsieve, PrimeGrid, LLR L4410 Andresson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4411 Leudesdorff, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4412 Simpson3, PSieve, Srsieve, PrimeGrid, LLR L4414 Falk, PSieve, Srsieve, PrimeGrid, LLR L4424 Miyauchi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4429 Lacroix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4435 Larsson, Srsieve, PrimeGrid, LLR L4444 Terber, Srsieve, CRUS, LLR L4454 Clark5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4456 Chambers2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4457 Geiger, PSieve, Srsieve, PrimeGrid, LLR L4459 Biscop, PSieve, Srsieve, PrimeGrid, LLR L4466 Falk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4472 Harvanek, Gcwsieve, MultiSieve, PrimeGrid, LLR L4476 Shane, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4477 Tennant, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4482 Mena, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4488 Vrontakis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4490 Mazumdar, PSieve, Srsieve, PrimeGrid, LLR L4499 Ohsugi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4501 Eskam1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4504 Sesok, NewPGen, LLR L4505 Lind, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4506 Propper, Batalov, CycloSv, EMsieve, PIES, Prime95, LLR L4510 Ming, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4511 Donovan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4518 Primecrunch.com, Hedges, Srsieve, LLR L4521 Curtis, Srsieve, CRUS, LLR L4522 Lorsung, PSieve, Srsieve, PrimeGrid, LLR L4523 Mull, PSieve, Srsieve, PrimeGrid, LLR L4525 Kong1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4526 Schoefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4527 Fruzynski, PSieve, Srsieve, PrimeGrid, LLR L4530 Reynolds1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4531 Butez, PSieve, Srsieve, PrimeGrid, LLR L4537 Mayer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4544 Krauss, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4548 Sydekum, Srsieve, CRUS, Prime95, LLR L4549 Schick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4550 Terry, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4552 Koski, PSieve, Srsieve, PrimeGrid, LLR L4559 Okazaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4561 Propper, Batalov, CycloSv, Cyclo, EMsieve, PIES, LLR L4562 Donovan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4564 DeThomas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4568 Vrontakis, PSieve, Srsieve, PrimeGrid, LLR L4582 Kinney, PSieve, Srsieve, PrimeGrid, LLR L4583 Rohmann, PSieve, Srsieve, PrimeGrid, LLR L4584 Goforth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4585 Schawe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4591 Schwieger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4593 Mangio, PSieve, Srsieve, PrimeGrid, LLR L4595 Mangio, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4598 Connaughty, PSieve, Srsieve, PrimeGrid, LLR L4599 Loureiro, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4600 Simbarsky, PSieve, Srsieve, PrimeGrid, LLR L4609 Elgetz, PSieve, Srsieve, PrimeGrid, LLR L4620 Kinney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4622 Jurach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4623 Dugger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4626 Iltus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4645 McKibbon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4649 Humphries, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4654 Voskoboynikov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4656 Beck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4658 Maguin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4659 AverayJones, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4660 Snow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4664 Toledo, PSieve, Srsieve, PrimeGrid, LLR L4665 Szeluga, Kupidura, Banka, LLR L4666 Slade, PSieve, Srsieve, PrimeGrid, LLR L4667 Morelli, LLR L4668 Okazaki, Gcwsieve, MultiSieve, PrimeGrid, LLR L4669 Schwegler, Srsieve, PrimeGrid, LLR L4670 Drumm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4672 Slade, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4673 Okhrimouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4675 Lind, Srsieve, PrimeGrid, LLR L4676 Maloney, Srsieve, PrimeGrid, PrimeSierpinski, LLR L4677 Provencher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4683 Bird2, Srsieve, CRUS, LLR L4684 Sveen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4685 Masser, Srsieve, CRUS, LLR L4687 Campbell1, PSieve, Srsieve, PrimeGrid, LLR L4689 Gordon2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4690 Brandt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4691 Fruzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4692 Hajek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4694 Schapendonk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4695 Goudie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4696 Plottel, PSieve, Srsieve, PrimeGrid, LLR L4697 Sellsted, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4699 Parsonnet, PSieve, Srsieve, PrimeGrid, LLR L4700 Liu4, Srsieve, CRUS, LLR L4701 Kalus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4702 Charette, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4703 Pacini, PSieve, Srsieve, PrimeGrid, LLR L4704 Kurtovic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4706 Kraemer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4710 Wiedemann, PSieve, Srsieve, PrimeGrid, LLR L4711 Closs, PSieve, Srsieve, PrimeGrid, LLR L4712 Gravemeyer, PSieve, Srsieve, PrimeGrid, LLR L4713 Post, PSieve, Srsieve, PrimeGrid, LLR L4715 Skinner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4717 Wypych, PSieve, Srsieve, PrimeGrid, LLR L4718 Brown1, Gcwsieve, MultiSieve, PrimeGrid, LLR L4720 Gahan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4723 Lexut, PSieve, Srsieve, PrimeGrid, LLR L4724 Thonon, PSieve, Srsieve, PrimeGrid, LLR L4726 Miller7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4729 Wimmer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4730 Bowe, PSieve, Srsieve, PrimeGrid, LLR L4732 Miller7, PSieve, Srsieve, PrimeGrid, LLR L4733 Brazier, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4737 Reinhardt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4738 Gelhar, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4740 Silva1, PSieve, Srsieve, PrimeGrid, LLR L4741 Wong, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4742 Schlereth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4743 Plsak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4745 Cavnaugh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4746 Brech, PSieve, Srsieve, PrimeGrid, LLR L4747 Brech, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4752 Harvey2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4753 Riemann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4754 Calvin, PSieve, Srsieve, PrimeGrid, LLR L4755 Glatte, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4756 Dumange, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4757 Johnson9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4758 Walling, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4760 Sipes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4761 Romaidis, PSieve, Srsieve, PrimeGrid, LLR L4763 Guilleminot, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4764 McLean2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4765 Kumsta, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4772 Bird1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4773 Tohmola, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4774 Boehm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4775 Steinbach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4776 Lee7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4783 Marini, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4784 Bertolotti, Gcwsieve, MultiSieve, PrimeGrid, LLR L4786 Sydekum, Srsieve, CRUS, LLR L4787 Sunderland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4789 Kurtovic, Srsieve, Prime95, LLR L4791 Vaisanen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4793 Koski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4795 Lawson2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4796 White2, PSieve, Srsieve, PrimeGrid, LLR L4799 Vanderveen1, LLR L4800 Doenges, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4802 Jones5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4806 Rajala, Srsieve, CRUS, LLR L4807 Tsuji, Srsieve, PrimeGrid, LLR L4808 Kaiser1, PolySieve, LLR L4809 Bocan, Srsieve, PrimeGrid, LLR L4810 Dhuyvetters, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4814 Telesz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4815 Kozisek, PSieve, Srsieve, PrimeGrid, LLR L4816 Doenges, PSieve, Srsieve, PrimeGrid, LLR L4819 Inci, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4821 Svantner, PSieve, Srsieve, PrimeGrid, LLR L4822 Magklaras, PSieve, Srsieve, PrimeGrid, LLR L4823 Helm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4824 Allivato, PSieve, Srsieve, PrimeGrid, LLR L4826 Soraku, PSieve, Srsieve, PrimeGrid, LLR L4830 Eisler1, PSieve, Srsieve, PrimeGrid, LLR L4832 Meekins, Srsieve, CRUS, LLR L4834 Helm, PSieve, Srsieve, PrimeGrid, LLR L4835 Katzur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4840 Ylijoki, PSieve, Srsieve, PrimeGrid, LLR L4841 Baur, PSieve, Srsieve, PrimeGrid, LLR L4842 Smith11, PSieve, Srsieve, PrimeGrid, LLR L4843 Hutchins, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4844 Valentino, PSieve, Srsieve, PrimeGrid, LLR L4848 Adamec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4849 Burt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4850 Jones5, PSieve, Srsieve, PrimeGrid, LLR L4851 Schioler, PSieve, Srsieve, PrimeGrid, LLR L4854 Gory, PSieve, Srsieve, PrimeGrid, LLR L4858 Koriabine, PSieve, Srsieve, PrimeGrid, LLR L4859 Wang4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4861 Thonon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4864 Freihube, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4868 Bergmann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4869 Ogata, PSieve, Srsieve, PrimeGrid, LLR L4870 Wharton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4871 Gory, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4875 Parsonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4876 Tennant, Srsieve, CRUS, LLR L4877 Cherenkov, Srsieve, CRUS, LLR L4879 Propper, Batalov, Srsieve, LLR L4880 Goossens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4881 Bonath, Srsieve, LLR L4884 Somer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4889 Hundhausen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4892 Hewitt1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4893 Little, PSieve, Srsieve, PrimeGrid, LLR L4898 Kozisek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4899 Schioler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4903 Laurent1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4904 Dunchouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4905 Niegocki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4907 Reinhardt, PSieve, Srsieve, PrimeGrid, LLR L4909 Hall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4911 Calveley, Srsieve, CRUS, LLR L4914 Bishop_D, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4917 Corlatti, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4918 Weiss1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4920 Walsh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4922 Bulba, Sesok, LLR L4923 Koriabine, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4925 Korolev, Srsieve, CRUS, LLR L4926 Shenton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4927 Smith12, Srsieve, SRBase, CRUS, LLR L4928 Doornink, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4929 Givoni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4930 Shintani, PSieve, Srsieve, PrimeGrid, LLR L4932 Schroeder2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4933 Jacques, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4935 Simard, PSieve, Srsieve, PrimeGrid, LLR L4937 Ito2, Srsieve, PrimeGrid, LLR L4939 Coscia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4942 Matheis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4944 Schori, LLR2, PSieve, Srsieve, PrimeGrid, LLR L4945 Meili, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4948 SchwartzLowe, PSieve, Srsieve, PrimeGrid, LLR L4951 Niegocki, PSieve, Srsieve, PrimeGrid, LLR L4954 Romaidis, Srsieve, PrimeGrid, LLR L4955 Grosvenor, Srsieve, CRUS, LLR L4956 Merrylees, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4958 Shenton, PSieve, Srsieve, PrimeGrid, LLR L4959 Deakin, PSieve, Srsieve, PrimeGrid, LLR L4960 Kaiser1, NewPGen, TPS, LLR L4963 Mortimore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4964 Doescher, GFNSvCUDA, GeneFer, LLR L4965 Propper, LLR L4968 Kaczala, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4970 Michael, PSieve, Srsieve, PrimeGrid, LLR L4972 Greer, Gcwsieve, MultiSieve, PrimeGrid, LLR L4973 Landrum, PSieve, Srsieve, PrimeGrid, LLR L4975 Thompson5, Srsieve, CRUS, LLR L4976 Propper, Batalov, Gcwsieve, LLR L4977 Miller8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4979 Matheis, PSieve, Srsieve, PrimeGrid, LLR L4980 Poon1, PSieve, Srsieve, PrimeGrid, LLR L4981 MartinezCucalon, PSieve, Srsieve, PrimeGrid, LLR L4984 Hemsley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4985 Veit, Srsieve, CRUS, LLR L4987 Canossi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4988 Harris3, PSieve, Srsieve, PrimeGrid, LLR L4990 Heindl, PSieve, Srsieve, PrimeGrid, LLR L4997 Gardner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4999 Andrews1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5001 Mamonov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5002 Kato, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5005 Hass, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5007 Faith, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5008 Niegocki, Srsieve, PrimeGrid, LLR L5009 Jungmann, Srsieve, LLR L5011 Strajt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5013 Wypych, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5014 Strokov, PSieve, Srsieve, PrimeGrid, LLR L5016 NebredaJunghans, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5018 Nielsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5019 Ayiomamitis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5020 Eikelenboom, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5021 Svantner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5022 Manz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5023 Schulz6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5024 Schumacher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5025 Lexut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5027 Moudy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5029 Krompolc, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5030 Calvin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5031 Schumacher, PSieve, Srsieve, PrimeGrid, LLR L5033 Ni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5036 Jung2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5037 Diepeveen, Underwood, PSieve, Srsieve, Rieselprime, LLR L5039 Gilliland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5041 Wallbaum, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5043 Vanderveen1, Propper, LLR L5044 Bergelt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5047 Little, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5051 Veit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5053 Yoshigoe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5056 Chu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5057 Hauhia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5061 Cooper5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5063 Wendelboe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5067 Tirkkonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5068 Silva1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5069 Friedrichsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5070 Millerick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5071 McLean2, Srsieve, CRUS, LLR L5072 Romaidis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5076 Atnashev, Srsieve, PrimeGrid, LLR L5077 Martinelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5078 McDonald4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5079 Meditz, PSieve, Srsieve, PrimeGrid, LLR L5080 Gahan, GFNSvCUDA, PrivGfnServer, LLR L5081 Howell, Srsieve, PrimeGrid, LLR L5083 Pickering, Srsieve, PrimeGrid, LLR L5084 Yagi, PSieve, Srsieve, PrimeGrid, LLR L5085 Strajt, PSieve, Srsieve, PrimeGrid, LLR L5087 Coscia, PSieve, Srsieve, PrimeGrid, LLR L5088 Hall1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5089 MARSIN, Srsieve, CRUS, LLR L5090 Jourdan, PSieve, Srsieve, PrimeGrid, LLR L5094 Th�mmler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5099 Lobring, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5100 Stephens, PSieve, Srsieve, PrimeGrid, LLR L5101 Candido, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5102 Liu6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5104 Gahan, LLR2, NewPGen, LLR L5105 Helm, LLR2, Srsieve, PrivGfnServer, LLR L5106 Glennie, PSieve, Srsieve, PrimeGrid, LLR L5110 Provencher, PSieve, Srsieve, PrimeGrid, LLR L5112 Vanderveen1, Srsieve, CRUS, LLR L5115 Doescher, LLR L5117 Trunov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5120 Greer, LLR2, PrivGfnServer, LLR L5122 Tennant, LLR2, PrivGfnServer, LLR L5123 Propper, Batalov, EMsieve, LLR L5125 Tirkkonen, PSieve, Srsieve, PrimeGrid, LLR L5126 Warach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5127 Kemenes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5129 Veit, Srsieve, PrimeGrid, LLR L5130 Jourdan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5134 Cooper5, PSieve, Srsieve, PrimeGrid, LLR L5139 Belozersky, PSieve, Srsieve, PrimeGrid, LLR L5143 Dickinson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5144 McNary, PSieve, Srsieve, PrimeGrid, LLR L5155 Harju, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5156 Dinkel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5157 Asano, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5158 Zuschlag, PSieve, Srsieve, PrimeGrid, LLR L5159 Huetter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5161 Greer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5162 Th�mmler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5166 Jaros1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5167 Gelhar, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5168 Hawkinson, PSieve, Srsieve, PrimeGrid, LLR L5169 Atnashev, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5171 Brown1, LLR2, Srsieve, PrimeGrid, LLR L5172 McNary, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5173 Bishop_D, PSieve, Srsieve, PrimeGrid, LLR L5174 Scalise, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5175 Liiv, PSieve, Srsieve, Rieselprime, LLR L5176 Early, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5177 Tapper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5178 Larsson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5179 Okazaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5180 Laluk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5181 Atnashev, LLR2, Srsieve, PrimeGrid, LLR L5183 Winskill1, PSieve, Srsieve, PrimeGrid, 12121search, LLR L5184 Byerly, PSieve, Srsieve, NPLB, LLR L5185 Elgetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5186 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, United, PrimeGrid, LLR L5188 Wong, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5189 Jackson1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5191 Kaiser1, NewPGen, LLR L5192 Anonymous, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5194 Jonas, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5195 Ridgway, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5196 Sielemann, Srsieve, CRUS, LLR L5197 Propper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5198 Elgetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5199 Romaidis, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5200 Terry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5201 Ford, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5202 Molne, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5203 Topham, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5205 Zuschlag, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5206 Wiseler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5207 Atnashev, LLR2, PrivGfnServer, LLR L5208 Schnur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5210 Brech, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5214 Dinkel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5215 Hawkinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5216 Brazier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5217 Wiseler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5220 Jones4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5223 Vera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5226 Brown1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5228 Jacques, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5229 Karpenko, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5230 Tapper, LLR2, Srsieve, PrimeGrid, LLR L5231 Veit, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5232 Bliedung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5233 Sipes, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5234 Greeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5235 Karpinski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5236 Shenton, LLR2, PSieve, Srsieve, PrivGfnServer, PrimeGrid, LLR L5237 Schwieger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5238 Jourdan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5239 Strajt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5242 Krompolc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5246 Vaisanen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5248 Delgado, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5249 Racanelli, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5250 Nakamura, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5253 Burt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5254 Gerstenberger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5256 Snow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5260 Ostaszewski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5261 Kim5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5262 Clark5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5263 Ito2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5264 Cholt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5265 Fleischman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5266 Sheridan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5267 Schnur, LLR2, Srsieve, PrimeGrid, LLR L5269 Clemence, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5270 Hennebert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5272 Conner, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5273 McGonegal, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5275 Templin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5276 Schawe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5277 McDevitt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5278 Nose, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5279 Schick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5282 Somer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5283 Hua, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5284 Fischer1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5285 Merrylees, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5286 Reynolds1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5287 Thonon, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5288 Heindl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5290 Cooper5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5294 Hewitt1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5295 Gilliland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5296 Piaive, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5297 Nakamura, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5298 Kaczmarek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5299 Corlatti, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5300 Hajek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5301 Harju, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5302 Davies, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5305 Thanry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5307 Bauer2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5308 Krauss, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5309 Bishop_D, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5310 Hubbard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5311 Reich, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5312 Tyndall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5313 Barnes, PSieve, Srsieve, Rieselprime, LLR L5314 Satoh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5315 Dec, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5316 Walsh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5317 Freeze, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5318 Ruber, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5319 Abbey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5320 Niegocki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5321 Dark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5322 Monnin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5323 Chan1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5324 Boehm, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5325 Drager, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5326 Deakin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5327 Shenton, LLR2, Srsieve, LLR L5332 Mizusawa, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5334 Jones6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5335 Harvey1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5336 Leblanc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5337 Kawamura1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5338 Deakin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5342 Rodenkirch, Srsieve, CRUS, LLR L5343 Tajika, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5344 Lowe1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5345 Johnson8, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5346 Polansky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5348 Adam, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5350 McDevitt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5352 Eklof, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5353 Belolipetskiy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5354 Doornink, NewPGen, OpenPFGW, LLR L5355 Henriksson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5356 Hsu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5358 Gmirkin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5359 Ridgway, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5360 Leitch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5361 Schneider6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5362 Domanov1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5364 Blyth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5366 Michael, Srsieve, CRUS, LLR L5368 Valentino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5369 Schnur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5370 Piotrowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5372 Vitiello, Srsieve, CRUS, LLR L5373 Baranchikov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5375 Blanchard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5376 Ranch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5377 Yasuhisa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5378 Seeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5379 Smith4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5380 Campulka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5381 Meppiel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5382 Bulanov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5384 Riemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5387 Johns, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5390 Lemkau, Srsieve, CRUS, LLR L5391 Black1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5392 McDonald4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5393 Lu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5395 Early, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5396 Andrade, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5399 Kolesov, LLR L5400 Hefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5401 Champ, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5402 Greer, LLR2, Gcwsieve, MultiSieve, PrimeGrid, LLR L5403 Slade1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5404 Wiseler, LLR2, Srsieve, PrimeGrid, LLR L5405 Gerstenberger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5406 Jaros, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5407 Mahnken, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5408 Kreth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5410 Anonymous, Srsieve, CRUS, LLR L5412 Poon1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5413 David1, Srsieve, CRUS, LLR L5414 Mollerus, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5416 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5418 Pollak, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5421 Iwasaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5425 Lichtenwimmer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5426 Gilliland, Srsieve, CRUS, LLR L5427 Hewitt1, LLR2, Srsieve, PrimeGrid, LLR L5429 Meditz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5432 Tatsianenka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5433 Hatanaka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5434 Parsonnet, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5435 Murphy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5437 Rijfers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5438 Tang, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5439 Batalov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5440 McGonegal, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5441 Cherenkov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5442 Moreira, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5443 Venjakob, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5444 Platz, LLR2, Srsieve, PrimeGrid, LLR L5448 Rubin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5449 Reinhardt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5450 Mizusawa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5451 Wilkins, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5452 Morera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5453 Slaets, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5456 Gundermann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5457 Iwasaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5459 Sekanina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5460 Headrick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5461 Anonymous, LLR2, Srsieve, PrimeGrid, LLR L5462 Raimist, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5463 Goforth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5464 Pickering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5465 Hubbard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5466 Furushima, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5467 Tamai1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5470 Latge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5471 Dunchouk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5472 Ready, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5473 StPierre, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5476 Steinbach, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5477 Meador, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5480 Boddener, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5482 Raimist, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5485 Mahnken, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5488 Kecic, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5491 Piaive, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5492 Slaets, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5493 Liu6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5497 Goetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5499 Osada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5500 Racanelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5501 Seeley, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5502 Floyd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5503 Soule, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5504 Cerny, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5505 Chovanec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5507 Brandt2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5508 Gauch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5509 Nietering, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5512 Akesson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5514 Cavnaugh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5516 Piesker, PSieve, Srsieve, NPLB, LLR L5517 Cavecchia, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5518 Eisler1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5523 Sekanina, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5524 Matillek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5526 Kickler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5527 Doornink, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5529 Baur1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5530 Matillek, LLR2, Srsieve, PrimeGrid, LLR L5531 Koci, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5532 Morera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5534 Cervelle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5535 Skahill, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5536 Bennett1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5537 Schafer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5540 Brown6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5541 Parker, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5543 Lucendo, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5544 Byerly, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5545 Kruse, PSieve, Srsieve, NPLB, LLR L5546 Steinwedel, PSieve, Srsieve, NPLB, LLR L5547 Hoonoki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5548 Steinberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5549 Zhang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5550 Provencher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5553 DAmico, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5554 Lucendo, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5555 Parangalan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5556 Javens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5557 Drake, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5558 Lee7, LLR2, Srsieve, PrimeGrid, LLR L5559 Roberts, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5560 Amberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5562 Cheung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5563 Akesson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5564 Lee7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5565 Bailey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5566 Latge, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5567 Marshall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5568 Schioler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5569 Michael, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5570 Arnold, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5571 Williams7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5572 Sveen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5573 Friedrichsen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5574 Laboisne, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5575 Blanchard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5576 Amorim, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5577 Utebaev, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5578 Jablonski1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5579 Cox2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5581 Pickles, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5582 Einvik, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5583 Tanaka3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5584 Barr, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5585 Faith, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5586 Vultur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5587 AverayJones, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5588 Shi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5589 Kupka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5590 Schumacher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5592 Shintani, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5594 Brown7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5595 Hyvonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5596 Kozisek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5600 Steinberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5601 Sato1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5602 Wen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5604 Takahashi2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5606 Clark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5607 Rodermond, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5608 Pieritz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5609 Sielemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5610 Katzur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5611 Smith13, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5612 Lugowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5613 Delisle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5614 Becker2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5615 Dodd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5616 Miller7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5617 Sliwicki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5618 Wilson4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5619 Piotrowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5620 He, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5621 Millerick, LLR2, Srsieve, PrimeGrid, LLR L5624 Farrow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5625 Sellsted, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5626 Clark, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5627 Bulanov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5628 Baranchikov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5629 Dickinson, Srsieve, CRUS, LLR L5631 Mittelstadt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5632 Marler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5634 Gao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5636 Santosa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5637 Bestor, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5638 Piskun, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5639 Cavecchia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5640 Xu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5641 Kwok, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5645 Orpen1, SRBase, LLR L5646 Dickey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5647 Soraku, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5648 York, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5649 Dietsch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5650 Ketamino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5651 Lexut, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5652 Wilson5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5653 Beck1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5655 Hoffman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5656 McAdams, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5657 Alden, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5658 Sloan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5662 OMalley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5663 Li5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5666 Wendelboe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5667 Totty, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5668 Finn, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5670 Heindl1, Srsieve, CRUS, LLR L5671 Rauh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5676 Fnasek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5679 Shane, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5682 Floyd, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5683 Glatte, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5685 Bestor, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5686 Pistorius, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5687 Wellck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5690 Eldred, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5693 Huan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5694 Petersen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5696 Earle, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5697 Black2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5698 Stenschke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5700 Huang1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5703 Koudelka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5704 Hampicke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5705 Wharton, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5706 Wallbaum, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5707 Johns, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5710 Hass, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5711 Gingrich1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5712 Stahl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5714 Loucks, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5715 Calvin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5718 Ketamino, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5720 Trigueiro, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5721 Fischer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5722 Rickard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5723 Fergusson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5724 Pilz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5725 Gingrich1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5726 Noxe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5727 Headrick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5731 Michael, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5732 Monroe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5735 Kobrzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5736 Riva, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5738 Schaeffer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5740 Chu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5742 Steinmetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5745 Saladin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5746 Meister1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5748 Norbert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5749 Gahan, LLR2, LLR L5750 Shi, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5752 Wissel, LLR L5754 Abad, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5755 Kwiatkowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5756 Wei, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5758 Bishop1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5763 Williams7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5764 Tirkkonen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5765 Propper, Gcwsieve, LLR L5766 Takahashi2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5767 Xu2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5768 Lewis2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5769 Welsh1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5770 Silva1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5771 Becker-Bergemann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5772 Tarson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5773 Lugowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5774 Chambers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5775 Garambois, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5776 Anonymous, LLR2, PSieve, Srsieve, United, PrimeGrid, LLR L5778 Sarok, Srsieve, CRUS, LLR L5780 Blanchard, Srsieve, CRUS, LLR L5782 Kang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5783 Bishop1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5784 Coplin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5787 Johnson10, Srsieve, CRUS, LLR L5791 Rindahl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5793 Wang5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5794 Morgan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5796 Hall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5797 Ivanovski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5798 Schoeberl, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5799 Lehmann1, LLR2, Srsieve, PrimeGrid, LLR L5802 Borgerding, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5803 Kwok, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5804 Bowe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5805 Belozersky, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5807 Krauss, Srsieve, PrimeGrid, PRST, LLR L5808 Propper, Batalov, PSieve, Srsieve, LLR L5809 Zhao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5810 Meister1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5811 Dettweiler, LLR2, Srsieve, CRUS, LLR L5812 Song, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5814 Chodzinski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5816 Guenter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5817 Kilstromer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5818 Belozersky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5819 Schmidt2, LLR2, PSieve, Srsieve, NPLB, LLR L5820 Hoonoki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5821 Elmore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5825 Norton, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5826 Morávek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5827 Yasuhisa, TwinGen, NewPGen, TPS, LLR L5829 Dickinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5830 McLean2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5831 Chapman2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5833 Russell2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5834 Roberts, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5836 Becker2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5837 Lin1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5839 Stewart1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5841 Yarham, Srsieve, CRUS, LLR L5842 Steenerson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5843 Vink, Kruse, Kwok, TwinGen, NewPGen, TPS, LLR L5844 Kadowaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5847 Eldredge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5848 Bressani, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5850 Zakharchenko, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5851 Liskay, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5852 Kwiatkowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5853 Simard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5854 Lehmann1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5855 Williams9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5858 GervaisLavoie, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5860 Joseph, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5862 Oppliger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5863 Duvinage, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5864 Amberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5865 Mendrik1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5866 Kim3, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5869 Arnold, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5870 Bodlina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5871 Yakubchak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5875 Monroe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5878 Klinkenberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5879 Sanner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5880 Gehrke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5881 Medcalf, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5882 Basil, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5888 Presler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5894 Tamai1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5904 Rix, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5913 Burtner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5923 Ryabchikov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5929 Bauer2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5938 Philip, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5945 Bush, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5948 Meuler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5956 Garnier1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5960 Jayaputera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5961 Carlier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5969 Kang, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5971 Da_Mota, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5974 Presler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5977 Brockerhoff, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5980 Schmidt1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5984 Desbonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5986 Wolfe1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5989 Williams10, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5995 Lee10, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5997 Smith15, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5998 Da_Mota, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6005 Overstreet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6006 Propper, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6010 Chaney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6011 Mehner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6013 Preston1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6015 Uehara1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6018 Varis, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6019 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, Rechenkraft, PrimeGrid, LLR L6026 Bruner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6027 Johnson10, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6029 Schmidt2, Kwok, LLR2, TwinGen, NewPGen, TPS, LLR L6033 Tang3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6035 Garrison1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6036 Hogan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6038 Schafer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6040 Garland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6042 Fink, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6043 Podsada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6044 Chesnut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6047 Wheeler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6049 Chen4, LLR L6057 Kim7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6058 StGeorge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6064 Adrian, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6065 Yakubchak1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6067 O’Hara, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6070 Mumper, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6072 Lundström, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6073 Rojas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6075 Chodzinski, LLR2, Srsieve, PrimeGrid, LLR L6076 Yakubchak2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6077 Vink, Schmidt2, Kwok, TwinGen, NewPGen, TPS, LLR L6078 Zhaozheng, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6080 Sondergard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6082 Mckinley, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6083 Yagi, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6084 Criswell, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6085 Granowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6086 Pastierik, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6087 Osaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6088 Abad, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6089 Lynch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6090 Champ, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6091 Paniczko, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6092 Boerner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6093 Wagner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6094 Skendelis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6095 Stach, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6096 Biggs, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6102 Yakubchak3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6123 Mukanos, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6129 Slade2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6159 Weinberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6163 Drozd, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6166 Carquillat, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6170 Liang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6176 Shriner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6177 Mostad, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6178 Hua, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6182 Jans, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6183 Lack, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6185 Abromeit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6187 Deram, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6189 Mohacsy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6201 Lein, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6202 Stach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6204 Probst, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6205 McDonald3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6207 Allen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6209 Marler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6215 Vykouril, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6217 Keskitalo, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6220 Sandhop, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6221 Wu2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6227 Zhao1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6229 Dean1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6230 Gnann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6235 Rosick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6236 Neujahr, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6237 Steffens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6238 Pabsch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6243 Baker2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6245 Perek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6246 Slade, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6247 Slade2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6248 Hui, Srsieve, CRUS, LLR L6249 Puada, MultiSieve, PRST, LLR L6250 Gulliver, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6252 Carlin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6253 Takesue, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6255 Kim8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6256 Sariyar, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6257 Hristoskov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6259 Baker2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6260 Cui, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6261 Saito2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6262 Woodrow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6263 Scheuern, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6264 Ogawa, LLR2, Srsieve, NewPGen, LLR L6265 DiMichina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6266 Pomeranke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6267 Garnett, MultiSieve, LLR L6268 Monteith, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6269 Edlund, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6270 Bressani, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6271 Hood1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6272 GervaisLavoie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6273 Hasznos, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6274 Heidrich, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6275 Margossian, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6276 Patterson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6277 Gefreiter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6278 Silva3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6279 Antonov, CRUS, LLR L6280 Birzer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6281 Fitzgerald, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6282 Puppi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6283 Kurtovic, Srsieve, NPLB, Prime95, LLR L6284 Hood2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6285 Abbondanti, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6286 Wen, PSieve, Srsieve, NPLB, LLR L6287 Zaugg1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6288 Kopp1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6289 Mendrik1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6290 Mondon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR M Morain MM Morii MP1 Durant, GIMPS, GpuOwl O Oakes p3 Dohmen, OpenPFGW p8 Caldwell, OpenPFGW p12 Water, OpenPFGW p16 Heuer, OpenPFGW p21 Anderson, Robinson, OpenPFGW p41 Luhn, OpenPFGW p44 Broadhurst, OpenPFGW p49 Berg, OpenPFGW p54 Broadhurst, Water, OpenPFGW p58 Glover, Oakes, OpenPFGW p65 DavisK, Kuosa, OpenPFGW p85 Marchal, Carmody, Kuosa, OpenPFGW p137 Rodenkirch, MultiSieve, OpenPFGW p151 Kubota, NewPGen, OpenPFGW p155 DavisK, NewPGen, OpenPFGW p158 Paridon, NewPGen, OpenPFGW p170 Wu_T, Primo, OpenPFGW p189 Bohanon, LLR, OpenPFGW p193 Irvine, Broadhurst, Primo, OpenPFGW p235 Bedwell, OpenPFGW p236 Cooper, NewPGen, PRP, OpenPFGW p247 Bonath, Srsieve, CRUS, LLR, OpenPFGW p252 Oakes, NewPGen, OpenPFGW p255 Siemelink, Srsieve, CRUS, OpenPFGW p268 Rodenkirch, Srsieve, CRUS, OpenPFGW p279 Domanov1, Srsieve, Rieselprime, Prime95, OpenPFGW p286 Batalov, Srsieve, OpenPFGW p290 Domanov1, Fpsieve, PrimeGrid, OpenPFGW p295 Angel, NewPGen, OpenPFGW p296 Kaiser1, Srsieve, LLR, OpenPFGW p301 Winskill1, Fpsieve, PrimeGrid, OpenPFGW p302 Gasewicz, Fpsieve, PrimeGrid, OpenPFGW p308 DavisK, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p309 Yama, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p310 Hubbard, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p312 Doggart, Fpsieve, PrimeGrid, OpenPFGW p314 Hubbard, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p332 Johnson6, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p334 Goetz, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p338 Tomecko, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p342 Trice, OpenPFGW p346 Burt, Fpsieve, PrimeGrid, OpenPFGW p350 Koen, Gcwsieve, GenWoodall, OpenPFGW p355 Domanov1, Srsieve, CRUS, OpenPFGW p362 Snow, Fpsieve, PrimeGrid, OpenPFGW p363 Batalov, OpenPFGW p364 Batalov, NewPGen, OpenPFGW p365 Poplin, Srsieve, CRUS, OpenPFGW p373 Morelli, OpenPFGW p378 Batalov, Srsieve, CRUS, LLR, OpenPFGW p379 Batalov, CycloSv, Cyclo, EMsieve, PIES, OpenPFGW p382 Oestlin, NewPGen, OpenPFGW p384 Booker, OpenPFGW p387 Zimmerman, GeneFer, AthGFNSieve, PrimeGrid, OpenPFGW p391 Keiser, NewPGen, OpenPFGW p394 Fukui, MultiSieve, OpenPFGW p395 Angel, Augustin, NewPGen, OpenPFGW p398 Stocker, OpenPFGW p405 Propper, Cksieve, OpenPFGW p406 DavisK, Luhn, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p407 Lamprecht, Luhn, OpenPFGW p408 Batalov, PolySieve, OpenPFGW p409 Nielsen1, OpenPFGW p413 Morimoto, OpenPFGW p414 Naimi, OpenPFGW p416 Monnin, LLR2, PrivGfnServer, OpenPFGW p417 Tennant, LLR2, PrivGfnServer, OpenPFGW p418 Sielemann, LLR2, PrivGfnServer, OpenPFGW p419 Bird1, LLR2, PrivGfnServer, OpenPFGW p420 Alex, OpenPFGW p421 Gahan, LLR2, PrivGfnServer, OpenPFGW p422 Kaiser1, PolySieve, OpenPFGW p423 Propper, Batalov, EMsieve, OpenPFGW p425 Propper, MultiSieve, OpenPFGW p426 Schoeler, NewPGen, OpenPFGW p427 Niegocki, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p428 Trunov, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p430 Propper, Batalov, NewPGen, OpenPFGW p431 Piesker, Srsieve, CRUS, OpenPFGW p433 Dettweiler, LLR2, Srsieve, CRUS, OpenPFGW p434 Doornink, MultiSieve, OpenPFGW p435 Dettweiler, LLR2, PSieve, Srsieve, NPLB, OpenPFGW p436 Schwieger, OpenPFGW p437 Propper, Batalov, EMsieve, PIES, OpenPFGW p439 Trice, MultiSieve, OpenPFGW p440 Batalov, EMsieve, OpenPFGW p441 Wu_T, CM, OpenPFGW p442 Presler, MultiSieve, PrimeGrid, PRST, OpenPFGW p443 Brochtrup, Srsieve, CRUS, OpenPFGW p444 Kadowaki, MultiSieve, PrimeGrid, PRST, OpenPFGW p445 Merrylees, MultiSieve, PrimeGrid, PRST, OpenPFGW p446 Greer, MultiSieve, PrimeGrid, PRST, OpenPFGW p447 Wallbaum, MultiSieve, PrimeGrid, PRST, OpenPFGW p448 Little, MultiSieve, PrimeGrid, PRST, OpenPFGW p449 Rodriguez2, OpenPFGW p450 Propper, OpenPFGW p451 Davies, MultiSieve, PrimeGrid, PRST, OpenPFGW p452 Propper, Batalov, CM, OpenPFGW PM Mihailescu SB10 Agafonov, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB11 Sunde, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB12 Szabolcs, Srsieve, SoBSieve, ProthSieve, Ksieve, PrimeGrid, LLR, SB SB6 Sundquist, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB7 Team_Prime_Rib, SoBSieve, ProthSieve, Ksieve, PRP, SB SB8 Gordon, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB9 Hassler, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SG Slowinski, Gage WD Williams, Dubner, Cruncher WM Morain, Williams x13 Renze x16 Doumen, Beelen, Unknown x20 Irvine, Broadhurst, Water x23 Broadhurst, Water, Renze, OpenPFGW, Primo x24 Jarai_Z, Farkas, Csajbok, Kasza, Jarai, Unknown x25 Broadhurst, Water, OpenPFGW, Primo x28 Iskra x33 Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x36 Irvine, Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x38 Broadhurst, OpenPFGW, Primo x39 Broadhurst, Dubner, Keller, OpenPFGW, Primo x44 Zhou, Unknown x45 Batalov, OpenPFGW, Primo, Unknown x47 Szekeres, Magyar, Gevay, Farkas, Jarai, Unknown x48 Asuncion, Allombert, Unknown x49 Facq, Asuncion, Allombert, Unknown x50 Propper, GFNSvCUDA, GeneFer, Unknown x51 Lexut1, Srsieve, CRUS, Unknown x52 Batalov, PolySieve, OpenPFGW, Unknown x54 Gallot, GeneFer, Unknown Y Young