THE LARGEST KNOWN PRIMES (The 5,000 largest known primes) (selected smaller primes which have comments are included) Originally Compiled by Samuel Yates -- Continued by Chris Caldwell and now maintained by Reginald McLean (Sat Dec 27 16:37:39 UTC 2025) So that I can maintain this database of the 5,000 largest known primes (plus selected smaller primes with 1,000 or more digits), please send any new primes (that are large enough) to: https://t5k.org/bios/submission.php This list in a searchable form (plus information such as how to find large primes and how to prove primality) is available at the interactive web site: https://t5k.org/primes/ See the last pages for information about the provers. The letters after the rank refer to when the prime was submitted. 'a' is this month, 'b' last month... ----- ------------------------------- -------- ----- ---- -------------- rank description digits who year comment ----- ------------------------------- -------- ----- ---- -------------- 1 2^136279841-1 41024320 MP1 2024 Mersenne 52? 2 2^82589933-1 24862048 G16 2018 Mersenne 51? 3 2^77232917-1 23249425 G15 2018 Mersenne 50 4 2^74207281-1 22338618 G14 2016 Mersenne 49 5 2^57885161-1 17425170 G13 2013 Mersenne 48 6c 2524190^2097152+1 13426224 L4245 2025 Generalized Fermat 7 2^43112609-1 12978189 G10 2008 Mersenne 47 8 2^42643801-1 12837064 G12 2009 Mersenne 46 9 516693^2097152-516693^1048576+1 11981518 L4561 2023 Generalized unique 10 465859^2097152-465859^1048576+1 11887192 L4561 2023 Generalized unique 11 2^37156667-1 11185272 G11 2008 Mersenne 45 12 2^32582657-1 9808358 G9 2006 Mersenne 44 13 10223*2^31172165+1 9383761 SB12 2016 14 2^30402457-1 9152052 G9 2005 Mersenne 43 15 4*5^11786358+1 8238312 A2 2024 Generalized Fermat 16 2^25964951-1 7816230 G8 2005 Mersenne 42 17 4052186*69^4052186+1 7451366 A61 2025 Generalized Cullen 18 69*2^24612729-1 7409172 A2 2024 19 2^24036583-1 7235733 G7 2004 Mersenne 41 20b 5336284^1048576+1 7054022 L5543 2025 Generalized Fermat 21 107347*2^23427517-1 7052391 A2 2024 22 3*2^23157875-1 6971216 L5171 2025 23 3843236^1048576+1 6904556 L6094 2024 Generalized Fermat 24 3*2^22103376-1 6653780 L6075 2024 25 1963736^1048576+1 6598776 L4245 2022 Generalized Fermat 26 1951734^1048576+1 6595985 L5583 2022 Generalized Fermat 27 202705*2^21320516+1 6418121 L5181 2021 28 2^20996011-1 6320430 G6 2003 Mersenne 40 29 1059094^1048576+1 6317602 L4720 2018 Generalized Fermat 30 3*2^20928756-1 6300184 L5799 2023 31 919444^1048576+1 6253210 L4286 2017 Generalized Fermat 32 81*2^20498148+1 6170560 L4965 2023 Generalized Fermat 33 7*2^20267500+1 6101127 L4965 2022 Divides GF(20267499,12) [GG] 34 4*5^8431178+1 5893142 A2 2024 Generalized Fermat 35 168451*2^19375200+1 5832522 L4676 2017 36 69*2^19374980-1 5832452 L4965 2022 37 3*2^18924988-1 5696990 L5530 2022 38 69*2^18831865-1 5668959 L4965 2021 39 2*3^11879700+1 5668058 A2 2024 40 97139*2^18397548-1 5538219 L4965 2023 41 7*2^18233956+1 5488969 L4965 2020 Divides Fermat F(18233954) 42 3*2^18196595-1 5477722 L5461 2022 43 4*3^11279466+1 5381674 A2 2024 Generalized Fermat 44 3*2^17748034-1 5342692 L5404 2021 45 123447^1048576-123447^524288+1 5338805 L4561 2017 Generalized unique 46 3622*5^7558139-1 5282917 L4965 2022 47 7*6^6772401+1 5269954 L4965 2019 48 2*3^10852677+1 5178044 L4965 2023 Divides Phi(3^10852674,2) 49 8508301*2^17016603-1 5122515 L4784 2018 Woodall 50 8*10^5112847-1 5112848 A19 2024 Near-repdigit 51 13*2^16828072+1 5065756 A2 2023 52 3*2^16819291-1 5063112 L5230 2021 53 5287180*3^10574360-1 5045259 A20 2024 Generalized Woodall 54 3*2^16408818+1 4939547 L5171 2020 Divides GF(16408814,3), GF(16408817,5) 55 2329989*2^16309923-1 4909783 A20 2024 Generalized Woodall 56 69*2^15866556-1 4776312 L4965 2021 57 2036*3^10009192+1 4775602 A2 2024 58 2525532*73^2525532+1 4705888 L5402 2021 Generalized Cullen 59 1419499*2^15614489-1 4700436 A20 2024 Generalized Woodall 60 11*2^15502315+1 4666663 L4965 2023 Divides GF(15502313,10) [GG] 61 (10^2332974+1)^2-2 4665949 p405 2024 62 37*2^15474010+1 4658143 L4965 2022 63 93839*2^15337656-1 4617100 L4965 2022 64 2^15317227+2^7658614+1 4610945 L5123 2020 Gaussian Mersenne norm 41?, generalized unique 65 13*2^15294536+1 4604116 A2 2023 66 6*5^6546983+1 4576146 L4965 2020 67 4788920*3^9577840-1 4569798 A20 2024 Generalized Woodall 68 31*2^15145093-1 4559129 A2 2025 69 69*2^14977631-1 4508719 L4965 2021 70 192971*2^14773498-1 4447272 L4965 2021 71 4*3^9214845+1 4396600 A2 2024 72 9145334*3^9145334+1 4363441 A6 2023 Generalized Cullen 73 4*5^6181673-1 4320805 L4965 2022 74 396101*2^14259638-1 4292585 A20 2024 Generalized Woodall 75 6962*31^2863120-1 4269952 L5410 2020 76 37*2^14166940+1 4264676 L4965 2022 77 99739*2^14019102+1 4220176 L5008 2019 78 69*2^13832885-1 4164116 L4965 2022 79 9562633#+1 4151498 p451 2025 Primorial 80 404849*2^13764867+1 4143644 L4976 2021 Generalized Cullen 81 25*2^13719266+1 4129912 L4965 2022 Generalized Fermat 82 81*2^13708272+1 4126603 L4965 2022 Generalized Fermat 83 2740879*2^13704395-1 4125441 L4976 2019 Generalized Woodall 84 479216*3^8625889-1 4115601 L4976 2019 Generalized Woodall 85 13*2^13584543-1 4089357 A2 2025 86 31*2^13514933-1 4068402 A2 2025 87 143332^786432-143332^393216+1 4055114 L4506 2017 Generalized unique 88 81*2^13470584+1 4055052 L4965 2022 Generalized Fermat 89 2^13466917-1 4053946 G5 2001 Mersenne 39 90 5778486*5^5778486+1 4038996 A6 2024 Generalized Cullen 91 9*2^13334487+1 4014082 L4965 2020 Divides GF(13334485,3) 92 206039*2^13104952-1 3944989 L4965 2021 93 2805222*5^5610444+1 3921539 L4972 2019 Generalized Cullen 94 5128*22^2919993+1 3919869 L5811 2024 95 19249*2^13018586+1 3918990 SB10 2007 96 2293*2^12918431-1 3888839 L4965 2021 97 81*2^12804541+1 3854553 L4965 2022 98 67612*5^5501582+1 3845446 A60 2025 99a 18703062^524288+1 3812577 L5974 2025 Generalized Fermat 100a 18529322^524288+1 3810452 L5974 2025 Generalized Fermat 101d 18099898^524288+1 3805113 x50 2025 Generalized Fermat 102b 17997078^524288+1 3803816 L5697 2025 Generalized Fermat 103c 17544674^524288+1 3798019 L5632 2025 Generalized Fermat 104c 17502532^524288+1 3797471 L5543 2025 Generalized Fermat 105c 17445908^524288+1 3796734 L5070 2025 Generalized Fermat 106c 17177670^524288+1 3793205 L5186 2025 Generalized Fermat 107e 16211276^524288+1 3780021 L6006 2025 Generalized Fermat 108f 15958750^524288+1 3776446 L5639 2025 Generalized Fermat 109f 15852200^524288+1 3774921 L5526 2025 Generalized Fermat 110 4*5^5380542+1 3760839 L4965 2023 Generalized Fermat 111 13520762^524288+1 3738699 L6221 2025 Generalized Fermat 112 13427472^524288+1 3737122 L5775 2025 Generalized Fermat 113 9*2^12406887+1 3734847 L4965 2020 Divides GF(12406885,3) 114 12900356^524288+1 3728004 L5639 2025 Generalized Fermat 115 12693488^524288+1 3724323 L6096 2025 Generalized Fermat 116 11937916^524288+1 3710349 L6080 2024 Generalized Fermat 117 7*2^12286041-1 3698468 L4965 2023 118 10913140^524288+1 3689913 L6043 2024 Generalized Fermat 119 69*2^12231580-1 3682075 L4965 2021 120 27*2^12184319+1 3667847 L4965 2021 121 9332124^524288+1 3654278 L5025 2024 Generalized Fermat 122 8630170^524288+1 3636472 L5543 2024 Generalized Fermat 123 863282*5^5179692-1 3620456 A20 2024 Generalized Woodall 124 670490*12^3352450-1 3617907 A20 2024 Generalized Woodall 125 4*3^7578378+1 3615806 A2 2024 Generalized Fermat 126 11*2^11993994-1 3610554 A2 2024 127 3761*2^11978874-1 3606004 L4965 2022 128 95*2^11954552-1 3598681 A29 2024 129 259072*5^5136295-1 3590122 A45 2024 130 3*2^11895718-1 3580969 L4159 2015 131 37*2^11855148+1 3568757 L4965 2022 132 6339004^524288+1 3566218 L1372 2023 Generalized Fermat 133 763795*6^4582771+1 3566095 A6 2023 Generalized Cullen 134 5897794^524288+1 3549792 x50 2022 Generalized Fermat 135 3*2^11731850-1 3531640 L4103 2015 136 69*2^11718455-1 3527609 L4965 2020 137 8629*2^11708579-1 3524638 A2 2024 138 41*2^11676439+1 3514960 L4965 2022 139 4896418^524288+1 3507424 L4245 2022 Generalized Fermat 140 81*2^11616017+1 3496772 L4965 2022 141 69*2^11604348-1 3493259 L4965 2020 142 4450871*6^4450871+1 3463458 L5765 2023 Generalized Cullen 143 9*2^11500843+1 3462100 L4965 2020 Divides GF(11500840,12) 144 3*2^11484018-1 3457035 L3993 2014 145 193997*2^11452891+1 3447670 L4398 2018 146 29914*5^4930904+1 3446559 A41 2024 147 3638450^524288+1 3439810 L4591 2020 Generalized Fermat 148 9221*2^11392194-1 3429397 L5267 2021 149 9*2^11366286+1 3421594 L4965 2020 Generalized Fermat 150 5*2^11355764-1 3418427 L4965 2021 151 732050*6^4392301+1 3417881 L5765 2023 Generalized Cullen 152b 3268739^524288-3268739^262144+1 3415412 p453 2025 Generalized unique 153 3214654^524288+1 3411613 L4309 2019 Generalized Fermat 154 632760!-1 3395992 A43 2024 Factorial 155 146561*2^11280802-1 3395865 L5181 2020 156 51208*5^4857576+1 3395305 A30 2024 157 2985036^524288+1 3394739 L4752 2019 Generalized Fermat 158 4591*2^11270837-1 3392864 A2 2025 159 6929*2^11255424-1 3388225 L4965 2022 160 2877652^524288+1 3386397 L4250 2019 Generalized Fermat 161 2788032^524288+1 3379193 L4584 2019 Generalized Fermat 162 2733014^524288+1 3374655 L4929 2019 Generalized Fermat 163a 2637072^524288-2637072^262144+1 3366518 p453 2025 Generalized unique 164 9*2^11158963+1 3359184 L4965 2020 Divides GF(11158962,5) 165 9271*2^11134335-1 3351773 L4965 2021 166 136804*5^4777253-1 3339162 A23 2024 167 2312092^524288+1 3336572 L4720 2018 Generalized Fermat 168 987324*48^1974648-1 3319866 A20 2024 Generalized Woodall 169 2061748^524288+1 3310478 L4783 2018 Generalized Fermat 170 1880370^524288+1 3289511 L4201 2018 Generalized Fermat 171 27*2^10902757-1 3282059 L4965 2022 172 3*2^10829346+1 3259959 L3770 2014 Divides GF(10829343,3), GF(10829345,5) 173 11*2^10803449+1 3252164 L4965 2022 Divides GF(10803448,6) 174 11*2^10797109+1 3250255 L4965 2022 175 7*2^10612737-1 3194754 L4965 2022 176 7351117#+1 3191401 p448 2024 Primorial 177 37*2^10599476+1 3190762 L4965 2022 Divides GF(10599475,10) 178 5*2^10495620-1 3159498 L4965 2021 179 3^6608603-3^3304302+1 3153105 L5123 2023 Generalized unique 180 5*2^10349000-1 3115361 L4965 2021 181 844833^524288-844833^262144+1 3107335 L4506 2017 Generalized unique 182e 17*2^10248660-1 3085156 A2 2025 183 52922*5^4399812-1 3075342 A1 2023 184 712012^524288-712012^262144+1 3068389 L4506 2017 Generalized unique 185 177742*5^4386703-1 3066180 L5807 2023 186 4*3^6402015+1 3054539 A2 2024 187 874208*54^1748416-1 3028951 L4976 2019 Generalized Woodall 188 475856^524288+1 2976633 L3230 2012 Generalized Fermat 189 2*3^6236772+1 2975697 L4965 2022 190 15*2^9830108+1 2959159 A2 2023 191 9*2^9778263+1 2943552 L4965 2020 192 198*558^1061348+1 2915138 A28 2024 193 1806676*41^1806676+1 2913785 L4668 2018 Generalized Cullen 194 356926^524288+1 2911151 L3209 2012 Generalized Fermat 195 341112^524288+1 2900832 L3184 2012 Generalized Fermat 196 213988*5^4138363-1 2892597 L5621 2022 197 43*2^9596983-1 2888982 L4965 2022 198 121*2^9584444+1 2885208 L5183 2020 Generalized Fermat 199 15*2^9482269-1 2854449 A2 2024 200 6533299#-1 2835864 p447 2024 Primorial 201 11*2^9381365+1 2824074 L4965 2020 Divides GF(9381364,6) 202 15*2^9312889+1 2803461 L4965 2023 203 97*2^9305542+1 2801250 A2 2025 204 93*2^9235048+1 2780029 A2 2025 205 49*2^9187790+1 2765803 L4965 2022 Generalized Fermat 206 6369619#+1 2765105 p445 2024 Primorial 207 27653*2^9167433+1 2759677 SB8 2005 208 6354977#-1 2758832 p446 2024 Primorial 209 90527*2^9162167+1 2758093 L1460 2010 210 6795*2^9144320-1 2752719 L4965 2021 211 31*2^9088085-1 2735788 A2 2024 212 75*2^9079482+1 2733199 L4965 2023 213 1323365*116^1323365+1 2732038 L4718 2018 Generalized Cullen 214 57*2^9075622-1 2732037 L4965 2022 215 10^2718281-5*10^1631138-5*10^1087142-1 2718281 p423 2024 Palindrome 216 63838*5^3887851-1 2717497 L5558 2022 217 13*2^8989858+1 2706219 L4965 2020 218c 271357*2^8943013-1 2692121 A33 2025 219 4159*2^8938471-1 2690752 L4965 2022 220 273809*2^8932416-1 2688931 L1056 2017 221 93*2^8898285+1 2678653 A2 2024 222 2*3^5570081+1 2657605 L4965 2020 Divides Phi(3^5570081,2) [g427] 223 25*2^8788628+1 2645643 L5161 2021 Generalized Fermat 224 2038*366^1028507-1 2636562 L2054 2016 225 64598*5^3769854-1 2635020 L5427 2022 226 63*2^8741225+1 2631373 A2 2024 227 8*785^900325+1 2606325 L4786 2022 228 17*2^8636199+1 2599757 L5161 2021 Divides GF(8636198,10) 229 75898^524288+1 2558647 p334 2011 Generalized Fermat 230 25*2^8456828+1 2545761 L5237 2021 Divides GF(8456827,12), generalized Fermat 231 39*2^8413422+1 2532694 L5232 2021 232 31*2^8348000+1 2513000 L5229 2021 233 27*2^8342438-1 2511326 L3483 2021 234f 17*2^8330892-1 2507850 A2 2025 235 3687*2^8261084-1 2486838 L4965 2021 236 101*2^8152967+1 2454290 A2 2023 Divides GF(8152966,12) 237f 9*2^8128075-1 2446796 L3345 2025 238 273662*5^3493296-1 2441715 L5444 2021 239 81*2^8109236+1 2441126 L4965 2022 Generalized Fermat 240 11*2^8103463+1 2439387 L4965 2020 Divides GF(8103462,12) 241 102818*5^3440382-1 2404729 L5427 2021 242f 9*2^7979119-1 2401956 L3345 2025 243 11*2^7971110-1 2399545 L2484 2019 244 27*2^7963247+1 2397178 L5161 2021 Divides Fermat F(7963245) 245 3177*2^7954621-1 2394584 L4965 2021 246 39*2^7946769+1 2392218 L5226 2021 Divides GF(7946767,12) 247 7*6^3072198+1 2390636 L4965 2019 248 3765*2^7904593-1 2379524 L4965 2021 249 29*2^7899985+1 2378134 L5161 2021 Divides GF(7899984,6) 250 5113*2^7895471-1 2376778 L4965 2022 251 861*2^7895451-1 2376771 L4965 2021 252 75*2^7886683+1 2374131 A2 2023 253a 3243959*2^7862047+1 2366719 L5327 2025 254 2661*2^7861390-1 2366518 A2 2024 255e 21*2^7838882-1 2359740 A2 2025 256e 30397*2^7838120+1 2359514 A71 2025 257 99*2^7830910+1 2357341 A2 2024 258 28433*2^7830457+1 2357207 SB7 2004 259 2589*2^7803339-1 2349043 L4965 2022 260 59*2^7792307+1 2345720 A2 2024 261 101*2^7784453+1 2343356 A2 2024 262 95*2^7778585+1 2341590 A2 2024 263 8401*2^7767655-1 2338302 L4965 2023 264 9693*2^7767343-1 2338208 A2 2023 265 5*2^7755002-1 2334489 L4965 2021 266 2945*2^7753232-1 2333959 L4965 2022 267 2*836^798431+1 2333181 L4294 2024 268 63*2^7743186+1 2330934 A2 2024 269 2545*2^7732265-1 2327648 L4965 2021 270 5539*2^7730709-1 2327180 L4965 2021 271 4817*2^7719584-1 2323831 L4965 2021 272 183*558^842752+1 2314734 A28 2024 273 1341174*53^1341174+1 2312561 L4668 2017 Generalized Cullen 274 9467*2^7680034-1 2311925 L4965 2022 275 45*2^7661004+1 2306194 L5200 2020 276 15*2^7619838+1 2293801 L5192 2020 277e 3645*2^7610003-1 2290843 A2 2025 278 3597*2^7580693-1 2282020 L4965 2021 279 5256037#+1 2281955 p444 2024 Primorial 280c 38118498221*2^7552807+1 2273633 L5327 2025 281 3129*2^7545557-1 2271443 L4965 2023 282 7401*2^7523295-1 2264742 L4965 2021 283 45*2^7513661+1 2261839 L5179 2020 284 558640^393216-558640^196608+1 2259865 L4506 2017 Generalized unique 285 2739*2^7483537-1 2252773 A2 2025 286 9*2^7479919-1 2251681 L3345 2023 287 1875*2^7474308-1 2249995 L4965 2022 288 69*2^7452023+1 2243285 L4965 2023 Divides GF(7452020,3) [GG] 289 1281979*2^7447178+1 2241831 A8 2023 290 9107*2^7417464-1 2232884 A2 2025 291 4*5^3189669-1 2229484 L4965 2022 292f 19*2^7383785-1 2222743 A2 2025 293 29*2^7374577+1 2219971 L5169 2020 Divides GF(7374576,3) 294 2653*2^7368343-1 2218096 A2 2024 295 21555*2^7364128-1 2216828 A11 2024 296 3197*2^7359542-1 2215447 L4965 2022 297 109838*5^3168862-1 2214945 L5129 2020 298 95*2^7354869+1 2214039 A2 2023 299 101*2^7345194-1 2211126 L1884 2019 300 85*2^7333444+1 2207589 A2 2023 301 15*2^7300254+1 2197597 L5167 2020 302c 6733*2^7285527-1 2193166 A2 2025 303 422429!+1 2193027 p425 2022 Factorial 304 1759*2^7284439-1 2192838 L4965 2021 305 1909683*14^1909683+1 2188748 L5765 2023 Generalized Cullen 306 737*2^7269322-1 2188287 L4665 2017 307 6909*2^7258896-1 2185150 A2 2024 308 93*2^7241494+1 2179909 A2 2023 309 118568*5^3112069+1 2175248 L690 2020 310 4215*2^7221386-1 2173858 A2 2024 311 40*257^901632+1 2172875 A11 2024 312 1685*2^7213108-1 2171366 A2 2025 313 580633*2^7208783-1 2170066 A11 2024 314 6039*2^7207973-1 2169820 L4965 2021 315d 1871*2^7207954-1 2169814 L6283 2025 316 502573*2^7181987-1 2162000 L3964 2014 317 402539*2^7173024-1 2159301 L3961 2014 318 3343*2^7166019-1 2157191 L1884 2016 319 4137*2^7132569-1 2147121 A2 2025 320 161041*2^7107964+1 2139716 L4034 2015 321 294*213^918952-1 2139672 L5811 2023 322f 17*2^7101254-1 2137692 A2 2025 323 27*2^7046834+1 2121310 L3483 2018 324 1759*2^7046791-1 2121299 L4965 2021 325 327*2^7044001-1 2120459 L4965 2021 326 5*2^7037188-1 2118406 L4965 2021 327 3*2^7033641+1 2117338 L2233 2011 Divides GF(7033639,3) 328 625783*2^7031319-1 2116644 A11 2024 329 33661*2^7031232+1 2116617 SB11 2007 330 237804^393216-237804^196608+1 2114016 L4506 2017 Generalized unique 331 207494*5^3017502-1 2109149 L5083 2020 332 15*2^6993631-1 2105294 L4965 2021 333 8943501*2^6972593-1 2098967 L466 2022 334 6020095*2^6972593-1 2098967 L466 2022 335 2^6972593-1 2098960 G4 1999 Mersenne 38 336 273*2^6963847-1 2096330 L4965 2022 337 6219*2^6958945-1 2094855 L4965 2021 338 51*2^6945567+1 2090826 L4965 2020 Divides GF(6945564,12) [p286] 339 8*10^2084563-1 2084564 A2 2025 Near-repdigit 340 3323*2^6921196-1 2083492 A2 2024 341 238694*5^2979422-1 2082532 L5081 2020 342 4*72^1119849-1 2079933 L4444 2016 343 129*2^6900230+1 2077179 L5517 2025 344 33*2^6894190-1 2075360 L4965 2021 345 4778027#-1 2073926 p442 2024 Primorial 346 105*2^6884697+1 2072503 L5178 2025 347 2345*2^6882320-1 2071789 L4965 2022 348a 75810636^262144+1 2065624 L5639 2025 Generalized Fermat 349a 75753274^262144+1 2065538 L4943 2025 Generalized Fermat 350 57*2^6857990+1 2064463 A2 2023 351 146264*5^2953282-1 2064261 L1056 2020 352a 74732694^262144+1 2063994 L4387 2025 Generalized Fermat 353a 74716572^262144+1 2063970 L4387 2025 Generalized Fermat 354a 74399970^262144+1 2063486 L6261 2025 Generalized Fermat 355a 74336726^262144+1 2063389 L6015 2025 Generalized Fermat 356b 73597220^262144+1 2062251 L6284 2025 Generalized Fermat 357b 73589294^262144+1 2062239 L4387 2025 Generalized Fermat 358b 73465436^262144+1 2062047 L4477 2025 Generalized Fermat 359b 73116844^262144+1 2061505 L4387 2025 Generalized Fermat 360b 72862906^262144+1 2061109 L5186 2025 Generalized Fermat 361b 72752758^262144+1 2060937 L4659 2025 Generalized Fermat 362b 72718062^262144+1 2060883 L5697 2025 Generalized Fermat 363c 72071732^262144+1 2059866 L5543 2025 Generalized Fermat 364c 71737620^262144+1 2059337 L5543 2025 Generalized Fermat 365c 71380700^262144+1 2058770 L6015 2025 Generalized Fermat 366 69*2^6838971-1 2058738 L5037 2020 367 35816*5^2945294-1 2058677 L5076 2020 368c 71107798^262144+1 2058333 L5370 2025 Generalized Fermat 369 127*2^6836153-1 2057890 L1862 2018 370 105*2^6835099+1 2057572 L5517 2025 371d 70520422^262144+1 2057389 L5057 2025 Generalized Fermat 372d 70349734^262144+1 2057113 L4400 2025 Generalized Fermat 373 19*2^6833086+1 2056966 L5166 2020 374d 69844790^262144+1 2056293 L4387 2025 Generalized Fermat 375d 69810332^262144+1 2056237 L4387 2025 Generalized Fermat 376d 69290228^262144+1 2055386 L4387 2025 Generalized Fermat 377d 69170386^262144+1 2055189 L5700 2025 Generalized Fermat 378e 68717884^262144+1 2054441 L6278 2025 Generalized Fermat 379e 68000464^262144+1 2053246 L4670 2025 Generalized Fermat 380e 67886950^262144+1 2053056 L6266 2025 Generalized Fermat 381e 67673558^262144+1 2052698 L5755 2025 Generalized Fermat 382e 67535128^262144+1 2052465 L5755 2025 Generalized Fermat 383e 67433562^262144+1 2052293 L5697 2025 Generalized Fermat 384e 67167678^262144+1 2051844 L5416 2025 Generalized Fermat 385f 67141518^262144+1 2051799 L4477 2025 Generalized Fermat 386f 67062340^262144+1 2051665 L5057 2025 Generalized Fermat 387f 66498472^262144+1 2050704 L6085 2025 Generalized Fermat 388f 66342922^262144+1 2050437 L5639 2025 Generalized Fermat 389f 66266188^262144+1 2050305 L5127 2025 Generalized Fermat 390 65*2^6810465+1 2050157 A2 2023 391 40597*2^6808509-1 2049571 L3749 2013 392 283*2^6804731-1 2048431 L2484 2020 393 65136498^262144+1 2048348 L5639 2025 Generalized Fermat 394 64989720^262144+1 2048091 L4477 2025 Generalized Fermat 395 64074894^262144+1 2046477 L5696 2025 Generalized Fermat 396 64010198^262144+1 2046362 L5361 2025 Generalized Fermat 397 63833640^262144+1 2046047 L6006 2025 Generalized Fermat 398 8*10^2045966-1 2045967 A2 2025 Near-repdigit 399 63784742^262144+1 2045960 L4387 2025 Generalized Fermat 400 63558122^262144+1 2045555 L6255 2025 Generalized Fermat 401 63448958^262144+1 2045359 L5019 2025 Generalized Fermat 402 63286690^262144+1 2045068 L4387 2025 Generalized Fermat 403 62767176^262144+1 2044129 L5639 2025 Generalized Fermat 404 62747994^262144+1 2044095 L5639 2025 Generalized Fermat 405 1861709*2^6789999+1 2044000 L5191 2020 406 5781*2^6789459-1 2043835 L4965 2021 407 62311952^262144+1 2043301 L5156 2025 Generalized Fermat 408 62199610^262144+1 2043095 L5697 2025 Generalized Fermat 409 62152830^262144+1 2043010 L5639 2025 Generalized Fermat 410 62136706^262144+1 2042980 L5639 2025 Generalized Fermat 411 8435*2^6786180-1 2042848 L4965 2021 412 61238184^262144+1 2041322 L5526 2025 Generalized Fermat 413 119*2^6777781+1 2040318 L5517 2025 414 59145944^262144+1 2037364 L4591 2025 Generalized Fermat 415 58936230^262144+1 2036960 L5465 2025 Generalized Fermat 416 58870004^262144+1 2036832 L6238 2025 Generalized Fermat 417 58846688^262144+1 2036787 L4591 2025 Generalized Fermat 418 58333324^262144+1 2035789 L4591 2025 Generalized Fermat 419 58288282^262144+1 2035701 L4526 2025 Generalized Fermat 420 57643582^262144+1 2034435 L4772 2025 Generalized Fermat 421 57594478^262144+1 2034338 L5464 2025 Generalized Fermat 422 57478518^262144+1 2034108 L6085 2025 Generalized Fermat 423 57429230^262144+1 2034011 L5639 2025 Generalized Fermat 424 51*2^6753404+1 2032979 L4965 2020 425 93*2^6750726+1 2032173 A2 2023 426 56303352^262144+1 2031757 L4920 2025 Generalized Fermat 427 56295176^262144+1 2031740 L5378 2025 Generalized Fermat 428 55952434^262144+1 2031045 L5586 2025 Generalized Fermat 429 55892864^262144+1 2030923 L5948 2025 Generalized Fermat 430 69*2^6745775+1 2030683 L4965 2023 431 55702322^262144+1 2030535 L4772 2025 Generalized Fermat 432 55695224^262144+1 2030520 L4387 2025 Generalized Fermat 433 55169618^262144+1 2029441 L6236 2025 Generalized Fermat 434 55007338^262144+1 2029105 L4201 2025 Generalized Fermat 435 54852328^262144+1 2028784 L5375 2025 Generalized Fermat 436 54528918^262144+1 2028111 L5375 2025 Generalized Fermat 437 54044092^262144+1 2027094 L5069 2025 Generalized Fermat 438 53903472^262144+1 2026797 L5543 2025 Generalized Fermat 439 53750036^262144+1 2026473 L4309 2025 Generalized Fermat 440 53616962^262144+1 2026191 L4889 2025 Generalized Fermat 441 53311612^262144+1 2025540 L6235 2025 Generalized Fermat 442e 4681*2^6728157-1 2025381 A2 2025 443 53008094^262144+1 2024890 L6036 2025 Generalized Fermat 444 52648144^262144+1 2024115 L5088 2025 Generalized Fermat 445 52599274^262144+1 2024009 L4776 2025 Generalized Fermat 446 52592976^262144+1 2023995 L5543 2025 Generalized Fermat 447 117*2^6719464+1 2022763 L5995 2025 448 51992174^262144+1 2022687 L5639 2025 Generalized Fermat 449 51852794^262144+1 2022382 L4387 2025 Generalized Fermat 450 51714136^262144+1 2022077 L4591 2025 Generalized Fermat 451 51283286^262144+1 2021124 L4884 2025 Generalized Fermat 452 51125138^262144+1 2020773 L5543 2025 Generalized Fermat 453 9995*2^6711008-1 2020219 L4965 2021 454 50454356^262144+1 2019269 L5543 2025 Generalized Fermat 455 50449664^262144+1 2019259 L5586 2025 Generalized Fermat 456 50366208^262144+1 2019070 L5275 2025 Generalized Fermat 457 50121532^262144+1 2018516 L4904 2025 Generalized Fermat 458 49536902^262144+1 2017180 L5639 2025 Generalized Fermat 459 49235348^262144+1 2016485 L5543 2025 Generalized Fermat 460 49209090^262144+1 2016424 L5275 2025 Generalized Fermat 461 48055302^262144+1 2013723 L5069 2025 Generalized Fermat 462 47707672^262144+1 2012896 L4939 2025 Generalized Fermat 463 39*2^6684941+1 2012370 L5162 2020 464 47351862^262144+1 2012044 L6204 2025 Generalized Fermat 465 47281922^262144+1 2011876 L5974 2025 Generalized Fermat 466 47255958^262144+1 2011813 L5948 2025 Generalized Fermat 467 6679881*2^6679881+1 2010852 L917 2009 Cullen 468 46831458^262144+1 2010786 L4456 2025 Generalized Fermat 469 46378776^262144+1 2009680 L6178 2025 Generalized Fermat 470 45073202^262144+1 2006429 L6129 2025 Generalized Fermat 471 45007104^262144+1 2006262 L5639 2025 Generalized Fermat 472 44819108^262144+1 2005786 L5632 2025 Generalized Fermat 473 44666524^262144+1 2005397 L5775 2025 Generalized Fermat 474 37*2^6660841-1 2005115 L3933 2014 475 44144624^262144+1 2004059 L5974 2024 Generalized Fermat 476 44030166^262144+1 2003764 L5974 2024 Generalized Fermat 477 43330794^262144+1 2001941 L5588 2024 Generalized Fermat 478 39*2^6648997+1 2001550 L5161 2020 479 42781592^262144+1 2000489 L5460 2024 Generalized Fermat 480 10^2000007-10^1127194-10^872812-1 2000007 p423 2024 Palindrome 481 10^2000005-10^1051046-10^948958-1 2000005 p423 2024 Palindrome 482 304207*2^6643565-1 1999918 L3547 2013 483 42474318^262144+1 1999668 L5416 2024 Generalized Fermat 484 69*2^6639971-1 1998833 L5037 2020 485 42006214^262144+1 1998406 L5512 2024 Generalized Fermat 486 6471*2^6631137-1 1996175 L4965 2021 487 40460760^262144+1 1994139 L5460 2024 Generalized Fermat 488 39896728^262144+1 1992541 L6047 2024 Generalized Fermat 489 39164812^262144+1 1990433 L6038 2024 Generalized Fermat 490 8*10^1990324-1 1990325 A2 2025 Near-repdigit 491 38786786^262144+1 1989328 L6035 2024 Generalized Fermat 492 38786700^262144+1 1989328 L4245 2024 Generalized Fermat 493 38738332^262144+1 1989186 L6033 2024 Generalized Fermat 494 9935*2^6603610-1 1987889 L4965 2023 495 38214850^262144+1 1987637 L5412 2024 Generalized Fermat 496 38108804^262144+1 1987321 L4764 2024 Generalized Fermat 497 37986650^262144+1 1986955 L6027 2024 Generalized Fermat 498 37787006^262144+1 1986355 L4622 2024 Generalized Fermat 499 37700936^262144+1 1986096 L5416 2024 Generalized Fermat 500 37689944^262144+1 1986063 L5416 2024 Generalized Fermat 501 37349040^262144+1 1985028 L5543 2024 Generalized Fermat 502 37047448^262144+1 1984105 L5746 2024 Generalized Fermat 503 36778106^262144+1 1983274 L5998 2024 Generalized Fermat 504 36748386^262144+1 1983182 L5998 2024 Generalized Fermat 505 36717890^262144+1 1983088 L4760 2024 Generalized Fermat 506 36210400^262144+1 1981503 L6006 2024 Generalized Fermat 507 35196086^262144+1 1978269 L5543 2024 Generalized Fermat 508 34443124^262144+1 1975807 L5639 2024 Generalized Fermat 509 33798406^262144+1 1973655 L4656 2024 Generalized Fermat 510 33491530^262144+1 1972617 L5030 2024 Generalized Fermat 511 33061466^262144+1 1971146 L5275 2024 Generalized Fermat 512 32497152^262144+1 1969186 L5586 2024 Generalized Fermat 513 32171198^262144+1 1968038 L4892 2024 Generalized Fermat 514 32067848^262144+1 1967672 L4684 2024 Generalized Fermat 515 31371484^262144+1 1965172 L5847 2024 Generalized Fermat 516 30941436^262144+1 1963601 L4362 2024 Generalized Fermat 517 554051*2^6517658-1 1962017 L5811 2023 518 115*2^6515714+1 1961428 L5161 2025 519 29645358^262144+1 1958729 L5024 2023 Generalized Fermat 520 29614286^262144+1 1958610 L5870 2023 Generalized Fermat 521 1319*2^6506224-1 1958572 L4965 2021 522 3163*2^6504943-1 1958187 L4965 2023 523 29445800^262144+1 1957960 L4726 2023 Generalized Fermat 524 322498*5^2800819-1 1957694 L4954 2019 525 29353924^262144+1 1957604 L4387 2023 Generalized Fermat 526 99*2^6502814+1 1957545 A2 2023 527 29333122^262144+1 1957524 L5869 2023 Generalized Fermat 528 88444*5^2799269-1 1956611 L3523 2019 529 29097000^262144+1 1956604 L5375 2023 Generalized Fermat 530 28342134^262144+1 1953611 L5864 2023 Generalized Fermat 531 28259150^262144+1 1953277 L4898 2023 Generalized Fermat 532e 68311*2^6487924+1 1953065 L5327 2025 533 28004468^262144+1 1952246 L5586 2023 Generalized Fermat 534 27789002^262144+1 1951367 L5860 2023 Generalized Fermat 535 13*2^6481780+1 1951212 L4965 2020 536 27615064^262144+1 1950652 L4201 2023 Generalized Fermat 537 21*2^6468257-1 1947141 L4965 2021 538 26640150^262144+1 1946560 L5839 2023 Generalized Fermat 539 26128000^262144+1 1944350 L5821 2023 Generalized Fermat 540 25875054^262144+1 1943243 L5070 2023 Generalized Fermat 541 25690360^262144+1 1942427 L5809 2023 Generalized Fermat 542 25635940^262144+1 1942186 L4307 2023 Generalized Fermat 543 25461468^262144+1 1941408 L4210 2023 Generalized Fermat 544 25333402^262144+1 1940834 L5802 2023 Generalized Fermat 545 24678636^262144+1 1937853 L5586 2023 Generalized Fermat 546 138514*5^2771922+1 1937496 L4937 2019 547 24429706^262144+1 1936699 L4670 2023 Generalized Fermat 548 33*2^6432160-1 1936275 L4965 2022 549 15*2^6429089-1 1935350 L4965 2021 550 23591460^262144+1 1932724 L5720 2023 Generalized Fermat 551 23479122^262144+1 1932181 L5773 2023 Generalized Fermat 552 398023*2^6418059-1 1932034 L3659 2013 553 22984886^262144+1 1929758 L4928 2023 Generalized Fermat 554 3^4043119+3^2021560+1 1929059 L5123 2023 Generalized unique 555 22790808^262144+1 1928793 L5047 2023 Generalized Fermat 556 141*2^6406088+1 1928427 L5783 2025 Divides GF(6406084,6) 557 22480000^262144+1 1927230 L4307 2023 Generalized Fermat 558 22479752^262144+1 1927229 L5159 2023 Generalized Fermat 559 22470828^262144+1 1927183 L4201 2023 Generalized Fermat 560 55*2^6395254+1 1925166 A2 2023 561 20866766^262144+1 1918752 L4245 2023 Generalized Fermat 562 4*3^4020126+1 1918089 A2 2024 Generalized Fermat 563 20710506^262144+1 1917896 L5676 2023 Generalized Fermat 564 20543682^262144+1 1916975 L5663 2023 Generalized Fermat 565 20105956^262144+1 1914523 L5005 2023 Generalized Fermat 566 631*2^6359347-1 1914357 L4965 2021 567 4965*2^6356707-1 1913564 L4965 2022 568 19859450^262144+1 1913119 L5025 2023 Generalized Fermat 569 19527922^262144+1 1911202 L4745 2023 Generalized Fermat 570 19322744^262144+1 1910000 L4775 2023 Generalized Fermat 571 1995*2^6333396-1 1906546 L4965 2021 572 1582137*2^6328550+1 1905090 L801 2009 Cullen 573 18395930^262144+1 1904404 x50 2022 Generalized Fermat 574 17191822^262144+1 1896697 x50 2022 Generalized Fermat 575 87*2^6293522+1 1894541 A2 2023 576 16769618^262144+1 1893866 L4677 2022 Generalized Fermat 577 141*2^6286573+1 1892450 L5178 2025 578 16048460^262144+1 1888862 L5127 2022 Generalized Fermat 579 10^1888529-10^944264-1 1888529 p423 2021 Near-repdigit, palindrome 580 15913772^262144+1 1887902 L4387 2022 Generalized Fermat 581 15859176^262144+1 1887511 L5544 2022 Generalized Fermat 582 3303*2^6264946-1 1885941 L4965 2021 583 15417192^262144+1 1884293 L5051 2022 Generalized Fermat 584 14741470^262144+1 1879190 L4204 2022 Generalized Fermat 585 4328927#+1 1878843 p442 2024 Primorial 586 165*2^6237224+1 1877594 L5178 2025 587 14399216^262144+1 1876516 L4745 2021 Generalized Fermat 588 1344935*2^6231985+1 1876021 L161 2023 589 14103144^262144+1 1874151 L5254 2021 Generalized Fermat 590 13911580^262144+1 1872594 L5068 2021 Generalized Fermat 591 165*2^6213489+1 1870449 L5517 2025 592 13640376^262144+1 1870352 L4307 2021 Generalized Fermat 593 13553882^262144+1 1869628 L4307 2021 Generalized Fermat 594 8825*2^6199424-1 1866217 A2 2023 595 13039868^262144+1 1865227 L5273 2021 Generalized Fermat 596 7*6^2396573+1 1864898 L4965 2019 597 12959788^262144+1 1864525 L4591 2021 Generalized Fermat 598 69*2^6186659+1 1862372 L4965 2023 599 12582496^262144+1 1861162 L5202 2021 Generalized Fermat 600 12529818^262144+1 1860684 L4871 2020 Generalized Fermat 601 141*2^6175704+1 1859075 L5969 2025 602 12304152^262144+1 1858615 L4591 2020 Generalized Fermat 603 12189878^262144+1 1857553 L4905 2020 Generalized Fermat 604 39*2^6164630+1 1855741 L4087 2020 Divides GF(6164629,5) 605 119*2^6150335+1 1851438 L5178 2025 606 11081688^262144+1 1846702 L5051 2020 Generalized Fermat 607 10979776^262144+1 1845650 L5088 2020 Generalized Fermat 608 10829576^262144+1 1844082 L4677 2020 Generalized Fermat 609 194368*5^2638045-1 1843920 L690 2018 610 10793312^262144+1 1843700 L4905 2020 Generalized Fermat 611 10627360^262144+1 1841936 L4956 2020 Generalized Fermat 612 10578478^262144+1 1841411 L4307 2020 Generalized Fermat 613 66916*5^2628609-1 1837324 L690 2018 614 521921*2^6101122-1 1836627 L5811 2023 615 3*2^6090515-1 1833429 L1353 2010 616 9812766^262144+1 1832857 L4245 2020 Generalized Fermat 617 9750938^262144+1 1832137 L4309 2020 Generalized Fermat 618 8349*2^6082397-1 1830988 L4965 2021 619 9450844^262144+1 1828578 L5020 2020 Generalized Fermat 620 71*2^6070943+1 1827538 L4965 2023 621 32*470^683151+1 1825448 L4064 2021 622 9125820^262144+1 1824594 L5002 2019 Generalized Fermat 623 8883864^262144+1 1821535 L4715 2019 Generalized Fermat 624 21*2^6048861+1 1820890 L5106 2020 Divides GF(6048860,5) 625 9999*2^6037057-1 1817340 L4965 2021 626 8521794^262144+1 1816798 L4289 2019 Generalized Fermat 627 6285*2^6027986-1 1814609 A2 2024 628 33*2^6019138-1 1811943 L4965 2022 629 67*2^6018626+1 1811789 L4965 2023 630 122*123^865890+1 1809631 L4294 2024 631 6*10^1807300-1 1807301 A2 2025 Near-repdigit 632 1583*2^5989282-1 1802957 L4036 2015 633 55*2^5982526+1 1800922 L5554 2025 Divides GF(5982524,10) 634 101806*15^1527091-1 1796004 L5765 2023 Generalized Woodall 635 91*2^5960816+1 1794387 L5969 2025 636 163*2^5945098+1 1789656 L5554 2025 637 189*2^5932506+1 1785865 L5995 2025 638 6291332^262144+1 1782250 L4864 2018 Generalized Fermat 639 6287774^262144+1 1782186 L4726 2018 Generalized Fermat 640 32*402^683113-1 1778983 A11 2025 641 327926*5^2542838-1 1777374 L4807 2018 642 81556*5^2539960+1 1775361 L4809 2018 643 179*2^5894939+1 1774556 L5261 2025 644 5828034^262144+1 1773542 L4720 2018 Generalized Fermat 645 993*10^1768283-1 1768286 L4879 2019 Near-repdigit 646 135*2^5854694+1 1762441 L5997 2025 647 9*10^1762063-1 1762064 L4879 2020 Near-repdigit 648 93606^354294+93606^177147+1 1761304 p437 2023 Generalized unique 649 5205422^262144+1 1760679 L4201 2018 Generalized Fermat 650 5152128^262144+1 1759508 L4720 2018 Generalized Fermat 651 195*2^5841059+1 1758337 L5178 2025 652 183*2^5814122+1 1750228 L5612 2025 653 205*2^5805562+1 1747651 L5261 2025 654 99*2^5798449+1 1745510 L5517 2025 Divides Fermat F(5798447) 655 4489246^262144+1 1743828 L4591 2018 Generalized Fermat 656 2240501*6^2240501+1 1743456 L5765 2023 Generalized Cullen 657 57*2^5785428+1 1741590 L5302 2025 658 2*3^3648969+1 1741001 L5043 2020 Divides Phi(3^3648964,2) [g427] 659 7*2^5775996+1 1738749 L3325 2012 660 101*2^5774879+1 1738414 L5537 2025 661 4246258^262144+1 1737493 L4720 2018 Generalized Fermat 662 13*2^5769387-1 1736760 L1862 2025 663 57*2^5759943+1 1733918 L5517 2025 664 3933508^262144+1 1728783 L4309 2018 Generalized Fermat 665 3853792^262144+1 1726452 L4715 2018 Generalized Fermat 666 3673932^262144+1 1721010 L4649 2017 Generalized Fermat 667 (10^859669-1)^2-2 1719338 p405 2022 Near-repdigit 668 3596074^262144+1 1718572 L4689 2017 Generalized Fermat 669 3547726^262144+1 1717031 L4201 2017 Generalized Fermat 670 8*10^1715905-1 1715906 L4879 2020 Near-repdigit 671 1243*2^5686715-1 1711875 L1828 2016 672 65*2^5671355+1 1707250 L5294 2024 673 25*2^5658915-1 1703505 L1884 2021 674 1486287*14^1486287+1 1703482 L5765 2023 Generalized Cullen 675 41*2^5651731+1 1701343 L1204 2020 676 3060772^262144+1 1700222 L4649 2017 Generalized Fermat 677 9*2^5642513+1 1698567 L3432 2013 678 165*2^5633373+1 1695817 L5178 2024 679 10*3^3550446+1 1693995 L4965 2020 680 2622*11^1621920-1 1689060 L2054 2015 681 141*2^5600116+1 1685806 L6089 2024 682 81*2^5600028+1 1685779 L4965 2022 Generalized Fermat 683 2676404^262144+1 1684945 L4591 2017 Generalized Fermat 684 301562*5^2408646-1 1683577 L4675 2017 685 2611294^262144+1 1682141 L4250 2017 Generalized Fermat 686 55599^354294+55599^177147+1 1681149 p437 2023 Generalized unique 687 171362*5^2400996-1 1678230 L4669 2017 688 2514168^262144+1 1677825 L4564 2017 Generalized Fermat 689b 2507493^262144-2507493^131072+1 1677523 p453 2025 Generalized unique 690 31*2^5560820+1 1673976 L1204 2020 Divides GF(5560819,6) 691 163*2^5550632+1 1670909 L5517 2024 692 205*2^5532904+1 1665573 L5517 2024 693 191*2^5531015+1 1665004 L5517 2024 694 13*2^5523860+1 1662849 L1204 2020 Divides Fermat F(5523858) 695 89*2^5519481+1 1661532 L5178 2024 696 252191*2^5497878-1 1655032 L3183 2012 697b 2044075^262144-2044075^131072+1 1654259 p453 2025 Generalized unique 698 2042774^262144+1 1654187 L4499 2016 Generalized Fermat 699 8*10^1652593-1 1652594 A2 2025 Near-repdigit 700 247*2^5477512+1 1648898 L5373 2024 701 129*2^5453363+1 1641628 L6083 2024 702 1828858^262144+1 1641593 L4200 2016 Generalized Fermat 703 258317*2^5450519+1 1640776 g414 2008 704 7*6^2104746+1 1637812 L4965 2019 705 91*2^5435752+1 1636327 L5214 2024 706 159*2^5432226+1 1635266 L6082 2024 707 193*2^5431414+1 1635021 L5214 2024 708 5*2^5429494-1 1634442 L3345 2017 709 77*2^5422903+1 1632459 A2 2024 Divides GF(5422902,12) 710 165*2^5416628+1 1630570 L5537 2024 711 147*2^5410159+1 1628623 L5517 2024 712 285*2^5408709+1 1628187 L5178 2024 713 43*2^5408183-1 1628027 L1884 2018 714 8*815^559138-1 1627740 A26 2024 715 1615588^262144+1 1627477 L4200 2016 Generalized Fermat 716 245*2^5404089+1 1626796 L5282 2024 717 2*296598^296598-1 1623035 L4965 2022 718 127*2^5391378+1 1622969 L5178 2024 719 1349*2^5385004-1 1621051 L1828 2017 720 1488256^262144+1 1618131 L4249 2016 Generalized Fermat 721d 1243041*2^5371459-1 1616977 L5327 2025 722 153*2^5369765+1 1616463 L5969 2024 723 1415198^262144+1 1612400 L4308 2016 Generalized Fermat 724 84*730^560037+1 1603569 A12 2024 725 93*2^5323466+1 1602525 L5537 2024 726 237*2^5315983+1 1600273 L6064 2024 727 45*2^5308037+1 1597881 L4761 2019 728 5468*70^864479-1 1595053 L5410 2022 729 131*2^5298475+1 1595003 L5517 2024 730 237*2^5291999+1 1593053 L5532 2024 731 221*2^5284643+1 1590839 L5517 2024 732 92*10^1585996-1 1585998 L4789 2023 Near-repdigit 733 9*10^1585829-1 1585830 A2 2025 Near-repdigit 734 1082083^262144-1082083^131072+1 1581846 L4506 2017 Generalized unique 735 247*2^5254234+1 1581685 L5923 2024 736 273*2^5242597+1 1578182 L5192 2024 737 7*2^5229669-1 1574289 L4965 2021 738 180062*5^2249192-1 1572123 L4435 2016 739 124125*6^2018254+1 1570512 L4001 2019 740 27*2^5213635+1 1569462 L3760 2015 741 227*2^5213195+1 1569331 L5517 2024 742 9992*10^1567410-1 1567414 L4879 2020 Near-repdigit 743 27*252^652196+1 1566186 A21 2024 744 149*2^5196375+1 1564267 L5174 2024 745 277*2^5185268+1 1560924 L5888 2024 746 308084!+1 1557176 p425 2022 Factorial 747 843575^262144-843575^131072+1 1553498 L4506 2017 Generalized unique 748 25*2^5152151-1 1550954 L1884 2020 749 125*2^5149981+1 1550301 L6042 2024 750 147*2^5146964+1 1549393 L5559 2024 751 53546*5^2216664-1 1549387 L4398 2016 752 773620^262144+1 1543643 L3118 2012 Generalized Fermat 753 39*2^5119458+1 1541113 L1204 2019 754 607*26^1089034+1 1540957 L5410 2021 755 81*2^5115131+1 1539810 L4965 2022 Divides GF(5115128,12) [GG] 756 223*2^5105835-1 1537012 L2484 2019 757 99*10^1536527-1 1536529 L4879 2019 Near-repdigit 758 81*2^5100331+1 1535355 L4965 2022 Divides GF(5100327,6) [GG] 759 992*10^1533933-1 1533936 L4879 2019 Near-repdigit 760 51*2^5085142-1 1530782 L760 2014 761 3*2^5082306+1 1529928 L780 2009 Divides GF(5082303,3), GF(5082305,5) 762 676754^262144+1 1528413 L2975 2012 Generalized Fermat 763 296024*5^2185270-1 1527444 L671 2016 764 181*2^5057960+1 1522600 L5178 2024 765 5359*2^5054502+1 1521561 SB6 2003 766 175*2^5049344+1 1520007 L5178 2024 767 183*2^5042357+1 1517903 L5178 2024 768 1405486*12^1405486-1 1516781 L5765 2023 Generalized Woodall 769 53*2^5019181+1 1510926 L4965 2023 770c 6*7^1786775-1 1510001 A2 2025 771 131*2^5013361+1 1509175 L5178 2024 772 13*2^4998362+1 1504659 L3917 2014 773c 136*859^512270+1 1502999 A11 2025 774 525094^262144+1 1499526 p338 2012 Generalized Fermat 775 92158*5^2145024+1 1499313 L4348 2016 776 499238*10^1497714-1 1497720 L4976 2019 Generalized Woodall 777 357*2^4972628+1 1496913 L5783 2024 778 2127231*2^4972165-1 1496778 L5327 2025 779 77072*5^2139921+1 1495746 L4340 2016 780 175*2^4965756+1 1494844 L5888 2024 781 221*2^4960867+1 1493373 L5178 2024 782 375*2^4950021+1 1490108 L5178 2024 783 2*3^3123036+1 1490068 L5043 2020 784 75*2^4940218+1 1487156 L5517 2024 Divides GF(4940214,12) 785 95*2^4929067+1 1483799 L5172 2024 786 161*2^4928111+1 1483512 L5961 2024 787 51*2^4923905+1 1482245 L4965 2023 788 289*2^4911870+1 1478623 L5178 2024 Generalized Fermat 789 519397*2^4908893-1 1477730 L5410 2022 790 306398*5^2112410-1 1476517 L4274 2016 791 183*2^4894125+1 1473281 L5961 2024 Divides GF(4894123,3), GF(4894124,5) 792 39*684^519468-1 1472723 L5410 2023 793 195*2^4887935+1 1471418 L5261 2024 794 281*2^4886723+1 1471053 L5971 2024 795 281*2^4879761+1 1468957 L5961 2024 796 96*789^506568+1 1467569 A14 2024 797 243*2^4872108+1 1466654 L5178 2024 798 213*2^4865126+1 1464552 L5803 2024 799 265711*2^4858008+1 1462412 g414 2008 800 154222*5^2091432+1 1461854 L3523 2015 801 1271*2^4850526-1 1460157 L1828 2012 802 333*2^4846958-1 1459083 L5546 2022 803 357*2^4843507+1 1458044 L5178 2024 804 156*532^534754-1 1457695 L5410 2023 805 362978^262144-362978^131072+1 1457490 p379 2015 Generalized unique 806 361658^262144+1 1457075 p332 2011 Generalized Fermat 807 231*2^4836124+1 1455821 L5517 2024 808 7*10^1454508+1 1454509 p439 2024 809 303*2^4829593+1 1453855 L5706 2024 810 100186*5^2079747-1 1453686 L4197 2015 811 375*2^4824253+1 1452248 L5625 2024 812 288465!+1 1449771 p3 2022 Factorial 813 15*2^4800315+1 1445040 L1754 2019 Divides GF(4800313,3), GF(4800310,5) 814 235*2^4799708+1 1444859 L5971 2024 815 347*2^4798851+1 1444601 L5554 2024 816 239*2^4795541+1 1443605 L5995 2024 817 2^4792057-2^2396029+1 1442553 L3839 2014 Gaussian Mersenne norm 40, generalized unique 818 92*10^1439761-1 1439763 L4789 2020 Near-repdigit 819 269*2^4777025+1 1438031 L5683 2024 820f 1365*2^4768348+1 1435419 L6264 2025 821 653*10^1435026-1 1435029 p355 2014 822 197*2^4765318-1 1434506 L5175 2021 823 1401*2^4759435-1 1432736 L4965 2023 824 2169*2^4754343-1 1431204 L4965 2023 825 188*468^535963+1 1431156 L4832 2019 826 1809*2^4752792-1 1430737 L4965 2022 827 61*2^4749928+1 1429873 L5285 2024 828 2427*2^4749044-1 1429609 L4965 2022 829 303*2^4748019-1 1429299 L5545 2023 830 2259*2^4746735-1 1428913 L4965 2022 831 309*2^4745713-1 1428605 L5545 2023 832 44035*2^4743708+1 1428004 A68 2025 833 183*2^4740056+1 1426902 L5945 2024 834 2223*2^4729304-1 1423666 L4965 2022 835 1851*2^4727663-1 1423172 L4965 2022 836 1725*2^4727375-1 1423085 L4965 2022 837 1611*2^4724014-1 1422074 L4965 2022 838 1383*2^4719270-1 1420645 L4965 2022 839 1749*2^4717431-1 1420092 L4965 2022 840 321*2^4715725+1 1419578 L5178 2024 841 371*2^4715211+1 1419423 L5527 2024 842 2325*2^4713991-1 1419057 L4965 2022 843 3267113#-1 1418398 p301 2021 Primorial 844 291*2^4708553+1 1417419 L5308 2024 845 100*406^543228+1 1417027 L5410 2020 Generalized Fermat 846 2337*2^4705660-1 1416549 L4965 2022 847 1229*2^4703492-1 1415896 L1828 2018 848 1425*2^4700603+1 1415026 L6264 2025 849 303*2^4694937+1 1413320 L5977 2024 850 3719*30^956044-1 1412197 L5410 2023 851 6*894^478421-1 1411983 L4294 2023 852 263*2^4688269+1 1411313 L5904 2024 853 155*2^4687127+1 1410969 L5969 2024 854 144052*5^2018290+1 1410730 L4146 2015 855 195*2^4685711-1 1410542 L5175 2021 856 9*2^4683555-1 1409892 L1828 2012 857 31*2^4673544+1 1406879 L4990 2019 858 34*993^469245+1 1406305 L4806 2018 859 197*2^4666979+1 1404903 L5233 2024 860 79*2^4658115-1 1402235 L1884 2018 861 39*2^4657951+1 1402185 L1823 2019 862 4*650^498101-1 1401116 L4294 2021 863 11*2^4643238-1 1397755 L2484 2014 864 884411*38^884411+1 1397184 L5765 2023 Generalized Cullen 865 68*995^465908-1 1396712 L4001 2017 866 7*6^1793775+1 1395830 L4965 2019 867 269*2^4636583+1 1395753 L5509 2024 868 117*2^4632990+1 1394672 L5960 2024 869 213*2^4625484+1 1392412 L5956 2024 870 2*914^469757+1 1390926 A11 2025 871 1425*2^4618342+1 1390263 L1134 2024 872 4*7^1640811+1 1386647 A2 2024 873 192098^262144-192098^131072+1 1385044 p379 2015 Generalized unique 874 339*2^4592225+1 1382401 L5302 2024 875 6*10^1380098+1 1380099 L5009 2023 876 27*2^4583717-1 1379838 L2992 2014 877 221*2^4578577+1 1378292 L5710 2024 878 359*2^4578161+1 1378167 L5894 2024 879 3^2888387-3^1444194+1 1378111 L5123 2023 Generalized unique 880 1198433*14^1198433+1 1373564 L5765 2023 Generalized Cullen 881 67*2^4561350+1 1373105 L5614 2024 882 121*2^4553899-1 1370863 L3023 2012 883 231*2^4552115+1 1370326 L5302 2024 884 223*2^4549924+1 1369666 L5904 2024 885 46278*5^1957771+1 1368428 A69 2025 886 9473*2^4543680-1 1367788 L5037 2022 887 27*2^4542344-1 1367384 L1204 2014 888 29*2^4532463+1 1364409 L4988 2019 889 4*797^468702+1 1359920 L4548 2017 Generalized Fermat 890b 241*24^980881-1 1353826 A80 2025 891 145310^262144+1 1353265 p314 2011 Generalized Fermat 892 2*3^2834778-1 1352534 A2 2024 893 479*2^4492481+1 1352375 L5882 2024 894 373*2^4487274+1 1350807 L5320 2024 895 527*2^4486247+1 1350498 L5178 2024 896b 23964*5^1931969-1 1350393 A81 2025 897 25*2^4481024+1 1348925 L4364 2019 Generalized Fermat 898 83*2^4479409+1 1348439 L5178 2024 899 417*2^4473466+1 1346651 L5178 2024 900 81*536^493229+1 1346106 p431 2023 901 303*2^4471002-1 1345909 L5545 2022 902 1425*2^4469783+1 1345542 L1134 2023 903 2*1283^432757+1 1345108 L4879 2019 Divides Phi(1283^432757,2) 904 1-V(-2,-2,3074821)-2^3074821 1342125 p437 2024 905 447*2^4457132+1 1341734 L5875 2024 906 36772*6^1723287-1 1340983 L1301 2014 907 583854*14^1167708-1 1338349 L4976 2019 Generalized Woodall 908 20*634^476756-1 1335915 L4975 2023 909 297*2^4432947+1 1334453 L5178 2023 910 85*2^4432870+1 1334429 L4965 2023 911c 1581*24^965869-1 1333107 A11 2025 912 151*2^4424321-1 1331856 L1884 2016 913 231*2^4422227+1 1331226 L5192 2023 914 131*2^4421071+1 1330878 L5178 2023 915 225*2^4419349+1 1330359 L5866 2023 916 1485*2^4416137+1 1329393 L1134 2024 917 469*2^4414802+1 1328991 L5830 2023 918 549*2^4411029+1 1327855 L5862 2023 919 445*2^4410256+1 1327622 L5537 2023 920 259*2^4395550+1 1323195 L5858 2023 921 219*2^4394846+1 1322983 L5517 2023 922 165*2^4379097+1 1318242 L5852 2023 923 183*2^4379002+1 1318214 L5476 2023 924 1455*2^4376470+1 1317452 L1134 2023 925 165*2^4375458+1 1317147 L5851 2023 926 195*2^4373994-1 1316706 L5175 2020 927 381*2^4373129+1 1316446 L5421 2023 928 2008551*2^4371904+1 1316081 g431 2025 929 (10^657559-1)^2-2 1315118 p405 2022 Near-repdigit 930 49*2^4365175-1 1314051 L1959 2017 931 49*2^4360869-1 1312755 L1959 2017 932 253*2^4358512+1 1312046 L875 2023 933 219*2^4354805+1 1310930 L5848 2023 934 249*2^4351621+1 1309971 L5260 2023 935 159*2^4348734+1 1309102 L5421 2023 936 115*2^4347620+1 1308767 L5178 2023 937 533*2^4338237+1 1305943 L5260 2023 938 141*2^4337804+1 1305812 L5178 2023 939 363*2^4334518+1 1304823 L5261 2023 940 299*2^4333939+1 1304649 L5517 2023 941 13*2^4333087-1 1304391 L1862 2018 942a 1007*2^4332776-1 1304299 A46 2025 943 353159*2^4331116-1 1303802 L2408 2011 944 195*2^4330189+1 1303520 L5178 2023 945 145*2^4327756+1 1302787 L5517 2023 946 31*980^433853-1 1297754 A11 2025 947 9959*2^4308760-1 1297071 L5037 2022 948 195*2^4304861+1 1295895 L5178 2023 949 23*2^4300741+1 1294654 L4147 2019 950 682156*79^682156+1 1294484 L4472 2016 Generalized Cullen 951 141941*2^4299438-1 1294265 L689 2011 952 87*2^4297718+1 1293744 L4965 2023 953 22*905^437285-1 1292900 L5342 2024 954 435*2^4292968+1 1292315 L5783 2023 955 993149*20^993149+1 1292123 L5765 2023 Generalized Cullen 956b 1009*2^4282501-1 1289165 A46 2025 957 415*2^4280864+1 1288672 L5818 2023 958 79*2^4279006+1 1288112 L4965 2023 959 205*2^4270310+1 1285494 L5517 2023 960 483*2^4270112+1 1285435 L5178 2023 961 123*2^4266441+1 1284329 L5178 2023 962 612749*2^4254500-1 1280738 L5410 2022 963 3883403*2^4254462-1 1280728 L5327 2025 964 223*2^4252660+1 1280181 L5178 2023 965 1644731*6^1644731+1 1279856 L5765 2023 Generalized Cullen 966 38*380^495986-1 1279539 L5410 2023 967 2*1151^417747+1 1278756 L4879 2019 Divides Phi(1151^417747,2) 968 15*2^4246384+1 1278291 L3432 2013 Divides GF(4246381,6) 969 3*2^4235414-1 1274988 L606 2008 970 2*1259^411259+1 1274914 L4879 2020 Divides Phi(1259^411259,2) 971 93*2^4232892+1 1274230 L4965 2023 972 131*2^4227493+1 1272605 L5226 2023 973 45*436^481613+1 1271213 L5410 2020 974 109208*5^1816285+1 1269534 L3523 2014 975 435*2^4216447+1 1269280 L5178 2023 976 1091*2^4215518-1 1269001 L1828 2018 977 191*2^4203426-1 1265360 L2484 2012 978c 10666*24^916019-1 1264304 A63 2025 979 269*2^4198809+1 1263970 L5226 2023 980 545*2^4198333+1 1263827 L5804 2023 981 53*2^4197093+1 1263453 L5563 2023 982 1259*2^4196028-1 1263134 L1828 2016 983 329*2^4193199+1 1262282 L5226 2023 984 141*2^4192911+1 1262195 L5226 2023 Divides Fermat F(4192909) 985f 20219*24^914407+1 1262080 A70 2025 986 325918*5^1803339-1 1260486 L3567 2014 987 1160*745^438053-1 1258160 L4189 2025 988 16723*820^431579+1 1257546 A11 2025 989 345*2^4173969+1 1256493 L5226 2023 990 161*2^4164267+1 1253572 L5178 2023 991c 20611*24^908013-1 1253255 A11 2025 992 135*2^4162529+1 1253049 L5178 2023 Divides GF(4162525,10) 993 177*2^4162494+1 1253038 L5796 2023 994 237*2^4153348+1 1250285 L5178 2023 995 69*2^4151165+1 1249628 L4965 2023 996 133778*5^1785689+1 1248149 L3903 2014 997 201*2^4146003+1 1248074 L5161 2023 998e 15921*24^903076+1 1246440 A68 2025 999 329*2^4136019+1 1245069 L5178 2023 1000 81*2^4131975+1 1243851 L4965 2022 1001 459*2^4129577+1 1243130 L5226 2023 1002 551*2^4126303+1 1242144 L5226 2023 1003 363*2^4119017+1 1239951 L5226 2023 1004f 20731*24^897326+1 1238504 A11 2025 1005 105*2^4113039+1 1238151 L5178 2023 1006 204*532^454080-1 1237785 L5410 2023 1007 41*684^436354+1 1237090 L4444 2023 1008 17*2^4107544-1 1236496 L4113 2015 1009 261*2^4106385+1 1236148 L5178 2023 1010 24032*5^1768249+1 1235958 L3925 2014 1011 172*159^561319-1 1235689 L4001 2017 1012 10^1234567-20342924302*10^617278-1 1234567 p423 2021 Palindrome 1013 10^1234567-1927633367291*10^617277-1 1234567 p423 2023 Palindrome 1014 10^1234567-3626840486263*10^617277-1 1234567 p423 2021 Palindrome 1015 10^1234567-4708229228074*10^617277-1 1234567 p423 2021 Palindrome 1016 67*2^4100746+1 1234450 L5178 2023 1017 191*2^4099097+1 1233954 L5563 2023 1018 325*2^4097700+1 1233534 L5226 2023 1019 519*2^4095491+1 1232869 L5226 2023 1020 111*2^4091044+1 1231530 L5783 2023 Divides GF(4091041,3) 1021 1182072*11^1182072-1 1231008 L5765 2023 Generalized Woodall 1022 64*425^467857-1 1229712 p268 2021 1023e 1007*2^4084946-1 1229695 A46 2025 1024e 9721*24^890258+1 1228749 A68 2025 1025 8*558^447047+1 1227876 A28 2024 1026 163*778^424575+1 1227440 A11 2024 1027 381*2^4069617+1 1225080 L5226 2023 1028 9*10^1224889-1 1224890 A2 2025 Near-repdigit 1029 97*2^4066717-1 1224206 L2484 2019 1030 95*2^4063895+1 1223357 L5226 2023 1031 79*2^4062818+1 1223032 L5178 2023 1032 1031*2^4054974-1 1220672 L1828 2017 1033 309*2^4054114+1 1220413 L5178 2023 1034 2022202116^131072+1 1219734 L4704 2022 Generalized Fermat 1035 37*2^4046360+1 1218078 L2086 2019 1036 141*2^4043116+1 1217102 L5517 2023 1037 21744*5^1740189+1 1216345 A57 2025 1038 172*360^474814+1 1213771 A28 2025 1039 39653*430^460397-1 1212446 L4187 2016 1040 1777034894^131072+1 1212377 L4704 2022 Generalized Fermat 1041 141*2^4024411+1 1211471 L5226 2023 1042 515*2^4021165+1 1210494 L5174 2023 1043 73*2^4016912+1 1209213 L5226 2023 1044 40734^262144+1 1208473 p309 2011 Generalized Fermat 1045 235*2^4013398+1 1208156 L5178 2023 1046a 755*2^4010351+1 1207239 L5783 2025 1047 9*2^4005979-1 1205921 L1828 2012 1048 417*2^4003224+1 1205094 L5764 2023 1049a 567*2^4001998+1 1204725 L5214 2025 1050 18576*5^1723294+1 1204536 A68 2025 1051 12*68^656921+1 1203815 L4001 2016 1052a 921*2^3996981+1 1203215 L5969 2025 1053a 855*2^3996465+1 1203059 L6243 2025 1054 67*688^423893+1 1202836 L4001 2017 1055 221*2^3992723+1 1201932 L5178 2023 1056 213*2^3990702+1 1201324 L5216 2023 1057a 1003*2^3988048+1 1200526 L6297 2025 1058a 1185*2^3987910+1 1200484 L5916 2025 1059 1993191*2^3986382-1 1200027 L3532 2015 Generalized Woodall 1060 1429787556^131072+1 1200000 x54 2025 Generalized Fermat 1061 163*2^3984604+1 1199488 L5756 2023 1062 725*2^3983355+1 1199113 L5706 2023 1063 (146^276995+1)^2-2 1199030 p405 2022 1064 455*2^3981067+1 1198424 L5724 2023 1065 138172*5^1714207-1 1198185 L3904 2014 1066 50*383^463313+1 1196832 L2012 2021 1067 339*2^3974295+1 1196385 L5178 2023 1068 699*2^3974045+1 1196310 L5750 2023 1069 1202113^196608-1202113^98304+1 1195366 L4506 2016 Generalized unique 1070a 795*2^3969719+1 1195008 L5231 2025 1071a 855*2^3968567+1 1194661 L6296 2025 1072 29*2^3964697+1 1193495 L1204 2019 1073a 921*2^3964356+1 1193394 L6294 2025 1074 599*2^3963655+1 1193182 L5226 2023 1075 683*2^3962937+1 1192966 L5226 2023 1076 39*2^3961129+1 1192421 L1486 2019 1077 165*2^3960664+1 1192281 L5178 2023 1078 79*2^3957238+1 1191250 L5745 2023 1079a 1083*2^3956937+1 1191160 L5231 2025 1080 687*2^3955918+1 1190853 L5554 2023 Divides GF(3955915,6) 1081 163*2^3954818+1 1190522 L5178 2023 1082a 987*2^3954743+1 1190500 L6293 2025 1083 431*2^3953647+1 1190169 L5554 2023 1084 466542*355^466542-1 1189795 L6249 2025 Generalized Woodall 1085a 767*2^3949751+1 1188997 L5616 2025 1086 1110815^196608-1110815^98304+1 1188622 L4506 2016 Generalized unique 1087 127162!^2+1 1187715 p450 2025 1088a 997*2^3944690+1 1187474 L5231 2025 1089a 1085*2^3943263+1 1187044 L5214 2025 Divides Fermat F(3943261) 1090 341*2^3938565+1 1185629 L5554 2023 1091 503*2^3936845+1 1185112 L5706 2023 1092 717*2^3934760+1 1184484 L5285 2023 1093a 6555*2^3934018-1 1184262 A76 2025 1094b 759*2^3933042+1 1183967 L6168 2025 1095b 1003*2^3932090+1 1183681 L5517 2025 Divides GF(3932089,6) 1096 493*2^3929192+1 1182808 L5161 2023 1097 273*2^3929128+1 1182788 L5554 2023 1098 609*2^3928682+1 1182654 L5178 2023 1099 609*2^3928441+1 1182582 L5527 2023 1100f 1334*7^1398969-1 1182270 A68 2025 1101 281*2^3926467+1 1181987 L5174 2023 1102b 867*2^3923783+1 1181180 L5226 2025 1103 153*2^3922478+1 1180786 L5554 2023 1104 69*2^3920863+1 1180300 L5554 2023 1105b 1017*2^3920512+1 1180195 L5952 2025 1106 273*2^3919321+1 1179836 L5706 2023 1107 531*2^3918985+1 1179735 L5706 2023 1108 1000032472^131072+1 1179650 L4704 2022 Generalized Fermat 1109 555*2^3916875+1 1179100 L5302 2023 1110 571*2^3910616+1 1177216 L5178 2023 1111b 913*2^3906468+1 1175968 L6056 2025 1112 421*2^3905144+1 1175569 L5600 2023 1113b 837*2^3902111+1 1174656 L5302 2025 1114b 807*2^3901696+1 1174531 L5888 2025 1115b 975*2^3900804+1 1174263 L5450 2025 1116 P1174253 1174253 p414 2022 1117 567*2^3897588+1 1173294 L5600 2023 1118 417*2^3895404+1 1172637 L5600 2023 1119 539*2^3894953+1 1172501 L5285 2023 1120b 817*2^3894442+1 1172347 L5264 2025 1121 645*2^3893849+1 1172169 L5600 2023 1122b 929*2^3893187+1 1171970 L5264 2025 1123 818764*3^2456293-1 1171956 L4965 2023 Generalized Woodall 1124 22478*5^1675150-1 1170884 L3903 2014 1125 1199*2^3889576-1 1170883 L1828 2018 1126 298989*2^3886857+1 1170067 L2777 2014 Generalized Cullen 1127 93*10^1170023-1 1170025 L4789 2022 Near-repdigit 1128 711*2^3886480+1 1169950 L5320 2023 1129b 1099*2^3886398+1 1169926 L5226 2025 1130 375*2^3884634+1 1169394 L5600 2023 1131 445583*2^3883406-1 1169028 L5327 2025 1132b 885*2^3883077+1 1168926 L5783 2025 1133 94*872^397354+1 1168428 L5410 2019 1134 571140*111^571140+1 1168172 A67 2025 Generalized Cullen 1135b 1031*2^3877849+1 1167352 L5888 2025 1136 269*2^3877485+1 1167242 L5649 2023 1137c 111*2^3875095-1 1166522 A76 2025 1138b 1029*2^3874683+1 1166399 L5226 2025 1139 163*2^3874556+1 1166360 L5646 2023 Divides GF(3874552,5) 1140 1365*2^3872811+1 1165836 L1134 2023 1141 313*2^3869536+1 1164849 L5600 2023 1142b 1023*2^3868914+1 1164663 L5888 2025 1143 159*2^3860863+1 1162238 L5226 2023 1144 445*2^3860780+1 1162214 L5640 2023 1145 397*2^3859450+1 1161813 L5226 2023 1146 685*2^3856790+1 1161013 L5226 2023 1147 27*2^3855094-1 1160501 L3033 2012 1148b 937*2^3855022+1 1160481 L5825 2025 1149 537*2^3853860+1 1160131 L5636 2022 1150b 927*2^3853850+1 1160128 L6253 2025 1151 164*978^387920-1 1160015 L4700 2018 1152b 865*2^3853066+1 1159892 L5935 2025 1153 175*2^3850344+1 1159072 L5226 2022 1154 685*2^3847268+1 1158146 L5226 2022 1155 655*2^3846352+1 1157871 L5282 2022 1156 583*2^3846196+1 1157824 L5226 2022 1157 615*2^3844151+1 1157208 L5226 2022 1158 14772*241^485468-1 1156398 L5410 2022 1159 525*2^3840963+1 1156248 L5613 2022 1160 313*2^3837304+1 1155147 L5298 2022 1161c 1005*2^3837247+1 1155130 L5517 2025 1162 49*2^3837090+1 1155081 L4979 2019 Generalized Fermat 1163 431*2^3835247+1 1154528 L5161 2022 1164 97*2^3833722+1 1154068 L5226 2022 1165c 1003*2^3833686+1 1154058 L5517 2025 1166c 1167*2^3832603+1 1153732 L5888 2025 1167c 793*2^3832174+1 1153603 L6291 2025 1168c 957*2^3829576+1 1152821 L5888 2025 1169 2*839^394257+1 1152714 L4879 2019 Divides Phi(839^394257,2) 1170 125*392^444161+1 1151839 L4832 2022 1171c 817*2^3826096+1 1151773 L6241 2025 1172f 12969*24^834325+1 1151549 A62 2025 1173 255*2^3824348+1 1151246 L5226 2022 1174 30*514^424652-1 1151218 L4001 2017 1175 569*2^3823191+1 1150898 L5226 2022 1176 24518^262144+1 1150678 g413 2008 Generalized Fermat 1177c 959*2^3821971+1 1150531 L5261 2025 1178 563*2^3819237+1 1149708 L5178 2022 1179 345*2^3817949+1 1149320 L5373 2022 1180 700219^196608-700219^98304+1 1149220 L4506 2016 Generalized unique 1181 241*2^3815727-1 1148651 L2484 2019 1182 351*2^3815467+1 1148573 L5226 2022 1183 9*10^1148275-1 1148276 A2 2025 Near-repdigit 1184 109*980^383669-1 1147643 L4001 2018 1185 427*2^3811610+1 1147412 L5614 2022 1186 569*2^3810475+1 1147071 L5610 2022 1187 213*2^3807864+1 1146284 L5609 2022 1188c 765*2^3807519+1 1146181 L6253 2025 1189 87*2^3806438+1 1145854 L5607 2022 1190 369*2^3805321+1 1145519 L5541 2022 1191 123547*2^3804809-1 1145367 L2371 2011 1192 2564*75^610753+1 1145203 L3610 2014 1193 539*2^3801705+1 1144430 L5161 2022 1194 159*2^3801463+1 1144357 L5197 2022 1195 235*2^3801284+1 1144303 L5608 2022 1196 660955^196608-660955^98304+1 1144293 L4506 2016 Generalized unique 1197c 893*2^3800793+1 1144156 L5825 2025 1198 519*2^3800625+1 1144105 L5315 2022 1199c 779*2^3799613+1 1143801 L5302 2025 1200c 855*2^3798877+1 1143579 L6289 2025 1201 281*2^3798465+1 1143455 L5178 2022 1202c 1061*2^3798429+1 1143445 L6247 2025 1203 166*443^432000+1 1143249 L5410 2020 1204 85*2^3797698+1 1143223 L5161 2022 1205 326834*5^1634978-1 1142807 L3523 2014 1206c 873*2^3796065+1 1142733 L6209 2025 1207 459*2^3795969+1 1142704 L5161 2022 1208c 789*2^3795409+1 1142535 L5517 2025 1209 105*298^461505-1 1141866 L5841 2023 1210c 945*2^3786772+1 1139935 L6257 2025 1211c 963*2^3786073+1 1139725 L5302 2025 1212 447*2^3780151+1 1137942 L5596 2022 1213 345*2^3779921+1 1137873 L5557 2022 1214 477*2^3779871+1 1137858 L5197 2022 1215b 116778*5^1627724-1 1137736 A11 2025 1216c 1145*2^3778331+1 1137395 L5614 2025 1217 251*2^3774587+1 1136267 L5592 2022 1218c 1017*2^3774168+1 1136141 L6246 2025 1219 439*2^3773958+1 1136078 L5557 2022 1220 43*182^502611-1 1135939 L4064 2020 1221 415267*2^3771929-1 1135470 L2373 2011 1222 11*2^3771821+1 1135433 p286 2013 1223 427*2^3768104+1 1134315 L5192 2022 1224 1455*2^3768024-1 1134292 L1134 2022 1225 711*2^3767492+1 1134131 L5161 2022 1226c 765*2^3767432+1 1134113 L5178 2025 1227f 250224!/250199#+1 1133656 p450 2025 Compositorial 1228 265*2^3765189-1 1133438 L2484 2018 1229 297*2^3765140+1 1133423 L5197 2022 1230 381*2^3764189+1 1133137 L5589 2022 1231 115*2^3763650+1 1132974 L5554 2022 1232 411*2^3759067+1 1131595 L5589 2022 1233d 1115*2^3758721+1 1131491 L5302 2025 Divides GF(3758718,5) 1234 405*2^3757192+1 1131031 L5590 2022 1235 1981*2^3754984+1 1130367 A24 2025 Divides GF(3754983,12) [GG] 1236d 817*2^3753850+1 1130025 L6013 2025 1237 938237*2^3752950-1 1129757 L521 2007 Woodall 1238 21*2^3745951-1 1127645 L4881 2025 1239 399866798^131072+1 1127471 L4964 2019 Generalized Fermat 1240 701*2^3744713+1 1127274 L5554 2022 1241 207394*5^1612573-1 1127146 L3869 2014 1242 684*10^1127118+1 1127121 L4036 2017 1243c 23964*5^1611569-1 1126443 A11 2025 1244 535386^196608-535386^98304+1 1126302 L4506 2016 Generalized unique 1245 104944*5^1610735-1 1125861 L3849 2014 1246 23451*2^3739388+1 1125673 L591 2015 1247 78*622^402915-1 1125662 L5645 2023 1248d 907*2^3738564+1 1125423 L6018 2025 Divides GF(3738563,3) 1249 615*2^3738023+1 1125260 L5161 2022 1250 347*2^3737875+1 1125216 L5178 2022 1251a 383074656^131072+1 1125029 L6129 2025 Generalized Fermat 1252a 383067358^131072+1 1125028 L4984 2025 Generalized Fermat 1253a 383001722^131072+1 1125018 L5639 2025 Generalized Fermat 1254a 382963992^131072+1 1125012 L5457 2025 Generalized Fermat 1255a 382521116^131072+1 1124946 L4387 2025 Generalized Fermat 1256a 382398560^131072+1 1124928 L4201 2025 Generalized Fermat 1257a 382386994^131072+1 1124926 L5051 2025 Generalized Fermat 1258a 382192798^131072+1 1124897 L5018 2025 Generalized Fermat 1259a 381956882^131072+1 1124862 L4201 2025 Generalized Fermat 1260a 381938134^131072+1 1124859 L5457 2025 Generalized Fermat 1261a 381838602^131072+1 1124845 L5457 2025 Generalized Fermat 1262a 381667286^131072+1 1124819 L5639 2025 Generalized Fermat 1263a 381368080^131072+1 1124774 L4909 2025 Generalized Fermat 1264a 381041624^131072+1 1124726 L6295 2025 Generalized Fermat 1265a 380969980^131072+1 1124715 L4760 2025 Generalized Fermat 1266a 380075660^131072+1 1124581 L5847 2025 Generalized Fermat 1267 163*2^3735726+1 1124568 L5477 2022 Divides GF(3735725,6) 1268a 379796278^131072+1 1124539 L5457 2025 Generalized Fermat 1269a 379787680^131072+1 1124538 L6245 2025 Generalized Fermat 1270a 379659564^131072+1 1124519 L6245 2025 Generalized Fermat 1271a 379652568^131072+1 1124518 L5847 2025 Generalized Fermat 1272a 379135698^131072+1 1124440 L4777 2025 Generalized Fermat 1273a 378967604^131072+1 1124415 L6281 2025 Generalized Fermat 1274a 378549186^131072+1 1124352 L6269 2025 Generalized Fermat 1275a 378447490^131072+1 1124337 L4726 2025 Generalized Fermat 1276a 378189120^131072+1 1124298 L4387 2025 Generalized Fermat 1277a 378073786^131072+1 1124281 L6261 2025 Generalized Fermat 1278a 377703722^131072+1 1124225 L6261 2025 Generalized Fermat 1279a 377680844^131072+1 1124221 L4387 2025 Generalized Fermat 1280b 377190902^131072+1 1124148 L4760 2025 Generalized Fermat 1281b 376770784^131072+1 1124084 L4760 2025 Generalized Fermat 1282b 376765124^131072+1 1124083 L4672 2025 Generalized Fermat 1283b 376282286^131072+1 1124010 L4387 2025 Generalized Fermat 1284b 376242888^131072+1 1124004 L4943 2025 Generalized Fermat 1285b 376091770^131072+1 1123981 L5457 2025 Generalized Fermat 1286b 375879964^131072+1 1123949 L4760 2025 Generalized Fermat 1287b 375844528^131072+1 1123944 L4387 2025 Generalized Fermat 1288b 375751988^131072+1 1123930 L4984 2025 Generalized Fermat 1289b 375631906^131072+1 1123912 L4371 2025 Generalized Fermat 1290b 375620420^131072+1 1123910 L5101 2025 Generalized Fermat 1291 375*2^3733510+1 1123902 L5584 2022 1292a 375119434^131072+1 1123834 L5416 2025 Generalized Fermat 1293 25*2^3733144+1 1123790 L2125 2019 Generalized Fermat 1294b 374354074^131072+1 1123718 L5416 2025 Generalized Fermat 1295 18576*5^1607646+1 1123701 A62 2025 1296b 373798848^131072+1 1123633 L4898 2025 Generalized Fermat 1297b 373746530^131072+1 1123625 L6129 2025 Generalized Fermat 1298b 373642010^131072+1 1123609 L4559 2025 Generalized Fermat 1299b 373331858^131072+1 1123562 L5782 2025 Generalized Fermat 1300b 372195620^131072+1 1123389 L4774 2025 Generalized Fermat 1301b 371709366^131072+1 1123314 L5664 2025 Generalized Fermat 1302b 371639716^131072+1 1123304 L5697 2025 Generalized Fermat 1303b 371582902^131072+1 1123295 L6282 2025 Generalized Fermat 1304 629*2^3731479+1 1123290 L5283 2022 1305b 371029718^131072+1 1123210 L6277 2025 Generalized Fermat 1306b 370773648^131072+1 1123171 L4672 2025 Generalized Fermat 1307b 370094662^131072+1 1123066 L5056 2025 Generalized Fermat 1308c 369881742^131072+1 1123034 L4387 2025 Generalized Fermat 1309c 369768362^131072+1 1123016 L4387 2025 Generalized Fermat 1310c 369286820^131072+1 1122942 L6086 2025 Generalized Fermat 1311b 369195802^131072+1 1122928 L6292 2025 Generalized Fermat 1312c 369042336^131072+1 1122904 L4672 2025 Generalized Fermat 1313c 368670150^131072+1 1122847 L5457 2025 Generalized Fermat 1314c 368603412^131072+1 1122837 L4387 2025 Generalized Fermat 1315c 367436176^131072+1 1122656 L4387 2025 Generalized Fermat 1316c 367403680^131072+1 1122651 L6092 2025 Generalized Fermat 1317c 366889726^131072+1 1122571 L6290 2025 Generalized Fermat 1318c 366390832^131072+1 1122494 L6281 2025 Generalized Fermat 1319c 366239240^131072+1 1122470 L4984 2025 Generalized Fermat 1320c 365995134^131072+1 1122432 L6277 2025 Generalized Fermat 1321c 365962846^131072+1 1122427 L4387 2025 Generalized Fermat 1322c 365233422^131072+1 1122314 L6288 2025 Generalized Fermat 1323c 365076078^131072+1 1122289 L4672 2025 Generalized Fermat 1324 113*2^3728113+1 1122276 L5161 2022 1325c 364868948^131072+1 1122257 L5457 2025 Generalized Fermat 1326c 364593526^131072+1 1122214 L4672 2025 Generalized Fermat 1327c 364500114^131072+1 1122199 L5755 2025 Generalized Fermat 1328c 364246694^131072+1 1122160 L6129 2025 Generalized Fermat 1329c 363776570^131072+1 1122086 L5457 2025 Generalized Fermat 1330c 363423146^131072+1 1122031 L5416 2025 Generalized Fermat 1331c 363276136^131072+1 1122008 L5101 2025 Generalized Fermat 1332d 939*2^3727057+1 1121959 L6246 2025 1333d 362256066^131072+1 1121848 L6272 2025 Generalized Fermat 1334d 362246504^131072+1 1121846 L6129 2025 Generalized Fermat 1335d 361913206^131072+1 1121794 L5816 2025 Generalized Fermat 1336d 361776104^131072+1 1121772 L6285 2025 Generalized Fermat 1337d 361544758^131072+1 1121736 L5639 2025 Generalized Fermat 1338d 361467126^131072+1 1121724 L6284 2025 Generalized Fermat 1339d 361402590^131072+1 1121714 L5850 2025 Generalized Fermat 1340c 361170018^131072+1 1121677 L5416 2025 Generalized Fermat 1341d 361129912^131072+1 1121671 L5755 2025 Generalized Fermat 1342d 360976084^131072+1 1121646 L5639 2025 Generalized Fermat 1343d 360926726^131072+1 1121639 L5755 2025 Generalized Fermat 1344d 360333892^131072+1 1121545 L5755 2025 Generalized Fermat 1345d 360331718^131072+1 1121545 L4726 2025 Generalized Fermat 1346d 360194030^131072+1 1121523 L5639 2025 Generalized Fermat 1347c 360172726^131072+1 1121519 L6287 2025 Generalized Fermat 1348d 360078180^131072+1 1121505 L5755 2025 Generalized Fermat 1349d 359903130^131072+1 1121477 L5755 2025 Generalized Fermat 1350 303*2^3725438+1 1121472 L5161 2022 1351d 359693996^131072+1 1121444 L5755 2025 Generalized Fermat 1352d 359533444^131072+1 1121418 L4726 2025 Generalized Fermat 1353d 359529844^131072+1 1121418 L4984 2025 Generalized Fermat 1354d 359511110^131072+1 1121415 L6282 2025 Generalized Fermat 1355d 359465736^131072+1 1121408 L4559 2025 Generalized Fermat 1356d 359012068^131072+1 1121336 L5639 2025 Generalized Fermat 1357d 358863220^131072+1 1121312 L4559 2025 Generalized Fermat 1358d 358747772^131072+1 1121294 L5755 2025 Generalized Fermat 1359d 358465776^131072+1 1121249 L5755 2025 Generalized Fermat 1360d 357751492^131072+1 1121136 L6281 2025 Generalized Fermat 1361d 357702788^131072+1 1121128 L6092 2025 Generalized Fermat 1362d 357575604^131072+1 1121108 L6281 2025 Generalized Fermat 1363 187*2^3723972+1 1121030 L5178 2022 1364d 357070956^131072+1 1121027 L4387 2025 Generalized Fermat 1365d 356295678^131072+1 1120903 L6090 2025 Generalized Fermat 1366e 355982986^131072+1 1120853 L4753 2025 Generalized Fermat 1367e 355489216^131072+1 1120774 L4898 2025 Generalized Fermat 1368 2*1103^368361+1 1120767 L4879 2019 Divides Phi(1103^368361,2) 1369e 355369712^131072+1 1120755 L6259 2025 Generalized Fermat 1370e 355196086^131072+1 1120727 L5396 2025 Generalized Fermat 1371e 354983678^131072+1 1120693 L5056 2025 Generalized Fermat 1372e 354747846^131072+1 1120656 L6273 2025 Generalized Fermat 1373e 354666958^131072+1 1120643 L6036 2025 Generalized Fermat 1374e 354569968^131072+1 1120627 L6277 2025 Generalized Fermat 1375e 353899590^131072+1 1120519 L6276 2025 Generalized Fermat 1376e 353637166^131072+1 1120477 L6275 2025 Generalized Fermat 1377e 353457578^131072+1 1120448 L4387 2025 Generalized Fermat 1378e 353261310^131072+1 1120417 L4387 2025 Generalized Fermat 1379e 353226578^131072+1 1120411 L4387 2025 Generalized Fermat 1380e 353120152^131072+1 1120394 L6274 2025 Generalized Fermat 1381e 352906026^131072+1 1120359 L4387 2025 Generalized Fermat 1382e 352766996^131072+1 1120337 L4387 2025 Generalized Fermat 1383e 352444404^131072+1 1120285 L5628 2025 Generalized Fermat 1384e 352035688^131072+1 1120219 L4984 2025 Generalized Fermat 1385e 351867654^131072+1 1120192 L4898 2025 Generalized Fermat 1386f 351352524^131072+1 1120108 L4559 2025 Generalized Fermat 1387f 350812044^131072+1 1120021 L6273 2025 Generalized Fermat 1388 105*2^3720512+1 1119988 L5493 2022 1389f 350518526^131072+1 1119973 L5465 2025 Generalized Fermat 1390f 349848992^131072+1 1119864 L6090 2025 Generalized Fermat 1391f 349655888^131072+1 1119833 L4875 2025 Generalized Fermat 1392f 349569992^131072+1 1119819 L5602 2025 Generalized Fermat 1393f 348958392^131072+1 1119719 L5974 2025 Generalized Fermat 1394f 348716246^131072+1 1119679 L5606 2025 Generalized Fermat 1395f 348550920^131072+1 1119652 L6073 2025 Generalized Fermat 1396d 915*2^3719305+1 1119626 L5783 2025 1397f 348331024^131072+1 1119616 L6272 2025 Generalized Fermat 1398f 348138302^131072+1 1119585 L6271 2025 Generalized Fermat 1399f 347869428^131072+1 1119541 L5974 2025 Generalized Fermat 1400 447*2^3719024+1 1119541 L5493 2022 1401f 347654842^131072+1 1119506 L5974 2025 Generalized Fermat 1402f 347652016^131072+1 1119505 L6270 2025 Generalized Fermat 1403f 347642266^131072+1 1119504 L5634 2025 Generalized Fermat 1404f 347533108^131072+1 1119486 L5974 2025 Generalized Fermat 1405f 347218234^131072+1 1119434 L5974 2025 Generalized Fermat 1406f 347205260^131072+1 1119432 L4898 2025 Generalized Fermat 1407f 346910756^131072+1 1119384 L5974 2025 Generalized Fermat 1408d 1183*2^3718480+1 1119378 L5969 2025 1409f 346785118^131072+1 1119363 L6269 2025 Generalized Fermat 1410f 346590566^131072+1 1119331 L5782 2025 Generalized Fermat 1411f 345832974^131072+1 1119207 L4984 2025 Generalized Fermat 1412f 345735266^131072+1 1119191 L6036 2025 Generalized Fermat 1413f 345526904^131072+1 1119156 L6268 2025 Generalized Fermat 1414 177*2^3717746+1 1119156 L5279 2022 1415 345277562^131072+1 1119115 L5205 2025 Generalized Fermat 1416 345222826^131072+1 1119106 L4659 2025 Generalized Fermat 1417 344953718^131072+1 1119062 L4899 2025 Generalized Fermat 1418 344920764^131072+1 1119056 L5974 2025 Generalized Fermat 1419 344891620^131072+1 1119052 L5755 2025 Generalized Fermat 1420 344632060^131072+1 1119009 L5755 2025 Generalized Fermat 1421 344487298^131072+1 1118985 L5755 2025 Generalized Fermat 1422 344261660^131072+1 1118948 L4387 2025 Generalized Fermat 1423 344203526^131072+1 1118938 L5697 2025 Generalized Fermat 1424 2*131^528469+1 1118913 L4879 2019 Divides Phi(131^528469,2) 1425 123*2^3716758+1 1118858 L5563 2022 1426 313*2^3716716+1 1118846 L5237 2022 1427 342944058^131072+1 1118729 L4387 2025 Generalized Fermat 1428 342928514^131072+1 1118727 L5396 2025 Generalized Fermat 1429 342390794^131072+1 1118637 L4387 2025 Generalized Fermat 1430 342324252^131072+1 1118626 L6266 2025 Generalized Fermat 1431 342321746^131072+1 1118626 L4387 2025 Generalized Fermat 1432 342261232^131072+1 1118616 L4387 2025 Generalized Fermat 1433 342195906^131072+1 1118605 L4387 2025 Generalized Fermat 1434 342100874^131072+1 1118589 L4984 2025 Generalized Fermat 1435 341948210^131072+1 1118564 L6265 2025 Generalized Fermat 1436 341497492^131072+1 1118489 L4201 2025 Generalized Fermat 1437d 1093*2^3715306+1 1118422 L5226 2025 1438 340623306^131072+1 1118343 L6263 2025 Generalized Fermat 1439 340569992^131072+1 1118334 L4387 2025 Generalized Fermat 1440 340505972^131072+1 1118323 L6262 2025 Generalized Fermat 1441 340054480^131072+1 1118248 L6261 2025 Generalized Fermat 1442 339945476^131072+1 1118229 L4387 2025 Generalized Fermat 1443 339584204^131072+1 1118169 L4387 2025 Generalized Fermat 1444 339503122^131072+1 1118155 L4387 2025 Generalized Fermat 1445 339477102^131072+1 1118151 L4387 2025 Generalized Fermat 1446 339175788^131072+1 1118100 L4387 2025 Generalized Fermat 1447 339137184^131072+1 1118094 L5697 2025 Generalized Fermat 1448 338934862^131072+1 1118060 L4201 2025 Generalized Fermat 1449 338918848^131072+1 1118057 L5974 2025 Generalized Fermat 1450 338800734^131072+1 1118037 L6073 2025 Generalized Fermat 1451 338188646^131072+1 1117934 L4387 2025 Generalized Fermat 1452 337982668^131072+1 1117900 L4387 2025 Generalized Fermat 1453 337667556^131072+1 1117847 L6260 2025 Generalized Fermat 1454d 779*2^3713283+1 1117813 L5980 2025 1455 337377976^131072+1 1117798 L6259 2025 Generalized Fermat 1456 337239448^131072+1 1117774 L4387 2025 Generalized Fermat 1457 336909928^131072+1 1117719 L6256 2025 Generalized Fermat 1458 367*2^3712952+1 1117713 L5264 2022 1459 336776604^131072+1 1117696 L6080 2025 Generalized Fermat 1460 336659214^131072+1 1117676 L5467 2025 Generalized Fermat 1461 336511772^131072+1 1117651 L4387 2025 Generalized Fermat 1462d 1005*2^3712712+1 1117641 L5226 2025 1463 336225072^131072+1 1117603 L4387 2025 Generalized Fermat 1464 336163680^131072+1 1117593 L4387 2025 Generalized Fermat 1465 336061324^131072+1 1117575 L4387 2025 Generalized Fermat 1466 335827642^131072+1 1117536 L4201 2025 Generalized Fermat 1467 335774748^131072+1 1117527 L5697 2025 Generalized Fermat 1468 335651494^131072+1 1117506 L4387 2025 Generalized Fermat 1469 335493020^131072+1 1117479 L4387 2025 Generalized Fermat 1470 335369868^131072+1 1117458 L4387 2025 Generalized Fermat 1471 334704486^131072+1 1117345 L4387 2025 Generalized Fermat 1472 333992848^131072+1 1117224 L5639 2025 Generalized Fermat 1473 333867048^131072+1 1117202 L4387 2025 Generalized Fermat 1474 333848570^131072+1 1117199 L4387 2025 Generalized Fermat 1475 333782588^131072+1 1117188 L4387 2025 Generalized Fermat 1476 333605722^131072+1 1117158 L6237 2025 Generalized Fermat 1477 333589186^131072+1 1117155 L4387 2025 Generalized Fermat 1478 333291568^131072+1 1117104 L5697 2025 Generalized Fermat 1479 332896652^131072+1 1117037 L4387 2025 Generalized Fermat 1480 332642368^131072+1 1116993 L5639 2025 Generalized Fermat 1481 332518718^131072+1 1116972 L5639 2025 Generalized Fermat 1482 332328704^131072+1 1116939 L5767 2025 Generalized Fermat 1483 332234952^131072+1 1116923 L4387 2025 Generalized Fermat 1484 331873856^131072+1 1116861 L5639 2025 Generalized Fermat 1485 331689568^131072+1 1116830 L4201 2025 Generalized Fermat 1486 331213936^131072+1 1116748 L5416 2025 Generalized Fermat 1487 331012838^131072+1 1116714 L4899 2025 Generalized Fermat 1488 330733978^131072+1 1116666 L6036 2025 Generalized Fermat 1489 330629260^131072+1 1116648 L5606 2025 Generalized Fermat 1490 53*2^3709297+1 1116612 L5197 2022 1491 329898286^131072+1 1116522 L6252 2025 Generalized Fermat 1492d 861*2^3708816+1 1116468 L5226 2025 1493 329482500^131072+1 1116450 L4387 2025 Generalized Fermat 1494 329433542^131072+1 1116441 L4201 2025 Generalized Fermat 1495 329320574^131072+1 1116422 L5696 2025 Generalized Fermat 1496 329310030^131072+1 1116420 L4201 2025 Generalized Fermat 1497 329136932^131072+1 1116390 L4892 2025 Generalized Fermat 1498 328941060^131072+1 1116356 L5974 2025 Generalized Fermat 1499 328110906^131072+1 1116212 L4387 2025 Generalized Fermat 1500 328048726^131072+1 1116202 L6250 2025 Generalized Fermat 1501 328036906^131072+1 1116200 L4201 2025 Generalized Fermat 1502 327703514^131072+1 1116142 L5974 2025 Generalized Fermat 1503 327549800^131072+1 1116115 L6129 2025 Generalized Fermat 1504 327476480^131072+1 1116102 L4201 2025 Generalized Fermat 1505 327239720^131072+1 1116061 L4984 2025 Generalized Fermat 1506d 1163*2^3707397+1 1116041 L5161 2025 1507 326302488^131072+1 1115898 L5722 2025 Generalized Fermat 1508 326104126^131072+1 1115863 L4684 2025 Generalized Fermat 1509 325957720^131072+1 1115838 L5186 2025 Generalized Fermat 1510 325927678^131072+1 1115832 L6245 2025 Generalized Fermat 1511 325913944^131072+1 1115830 L4387 2025 Generalized Fermat 1512 325084378^131072+1 1115685 L4201 2025 Generalized Fermat 1513 325043708^131072+1 1115678 L4201 2025 Generalized Fermat 1514 324844530^131072+1 1115643 L4939 2025 Generalized Fermat 1515 324830528^131072+1 1115640 L4599 2025 Generalized Fermat 1516 324563740^131072+1 1115594 L5639 2025 Generalized Fermat 1517 324342882^131072+1 1115555 L4201 2025 Generalized Fermat 1518 323718292^131072+1 1115445 L4201 2025 Generalized Fermat 1519 323626506^131072+1 1115429 L4201 2025 Generalized Fermat 1520 323033558^131072+1 1115325 L6073 2025 Generalized Fermat 1521 322955442^131072+1 1115311 L5767 2025 Generalized Fermat 1522 322525546^131072+1 1115235 L4201 2025 Generalized Fermat 1523 322451080^131072+1 1115222 L5452 2025 Generalized Fermat 1524 322434876^131072+1 1115219 L4201 2025 Generalized Fermat 1525 322396080^131072+1 1115212 L6237 2025 Generalized Fermat 1526 322011364^131072+1 1115144 L4201 2025 Generalized Fermat 1527 321847328^131072+1 1115115 L4387 2025 Generalized Fermat 1528 321745654^131072+1 1115097 L4201 2025 Generalized Fermat 1529 321738090^131072+1 1115096 L4760 2025 Generalized Fermat 1530 321725062^131072+1 1115094 L6090 2025 Generalized Fermat 1531 321586916^131072+1 1115069 L4201 2025 Generalized Fermat 1532 2^3704053+2^1852027+1 1115032 L3839 2014 Gaussian Mersenne norm 39, generalized unique 1533 321054002^131072+1 1114975 L6092 2025 Generalized Fermat 1534 320959460^131072+1 1114958 L4774 2025 Generalized Fermat 1535 320925816^131072+1 1114952 L6229 2025 Generalized Fermat 1536 320693846^131072+1 1114911 L6230 2025 Generalized Fermat 1537 320244692^131072+1 1114831 L6227 2025 Generalized Fermat 1538 319727682^131072+1 1114739 L4477 2025 Generalized Fermat 1539 319569620^131072+1 1114711 L5156 2025 Generalized Fermat 1540 319473204^131072+1 1114694 L6085 2025 Generalized Fermat 1541 319461008^131072+1 1114692 L4760 2025 Generalized Fermat 1542 317844906^131072+1 1114403 L5069 2025 Generalized Fermat 1543 317488260^131072+1 1114339 L5069 2025 Generalized Fermat 1544 395*2^3701693+1 1114324 L5536 2022 1545 317365236^131072+1 1114317 L6036 2025 Generalized Fermat 1546 317303160^131072+1 1114306 L5707 2025 Generalized Fermat 1547 317185514^131072+1 1114285 L4201 2025 Generalized Fermat 1548 317005818^131072+1 1114252 L5069 2025 Generalized Fermat 1549 316699096^131072+1 1114197 L5234 2025 Generalized Fermat 1550 316650634^131072+1 1114189 L5698 2025 Generalized Fermat 1551 316586358^131072+1 1114177 L4747 2025 Generalized Fermat 1552 316525620^131072+1 1114166 L4835 2025 Generalized Fermat 1553 316291718^131072+1 1114124 L4835 2025 Generalized Fermat 1554 315974676^131072+1 1114067 L5069 2025 Generalized Fermat 1555 315889316^131072+1 1114052 L5234 2025 Generalized Fermat 1556 315747878^131072+1 1114026 L5989 2025 Generalized Fermat 1557 315608702^131072+1 1114001 L5577 2025 Generalized Fermat 1558 315329034^131072+1 1113950 L5378 2025 Generalized Fermat 1559 315314084^131072+1 1113948 L5718 2025 Generalized Fermat 1560 315134738^131072+1 1113915 L5697 2025 Generalized Fermat 1561 314548296^131072+1 1113809 L4774 2025 Generalized Fermat 1562 314518672^131072+1 1113804 L5720 2025 Generalized Fermat 1563 589*2^3699954+1 1113800 L5576 2022 1564 314283852^131072+1 1113761 L6220 2025 Generalized Fermat 1565 314187728^131072+1 1113744 L4704 2019 Generalized Fermat 1566 313957156^131072+1 1113702 L4201 2025 Generalized Fermat 1567 313807832^131072+1 1113675 L4309 2025 Generalized Fermat 1568 313698494^131072+1 1113655 L4791 2025 Generalized Fermat 1569 313043470^131072+1 1113536 L4870 2025 Generalized Fermat 1570d 889*2^3699050+1 1113528 L5161 2025 1571 312959344^131072+1 1113521 L5989 2025 Generalized Fermat 1572 312907040^131072+1 1113512 L4835 2025 Generalized Fermat 1573 312372774^131072+1 1113414 L5732 2025 Generalized Fermat 1574 312306760^131072+1 1113402 L5782 2025 Generalized Fermat 1575 119*2^3698412-1 1113336 L2484 2018 1576d 1169*2^3698399+1 1113333 L5226 2025 1577 311769070^131072+1 1113304 L5378 2025 Generalized Fermat 1578 311345600^131072+1 1113227 L4201 2025 Generalized Fermat 1579 311340274^131072+1 1113226 L5234 2025 Generalized Fermat 1580 311041040^131072+1 1113171 L5974 2025 Generalized Fermat 1581 310877094^131072+1 1113141 L5378 2025 Generalized Fermat 1582d 1189*2^3697618+1 1113098 L5517 2025 1583 310324620^131072+1 1113040 L5069 2025 Generalized Fermat 1584 310092052^131072+1 1112997 L4201 2025 Generalized Fermat 1585 310040910^131072+1 1112988 L5989 2025 Generalized Fermat 1586 310039364^131072+1 1112987 L5452 2025 Generalized Fermat 1587 309765652^131072+1 1112937 L5069 2025 Generalized Fermat 1588 309739652^131072+1 1112932 L4201 2025 Generalized Fermat 1589 309664690^131072+1 1112919 L4904 2025 Generalized Fermat 1590 309512820^131072+1 1112891 L4672 2025 Generalized Fermat 1591 309489574^131072+1 1112886 L4285 2025 Generalized Fermat 1592 309442124^131072+1 1112878 L4763 2025 Generalized Fermat 1593 309322056^131072+1 1112856 L5763 2025 Generalized Fermat 1594 309290162^131072+1 1112850 L4984 2025 Generalized Fermat 1595 309274552^131072+1 1112847 L4870 2025 Generalized Fermat 1596 309198216^131072+1 1112833 L6220 2025 Generalized Fermat 1597 309023380^131072+1 1112801 L5586 2025 Generalized Fermat 1598 308604278^131072+1 1112723 L5814 2025 Generalized Fermat 1599 308406372^131072+1 1112687 L5069 2025 Generalized Fermat 1600 308191838^131072+1 1112647 L4411 2025 Generalized Fermat 1601 308154186^131072+1 1112640 L4672 2025 Generalized Fermat 1602 308065536^131072+1 1112624 L5617 2025 Generalized Fermat 1603 307819786^131072+1 1112579 L4733 2025 Generalized Fermat 1604 307711366^131072+1 1112558 L5375 2025 Generalized Fermat 1605 307525070^131072+1 1112524 L5234 2025 Generalized Fermat 1606 307305996^131072+1 1112483 L5871 2025 Generalized Fermat 1607 307211976^131072+1 1112466 L5234 2025 Generalized Fermat 1608 306999614^131072+1 1112427 L6215 2025 Generalized Fermat 1609 306293130^131072+1 1112295 L4252 2025 Generalized Fermat 1610 306021044^131072+1 1112245 L5029 2025 Generalized Fermat 1611 305985812^131072+1 1112238 L4672 2025 Generalized Fermat 1612 305909498^131072+1 1112224 L5869 2025 Generalized Fermat 1613 305710338^131072+1 1112187 L5155 2025 Generalized Fermat 1614 305485026^131072+1 1112145 L6217 2025 Generalized Fermat 1615 305470708^131072+1 1112142 L4245 2025 Generalized Fermat 1616 305377046^131072+1 1112125 L4775 2025 Generalized Fermat 1617 305014830^131072+1 1112057 L5041 2025 Generalized Fermat 1618 304591806^131072+1 1111978 L5069 2025 Generalized Fermat 1619 391*2^3693728+1 1111926 L5493 2022 1620 303660042^131072+1 1111804 L5548 2025 Generalized Fermat 1621 303569754^131072+1 1111787 L5041 2025 Generalized Fermat 1622 303297636^131072+1 1111736 L5069 2025 Generalized Fermat 1623 303057534^131072+1 1111691 L5797 2025 Generalized Fermat 1624 302824086^131072+1 1111647 L4252 2025 Generalized Fermat 1625 302491876^131072+1 1111585 L5273 2025 Generalized Fermat 1626 302240442^131072+1 1111537 L5375 2025 Generalized Fermat 1627 302186970^131072+1 1111527 L5030 2025 Generalized Fermat 1628 302150100^131072+1 1111520 L5586 2025 Generalized Fermat 1629 301715144^131072+1 1111438 L5234 2025 Generalized Fermat 1630 301702734^131072+1 1111436 L6205 2025 Generalized Fermat 1631 301006780^131072+1 1111304 L5375 2025 Generalized Fermat 1632 300951448^131072+1 1111294 L6092 2025 Generalized Fermat 1633 300789064^131072+1 1111263 L5041 2025 Generalized Fermat 1634 300359914^131072+1 1111182 L6207 2025 Generalized Fermat 1635 1089049*2^3691010+1 1111111 A51 2024 1636 299617962^131072+1 1111041 L6170 2025 Generalized Fermat 1637 299465954^131072+1 1111012 L5378 2025 Generalized Fermat 1638 299453316^131072+1 1111010 L6207 2025 Generalized Fermat 1639 299319324^131072+1 1110984 L5378 2025 Generalized Fermat 1640 298464340^131072+1 1110822 L5019 2025 Generalized Fermat 1641 298459970^131072+1 1110821 L4477 2025 Generalized Fermat 1642 297844594^131072+1 1110703 L5029 2025 Generalized Fermat 1643 297797756^131072+1 1110694 L6096 2025 Generalized Fermat 1644 297561734^131072+1 1110649 L5070 2025 Generalized Fermat 1645 297347764^131072+1 1110608 L4201 2025 Generalized Fermat 1646 297200042^131072+1 1110580 L5143 2025 Generalized Fermat 1647 296855808^131072+1 1110514 L6205 2025 Generalized Fermat 1648d 879*2^3688853+1 1110459 L5161 2025 1649 296366230^131072+1 1110420 L6019 2025 Generalized Fermat 1650 296322752^131072+1 1110412 L5462 2025 Generalized Fermat 1651 296139756^131072+1 1110377 L5696 2025 Generalized Fermat 1652 296013472^131072+1 1110352 L5156 2025 Generalized Fermat 1653 295817758^131072+1 1110315 L5974 2025 Generalized Fermat 1654 485*2^3688111+1 1110235 L5237 2022 1655 295265516^131072+1 1110208 L5391 2025 Generalized Fermat 1656 295158064^131072+1 1110188 L4201 2025 Generalized Fermat 1657 295116084^131072+1 1110179 L6202 2025 Generalized Fermat 1658 295038452^131072+1 1110164 L6201 2025 Generalized Fermat 1659 294901286^131072+1 1110138 L5880 2025 Generalized Fermat 1660 294581562^131072+1 1110076 L4933 2025 Generalized Fermat 1661 294287308^131072+1 1110019 L5029 2025 Generalized Fermat 1662 294282868^131072+1 1110018 L5069 2025 Generalized Fermat 1663 293950920^131072+1 1109954 L5019 2025 Generalized Fermat 1664 293846126^131072+1 1109934 L4387 2025 Generalized Fermat 1665 293634610^131072+1 1109893 L4659 2025 Generalized Fermat 1666 293593596^131072+1 1109885 L5457 2025 Generalized Fermat 1667 293229954^131072+1 1109814 L5069 2025 Generalized Fermat 1668 341*2^3686613+1 1109784 L5573 2022 1669 87*2^3686558+1 1109767 L5573 2022 1670 292906440^131072+1 1109752 L5069 2025 Generalized Fermat 1671 292462072^131072+1 1109665 L5586 2025 Generalized Fermat 1672d 965*2^3685969+1 1109591 L5161 2025 1673 291939158^131072+1 1109563 L5586 2025 Generalized Fermat 1674 291644784^131072+1 1109506 L4201 2025 Generalized Fermat 1675 291616626^131072+1 1109500 L5676 2025 Generalized Fermat 1676 291515852^131072+1 1109481 L5697 2025 Generalized Fermat 1677 291463322^131072+1 1109470 L5025 2025 Generalized Fermat 1678 291165334^131072+1 1109412 L5637 2025 Generalized Fermat 1679 290922092^131072+1 1109365 L5069 2025 Generalized Fermat 1680 290470932^131072+1 1109276 L5069 2025 Generalized Fermat 1681 290470146^131072+1 1109276 L5069 2025 Generalized Fermat 1682 290289574^131072+1 1109241 L5586 2025 Generalized Fermat 1683 290289300^131072+1 1109241 L5491 2025 Generalized Fermat 1684 290203860^131072+1 1109224 L4835 2025 Generalized Fermat 1685 290075834^131072+1 1109199 L5234 2025 Generalized Fermat 1686 289805958^131072+1 1109146 L5234 2025 Generalized Fermat 1687 289390778^131072+1 1109064 L5639 2025 Generalized Fermat 1688d 877*2^3684190+1 1109055 L6013 2025 1689 289176522^131072+1 1109022 L5041 2025 Generalized Fermat 1690 288601570^131072+1 1108909 L6189 2025 Generalized Fermat 1691 288168976^131072+1 1108823 L6187 2025 Generalized Fermat 1692 287625360^131072+1 1108716 L4747 2025 Generalized Fermat 1693 675*2^3682616+1 1108581 L5231 2022 1694 286460772^131072+1 1108485 L5069 2025 Generalized Fermat 1695 286434328^131072+1 1108480 L4904 2025 Generalized Fermat 1696 569*2^3682167+1 1108446 L5488 2022 1697 285803202^131072+1 1108354 L5473 2025 Generalized Fermat 1698 285447574^131072+1 1108283 L5586 2025 Generalized Fermat 1699 285446536^131072+1 1108283 L5687 2025 Generalized Fermat 1700 284918308^131072+1 1108178 L4201 2025 Generalized Fermat 1701 284831742^131072+1 1108160 L6085 2025 Generalized Fermat 1702 284805838^131072+1 1108155 L5025 2025 Generalized Fermat 1703 284753240^131072+1 1108145 L6185 2025 Generalized Fermat 1704 284745724^131072+1 1108143 L5869 2025 Generalized Fermat 1705c 57*2^3681002-1 1108094 A78 2025 1706 284001924^131072+1 1107994 L5416 2025 Generalized Fermat 1707 283824490^131072+1 1107959 L5470 2025 Generalized Fermat 1708 283699626^131072+1 1107934 L5234 2025 Generalized Fermat 1709 283216606^131072+1 1107837 L5711 2025 Generalized Fermat 1710d 765*2^3680091+1 1107821 L6280 2025 1711 282839136^131072+1 1107761 L4756 2025 Generalized Fermat 1712 281755198^131072+1 1107542 L5234 2025 Generalized Fermat 1713 281635050^131072+1 1107518 L5697 2025 Generalized Fermat 1714 330286*5^1584399-1 1107453 L3523 2014 1715 281238556^131072+1 1107438 L5041 2025 Generalized Fermat 1716 281131678^131072+1 1107416 L4584 2025 Generalized Fermat 1717 34*951^371834-1 1107391 L5410 2019 1718 280984376^131072+1 1107386 L5844 2025 Generalized Fermat 1719 280877312^131072+1 1107364 L6178 2025 Generalized Fermat 1720 280515348^131072+1 1107291 L5029 2025 Generalized Fermat 1721 280391126^131072+1 1107266 L5011 2025 Generalized Fermat 1722 280207586^131072+1 1107229 L5322 2025 Generalized Fermat 1723 279991058^131072+1 1107185 L5526 2025 Generalized Fermat 1724 279987304^131072+1 1107184 L5974 2025 Generalized Fermat 1725 279919024^131072+1 1107170 L4672 2025 Generalized Fermat 1726 45*2^3677787+1 1107126 L1204 2019 1727 279594222^131072+1 1107104 L5814 2025 Generalized Fermat 1728 279533226^131072+1 1107091 L6176 2025 Generalized Fermat 1729 279393398^131072+1 1107063 L5637 2025 Generalized Fermat 1730 279257150^131072+1 1107035 L6177 2025 Generalized Fermat 1731 278715552^131072+1 1106925 L6129 2025 Generalized Fermat 1732 278620322^131072+1 1106905 L5069 2025 Generalized Fermat 1733 278619282^131072+1 1106905 L5378 2025 Generalized Fermat 1734 278524906^131072+1 1106886 L4249 2025 Generalized Fermat 1735 278507178^131072+1 1106882 L5682 2025 Generalized Fermat 1736 278237250^131072+1 1106827 L6182 2025 Generalized Fermat 1737 278204564^131072+1 1106820 L5948 2025 Generalized Fermat 1738 278190840^131072+1 1106817 L6183 2025 Generalized Fermat 1739 277919980^131072+1 1106762 L5974 2025 Generalized Fermat 1740 625*2^3676300+1 1106680 L5302 2022 Generalized Fermat 1741 277256590^131072+1 1106626 L6170 2025 Generalized Fermat 1742 277085600^131072+1 1106591 L5974 2025 Generalized Fermat 1743 276836574^131072+1 1106540 L4760 2025 Generalized Fermat 1744 276775868^131072+1 1106527 L5549 2025 Generalized Fermat 1745 276740330^131072+1 1106520 L6166 2025 Generalized Fermat 1746 276607388^131072+1 1106492 L5782 2025 Generalized Fermat 1747 276446036^131072+1 1106459 L5011 2025 Generalized Fermat 1748 276329786^131072+1 1106435 L5718 2025 Generalized Fermat 1749 13*2^3675223-1 1106354 L1862 2016 1750 275170262^131072+1 1106196 L5378 2025 Generalized Fermat 1751 274919976^131072+1 1106144 L5378 2025 Generalized Fermat 1752 274816000^131072+1 1106123 L6163 2025 Generalized Fermat 1753 274753140^131072+1 1106110 L5974 2025 Generalized Fermat 1754 274535798^131072+1 1106065 L5816 2025 Generalized Fermat 1755 274280236^131072+1 1106012 L5070 2025 Generalized Fermat 1756 273579644^131072+1 1105866 L6129 2025 Generalized Fermat 1757 273503630^131072+1 1105850 L4309 2025 Generalized Fermat 1758 273438512^131072+1 1105837 L5718 2025 Generalized Fermat 1759 273327598^131072+1 1105813 L5512 2025 Generalized Fermat 1760 273306974^131072+1 1105809 L4892 2025 Generalized Fermat 1761 273272188^131072+1 1105802 L5543 2025 Generalized Fermat 1762 273237906^131072+1 1105795 L6159 2025 Generalized Fermat 1763 273140040^131072+1 1105774 L4210 2025 Generalized Fermat 1764 273036074^131072+1 1105753 L5069 2025 Generalized Fermat 1765 272998912^131072+1 1105745 L4245 2025 Generalized Fermat 1766d 947*2^3673183+1 1105742 L5614 2025 1767 272788310^131072+1 1105701 L4720 2025 Generalized Fermat 1768 272041540^131072+1 1105545 L5069 2025 Generalized Fermat 1769 271643232^131072+1 1105462 L4704 2019 Generalized Fermat 1770 271370312^131072+1 1105404 L4591 2025 Generalized Fermat 1771 271135152^131072+1 1105355 L5718 2025 Generalized Fermat 1772 270979532^131072+1 1105322 L5639 2025 Generalized Fermat 1773 270832760^131072+1 1105292 L5027 2025 Generalized Fermat 1774 270822160^131072+1 1105289 L4726 2025 Generalized Fermat 1775 270789102^131072+1 1105282 L5051 2025 Generalized Fermat 1776 270682284^131072+1 1105260 L6129 2025 Generalized Fermat 1777 270581690^131072+1 1105239 L4870 2025 Generalized Fermat 1778 270284868^131072+1 1105176 L5027 2025 Generalized Fermat 1779 463*2^3671262+1 1105163 L5524 2022 1780 269993492^131072+1 1105115 L6129 2025 Generalized Fermat 1781 735*2^3670991+1 1105082 L5575 2022 1782 269812742^131072+1 1105077 L6129 2025 Generalized Fermat 1783 268685690^131072+1 1104838 L4898 2025 Generalized Fermat 1784 475*2^3670046+1 1104797 L5524 2022 1785 267783532^131072+1 1104647 L5974 2025 Generalized Fermat 1786 267768162^131072+1 1104644 L5974 2025 Generalized Fermat 1787 267416848^131072+1 1104569 L5707 2025 Generalized Fermat 1788 267414744^131072+1 1104569 L5771 2025 Generalized Fermat 1789 266639610^131072+1 1104403 L5069 2025 Generalized Fermat 1790 266330322^131072+1 1104337 L5707 2025 Generalized Fermat 1791 266249522^131072+1 1104320 L5069 2025 Generalized Fermat 1792 15*2^3668194-1 1104238 L3665 2013 1793 265866252^131072+1 1104238 L4591 2025 Generalized Fermat 1794 265837862^131072+1 1104232 L5069 2025 Generalized Fermat 1795 265643056^131072+1 1104190 L5069 2025 Generalized Fermat 1796 265621592^131072+1 1104186 L4201 2025 Generalized Fermat 1797 265478490^131072+1 1104155 L5069 2025 Generalized Fermat 1798 264860372^131072+1 1104022 L5639 2025 Generalized Fermat 1799 264624458^131072+1 1103971 L5416 2025 Generalized Fermat 1800 264541844^131072+1 1103954 L5332 2025 Generalized Fermat 1801 264360218^131072+1 1103915 L4875 2025 Generalized Fermat 1802 264269230^131072+1 1103895 L5526 2025 Generalized Fermat 1803 263861882^131072+1 1103807 L5639 2025 Generalized Fermat 1804 263506158^131072+1 1103730 L6102 2025 Generalized Fermat 1805 262824942^131072+1 1103583 L5586 2025 Generalized Fermat 1806 262754910^131072+1 1103568 L4774 2025 Generalized Fermat 1807 262470710^131072+1 1103506 L5974 2025 Generalized Fermat 1808 273*2^3665736+1 1103499 L5192 2022 1809 262298138^131072+1 1103469 L5864 2025 Generalized Fermat 1810 262041482^131072+1 1103413 L5457 2025 Generalized Fermat 1811 262005898^131072+1 1103405 L4774 2025 Generalized Fermat 1812 261858724^131072+1 1103373 L5639 2025 Generalized Fermat 1813 261114224^131072+1 1103211 L4939 2025 Generalized Fermat 1814 13*2^3664703-1 1103187 L1862 2016 1815 1486*165^497431+1 1103049 A11 2024 1816 260265300^131072+1 1103026 L5586 2024 Generalized Fermat 1817 260050122^131072+1 1102979 L5586 2024 Generalized Fermat 1818 259881684^131072+1 1102942 L4245 2024 Generalized Fermat 1819 259576262^131072+1 1102875 L4672 2024 Generalized Fermat 1820e 250*859^375877+1 1102823 A11 2025 1821 406515^196608-406515^98304+1 1102790 L4506 2016 Generalized unique 1822 259130312^131072+1 1102777 L5156 2024 Generalized Fermat 1823 259042144^131072+1 1102758 L5457 2024 Generalized Fermat 1824d 111*2^3663234-1 1102746 A76 2025 1825 609*2^3662931+1 1102655 L5573 2022 1826 258337266^131072+1 1102603 L5457 2024 Generalized Fermat 1827 258336436^131072+1 1102602 L5586 2024 Generalized Fermat 1828 258197916^131072+1 1102572 L5473 2024 Generalized Fermat 1829 258109576^131072+1 1102552 L4672 2024 Generalized Fermat 1830 257401382^131072+1 1102396 L5586 2024 Generalized Fermat 1831 257047620^131072+1 1102318 L4892 2024 Generalized Fermat 1832 256963326^131072+1 1102299 L6093 2024 Generalized Fermat 1833 256943534^131072+1 1102295 L4892 2024 Generalized Fermat 1834 256089378^131072+1 1102105 L4892 2024 Generalized Fermat 1835 255856074^131072+1 1102053 L4747 2024 Generalized Fermat 1836 255812078^131072+1 1102044 L6091 2024 Generalized Fermat 1837 255666546^131072+1 1102011 L6092 2024 Generalized Fermat 1838 255648100^131072+1 1102007 L4245 2024 Generalized Fermat 1839 255555468^131072+1 1101986 L5639 2024 Generalized Fermat 1840 255339392^131072+1 1101938 L5707 2024 Generalized Fermat 1841 255189240^131072+1 1101905 L5782 2024 Generalized Fermat 1842 254954350^131072+1 1101852 L5467 2024 Generalized Fermat 1843 254731916^131072+1 1101803 L6090 2024 Generalized Fermat 1844 254713668^131072+1 1101799 L5782 2024 Generalized Fermat 1845 254450722^131072+1 1101740 L5620 2024 Generalized Fermat 1846 254193678^131072+1 1101682 L5634 2024 Generalized Fermat 1847 253875014^131072+1 1101611 L5707 2024 Generalized Fermat 1848 253866454^131072+1 1101609 L5457 2024 Generalized Fermat 1849 253210808^131072+1 1101462 L4968 2024 Generalized Fermat 1850 252934920^131072+1 1101400 L6036 2024 Generalized Fermat 1851 252637312^131072+1 1101333 L5526 2024 Generalized Fermat 1852 252545864^131072+1 1101312 L5467 2024 Generalized Fermat 1853 252369374^131072+1 1101272 L5452 2024 Generalized Fermat 1854 252171992^131072+1 1101228 L5639 2024 Generalized Fermat 1855 251361006^131072+1 1101044 L5127 2024 Generalized Fermat 1856 251085988^131072+1 1100982 L4201 2024 Generalized Fermat 1857 250775680^131072+1 1100912 L6073 2024 Generalized Fermat 1858 249754922^131072+1 1100679 L4898 2024 Generalized Fermat 1859 249751100^131072+1 1100679 L6088 2024 Generalized Fermat 1860 249735514^131072+1 1100675 L4201 2024 Generalized Fermat 1861 249634320^131072+1 1100652 L6087 2024 Generalized Fermat 1862 118*892^373012+1 1100524 L5071 2020 1863 248934378^131072+1 1100492 L5974 2024 Generalized Fermat 1864 248857694^131072+1 1100475 L6086 2024 Generalized Fermat 1865 248820272^131072+1 1100466 L5768 2024 Generalized Fermat 1866 248632632^131072+1 1100423 L5416 2024 Generalized Fermat 1867 248621940^131072+1 1100421 L5051 2024 Generalized Fermat 1868 248617468^131072+1 1100420 L5416 2024 Generalized Fermat 1869 33300*430^417849-1 1100397 L4393 2016 1870 247389350^131072+1 1100138 L6085 2024 Generalized Fermat 1871 247342010^131072+1 1100127 L6073 2024 Generalized Fermat 1872 247145256^131072+1 1100082 L4939 2024 Generalized Fermat 1873 246980946^131072+1 1100044 L4249 2024 Generalized Fermat 1874 246952054^131072+1 1100037 L6084 2024 Generalized Fermat 1875 246943520^131072+1 1100035 L5746 2024 Generalized Fermat 1876 (2^2976221-1)*(10^204068-1172064)+1 1100000 p449 2024 1877 246677978^131072+1 1099974 L5512 2024 Generalized Fermat 1878 246634478^131072+1 1099964 L5117 2024 Generalized Fermat 1879d 1175*2^3653893+1 1099935 L6243 2025 1880 246394910^131072+1 1099908 L6038 2024 Generalized Fermat 1881 246207020^131072+1 1099865 L5606 2024 Generalized Fermat 1882 246012578^131072+1 1099820 L5606 2024 Generalized Fermat 1883 245507802^131072+1 1099703 L5606 2024 Generalized Fermat 1884 245461196^131072+1 1099692 L6078 2024 Generalized Fermat 1885 655*2^3653008+1 1099668 L5574 2022 1886 244873604^131072+1 1099556 L6076 2024 Generalized Fermat 1887 244660242^131072+1 1099506 L6038 2024 Generalized Fermat 1888 244342390^131072+1 1099432 L5416 2024 Generalized Fermat 1889 244202408^131072+1 1099400 L4371 2024 Generalized Fermat 1890 291*268^452750-1 1099341 L5410 2022 1891 243786926^131072+1 1099303 L6073 2024 Generalized Fermat 1892 243427990^131072+1 1099219 L4892 2024 Generalized Fermat 1893 242973858^131072+1 1099113 L6072 2024 Generalized Fermat 1894 242950108^131072+1 1099107 L4387 2024 Generalized Fermat 1895 242933064^131072+1 1099103 L5782 2024 Generalized Fermat 1896 242926826^131072+1 1099102 L5826 2024 Generalized Fermat 1897 242855212^131072+1 1099085 L4591 2024 Generalized Fermat 1898 242494358^131072+1 1099000 L5416 2024 Generalized Fermat 1899 242295536^131072+1 1098953 L5205 2024 Generalized Fermat 1900 242161196^131072+1 1098922 L6070 2024 Generalized Fermat 1901 241765100^131072+1 1098829 L6067 2024 Generalized Fermat 1902 241550882^131072+1 1098778 L6065 2024 Generalized Fermat 1903d 869*2^3650049+1 1098778 L5161 2025 1904 241438172^131072+1 1098752 L4591 2024 Generalized Fermat 1905 241338084^131072+1 1098728 L4591 2024 Generalized Fermat 1906 241249426^131072+1 1098707 L5526 2024 Generalized Fermat 1907 33*2^3649810+1 1098704 L4958 2019 1908 241151312^131072+1 1098684 L4387 2024 Generalized Fermat 1909 241000970^131072+1 1098648 L5707 2024 Generalized Fermat 1910 240966866^131072+1 1098640 L4559 2024 Generalized Fermat 1911 240965802^131072+1 1098640 L6058 2024 Generalized Fermat 1912 240910640^131072+1 1098627 L5101 2024 Generalized Fermat 1913 240856112^131072+1 1098614 L4875 2024 Generalized Fermat 1914 240307734^131072+1 1098484 L4249 2024 Generalized Fermat 1915 240190808^131072+1 1098457 L5056 2024 Generalized Fermat 1916 239927858^131072+1 1098394 L4477 2024 Generalized Fermat 1917 239545562^131072+1 1098304 L4591 2024 Generalized Fermat 1918 239520486^131072+1 1098298 L5634 2024 Generalized Fermat 1919 262614*5^1571158-1 1098198 A11 2025 1920 238968056^131072+1 1098166 L4477 2024 Generalized Fermat 1921 238871106^131072+1 1098143 L6058 2024 Generalized Fermat 1922 238852190^131072+1 1098139 L5526 2024 Generalized Fermat 1923 238698190^131072+1 1098102 L5077 2024 Generalized Fermat 1924 238653710^131072+1 1098091 L6057 2024 Generalized Fermat 1925 238627390^131072+1 1098085 L5871 2024 Generalized Fermat 1926 238438430^131072+1 1098040 L5707 2024 Generalized Fermat 1927 238381768^131072+1 1098026 L5707 2024 Generalized Fermat 1928 238193230^131072+1 1097981 L4201 2024 Generalized Fermat 1929 238168282^131072+1 1097975 L4201 2024 Generalized Fermat 1930 238109742^131072+1 1097961 L4559 2024 Generalized Fermat 1931 237601644^131072+1 1097840 L5782 2024 Generalized Fermat 1932 237260908^131072+1 1097758 L4201 2024 Generalized Fermat 1933 237185928^131072+1 1097740 L5755 2024 Generalized Fermat 1934 237108488^131072+1 1097722 L5639 2024 Generalized Fermat 1935 236924362^131072+1 1097677 L5639 2024 Generalized Fermat 1936 236602468^131072+1 1097600 L6038 2024 Generalized Fermat 1937 236500052^131072+1 1097575 L5198 2024 Generalized Fermat 1938 236417078^131072+1 1097555 L5588 2024 Generalized Fermat 1939 236278180^131072+1 1097522 L5416 2024 Generalized Fermat 1940 236240868^131072+1 1097513 L6038 2024 Generalized Fermat 1941 235947986^131072+1 1097442 L4201 2024 Generalized Fermat 1942 235577802^131072+1 1097353 L5077 2024 Generalized Fermat 1943 235566676^131072+1 1097350 L5416 2024 Generalized Fermat 1944 235108160^131072+1 1097239 L4898 2024 Generalized Fermat 1945 234962380^131072+1 1097204 L4201 2024 Generalized Fermat 1946 234806100^131072+1 1097166 L5088 2024 Generalized Fermat 1947 234661134^131072+1 1097131 L5416 2024 Generalized Fermat 1948 234566344^131072+1 1097108 L5974 2024 Generalized Fermat 1949 234523400^131072+1 1097098 L4201 2024 Generalized Fermat 1950 234385314^131072+1 1097064 L4285 2024 Generalized Fermat 1951 234307964^131072+1 1097045 L4559 2024 Generalized Fermat 1952 234291722^131072+1 1097041 L4999 2024 Generalized Fermat 1953 233937376^131072+1 1096955 L6044 2024 Generalized Fermat 1954 233903532^131072+1 1096947 L4559 2024 Generalized Fermat 1955 233559012^131072+1 1096863 L5416 2024 Generalized Fermat 1956 233447012^131072+1 1096836 L4477 2024 Generalized Fermat 1957 233349574^131072+1 1096812 L5432 2024 Generalized Fermat 1958 233034976^131072+1 1096735 L5101 2024 Generalized Fermat 1959 232796676^131072+1 1096677 L6040 2024 Generalized Fermat 1960 232485778^131072+1 1096601 L4477 2024 Generalized Fermat 1961 232050760^131072+1 1096494 L5782 2024 Generalized Fermat 1962 295*2^3642206+1 1096416 L5161 2022 1963 231583998^131072+1 1096380 L4477 2024 Generalized Fermat 1964 231295516^131072+1 1096309 L5634 2024 Generalized Fermat 1965 230663736^131072+1 1096153 L4774 2024 Generalized Fermat 1966 230655072^131072+1 1096151 L5526 2024 Generalized Fermat 1967 230396424^131072+1 1096087 L4928 2024 Generalized Fermat 1968 230275166^131072+1 1096057 L6011 2024 Generalized Fermat 1969 230267830^131072+1 1096055 L6036 2024 Generalized Fermat 1970 989*2^3640585+1 1095929 L5115 2020 1971 567*2^3639287+1 1095538 L4959 2019 1972 227669832^131072+1 1095409 L5707 2024 Generalized Fermat 1973 79788*5^1567080-1 1095347 A11 2025 1974 227406222^131072+1 1095343 L4371 2024 Generalized Fermat 1975 227239620^131072+1 1095302 L4559 2024 Generalized Fermat 1976 227135580^131072+1 1095276 L5974 2024 Generalized Fermat 1977 227009830^131072+1 1095244 L4359 2024 Generalized Fermat 1978 226881840^131072+1 1095212 L5784 2024 Generalized Fermat 1979 226782570^131072+1 1095187 L6026 2024 Generalized Fermat 1980 226710488^131072+1 1095169 L5588 2024 Generalized Fermat 1981 226639300^131072+1 1095151 L5634 2024 Generalized Fermat 1982 226453444^131072+1 1095104 L4559 2024 Generalized Fermat 1983 226341130^131072+1 1095076 L4341 2024 Generalized Fermat 1984 226249042^131072+1 1095053 L5370 2024 Generalized Fermat 1985 226100602^131072+1 1095016 L4429 2024 Generalized Fermat 1986 225580118^131072+1 1094884 L5056 2024 Generalized Fermat 1987 225124888^131072+1 1094769 L4591 2024 Generalized Fermat 1988 224635814^131072+1 1094646 L4875 2024 Generalized Fermat 1989 224347630^131072+1 1094572 L5512 2024 Generalized Fermat 1990 224330804^131072+1 1094568 L6019 2024 Generalized Fermat 1991 224249932^131072+1 1094548 L4371 2024 Generalized Fermat 1992 224072278^131072+1 1094503 L5974 2024 Generalized Fermat 1993 639*2^3635707+1 1094460 L1823 2019 1994 223490796^131072+1 1094355 L5332 2024 Generalized Fermat 1995 223074802^131072+1 1094249 L5416 2024 Generalized Fermat 1996 223010262^131072+1 1094232 L6015 2024 Generalized Fermat 1997 222996490^131072+1 1094229 L5731 2024 Generalized Fermat 1998 222888506^131072+1 1094201 L5974 2024 Generalized Fermat 1999 222593516^131072+1 1094126 L6011 2024 Generalized Fermat 2000 222486400^131072+1 1094098 L5332 2024 Generalized Fermat 2001 221636362^131072+1 1093880 L4904 2024 Generalized Fermat 2002 221528336^131072+1 1093853 L5721 2024 Generalized Fermat 2003 221330854^131072+1 1093802 L6010 2024 Generalized Fermat 2004 221325712^131072+1 1093801 L4201 2024 Generalized Fermat 2005 221174400^131072+1 1093762 L4201 2024 Generalized Fermat 2006 221008432^131072+1 1093719 L5974 2024 Generalized Fermat 2007 220956326^131072+1 1093705 L5731 2024 Generalized Fermat 2008 220838206^131072+1 1093675 L5974 2024 Generalized Fermat 2009 220325976^131072+1 1093543 L5690 2024 Generalized Fermat 2010 220317996^131072+1 1093541 L5989 2024 Generalized Fermat 2011 220288248^131072+1 1093533 L5721 2024 Generalized Fermat 2012 219984494^131072+1 1093455 L6005 2024 Generalized Fermat 2013 219556482^131072+1 1093344 L5721 2024 Generalized Fermat 2014 219525472^131072+1 1093336 L4898 2024 Generalized Fermat 2015 219447698^131072+1 1093315 L4933 2024 Generalized Fermat 2016 219430370^131072+1 1093311 L4774 2024 Generalized Fermat 2017 219331584^131072+1 1093285 L5746 2024 Generalized Fermat 2018 753*2^3631472+1 1093185 L1823 2019 2019 2*205731^205731-1 1093111 L4965 2022 2020 218012734^131072+1 1092942 L4928 2024 Generalized Fermat 2021 217820568^131072+1 1092892 L5690 2024 Generalized Fermat 2022 217559364^131072+1 1092823 L4898 2024 Generalized Fermat 2023 217458668^131072+1 1092797 L5989 2024 Generalized Fermat 2024 217423702^131072+1 1092788 L5998 2024 Generalized Fermat 2025 217176690^131072+1 1092723 L5637 2024 Generalized Fermat 2026 217170570^131072+1 1092722 L4371 2024 Generalized Fermat 2027 65531*2^3629342-1 1092546 L2269 2011 2028 1121*2^3629201+1 1092502 L4761 2019 2029 216307766^131072+1 1092495 L4387 2024 Generalized Fermat 2030 216084296^131072+1 1092436 L4201 2024 Generalized Fermat 2031 215*2^3628962-1 1092429 L2484 2018 2032 216039994^131072+1 1092425 L5880 2024 Generalized Fermat 2033 216027436^131072+1 1092421 L5277 2024 Generalized Fermat 2034 216018002^131072+1 1092419 L5586 2024 Generalized Fermat 2035 215949788^131072+1 1092401 L4537 2024 Generalized Fermat 2036 215945398^131072+1 1092400 L4245 2024 Generalized Fermat 2037 215783788^131072+1 1092357 L5711 2024 Generalized Fermat 2038 215717854^131072+1 1092340 L4245 2024 Generalized Fermat 2039 215462154^131072+1 1092272 L4387 2024 Generalized Fermat 2040 215237318^131072+1 1092213 L5693 2024 Generalized Fermat 2041 215004526^131072+1 1092151 L4928 2024 Generalized Fermat 2042 113*2^3628034-1 1092150 L2484 2014 2043 214992758^131072+1 1092148 L5974 2024 Generalized Fermat 2044 1009*2^3627911-1 1092114 A46 2025 2045 214814516^131072+1 1092101 L5746 2024 Generalized Fermat 2046 1175*2^3627541+1 1092002 L4840 2019 2047 214403112^131072+1 1091992 L4905 2024 Generalized Fermat 2048 214321816^131072+1 1091970 L5989 2024 Generalized Fermat 2049 214134178^131072+1 1091920 L5297 2024 Generalized Fermat 2050 214059556^131072+1 1091900 L4362 2024 Generalized Fermat 2051 2*431^414457+1 1091878 L4879 2019 Divides Phi(431^414457,2) 2052 213879170^131072+1 1091852 L5986 2024 Generalized Fermat 2053 19116*24^791057-1 1091831 A44 2024 2054 213736552^131072+1 1091814 L4289 2024 Generalized Fermat 2055 213656000^131072+1 1091793 L4892 2024 Generalized Fermat 2056 213580840^131072+1 1091773 L4201 2024 Generalized Fermat 2057 213425082^131072+1 1091731 L4892 2024 Generalized Fermat 2058 213162592^131072+1 1091661 L4549 2024 Generalized Fermat 2059 213151104^131072+1 1091658 L4763 2024 Generalized Fermat 2060 212912634^131072+1 1091595 L5639 2024 Generalized Fermat 2061 212894100^131072+1 1091590 L5470 2024 Generalized Fermat 2062 212865234^131072+1 1091582 L5782 2024 Generalized Fermat 2063 212862096^131072+1 1091581 L4870 2024 Generalized Fermat 2064 212838152^131072+1 1091575 L5718 2024 Generalized Fermat 2065 212497738^131072+1 1091483 L5051 2024 Generalized Fermat 2066 212121206^131072+1 1091383 L4774 2024 Generalized Fermat 2067 211719438^131072+1 1091275 L4775 2024 Generalized Fermat 2068 211448294^131072+1 1091202 L5929 2024 Generalized Fermat 2069 211407740^131072+1 1091191 L4341 2024 Generalized Fermat 2070 211326826^131072+1 1091169 L5143 2024 Generalized Fermat 2071 210908700^131072+1 1091056 L5639 2024 Generalized Fermat 2072 210564358^131072+1 1090963 L5639 2024 Generalized Fermat 2073 210434680^131072+1 1090928 L4380 2024 Generalized Fermat 2074 210397166^131072+1 1090918 L4870 2024 Generalized Fermat 2075 210160342^131072+1 1090854 L5974 2024 Generalized Fermat 2076 210088618^131072+1 1090834 L5041 2024 Generalized Fermat 2077 209917216^131072+1 1090788 L5755 2024 Generalized Fermat 2078 209839940^131072+1 1090767 L5639 2024 Generalized Fermat 2079 209637998^131072+1 1090712 L4544 2024 Generalized Fermat 2080 951*2^3623185+1 1090691 L1823 2019 2081 209494470^131072+1 1090673 L5869 2024 Generalized Fermat 2082 209385420^131072+1 1090644 L5720 2024 Generalized Fermat 2083 209108558^131072+1 1090568 L5460 2024 Generalized Fermat 2084 209101202^131072+1 1090566 L5011 2024 Generalized Fermat 2085 208565926^131072+1 1090420 L5016 2024 Generalized Fermat 2086 208497360^131072+1 1090402 L5234 2024 Generalized Fermat 2087 208392300^131072+1 1090373 L5030 2024 Generalized Fermat 2088 208374066^131072+1 1090368 L5869 2024 Generalized Fermat 2089 208352366^131072+1 1090362 L5044 2024 Generalized Fermat 2090 208236434^131072+1 1090330 L5984 2024 Generalized Fermat 2091 208003690^131072+1 1090267 L5639 2024 Generalized Fermat 2092 207985150^131072+1 1090262 L5791 2024 Generalized Fermat 2093 207753480^131072+1 1090198 L5974 2024 Generalized Fermat 2094 207514736^131072+1 1090133 L4477 2024 Generalized Fermat 2095 207445740^131072+1 1090114 L5273 2024 Generalized Fermat 2096 29*920^367810-1 1090113 L4064 2015 2097 207296788^131072+1 1090073 L5234 2024 Generalized Fermat 2098 207264358^131072+1 1090064 L5758 2024 Generalized Fermat 2099 207213640^131072+1 1090050 L5077 2024 Generalized Fermat 2100 206709064^131072+1 1089911 L5639 2024 Generalized Fermat 2101 206640054^131072+1 1089892 L5288 2024 Generalized Fermat 2102 206594738^131072+1 1089880 L5707 2024 Generalized Fermat 2103 206585726^131072+1 1089877 L5667 2024 Generalized Fermat 2104 206473754^131072+1 1089846 L5855 2024 Generalized Fermat 2105 206230080^131072+1 1089779 L5143 2024 Generalized Fermat 2106 206021166^131072+1 1089722 L5639 2024 Generalized Fermat 2107 205990406^131072+1 1089713 L4755 2024 Generalized Fermat 2108 205963322^131072+1 1089706 L5844 2024 Generalized Fermat 2109 205339678^131072+1 1089533 L4905 2024 Generalized Fermat 2110 205160722^131072+1 1089483 L5639 2024 Generalized Fermat 2111 205150506^131072+1 1089480 L5543 2024 Generalized Fermat 2112 205010004^131072+1 1089441 L5025 2024 Generalized Fermat 2113 14641*2^3618876+1 1089395 L181 2018 Generalized Fermat 2114 204695540^131072+1 1089354 L4905 2024 Generalized Fermat 2115 485*2^3618563+1 1089299 L3924 2019 2116 204382086^131072+1 1089267 L4477 2024 Generalized Fermat 2117 204079052^131072+1 1089182 L4763 2024 Generalized Fermat 2118 204016062^131072+1 1089165 L5712 2024 Generalized Fermat 2119 203275588^131072+1 1088958 L5041 2024 Generalized Fermat 2120 203250558^131072+1 1088951 L4210 2024 Generalized Fermat 2121 203238918^131072+1 1088948 L5586 2024 Generalized Fermat 2122 202515696^131072+1 1088745 L4549 2024 Generalized Fermat 2123 202391964^131072+1 1088710 L4835 2024 Generalized Fermat 2124 202251688^131072+1 1088670 L5288 2024 Generalized Fermat 2125 202114688^131072+1 1088632 L5711 2024 Generalized Fermat 2126 202045732^131072+1 1088612 L4537 2024 Generalized Fermat 2127 201593074^131072+1 1088485 L5027 2024 Generalized Fermat 2128 201536524^131072+1 1088469 L5769 2024 Generalized Fermat 2129 201389466^131072+1 1088427 L4537 2024 Generalized Fermat 2130 201249512^131072+1 1088388 L5234 2024 Generalized Fermat 2131 201239624^131072+1 1088385 L5732 2024 Generalized Fermat 2132 200519642^131072+1 1088181 L5712 2024 Generalized Fermat 2133 200459670^131072+1 1088164 L5948 2024 Generalized Fermat 2134 200433382^131072+1 1088156 L5948 2024 Generalized Fermat 2135 200280100^131072+1 1088113 L4892 2024 Generalized Fermat 2136 200053318^131072+1 1088048 L5586 2024 Generalized Fermat 2137 199971120^131072+1 1088025 L5030 2024 Generalized Fermat 2138 95*2^3614033+1 1087935 L1474 2019 2139 199502780^131072+1 1087891 L5878 2024 Generalized Fermat 2140 198402358^131072+1 1087577 L5606 2024 Generalized Fermat 2141 198320982^131072+1 1087553 L5938 2024 Generalized Fermat 2142 198319118^131072+1 1087553 L4737 2024 Generalized Fermat 2143d 65*2^3612630-1 1087512 L2017 2025 2144 1005*2^3612300+1 1087414 L1823 2019 2145 197752702^131072+1 1087390 L5355 2024 Generalized Fermat 2146 197607368^131072+1 1087348 L5041 2024 Generalized Fermat 2147 197352408^131072+1 1087275 L4861 2024 Generalized Fermat 2148 861*2^3611815+1 1087268 L1745 2019 2149 197230100^131072+1 1087239 L4753 2024 Generalized Fermat 2150 197212998^131072+1 1087234 L6123 2024 Generalized Fermat 2151 197197506^131072+1 1087230 L4753 2024 Generalized Fermat 2152 197018872^131072+1 1087178 L4884 2024 Generalized Fermat 2153 1087*2^3611476+1 1087166 L4834 2019 2154 196722548^131072+1 1087093 L5782 2024 Generalized Fermat 2155 196703802^131072+1 1087087 L4742 2024 Generalized Fermat 2156 196687752^131072+1 1087082 L5051 2024 Generalized Fermat 2157 195950620^131072+1 1086869 L5929 2024 Generalized Fermat 2158 195834796^131072+1 1086835 L5070 2024 Generalized Fermat 2159 195048992^131072+1 1086606 L5143 2024 Generalized Fermat 2160 194911702^131072+1 1086566 L5948 2024 Generalized Fermat 2161 194819864^131072+1 1086539 L5690 2024 Generalized Fermat 2162 485767*2^3609357-1 1086531 L622 2008 2163 194730404^131072+1 1086513 L5782 2024 Generalized Fermat 2164 194644872^131072+1 1086488 L4720 2024 Generalized Fermat 2165 194584114^131072+1 1086470 L4201 2024 Generalized Fermat 2166 194263106^131072+1 1086376 L4892 2024 Generalized Fermat 2167 194202254^131072+1 1086359 L4835 2024 Generalized Fermat 2168 194159546^131072+1 1086346 L4387 2024 Generalized Fermat 2169 193935716^131072+1 1086280 L4835 2024 Generalized Fermat 2170 193247784^131072+1 1086078 L5234 2024 Generalized Fermat 2171 192866222^131072+1 1085966 L5913 2024 Generalized Fermat 2172 192651588^131072+1 1085902 L5880 2024 Generalized Fermat 2173 192606308^131072+1 1085889 L4476 2024 Generalized Fermat 2174 675*2^3606447+1 1085652 L3278 2019 2175 191678526^131072+1 1085614 L5234 2024 Generalized Fermat 2176 669*2^3606266+1 1085598 L1675 2019 2177 191567332^131072+1 1085581 L4309 2024 Generalized Fermat 2178 65077*2^3605944+1 1085503 L4685 2020 2179 191194450^131072+1 1085470 L4245 2024 Generalized Fermat 2180 1365*2^3605491+1 1085365 L1134 2022 2181 190810274^131072+1 1085356 L5460 2024 Generalized Fermat 2182 190309640^131072+1 1085206 L5880 2024 Generalized Fermat 2183 190187176^131072+1 1085169 L5470 2024 Generalized Fermat 2184 190144032^131072+1 1085156 L4341 2024 Generalized Fermat 2185 851*2^3604395+1 1085034 L2125 2019 2186 189411830^131072+1 1084937 L5578 2024 Generalized Fermat 2187 189240324^131072+1 1084885 L4892 2024 Generalized Fermat 2188 188766416^131072+1 1084743 L5639 2024 Generalized Fermat 2189 188655374^131072+1 1084709 L5842 2024 Generalized Fermat 2190 188646712^131072+1 1084706 L4905 2024 Generalized Fermat 2191 187961358^131072+1 1084499 L5881 2024 Generalized Fermat 2192 1143*2^3602429+1 1084443 L4754 2019 2193 187731580^131072+1 1084430 L5847 2024 Generalized Fermat 2194 187643362^131072+1 1084403 L5707 2024 Generalized Fermat 2195 187584550^131072+1 1084385 L5526 2024 Generalized Fermat 2196 187330820^131072+1 1084308 L5879 2024 Generalized Fermat 2197 1183*2^3601898+1 1084283 L1823 2019 2198 187231212^131072+1 1084278 L4550 2024 Generalized Fermat 2199 187184006^131072+1 1084263 L5051 2024 Generalized Fermat 2200 187007398^131072+1 1084210 L5604 2024 Generalized Fermat 2201 185411044^131072+1 1083722 L5044 2023 Generalized Fermat 2202 185248324^131072+1 1083672 L4371 2023 Generalized Fermat 2203 185110536^131072+1 1083629 L4559 2023 Generalized Fermat 2204 185015722^131072+1 1083600 L5723 2023 Generalized Fermat 2205 184855564^131072+1 1083551 L5748 2023 Generalized Fermat 2206 184835362^131072+1 1083545 L5416 2024 Generalized Fermat 2207 184814078^131072+1 1083538 L4559 2023 Generalized Fermat 2208 184653266^131072+1 1083488 L5606 2023 Generalized Fermat 2209 184523024^131072+1 1083448 L4550 2023 Generalized Fermat 2210 184317182^131072+1 1083385 L5863 2023 Generalized Fermat 2211 184310672^131072+1 1083383 L5863 2023 Generalized Fermat 2212 184119204^131072+1 1083324 L5863 2023 Generalized Fermat 2213 183839694^131072+1 1083237 L5865 2023 Generalized Fermat 2214 183591732^131072+1 1083160 L5586 2023 Generalized Fermat 2215 183392536^131072+1 1083098 L5044 2023 Generalized Fermat 2216 183383118^131072+1 1083096 L4371 2023 Generalized Fermat 2217 183157240^131072+1 1083025 L5853 2023 Generalized Fermat 2218 182252536^131072+1 1082744 L5854 2023 Generalized Fermat 2219 182166824^131072+1 1082717 L5854 2023 Generalized Fermat 2220 181969816^131072+1 1082655 L4591 2023 Generalized Fermat 2221 181913260^131072+1 1082637 L5853 2023 Generalized Fermat 2222 189*2^3596375+1 1082620 L3760 2016 2223 181302244^131072+1 1082446 L4550 2023 Generalized Fermat 2224 180680920^131072+1 1082251 L5639 2023 Generalized Fermat 2225 180455838^131072+1 1082180 L5847 2023 Generalized Fermat 2226 180111908^131072+1 1082071 L5844 2023 Generalized Fermat 2227 180084608^131072+1 1082062 L5056 2023 Generalized Fermat 2228 180045220^131072+1 1082050 L4550 2023 Generalized Fermat 2229 180002474^131072+1 1082036 L5361 2023 Generalized Fermat 2230 179913814^131072+1 1082008 L4875 2023 Generalized Fermat 2231 1089*2^3593267+1 1081685 L3035 2019 2232 178743858^131072+1 1081637 L5051 2023 Generalized Fermat 2233 178437884^131072+1 1081539 L4591 2023 Generalized Fermat 2234 178435022^131072+1 1081538 L5639 2023 Generalized Fermat 2235 178311240^131072+1 1081499 L5369 2023 Generalized Fermat 2236 178086108^131072+1 1081427 L4939 2023 Generalized Fermat 2237 178045832^131072+1 1081414 L5836 2023 Generalized Fermat 2238 177796222^131072+1 1081334 L5834 2023 Generalized Fermat 2239 177775606^131072+1 1081328 L5794 2023 Generalized Fermat 2240 177648552^131072+1 1081287 L5782 2023 Generalized Fermat 2241 177398652^131072+1 1081207 L4559 2023 Generalized Fermat 2242 177319028^131072+1 1081181 L5526 2023 Generalized Fermat 2243 177296064^131072+1 1081174 L5831 2023 Generalized Fermat 2244 177129922^131072+1 1081121 L4559 2023 Generalized Fermat 2245 176799404^131072+1 1081014 L4775 2023 Generalized Fermat 2246 176207346^131072+1 1080823 L5805 2023 Generalized Fermat 2247 176085282^131072+1 1080784 L5805 2023 Generalized Fermat 2248 175482140^131072+1 1080589 L5639 2023 Generalized Fermat 2249 175271418^131072+1 1080520 L5051 2023 Generalized Fermat 2250 19581121*2^3589357-1 1080512 p49 2022 2251 175200596^131072+1 1080497 L5817 2023 Generalized Fermat 2252 1101*2^3589103+1 1080431 L1823 2019 2253 174728608^131072+1 1080344 L5416 2023 Generalized Fermat 2254 174697724^131072+1 1080334 L4747 2023 Generalized Fermat 2255 174534362^131072+1 1080280 L5814 2023 Generalized Fermat 2256 174142738^131072+1 1080152 L4249 2023 Generalized Fermat 2257 174103532^131072+1 1080140 L4249 2023 Generalized Fermat 2258 173962482^131072+1 1080093 L4249 2023 Generalized Fermat 2259 35*2^3587843+1 1080050 L1979 2014 Divides GF(3587841,5) 2260 173717408^131072+1 1080013 L5634 2023 Generalized Fermat 2261 173561300^131072+1 1079962 L4249 2023 Generalized Fermat 2262 173343810^131072+1 1079891 L4249 2023 Generalized Fermat 2263 172026454^131072+1 1079456 L4737 2023 Generalized Fermat 2264 172004036^131072+1 1079449 L5512 2023 Generalized Fermat 2265 275*2^3585539+1 1079358 L3803 2016 2266 171677924^131072+1 1079341 L5512 2023 Generalized Fermat 2267 171610156^131072+1 1079319 L4249 2023 Generalized Fermat 2268 171518672^131072+1 1079288 L5586 2023 Generalized Fermat 2269 171128300^131072+1 1079158 L4249 2023 Generalized Fermat 2270 170982934^131072+1 1079110 L4201 2023 Generalized Fermat 2271 170626040^131072+1 1078991 L5748 2023 Generalized Fermat 2272 169929578^131072+1 1078758 L5748 2023 Generalized Fermat 2273 169369502^131072+1 1078570 L4410 2023 Generalized Fermat 2274 169299904^131072+1 1078547 L4559 2023 Generalized Fermat 2275 169059224^131072+1 1078466 L5746 2023 Generalized Fermat 2276 168885632^131072+1 1078408 L5793 2023 Generalized Fermat 2277 168602250^131072+1 1078312 L5782 2023 Generalized Fermat 2278 168576546^131072+1 1078303 L5639 2023 Generalized Fermat 2279 167845698^131072+1 1078056 L5735 2023 Generalized Fermat 2280 167604930^131072+1 1077974 L4859 2023 Generalized Fermat 2281 2*59^608685+1 1077892 g427 2014 Divides Phi(59^608685,2) 2282 167206862^131072+1 1077839 L5641 2023 Generalized Fermat 2283 166964502^131072+1 1077756 L5627 2023 Generalized Fermat 2284 651*2^3579843+1 1077643 L3035 2018 2285 166609122^131072+1 1077635 L5782 2023 Generalized Fermat 2286 166397330^131072+1 1077563 L5578 2023 Generalized Fermat 2287 166393356^131072+1 1077561 L5782 2023 Generalized Fermat 2288 166288612^131072+1 1077525 L4672 2023 Generalized Fermat 2289 166277052^131072+1 1077521 L5755 2023 Generalized Fermat 2290 166052226^131072+1 1077444 L4670 2023 Generalized Fermat 2291 165430644^131072+1 1077231 L4672 2023 Generalized Fermat 2292 165427494^131072+1 1077230 L4249 2023 Generalized Fermat 2293 583*2^3578402+1 1077210 L3035 2018 2294 165361824^131072+1 1077207 L5586 2023 Generalized Fermat 2295 165258594^131072+1 1077172 L4884 2023 Generalized Fermat 2296 165036358^131072+1 1077095 L5156 2023 Generalized Fermat 2297 164922680^131072+1 1077056 L4249 2023 Generalized Fermat 2298 164800594^131072+1 1077014 L5775 2023 Generalized Fermat 2299 164660428^131072+1 1076965 L4249 2023 Generalized Fermat 2300 309*2^3577339+1 1076889 L4406 2016 2301 164440734^131072+1 1076889 L5485 2023 Generalized Fermat 2302 163871194^131072+1 1076692 L5772 2023 Generalized Fermat 2303 163838506^131072+1 1076680 L5758 2023 Generalized Fermat 2304 163821336^131072+1 1076674 L5544 2023 Generalized Fermat 2305 163820256^131072+1 1076674 L5452 2023 Generalized Fermat 2306 163666380^131072+1 1076621 L5030 2023 Generalized Fermat 2307 163585288^131072+1 1076592 L4928 2023 Generalized Fermat 2308 163359994^131072+1 1076514 L5769 2023 Generalized Fermat 2309 163214942^131072+1 1076463 L4933 2023 Generalized Fermat 2310 163193584^131072+1 1076456 L5595 2023 Generalized Fermat 2311 163152818^131072+1 1076442 L5639 2023 Generalized Fermat 2312 163044252^131072+1 1076404 L5775 2023 Generalized Fermat 2313 162950466^131072+1 1076371 L5694 2023 Generalized Fermat 2314 162874590^131072+1 1076345 L5586 2023 Generalized Fermat 2315 162850104^131072+1 1076336 L5769 2023 Generalized Fermat 2316 162817576^131072+1 1076325 L5772 2023 Generalized Fermat 2317 1185*2^3574583+1 1076060 L4851 2018 2318 251*2^3574535+1 1076045 L3035 2016 2319 1485*2^3574333+1 1075985 L1134 2022 2320 161706626^131072+1 1075935 L4870 2023 Generalized Fermat 2321 161619620^131072+1 1075904 L5586 2023 Generalized Fermat 2322 161588716^131072+1 1075893 L4928 2023 Generalized Fermat 2323 161571504^131072+1 1075887 L5030 2023 Generalized Fermat 2324 161569668^131072+1 1075887 L5639 2023 Generalized Fermat 2325 160998114^131072+1 1075685 L5586 2023 Generalized Fermat 2326 160607310^131072+1 1075547 L5763 2023 Generalized Fermat 2327 160325616^131072+1 1075447 L5586 2023 Generalized Fermat 2328 160228242^131072+1 1075412 L5632 2023 Generalized Fermat 2329 160146172^131072+1 1075383 L4773 2023 Generalized Fermat 2330 159800918^131072+1 1075260 L5586 2023 Generalized Fermat 2331 159794566^131072+1 1075258 L4249 2023 Generalized Fermat 2332 159784836^131072+1 1075254 L5639 2023 Generalized Fermat 2333 159784822^131072+1 1075254 L5637 2023 Generalized Fermat 2334 1019*2^3571635+1 1075173 L1823 2018 2335 159509138^131072+1 1075156 L5637 2023 Generalized Fermat 2336 119*2^3571416-1 1075106 L2484 2018 2337 159214418^131072+1 1075051 L5755 2023 Generalized Fermat 2338 158831096^131072+1 1074914 L5022 2023 Generalized Fermat 2339 35*2^3570777+1 1074913 L2891 2014 2340 158696888^131072+1 1074865 L5030 2023 Generalized Fermat 2341 158472238^131072+1 1074785 L5586 2023 Generalized Fermat 2342 33*2^3570132+1 1074719 L2552 2014 2343 157923226^131072+1 1074587 L4249 2023 Generalized Fermat 2344 157541220^131072+1 1074449 L5416 2023 Generalized Fermat 2345 5*2^3569154-1 1074424 L503 2009 2346 157374268^131072+1 1074389 L5578 2023 Generalized Fermat 2347 81*492^399095-1 1074352 L4001 2015 2348 156978838^131072+1 1074246 L5332 2023 Generalized Fermat 2349 156789840^131072+1 1074177 L4747 2023 Generalized Fermat 2350 156756400^131072+1 1074165 L4249 2023 Generalized Fermat 2351 22934*5^1536762-1 1074155 L3789 2014 2352 156625064^131072+1 1074117 L5694 2023 Generalized Fermat 2353 156519708^131072+1 1074079 L5746 2023 Generalized Fermat 2354 156468140^131072+1 1074060 L4249 2023 Generalized Fermat 2355 156203340^131072+1 1073964 L5578 2023 Generalized Fermat 2356 156171526^131072+1 1073952 L5698 2023 Generalized Fermat 2357 155778562^131072+1 1073809 L4309 2023 Generalized Fermat 2358 155650426^131072+1 1073762 L5668 2023 Generalized Fermat 2359 155536474^131072+1 1073720 L4249 2023 Generalized Fermat 2360 155339878^131072+1 1073648 L5206 2023 Generalized Fermat 2361 155305266^131072+1 1073636 L5549 2023 Generalized Fermat 2362 155006218^131072+1 1073526 L4742 2023 Generalized Fermat 2363 154553092^131072+1 1073359 L4920 2023 Generalized Fermat 2364 154492166^131072+1 1073337 L4326 2023 Generalized Fermat 2365 154478286^131072+1 1073332 L4544 2023 Generalized Fermat 2366 154368914^131072+1 1073291 L5738 2023 Generalized Fermat 2367 153966766^131072+1 1073143 L5732 2023 Generalized Fermat 2368 3437687*2^3564664-1 1073078 L5327 2024 2369 265*2^3564373-1 1072986 L2484 2018 2370 153485148^131072+1 1072965 L5736 2023 Generalized Fermat 2371 153432848^131072+1 1072945 L5030 2023 Generalized Fermat 2372 153413432^131072+1 1072938 L4835 2023 Generalized Fermat 2373 771*2^3564109+1 1072907 L2125 2018 2374 17665*820^368211+1 1072903 A11 2024 2375 381*2^3563676+1 1072776 L4190 2016 2376 152966530^131072+1 1072772 L5070 2023 Generalized Fermat 2377 555*2^3563328+1 1072672 L4850 2018 2378 152542626^131072+1 1072614 L5460 2023 Generalized Fermat 2379 151999396^131072+1 1072411 L5586 2023 Generalized Fermat 2380 151609814^131072+1 1072265 L5663 2023 Generalized Fermat 2381 151218242^131072+1 1072118 L5588 2023 Generalized Fermat 2382 151108236^131072+1 1072076 L4672 2023 Generalized Fermat 2383 151044622^131072+1 1072052 L5544 2023 Generalized Fermat 2384 151030068^131072+1 1072047 L4774 2023 Generalized Fermat 2385 150908454^131072+1 1072001 L4758 2023 Generalized Fermat 2386 150863054^131072+1 1071984 L5720 2023 Generalized Fermat 2387 1183*2^3560584+1 1071846 L1823 2018 2388 150014492^131072+1 1071663 L4476 2023 Generalized Fermat 2389 149972788^131072+1 1071647 L4559 2023 Generalized Fermat 2390 415*2^3559614+1 1071554 L3035 2016 2391 149665588^131072+1 1071530 L4892 2023 Generalized Fermat 2392 149142686^131072+1 1071331 L4684 2023 Generalized Fermat 2393 149057554^131072+1 1071298 L4933 2023 Generalized Fermat 2394 148598024^131072+1 1071123 L4476 2023 Generalized Fermat 2395 1103*2^3558177-503*2^1092022-1 1071122 p423 2022 Arithmetic progression (3,d=1103*2^3558176-503*2^1092022) 2396 1103*2^3558176-1 1071121 L1828 2018 2397 148592576^131072+1 1071121 L4476 2023 Generalized Fermat 2398 148425726^131072+1 1071057 L4289 2023 Generalized Fermat 2399 148154288^131072+1 1070952 L5714 2023 Generalized Fermat 2400 148093952^131072+1 1070929 L4720 2023 Generalized Fermat 2401 148070542^131072+1 1070920 L5155 2023 Generalized Fermat 2402 147988292^131072+1 1070889 L5155 2023 Generalized Fermat 2403 147816036^131072+1 1070822 L5634 2023 Generalized Fermat 2404 1379*2^3557072-1 1070789 L1828 2018 2405 147539992^131072+1 1070716 L4917 2023 Generalized Fermat 2406 147433824^131072+1 1070675 L4753 2023 Generalized Fermat 2407 147310498^131072+1 1070627 L5403 2023 Generalized Fermat 2408 147265916^131072+1 1070610 L5543 2023 Generalized Fermat 2409 146994540^131072+1 1070505 L5634 2023 Generalized Fermat 2410 146520528^131072+1 1070321 L6123 2023 Generalized Fermat 2411 146465338^131072+1 1070300 L5704 2023 Generalized Fermat 2412 146031082^131072+1 1070131 L4697 2023 Generalized Fermat 2413 145949782^131072+1 1070099 L5029 2023 Generalized Fermat 2414 145728478^131072+1 1070013 L5543 2023 Generalized Fermat 2415 145245346^131072+1 1069824 L5586 2023 Generalized Fermat 2416 145137270^131072+1 1069781 L4742 2023 Generalized Fermat 2417 145132288^131072+1 1069779 L4774 2023 Generalized Fermat 2418 144926960^131072+1 1069699 L5036 2023 Generalized Fermat 2419 144810806^131072+1 1069653 L5543 2023 Generalized Fermat 2420 681*2^3553141+1 1069605 L3035 2018 2421 144602744^131072+1 1069571 L5543 2023 Generalized Fermat 2422 143844356^131072+1 1069272 L5693 2023 Generalized Fermat 2423 599*2^3551793+1 1069200 L3824 2018 2424e 55*2^3551791-1 1069198 L2017 2025 2425 143421820^131072+1 1069104 L4904 2023 Generalized Fermat 2426 621*2^3551472+1 1069103 L4687 2018 2427 143416574^131072+1 1069102 L4591 2023 Generalized Fermat 2428 143126384^131072+1 1068987 L5288 2023 Generalized Fermat 2429 142589776^131072+1 1068773 L4201 2023 Generalized Fermat 2430 773*2^3550373+1 1068772 L1808 2018 2431 142527792^131072+1 1068748 L4387 2023 Generalized Fermat 2432 142207386^131072+1 1068620 L5694 2023 Generalized Fermat 2433 142195844^131072+1 1068616 L5548 2023 Generalized Fermat 2434 141636602^131072+1 1068391 L5639 2023 Generalized Fermat 2435 141554190^131072+1 1068358 L4956 2023 Generalized Fermat 2436e 95*2^3548546-1 1068221 L2017 2025 2437 1199*2^3548380-1 1068172 L1828 2018 2438 140928044^131072+1 1068106 L4870 2023 Generalized Fermat 2439 191*2^3548117+1 1068092 L4203 2015 2440 140859866^131072+1 1068078 L5011 2023 Generalized Fermat 2441 140824516^131072+1 1068064 L4760 2023 Generalized Fermat 2442 140649396^131072+1 1067993 L5578 2023 Generalized Fermat 2443 867*2^3547711+1 1067971 L4155 2018 2444 140473436^131072+1 1067922 L4210 2023 Generalized Fermat 2445 140237690^131072+1 1067826 L5051 2023 Generalized Fermat 2446 139941370^131072+1 1067706 L5671 2023 Generalized Fermat 2447 3^2237561+3^1118781+1 1067588 L3839 2014 Generalized unique 2448 139352402^131072+1 1067466 L5663 2023 Generalized Fermat 2449 351*2^3545752+1 1067381 L4082 2016 2450 138896860^131072+1 1067279 L4745 2023 Generalized Fermat 2451 138894074^131072+1 1067278 L5041 2023 Generalized Fermat 2452 138830036^131072+1 1067252 L5662 2023 Generalized Fermat 2453 138626864^131072+1 1067169 L5663 2023 Generalized Fermat 2454 138527284^131072+1 1067128 L5663 2023 Generalized Fermat 2455 93*2^3544744+1 1067077 L1728 2014 2456 26279*24^773017+1 1066932 A11 2025 2457 138000006^131072+1 1066911 L5051 2023 Generalized Fermat 2458 137900696^131072+1 1066870 L4249 2023 Generalized Fermat 2459 137878102^131072+1 1066860 L5051 2023 Generalized Fermat 2460 1159*2^3543702+1 1066764 L1823 2018 2461 137521726^131072+1 1066713 L4672 2023 Generalized Fermat 2462 137486564^131072+1 1066699 L5586 2023 Generalized Fermat 2463 136227118^131072+1 1066175 L5416 2023 Generalized Fermat 2464 136192168^131072+1 1066160 L5556 2023 Generalized Fermat 2465 136124076^131072+1 1066132 L5041 2023 Generalized Fermat 2466 136122686^131072+1 1066131 L5375 2023 Generalized Fermat 2467 2*3^2234430-1 1066095 A2 2023 2468 178658*5^1525224-1 1066092 L3789 2014 2469 135744154^131072+1 1065973 L5068 2023 Generalized Fermat 2470 135695350^131072+1 1065952 L4249 2023 Generalized Fermat 2471 135623220^131072+1 1065922 L5657 2023 Generalized Fermat 2472 135513092^131072+1 1065876 L5656 2023 Generalized Fermat 2473 135497678^131072+1 1065869 L4387 2023 Generalized Fermat 2474 135458028^131072+1 1065852 L5051 2023 Generalized Fermat 2475 135332960^131072+1 1065800 L5655 2023 Generalized Fermat 2476 135135930^131072+1 1065717 L4387 2023 Generalized Fermat 2477 1085*2^3539671+1 1065551 L3035 2018 2478 134706086^131072+1 1065536 L5378 2023 Generalized Fermat 2479 134459616^131072+1 1065431 L5658 2023 Generalized Fermat 2480 134447516^131072+1 1065426 L4387 2023 Generalized Fermat 2481 134322272^131072+1 1065373 L4387 2023 Generalized Fermat 2482 134206304^131072+1 1065324 L4684 2023 Generalized Fermat 2483 134176868^131072+1 1065311 L5375 2023 Generalized Fermat 2484 133954018^131072+1 1065217 L5088 2023 Generalized Fermat 2485 133676500^131072+1 1065099 L4387 2023 Generalized Fermat 2486 133569020^131072+1 1065053 L5277 2023 Generalized Fermat 2487 133345154^131072+1 1064958 L4210 2023 Generalized Fermat 2488 133180238^131072+1 1064887 L5586 2023 Generalized Fermat 2489 133096042^131072+1 1064851 L4755 2023 Generalized Fermat 2490 465*2^3536871+1 1064707 L4459 2016 2491 1019*2^3536312-1 1064539 L1828 2012 2492 131820886^131072+1 1064303 L5069 2023 Generalized Fermat 2493 131412078^131072+1 1064126 L5653 2023 Generalized Fermat 2494 131370186^131072+1 1064108 L5036 2023 Generalized Fermat 2495 131309874^131072+1 1064082 L5069 2023 Generalized Fermat 2496 131112524^131072+1 1063996 L4245 2023 Generalized Fermat 2497 1179*2^3534450+1 1063979 L3035 2018 2498 130907540^131072+1 1063907 L4526 2023 Generalized Fermat 2499 130593462^131072+1 1063771 L4559 2023 Generalized Fermat 2500 447*2^3533656+1 1063740 L4457 2016 2501 130518578^131072+1 1063738 L5029 2023 Generalized Fermat 2502 1059*2^3533550+1 1063708 L1823 2018 2503 130198372^131072+1 1063598 L5416 2023 Generalized Fermat 2504 130148002^131072+1 1063576 L4387 2023 Generalized Fermat 2505 130128232^131072+1 1063567 L5029 2023 Generalized Fermat 2506 130051980^131072+1 1063534 L5416 2023 Generalized Fermat 2507 130048816^131072+1 1063533 L4245 2023 Generalized Fermat 2508 345*2^3532957+1 1063529 L4314 2016 2509 553*2^3532758+1 1063469 L1823 2018 2510 129292212^131072+1 1063201 L4285 2023 Generalized Fermat 2511 129159632^131072+1 1063142 L5051 2023 Generalized Fermat 2512 128558886^131072+1 1062877 L5518 2023 Generalized Fermat 2513 128520182^131072+1 1062860 L4745 2023 Generalized Fermat 2514 543131*2^3529754-1 1062568 L4925 2022 2515 127720948^131072+1 1062504 L5378 2023 Generalized Fermat 2516 141*2^3529287+1 1062424 L4185 2015 2517 127093036^131072+1 1062224 L4591 2023 Generalized Fermat 2518 24950*745^369781-1 1062074 L4189 2024 2519 126611934^131072+1 1062008 L4776 2023 Generalized Fermat 2520 126423276^131072+1 1061923 L4201 2023 Generalized Fermat 2521 126334514^131072+1 1061883 L4249 2023 Generalized Fermat 2522 13*2^3527315-1 1061829 L1862 2016 2523 126199098^131072+1 1061822 L4591 2023 Generalized Fermat 2524 126189358^131072+1 1061818 L4704 2023 Generalized Fermat 2525 125966884^131072+1 1061717 L4747 2023 Generalized Fermat 2526 125714084^131072+1 1061603 L4745 2023 Generalized Fermat 2527 125141096^131072+1 1061343 L4559 2023 Generalized Fermat 2528 1393*2^3525571-1 1061306 L1828 2017 2529 125006494^131072+1 1061282 L5639 2023 Generalized Fermat 2530 124877454^131072+1 1061223 L4245 2023 Generalized Fermat 2531 124875502^131072+1 1061222 L4591 2023 Generalized Fermat 2532 124749274^131072+1 1061164 L4591 2023 Generalized Fermat 2533 124586054^131072+1 1061090 L4249 2023 Generalized Fermat 2534 124582356^131072+1 1061088 L5606 2023 Generalized Fermat 2535 124543852^131072+1 1061071 L4249 2023 Generalized Fermat 2536 124393514^131072+1 1061002 L4774 2023 Generalized Fermat 2537 124219534^131072+1 1060922 L4249 2023 Generalized Fermat 2538 124133348^131072+1 1060883 L5088 2023 Generalized Fermat 2539 124080788^131072+1 1060859 L5639 2023 Generalized Fermat 2540 1071*2^3523944+1 1060816 L1675 2018 2541 123910270^131072+1 1060780 L4249 2023 Generalized Fermat 2542 123856592^131072+1 1060756 L4201 2023 Generalized Fermat 2543 123338660^131072+1 1060517 L4905 2022 Generalized Fermat 2544 123306230^131072+1 1060502 L5638 2023 Generalized Fermat 2545 123195196^131072+1 1060451 L5029 2022 Generalized Fermat 2546 122941512^131072+1 1060333 L4559 2022 Generalized Fermat 2547 122869094^131072+1 1060300 L4939 2022 Generalized Fermat 2548 122481106^131072+1 1060120 L4704 2022 Generalized Fermat 2549 122414564^131072+1 1060089 L5627 2022 Generalized Fermat 2550 122372192^131072+1 1060069 L5099 2022 Generalized Fermat 2551 121854624^131072+1 1059828 L5051 2022 Generalized Fermat 2552 121462664^131072+1 1059645 L5632 2022 Generalized Fermat 2553 121158848^131072+1 1059502 L4774 2022 Generalized Fermat 2554 2220172*3^2220172+1 1059298 p137 2023 Generalized Cullen 2555 329*2^3518451+1 1059162 L1823 2016 2556 135*2^3518338+1 1059128 L4045 2015 2557 120106930^131072+1 1059006 L4249 2022 Generalized Fermat 2558 2*10^1059002-1 1059003 L3432 2013 Near-repdigit 2559 119744014^131072+1 1058833 L4249 2022 Generalized Fermat 2560 64*10^1058794+1 1058796 L4036 2017 Generalized Fermat 2561 119604848^131072+1 1058767 L4201 2022 Generalized Fermat 2562 119541900^131072+1 1058737 L4747 2022 Generalized Fermat 2563 119510296^131072+1 1058722 L4201 2022 Generalized Fermat 2564 119246256^131072+1 1058596 L4249 2022 Generalized Fermat 2565 119137704^131072+1 1058544 L4201 2022 Generalized Fermat 2566 118888350^131072+1 1058425 L4999 2022 Generalized Fermat 2567 599*2^3515959+1 1058412 L1823 2018 2568 118583824^131072+1 1058279 L4210 2022 Generalized Fermat 2569 118109876^131072+1 1058051 L4550 2022 Generalized Fermat 2570 117906758^131072+1 1057953 L4249 2022 Generalized Fermat 2571 117687318^131072+1 1057847 L4245 2022 Generalized Fermat 2572 117375862^131072+1 1057696 L4774 2022 Generalized Fermat 2573 117345018^131072+1 1057681 L4848 2022 Generalized Fermat 2574 117196584^131072+1 1057609 L4559 2022 Generalized Fermat 2575 117153716^131072+1 1057588 L4774 2022 Generalized Fermat 2576 117088740^131072+1 1057557 L4559 2022 Generalized Fermat 2577 116936156^131072+1 1057483 L5332 2022 Generalized Fermat 2578 116402336^131072+1 1057222 L4760 2022 Generalized Fermat 2579 7*2^3511774+1 1057151 p236 2008 Divides GF(3511773,6) 2580 116036228^131072+1 1057043 L4773 2022 Generalized Fermat 2581 116017862^131072+1 1057034 L4559 2022 Generalized Fermat 2582 115992582^131072+1 1057021 L4835 2022 Generalized Fermat 2583 115873312^131072+1 1056963 L4677 2022 Generalized Fermat 2584 1135*2^3510890+1 1056887 L1823 2018 2585 115704568^131072+1 1056880 L4559 2022 Generalized Fermat 2586 115479166^131072+1 1056769 L4774 2022 Generalized Fermat 2587 115409608^131072+1 1056735 L4774 2022 Generalized Fermat 2588 115256562^131072+1 1056659 L4559 2022 Generalized Fermat 2589 114687250^131072+1 1056377 L5007 2022 Generalized Fermat 2590 114643510^131072+1 1056356 L4659 2022 Generalized Fermat 2591 114340846^131072+1 1056205 L4559 2022 Generalized Fermat 2592 114159720^131072+1 1056115 L4787 2022 Generalized Fermat 2593 114055498^131072+1 1056063 L4387 2022 Generalized Fermat 2594 114009952^131072+1 1056040 L4387 2022 Generalized Fermat 2595 113904214^131072+1 1055987 L4559 2022 Generalized Fermat 2596 113807058^131072+1 1055939 L5157 2022 Generalized Fermat 2597 113550956^131072+1 1055810 L5578 2022 Generalized Fermat 2598 113521888^131072+1 1055796 L4387 2022 Generalized Fermat 2599 113431922^131072+1 1055751 L4559 2022 Generalized Fermat 2600 113328940^131072+1 1055699 L4787 2022 Generalized Fermat 2601 113327472^131072+1 1055698 L5467 2022 Generalized Fermat 2602 113325850^131072+1 1055698 L4559 2022 Generalized Fermat 2603 113313172^131072+1 1055691 L5005 2022 Generalized Fermat 2604 113191714^131072+1 1055630 L5056 2022 Generalized Fermat 2605 113170004^131072+1 1055619 L4584 2022 Generalized Fermat 2606 428639*2^3506452-1 1055553 L2046 2011 2607 112996304^131072+1 1055532 L5544 2022 Generalized Fermat 2608 112958834^131072+1 1055513 L5512 2022 Generalized Fermat 2609 112852910^131072+1 1055459 L5157 2022 Generalized Fermat 2610 112719374^131072+1 1055392 L4793 2022 Generalized Fermat 2611 112580428^131072+1 1055322 L5512 2022 Generalized Fermat 2612 112248096^131072+1 1055154 L5359 2022 Generalized Fermat 2613 112053266^131072+1 1055055 L5359 2022 Generalized Fermat 2614 112023072^131072+1 1055039 L5156 2022 Generalized Fermat 2615 111673524^131072+1 1054861 L5548 2022 Generalized Fermat 2616 111181588^131072+1 1054610 L4550 2022 Generalized Fermat 2617 104*383^408249+1 1054591 L2012 2021 2618 110866802^131072+1 1054449 L5547 2022 Generalized Fermat 2619 555*2^3502765+1 1054441 L1823 2018 2620 110824714^131072+1 1054427 L4201 2022 Generalized Fermat 2621 8300*171^472170+1 1054358 L5780 2023 2622 110428380^131072+1 1054223 L5543 2022 Generalized Fermat 2623 110406480^131072+1 1054212 L5051 2022 Generalized Fermat 2624 643*2^3501974+1 1054203 L1823 2018 2625 2*23^774109+1 1054127 g427 2014 Divides Phi(23^774109,2) 2626 1159*2^3501490+1 1054057 L2125 2018 2627 1001*2^3501038-1 1053921 A46 2024 2628 109678642^131072+1 1053835 L4559 2022 Generalized Fermat 2629 109654098^131072+1 1053823 L5143 2022 Generalized Fermat 2630 109142690^131072+1 1053557 L4201 2022 Generalized Fermat 2631 109082020^131072+1 1053525 L4773 2022 Generalized Fermat 2632 1189*2^3499042+1 1053320 L4724 2018 2633 108584736^131072+1 1053265 L5057 2022 Generalized Fermat 2634 108581414^131072+1 1053263 L5088 2022 Generalized Fermat 2635 108195632^131072+1 1053060 L5025 2022 Generalized Fermat 2636 108161744^131072+1 1053043 L4945 2022 Generalized Fermat 2637f 35*2^3498070-1 1053026 L1817 2025 2638 108080390^131072+1 1053000 L4945 2022 Generalized Fermat 2639 107979316^131072+1 1052947 L4559 2022 Generalized Fermat 2640 107922308^131072+1 1052916 L5025 2022 Generalized Fermat 2641 609*2^3497474+1 1052848 L1823 2018 2642 9*2^3497442+1 1052836 L1780 2012 Generalized Fermat, divides GF(3497441,10) 2643 107732730^131072+1 1052816 L5518 2022 Generalized Fermat 2644 107627678^131072+1 1052761 L5025 2022 Generalized Fermat 2645 107492880^131072+1 1052689 L4550 2022 Generalized Fermat 2646 107420312^131072+1 1052651 L4550 2022 Generalized Fermat 2647 107404768^131072+1 1052643 L4267 2022 Generalized Fermat 2648 107222132^131072+1 1052546 L5019 2022 Generalized Fermat 2649 107126228^131072+1 1052495 L5025 2022 Generalized Fermat 2650 87*2^3496188+1 1052460 L1576 2014 2651 106901434^131072+1 1052375 L4760 2022 Generalized Fermat 2652 106508704^131072+1 1052166 L5505 2022 Generalized Fermat 2653 106440698^131072+1 1052130 L4245 2022 Generalized Fermat 2654 106019242^131072+1 1051904 L5025 2022 Generalized Fermat 2655 105937832^131072+1 1051860 L4745 2022 Generalized Fermat 2656 783*2^3494129+1 1051841 L3824 2018 2657 105861526^131072+1 1051819 L5500 2022 Generalized Fermat 2658 105850338^131072+1 1051813 L5504 2022 Generalized Fermat 2659 105534478^131072+1 1051643 L5025 2022 Generalized Fermat 2660 105058710^131072+1 1051386 L5499 2022 Generalized Fermat 2661 104907548^131072+1 1051304 L4245 2022 Generalized Fermat 2662 104808996^131072+1 1051250 L4591 2022 Generalized Fermat 2663 104641854^131072+1 1051159 L4245 2022 Generalized Fermat 2664 51*2^3490971+1 1050889 L1823 2014 2665 1485*2^3490746+1 1050823 L1134 2021 2666 103828182^131072+1 1050715 L5072 2022 Generalized Fermat 2667 103605376^131072+1 1050593 L5056 2022 Generalized Fermat 2668 3609*24^761179+1 1050592 A11 2025 2669 103289324^131072+1 1050419 L5044 2022 Generalized Fermat 2670 103280694^131072+1 1050414 L4745 2022 Generalized Fermat 2671 103209792^131072+1 1050375 L5025 2022 Generalized Fermat 2672 103094212^131072+1 1050311 L4245 2022 Generalized Fermat 2673 103013294^131072+1 1050266 L4745 2022 Generalized Fermat 2674 753*2^3488818+1 1050242 L1823 2018 2675 102507732^131072+1 1049986 L4245 2022 Generalized Fermat 2676 102469684^131072+1 1049965 L4245 2022 Generalized Fermat 2677 102397132^131072+1 1049925 L4720 2022 Generalized Fermat 2678 102257714^131072+1 1049847 L4245 2022 Generalized Fermat 2679 699*2^3487253+1 1049771 L1204 2018 2680 102050324^131072+1 1049732 L5036 2022 Generalized Fermat 2681 102021074^131072+1 1049716 L4245 2022 Generalized Fermat 2682 101915106^131072+1 1049656 L6123 2022 Generalized Fermat 2683 101856256^131072+1 1049623 L4774 2022 Generalized Fermat 2684 1001*2^3486566-1 1049564 L4518 2024 2685 249*2^3486411+1 1049517 L4045 2015 2686 195*2^3486379+1 1049507 L4108 2015 2687 101607438^131072+1 1049484 L4591 2022 Generalized Fermat 2688 4687*2^3485926+1 1049372 L5302 2023 2689 2691*2^3485924+1 1049372 L5302 2023 2690 6083*2^3485877+1 1049358 L5837 2023 2691 101328382^131072+1 1049328 L4591 2022 Generalized Fermat 2692 101270816^131072+1 1049295 L4245 2022 Generalized Fermat 2693 9757*2^3485666+1 1049295 L5284 2023 2694 8859*2^3484982+1 1049089 L5833 2023 2695 100865034^131072+1 1049067 L4387 2022 Generalized Fermat 2696 59912*5^1500861+1 1049062 L3772 2014 2697 495*2^3484656+1 1048989 L3035 2016 2698 100719472^131072+1 1048985 L5270 2022 Generalized Fermat 2699 100534258^131072+1 1048880 L4245 2022 Generalized Fermat 2700 100520930^131072+1 1048872 L4201 2022 Generalized Fermat 2701 4467*2^3484204+1 1048854 L5189 2023 2702 4873*2^3484142+1 1048835 L5710 2023 2703 100441116^131072+1 1048827 L4309 2022 Generalized Fermat 2704 (3*2^1742059)^2-3*2^1742059+1 1048825 A3 2023 Generalized unique 2705 3891*2^3484099+1 1048822 L5260 2023 2706 7833*2^3484060+1 1048811 L5830 2023 2707 100382228^131072+1 1048794 L4308 2022 Generalized Fermat 2708 100369508^131072+1 1048786 L5157 2022 Generalized Fermat 2709 100324226^131072+1 1048761 L4201 2022 Generalized Fermat 2710 3097*2^3483800+1 1048732 L5829 2023 2711 5873*2^3483573+1 1048664 L5710 2023 2712 2895*2^3483455+1 1048628 L5480 2023 2713 9029*2^3483337+1 1048593 L5393 2023 2714 100010426^131072+1 1048582 L5375 2022 Generalized Fermat 2715 5531*2^3483263+1 1048571 L5825 2023 2716 323*2^3482789+1 1048427 L1204 2016 2717 3801*2^3482723+1 1048408 L5517 2023 2718 99665972^131072+1 1048386 L4201 2022 Generalized Fermat 2719 99650934^131072+1 1048377 L5375 2022 Generalized Fermat 2720 99557826^131072+1 1048324 L5466 2022 Generalized Fermat 2721 8235*2^3482277+1 1048274 L5820 2023 2722 9155*2^3482129+1 1048230 L5226 2023 2723 99351950^131072+1 1048206 L5143 2022 Generalized Fermat 2724 4325*2^3481969+1 1048181 L5434 2023 2725 99189780^131072+1 1048113 L4201 2022 Generalized Fermat 2726 1149*2^3481694+1 1048098 L1823 2018 2727 98978354^131072+1 1047992 L5465 2022 Generalized Fermat 2728 6127*2^3481244+1 1047963 L5226 2023 2729 98922946^131072+1 1047960 L5453 2022 Generalized Fermat 2730 8903*2^3481217+1 1047955 L5226 2023 2731 3595*2^3481178+1 1047943 L5214 2023 2732 3799*2^3480810+1 1047832 L5226 2023 2733 6101*2^3480801+1 1047830 L5226 2023 2734 98652282^131072+1 1047804 L4201 2022 Generalized Fermat 2735 1740349*2^3480698+1 1047801 L5765 2023 Generalized Cullen 2736 98557818^131072+1 1047750 L5464 2022 Generalized Fermat 2737 98518362^131072+1 1047727 L5460 2022 Generalized Fermat 2738 5397*2^3480379+1 1047703 L5226 2023 2739 5845*2^3479972+1 1047580 L5517 2023 2740 98240694^131072+1 1047566 L4720 2022 Generalized Fermat 2741 98200338^131072+1 1047543 L4559 2022 Generalized Fermat 2742 701*2^3479779+1 1047521 L2125 2018 2743 98137862^131072+1 1047507 L4525 2022 Generalized Fermat 2744 813*2^3479728+1 1047506 L4724 2018 2745 7125*2^3479509+1 1047441 L5812 2023 2746 1971*2^3479061+1 1047306 L5226 2023 2747 1215*2^3478543+1 1047149 L5226 2023 2748 97512766^131072+1 1047143 L5460 2022 Generalized Fermat 2749 5985*2^3478217+1 1047052 L5387 2023 2750 3093*2^3478148+1 1047031 L5261 2023 2751 2145*2^3478095+1 1047015 L5387 2023 2752 6685*2^3478086+1 1047013 L5237 2023 2753 9603*2^3478084+1 1047012 L5178 2023 2754 1315*2^3477718+1 1046901 L5316 2023 2755 97046574^131072+1 1046870 L4956 2022 Generalized Fermat 2756 197*2^3477399+1 1046804 L2125 2015 2757 8303*2^3477201+1 1046746 L5387 2023 2758 96821302^131072+1 1046738 L5453 2022 Generalized Fermat 2759 5925*2^3477009+1 1046688 L5810 2023 2760 96734274^131072+1 1046686 L5297 2022 Generalized Fermat 2761 7825*2^3476524+1 1046542 L5174 2023 2762 96475576^131072+1 1046534 L4424 2022 Generalized Fermat 2763 8197*2^3476332+1 1046485 L5174 2023 2764 8529*2^3476111+1 1046418 L5387 2023 2765 8411*2^3476055+1 1046401 L5783 2023 2766 4319*2^3475955+1 1046371 L5803 2023 2767 96111850^131072+1 1046319 L4245 2022 Generalized Fermat 2768 95940796^131072+1 1046218 L4591 2022 Generalized Fermat 2769 6423*2^3475393+1 1046202 L5174 2023 2770 2281*2^3475340+1 1046185 L5302 2023 2771 7379*2^3474983+1 1046078 L5798 2023 2772 4*5^1496566+1 1046056 L4965 2023 Generalized Fermat 2773 95635202^131072+1 1046036 L5452 2021 Generalized Fermat 2774 95596816^131072+1 1046013 L4591 2021 Generalized Fermat 2775 4737*2^3474562+1 1045952 L5302 2023 2776 2407*2^3474406+1 1045904 L5557 2023 2777 95308284^131072+1 1045841 L4584 2021 Generalized Fermat 2778 491*2^3473837+1 1045732 L4343 2016 2779 2693*2^3473721+1 1045698 L5174 2023 2780 94978760^131072+1 1045644 L4201 2021 Generalized Fermat 2781 3375*2^3473210+1 1045544 L5294 2023 2782 8835*2^3472666+1 1045381 L5178 2023 2783 5615*2^3472377+1 1045294 L5174 2023 2784 1785*2^3472229+1 1045249 L875 2023 2785 8997*2^3472036+1 1045191 L5302 2023 2786 9473*2^3471885+1 1045146 L5294 2023 2787 7897*2^3471568+1 1045050 L5294 2023 2788 93950924^131072+1 1045025 L5425 2021 Generalized Fermat 2789 93886318^131072+1 1044985 L5433 2021 Generalized Fermat 2790 1061*2^3471354-1 1044985 L1828 2017 2791 1913*2^3471177+1 1044932 L5189 2023 2792 93773904^131072+1 1044917 L4939 2021 Generalized Fermat 2793 7723*2^3471074+1 1044902 L5189 2023 2794 4195*2^3470952+1 1044865 L5294 2023 2795 93514592^131072+1 1044760 L4591 2021 Generalized Fermat 2796 5593*2^3470520+1 1044735 L5387 2023 2797 3665*2^3469955+1 1044565 L5189 2023 2798 3301*2^3469708+1 1044490 L5261 2023 2799 6387*2^3469634+1 1044468 L5192 2023 2800 93035888^131072+1 1044467 L4245 2021 Generalized Fermat 2801 8605*2^3469570+1 1044449 L5387 2023 2802 1359*2^3468725+1 1044194 L5197 2023 2803 92460588^131072+1 1044114 L5254 2021 Generalized Fermat 2804 7585*2^3468338+1 1044078 L5197 2023 2805 1781*2^3468335+1 1044077 L5387 2023 2806 6885*2^3468181+1 1044031 L5197 2023 2807 4372*30^706773-1 1043994 L4955 2023 2808 7287*2^3467938+1 1043958 L5776 2023 2809 92198216^131072+1 1043953 L4738 2021 Generalized Fermat 2810 3163*2^3467710+1 1043889 L5517 2023 2811 6099*2^3467689+1 1043883 L5197 2023 2812 6665*2^3467627+1 1043864 L5174 2023 2813 4099*2^3467462+1 1043814 L5774 2023 2814 5285*2^3467445+1 1043809 L5189 2023 2815 1001*2^3467258-1 1043752 L4518 2024 2816 91767880^131072+1 1043686 L5051 2021 Generalized Fermat 2817 91707732^131072+1 1043649 L4591 2021 Generalized Fermat 2818 5935*2^3466880+1 1043639 L5197 2023 2819 91689894^131072+1 1043638 L4591 2021 Generalized Fermat 2820 91685784^131072+1 1043635 L4591 2021 Generalized Fermat 2821 8937*2^3466822+1 1043622 L5174 2023 2822 91655310^131072+1 1043616 L4659 2021 Generalized Fermat 2823 8347*2^3466736+1 1043596 L5770 2023 2824 8863*2^3465780+1 1043308 L5766 2023 2825 3895*2^3465744+1 1043297 L5640 2023 2826 91069366^131072+1 1043251 L5277 2021 Generalized Fermat 2827 91049202^131072+1 1043239 L4591 2021 Generalized Fermat 2828 91033554^131072+1 1043229 L4591 2021 Generalized Fermat 2829 8561*2^3465371+1 1043185 L5197 2023 2830 90942952^131072+1 1043172 L4387 2021 Generalized Fermat 2831 90938686^131072+1 1043170 L4387 2021 Generalized Fermat 2832 9971*2^3465233+1 1043144 L5488 2023 2833 90857490^131072+1 1043119 L4591 2021 Generalized Fermat 2834 3801*2^3464980+1 1043067 L5197 2023 2835 3099*2^3464739+1 1042994 L5284 2023 2836 90382348^131072+1 1042820 L4267 2021 Generalized Fermat 2837 641*2^3464061+1 1042790 L1444 2018 2838 6717*2^3463735+1 1042692 L5754 2023 2839 6015*2^3463561+1 1042640 L5387 2023 2840f 57*2^3463424-1 1042597 L1817 2025 2841 90006846^131072+1 1042583 L4773 2021 Generalized Fermat 2842 1667*2^3463355+1 1042577 L5226 2023 2843 2871*2^3463313+1 1042565 L5189 2023 2844 89977312^131072+1 1042565 L5070 2021 Generalized Fermat 2845 6007*2^3463048+1 1042486 L5226 2023 2846 89790434^131072+1 1042446 L5007 2021 Generalized Fermat 2847 9777*2^3462742+1 1042394 L5197 2023 2848 5215*2^3462740+1 1042393 L5174 2023 2849 8365*2^3462722+1 1042388 L5320 2023 2850 3597*2^3462056+1 1042187 L5174 2023 2851 2413*2^3461890+1 1042137 L5197 2023 2852 89285798^131072+1 1042125 L5157 2021 Generalized Fermat 2853 453*2^3461688+1 1042075 L3035 2016 2854 89113896^131072+1 1042016 L5338 2021 Generalized Fermat 2855 4401*2^3461476+1 1042012 L5197 2023 2856 9471*2^3461305+1 1041961 L5594 2023 2857 7245*2^3461070+1 1041890 L5449 2023 2858 3969*2^3460942+1 1041851 L5471 2023 Generalized Fermat 2859 4365*2^3460914+1 1041843 L5197 2023 2860 4613*2^3460861+1 1041827 L5614 2023 2861 88760062^131072+1 1041789 L4903 2021 Generalized Fermat 2862 5169*2^3460553+1 1041734 L5742 2023 2863 8395*2^3460530+1 1041728 L5284 2023 2864 5835*2^3460515+1 1041723 L5740 2023 2865 8059*2^3460246+1 1041642 L5350 2023 2866 571*2^3460216+1 1041632 L3035 2018 2867 6065*2^3460205+1 1041630 L5683 2023 2868 88243020^131072+1 1041457 L4774 2021 Generalized Fermat 2869 88166868^131072+1 1041408 L5277 2021 Generalized Fermat 2870 6237*2^3459386+1 1041383 L5509 2023 2871 88068088^131072+1 1041344 L4933 2021 Generalized Fermat 2872 4029*2^3459062+1 1041286 L5727 2023 2873 87920992^131072+1 1041249 L4249 2021 Generalized Fermat 2874 7055*2^3458909+1 1041240 L5509 2023 2875 7297*2^3458768+1 1041197 L5726 2023 2876 2421*2^3458432+1 1041096 L5725 2023 2877 7907*2^3458207+1 1041028 L5509 2023 2878 87547832^131072+1 1041006 L4591 2021 Generalized Fermat 2879 87454694^131072+1 1040946 L4672 2021 Generalized Fermat 2880 7839*2^3457846+1 1040920 L5231 2023 2881 87370574^131072+1 1040891 L5297 2021 Generalized Fermat 2882 87352356^131072+1 1040879 L4387 2021 Generalized Fermat 2883 87268788^131072+1 1040825 L4917 2021 Generalized Fermat 2884 87192538^131072+1 1040775 L4861 2021 Generalized Fermat 2885 5327*2^3457363+1 1040774 L5715 2023 2886 87116452^131072+1 1040725 L5297 2021 Generalized Fermat 2887 87039658^131072+1 1040675 L5297 2021 Generalized Fermat 2888 6059*2^3457001+1 1040665 L5197 2023 2889 8953*2^3456938+1 1040646 L5724 2023 2890 8669*2^3456759+1 1040593 L5710 2023 2891 86829162^131072+1 1040537 L5265 2021 Generalized Fermat 2892 4745*2^3456167+1 1040414 L5705 2023 2893 8213*2^3456141+1 1040407 L5703 2023 2894 86413544^131072+1 1040264 L4914 2021 Generalized Fermat 2895 86347638^131072+1 1040221 L4848 2021 Generalized Fermat 2896 86295564^131072+1 1040186 L5030 2021 Generalized Fermat 2897 1155*2^3455254+1 1040139 L4711 2017 2898 37292*5^1487989+1 1040065 L3553 2013 2899 86060696^131072+1 1040031 L5057 2021 Generalized Fermat 2900 5525*2^3454069+1 1039783 L5651 2023 2901 4235*2^3453573+1 1039633 L5650 2023 2902 6441*2^3453227+1 1039529 L5683 2023 2903 4407*2^3453195+1 1039519 L5650 2023 2904 9867*2^3453039+1 1039473 L5686 2023 2905 85115888^131072+1 1039403 L4909 2021 Generalized Fermat 2906 4857*2^3452675+1 1039363 L5600 2023 2907 8339*2^3452667+1 1039361 L5651 2023 2908 84924212^131072+1 1039275 L4309 2021 Generalized Fermat 2909 7079*2^3452367+1 1039270 L5650 2023 2910 5527*2^3452342+1 1039263 L5679 2023 2911 84817722^131072+1 1039203 L4726 2021 Generalized Fermat 2912 84765338^131072+1 1039168 L4245 2021 Generalized Fermat 2913 84757790^131072+1 1039163 L5051 2021 Generalized Fermat 2914 84723284^131072+1 1039140 L5051 2021 Generalized Fermat 2915 84715930^131072+1 1039135 L4963 2021 Generalized Fermat 2916 84679936^131072+1 1039111 L4864 2021 Generalized Fermat 2917 3719*2^3451667+1 1039059 L5294 2023 2918 6725*2^3451455+1 1038996 L5685 2023 2919 8407*2^3451334+1 1038959 L5524 2023 2920 84445014^131072+1 1038952 L4909 2021 Generalized Fermat 2921 84384358^131072+1 1038912 L4622 2021 Generalized Fermat 2922 4*10^1038890+1 1038891 L4789 2024 Generalized Fermat 2923 1623*2^3451109+1 1038891 L5308 2023 2924 8895*2^3450982+1 1038854 L5666 2023 2925 84149050^131072+1 1038753 L5033 2021 Generalized Fermat 2926 2899*2^3450542+1 1038721 L5600 2023 2927 6337*2^3449506+1 1038409 L5197 2023 2928 4381*2^3449456+1 1038394 L5392 2023 2929 2727*2^3449326+1 1038355 L5421 2023 2930 2877*2^3449311+1 1038350 L5517 2023 2931 7507*2^3448920+1 1038233 L5284 2023 2932 3629*2^3448919+1 1038232 L5192 2023 2933 83364886^131072+1 1038220 L4591 2021 Generalized Fermat 2934 83328182^131072+1 1038195 L5051 2021 Generalized Fermat 2935 1273*2^3448551-1 1038121 L1828 2012 2936 1461*2^3448423+1 1038082 L4944 2023 2937 3235*2^3448352+1 1038061 L5571 2023 2938 4755*2^3448344+1 1038059 L5524 2023 2939 5655*2^3448288+1 1038042 L5651 2023 2940 4873*2^3448176+1 1038009 L5524 2023 2941 83003850^131072+1 1037973 L4963 2021 Generalized Fermat 2942 8139*2^3447967+1 1037946 L5652 2023 2943 1065*2^3447906+1 1037927 L4664 2017 2944 1717*2^3446756+1 1037581 L5517 2023 2945 6357*2^3446434+1 1037484 L5284 2023 2946 1155*2^3446253+1 1037429 L3035 2017 2947 9075*2^3446090+1 1037381 L5648 2023 2948 82008736^131072+1 1037286 L4963 2021 Generalized Fermat 2949 82003030^131072+1 1037282 L4410 2021 Generalized Fermat 2950 1483*2^3445724+1 1037270 L5650 2023 2951 81976506^131072+1 1037264 L4249 2021 Generalized Fermat 2952 2223*2^3445682+1 1037257 L5647 2023 2953 8517*2^3445488+1 1037200 L5302 2023 2954 2391*2^3445281+1 1037137 L5596 2023 2955 6883*2^3444784+1 1036988 L5264 2023 2956 81477176^131072+1 1036916 L4245 2020 Generalized Fermat 2957 81444036^131072+1 1036893 L4245 2020 Generalized Fermat 2958 8037*2^3443920+1 1036728 L5626 2023 2959 1375*2^3443850+1 1036706 L5192 2023 2960 81096098^131072+1 1036649 L4249 2020 Generalized Fermat 2961 27288429267119080686...(1036580 other digits)...83679577406643267931 1036620 p384 2015 2962 943*2^3442990+1 1036447 L4687 2017 2963 7743*2^3442814+1 1036395 L5514 2023 2964 5511*2^3442468+1 1036290 L5514 2022 2965 80284312^131072+1 1036076 L5051 2020 Generalized Fermat 2966 6329*2^3441717+1 1036064 L5631 2022 2967d 243*2^3441659-1 1036045 A76 2025 2968 3957*2^3441568+1 1036019 L5476 2022 2969 80146408^131072+1 1035978 L5051 2020 Generalized Fermat 2970 4191*2^3441427+1 1035977 L5189 2022 2971 2459*2^3441331+1 1035948 L5514 2022 2972 4335*2^3441306+1 1035940 L5178 2022 2973 2331*2^3441249+1 1035923 L5626 2022 2974 79912550^131072+1 1035812 L5186 2020 Generalized Fermat 2975 79801426^131072+1 1035733 L4245 2020 Generalized Fermat 2976 79789806^131072+1 1035725 L4658 2020 Generalized Fermat 2977 2363*2^3440385+1 1035663 L5625 2022 2978 5265*2^3440332+1 1035647 L5421 2022 2979 6023*2^3440241+1 1035620 L5517 2022 2980 943*2^3440196+1 1035606 L1448 2017 2981 6663*2^3439901+1 1035518 L5624 2022 2982 79485098^131072+1 1035507 L5130 2020 Generalized Fermat 2983 79428414^131072+1 1035466 L4793 2020 Generalized Fermat 2984 79383608^131072+1 1035434 L4387 2020 Generalized Fermat 2985 5745*2^3439450+1 1035382 L5178 2022 2986 5889*24^750125+1 1035335 A32 2025 2987 79201682^131072+1 1035303 L5051 2020 Generalized Fermat 2988 5109*2^3439090+1 1035273 L5594 2022 2989 543*2^3438810+1 1035188 L3035 2017 2990 625*2^3438572+1 1035117 L1355 2017 Generalized Fermat 2991 3325*2^3438506+1 1035097 L5619 2022 2992 78910032^131072+1 1035093 L5051 2020 Generalized Fermat 2993 78880690^131072+1 1035072 L5159 2020 Generalized Fermat 2994 78851276^131072+1 1035051 L4928 2020 Generalized Fermat 2995 4775*2^3438217+1 1035011 L5618 2022 2996 78714954^131072+1 1034953 L5130 2020 Generalized Fermat 2997 6963*2^3437988+1 1034942 L5616 2022 2998 74*941^348034-1 1034913 L5410 2020 2999 7423*2^3437856+1 1034902 L5192 2022 3000 6701*2^3437801+1 1034886 L5615 2022 3001 5741*2^3437773+1 1034877 L5517 2022 3002 488639*2^3437688-1 1034853 L5327 2024 3003 78439440^131072+1 1034753 L5051 2020 Generalized Fermat 3004 5601*2^3437259+1 1034722 L5612 2022 3005 7737*2^3437192+1 1034702 L5611 2022 3006 113*2^3437145+1 1034686 L4045 2015 3007 78240016^131072+1 1034608 L4245 2020 Generalized Fermat 3008 6387*2^3436719+1 1034560 L5613 2022 3009 78089172^131072+1 1034498 L4245 2020 Generalized Fermat 3010 2921*2^3436299+1 1034433 L5231 2022 3011 9739*2^3436242+1 1034416 L5178 2022 3012 77924964^131072+1 1034378 L5051 2020 Generalized Fermat 3013 77918854^131072+1 1034374 L4760 2020 Generalized Fermat 3014 1147*2^3435970+1 1034334 L3035 2017 3015 4589*2^3435707+1 1034255 L5174 2022 3016 7479*2^3435683+1 1034248 L5421 2022 3017 2863*2^3435616+1 1034227 L5197 2022 3018 77469882^131072+1 1034045 L4591 2020 Generalized Fermat 3019 9863*2^3434697+1 1033951 L5189 2022 3020 4065*2^3434623+1 1033929 L5197 2022 3021 77281404^131072+1 1033906 L4963 2020 Generalized Fermat 3022 9187*2^3434126+1 1033779 L5600 2022 3023 9531*2^3434103+1 1033772 L5601 2022 3024 1757*2^3433547+1 1033604 L5594 2022 3025 1421*2^3433099+1 1033469 L5237 2022 3026 3969*2^3433007+1 1033442 L5189 2022 3027 6557*2^3433003+1 1033441 L5261 2022 3028 7335*2^3432982+1 1033435 L5231 2022 3029 7125*2^3432836+1 1033391 L5594 2022 3030 2517*2^3432734+1 1033360 L5231 2022 3031 911*2^3432643+1 1033332 L1355 2017 3032 5413*2^3432626+1 1033328 L5231 2022 3033 76416048^131072+1 1033265 L4672 2020 Generalized Fermat 3034 3753*2^3432413+1 1033263 L5261 2022 3035 2164*24^748621+1 1033259 A62 2025 3036 2691*2^3432191+1 1033196 L5585 2022 3037 3933*2^3432125+1 1033177 L5387 2022 3038 76026988^131072+1 1032975 L5094 2020 Generalized Fermat 3039 76018874^131072+1 1032969 L4774 2020 Generalized Fermat 3040 5889*24^748409+1 1032967 A15 2025 3041 1435*2^3431284+1 1032923 L5587 2022 3042 75861530^131072+1 1032851 L5053 2020 Generalized Fermat 3043 6783*2^3430781+1 1032772 L5261 2022 3044 8079*2^3430683+1 1032743 L5585 2022 3045 75647276^131072+1 1032690 L4677 2020 Generalized Fermat 3046 75521414^131072+1 1032595 L4584 2020 Generalized Fermat 3047 6605*2^3430187+1 1032593 L5463 2022 3048 3761*2^3430057+1 1032554 L5582 2022 3049 6873*2^3429937+1 1032518 L5294 2022 3050 8067*2^3429891+1 1032504 L5581 2022 3051 3965*2^3429719+1 1032452 L5579 2022 3052 3577*2^3428812+1 1032179 L5401 2022 3053 8747*2^3428755+1 1032163 L5493 2022 3054 9147*2^3428638+1 1032127 L5493 2022 3055 3899*2^3428535+1 1032096 L5174 2022 3056 74833516^131072+1 1032074 L5102 2020 Generalized Fermat 3057 74817490^131072+1 1032062 L4591 2020 Generalized Fermat 3058 8891*2^3428303+1 1032026 L5532 2022 3059 793181*20^793181+1 1031959 L5765 2023 Generalized Cullen 3060 2147*2^3427371+1 1031745 L5189 2022 3061 74396818^131072+1 1031741 L4791 2020 Generalized Fermat 3062 74381296^131072+1 1031729 L4550 2020 Generalized Fermat 3063 74363146^131072+1 1031715 L4898 2020 Generalized Fermat 3064 1127*2^3427219+1 1031699 L3035 2017 3065 74325990^131072+1 1031687 L5024 2020 Generalized Fermat 3066 3021*2^3427059+1 1031652 L5554 2022 3067 3255*2^3426983+1 1031629 L5231 2022 3068 1733*2^3426753+1 1031559 L5565 2022 3069 2339*2^3426599+1 1031513 L5237 2022 3070 4729*2^3426558+1 1031501 L5493 2022 3071 73839292^131072+1 1031313 L4550 2020 Generalized Fermat 3072 5445*2^3425839+1 1031285 L5237 2022 3073 159*2^3425766+1 1031261 L4045 2015 3074 73690464^131072+1 1031198 L4884 2020 Generalized Fermat 3075 3405*2^3425045+1 1031045 L5261 2022 3076 73404316^131072+1 1030976 L5011 2020 Generalized Fermat 3077 1695*2^3424517+1 1030886 L5387 2022 3078 4715*2^3424433+1 1030861 L5557 2022 3079 5525*2^3424423+1 1030858 L5387 2022 3080 8615*2^3424231+1 1030801 L5261 2022 3081 5805*2^3424200+1 1030791 L5237 2022 3082 73160610^131072+1 1030787 L4550 2020 Generalized Fermat 3083 73132228^131072+1 1030765 L4905 2020 Generalized Fermat 3084 73099962^131072+1 1030740 L5068 2020 Generalized Fermat 3085 2109*2^3423798-3027*2^988658+1 1030670 CH13 2023 Arithmetic progression (3,d=2109*2^3423797-3027*2^988658) 3086 2109*2^3423797+1 1030669 L5197 2022 3087 4929*2^3423494+1 1030579 L5554 2022 3088 2987*2^3422911+1 1030403 L5226 2022 3089 72602370^131072+1 1030351 L4201 2020 Generalized Fermat 3090 4843*2^3422644+1 1030323 L5553 2022 3091 5559*2^3422566+1 1030299 L5555 2022 3092 7583*2^3422501+1 1030280 L5421 2022 3093 1119*2^3422189+1 1030185 L1355 2017 3094 2895*2^3422031-143157*2^2144728+1 1030138 p423 2023 Arithmetic progression (3,d=2895*2^3422030-143157*2^2144728) 3095 2895*2^3422030+1 1030138 L5237 2022 3096 2835*2^3421697+1 1030037 L5387 2022 3097 3363*2^3421353+1 1029934 L5226 2022 3098 72070092^131072+1 1029932 L4201 2020 Generalized Fermat 3099 9147*2^3421264+1 1029908 L5237 2022 3100 9705*2^3420915+1 1029803 L5540 2022 3101 1005*2^3420846+1 1029781 L2714 2017 Divides GF(3420844,10) 3102 8919*2^3420758+1 1029755 L5226 2022 3103 71732900^131072+1 1029665 L5053 2020 Generalized Fermat 3104 71679108^131072+1 1029623 L5072 2020 Generalized Fermat 3105 5489*2^3420137+1 1029568 L5174 2022 3106 9957*2^3420098+1 1029557 L5237 2022 3107 93*10^1029523-1 1029525 L4789 2019 Near-repdigit 3108 71450224^131072+1 1029440 L5029 2020 Generalized Fermat 3109 1962*5^1472736-1 1029402 A11 2025 3110 7213*2^3419370+1 1029337 L5421 2022 3111 7293*2^3419264+1 1029305 L5192 2022 3112 975*2^3419230+1 1029294 L3545 2017 3113 4191*2^3419227+1 1029294 L5421 2022 3114 28080*745^358350-1 1029242 L4189 2024 3115 2393*2^3418921+1 1029202 L5197 2022 3116 999*2^3418885+1 1029190 L3035 2017 3117 2925*2^3418543+1 1029088 L5174 2022 3118 70960658^131072+1 1029049 L5039 2020 Generalized Fermat 3119 70948704^131072+1 1029039 L4660 2020 Generalized Fermat 3120 70934282^131072+1 1029028 L5067 2020 Generalized Fermat 3121 7383*2^3418297+1 1029014 L5189 2022 3122 70893680^131072+1 1028995 L5063 2020 Generalized Fermat 3123 907*2^3417890+1 1028891 L3035 2017 3124 5071*2^3417884+1 1028890 L5237 2022 3125 3473*2^3417741+1 1028847 L5541 2022 3126 191249*2^3417696-1 1028835 L1949 2010 3127 70658696^131072+1 1028806 L5051 2020 Generalized Fermat 3128 3299*2^3417329+1 1028723 L5421 2022 3129 6947*2^3416979+1 1028618 L5540 2022 3130 70421038^131072+1 1028615 L4984 2020 Generalized Fermat 3131 8727*2^3416652+1 1028519 L5226 2022 3132 8789*2^3416543+1 1028486 L5197 2022 3133 70050828^131072+1 1028315 L5021 2020 Generalized Fermat 3134 7917*2^3415947+1 1028307 L5537 2022 3135 70022042^131072+1 1028291 L4201 2020 Generalized Fermat 3136 2055*2^3415873+1 1028284 L5535 2022 3137 4731*2^3415712+1 1028236 L5192 2022 3138 2219*2^3415687+1 1028228 L5178 2022 3139 69915032^131072+1 1028204 L4591 2020 Generalized Fermat 3140 5877*2^3415419+1 1028148 L5532 2022 3141 3551*2^3415275+1 1028104 L5231 2022 3142 69742382^131072+1 1028063 L5053 2020 Generalized Fermat 3143 2313*2^3415046+1 1028035 L5226 2022 3144 69689592^131072+1 1028020 L4387 2020 Generalized Fermat 3145 7637*2^3414875+1 1027984 L5507 2022 3146 2141*2^3414821+1 1027967 L5226 2022 3147 69622572^131072+1 1027965 L4909 2020 Generalized Fermat 3148 3667*2^3414686+1 1027927 L5226 2022 3149 69565722^131072+1 1027919 L4387 2020 Generalized Fermat 3150 6159*2^3414623+1 1027908 L5226 2022 3151 69534788^131072+1 1027894 L5029 2020 Generalized Fermat 3152 4606*24^744714+1 1027867 A11 2025 3153 2586*24^744604+1 1027715 A11 2025 3154 4577*2^3413539+1 1027582 L5387 2022 3155 5137*2^3413524+1 1027577 L5261 2022 3156 8937*2^3413364+1 1027529 L5527 2022 3157 8829*2^3413339+1 1027522 L5531 2022 3158 7617*2^3413315+1 1027515 L5197 2022 3159 68999820^131072+1 1027454 L5044 2020 Generalized Fermat 3160 3141*2^3413112+1 1027453 L5463 2022 3161 8831*2^3412931+1 1027399 L5310 2022 3162 68924112^131072+1 1027391 L4745 2020 Generalized Fermat 3163 68918852^131072+1 1027387 L5021 2020 Generalized Fermat 3164 5421*2^3412877+1 1027383 L5310 2022 3165 9187*2^3412700+1 1027330 L5337 2022 3166 68811158^131072+1 1027298 L4245 2020 Generalized Fermat 3167 8243*2^3412577+1 1027292 L5524 2022 3168 1751*2^3412565+1 1027288 L5523 2022 3169 9585*2^3412318+1 1027215 L5197 2022 3170 9647*2^3412247+1 1027193 L5178 2022 3171 3207*2^3412108+1 1027151 L5189 2022 3172 479*2^3411975+1 1027110 L2873 2016 3173 245*2^3411973+1 1027109 L1935 2015 3174 177*2^3411847+1 1027071 L4031 2015 3175 68536972^131072+1 1027071 L5027 2020 Generalized Fermat 3176 9963*2^3411566+1 1026988 L5237 2022 3177 68372810^131072+1 1026934 L4956 2020 Generalized Fermat 3178 9785*2^3411223+1 1026885 L5189 2022 3179 5401*2^3411136+1 1026858 L5261 2022 3180 68275006^131072+1 1026853 L4963 2020 Generalized Fermat 3181 9431*2^3411105+1 1026849 L5237 2022 3182 8227*2^3410878+1 1026781 L5316 2022 3183a 62616*115^498260-1 1026769 A86 2025 3184 4735*2^3410724+1 1026734 L5226 2022 3185 9515*2^3410707+1 1026730 L5237 2022 3186 6783*2^3410690+1 1026724 L5434 2022 3187 8773*2^3410558+1 1026685 L5261 2022 3188 4629*2^3410321+1 1026613 L5517 2022 3189 67894288^131072+1 1026535 L5025 2020 Generalized Fermat 3190 113*2^3409934-1 1026495 L2484 2014 3191 5721*2^3409839+1 1026468 L5226 2022 3192 67725850^131072+1 1026393 L5029 2020 Generalized Fermat 3193 6069*2^3409493+1 1026364 L5237 2022 3194 1981*910^346850+1 1026347 L1141 2021 3195 5317*2^3409236+1 1026287 L5471 2022 3196 7511*2^3408985+1 1026211 L5514 2022 3197 7851*2^3408909+1 1026188 L5176 2022 3198 67371416^131072+1 1026094 L4550 2020 Generalized Fermat 3199 6027*2^3408444+1 1026048 L5239 2022 3200 59*2^3408416-1 1026038 L426 2010 3201 2153*2^3408333+1 1026014 L5237 2022 3202 9831*2^3408056+1 1025932 L5233 2022 3203 3615*2^3408035+1 1025925 L5217 2022 3204 6343*2^3407950+1 1025899 L5226 2022 3205 8611*2^3407516+1 1025769 L5509 2022 3206 66982940^131072+1 1025765 L4249 2020 Generalized Fermat 3207 7111*2^3407452+1 1025750 L5508 2022 3208 66901180^131072+1 1025696 L5018 2020 Generalized Fermat 3209 6945*2^3407256+1 1025691 L5507 2022 3210 6465*2^3407229+1 1025682 L5301 2022 3211 1873*2^3407156+1 1025660 L5440 2022 3212 7133*2^3406377+1 1025426 L5279 2022 3213 7063*2^3406122+1 1025349 L5178 2022 3214 3105*2^3405800+1 1025252 L5502 2022 3215 953*2^3405729+1 1025230 L3035 2017 3216 66272848^131072+1 1025159 L5013 2020 Generalized Fermat 3217 66131722^131072+1 1025037 L4530 2020 Generalized Fermat 3218 373*2^3404702+1 1024921 L3924 2016 3219 7221*2^3404507+1 1024863 L5231 2022 3220 6641*2^3404259+1 1024788 L5501 2022 3221 9225*2^3404209+1 1024773 L5250 2022 3222 65791182^131072+1 1024743 L4623 2019 Generalized Fermat 3223 833*2^3403765+1 1024639 L3035 2017 3224 65569854^131072+1 1024552 L4210 2019 Generalized Fermat 3225 2601*2^3403459+1 1024547 L5350 2022 3226 8835*2^3403266+1 1024490 L5161 2022 3227 7755*2^3403010+1 1024412 L5161 2022 3228 3123*2^3402834+1 1024359 L5260 2022 3229 65305572^131072+1 1024322 L5001 2019 Generalized Fermat 3230 65200798^131072+1 1024230 L4999 2019 Generalized Fermat 3231 1417*2^3402246+1 1024182 L5497 2022 3232 5279*2^3402241+1 1024181 L5250 2022 3233 6651*2^3402137+1 1024150 L5476 2022 3234 1779*2^3401715+1 1024022 L5493 2022 3235 64911056^131072+1 1023977 L4870 2019 Generalized Fermat 3236 8397*2^3401502+1 1023959 L5476 2022 3237 4057*2^3401472+1 1023949 L5492 2022 3238 64791668^131072+1 1023872 L4905 2019 Generalized Fermat 3239 4095*2^3401174+1 1023860 L5418 2022 3240 5149*2^3400970+1 1023798 L5176 2022 3241 4665*2^3400922+1 1023784 L5308 2022 3242 24*414^391179+1 1023717 L4273 2016 3243 64568930^131072+1 1023676 L4977 2019 Generalized Fermat 3244 64506894^131072+1 1023621 L4977 2019 Generalized Fermat 3245 1725*2^3400371+1 1023617 L5197 2022 3246 64476916^131072+1 1023595 L4997 2019 Generalized Fermat 3247 9399*2^3400243+1 1023580 L5488 2022 3248 1241*2^3400127+1 1023544 L5279 2022 3249 1263*2^3399876+1 1023468 L5174 2022 3250 1167*2^3399748+1 1023430 L3545 2017 3251 64024604^131072+1 1023194 L4591 2019 Generalized Fermat 3252 3526*24^741308+1 1023166 A66 2025 3253 7679*2^3398569+1 1023076 L5295 2022 3254 6447*2^3398499+1 1023054 L5302 2022 3255 63823568^131072+1 1023015 L4585 2019 Generalized Fermat 3256 2785*2^3398332+1 1023004 L5250 2022 3257 611*2^3398273+1 1022985 L3035 2017 3258 2145*2^3398034+1 1022914 L5302 2022 3259 3385*2^3397254+1 1022679 L5161 2022 3260 4*3^2143374+1 1022650 L4965 2020 Generalized Fermat 3261 4463*2^3396657+1 1022500 L5476 2022 3262 2889*2^3396450+1 1022437 L5178 2022 3263 8523*2^3396448+1 1022437 L5231 2022 3264 63168480^131072+1 1022428 L4861 2019 Generalized Fermat 3265 63165756^131072+1 1022425 L4987 2019 Generalized Fermat 3266 3349*2^3396326+1 1022400 L5480 2022 3267 63112418^131072+1 1022377 L4201 2019 Generalized Fermat 3268 4477*2^3395786+1 1022238 L5161 2022 3269 3853*2^3395762+1 1022230 L5302 2022 3270 2693*2^3395725+1 1022219 L5284 2022 3271 8201*2^3395673+1 1022204 L5178 2022 3272 255*2^3395661+1 1022199 L3898 2014 3273 1049*2^3395647+1 1022195 L3035 2017 3274 9027*2^3395623+1 1022189 L5263 2022 3275 2523*2^3395549+1 1022166 L5472 2022 3276 3199*2^3395402+1 1022122 L5264 2022 3277 342924651*2^3394939-1 1021988 L4166 2017 3278 3825*2^3394947+1 1021985 L5471 2022 3279 1895*2^3394731+1 1021920 L5174 2022 3280 62276102^131072+1 1021618 L4715 2019 Generalized Fermat 3281 555*2^3393389+1 1021515 L2549 2017 3282 1865*2^3393387+1 1021515 L5237 2022 3283 4911*2^3393373+1 1021511 L5231 2022 3284 62146946^131072+1 1021500 L4720 2019 Generalized Fermat 3285 5229*2^3392587+1 1021275 L5463 2022 3286 61837354^131072+1 1021215 L4656 2019 Generalized Fermat 3287 609*2^3392301+1 1021188 L3035 2017 3288 9787*2^3392236+1 1021169 L5350 2022 3289 303*2^3391977+1 1021090 L2602 2016 3290 805*2^3391818+1 1021042 L4609 2017 3291 6475*2^3391496+1 1020946 L5174 2022 3292 67*2^3391385-1 1020911 L1959 2014 3293 61267078^131072+1 1020688 L4923 2019 Generalized Fermat 3294 4639*2^3390634+1 1020687 L5189 2022 3295 5265*2^3390581+1 1020671 L5456 2022 3296 663*2^3390469+1 1020636 L4316 2017 3297 6945*2^3390340+1 1020598 L5174 2022 3298 5871*2^3390268+1 1020577 L5231 2022 3299 7443*2^3390141+1 1020539 L5226 2022 3300 5383*2^3389924+1 1020473 L5350 2021 3301 61030988^131072+1 1020468 L4898 2019 Generalized Fermat 3302 9627*2^3389331+1 1020295 L5231 2021 3303 60642326^131072+1 1020104 L4591 2019 Generalized Fermat 3304 8253*2^3388624+1 1020082 L5226 2021 3305 3329*2^3388472-1 1020036 L4841 2020 3306 4695*2^3388393+1 1020012 L5237 2021 3307 60540024^131072+1 1020008 L4591 2019 Generalized Fermat 3308 7177*2^3388144+1 1019937 L5174 2021 3309 60455792^131072+1 1019929 L4760 2019 Generalized Fermat 3310 9611*2^3388059+1 1019912 L5435 2021 3311 1833*2^3387760+1 1019821 L5226 2021 3312 9003*2^3387528+1 1019752 L5189 2021 3313 3161*2^3387141+1 1019635 L5226 2021 3314 7585*2^3387110+1 1019626 L5189 2021 3315 60133106^131072+1 1019624 L4942 2019 Generalized Fermat 3316 453*2^3387048+1 1019606 L2602 2016 3317 5177*2^3386919+1 1019568 L5226 2021 3318 8739*2^3386813+1 1019537 L5226 2021 3319 2875*2^3386638+1 1019484 L5226 2021 3320 7197*2^3386526+1 1019450 L5178 2021 3321 1605*2^3386229+1 1019360 L5226 2021 3322 8615*2^3386181+1 1019346 L5442 2021 3323 3765*2^3386141+1 1019334 L5174 2021 3324 5379*2^3385806+1 1019233 L5237 2021 3325 59720358^131072+1 1019232 L4656 2019 Generalized Fermat 3326 59692546^131072+1 1019206 L4747 2019 Generalized Fermat 3327 59515830^131072+1 1019037 L4737 2019 Generalized Fermat 3328 173198*5^1457792-1 1018959 L3720 2013 3329 59405420^131072+1 1018931 L4645 2019 Generalized Fermat 3330 2109*2^3384733+1 1018910 L5261 2021 3331 7067*2^3384667+1 1018891 L5439 2021 3332 59362002^131072+1 1018890 L4249 2019 Generalized Fermat 3333 59305348^131072+1 1018835 L4932 2019 Generalized Fermat 3334 2077*2^3384472+1 1018831 L5237 2021 3335 59210784^131072+1 1018745 L4926 2019 Generalized Fermat 3336 59161754^131072+1 1018697 L4928 2019 Generalized Fermat 3337 9165*2^3383917+1 1018665 L5435 2021 3338 5579*2^3383209+1 1018452 L5434 2021 3339 8241*2^3383131+1 1018428 L5387 2021 3340 7409*2^3382869+1 1018349 L5161 2021 3341 4883*2^3382813+1 1018332 L5161 2021 3342 9783*2^3382792+1 1018326 L5189 2021 3343 58589880^131072+1 1018145 L4923 2019 Generalized Fermat 3344 58523466^131072+1 1018080 L4802 2019 Generalized Fermat 3345 8877*2^3381936+1 1018069 L5429 2021 3346 58447816^131072+1 1018006 L4591 2019 Generalized Fermat 3347 58447642^131072+1 1018006 L4591 2019 Generalized Fermat 3348 6675*2^3381688+1 1017994 L5197 2021 3349 2445*2^3381129+1 1017825 L5231 2021 3350 58247118^131072+1 1017811 L4309 2019 Generalized Fermat 3351 3381*2^3380585+1 1017662 L5237 2021 3352 7899*2^3380459+1 1017624 L5421 2021 3353 5945*2^3379933+1 1017465 L5418 2021 3354 1425*2^3379921+1 1017461 L1134 2020 3355 4975*2^3379420+1 1017311 L5161 2021 3356 57704312^131072+1 1017278 L4591 2019 Generalized Fermat 3357 57694224^131072+1 1017268 L4656 2019 Generalized Fermat 3358 57594734^131072+1 1017169 L4656 2019 Generalized Fermat 3359 9065*2^3378851+1 1017140 L5414 2021 3360 2369*2^3378761+1 1017112 L5197 2021 3361 57438404^131072+1 1017015 L4745 2019 Generalized Fermat 3362 621*2^3378148+1 1016927 L3035 2017 3363 7035*2^3378141+1 1016926 L5408 2021 3364 2067*2^3378115+1 1016918 L5405 2021 3365 1093*2^3378000+1 1016883 L4583 2017 3366 9577*2^3377612+1 1016767 L5406 2021 3367 861*2^3377601+1 1016763 L4582 2017 3368 5811*2^3377016+1 1016587 L5261 2021 3369 2285*2^3376911+1 1016555 L5261 2021 3370 4199*2^3376903+1 1016553 L5174 2021 3371 6405*2^3376890+1 1016549 L5269 2021 3372 1783*2^3376810+1 1016525 L5261 2021 3373 5401*2^3376768+1 1016513 L5174 2021 3374 56917336^131072+1 1016496 L4729 2019 Generalized Fermat 3375 2941*2^3376536+1 1016443 L5174 2021 3376 1841*2^3376379+1 1016395 L5401 2021 3377 6731*2^3376133+1 1016322 L5261 2021 3378 56735576^131072+1 1016314 L4760 2019 Generalized Fermat 3379 8121*2^3375933+1 1016262 L5356 2021 3380 5505*2^3375777+1 1016214 L5174 2021 3381 56584816^131072+1 1016162 L4289 2019 Generalized Fermat 3382 3207*2^3375314+1 1016075 L5237 2021 3383 56459558^131072+1 1016036 L4892 2019 Generalized Fermat 3384 5307*2^3374939+1 1015962 L5392 2021 3385 56383242^131072+1 1015959 L4889 2019 Generalized Fermat 3386 56307420^131072+1 1015883 L4843 2019 Generalized Fermat 3387 208003!-1 1015843 p394 2016 Factorial 3388 6219*2^3374198+1 1015739 L5393 2021 3389 3777*2^3374072+1 1015701 L5261 2021 3390 9347*2^3374055+1 1015696 L5387 2021 3391 1461*2^3373383+1 1015493 L5384 2021 3392 6395*2^3373135+1 1015419 L5382 2021 3393 7869*2^3373021+1 1015385 L5381 2021 3394 55645700^131072+1 1015210 L4745 2019 Generalized Fermat 3395 4905*2^3372216+1 1015142 L5261 2021 3396 55579418^131072+1 1015142 L4745 2019 Generalized Fermat 3397 2839*2^3372034+1 1015087 L5174 2021 3398 7347*2^3371803+1 1015018 L5217 2021 3399 9799*2^3371378+1 1014890 L5261 2021 3400 4329*2^3371201+1 1014837 L5197 2021 3401 3657*2^3371183+1 1014831 L5360 2021 3402 55268442^131072+1 1014822 L4525 2019 Generalized Fermat 3403 179*2^3371145+1 1014819 L3763 2014 3404 5155*2^3371016+1 1014781 L5237 2021 3405 7575*2^3371010+1 1014780 L5237 2021 3406 55184170^131072+1 1014736 L4871 2018 Generalized Fermat 3407 9195*2^3370798+1 1014716 L5178 2021 3408 1749*2^3370786+1 1014711 L5362 2021 3409 8421*2^3370599+1 1014656 L5174 2021 3410 55015050^131072+1 1014561 L4205 2018 Generalized Fermat 3411 4357*2^3369572+1 1014346 L5231 2021 3412 6073*2^3369544+1 1014338 L5358 2021 3413 839*2^3369383+1 1014289 L2891 2017 3414 65*2^3369359+1 1014280 L5236 2021 3415 8023*2^3369228+1 1014243 L5356 2021 3416 677*2^3369115+1 1014208 L2103 2017 3417 1437*2^3369083+1 1014199 L5282 2021 3418 9509*2^3368705+1 1014086 L5237 2021 3419 54548788^131072+1 1014076 L4726 2018 Generalized Fermat 3420 4851*2^3368668+1 1014074 L5307 2021 3421 7221*2^3368448+1 1014008 L5353 2021 3422 5549*2^3368437+1 1014005 L5217 2021 3423 715*2^3368210+1 1013936 L4527 2017 3424 617*2^3368119+1 1013908 L4552 2017 3425 54361742^131072+1 1013881 L4210 2018 Generalized Fermat 3426 1847*2^3367999+1 1013872 L5352 2021 3427 54334044^131072+1 1013852 L4745 2018 Generalized Fermat 3428 17819*24^734523+1 1013802 A11 2025 3429 6497*2^3367743+1 1013796 L5285 2021 3430 2533*2^3367666+1 1013772 L5326 2021 3431 6001*2^3367552+1 1013738 L5350 2021 3432 54212352^131072+1 1013724 L4307 2018 Generalized Fermat 3433 54206254^131072+1 1013718 L4249 2018 Generalized Fermat 3434 777*2^3367372+1 1013683 L4408 2017 3435 9609*2^3367351+1 1013678 L5285 2021 3436 54161106^131072+1 1013670 L4307 2018 Generalized Fermat 3437 2529*2^3367317+1 1013667 L5237 2021 3438 5941*2^3366960+1 1013560 L5189 2021 3439 5845*2^3366956+1 1013559 L5197 2021 3440 54032538^131072+1 1013535 L4591 2018 Generalized Fermat 3441 9853*2^3366608+1 1013454 L5178 2021 3442 61*2^3366033-1 1013279 L4405 2017 3443 7665*2^3365896+1 1013240 L5345 2021 3444 8557*2^3365648+1 1013165 L5346 2021 3445 369*2^3365614+1 1013154 L4364 2016 3446 53659976^131072+1 1013141 L4823 2018 Generalized Fermat 3447 8201*2^3365283+1 1013056 L5345 2021 3448 9885*2^3365151+1 1013016 L5344 2021 3449 5173*2^3365096+1 1012999 L5285 2021 3450 8523*2^3364918+1 1012946 L5237 2021 3451 3985*2^3364776+1 1012903 L5178 2021 3452 9711*2^3364452+1 1012805 L5192 2021 3453 7003*2^3364172+1 1012721 L5217 2021 3454 6703*2^3364088+1 1012696 L5337 2021 3455 7187*2^3364011+1 1012673 L5217 2021 3456 53161266^131072+1 1012610 L4307 2018 Generalized Fermat 3457 53078434^131072+1 1012521 L4835 2018 Generalized Fermat 3458 2345*2^3363157+1 1012415 L5336 2021 3459 6527*2^3363135+1 1012409 L5167 2021 3460 9387*2^3363088+1 1012395 L5161 2021 3461 8989*2^3362986+1 1012364 L5161 2021 3462 533*2^3362857+1 1012324 L3171 2017 3463 619*2^3362814+1 1012311 L4527 2017 3464 2289*2^3362723+1 1012284 L5161 2021 3465 7529*2^3362565+1 1012237 L5161 2021 3466 7377*2^3362366+1 1012177 L5161 2021 3467 4509*2^3362311+1 1012161 L5324 2021 3468 7021*2^3362208+1 1012130 L5178 2021 3469 52712138^131072+1 1012127 L4819 2018 Generalized Fermat 3470 104*873^344135-1 1012108 L4700 2018 3471 4953*2^3362054+1 1012083 L5323 2021 3472 8575*2^3361798+1 1012006 L5237 2021 3473 2139*2^3361706+1 1011978 L5174 2021 3474 6939*2^3361203+1 1011827 L5217 2021 3475 52412612^131072+1 1011802 L4289 2018 Generalized Fermat 3476 3^2120580-3^623816-1 1011774 CH9 2019 3477 8185*2^3360896+1 1011735 L5189 2021 3478 2389*2^3360882+1 1011730 L5317 2021 3479 2787*2^3360631+1 1011655 L5197 2021 3480 6619*2^3360606+1 1011648 L5316 2021 3481 2755*2^3360526+1 1011623 L5174 2021 3482 1445*2^3360099+1 1011494 L5261 2021 3483 2846*67^553905-1 1011476 L4955 2023 3484 8757*2^3359788+1 1011401 L5197 2021 3485 52043532^131072+1 1011400 L4810 2018 Generalized Fermat 3486 5085*2^3359696+1 1011373 L5261 2021 3487 51954384^131072+1 1011303 L4720 2018 Generalized Fermat 3488 6459*2^3359457+1 1011302 L5310 2021 3489 51872628^131072+1 1011213 L4591 2018 Generalized Fermat 3490 6115*2^3358998+1 1011163 L5309 2021 3491 7605*2^3358929+1 1011143 L5308 2021 3492 2315*2^3358899+1 1011133 L5197 2021 3493 6603*2^3358525+1 1011021 L5307 2021 3494 51580416^131072+1 1010891 L4765 2018 Generalized Fermat 3495 51570250^131072+1 1010880 L4591 2018 Generalized Fermat 3496 51567684^131072+1 1010877 L4800 2018 Generalized Fermat 3497 5893*2^3357490+1 1010709 L5285 2021 3498 6947*2^3357075+1 1010585 L5302 2021 3499 4621*2^3357068+1 1010582 L5301 2021 3500 51269192^131072+1 1010547 L4795 2018 Generalized Fermat 3501d 104*468^378388-1 1010392 A11 2025 3502 1479*2^3356275+1 1010343 L5178 2021 3503 3645*2^3356232+1 1010331 L5296 2021 3504 1259*2^3356215+1 1010325 L5298 2021 3505 2075*2^3356057+1 1010278 L5174 2021 3506 4281*2^3356051+1 1010276 L5295 2021 3507 1275*2^3356045+1 1010274 L5294 2021 3508 50963598^131072+1 1010206 L4726 2018 Generalized Fermat 3509 4365*2^3355770+1 1010192 L5261 2021 3510 50844724^131072+1 1010074 L4656 2018 Generalized Fermat 3511 2183*2^3355297+1 1010049 L5266 2021 3512 3087*2^3355000+1 1009960 L5226 2021 3513 8673*2^3354760+1 1009888 L5233 2021 3514 50495632^131072+1 1009681 L4591 2018 Generalized Fermat 3515 3015*2^3353943+1 1009641 L5290 2021 3516 6819*2^3353877+1 1009622 L5174 2021 3517 9*10^1009567-1 1009568 L3735 2016 Near-repdigit 3518 6393*2^3353366+1 1009468 L5287 2021 3519 3573*2^3353273+1 1009440 L5161 2021 3520 4047*2^3353222+1 1009425 L5286 2021 3521 1473*2^3353114+1 1009392 L5161 2021 3522 1183*2^3353058+1 1009375 L3824 2017 3523 50217306^131072+1 1009367 L4720 2018 Generalized Fermat 3524 81*2^3352924+1 1009333 L1728 2012 Generalized Fermat 3525 50110436^131072+1 1009245 L4591 2018 Generalized Fermat 3526 50055102^131072+1 1009183 L4309 2018 Generalized Fermat 3527 7123*2^3352180+1 1009111 L5161 2021 3528 2757*2^3352180+1 1009111 L5285 2021 3529d 243*2^3352138-1 1009097 A76 2025 3530 9307*2^3352014+1 1009061 L5284 2021 3531 2217*2^3351732+1 1008976 L5283 2021 3532 543*2^3351686+1 1008961 L4198 2017 3533 4419*2^3351666+1 1008956 L5279 2021 3534 49817700^131072+1 1008912 L4760 2018 Generalized Fermat 3535 3059*2^3351379+1 1008870 L5278 2021 3536 7789*2^3351046+1 1008770 L5276 2021 3537 9501*2^3350668+1 1008656 L5272 2021 3538 49530004^131072+1 1008582 L4591 2018 Generalized Fermat 3539 9691*2^3349952+1 1008441 L5242 2021 3540 49397682^131072+1 1008430 L4764 2018 Generalized Fermat 3541 3209*2^3349719+1 1008370 L5269 2021 3542 49331672^131072+1 1008354 L4763 2018 Generalized Fermat 3543 393*2^3349525+1 1008311 L3101 2016 3544 49243622^131072+1 1008252 L4741 2018 Generalized Fermat 3545 5487*2^3349303+1 1008245 L5266 2021 3546 49225986^131072+1 1008232 L4757 2018 Generalized Fermat 3547 2511*2^3349104+1 1008185 L5264 2021 3548 1005*2^3349046-1 1008167 L4518 2021 3549 7659*2^3348894+1 1008122 L5263 2021 3550 9703*2^3348872+1 1008115 L5262 2021 3551 49090656^131072+1 1008075 L4752 2018 Generalized Fermat 3552 7935*2^3348578+1 1008027 L5161 2021 3553 49038514^131072+1 1008015 L4743 2018 Generalized Fermat 3554 7821*2^3348400+1 1007973 L5260 2021 3555 7911*2^3347532+1 1007712 L5250 2021 3556 8295*2^3347031+1 1007561 L5249 2021 3557 48643706^131072+1 1007554 L4691 2018 Generalized Fermat 3558 4029*2^3346729+1 1007470 L5239 2021 3559 9007*2^3346716+1 1007466 L5161 2021 3560 8865*2^3346499+1 1007401 L5238 2021 3561 6171*2^3346480+1 1007395 L5174 2021 3562 6815*2^3346045+1 1007264 L5235 2021 3563 5*326^400785+1 1007261 L4786 2019 3564 5951*2^3345977+1 1007244 L5233 2021 3565 48370248^131072+1 1007234 L4701 2018 Generalized Fermat 3566 1257*2^3345843+1 1007203 L5192 2021 3567 4701*2^3345815+1 1007195 L5192 2021 3568 48273828^131072+1 1007120 L4456 2018 Generalized Fermat 3569 7545*2^3345355+1 1007057 L5231 2021 3570 5559*2^3344826+1 1006897 L5223 2021 3571 6823*2^3344692+1 1006857 L5223 2021 3572 4839*2^3344453+1 1006785 L5188 2021 3573 7527*2^3344332+1 1006749 L5220 2021 3574 7555*2^3344240+1 1006721 L5188 2021 3575 6265*2^3344080+1 1006673 L5197 2021 3576 1299*2^3343943+1 1006631 L5217 2021 3577 2815*2^3343754+1 1006574 L5216 2021 3578 5349*2^3343734+1 1006568 L5174 2021 3579 2863*2^3342920+1 1006323 L5179 2020 3580 7387*2^3342848+1 1006302 L5208 2020 3581 9731*2^3342447+1 1006181 L5203 2020 3582 7725*2^3341708+1 1005959 L5195 2020 3583 7703*2^3341625+1 1005934 L5178 2020 3584 7047*2^3341482+1 1005891 L5194 2020 3585 4839*2^3341309+1 1005838 L5192 2020 3586 47179704^131072+1 1005815 L4673 2017 Generalized Fermat 3587 47090246^131072+1 1005707 L4654 2017 Generalized Fermat 3588 8989*2^3340866+1 1005705 L5189 2020 3589 6631*2^3340808+1 1005688 L5188 2020 3590 1341*2^3340681+1 1005649 L5188 2020 3591 733*2^3340464+1 1005583 L3035 2016 3592 2636*138^469911+1 1005557 L5410 2021 3593 3679815*2^3340001+1 1005448 L4922 2019 3594 57*2^3339932-1 1005422 L3519 2015 3595 46776558^131072+1 1005326 L4659 2017 Generalized Fermat 3596 46736070^131072+1 1005277 L4245 2017 Generalized Fermat 3597 46730280^131072+1 1005270 L4656 2017 Generalized Fermat 3598 3651*2^3339341+1 1005246 L5177 2020 3599 3853*2^3339296+1 1005232 L5178 2020 3600 8015*2^3339267+1 1005224 L5176 2020 3601 3027*2^3339182+1 1005198 L5174 2020 3602 9517*2^3339002+1 1005144 L5172 2020 3603 4003*2^3338588+1 1005019 L3035 2020 3604 6841*2^3338336+1 1004944 L1474 2020 3605 2189*2^3338209+1 1004905 L5031 2020 3606 46413358^131072+1 1004883 L4626 2017 Generalized Fermat 3607 46385310^131072+1 1004848 L4622 2017 Generalized Fermat 3608 46371508^131072+1 1004831 L4620 2017 Generalized Fermat 3609 2957*2^3337667+1 1004742 L5144 2020 3610 1515*2^3337389+1 1004658 L1474 2020 3611 7933*2^3337270+1 1004623 L4666 2020 3612 1251*2^3337116+1 1004576 L4893 2020 3613 651*2^3337101+1 1004571 L3260 2016 3614 46077492^131072+1 1004469 L4595 2017 Generalized Fermat 3615 8397*2^3336654+1 1004437 L5125 2020 3616 8145*2^3336474+1 1004383 L5110 2020 3617 1087*2^3336385-1 1004355 L1828 2012 3618 5325*2^3336120+1 1004276 L2125 2020 3619 849*2^3335669+1 1004140 L3035 2016 3620 8913*2^3335216+1 1004005 L5079 2020 3621 7725*2^3335213+1 1004004 L3035 2020 3622 611*2^3334875+1 1003901 L3813 2016 3623 45570624^131072+1 1003840 L4295 2017 Generalized Fermat 3624 403*2^3334410+1 1003761 L4293 2016 3625 5491*2^3334392+1 1003756 L4815 2020 3626 6035*2^3334341+1 1003741 L2125 2020 3627 1725*2^3334341+1 1003740 L2125 2020 3628 4001*2^3334031+1 1003647 L1203 2020 3629 2315*2^3333969+1 1003629 L2125 2020 3630 6219*2^3333810+1 1003581 L4582 2020 3631 8063*2^3333721+1 1003554 L1823 2020 3632 9051*2^3333677+1 1003541 L3924 2020 3633 45315256^131072+1 1003520 L4562 2017 Generalized Fermat 3634 4091*2^3333153+1 1003383 L1474 2020 3635 9949*2^3332750+1 1003262 L5090 2020 3636 3509*2^3332649+1 1003231 L5085 2020 3637 3781*2^3332436+1 1003167 L1823 2020 3638 4425*2^3332394+1 1003155 L3431 2020 3639 6459*2^3332086+1 1003062 L2629 2020 3640 44919410^131072+1 1003020 L4295 2017 Generalized Fermat 3641 5257*2^3331758+1 1002963 L1188 2020 3642 2939*2^3331393+1 1002853 L1823 2020 3643 6959*2^3331365+1 1002845 L1675 2020 3644 8815*2^3330748+1 1002660 L3329 2020 3645 4303*2^3330652+1 1002630 L4730 2020 3646 8595*2^3330649+1 1002630 L4723 2020 3647 673*2^3330436+1 1002564 L3035 2016 3648 8163*2^3330042+1 1002447 L3278 2020 3649 44438760^131072+1 1002408 L4505 2016 Generalized Fermat 3650 193*2^3329782+1 1002367 L3460 2014 Divides Fermat F(3329780) 3651 44330870^131072+1 1002270 L4501 2016 Generalized Fermat 3652 2829*2^3329061+1 1002151 L4343 2020 3653 5775*2^3329034+1 1002143 L1188 2020 3654 7101*2^3328905+1 1002105 L4568 2020 3655 7667*2^3328807+1 1002075 L4087 2020 3656 129*2^3328805+1 1002073 L3859 2014 3657 7261*2^3328740+1 1002055 L2914 2020 3658 4395*2^3328588+1 1002009 L3924 2020 3659 44085096^131072+1 1001953 L4482 2016 Generalized Fermat 3660 143183*2^3328297+1 1001923 L4504 2017 3661 44049878^131072+1 1001908 L4466 2016 Generalized Fermat 3662 9681*2^3327987+1 1001828 L1204 2020 3663 2945*2^3327987+1 1001828 L2158 2020 3664 5085*2^3327789+1 1001769 L1823 2020 3665 8319*2^3327650+1 1001727 L1204 2020 3666 4581*2^3327644+1 1001725 L2142 2020 3667 655*2^3327518+1 1001686 L4490 2016 3668 8863*2^3327406+1 1001653 L1675 2020 3669 659*2^3327371+1 1001642 L3502 2016 3670 3411*2^3327343+1 1001634 L1675 2020 3671 4987*2^3327294+1 1001619 L3924 2020 3672 821*2^3327003+1 1001531 L3035 2016 3673 2435*2^3326969+1 1001521 L3035 2020 3674 1931*2^3326850-1 1001485 L4113 2022 3675 2277*2^3326794+1 1001469 L5014 2020 3676 6779*2^3326639+1 1001422 L3924 2020 3677 31*2^3326149-1 1001273 L1862 2024 3678 6195*2^3325993+1 1001228 L1474 2019 3679 555*2^3325925+1 1001206 L4414 2016 3680 9041*2^3325643+1 1001123 L3924 2019 3681 1965*2^3325639-1 1001121 L4113 2022 3682 1993*2^3325302+1 1001019 L3662 2019 3683 6179*2^3325027+1 1000937 L3048 2019 3684 4485*2^3324900+1 1000899 L1355 2019 3685 3559*2^3324650+1 1000823 L3035 2019 3686 12512*13^898392-1 1000762 L2425 2024 3687 43165206^131072+1 1000753 L4309 2016 Generalized Fermat 3688 43163894^131072+1 1000751 L4334 2016 Generalized Fermat 3689 6927*2^3324387+1 1000745 L3091 2019 3690 9575*2^3324287+1 1000715 L3824 2019 3691 1797*2^3324259+1 1000705 L3895 2019 3692 4483*2^3324048+1 1000642 L3035 2019 3693 791*2^3323995+1 1000626 L3035 2016 3694 6987*2^3323926+1 1000606 L4973 2019 3695 3937*2^3323886+1 1000593 L3035 2019 3696 2121*2^3323852+1 1000583 L1823 2019 3697 1571*2^3323493+1 1000475 L3035 2019 3698 2319*2^3323402+1 1000448 L4699 2019 3699 2829*2^3323341+1 1000429 L4754 2019 3700 4335*2^3323323+1 1000424 L1823 2019 3701 8485*2^3322938+1 1000308 L4858 2019 3702 6505*2^3322916+1 1000302 L4858 2019 3703 597*2^3322871+1 1000287 L3035 2016 3704 9485*2^3322811+1 1000270 L2603 2019 3705 8619*2^3322774+1 1000259 L3035 2019 3706 387*2^3322763+1 1000254 L1455 2016 3707 1965*2^3322579-1 1000200 L4113 2022 3708 42654182^131072+1 1000075 L4208 2015 Generalized Fermat 3709 6366*745^348190-1 1000060 L4189 2022 3710a 408132832455*2^3322000-1 1000034 A82 2025 3711b 332179935645*2^3322000-1 1000034 A82 2025 3712d 224331639195*2^3322000-1 1000033 A75 2025 3713 13841792445*2^3322000-1 1000032 L5827 2023 3714 5553507*2^3322000+1 1000029 p391 2016 3715 5029159647*2^3321910-1 1000005 L4960 2021 3716 5009522505*2^3321910-1 1000005 L4960 2021 3717 4766298357*2^3321910-1 1000005 L4960 2021 3718 4759383915*2^3321910-1 1000005 L4960 2021 3719 4635733263*2^3321910-1 1000005 L4960 2021 3720 4603393047*2^3321910-1 1000005 L4960 2021 3721 4550053935*2^3321910-1 1000005 L4960 2021 3722 4288198767*2^3321910-1 1000005 L4960 2021 3723 4229494557*2^3321910-1 1000005 L4960 2021 3724 4110178197*2^3321910-1 1000005 L4960 2021 3725 4022490843*2^3321910-1 1000005 L4960 2021 3726 3936623697*2^3321910-1 1000005 L4960 2021 3727 3751145343*2^3321910-1 1000005 L4960 2021 3728 3715773735*2^3321910-1 1000005 L4960 2021 3729 3698976057*2^3321910-1 1000005 L4960 2021 3730 3659465685*2^3321910-1 1000005 L4960 2020 3731 3652932033*2^3321910-1 1000005 L4960 2020 3732 3603204333*2^3321910-1 1000005 L4960 2020 3733 3543733545*2^3321910-1 1000005 L4960 2020 3734 3191900133*2^3321910-1 1000005 L4960 2020 3735 3174957723*2^3321910-1 1000005 L4960 2020 3736 2973510903*2^3321910-1 1000005 L4960 2019 3737 2848144257*2^3321910-1 1000005 L4960 2019 3738 2820058827*2^3321910-1 1000005 L4960 2019 3739 2611553775*2^3321910-1 1000004 L4960 2020 3740 2601087525*2^3321910-1 1000004 L4960 2019 3741 2386538565*2^3321910-1 1000004 L4960 2019 3742 2272291887*2^3321910-1 1000004 L4960 2019 3743 2167709265*2^3321910-1 1000004 L4960 2019 3744 2087077797*2^3321910-1 1000004 L4960 2019 3745 1848133623*2^3321910-1 1000004 L4960 2019 3746 1825072257*2^3321910-1 1000004 L4960 2019 3747 1633473837*2^3321910-1 1000004 L4960 2019 3748 1228267623*2^3321910-1 1000004 L4808 2019 3749 1148781333*2^3321910-1 1000004 L4808 2019 3750 1065440787*2^3321910-1 1000004 L4808 2019 3751 1055109357*2^3321910-1 1000004 L4960 2019 3752 992309607*2^3321910-1 1000004 L4808 2019 3753 926102325*2^3321910-1 1000004 L4808 2019 3754 892610007*2^3321910-1 1000004 L4960 2019 3755 763076757*2^3321910-1 1000004 L4960 2019 3756 607766997*2^3321910-1 1000004 L4808 2019 3757 539679177*2^3321910-1 1000004 L4808 2019 3758 425521077*2^3321910-1 1000004 L4808 2019 3759 132940575*2^3321910-1 1000003 L4808 2019 3760 239378138685*2^3321891+1 1000001 L5104 2020 3761 464253*2^3321908-1 1000000 L466 2013 3762 3^2095902+3^647322-1 1000000 x44 2018 3763 191273*2^3321908-1 1000000 L466 2013 3764 1814570322984178^65536+1 1000000 L5080 2020 Generalized Fermat 3765 1814570322977518^65536+1 1000000 L5080 2020 Generalized Fermat 3766 3292665455999520712131952624640^32768+1 1000000 L5749 2023 Generalized Fermat 3767 3292665455999520712131951642528^32768+1 1000000 L5120 2020 Generalized Fermat 3768 3292665455999520712131951625894^32768+1 1000000 L5122 2020 Generalized Fermat 3769 10841645805132531666786792405311319418846637043199917731999190^16384+1 1000000 L5749 2023 Generalized Fermat 3770 10841645805132531666786792405311319418846637043199917731311876^16384+1 1000000 L5207 2020 Generalized Fermat 3771 10841645805132531666786792405311319418846637043199917731150000^16384+1 1000000 L5122 2020 Generalized Fermat 3772 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729599864^8192+1 1000000 L5749 2023 Generalized Fermat 3773 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729375350^8192+1 1000000 p417 2021 Generalized Fermat 3774 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729240092^8192+1 1000000 p419 2021 Generalized Fermat 3775 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729154678^8192+1 1000000 p418 2021 Generalized Fermat 3776 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729122666^8192+1 1000000 p417 2021 Generalized Fermat 3777 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729023786^8192+1 1000000 p416 2021 Generalized Fermat 3778 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097875144^4096+1 1000000 p421 2021 Generalized Fermat 3779 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097840702^4096+1 1000000 p417 2021 Generalized Fermat 3780 ((sqrtnint(10^999999,2048)+2)+7748134)^2048+1 1000000 A55 2025 Generalized Fermat 3781 ((sqrtnint(10^999999,2048)+2)+364176)^2048+1 1000000 p417 2022 Generalized Fermat 3782 10^999999+10^840885+10^333333+1 1000000 p436 2023 3783 10^999999+308267*10^292000+1 1000000 CH10 2021 3784 10^999999-1022306*10^287000-1 999999 CH13 2021 3785 10^999999-1087604*10^287000-1 999999 CH13 2021 3786 531631540026641*6^1285077+1 999999 L3494 2021 3787 3139*2^3321905-1 999997 L185 2008 3788 702*507^369680+1 999991 A28 2024 3789 42550702^131072+1 999937 L4309 2022 Generalized Fermat 3790 42414020^131072+1 999753 L5030 2022 Generalized Fermat 3791 4847*2^3321063+1 999744 SB9 2005 3792 42254832^131072+1 999539 L5375 2022 Generalized Fermat 3793 42243204^131072+1 999524 L4898 2022 Generalized Fermat 3794 42230406^131072+1 999506 L5453 2022 Generalized Fermat 3795 42168978^131072+1 999424 L5462 2022 Generalized Fermat 3796 439*2^3318318+1 998916 L5573 2022 3797 201382*5^1428998+1 998833 A11 2024 3798 41688706^131072+1 998772 L5270 2022 Generalized Fermat 3799 41364744^131072+1 998327 L5453 2022 Generalized Fermat 3800 41237116^131072+1 998152 L5459 2022 Generalized Fermat 3801 47714*17^811139+1 998070 L5765 2023 Generalized Cullen 3802 41102236^131072+1 997965 L4245 2022 Generalized Fermat 3803 41007562^131072+1 997834 L4210 2022 Generalized Fermat 3804 41001148^131072+1 997825 L4210 2022 Generalized Fermat 3805 975*2^3312951+1 997301 L5231 2022 3806 40550398^131072+1 997196 L4245 2022 Generalized Fermat 3807 11796*46^599707+1 997172 L5670 2023 3808 40463598^131072+1 997074 L4591 2022 Generalized Fermat 3809 689*2^3311423+1 996841 L5226 2022 3810 40151896^131072+1 996633 L4245 2022 Generalized Fermat 3811b 39997729^131072-39997729^65536+1 996414 p379 2025 Generalized unique 3812 593*2^3309333+1 996212 L5572 2022 3813 383*2^3309321+1 996208 L5570 2022 3814 49*2^3309087-1 996137 L1959 2013 3815 39746366^131072+1 996056 L4201 2022 Generalized Fermat 3816 139413*6^1279992+1 996033 L4001 2015 3817 1274*67^545368-1 995886 L5410 2023 3818 51*2^3308171+1 995861 L2840 2015 3819 719*2^3308127+1 995849 L5192 2022 3820 39597790^131072+1 995842 L4737 2022 Generalized Fermat 3821 39502358^131072+1 995705 L5453 2022 Generalized Fermat 3822 39324372^131072+1 995448 L5202 2022 Generalized Fermat 3823 245114*5^1424104-1 995412 L3686 2013 3824 39100746^131072+1 995123 L5441 2022 Generalized Fermat 3825 38824296^131072+1 994719 L4245 2022 Generalized Fermat 3826 38734748^131072+1 994588 L4249 2021 Generalized Fermat 3827 175124*5^1422646-1 994393 L3686 2013 3828 453*2^3303073+1 994327 L5568 2022 3829 856*75^530221-1 994200 A11 2024 3830 38310998^131072+1 993962 L4737 2021 Generalized Fermat 3831 531*2^3301693+1 993912 L5226 2022 3832 38196496^131072+1 993791 L4861 2021 Generalized Fermat 3833 38152876^131072+1 993726 L4245 2021 Generalized Fermat 3834 195*2^3301018+1 993708 L5569 2022 3835 341*2^3300789+1 993640 L5192 2022 3836 37909914^131072+1 993363 L4249 2021 Generalized Fermat 3837 849*2^3296427+1 992327 L5571 2022 3838 1611*22^738988+1 992038 L4139 2015 3839 36531196^131072+1 991254 L4249 2021 Generalized Fermat 3840 2017*2^3292325-1 991092 L3345 2017 3841 36422846^131072+1 991085 L4245 2021 Generalized Fermat 3842 36416848^131072+1 991076 L5202 2021 Generalized Fermat 3843 885*2^3290927+1 990671 L5161 2022 3844 36038176^131072+1 990481 L4245 2021 Generalized Fermat 3845 35997532^131072+1 990416 L4245 2021 Generalized Fermat 3846 35957420^131072+1 990353 L4245 2021 Generalized Fermat 3847 107970^196608-107970^98304+1 989588 L4506 2016 Generalized unique 3848 35391288^131072+1 989449 L5070 2021 Generalized Fermat 3849 35372304^131072+1 989419 L5443 2021 Generalized Fermat 3850 219*2^3286614+1 989372 L5567 2022 3851 61*2^3286535-1 989348 L4405 2016 3852 35327718^131072+1 989347 L4591 2021 Generalized Fermat 3853 35282096^131072+1 989274 L4245 2021 Generalized Fermat 3854 35141602^131072+1 989046 L4729 2021 Generalized Fermat 3855 35139782^131072+1 989043 L4245 2021 Generalized Fermat 3856 35047222^131072+1 988893 L4249 2021 Generalized Fermat 3857 531*2^3284944+1 988870 L5536 2022 3858 34957136^131072+1 988747 L5321 2021 Generalized Fermat 3859 301*2^3284232+1 988655 L5564 2022 3860 34871942^131072+1 988608 L4245 2021 Generalized Fermat 3861 34763644^131072+1 988431 L4737 2021 Generalized Fermat 3862 34585314^131072+1 988138 L4201 2021 Generalized Fermat 3863 311*2^3282455+1 988120 L5568 2022 3864 34530386^131072+1 988048 L5070 2021 Generalized Fermat 3865 833*2^3282181+1 988038 L5564 2022 3866 561*2^3281889+1 987950 L5477 2022 3867 34087952^131072+1 987314 L4764 2021 Generalized Fermat 3868 87*2^3279368+1 987191 L3458 2015 3869 965*2^3279151+1 987126 L5564 2022 3870 33732746^131072+1 986717 L4359 2021 Generalized Fermat 3871 33474284^131072+1 986279 L5051 2021 Generalized Fermat 3872 33395198^131072+1 986145 L4658 2021 Generalized Fermat 3873 427*2^3275606+1 986059 L5566 2022 3874 33191418^131072+1 985796 L4201 2021 Generalized Fermat 3875 337*2^3274106+1 985607 L5564 2022 3876 19861029*2^3273589-1 985456 A31 2025 3877 357*2^3273543+1 985438 L5237 2022 Divides GF(3273542,10) 3878 1045*2^3273488+1 985422 L5192 2022 3879 32869172^131072+1 985241 L4285 2021 Generalized Fermat 3880 32792696^131072+1 985108 L5198 2021 Generalized Fermat 3881 1047*2^3272351+1 985079 L5563 2022 3882 32704348^131072+1 984955 L5312 2021 Generalized Fermat 3883 6781*24^713573-1 984886 A11 2024 3884 32608738^131072+1 984788 L5395 2021 Generalized Fermat 3885 75*2^3271125-1 984709 A38 2024 3886 933*2^3270993+1 984670 L5562 2022 3887 311*2^3270759+1 984600 L5560 2022 3888 32430486^131072+1 984476 L4245 2021 Generalized Fermat 3889 32417420^131072+1 984453 L4245 2021 Generalized Fermat 3890 65*2^3270127+1 984409 L3924 2015 3891 32348894^131072+1 984333 L4245 2021 Generalized Fermat 3892 579*2^3269850+1 984326 L5226 2022 3893 32286660^131072+1 984223 L5400 2021 Generalized Fermat 3894 32200644^131072+1 984071 L4387 2021 Generalized Fermat 3895 32137342^131072+1 983959 L4559 2021 Generalized Fermat 3896 32096608^131072+1 983887 L4559 2021 Generalized Fermat 3897 32055422^131072+1 983814 L4559 2021 Generalized Fermat 3898 31821360^131072+1 983397 L4861 2021 Generalized Fermat 3899 31768014^131072+1 983301 L4252 2021 Generalized Fermat 3900 335*2^3266237+1 983238 L5559 2022 3901 981493*2^3266031-1 983180 p420 2025 3902 1031*2^3265915+1 983142 L5364 2022 3903 31469984^131072+1 982765 L5078 2021 Generalized Fermat 3904 5*2^3264650-1 982759 L384 2013 3905 223*2^3264459-1 982703 L1884 2012 3906 1101*2^3264400+1 982686 L5231 2022 3907 483*2^3264181+1 982620 L5174 2022 3908 525*2^3263227+1 982332 L5231 2022 3909 31145080^131072+1 982174 L4201 2021 Generalized Fermat 3910 622*48^584089+1 981998 L5629 2023 3911 31044982^131072+1 981991 L5041 2021 Generalized Fermat 3912 683*2^3262037+1 981974 L5192 2022 3913 923*2^3261401+1 981783 L5477 2022 3914 30844300^131072+1 981622 L5102 2021 Generalized Fermat 3915 30819256^131072+1 981575 L4201 2021 Generalized Fermat 3916 9*2^3259381-1 981173 L1828 2011 3917 31*2^3259185-1 981114 L1862 2024 3918 1059*2^3258751+1 980985 L5231 2022 3919 6*5^1403337+1 980892 L4965 2020 3920 30318724^131072+1 980643 L4309 2021 Generalized Fermat 3921 30315072^131072+1 980636 L5375 2021 Generalized Fermat 3922 30300414^131072+1 980609 L4755 2021 Generalized Fermat 3923 30225714^131072+1 980468 L4201 2021 Generalized Fermat 3924 875*2^3256589+1 980334 L5550 2022 3925 30059800^131072+1 980155 L4928 2021 Generalized Fermat 3926 176268*5^1402258-1 980142 A11 2025 3927 30022816^131072+1 980085 L5273 2021 Generalized Fermat 3928 29959190^131072+1 979964 L4905 2021 Generalized Fermat 3929 968*75^522276-1 979303 A11 2024 3930 29607314^131072+1 979292 L5378 2021 Generalized Fermat 3931 779*2^3253063+1 979273 L5192 2022 3932 29505368^131072+1 979095 L5378 2021 Generalized Fermat 3933 163*2^3250978+1 978645 L5161 2022 Divides GF(3250977,6) 3934 29169314^131072+1 978443 L5380 2021 Generalized Fermat 3935 417*2^3248255+1 977825 L5178 2022 3936 28497098^131072+1 977116 L4308 2021 Generalized Fermat 3937 28398204^131072+1 976918 L5379 2021 Generalized Fermat 3938 28294666^131072+1 976710 L5375 2021 Generalized Fermat 3939 28175634^131072+1 976470 L5378 2021 Generalized Fermat 3940 33*2^3242126-1 975979 L3345 2014 3941 27822108^131072+1 975752 L4760 2021 Generalized Fermat 3942 39*2^3240990+1 975637 L3432 2014 3943 27758510^131072+1 975621 L4289 2021 Generalized Fermat 3944 3706*103^484644+1 975514 A11 2024 3945 27557876^131072+1 975208 L4245 2021 Generalized Fermat 3946 27544748^131072+1 975181 L4387 2021 Generalized Fermat 3947a 62148*115^473137-1 974998 A11 2025 3948 27408050^131072+1 974898 L4210 2021 Generalized Fermat 3949 14275*60^548133-1 974668 x51 2024 3950 225*2^3236967+1 974427 L5529 2022 3951 27022768^131072+1 974092 L4309 2021 Generalized Fermat 3952 26896670^131072+1 973826 L5376 2021 Generalized Fermat 3953 1075*2^3234606+1 973717 L5192 2022 3954 26757382^131072+1 973530 L5375 2021 Generalized Fermat 3955 8091*24^705188+1 973313 A64 2025 3956 26599558^131072+1 973194 L4245 2021 Generalized Fermat 3957 6*5^1392287+1 973168 L4965 2020 3958 26500832^131072+1 972982 L4956 2021 Generalized Fermat 3959 325*2^3231474+1 972774 L5536 2022 3960 933*2^3231438+1 972763 L5197 2022 3961 123*2^3230548+1 972494 L5178 2022 Divides GF(3230546,12) 3962 26172278^131072+1 972272 L4245 2021 Generalized Fermat 3963 697*2^3229518+1 972185 L5534 2022 3964 22598*745^338354-1 971810 L4189 2022 3965 385*2^3226814+1 971371 L5178 2022 3966 211195*2^3224974+1 970820 L2121 2013 3967 1173*2^3223546+1 970388 L5178 2022 3968 7*6^1246814+1 970211 L4965 2019 3969 25128150^131072+1 969954 L4738 2021 Generalized Fermat 3970 25124378^131072+1 969946 L5102 2021 Generalized Fermat 3971 1089*2^3221691+1 969829 L5178 2022 3972 35*832^332073-1 969696 L4001 2019 3973 600921*2^3219922-1 969299 g337 2018 3974 939*2^3219319+1 969115 L5178 2022 3975 24734116^131072+1 969055 L5070 2021 Generalized Fermat 3976 76896*5^1386360+1 969029 A42 2024 3977 24644826^131072+1 968849 L5070 2021 Generalized Fermat 3978 24642712^131072+1 968844 L5070 2021 Generalized Fermat 3979 24641166^131072+1 968840 L5070 2021 Generalized Fermat 3980 129*2^3218214+1 968782 L5529 2022 3981 24522386^131072+1 968565 L5070 2021 Generalized Fermat 3982 24486806^131072+1 968483 L4737 2021 Generalized Fermat 3983 811*2^3216944+1 968400 L5233 2022 3984 24297936^131072+1 968042 L4201 2021 Generalized Fermat 3985 1023*2^3214745+1 967738 L5178 2022 3986 187*2^3212152+1 966957 L5178 2022 3987 301*2^3211281-1 966695 L5545 2022 3988 6*409^369832+1 965900 L4001 2015 3989 23363426^131072+1 965809 L5033 2021 Generalized Fermat 3990 1165*2^3207702+1 965618 L5178 2022 3991 94373*2^3206717+1 965323 L2785 2013 3992 2751*2^3206569-1 965277 L4036 2015 3993 761*2^3206341+1 965208 L5178 2022 3994 23045178^131072+1 965029 L5023 2021 Generalized Fermat 3995 23011666^131072+1 964946 L5273 2021 Generalized Fermat 3996 911*2^3205225+1 964872 L5364 2022 3997 22980158^131072+1 964868 L4201 2021 Generalized Fermat 3998 22901508^131072+1 964673 L4743 2021 Generalized Fermat 3999 22808110^131072+1 964440 L5248 2021 Generalized Fermat 4000 22718284^131072+1 964215 L5254 2021 Generalized Fermat 4001 22705306^131072+1 964183 L5248 2021 Generalized Fermat 4002 113983*2^3201175-1 963655 L613 2008 4003 34*888^326732-1 963343 L4001 2017 4004 899*2^3198219+1 962763 L5503 2022 4005 22007146^131072+1 962405 L4245 2020 Generalized Fermat 4006 4*3^2016951+1 962331 L4965 2020 4007 21917442^131072+1 962173 L4622 2020 Generalized Fermat 4008 987*2^3195883+1 962060 L5282 2022 4009 21869554^131072+1 962048 L5061 2020 Generalized Fermat 4010 21757066^131072+1 961754 L4773 2020 Generalized Fermat 4011 68*828^329490-1 961464 A62 2025 4012 21582550^131072+1 961296 L5068 2020 Generalized Fermat 4013 21517658^131072+1 961125 L5126 2020 Generalized Fermat 4014 20968936^131072+1 959654 L4245 2020 Generalized Fermat 4015d 13*422^365511-1 959582 A11 2025 4016 671*2^3185411+1 958908 L5315 2022 4017 20674450^131072+1 958849 L4245 2020 Generalized Fermat 4018 1027*2^3184540+1 958646 L5174 2022 4019d 118*493^355898+1 958381 A68 2025 4020 789*2^3183463+1 958321 L5482 2022 4021 855*2^3183158+1 958229 L5161 2022 4022 20234282^131072+1 957624 L4942 2020 Generalized Fermat 4023 20227142^131072+1 957604 L4677 2020 Generalized Fermat 4024 625*2^3180780+1 957513 L5178 2022 Generalized Fermat 4025 20185276^131072+1 957486 L4201 2020 Generalized Fermat 4026 935*2^3180599+1 957459 L5477 2022 4027 573*2^3179293+1 957066 L5226 2022 4028 33*2^3176269+1 956154 L3432 2013 4029 81*2^3174353-1 955578 L3887 2022 4030 19464034^131072+1 955415 L4956 2020 Generalized Fermat 4031 600921*2^3173683-1 955380 g337 2018 4032 587*2^3173567+1 955342 L5301 2022 4033a 20520*115^463335-1 954798 A11 2025 4034 19216648^131072+1 954687 L5024 2020 Generalized Fermat 4035 1414*95^482691-1 954633 L4877 2019 4036 305*2^3171039+1 954581 L5301 2022 4037 755*2^3170701+1 954479 L5302 2022 4038 775*2^3170580+1 954443 L5449 2022 4039 78*236^402022-1 953965 L5410 2020 4040 18968126^131072+1 953946 L5011 2020 Generalized Fermat 4041 18813106^131072+1 953479 L4201 2020 Generalized Fermat 4042 18608780^131072+1 952857 L4488 2020 Generalized Fermat 4043 1087*2^3164677-1 952666 L1828 2012 4044 18509226^131072+1 952552 L4884 2020 Generalized Fermat 4045 18501600^131072+1 952528 L4875 2020 Generalized Fermat 4046 459*2^3163175+1 952214 L5178 2022 4047 15*2^3162659+1 952057 p286 2012 4048 18309468^131072+1 951934 L4928 2020 Generalized Fermat 4049 18298534^131072+1 951900 L4201 2020 Generalized Fermat 4050 849*2^3161727+1 951778 L5178 2022 4051 67*2^3161450+1 951694 L3223 2015 4052 119*2^3161195+1 951617 L5320 2022 4053 1759*2^3160863-1 951518 L4965 2021 4054 58*117^460033+1 951436 L5410 2020 4055 417*2^3160443+1 951391 L5302 2022 4056 9231*70^515544+1 951234 L5410 2021 4057 671*2^3159523+1 951115 L5188 2022 4058 17958952^131072+1 950834 L4201 2020 Generalized Fermat 4059 1001*2^3158422-1 950783 L4518 2023 4060 17814792^131072+1 950375 L4752 2020 Generalized Fermat 4061 17643330^131072+1 949824 L4201 2020 Generalized Fermat 4062 19*2^3155009-1 949754 L1828 2012 4063 281*2^3151457+1 948686 L5316 2022 4064 179*2^3150265+1 948327 L5302 2022 4065 17141888^131072+1 948183 L4963 2019 Generalized Fermat 4066 17138628^131072+1 948172 L4963 2019 Generalized Fermat 4067 17119936^131072+1 948110 L4963 2019 Generalized Fermat 4068 17052490^131072+1 947885 L4715 2019 Generalized Fermat 4069 17025822^131072+1 947796 L4870 2019 Generalized Fermat 4070 16985784^131072+1 947662 L4295 2019 Generalized Fermat 4071 865*2^3147482+1 947490 L5178 2021 4072 963*2^3145753+1 946969 L5451 2021 4073 16741226^131072+1 946837 L4201 2019 Generalized Fermat 4074 387*2^3144483+1 946587 L5450 2021 4075 1035*2^3144236+1 946513 L5449 2021 4076 1065*2^3143667+1 946342 L4944 2021 4077 1598*187^416536-1 946308 A11 2025 4078 193*2^3142150+1 945884 L5178 2021 4079 915*2^3141942+1 945822 L5448 2021 4080 939*2^3141397+1 945658 L5320 2021 4081 1063*2^3141350+1 945644 L5178 2021 4082 16329572^131072+1 945420 L4201 2019 Generalized Fermat 4083 69*2^3140225-1 945304 L3764 2014 4084 3*2^3136255-1 944108 L256 2007 4085 417*2^3136187+1 944089 L5178 2021 4086 15731520^131072+1 943296 L4245 2019 Generalized Fermat 4087 62721^196608-62721^98304+1 943210 L4506 2016 Generalized unique 4088 15667716^131072+1 943064 L4387 2019 Generalized Fermat 4089 15567144^131072+1 942698 L4918 2019 Generalized Fermat 4090 299*2^3130621+1 942414 L5178 2021 4091 15342502^131072+1 941870 L4245 2019 Generalized Fermat 4092 15237960^131072+1 941481 L4898 2019 Generalized Fermat 4093 571*2^3127388+1 941441 L5440 2021 4094e 349*2^3126971-1 941315 L2235 2025 4095 107*2^3126660-1 941221 A38 2024 4096 15147290^131072+1 941141 L4861 2019 Generalized Fermat 4097 197*2^3126343+1 941126 L5178 2021 4098 15091270^131072+1 940930 L4760 2019 Generalized Fermat 4099 1097*2^3124455+1 940558 L5178 2021 4100 3125*2^3124079+1 940445 L1160 2019 4101 495*2^3123624+1 940308 L5438 2021 4102 14790404^131072+1 939784 L4871 2019 Generalized Fermat 4103 1041*2^3120649+1 939412 L5437 2021 4104 325*2^3120105-1 939248 L2017 2025 4105 14613898^131072+1 939101 L4926 2019 Generalized Fermat 4106 3317*2^3117162-1 938363 L5399 2021 4107c 6*7^1109897+1 937973 A2 2025 4108 763*2^3115684+1 937918 L4944 2021 4109 25*746^326451-1 937810 A28 2024 4110b 199*2^3115285-1 937797 A77 2025 4111 581*2^3114611+1 937595 L5178 2021 4112 14217182^131072+1 937534 L4387 2019 Generalized Fermat 4113 134*864^319246-1 937473 L5410 2020 4114 700057*2^3113753-1 937339 L5410 2022 4115e 383748*277^383748+1 937303 A67 2025 Generalized Cullen 4116 5*6^1204077-1 936955 A2 2023 4117 1197*2^3111838+1 936760 L5178 2021 4118 14020004^131072+1 936739 L4249 2019 Generalized Fermat 4119 27777*2^3111027+1 936517 L2777 2014 Generalized Cullen 4120 755*2^3110759+1 936435 L5320 2021 4121 13800346^131072+1 935840 L4880 2019 Generalized Fermat 4122c 297*2^3108344-1 935708 A77 2025 4123 866981*12^866981-1 935636 L5765 2023 Generalized Woodall 4124c 255*2^3107918-1 935579 A77 2025 4125 313*2^3107219-1 935369 L5819 2024 4126 13613070^131072+1 935062 L4245 2019 Generalized Fermat 4127 628*80^491322+1 935033 L5410 2021 4128 761*2^3105087+1 934728 L5197 2021 4129 13433028^131072+1 934305 L4868 2018 Generalized Fermat 4130 1019*2^3103680-1 934304 L1828 2012 4131 12*978^312346+1 934022 L4294 2023 4132 579*2^3102639+1 933991 L5315 2021 4133 99*2^3102401-1 933918 L1862 2017 4134 256612*5^1335485-1 933470 L1056 2013 4135c 88*7^1104001+1 932992 A11 2025 4136 13083418^131072+1 932803 L4747 2018 Generalized Fermat 4137 882*1017^310074+1 932495 A10 2024 4138 69*2^3097340-1 932395 L3764 2014 4139 153*2^3097277+1 932376 L4944 2021 4140 12978952^131072+1 932347 L4849 2018 Generalized Fermat 4141 12961862^131072+1 932272 L4245 2018 Generalized Fermat 4142 207*2^3095391+1 931808 L5178 2021 4143 12851074^131072+1 931783 L4670 2018 Generalized Fermat 4144 45*2^3094632-1 931579 L1862 2018 4145 259*2^3094582+1 931565 L5214 2021 4146 553*2^3094072+1 931412 L4944 2021 4147 57*2^3093440-1 931220 L2484 2020 4148 12687374^131072+1 931054 L4289 2018 Generalized Fermat 4149 513*2^3092705+1 931000 L4329 2016 4150 12661786^131072+1 930939 L4819 2018 Generalized Fermat 4151 933*2^3091825+1 930736 L5178 2021 4152 38*875^316292-1 930536 L4001 2019 4153 5*2^3090860-1 930443 L1862 2012 4154 12512992^131072+1 930266 L4814 2018 Generalized Fermat 4155 4*5^1330541-1 930009 L4965 2022 4156 12357518^131072+1 929554 L4295 2018 Generalized Fermat 4157a 3103*198^404736-1 929547 A11 2025 4158 12343130^131072+1 929488 L4720 2018 Generalized Fermat 4159 297*2^3087543+1 929446 L5326 2021 4160 1149*2^3087514+1 929438 L5407 2021 4161 745*2^3087428+1 929412 L5178 2021 4162 373*520^342177+1 929357 L3610 2014 4163 19401*2^3086450-1 929119 L541 2015 4164 75*2^3086355+1 929088 L3760 2015 4165 65*2^3080952-1 927461 L2484 2020 4166 11876066^131072+1 927292 L4737 2018 Generalized Fermat 4167 1139*2^3079783+1 927111 L5174 2021 4168 271*2^3079189-1 926931 L2484 2018 4169 766*33^610412+1 926923 L4001 2016 4170 11778792^131072+1 926824 L4672 2018 Generalized Fermat 4171 555*2^3078792+1 926812 L5226 2021 4172 31*332^367560+1 926672 L4294 2018 4173 167*2^3077568-1 926443 L1862 2020 4174 10001*2^3075602-1 925853 L4405 2019 4175d 293*2^3075434-1 925801 A77 2025 4176d 100*647^329222+1 925414 A11 2025 Generalized Fermat 4177 116*107^455562-1 924513 L4064 2021 4178 11292782^131072+1 924425 L4672 2018 Generalized Fermat 4179 14844*430^350980-1 924299 L4001 2016 4180 11267296^131072+1 924297 L4654 2017 Generalized Fermat 4181 19861029*2^3070319+1 924266 A31 2025 4182 4*3^1936890+1 924132 L4965 2020 Generalized Fermat 4183 1105*2^3069884+1 924131 L5314 2021 4184 319*2^3069362+1 923973 L5377 2021 4185 11195602^131072+1 923933 L4706 2017 Generalized Fermat 4186 973*2^3069092+1 923892 L5214 2021 4187 765*2^3068511+1 923717 L5174 2021 4188 60849*2^3067914+1 923539 L591 2014 4189 674*249^385359+1 923400 L5410 2019 4190 499*2^3066970+1 923253 L5373 2021 4191 553*2^3066838+1 923213 L5368 2021 4192 629*2^3066827+1 923210 L5226 2021 4193 11036888^131072+1 923120 L4660 2017 Generalized Fermat 4194 261*2^3066009+1 922964 L5197 2021 4195 10994460^131072+1 922901 L4704 2017 Generalized Fermat 4196 214916*3^1934246-1 922876 L4965 2023 Generalized Woodall 4197 21*2^3065701+1 922870 p286 2012 4198 10962066^131072+1 922733 L4702 2017 Generalized Fermat 4199 10921162^131072+1 922520 L4559 2017 Generalized Fermat 4200 875*2^3063847+1 922313 L5364 2021 4201 43*2^3063674+1 922260 L3432 2013 4202 677*2^3063403+1 922180 L5346 2021 4203 8460*241^387047-1 921957 L5410 2019 4204 10765720^131072+1 921704 L4695 2017 Generalized Fermat 4205 111*2^3060238-1 921226 L2484 2020 4206 1165*2^3060228+1 921224 L5360 2021 4207 5*2^3059698-1 921062 L503 2008 4208a 2025*2^3059109-1 920887 L3345 2025 4209 10453790^131072+1 920031 L4694 2017 Generalized Fermat 4210 453*2^3056181+1 920005 L5320 2021 4211 791*2^3055695+1 919859 L5177 2021 4212 10368632^131072+1 919565 L4692 2017 Generalized Fermat 4213 582971*2^3053414-1 919175 L5410 2022 4214 123*2^3049038+1 917854 L4119 2015 4215 10037266^131072+1 917716 L4691 2017 Generalized Fermat 4216 400*95^463883-1 917435 L4001 2019 4217 9907326^131072+1 916975 L4690 2017 Generalized Fermat 4218 454*383^354814+1 916558 L2012 2020 4219 9785844^131072+1 916272 L4326 2017 Generalized Fermat 4220 435*2^3041954+1 915723 L5320 2021 4221 639*2^3040438+1 915266 L5320 2021 4222b 10129*108^449997-1 915039 A83 2025 4223 13822*115^443832+1 914608 A11 2024 4224 1045*2^3037988+1 914529 L5178 2021 4225 291*2^3037904+1 914503 L3545 2015 4226 311*2^3037565+1 914401 L5178 2021 4227 373*2^3036746+1 914155 L5178 2021 4228 9419976^131072+1 914103 L4591 2017 Generalized Fermat 4229 5706*162^413708+1 914098 A14 2024 4230 341*2^3036506-1 914082 p435 2023 4231 801*2^3036045+1 913944 L5348 2021 4232 915*2^3033775+1 913261 L5178 2021 4233f 203*2^3033614-1 913212 L1817 2025 4234 38804*3^1913975+1 913203 L5410 2021 4235f 161*2^3033558-1 913195 L1817 2025 4236 9240606^131072+1 913009 L4591 2017 Generalized Fermat 4237 869*2^3030655+1 912322 L5260 2021 4238 643*2^3030650+1 912320 L5320 2021 4239 99*2^3029959-1 912111 L1862 2020 4240 417*2^3029342+1 911926 L5178 2021 4241f 207*2^3029112-1 911856 A58 2025 4242 345*2^3027769+1 911452 L5343 2021 4243 26*3^1910099+1 911351 L4799 2020 4244 355*2^3027372+1 911333 L5174 2021 4245 99*2^3026660-1 911118 L1862 2020 4246 417*2^3026492+1 911068 L5197 2021 4247 1065*2^3025527+1 910778 L5208 2021 4248 34202*3^1908800+1 910734 L5410 2021 4249 8343*42^560662+1 910099 L4444 2020 4250 699*2^3023263+1 910096 L5335 2021 4251 8770526^131072+1 910037 L4245 2017 Generalized Fermat 4252 8704114^131072+1 909604 L4670 2017 Generalized Fermat 4253 383731*2^3021377-1 909531 L466 2011 4254 46821*2^3021380-374567 909531 p363 2013 4255 2^3021377-1 909526 G3 1998 Mersenne 37 4256 255*2^3021196-1 909474 L3994 2025 4257 615*2^3019445+1 908947 L5260 2021 4258 389*2^3019025+1 908820 L5178 2021 4259 875*2^3018175+1 908565 L5334 2021 4260 375*2^3016803-1 908151 L2235 2023 4261 555*2^3016352+1 908016 L5178 2021 4262 7*2^3015762+1 907836 g279 2008 4263 759*2^3015314+1 907703 L5178 2021 4264 32582*3^1901790+1 907389 L5372 2021 4265 75*2^3012342+1 906808 L3941 2015 4266 459*2^3011814+1 906650 L5178 2021 4267 171*2^3010938-1 906385 A27 2025 4268 991*2^3010036+1 906115 L5326 2021 4269 583*2^3009698+1 906013 L5325 2021 4270 8150484^131072+1 905863 L4249 2017 Generalized Fermat 4271 593*2^3006969+1 905191 L5178 2021 4272d 53*308^363703+1 905096 A71 2025 4273 327*2^3006540-1 905062 L2257 2023 4274 75*2^3006235-1 904969 A38 2024 4275 367*2^3004536+1 904459 L5178 2021 4276 7926326^131072+1 904276 L4249 2017 Generalized Fermat 4277 1003*2^3003756+1 904224 L5320 2021 4278 626*1017^300576+1 903932 A9 2024 4279 573*2^3002662+1 903895 L5319 2021 4280 7858180^131072+1 903784 L4201 2017 Generalized Fermat 4281 329*2^3002295+1 903784 L5318 2021 4282 4*5^1292915-1 903710 L4965 2022 4283 7832704^131072+1 903599 L4249 2017 Generalized Fermat 4284 268514*5^1292240-1 903243 L3562 2013 4285b 6555*2^2999391-1 902911 A76 2025 4286 7*10^902708+1 902709 p342 2013 4287 435*2^2997453+1 902326 L5167 2021 4288 583*2^2996526+1 902047 L5174 2021 4289 1037*2^2995695+1 901798 L5178 2021 4290 717*2^2995326+1 901686 L5178 2021 4291 885*2^2995274+1 901671 L5178 2021 4292 43*2^2994958+1 901574 L3222 2013 4293 1065*2^2994154+1 901334 L5315 2021 4294 561*2^2994132+1 901327 L5314 2021 4295 147*2^2993165-1 901035 L1817 2025 4296 1095*2^2992587-1 900862 L1828 2011 4297 519*2^2991849+1 900640 L5311 2021 4298e 5077*2^2990757-1 900312 L3519 2025 4299 7379442^131072+1 900206 L4201 2017 Generalized Fermat 4300 109932*5^1287894-1 900205 A11 2025 4301 459*2^2990134+1 900123 L5197 2021 4302 15*2^2988834+1 899730 p286 2012 4303 29*564^326765+1 899024 L4001 2017 4304 5129*24^650539+1 897885 A11 2024 4305 971*2^2982525+1 897833 L5197 2021 4306 1033*2^2980962+1 897362 L5305 2021 4307 357*2^2980540-1 897235 L2257 2023 4308 367*2^2979033-1 896781 L2257 2023 4309 39*2^2978894+1 896739 L2719 2013 4310 38*977^299737+1 896184 L5410 2021 4311 4348099*2^2976221-1 895939 L466 2008 4312 205833*2^2976222-411665 895938 L4667 2017 4313 593*2^2976226-18975 895937 p373 2014 4314 2^2976221-1 895932 G2 1997 Mersenne 36 4315 1024*3^1877301+1 895704 p378 2014 4316 1065*2^2975442+1 895701 L5300 2021 Divides GF(2975440,3) 4317 24704*3^1877135+1 895626 L5410 2021 4318 591*2^2975069+1 895588 L5299 2021 4319 249*2^2975002+1 895568 L2322 2015 4320 18431*82^467690-1 895076 A14 2024 4321 195*2^2972947+1 894949 L3234 2015 4322 6705932^131072+1 894758 L4201 2017 Generalized Fermat 4323 391*2^2971600+1 894544 L5242 2021 4324 46425*2^2971203+1 894426 L2777 2014 Generalized Cullen 4325 625*2^2970336+1 894164 L5233 2021 Generalized Fermat 4326 369*2^2968175-1 893513 L2257 2023 4327 493*72^480933+1 893256 L3610 2014 4328 561*2^2964753+1 892483 L5161 2021 4329 1185*2^2964350+1 892362 L5161 2021 4330 6403134^131072+1 892128 L4510 2016 Generalized Fermat 4331 6391936^131072+1 892028 L4511 2016 Generalized Fermat 4332 1964*991^297652-1 891791 A11 2025 4333 395*2^2961370-1 891464 L2257 2023 4334 21*2^2959789-1 890987 L5313 2021 4335 627*2^2959098+1 890781 L5197 2021 4336 45*2^2958002-1 890449 L1862 2017 4337 729*2^2955389+1 889664 L5282 2021 4338b 28460*105^439950-1 889227 A11 2025 4339 706*1017^295508+1 888691 p433 2023 4340 198677*2^2950515+1 888199 L2121 2012 4341 88*985^296644+1 887987 L5410 2020 4342 303*2^2949403-1 887862 L1817 2022 4343 5877582^131072+1 887253 L4245 2016 Generalized Fermat 4344 321*2^2946654-1 887034 L1817 2022 4345 17*2^2946584-1 887012 L3519 2013 4346 489*2^2944673+1 886438 L5167 2021 4347 141*2^2943065+1 885953 L3719 2015 4348 757*2^2942742+1 885857 L5261 2021 4349 5734100^131072+1 885846 L4477 2016 Generalized Fermat 4350 33*2^2939064-5606879602425*2^1290000-1 884748 p423 2021 Arithmetic progression (3,d=33*2^2939063-5606879602425*2^1290000) 4351 33*2^2939063-1 884748 L3345 2013 4352 5903*2^2938744-1 884654 L4036 2015 4353 717*2^2937963+1 884418 L5256 2021 4354 5586416^131072+1 884361 L4454 2016 Generalized Fermat 4355 297*2^2937584-1 884304 L1817 2025 4356 243*2^2937316+1 884223 L4114 2015 4357 973*2^2937046+1 884142 L5253 2021 4358 61*2^2936967-1 884117 L2484 2017 4359 203*2^2935338-1 883628 L1817 2025 4360 903*2^2934602+1 883407 L5246 2021 4361 5471814^131072+1 883181 L4362 2016 Generalized Fermat 4362 188*228^374503+1 883056 L4786 2020 4363 53*248^368775+1 883016 L5196 2020 4364 13613*82^461323-1 882891 A11 2024 4365 5400728^131072+1 882436 L4201 2016 Generalized Fermat 4366 17*326^350899+1 881887 L4786 2019 4367 855*2^2929550+1 881886 L5200 2021 4368 5326454^131072+1 881648 L4201 2016 Generalized Fermat 4369 839*2^2928551+1 881585 L5242 2021 4370 7019*10^881309-1 881313 L3564 2013 4371 25*2^2927222+1 881184 L1935 2013 Generalized Fermat 4372b 131282*105^435927-1 881097 A11 2025 4373 391*2^2925759-1 880744 L2257 2023 4374 577*2^2925602+1 880697 L5201 2021 4375 97366*5^1259955-1 880676 L3567 2013 4376 246234*5^1259806-1 880572 A65 2025 4377 19861029*2^2924096-1 880248 A31 2024 4378 973*2^2923062+1 879933 L5228 2021 4379 1126*177^391360+1 879770 L4955 2020 4380 243944*5^1258576-1 879713 L3566 2013 4381 693*2^2921528+1 879471 L5201 2021 4382 6*10^879313+1 879314 L5009 2019 4383a 58028*115^426490-1 878872 A87 2025 4384 269*2^2918105+1 878440 L2715 2015 4385 331*2^2917844+1 878362 L5210 2021 4386 169*2^2917805-1 878350 L2484 2018 4387 1085*2^2916967+1 878098 L5174 2020 4388 389*2^2916499+1 877957 L5215 2020 4389 431*2^2916429+1 877936 L5214 2020 4390 1189*2^2916406+1 877929 L5174 2020 4391 1011*2^2916119-1 877843 L4518 2023 4392 7*2^2915954+1 877791 g279 2008 Divides GF(2915953,12) [g322] 4393 4974408^131072+1 877756 L4380 2016 Generalized Fermat 4394 465*2^2914079+1 877228 L5210 2020 4395 427194*113^427194+1 877069 p310 2012 Generalized Cullen 4396 322*952^294414+1 876955 A11 2025 4397 4893072^131072+1 876817 L4303 2016 Generalized Fermat 4398 493*2^2912552+1 876769 L5192 2021 4399 379*2^2911423-1 876429 L2257 2023 4400 143157*2^2911403+1 876425 L4504 2017 4401 567*2^2910402+1 876122 L5201 2020 4402 4098*1003^291860+1 875964 A14 2025 4403 683*2^2909217+1 875765 L5199 2020 4404 674*249^365445+1 875682 L5410 2019 4405 475*2^2908802+1 875640 L5192 2021 4406 2351*24^634318+1 875497 A11 2024 4407 117*2^2908312-1 875492 A27 2025 4408 371*2^2907377+1 875211 L5197 2020 4409 8161*24^633274+1 874056 A11 2024 4410 207*2^2903535+1 874054 L3173 2015 4411 851*2^2902731+1 873813 L5177 2020 4412 267*2^2902469-1 873733 A27 2024 4413 777*2^2901907+1 873564 L5192 2020 4414 717*2^2900775+1 873224 L5185 2020 4415 99*2^2899303-1 872780 L1862 2017 4416 63*2^2898957+1 872675 L3262 2013 4417 173*2^2897448-1 872221 A27 2024 4418 11*2^2897409+1 872209 L2973 2013 Divides GF(2897408,3) 4419 187*2^2896841-1 872039 L3994 2024 4420 29601*24^631722+1 871915 A11 2024 4421 747*2^2895307+1 871578 L5178 2020 4422 403*2^2894566+1 871354 L5180 2020 4423 62022*5^1246456-1 871241 A11 2025 4424 629*2^2892961+1 870871 L5173 2020 4425 627*2^2891514+1 870436 L5168 2020 4426 325*2^2890955-1 870267 L5545 2022 4427 363*2^2890208+1 870042 L3261 2020 4428 471*2^2890148+1 870024 L5158 2020 4429 4329134^131072+1 869847 L4395 2016 Generalized Fermat 4430 583*2^2889248+1 869754 L5139 2020 4431 353*2^2888332-1 869478 L2257 2023 4432 955*2^2887934+1 869358 L4958 2020 4433 8300*171^389286+1 869279 L5410 2023 4434 303*2^2887603-1 869258 L5184 2022 4435 937*2^2887130+1 869116 L5134 2020 4436 885*2^2886389+1 868893 L3924 2020 4437 763*2^2885928+1 868754 L2125 2020 4438 1071*2^2884844+1 868428 L3593 2020 4439 1181*2^2883981+1 868168 L3593 2020 4440 327*2^2881349-1 867375 L5545 2022 4441 51*2^2881227+1 867338 L3512 2013 4442 933*2^2879973+1 866962 L4951 2020 4443 261*2^2879941+1 866952 L4119 2015 4444 4085818^131072+1 866554 L4201 2016 Generalized Fermat 4445 65*2^2876718-1 865981 L2484 2016 4446 21*948^290747-1 865500 L4985 2019 4447 4013*2^2873250-1 864939 L1959 2014 4448 41*2^2872058-1 864578 L2484 2013 4449 359*2^2870935+1 864241 L1300 2020 4450 165*2^2870868+1 864220 L4119 2015 4451 961*2^2870596+1 864139 L1300 2020 Generalized Fermat 4452 665*2^2869847+1 863913 L2885 2020 4453 12*753^300293+1 863883 A59 2025 4454 283*2^2868750+1 863583 L3877 2015 4455 663703*20^663703-1 863504 L5765 2023 Generalized Woodall 4456 845*2^2868291+1 863445 L5100 2020 4457 3125*2^2867399+1 863177 L1754 2019 4458 701*2^2867141+1 863099 L1422 2020 4459 9*10^862868+1 862869 L4789 2024 Generalized Fermat 4460 3814944^131072+1 862649 L4201 2016 Generalized Fermat 4461 81030*91^440109-1 862197 A11 2024 4462 119*954^289255+1 861852 L5410 2022 4463 307*2^2862962+1 861840 L4740 2020 4464 147*2^2862651+1 861746 L1741 2015 4465 1207*2^2861901-1 861522 L1828 2011 4466 231*2^2860725+1 861167 L2873 2015 4467 193*2^2858812+1 860591 L2997 2015 4468 41079*78^454700-1 860341 A11 2025 4469 629*2^2857891+1 860314 L3035 2020 4470 493*2^2857856+1 860304 L5087 2020 4471 241*2^2857313-1 860140 L2484 2018 4472 707*2^2856331+1 859845 L5084 2020 4473 3615210^131072+1 859588 L4201 2016 Generalized Fermat 4474 949*2^2854946+1 859428 L2366 2020 4475 222361*2^2854840+1 859398 g403 2006 4476 725*2^2854661+1 859342 L5031 2020 4477 178972*5^1228284+1 858539 A42 2024 4478 399*2^2851994+1 858539 L4099 2020 4479 225*2^2851959+1 858528 L3941 2015 4480 247*2^2851602+1 858421 L3865 2015 4481 183*2^2850321+1 858035 L2117 2015 4482 1191*2^2849315+1 857733 L1188 2020 4483 717*2^2848598+1 857517 L1204 2020 4484 795*2^2848360+1 857445 L4099 2020 4485 4242104*15^728840-1 857189 L5410 2023 4486 2*647^304931+1 857133 L550 2025 Divides Phi(647^304931,2) 4487 3450080^131072+1 856927 L4201 2016 Generalized Fermat 4488 705*2^2846638+1 856927 L1808 2020 4489 369*2^2846547+1 856899 L4099 2020 4490 233*2^2846392-1 856852 L2484 2021 4491 223952*91^437353-1 856798 A11 2024 4492 955*2^2844974+1 856426 L1188 2020 4493 753*2^2844700+1 856343 L1204 2020 4494 11138*745^297992-1 855884 L4189 2019 4495 111*2^2841992+1 855527 L1792 2015 4496 44*744^297912-1 855478 L5410 2021 4497 649*2^2841318+1 855325 L4732 2020 4498 228*912^288954-1 855305 L5410 2022 4499 305*2^2840155+1 854975 L4907 2020 4500 914*871^290787-1 854923 L5787 2023 4501 1149*2^2839622+1 854815 L2042 2020 4502 95*2^2837909+1 854298 L3539 2013 4503 199*2^2835667-1 853624 L2484 2019 4504 595*2^2833406+1 852943 L4343 2020 4505b 4468*108^419454-1 852932 A11 2025 4506 1101*2^2832061+1 852539 L4930 2020 4507 813*2^2831757+1 852447 L4951 2020 4508 435*2^2831709+1 852432 L4951 2020 4509 38*500^315752-1 852207 A21 2024 4510 13613*82^445251-1 852132 A11 2024 4511 393*2^2828738-1 851538 L2257 2023 4512 543*2^2828217+1 851381 L4746 2019 4513d 13*2022^257457+1 851098 L6279 2025 4514 68*1010^283267+1 851027 L5778 2023 4515 704*249^354745+1 850043 L5410 2019 4516c 127682607413*2^2822945+1 849803 L5327 2025 4517 1001*2^2822037+1 849521 L1209 2019 4518 84466*5^1215373-1 849515 L3562 2013 4519 97*2^2820650+1 849103 L2163 2013 4520 381*2^2820157-1 848955 L2257 2023 4521 43814*91^433332-1 848920 A32 2024 4522 107*2^2819922-1 848884 L2484 2013 4523 84256*3^1778899+1 848756 L4789 2018 4524 45472*3^1778899-1 848756 L4789 2018 4525 495*2^2819449-1 848742 L3994 2024 4526 14804*3^1778530+1 848579 L4064 2021 4527 497*2^2818787+1 848543 L4842 2019 4528 97*2^2818306+1 848397 L3262 2013 4529 313*2^2817751-1 848231 L802 2021 4530d 25489*58^480810+1 847879 A11 2025 4531 177*2^2816050+1 847718 L129 2012 4532 585*2^2816000-1 847704 L5819 2024 4533 553*2^2815596+1 847582 L4980 2019 4534 1071*2^2814469+1 847243 L3035 2019 4535 105*2^2813000+1 846800 L3200 2015 4536 1115*2^2812911+1 846774 L1125 2019 4537 96*10^846519-1 846521 L2425 2011 Near-repdigit 4538 763*2^2811726+1 846417 L3919 2019 4539 1125*2^2811598+1 846379 L4981 2019 4540 891*2^2810100+1 845928 L4981 2019 4541 441*2^2809881+1 845862 L4980 2019 4542e 14016*58^479652+1 845836 A73 2025 4543 499*2^2809261-1 845675 L5516 2024 4544 711*2^2808473+1 845438 L1502 2019 4545 1089*2^2808231+1 845365 L4687 2019 4546 63*2^2807130+1 845033 L3262 2013 4547 1083*2^2806536+1 844855 L3035 2019 4548 675*2^2805669+1 844594 L1932 2019 4549 819*2^2805389+1 844510 L3372 2019 4550 1027*2^2805222+1 844459 L3035 2019 4551 437*2^2803775+1 844024 L3168 2019 4552 29113*820^289614+1 843886 A50 2024 4553 381*2^2801281-1 843273 L2257 2023 4554 4431*372^327835-1 842718 L5410 2019 4555 150344*5^1205508-1 842620 L3547 2013 4556 311*2^2798459+1 842423 L4970 2019 4557 81*2^2797443-1 842117 L3887 2021 4558 400254*127^400254+1 842062 g407 2013 Generalized Cullen 4559 2639850^131072+1 841690 L4249 2016 Generalized Fermat 4560 43*2^2795582+1 841556 L2842 2013 4561 1001*2^2794357+1 841189 L1675 2019 4562 117*2^2794014+1 841085 L1741 2015 4563 1962*5^1203024-1 840881 A63 2025 4564 1057*2^2792700+1 840690 L1675 2019 4565 345*2^2792269+1 840560 L1754 2019 4566 267*2^2792074-1 840501 L1817 2024 4567 711*2^2792072+1 840501 L4256 2019 4568 293*2^2791482-1 840323 A27 2024 4569 42896*78^444110-1 840303 A11 2025 4570 315*2^2791414-1 840302 L2235 2021 4571 973*2^2789516+1 839731 L3372 2019 4572 27602*3^1759590+1 839543 L4064 2021 4573 2187*2^2786802+1 838915 L1745 2019 4574 15*2^2785940+1 838653 p286 2012 4575 333*2^2785626-1 838560 L802 2021 4576 1337*2^2785444-1 838506 L4518 2017 4577 711*2^2784213+1 838135 L4687 2019 4578 58582*91^427818+1 838118 L5410 2020 4579 923*2^2783153+1 837816 L1675 2019 4580 1103*2^2783149+1 837815 L3784 2019 4581 20708*82^437279-1 836875 A48 2024 4582 297*2^2778276-1 836347 A27 2024 4583 485*2^2778151+1 836310 L1745 2019 4584 600921*2^2776014-1 835670 g337 2017 4585 1129*2^2774934+1 835342 L1774 2019 4586 750*1017^277556-1 834703 L4955 2021 4587 8700*241^350384-1 834625 L5410 2019 4588 1023*2^2772512+1 834613 L4724 2019 4589 656*249^348030+1 833953 L5410 2019 4590 92*10^833852-1 833854 L4789 2018 Near-repdigit 4591 437*2^2769299+1 833645 L3760 2019 4592 967*2^2768408+1 833377 L3760 2019 4593 2280466^131072+1 833359 L4201 2016 Generalized Fermat 4594 1171*2^2768112+1 833288 L2676 2019 4595 57*2^2765963+1 832640 L3262 2013 4596 1323*2^2764024+1 832058 L1115 2019 4597 189*2^2762731-1 831668 A27 2024 4598 471*2^2762718-1 831664 L5516 2023 4599 115*2^2762111-1 831481 A27 2024 4600 77*2^2762047+1 831461 L3430 2013 4601 745*2^2761514+1 831302 L1204 2019 4602 2194180^131072+1 831164 L4276 2016 Generalized Fermat 4603 543*2^2760224-1 830913 L5516 2023 4604 7*10^830865+1 830866 p342 2014 4605 893*2^2758841+1 830497 L4826 2019 4606 593*2^2757554-1 830110 L5516 2023 4607 557*2^2757276-1 830026 L5516 2023 4608b 10129*108^407936-1 829511 A11 2025 4609 537*2^2755164+1 829390 L3035 2019 4610 225*370^322863-1 829180 A14 2024 4611 579*2^2754370+1 829151 L1823 2019 4612 441*2^2754188+1 829096 L2564 2019 Generalized Fermat 4613 455*2^2754132-1 829080 L5516 2023 4614 139*2^2751839-1 828389 A27 2024 4615 677*792^285769-1 828369 L541 2023 4616 215*2^2751022-1 828143 L2484 2018 4617 337*2^2750860+1 828094 L4854 2019 4618 701*2^2750267+1 827916 L3784 2019 4619 467*2^2749195+1 827593 L1745 2019 4620 245*2^2748663+1 827433 L3173 2015 4621 591*2^2748315+1 827329 L3029 2019 4622 205*2^2747571-1 827104 L1817 2024 4623 57*2^2747499+1 827082 L3514 2013 Divides Fermat F(2747497) 4624 1007*2^2747268-1 827014 L4518 2022 4625 1089*2^2746155+1 826679 L2583 2019 4626 707*2^2745815+1 826576 L3760 2019 4627e 14016*58^468332+1 825874 A68 2025 4628 525*2^2743252-1 825804 L5516 2023 4629 459*2^2742310+1 825521 L4582 2019 4630 777*2^2742196+1 825487 L3919 2019 4631 609*2^2741078+1 825150 L3091 2019 4632 684*157^375674+1 824946 L5112 2022 4633 639*2^2740186+1 824881 L4958 2019 4634 905*2^2739805+1 824767 L4958 2019 4635 119*954^276761+1 824625 L5410 2022 4636 1955556^131072+1 824610 L4250 2015 Generalized Fermat 4637f 1741*168^370406-1 824272 A11 2025 4638 777*2^2737282+1 824007 L1823 2019 4639 224*938^277168-1 823802 A11 2025 4640 765*2^2735232+1 823390 L1823 2019 4641 609*2^2735031+1 823330 L1823 2019 4642 9*10^823037+1 823038 L4789 2024 4643 305*2^2733989+1 823016 L1823 2019 4644 165*2^2732983+1 822713 L1741 2015 4645 1133*2^2731993+1 822415 L4687 2019 4646 251*2^2730917+1 822091 L3924 2015 4647 189*2^2730633-1 822005 A27 2024 4648 1185*2^2730620+1 822002 L4948 2019 4649 (10^410997+1)^2-2 821995 p405 2022 4650 173*2^2729905+1 821786 L3895 2015 4651 285*2^2728979-1 821507 A27 2024 4652 1981*2^2728877-1 821478 L1134 2018 4653 693*2^2728537+1 821375 L3035 2019 4654 501*2^2728224+1 821280 L3035 2019 4655 763*2^2727928+1 821192 L3924 2019 4656 553*2^2727583-1 821088 L5516 2023 4657 5292*820^281664+1 820721 A11 2024 4658 465*2^2726085-1 820637 L5516 2023 4659 291*2^2725533-1 820470 L1817 2024 4660 10*743^285478+1 819606 L4955 2019 4661 17*2^2721830-1 819354 p279 2010 4662 1006*639^291952+1 819075 L4444 2021 4663 1101*2^2720091+1 818833 L4935 2019 4664 1766192^131072+1 818812 L4231 2015 Generalized Fermat 4665 555*2^2719105-1 818535 L5516 2023 4666 165*2^2717378-1 818015 L2055 2012 4667 495*2^2717011-1 817905 L5516 2023 4668 68633*2^2715609+1 817485 L5105 2020 4669 1722230^131072+1 817377 L4210 2015 Generalized Fermat 4670 9574*5^1169232+1 817263 L5410 2021 4671 1717162^131072+1 817210 L4226 2015 Generalized Fermat 4672 133*2^2713410+1 816820 L3223 2015 4673 9022*96^411931-1 816563 L5410 2023 4674 17423*52^475727-1 816354 A11 2025 4675 45*2^2711732+1 816315 L1349 2012 4676 569*2^2711451+1 816231 L4568 2019 4677 567*2^2710898-1 816065 L5516 2023 4678 12830*3^1709456+1 815622 L5410 2021 4679 335*2^2708958-1 815481 L2235 2020 4680 93*2^2708718-1 815408 L1862 2016 4681 1660830^131072+1 815311 L4207 2015 Generalized Fermat 4682 837*2^2708160+1 815241 L4314 2019 4683 261*2^2707551-1 815057 A27 2024 4684 1005*2^2707268+1 814972 L4687 2019 4685 13*458^306196+1 814748 L3610 2015 4686 253*2^2705844+1 814543 L4083 2015 4687 657*2^2705620+1 814476 L4907 2019 4688 39*2^2705367+1 814399 L1576 2013 Divides GF(2705360,3) 4689 405*2^2704471-1 814130 L5516 2023 4690 303*2^2703864+1 813947 L1204 2019 4691 141*2^2702160+1 813434 L1741 2015 4692 753*2^2701925+1 813364 L4314 2019 4693 133*2^2701452+1 813221 L3173 2015 4694 58434*5^1162930+1 812858 A11 2024 4695 521*2^2700095+1 812813 L4854 2019 4696 393*2^2698956+1 812470 L1823 2019 4697 417*2^2698652+1 812378 L3035 2019 4698 525*2^2698118+1 812218 L1823 2019 4699 3125*2^2697651+1 812078 L3924 2019 4700 287*2^2697536-1 812042 A27 2024 4701 153*2^2697173+1 811933 L3865 2015 4702 1560730^131072+1 811772 L4201 2015 Generalized Fermat 4703 26*3^1700041+1 811128 L4799 2020 4704 1538654^131072-1538654^65536+1 810961 L4561 2017 Generalized unique 4705 11*2^2691961+1 810363 p286 2013 Divides GF(2691960,12) 4706 555*2^2691334-1 810176 L5516 2023 4707 58*536^296735-1 809841 L5410 2021 4708 33016*3^1696980+1 809670 L5366 2021 4709 7335*2^2689080-1 809498 L4036 2015 4710 1049*2^2688749+1 809398 L4869 2018 4711 120*957^271487-1 809281 L541 2023 4712 329*2^2688221+1 809238 L3035 2018 4713 1578*37^515979-1 809163 p443 2024 4714 865*2^2687434+1 809002 L4844 2018 4715 989*2^2686591+1 808748 L2805 2018 4716 136*904^273532+1 808609 L5410 2020 4717 243*2^2685873+1 808531 L3865 2015 4718 909*2^2685019+1 808275 L3431 2018 4719 1455*2^2683954-6325241166627*2^1290000-1 807954 p423 2021 Arithmetic progression (3,d=1455*2^2683953-6325241166627*2^1290000) 4720 1455*2^2683953-1 807954 L1134 2020 4721 11210*241^339153-1 807873 L5410 2019 4722 1456746^131072-1456746^65536+1 807848 L4561 2017 Generalized unique 4723 975*2^2681840+1 807318 L4155 2018 4724 999*2^2681353-1 807171 L4518 2022 4725 295*2^2680932+1 807044 L1741 2015 4726 275*2^2679936-1 806744 A27 2024 4727 1427604^131072-1427604^65536+1 806697 L4561 2017 Generalized unique 4728 575*2^2679711+1 806677 L2125 2018 4729 46533*52^469992-1 806513 L6248 2025 4730 2386*52^469972+1 806477 L4955 2019 4731 2778*991^269162+1 806433 p433 2023 4732 10*80^423715-1 806369 p247 2023 4733 219*2^2676229+1 805628 L1792 2015 4734 637*2^2675976+1 805552 L3035 2018 4735 1395583^131072-1395583^65536+1 805406 L4561 2017 Generalized unique 4736 951*2^2674564+1 805127 L1885 2018 4737 531*2^2673250-1 804732 L5516 2023 4738 1372930^131072+1 804474 g236 2003 Generalized Fermat 4739 662*1009^267747-1 804286 L5410 2020 4740 261*2^2671677+1 804258 L3035 2015 4741 895*2^2671520+1 804211 L3035 2018 4742 1361244^131072+1 803988 g236 2004 Generalized Fermat 4743 789*2^2670409+1 803877 L3035 2018 4744 256*11^771408+1 803342 L3802 2014 Generalized Fermat 4745 503*2^2668529+1 803310 L4844 2018 4746 255*2^2668448+1 803286 L1129 2015 4747 4189*2^2666639-1 802742 L1959 2017 4748 539*2^2664603+1 802129 L4717 2018 4749 3^1681130+3^445781+1 802103 CH9 2022 4750 26036*745^279261-1 802086 L4189 2020 4751 295*2^2663855-1 801903 A27 2024 4752 1396*5^1146713-1 801522 L3547 2013 4753 676*687^282491-1 801418 L5426 2023 4754 267*2^2662090+1 801372 L3234 2015 Divides Fermat F(2662088) 4755 51*892^271541+1 801147 L5410 2019 4756 1851*24^580404+1 801084 A49 2024 4757 12124*477^299035-1 800975 A11 2025 4758 297*2^2660048+1 800757 L3865 2015 4759 133*2^2658587-1 800317 L1817 2024 4760 99*2^2658496-1 800290 L1862 2021 4761a 580848*40^499188+1 799735 A11 2025 4762 851*2^2656411+1 799663 L4717 2018 4763 487*2^2655008+1 799240 L3760 2018 4764 153*2^2654686-1 799143 A27 2024 4765 13291*108^392961-1 799061 A11 2025 4766 441*2^2652807-1 798578 L5516 2023 4767 77594*78^421949-1 798373 A11 2025 4768 371*2^2651663+1 798233 L3760 2018 4769 69*2^2649939-1 797713 L3764 2014 4770 207*2^2649810+1 797675 L1204 2015 4771 505*2^2649496+1 797581 L3760 2018 4772 993*2^2649256+1 797509 L3760 2018 4773 225*718^279185-1 797390 A11 2024 4774 517*2^2648698+1 797341 L3760 2018 4775 340*703^280035+1 797250 L4001 2018 4776 441*2^2648307+1 797223 L3760 2018 4777e 265666*1001^265666+1 797119 A67 2025 Generalized Cullen 4778 1129*2^2646590+1 796707 L3760 2018 4779 128*518^293315+1 796156 L4001 2019 4780 211*744^277219-1 796057 L5410 2021 4781 1181782^131072-1181782^65536+1 795940 L4142 2015 Generalized unique 4782 1176694^131072+1 795695 g236 2003 Generalized Fermat 4783 13*2^2642943-1 795607 L1862 2012 4784 73406*105^393484+1 795311 A11 2025 4785 119*410^304307+1 795091 L4294 2019 4786 501*2^2641052+1 795039 L3035 2018 4787 267*2^2640554-1 794889 A27 2024 4788 879*2^2639962+1 794711 L3760 2018 4789 57*2^2639528-1 794579 L2484 2016 4790 342673*2^2639439-1 794556 L53 2007 4791 813*2^2639092+1 794449 L2158 2018 4792 1147980^131072-1147980^65536+1 794288 L4142 2015 Generalized unique 4793 197*972^265841-1 794247 L4955 2022 4794 1027*2^2638186+1 794177 L3760 2018 4795 889*2^2637834+1 794071 L3545 2018 4796 175*2^2637399-1 793939 A27 2024 4797 1098*97^399549+1 793816 A11 2025 4798 421*2^2636975-1 793812 L5516 2023 4799 92182*5^1135262+1 793520 L3547 2013 4800 5608*70^429979+1 793358 L5390 2021 4801e 13107*58^449714+1 793043 A68 2025 4802 741*2^2634385+1 793032 L1204 2018 4803 99268*105^392060-1 792433 A11 2025 4804 34449*52^461672-1 792236 A11 2025 4805 465*2^2630496+1 791861 L1444 2018 4806 189*2^2630487+1 791858 L3035 2015 4807 87*2^2630468+1 791852 L3262 2013 4808 123454321*2^2630208+1 791780 L6049 2024 Generalized Fermat 4809 5252*53^459192-1 791778 A63 2025 4810 4*5^1132659-1 791696 L4965 2022 4811 1131*2^2629345+1 791515 L4826 2018 4812 967*2^2629344+1 791515 L3760 2018 4813 267*2^2629210+1 791474 L3035 2015 4814 154*883^268602+1 791294 L5410 2020 4815 237*2^2627713-1 791023 L1817 2024 4816 819*2^2627529+1 790968 L1387 2018 4817 183*2^2626880-1 790772 L1817 2024 4818 17152*5^1131205-1 790683 L3552 2013 4819 183*2^2626442+1 790641 L3035 2015 4820 137*2^2626238-1 790579 A27 2024 4821 813*2^2626224+1 790576 L4830 2018 4822 66*952^265412+1 790568 A52 2025 4823 807*2^2625044+1 790220 L1412 2018 4824 557*2^2624952-1 790193 L5516 2023 4825 4*10^789955+1 789956 L4789 2024 4826 1063730^131072+1 789949 g260 2013 Generalized Fermat 4827 1243*2^2623707-1 789818 L1828 2011 4828 693*2^2623557+1 789773 L3278 2018 4829 981*2^2622032+1 789314 L1448 2018 4830 145*2^2621020+1 789008 L3035 2015 4831 963*792^271959-1 788338 L5410 2021 4832 1798*165^354958+1 787117 p365 2024 4833 541*2^2614676+1 787099 L4824 2018 4834 545*2^2614294-1 786984 L5516 2023 4835 (10^393063-1)^2-2 786126 p405 2022 Near-repdigit 4836 1061*268^323645-1 785857 L5410 2019 4837 1662*483^292719-1 785646 L5410 2022 4838 984522^131072-984522^65536+1 785545 p379 2015 Generalized unique 4839 1071*2^2609316+1 785486 L3760 2018 4840 87*2^2609046+1 785404 L2520 2013 4841 18922*111^383954+1 785315 L4927 2021 4842 543*2^2608129+1 785128 L4822 2018 4843 377*2^2607856-1 785046 L2257 2023 4844 329584*5^1122935-1 784904 L3553 2013 4845 10*311^314806+1 784737 L3610 2014 4846 85806*52^457298-1 784730 A11 2025 4847 1019*2^2606525+1 784646 L1201 2018 4848 977*2^2606211+1 784551 L4746 2018 4849 13*2^2606075-1 784508 L1862 2011 4850 693*2^2605905+1 784459 L4821 2018 4851 6984*507^289940-1 784294 A54 2025 4852 147*2^2604275+1 783968 L1741 2015 4853 105*2^2603631+1 783774 L3459 2015 4854 93*2^2602483-1 783428 L1862 2016 4855 155*2^2602213+1 783347 L2719 2015 4856 545*2^2602018-1 783289 L5516 2023 4857e 787*58^444113+1 783165 A72 2025 4858 303*2^2601525+1 783140 L4816 2018 4859 711*2^2600535+1 782842 L4815 2018 4860 1133*2^2599345+1 782484 L4796 2018 4861 397*2^2598796+1 782319 L3877 2018 4862 421*2^2597273-1 781860 L5516 2023 4863 585*2^2596523-1 781635 L5819 2023 4864 203*2^2595752-1 781402 A27 2024 4865 1536*177^347600+1 781399 L5410 2020 4866 1171*2^2595736+1 781398 L3035 2018 4867 (146^180482+1)^2-2 781254 p405 2022 4868 579*2^2595159-1 781224 L5516 2023 4869 543*2^2594975-1 781169 L5516 2023 4870 909548^131072+1 781036 p387 2015 Generalized Fermat 4871 7386*82^408082-1 780997 A11 2024 4872 2*218^333925+1 780870 L4683 2017 4873 15690*29^533930+1 780823 L5787 2023 4874 1149*2^2593359+1 780682 L1125 2018 4875 225*2^2592918+1 780549 L1792 2015 Generalized Fermat 4876 495*2^2592802-1 780514 L5516 2023 4877 333*2^2591874-1 780235 L2017 2019 4878 883969^131072-883969^65536+1 779412 p379 2015 Generalized unique 4879 2154*687^274573-1 778956 L5752 2023 4880 872989^131072-872989^65536+1 778700 p379 2015 Generalized unique 4881 703*2^2586728+1 778686 L4256 2018 4882 2642*372^302825-1 778429 L5410 2019 4883 120*825^266904+1 778416 L4001 2018 4884 337*2^2585660+1 778364 L2873 2018 4885 31*2^2585311-1 778258 L4521 2022 4886 393*2^2584957+1 778153 L4600 2018 4887 151*2^2584480+1 778009 L4043 2015 4888 862325^131072-862325^65536+1 778001 p379 2015 Generalized unique 4889 385*2^2584280+1 777949 L4600 2018 4890 861088^131072-861088^65536+1 777919 p379 2015 Generalized unique 4891 65*2^2583720-1 777780 L2484 2015 4892 25*2^2583690+1 777770 L3249 2013 Generalized Fermat 4893 82*920^262409-1 777727 L4064 2015 4894 123*2^2583362-1 777672 L1817 2024 4895 1041*2^2582112+1 777297 L1456 2018 4896 153*2^2581916-1 777237 L1817 2024 4897 334310*211^334310-1 777037 p350 2012 Generalized Woodall 4898 229*2^2581111-1 776995 L1862 2017 4899 61*2^2580689-1 776867 L2484 2015 4900 1113*2^2580205+1 776723 L4724 2018 4901 51*2^2578652+1 776254 L3262 2013 4902 173*2^2578197+1 776117 L3035 2015 4903 833*2^2578029+1 776067 L4724 2018 4904 43724*105^383786-1 775709 A62 2025 4905 51729*52^452017-1 775668 A11 2025 4906 80*394^298731-1 775358 L541 2020 4907a 773*2^2575236-1 775227 A78 2025 4908 41748*78^409654-1 775109 A11 2025 4909 302*423^295123-1 775096 L5413 2021 4910 460*628^276994+1 775021 L5410 2020 4911 459*2^2573899+1 774824 L1204 2018 4912 593*2^2572634-1 774443 L5516 2023 4913 806883^131072-806883^65536+1 774218 p379 2015 Generalized unique 4914 3*2^2571360-3*2^1285680+1 774057 A3 2023 Generalized unique 4915 181*2^2570921-1 773927 A27 2024 4916 285*2^2570839-1 773903 A27 2024 4917a 735*2^2569577-1 773523 A27 2025 4918e 34396*58^438577+1 773404 A11 2025 4919 357*2^2568110-1 773081 L2257 2023 4920 627*2^2567718+1 772963 L3803 2018 4921 933*2^2567598+1 772927 L4724 2018 4922 757*2^2566468+1 772587 L2606 2018 4923 471*2^2566323-1 772543 L5516 2023 4924 231*2^2565263+1 772224 L3035 2015 4925 4*737^269302+1 772216 L4294 2016 Generalized Fermat 4926 941*2^2564867+1 772105 L4724 2018 4927 923*2^2563709+1 771757 L1823 2018 4928a 777*2^2563661-1 771742 A76 2025 4929 151*596^278054+1 771671 L4876 2019 4930 770202^131072-770202^65536+1 771570 p379 2015 Generalized unique 4931 303*2^2562423-1 771369 L2017 2018 4932 75*2^2562382-1 771356 L2055 2011 4933 147559*2^2562218+1 771310 L764 2012 4934 117*412^294963+1 771300 p268 2021 4935 829*2^2561730+1 771161 L1823 2018 4936 404*12^714558+1 771141 L1471 2011 4937 5*308^309755+1 770842 L4294 2024 4938 757576^131072-757576^65536+1 770629 p379 2015 Generalized unique 4939 295*80^404886+1 770537 L5410 2021 4940 1193*2^2559453+1 770476 L2030 2018 4941 205*2^2559417-1 770464 A27 2024 4942a 937*2^2559313-1 770433 A78 2025 4943 19*984^257291+1 770072 L5410 2020 4944a 861*2^2557321-1 769834 A27 2025 4945a 939*2^2556695-1 769645 A78 2025 4946 116*950^258458-1 769619 L5410 2021 4947c 6555*2^2556292-1 769525 A76 2025 4948 147314*91^392798-1 769513 A11 2024 4949 612497*18^612497+1 768857 L5765 2023 Generalized Cullen 4950 19861029*2^2553830+1 768787 A31 2024 4951 175*2^2553699-1 768743 A27 2024 4952 731582^131072-731582^65536+1 768641 p379 2015 Generalized unique 4953 479*2^2553152-1 768579 L5516 2023 4954 65*752^267180-1 768470 L5410 2020 4955 120312*91^392238-1 768416 A15 2024 4956 419*2^2552363+1 768341 L4713 2018 4957 369*2^2551955-1 768218 L2257 2023 4958 34*759^266676-1 768093 L4001 2019 4959 315*2^2550412+1 767754 L4712 2017 4960 415*2^2549590+1 767506 L4710 2017 4961 1152*792^264617-1 767056 L4955 2021 4962 151210*105^379481-1 767009 A52 2025 4963 693*2^2547752+1 766953 L4600 2017 4964 673*2^2547226+1 766795 L2873 2017 4965 169*2^2545526+1 766282 L2125 2015 Divides GF(2545525,10), generalized Fermat 4966a 745*2^2545451-1 766260 A77 2025 4967a 861*2^2545393-1 766243 A77 2025 4968 196*814^263256+1 766242 L5410 2021 Generalized Fermat 4969 183*2^2545116+1 766159 L3035 2015 4970f 29004*45^463428+1 766150 A68 2025 4971 311*2^2544778-1 766058 L2017 2018 4972 9*2^2543551+1 765687 L1204 2011 Divides Fermat F(2543548), GF(2543549,3), GF(2543549,6), GF(2543549,12) 4973 67*446^288982+1 765612 L4273 2020 4974 663*2^2542990+1 765520 L4703 2017 4975 705*2^2542464+1 765361 L2873 2017 4976 90896*105^378627-1 765282 A11 2025 4977 689186^131072+1 765243 g429 2013 Generalized Fermat 4978 745*2^2540726+1 764838 L4696 2017 4979 682504^131072-682504^65536+1 764688 p379 2015 Generalized unique 4980 64*177^340147-1 764644 L3610 2015 4981 421*2^2539336+1 764419 L4148 2017 4982 (2^64-189)*10^764330+1 764350 p439 2024 4983a 955*2^2538357-1 764125 A77 2025 4984 123287*2^2538167+1 764070 L3054 2012 4985 305716*5^1093095-1 764047 L3547 2013 4986 223*2^2538080+1 764041 L2125 2015 4987 83*2^2537641+1 763908 L1300 2013 4988a 795*2^2536899-1 763686 A27 2025 4989 543539*2^2536028-1 763427 L4187 2022 4990 3*2^2478785+1 746190 g245 2003 Divides Fermat F(2478782), GF(2478782,3), GF(2478776,6), GF(2478782,12) 4991 1183953*2^2367907-1 712818 L447 2007 Woodall 4992 150209!+1 712355 p3 2011 Factorial 4993 147855!-1 700177 p362 2013 Factorial 4994d 5321*2^2308643+1 694975 L5517 2025 Divides GF(2308641,5) 4995 3*2^2291610+1 689844 L753 2008 Divides GF(2291607,3), GF(2291609,5) 4996 2*11171^168429+1 681817 g427 2014 Divides Phi(11171^168429,2) 4997 11*2^2230369+1 671410 L2561 2011 Divides GF(2230368,3) 4998 2*179^294739+1 664004 g424 2011 Divides Phi(179^294739,2) 4999 2717*2^2196891+1 661334 L5239 2025 Divides GF(2196890,12) 5000 2*10271^164621+1 660397 g427 2014 Divides Phi(10271^164621,2) 5001 2*659^233973+1 659544 g424 2015 Divides Phi(659^233973,2) 5002 2*191^287901+1 656713 g424 2015 Divides Phi(191^287901,2) 5003 7*2^2167800+1 652574 g279 2007 Divides Fermat F(2167797), GF(2167799,5), GF(2167799,10) 5004 1179*2^2158475+1 649769 L3035 2014 Divides GF(2158470,6) 5005 3*2^2145353+1 645817 g245 2003 Divides Fermat F(2145351), GF(2145351,3), GF(2145352,5), GF(2145348,6), GF(2145352,10), GF(2145351,12) 5006 25*2^2141884+1 644773 L1741 2011 Divides Fermat F(2141872), GF(2141871,5), GF(2141872,10); generalized Fermat 5007 7*2^2139912+1 644179 g279 2007 Divides GF(2139911,12) 5008 189*2^2115473+1 636824 L3784 2014 Divides GF(2115468,6) 5009 107*2^2081775+1 626679 L3432 2013 Divides GF(2081774,6) 5010 2167*2^2050616+1 617301 L6095 2025 Divides GF(2050615,5) 5011 45*2^2014557+1 606444 L1349 2012 Divides GF(2014552,10) 5012 251749*2^2013995-1 606279 L436 2007 Woodall 5013 657*2^1998854+1 601718 L2520 2013 Divides GF(1998852,10) 5014 101*2^1988279+1 598534 L3141 2013 Divides GF(1988278,12) 5015 175*2^1962288+1 590710 L2137 2013 Divides GF(1962284,10) 5016 225*2^1960083+1 590047 L3548 2013 Divides GF(1960078,6) 5017 2*47^346759+1 579816 g424 2011 Divides Phi(47^346759,2) 5018 4401*2^1925824+1 579735 L5309 2024 Divides GF(1925823,5) 5019 71*2^1873569+1 564003 L1223 2011 Divides GF(1873568,5) 5020 13*2^1861732+1 560439 g267 2005 Divides GF(1861731,6) 5021 3*2^1832496+1 551637 p189 2007 Divides GF(1832490,3), GF(1832494,5) 5022 2*191^232149+1 529540 g424 2011 Divides Phi(191^232149,2) 5023 183*2^1747660+1 526101 L2163 2013 Divides Fermat F(1747656) 5024 110059!+1 507082 p312 2011 Factorial 5025 2^1667321-2^833661+1 501914 L137 2011 Gaussian Mersenne norm 38, generalized unique 5026 10^490030+10^309648+12345678987654321*10^245007+10^180382+1 490031 p363 2024 Palindrome 5027 10^490000+3*(10^7383-1)/9*10^241309+1 490001 p413 2021 Palindrome 5028 1098133#-1 476311 p346 2012 Primorial 5029 10^474500+999*10^237249+1 474501 p363 2014 Palindrome 5030 103040!-1 471794 p301 2010 Factorial 5031 135*2^1515894+1 456332 L1129 2013 Divides GF(1515890,10) 5032 131*2^1494099+1 449771 L2959 2012 Divides Fermat F(1494096) 5033 1467763*2^1467763-1 441847 L381 2007 Woodall 5034 4125*2^1445205-1 435054 L1959 2014 Arithmetic progression (2,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5035 94550!-1 429390 p290 2010 Factorial 5036 2415*2^1413627-1 425548 L1959 2014 Arithmetic progression (2,d=2415*2^1413627-1489088842587*2^1290000) [p199] 5037 2985*2^1404274-1 422733 L1959 2014 Arithmetic progression (2,d=2985*2^1404274-770527213395*2^1290000) [p199] 5038 2^1398269-1 420921 G1 1996 Mersenne 35 5039 17*2^1388355+1 417938 g267 2005 Divides GF(1388354,10) 5040 338707*2^1354830+1 407850 L124 2005 Cullen 5041 107*2^1337019+1 402485 L2659 2012 Divides GF(1337018,10) 5042 1389*2^1335434+1 402009 L1209 2015 Divides GF(1335433,10) 5043 10^400000+4*(10^102381-1)/9*10^148810+1 400001 p413 2021 Palindrome 5044 10^390636+999*10^195317+1 390637 p363 2014 Palindrome 5045 6325241166627*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=1455*2^2683953-6325241166627*2^1290000) 5046 5606879602425*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=33*2^2939063-5606879602425*2^1290000) 5047 2618163402417*2^1290001-1 388342 L927 2016 Sophie Germain (2p+1) 5048 4966510140375*2^1290000-1 388342 L3573 2020 Arithmetic progression (2,d=2227792035315*2^1290001) 5049 2996863034895*2^1290000+1 388342 L2035 2016 Twin (p+2) 5050 2996863034895*2^1290000-1 388342 L2035 2016 Twin (p) 5051 2723880039837*2^1290000-1 388342 L3829 2016 Arithmetic progression (1,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5052 2618163402417*2^1290000-1 388342 L927 2016 Sophie Germain (p) 5053 2060323099527*2^1290000-1 388342 L3606 2015 Arithmetic progression (2,d=69718264533*2^1290002) [p199] 5054 1938662032575*2^1290000-1 388341 L927 2015 Arithmetic progression (1,d=10032831585*2^1290001) [p199] 5055 1781450041395*2^1290000-1 388341 L3203 2015 Arithmetic progression (1,d=69718264533*2^1290002) [p199] 5056 15*2^1276177+1 384169 g279 2006 Divides GF(1276174,3), GF(1276174,10) 5057 1268979*2^1268979-1 382007 L201 2007 Woodall 5058 2^1257787-1 378632 SG 1996 Mersenne 34 5059 329*2^1246017+1 375092 L2085 2012 Divides Fermat F(1246013) 5060 843301#-1 365851 p302 2010 Primorial 5061 10^362600+666*10^181299+1 362601 p363 2014 Palindrome 5062 2^1203793-2^601897+1 362378 L192 2006 Gaussian Mersenne norm 37, generalized unique 5063 1195203*2^1195203-1 359799 L124 2005 Woodall 5064 2145*2^1099064+1 330855 L1792 2013 Divides Fermat F(1099061) 5065 10^320236+10^160118+1+(137*10^160119+731*10^159275)*(10^843-1)/999 320237 p44 2014 Palindrome 5066 10^320096+10^160048+1+(137*10^160049+731*10^157453)*(10^2595-1)/999 320097 p44 2014 Palindrome 5067 10^314727-8*10^157363-1 314727 p235 2013 Near-repdigit, palindrome 5068 10^300010+10^204235+12345678987654321*10^149997+10^95775+1 300011 x45 2024 Palindrome 5069 10^300000+5*(10^48153-1)/9*10^125924+1 300001 p413 2021 Palindrome 5070 10^300000+10^158172+11011*10^149998+10^141828+1 300001 p409 2024 Palindrome 5071 2^991961-2^495981+1 298611 x28 2005 Gaussian Mersenne norm 36, generalized unique 5072 11*2^960901+1 289262 g277 2005 Divides Fermat F(960897) 5073 1705*2^906110+1 272770 L3174 2012 Divides Fermat F(906108) 5074 2^859433-1 258716 SG 1994 Mersenne 33 5075 667071*2^667071-1 200815 g55 2000 Woodall 5076 18543637900515*2^666668-1 200701 L2429 2012 Sophie Germain (2p+1) 5077 18543637900515*2^666667-1 200701 L2429 2012 Sophie Germain (p) 5078 3756801695685*2^666669+1 200700 L1921 2011 Twin (p+2) 5079 3756801695685*2^666669-1 200700 L1921 2011 Twin (p) 5080 392113#+1 169966 p16 2001 Primorial 5081 213778324725*2^561418+1 169015 p430 2023 Cunningham chain 2nd kind (2p-1) 5082 213778324725*2^561417+1 169015 p430 2023 Cunningham chain 2nd kind (p) 5083 366439#+1 158936 p16 2001 Primorial 5084 2*893962950^16384+1 146659 p428 2023 Cunningham chain 2nd kind (2p-1) 5085 893962950^16384+1 146659 p427 2023 Cunningham chain 2nd kind (p), generalized Fermat 5086 481899*2^481899+1 145072 gm 1998 Cullen 5087c 100855907240235*2^480480-1 144653 A79 2025 Sophie Germain (2p+1) 5088c 100855907240235*2^480479-1 144653 A79 2025 Sophie Germain (p) 5089 669821552^16384-669821552^8192+1 144605 A18 2024 Twin (p+2), generalized unique 5090 669821552^16384-669821552^8192-1 144605 A18 2024 Twin (p) 5091 34790!-1 142891 p85 2002 Factorial 5092 (124750^27751-1)/124749 141416 p441 2024 Generalized repunit 5093 222710306^16384-222710306^8192+1 136770 A13 2024 Twin (p+2), generalized unique 5094 222710306^16384-222710306^8192-1 136770 A13 2024 Twin (p) 5095 (92365^24691-1)/92364 122599 CH14 2024 Generalized repunit 5096 9955858992*11^111111+1 115721 A25 2025 Twin (p+2) 5097 9955858992*11^111111-1 115721 A25 2025 Twin (p) 5098 7977227425*(2^368352-2^257849)+2^110505+1 110895 x52 2025 Consecutive primes arithmetic progression (2,d=6) 5099 7977227425*(2^368352-2^257849)+2^110505-5 110895 x52 2025 Consecutive primes arithmetic progression (1,d=6) 5100 (102936^21961-1)/102935 110076 CH14 2023 Generalized repunit 5101 2^364289-2^182145+1 109662 p58 2001 Gaussian Mersenne norm 35, generalized unique 5102 R(109297) 109297 E12 2025 Repunit, ECPP, unique 5103 361275*2^361275+1 108761 DS 1998 Cullen 5104 26951!+1 107707 p65 2002 Factorial 5105 15898321815*2^333645+1 100448 p364 2025 Twin (p+2) 5106 15898321815*2^333645-1 100448 p364 2025 Twin (p) 5107 47356235323005*2^333444-1 100391 L6077 2024 Sophie Germain (2p+1) 5108 47356235323005*2^333443-1 100391 L6077 2024 Sophie Germain (p) 5109 21480284945595*2^333444-1 100390 L6029 2024 Sophie Germain (2p+1) 5110 21480284945595*2^333443-1 100390 L6029 2024 Sophie Germain (p) 5111 65516468355*2^333333+1 100355 L923 2009 Twin (p+2) 5112 65516468355*2^333333-1 100355 L923 2009 Twin (p) 5113 954589277*(2^332267-2^110758)+2^221511+1 100032 p408 2025 Consecutive primes arithmetic progression (2,d=4) 5114 954589277*(2^332267-2^110758)+2^221511-3 100032 p408 2025 Consecutive primes arithmetic progression (1,d=4) 5115d U(65181,1,20770)+U(65181,1,20769) 99985 CH15 2025 Lehmer number 5116c U(48099,1,21000)-U(48099,1,20999) 98321 p452 2025 Lehmer number 5117 8797170843*(2^317583+2^190552)+2^127033+3 95612 p408 2025 Consecutive primes arithmetic progression (2,d=4) 5118 8797170843*(2^317583+2^190552)+2^127033-1 95612 p408 2025 Consecutive primes arithmetic progression (1,d=4) 5119 (7176^24691-1)/7175 95202 CH2 2017 Generalized repunit 5120c U(54381,1,19426)+U(54381,1,19425) 91987 CH15 2025 Lehmer number 5121d (58425^18757-1)/58424 89403 p441 2025 Generalized repunit 5122 R(86453) 86453 E3 2023 Repunit, ECPP, unique 5123 (84741735735*(2^190738-1)+4)*2^95369+5 86138 p408 2024 Consecutive primes arithmetic progression (2,d=6) 5124 (84741735735*(2^190738-1)+4)*2^95369-1 86138 p408 2024 Consecutive primes arithmetic progression (1,d=6) 5125 (74018908351*(2^190738-1)+4)*2^95369+3 86138 p408 2024 Consecutive primes arithmetic progression (2,d=4) 5126 (74018908351*(2^190738-1)+4)*2^95369-1 86138 p408 2024 Consecutive primes arithmetic progression (1,d=4) 5127 21480!-1 83727 p65 2001 Factorial 5128 (74968^17107-1)/74967 83390 p441 2024 Generalized repunit 5129 66629493*2^269335-1 81086 L3494 2025 Sophie Germain (2p+1) 5130 66629493*2^269334-1 81086 L3494 2025 Sophie Germain (p) 5131 1867513233*2^266698+1 80294 L527 2025 Twin (p+2) 5132 1867513233*2^266698-1 80294 L527 2025 Twin (p) 5133 201926367*2^266668+1 80284 A25 2024 Twin (p+2) 5134 201926367*2^266668-1 80284 A25 2024 Twin (p) 5135 107928275961*2^265876+1 80048 p364 2023 Cunningham chain 2nd kind (2p-1) 5136 107928275961*2^265875+1 80048 p364 2023 Cunningham chain 2nd kind (p) 5137 22942396995*2^265777-1 80018 L3494 2023 Sophie Germain (2p+1) 5138 22942396995*2^265776-1 80017 L3494 2023 Sophie Germain (p) 5139 183027*2^265441-1 79911 L983 2010 Sophie Germain (2p+1) 5140 183027*2^265440-1 79911 L983 2010 Sophie Germain (p) 5141 262419*2^262419+1 79002 DS 1998 Cullen 5142 160204065*2^262148+1 78923 L5115 2021 Twin (p+2) 5143 160204065*2^262148-1 78923 L5115 2021 Twin (p) 5144 3622179275715*2^256003+1 77078 x47 2020 Cunningham chain 2nd kind (2p-1) 5145 3622179275715*2^256002+1 77077 x47 2020 Cunningham chain 2nd kind (p) 5146 648621027630345*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5147 620366307356565*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5148 648621027630345*2^253824-1 76424 x24 2009 Sophie Germain (p) 5149 620366307356565*2^253824-1 76424 x24 2009 Sophie Germain (p) 5150 2570606397*2^252763+1 76099 p364 2020 Cunningham chain 2nd kind (2p-1) 5151 2570606397*2^252762+1 76099 p364 2020 Cunningham chain 2nd kind (p) 5152 1893611985^8192-1893611985^4096+1 76000 A13 2024 Twin (p+2), generalized unique 5153 1893611985^8192-1893611985^4096-1 76000 A13 2024 Twin (p) 5154 1589173270^8192-1589173270^4096+1 75376 A22 2024 Twin (p+2), generalized unique 5155 1589173270^8192-1589173270^4096-1 75376 A22 2024 Twin (p) 5156 (40734^16111-1)/40733 74267 CH2 2015 Generalized repunit 5157 (64758^15373-1)/64757 73960 p170 2018 Generalized repunit 5158 996094234^8192-996094234^4096+1 73715 A18 2024 Twin (p+2), generalized unique 5159 996094234^8192-996094234^4096-1 73715 A18 2024 Twin (p) 5160 895721531^8192-895721531^4096+1 73337 A7 2024 Twin (p+2), generalized unique 5161 895721531^8192-895721531^4096-1 73337 A7 2024 Twin (p) 5162 5^104824+104824^5 73269 E4 2023 ECPP 5163 795507696^8192-795507696^4096+1 72915 A5 2024 Twin (p+2), generalized unique 5164 795507696^8192-795507696^4096-1 72915 A5 2024 Twin (p) 5165 primV(111534,1,27000) 72683 x25 2013 Generalized Lucas primitive part 5166 691595760^8192-691595760^4096+1 72417 A13 2024 Twin (p+2), generalized unique 5167 691595760^8192-691595760^4096-1 72417 A13 2024 Twin (p) 5168 647020826^8192-647020826^4096+1 72180 A5 2024 Twin (p+2), generalized unique 5169 647020826^8192-647020826^4096-1 72180 A5 2024 Twin (p) 5170 629813654^8192-629813654^4096+1 72084 A5 2024 Twin (p+2), generalized unique 5171 629813654^8192-629813654^4096-1 72084 A5 2024 Twin (p) 5172d (V(6489,1,18903)-1)/(V(6489,1,3)-1) 72051 CH15 2025 Lehmer primitive part 5173d (V(27730,1,16209)+1)/(V(27730,1,9)+1) 71976 CH15 2025 Lehmer primitive part 5174 (58729^15091-1)/58728 71962 CH2 2017 Generalized repunit 5175 504983334^8192-504983334^4096+1 71298 A7 2024 Twin (p+2), generalized unique 5176 504983334^8192-504983334^4096-1 71298 A7 2024 Twin (p) 5177e (V(10981,1,17553)+1)/(V(10981,1,3)+1) 70914 CH15 2025 Lehmer primitive part, cyclotomy 5178f (2^216091-1)*(10^4950-15183422626)+1 70000 p449 2025 Twin (p+2) 5179f (2^216091-1)*(10^4950-15183422626)-1 70000 p449 2025 Twin (p) 5180d U(8478,1,17710)+U(8478,1,17709) 69567 p452 2025 Lehmer number 5181 (27987^15313-1)/27986 68092 CH12 2020 Generalized repunit 5182c U(1731,1,21000)-U(1731,1,20999) 68001 p452 2025 Lehmer number 5183 (23340^15439-1)/23339 67435 p170 2020 Generalized repunit 5184 10957126745325*2^222334-1 66943 L5843 2023 Sophie Germain (2p+1) 5185 20690306380455*2^222333-1 66943 L5843 2023 Sophie Germain (2p+1) 5186 10030004436315*2^222334-1 66943 L5843 2023 Sophie Germain (2p+1) 5187 8964472847055*2^222334-1 66943 L5843 2023 Sophie Germain (2p+1) 5188 10957126745325*2^222333-1 66942 L5843 2023 Sophie Germain (p) 5189 20690306380455*2^222332-1 66942 L5843 2023 Sophie Germain (p) 5190 10030004436315*2^222333-1 66942 L5843 2023 Sophie Germain (p) 5191 8964472847055*2^222333-1 66942 L5843 2023 Sophie Germain (p) 5192 (2^221509-1)/292391881 66673 E12 2023 Mersenne cofactor, ECPP 5193 (24741^15073-1)/24740 66218 p170 2020 Generalized repunit 5194 (63847^13339-1)/63846 64091 p170 2013 Generalized repunit 5195 1068669447*2^211089-1 63554 L4166 2020 Sophie Germain (2p+1) 5196 1068669447*2^211088-1 63553 L4166 2020 Sophie Germain (p) 5197 145823#+1 63142 p21 2000 Primorial 5198 U(15694,1,14700)+U(15694,1,14699) 61674 x45 2019 Lehmer number 5199 (28507^13831-1)/28506 61612 CH12 2020 Generalized repunit 5200 2^203789+2^101895+1 61347 O 2000 Gaussian Mersenne norm 34, generalized unique 5201 (26371^13681-1)/26370 60482 p170 2012 Generalized repunit 5202 U(24,-25,43201) 60391 CH12 2020 Generalized Lucas number 5203 99064503957*2^200009-1 60220 L95 2016 Sophie Germain (2p+1) 5204 99064503957*2^200008-1 60220 L95 2016 Sophie Germain (p) 5205 (4529^16381-1)/4528 59886 CH2 2012 Generalized repunit 5206 3^125330+1968634623437000 59798 E4 2022 ECPP 5207 (9082^15091-1)/9081 59729 CH2 2014 Generalized repunit 5208 primV(27655,1,19926) 57566 x25 2013 Generalized Lucas primitive part 5209 Ramanujan tau function at 199^4518 57125 E3 2022 ECPP 5210 (43326^12041-1)/43325 55827 p170 2017 Generalized repunit 5211 12443794755*2^184517-1 55556 L3494 2021 Sophie Germain (2p+1) 5212 21749869755*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 5213 14901867165*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 5214 12443794755*2^184516-1 55555 L3494 2021 Sophie Germain (p) 5215 21749869755*2^184515-1 55555 L3494 2021 Sophie Germain (p) 5216 14901867165*2^184515-1 55555 L3494 2021 Sophie Germain (p) 5217 607095*2^176312-1 53081 L983 2009 Sophie Germain (2p+1) 5218 607095*2^176311-1 53081 L983 2009 Sophie Germain (p) 5219b 2^176177+60947 53035 E11 2025 ECPP 5220 (38284^11491-1)/38283 52659 CH2 2013 Generalized repunit 5221 (2^174533-1)/193594572654550537/91917886778031629891960890057 52494 E5 2022 Mersenne cofactor, ECPP 5222 (940^17581-1)/939 52268 E2 2025 ECPP generalized repunit 5223 U(809,1,17325)-U(809,1,17324) 50378 x45 2019 Lehmer number 5224 10^50000+65859 50001 E3 2022 ECPP 5225 R(49081) 49081 c70 2022 Repunit, unique, ECPP 5226e (V(8275,1,12447)-1)/(V(8275,1,27)-1) 48659 x45 2025 Lehmer primitive part 5227 2^160423-2^80212+1 48293 O 2000 Gaussian Mersenne norm 33, generalized unique 5228 U(67,-1,26161) 47773 x45 2019 Generalized Lucas number 5229 primV(40395,-1,15588) 47759 x23 2007 Generalized Lucas primitive part 5230e (V(24444,1,10809)+1)/(V(24444,1,9)+1) 47393 x45 2025 Lehmer primitive part 5231 primV(53394,-1,15264) 47200 CH4 2007 Generalized Lucas primitive part 5232 151023*2^151023-1 45468 g25 1998 Woodall 5233d (2^151013-1)/61157791169561859593299975690769 45428 E5 2025 Mersenne cofactor, ECPP 5234 24157096*104561#+1 45260 p364 2025 Arithmetic progression (4,d=6519272*104561#) 5235 17637824*104561#+1 45259 p364 2025 Arithmetic progression (3,d=6519272*104561#) 5236 11118552*104561#+1 45259 p364 2025 Arithmetic progression (2,d=6519272*104561#) 5237 4599280*104561#+1 45259 p364 2025 Arithmetic progression (1,d=6519272*104561#) 5238 2^148227+60443 44621 E11 2024 ECPP 5239 U(52245,1,9241)+U(52245,1,9240) 43595 x45 2019 Lehmer number 5240 71509*2^143019-1 43058 g23 1998 Woodall, arithmetic progression (2,d=(143018*2^83969-80047)*2^59049) [x12] 5241 U(2449,-1,12671) 42939 x45 2018 Generalized Lucas number, cyclotomy 5242c (2^141079+1)/3 42469 E5 2025 Wagstaff, ECPP, generalized Lucas number 5243 V(202667) 42355 E4 2023 Lucas number, ECPP 5244a gcd(primU(48099,1,20999),lucasU(48099,1,10500)-lucasU(48099,1,10499))/\ 41999 42229 E1 2025 ECPP 5245 2^139964+35461 42134 E11 2024 ECPP 5246 U(201107) 42029 E11 2023 Fibonacci number, ECPP 5247e -E(12146)/1226039954339 41943 E1 2025 Euler irregular, ECPP 5248 (2^138937+1)/3 41824 E12 2023 Wagstaff, ECPP, generalized Lucas number 5249e (2^136883-1)/536581361 41198 E5 2025 Mersenne cofactor, ECPP 5250 E(11848)/7910215 40792 E8 2022 Euler irregular, ECPP 5251 V(193201) 40377 E4 2023 Lucas number, ECPP 5252 p(1289844341) 40000 c84 2020 Partitions, ECPP 5253 primV(4836,1,16704) 39616 x25 2013 Generalized Lucas primitive part 5254 (2^130439-1)/260879 39261 E9 2023 Mersenne cofactor, ECPP 5255 U(21041,-1,9059) 39159 x45 2018 Generalized Lucas number, cyclotomy 5256 V(183089) 38264 E4 2023 Lucas number, ECPP 5257 (2^127031+1)/3 38240 E5 2023 Wagstaff, ECPP, generalized Lucas number 5258 U(5617,-1,9539) 35763 x45 2019 Generalized Lucas number, cyclotomy 5259 (2^117239+1)/3 35292 E2 2022 Wagstaff, ECPP, generalized Lucas number 5260 p(1000007396) 35219 E4 2022 Partitions, ECPP 5261f 1864754598*Bern(12306)/7988337402668760859 35160 E1 2025 Irregular, ECPP 5262 (V(60145,1,7317)-1)/(V(60145,1,27)-1) 34841 x45 2019 Lehmer primitive part 5263 primV(38513,-1,11502) 34668 x23 2006 Generalized Lucas primitive part 5264 E(10168)/1097239206089665 34323 E10 2023 Euler irregular, ECPP 5265e Phi(717,-10^72) 34273 E1 2025 Unique, ECPP 5266 primV(9008,1,16200) 34168 x23 2005 Generalized Lucas primitive part 5267 (V(28138,1,7587)-1)/(V(28138,1,27)-1) 33637 x45 2019 Lehmer primitive part 5268 V(159521) 33338 E4 2023 Lucas number, ECPP 5269 U(35896,1,7260)+U(35896,1,7259) 33066 x45 2019 Lehmer number 5270 primV(6586,1,16200) 32993 x25 2013 Generalized Lucas primitive part 5271 U(1624,-1,10169) 32646 x45 2018 Generalized Lucas number, cyclotomy 5272 (V(48395,1,6921)-1)/(V(48395,1,9)-1) 32382 x45 2019 Lehmer primitive part 5273 7300751*74719#-1 32315 p364 2025 Arithmetic progression (4,d=1475275*74719#) 5274 5825476*74719#-1 32314 p364 2025 Arithmetic progression (3,d=1475275*74719#) 5275 4350201*74719#-1 32314 p364 2025 Arithmetic progression (2,d=1475275*74719#) 5276 2874926*74719#-1 32314 p364 2025 Arithmetic progression (1,d=1475275*74719#) 5277 2^106693+2^53347+1 32118 O 2000 Gaussian Mersenne norm 32, generalized unique 5278 primV(28875,1,13500) 32116 x25 2016 Generalized Lucas primitive part 5279e Phi(34051,-10) 32033 E1 2025 Unique, ECPP 5280 (2^106391-1)/286105171290931103 32010 c95 2022 Mersenne cofactor, ECPP 5281e Phi(23023,-100) 31681 E1 2025 Unique, ECPP 5282 (2^105269-1)/308568703561/44450301591671/36340288035156065237111970871\ /304727251426107823036749303510161 31603 E17 2024 Mersenne cofactor, ECPP 5283e Phi(4613,-100000000) 31585 E1 2025 Unique, ECPP 5284 (V(77786,1,6453)+1)/(V(77786,1,27)+1) 31429 x25 2012 Lehmer primitive part 5285f Phi(10295,-10000) 31360 E1 2025 Unique, ECPP 5286 primV(10987,1,14400) 31034 x25 2005 Generalized Lucas primitive part 5287 V(148091) 30950 c81 2015 Lucas number, ECPP 5288 U(148091) 30949 x49 2021 Fibonacci number, ECPP 5289 -E(9266)/2129452307358569777 30900 E10 2023 Euler irregular, ECPP 5290 Phi(11589,-10000) 30897 E1 2022 Unique,ECPP 5291 (V(73570,1,6309)-1)/(V(73570,1,9)-1) 30661 x25 2016 Lehmer primitive part 5292 V(145703)/179214691 30442 E4 2023 Lucas cofactor, ECPP 5293 V(145193)/38621339 30336 E4 2023 Lucas cofactor, ECPP 5294 1524633857*2^99902-1 30083 p364 2022 Arithmetic progression (4,d=928724769*2^99901) 5295 2120542945*2^99901-1 30083 p364 2022 Arithmetic progression (3,d=928724769*2^99901) 5296 18622159*2^99907-1 30083 p364 2022 Arithmetic progression (2,d=928724769*2^99901) 5297 263093407*2^99901-1 30082 p364 2022 Arithmetic progression (1,d=928724769*2^99901) 5298 Phi(36547,-10) 29832 E1 2022 Unique, ECPP 5299 49363*2^98727-1 29725 Y 1997 Woodall 5300 U(2341,-1,8819) 29712 x25 2008 Generalized Lucas number 5301 primV(24127,-1,6718) 29433 CH3 2005 Generalized Lucas primitive part 5302 primV(12215,-1,13500) 29426 x25 2016 Generalized Lucas primitive part 5303 V(140057) 29271 c76 2014 Lucas number,ECPP 5304 U(1404,-1,9209) 28981 CH10 2018 Generalized Lucas number, cyclotomy 5305 U(23396,1,6615)+U(23396,1,6614) 28898 x45 2019 Lehmer number 5306 (2^95369+1)/3 28709 x49 2021 Generalized Lucas number, Wagstaff, ECPP 5307 primV(45922,1,11520) 28644 x25 2011 Generalized Lucas primitive part 5308 primV(205011) 28552 x39 2009 Lucas primitive part 5309 -30*Bern(10264)/262578313564364605963 28506 c94 2021 Irregular, ECPP 5310 U(16531,1,6721)-U(16531,1,6720) 28347 x36 2007 Lehmer number 5311 (V(28286,1,6309)+1)/(V(28286,1,9)+1) 28045 x25 2016 Lehmer primitive part 5312 U(5092,1,7561)+U(5092,1,7560) 28025 x25 2014 Lehmer number 5313 U(132409)/2882138154561602271737 27651 E16 2024 Fibonacci cofactor, ECPP 5314 90825*2^90825+1 27347 Y 1997 Cullen 5315 U(5239,1,7350)-U(5239,1,7349) 27333 CH10 2017 Lehmer number 5316 U(130021) 27173 x48 2021 Fibonacci number, ECPP 5317 primV(5673,1,13500) 27028 CH3 2005 Generalized Lucas primitive part 5318 primV(44368,1,9504) 26768 CH3 2005 Generalized Lucas primitive part 5319 546351925018076058*Bern(9702)/129255048976106804786904258880518941 26709 c77 2021 Irregular, ECPP 5320 22359307*60919#+1 26383 p364 2022 Arithmetic progression (4,d=5210718*60919#) 5321 17148589*60919#+1 26383 p364 2022 Arithmetic progression (3,d=5210718*60919#) 5322 17029817*60919#+1 26383 p364 2022 Arithmetic progression (4,d=1809778*60919#) 5323 15220039*60919#+1 26383 p364 2022 Arithmetic progression (3,d=1809778*60919#) 5324 13410261*60919#+1 26383 p364 2022 Arithmetic progression (2,d=1809778*60919#) 5325 11937871*60919#+1 26382 p364 2022 Arithmetic progression (2,d=5210718*60919#) 5326 11600483*60919#+1 26382 p364 2022 Arithmetic progression (1,d=1809778*60919#) 5327 6727153*60919#+1 26382 p364 2022 Arithmetic progression (1,d=5210718*60919#) 5328 (2^87691-1)/806957040167570408395443233 26371 E1 2022 Mersenne cofactor, ECPP 5329 primV(10986,-1,9756) 26185 x23 2005 Generalized Lucas primitive part 5330 (2^86371-1)/41681512921035887 25984 E2 2022 Mersenne cofactor, ECPP 5331 (2^86137-1)/2584111/7747937967916174363624460881 25896 c84 2022 Mersenne cofactor, ECPP 5332 primV(11076,-1,12000) 25885 x25 2005 Generalized Lucas primitive part 5333 -E(7894)/19 25790 E10 2023 Euler irregular, ECPP 5334 2^85237+2^42619+1 25659 x16 2000 Gaussian Mersenne norm 31, generalized unique 5335 V(122869)/40546771/1243743094029841 25656 E1 2024 Lucas cofactor, ECPP 5336 primU(183537) 25571 E1 2024 Fibonacci primitive part, ECPP 5337 primV(17505,1,11250) 25459 x25 2011 Generalized Lucas primitive part 5338 U(2325,-1,7561) 25451 x20 2013 Generalized Lucas number 5339 U(13084,-13085,6151) 25319 x45 2018 Generalized Lucas number, cyclotomy 5340 (2^84211-1)/1347377/31358793176711980763958121/33146416760423478241695\ 91561 25291 c95 2020 Mersenne cofactor, ECPP 5341 U(120937)/241873/13689853218820385381 25250 E1 2024 Fibonacci cofactor, ECPP 5342 primV(42,-1,23376) 25249 x23 2007 Generalized Lucas primitive part 5343 U(1064,-1065,8311) 25158 CH10 2018 Generalized Lucas number, cyclotomy 5344 primV(7577,-1,10692) 25140 x33 2007 Generalized Lucas primitive part 5345 (2^83339+1)/3 25088 c54 2014 ECPP, generalized Lucas number, Wagstaff 5346 (2^82939-1)/883323903012540278033571819073 24938 c84 2021 Mersenne cofactor, ECPP 5347 primV(194181) 24908 E1 2024 Lucas primitive part, ECPP 5348 primV(119162) 24903 E1 2024 Lucas primitive part, ECPP 5349 -E(7634)/1559 24828 E10 2023 Euler irregular, ECPP 5350 primU(118319) 24553 E1 2024 Fibonacci primitive part, ECPP 5351 U(1766,1,7561)-U(1766,1,7560) 24548 x25 2013 Lehmer number 5352 U(117167)/17658707237 24476 E1 2024 Fibonacci cofactor, ECPP 5353 V(116593)/120790349 24359 E4 2023 Lucas cofactor, ECPP 5354 primV(214470) 23895 E1 2024 Lucas primitive part, ECPP 5355 primU(115373) 23875 E1 2024 Fibonacci primitive part, ECPP 5356 U(1383,1,7561)+U(1383,1,7560) 23745 x25 2013 Lehmer number 5357 798*Bern(8766)/14670751334144820770719 23743 c94 2021 Irregular, ECPP 5358 Phi(11867,-100) 23732 c47 2021 Unique, ECPP 5359 primU(135421) 23725 E1 2024 Fibonacci primitive part, ECPP 5360 primV(143234) 23654 E1 2024 Lucas primitive part, ECPP 5361 (2^78737-1)/1590296767505866614563328548192658003295567890593 23654 E2 2022 Mersenne cofactor, ECPP 5362 Phi(35421,-10) 23613 c77 2021 Unique, ECPP 5363 6917!-1 23560 g1 1998 Factorial 5364 primU(164185) 23524 E1 2024 Fibonacci primitive part, ECPP 5365 2^77291+2^38646+1 23267 O 2000 Gaussian Mersenne norm 30, generalized unique 5366 primU(166737) 23231 E1 2024 Fibonacci primitive part, ECPP 5367 (V(59936,1,4863)+1)/(V(59936,1,3)+1) 23220 x25 2013 Lehmer primitive part 5368 U(1118,1,7561)-U(1118,1,7560) 23047 x25 2013 Lehmer number 5369 primA(275285) 23012 E1 2024 Lucas Aurifeuillian primitive part, ECPP 5370 primV(110723) 22997 E1 2024 Lucas primitive part, ECPP 5371 primV(180906) 22905 E1 2024 Lucas primitive part, ECPP 5372 (V(45366,1,4857)+1)/(V(45366,1,3)+1) 22604 x25 2013 Lehmer primitive part 5373 U(106663)/35892566541651557 22275 E1 2024 Fibonacci cofactor, ECPP 5374 348054*Bern(8286)/1570865077944473903275073668721 22234 E1 2022 Irregular, ECPP 5375 p(398256632) 22223 E1 2022 Partitions, ECPP 5376 U(105509)/144118801533126010445795676378394340544227572822879081 21997 E1 2022 Fibonacci cofactor, ECPP 5377 U(104911) 21925 c82 2015 Fibonacci number, ECPP 5378 primB(282035) 21758 E1 2023 Lucas Aurifeuillian primitive part, ECPP 5379 primA(276335) 21736 E1 2024 Lucas Aurifeuillian primitive part, ECPP 5380 Phi(1203,10^27) 21600 c47 2021 Unique, ECPP 5381 U(19258,-1,5039) 21586 x23 2007 Generalized Lucas number 5382 6380!+1 21507 g1 1998 Factorial 5383 primV(154281) 21495 E4 2023 Lucas primitive part, ECPP 5384 U(43100,1,4620)+U(43100,1,4619) 21407 x25 2016 Lehmer number 5385 -E(6658)/85079 21257 c77 2020 Euler irregular, ECPP 5386 Phi(39855,-10) 21248 c95 2020 Unique, ECPP 5387 (V(23354,1,4869)-1)/(V(23354,1,9)-1) 21231 x25 2013 Lehmer primitive part 5388 primA(296695) 21137 E1 2023 Lucas Aurifeuillian primitive part, ECPP 5389 U(15631,1,5040)-U(15631,1,5039) 21134 x25 2003 Lehmer number 5390 primA(413205) 21127 E1 2023 Lucas Aurifeuillian primitive part, ECPP 5391 U(35759,1,4620)+U(35759,1,4619) 21033 x25 2016 Lehmer number 5392 p(355646102) 21000 E1 2022 Partitions, ECPP 5393 V(100417)/713042903779101607511808799053206435494854433884796747437071\ 9436805470448849 20911 E1 2024 Lucas cofactor, ECPP 5394 p(350199893) 20838 E7 2022 Partitions, ECPP 5395 U(31321,1,4620)-U(31321,1,4619) 20767 x25 2016 Lehmer number 5396 primU(102689) 20715 E1 2024 Fibonacci primitive part, ECPP 5397 primU(105821) 20598 E1 2022 Fibonacci primitive part, ECPP 5398 primU(172179) 20540 E1 2022 Fibonacci primitive part, ECPP 5399 V(98081)/31189759/611955609270431/6902594225498651/641303018340927841 20442 E1 2024 Lucas cofactor, ECPP 5400 U(11200,-1,5039) 20400 x25 2004 Generalized Lucas number, cyclotomy 5401 4404139952163*2^67002+1 20183 p408 2024 Triplet (3) 5402 4404139952163*2^67002-1 20183 p408 2024 Triplet (2) 5403 4404139952163*2^67002-5 20183 E15 2024 Triplet (1), ECPP 5404 Phi(23749,-10) 20160 c47 2014 Unique, ECPP 5405 primV(112028) 20063 E1 2022 Lucas primitive part, ECPP 5406 1128330746865*2^66441-1 20013 p158 2020 Cunningham chain (4p+3) 5407 1128330746865*2^66440-1 20013 p158 2020 Cunningham chain (2p+1) 5408 1128330746865*2^66439-1 20013 p158 2020 Cunningham chain (p) 5409 4111286921397*2^66420+5 20008 c88 2019 Triplet (3) 5410 4111286921397*2^66420+1 20008 L4808 2019 Triplet (2) 5411 4111286921397*2^66420-1 20008 L4808 2019 Triplet (1) 5412 p(322610098) 20000 E1 2022 Partitions, ECPP 5413 primV(151521) 19863 E1 2022 Lucas primitive part, ECPP 5414 V(94823) 19817 c73 2014 Lucas number, ECPP 5415 U(8454,-1,5039) 19785 x25 2013 Generalized Lucas number 5416 (2^64381-1)/1825231878561264571177401910928543898820492254252817499611\ 8699181907547497 19308 E13 2024 Mersenne cofactor, ECPP 5417 V(91943)/551659/2390519/9687119153094919 19187 E1 2022 Lucas cofactor, ECPP 5418 (V(428,1,8019)-1)/(V(428,1,729)-1) 19184 E1 2022 Lehmer primitive part, ECPP 5419 V(91873)/3674921/193484539/167745030829 19175 E1 2022 Lucas cofactor, ECPP 5420 (2^63703-1)/42808417 19169 c59 2014 Mersenne cofactor, ECPP 5421 primU(137439) 19148 E1 2022 Fibonacci primitive part, ECPP 5422 primU(107779) 18980 E1 2022 Fibonacci primitive part, ECPP 5423 (U(162,1,8581)+U(162,1,8580))/(U(162,1,66)+U(162,1,65)) 18814 E1 2022 Lehmer primitive part, ECPP 5424 V(89849) 18778 c70 2014 Lucas number, ECPP 5425 primV(145353) 18689 c69 2013 ECPP, Lucas primitive part 5426 Phi(14943,-100) 18688 c47 2014 Unique, ECPP 5427 (U(859,1,6385)-U(859,1,6384))/(U(859,1,57)-U(859,1,56)) 18567 E1 2022 Lehmer primitive part, ECPP 5428 Phi(18827,10) 18480 c47 2014 Unique, ECPP 5429 primB(220895) 18465 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5430 primV(153279) 18283 E1 2022 Lucas primitive part, ECPP 5431 42209#+1 18241 p8 1999 Primorial 5432 (V(46662,1,3879)-1)/(V(46662,1,9)-1) 18069 x25 2012 Lehmer primitive part 5433 V(86477)/1042112515940998434071039 18049 c77 2020 Lucas cofactor, ECPP 5434 7457*2^59659+1 17964 Y 1997 Cullen 5435 primB(235015) 17856 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5436 primV(148197) 17696 E1 2022 Lucas primitive part, ECPP 5437 (V(447,1,6723)+1)/(V(447,1,81)+1) 17604 E1 2022 Lehmer primitive part, ECPP 5438 (2^58199-1)/237604901713907577052391 17497 c59 2015 Mersenne cofactor, ECPP 5439 Phi(26031,-10) 17353 c47 2014 Unique, ECPP 5440 primV(169830) 17335 E1 2022 Lucas primitive part, ECPP 5441 (V(561,1,6309)+1)/(V(561,1,9)+1) 17319 x25 2016 Lehmer primitive part 5442 (2^57131-1)/61481396117165983261035042726614288722959856631 17152 c59 2015 Mersenne cofactor, ECPP 5443 U(81839) 17103 p54 2001 Fibonacci number 5444 V(81671) 17069 c66 2013 Lucas number, ECPP 5445 primV(101510) 16970 E1 2022 Lucas primitive part, ECPP 5446 primV(86756) 16920 c74 2015 Lucas primitive part, ECPP 5447 V(80761)/570100885555095451 16861 c77 2020 Lucas cofactor, ECPP 5448 6521953289619*2^55555+1 16737 p296 2013 Triplet (3) 5449 6521953289619*2^55555-1 16737 p296 2013 Triplet (2) 5450 6521953289619*2^55555-5 16737 c58 2013 Triplet (1), ECPP 5451 primV(122754) 16653 c77 2021 Lucas primitive part, ECPP 5452 p(221444161) 16569 c77 2017 Partitions, ECPP 5453 primA(201485) 16535 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5454 U(78919)/15574900936381642440917 16471 c77 2020 Fibonacci cofactor, ECPP 5455 17484430616589*2^54201+5 16330 E14 2024 Consecutive primes arithmetic progression (3,d=6), ECPP 5456 17484430616589*2^54201-1 16330 p440 2024 Consecutive primes arithmetic progression (2,d=6) 5457 17484430616589*2^54201-7 16330 E14 2024 Consecutive primes arithmetic progression (1,d=6), ECPP 5458 primV(123573) 16198 c77 2019 Lucas primitive part, ECPP 5459 primB(225785) 16176 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5460 V(77417)/313991497376559420151 16159 c77 2020 Lucas cofactor, ECPP 5461 (2^53381-1)/15588960193/38922536168186976769/1559912715971690629450336\ 68006103 16008 c84 2017 Mersenne cofactor, ECPP 5462 -E(5186)/295970922359784619239409649676896529941379763 15954 c63 2018 Euler irregular, ECPP 5463 primV(121227) 15890 c77 2019 Lucas primitive part, ECPP 5464 Phi(2949,-100000000) 15713 c47 2013 Unique, ECPP 5465 primU(131481) 15695 c77 2019 Fibonacci primitive part, ECPP 5466 primV(120258) 15649 c77 2019 Lucas primitive part, ECPP 5467 (2^51487-1)/57410994232247/17292148963401772464767849635553 15455 c77 2018 Mersenne cofactor, ECPP 5468 primB(183835) 15368 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5469 primU(77387) 15319 c77 2019 Fibonacci primitive part, ECPP 5470 primB(181705) 15189 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5471 U(71983)/5614673/363946049 15028 c77 2018 Fibonacci cofactor, ECPP 5472 2494779036241*2^49800+13 15004 c93 2022 Consecutive primes arithmetic progression (3,d=6) 5473 2494779036241*2^49800+7 15004 c93 2022 Consecutive primes arithmetic progression (2,d=6) 5474 2494779036241*2^49800+1 15004 p408 2022 Consecutive primes arithmetic progression (1,d=6) 5475 primB(268665) 14972 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5476 Phi(5015,-10000) 14848 c47 2013 Unique, ECPP 5477 2^49207-2^24604+1 14813 x16 2000 Gaussian Mersenne norm 29, generalized unique 5478 214923707595*2^49073+1 14784 p364 2025 Cunningham chain 2nd kind (4p-3) 5479 primA(284895) 14626 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5480 U(69239)/1384781 14464 c77 2018 Fibonacci cofactor, ECPP 5481 primA(170575) 14258 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5482 V(68213)/7290202116115634431 14237 c77 2018 Lucas cofactor, ECPP 5483 p(158375386) 14011 E1 2022 Partitions, ECPP 5484 p(158295265) 14007 E1 2022 Partitions, ECPP 5485 p(158221457) 14004 E1 2022 Partitions, ECPP 5486 primU(67703) 13954 c77 2018 Fibonacci primitive part, ECPP 5487 U(66947)/12485272838388758877279873712131648167413 13951 c77 2017 Fibonacci cofactor, ECPP 5488 V(66533)/2128184670585621839884209100279 13875 c77 2018 Lucas cofactor, ECPP 5489 6*Bern(5534)/226840561549600012633271691723599339 13862 c71 2014 Irregular, ECPP 5490 4410546*Bern(5526)/9712202742835546740714595866405369616019 13840 c63 2018 Irregular,ECPP 5491 191279029*32003#+1 13773 p364 2025 Arithmetic progression (5,d=20571563*32003#) 5492 170707466*32003#+1 13773 p364 2025 Arithmetic progression (4,d=20571563*32003#) 5493 150135903*32003#+1 13773 p364 2025 Arithmetic progression (3,d=20571563*32003#) 5494 129564340*32003#+1 13773 p364 2025 Arithmetic progression (2,d=20571563*32003#) 5495 108992777*32003#+1 13773 p364 2025 Arithmetic progression (1,d=20571563*32003#) 5496 primB(163595) 13675 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5497 6*Bern(5462)/23238026668982614152809832227 13657 c64 2013 Irregular, ECPP 5498 56667641271*2^44441+5 13389 c99 2022 Triplet (3), ECPP 5499 56667641271*2^44441+1 13389 p426 2022 Triplet (2) 5500 56667641271*2^44441-1 13389 p426 2022 Triplet (1) 5501 V(64063)/464426465381142115542697818362662865912299 13347 E1 2024 Lucas cofactor, ECPP 5502 512792361*30941#+1 13338 p364 2022 Arithmetic progression (5,d=18195056*30941#) 5503 494597305*30941#+1 13338 p364 2022 Arithmetic progression (4,d=18195056*30941#) 5504 476402249*30941#+1 13338 p364 2022 Arithmetic progression (3,d=18195056*30941#) 5505 458207193*30941#+1 13338 p364 2022 Arithmetic progression (2,d=18195056*30941#) 5506 440012137*30941#+1 13338 p364 2022 Arithmetic progression (1,d=18195056*30941#) 5507 1815615642825*2^44046-1 13272 p395 2016 Cunningham chain (4p+3) 5508 1815615642825*2^44045-1 13272 p395 2016 Cunningham chain (2p+1) 5509 1815615642825*2^44044-1 13271 p395 2016 Cunningham chain (p) 5510 p(141528106) 13244 E6 2022 Partitions, ECPP 5511 p(141513546) 13244 E6 2022 Partitions, ECPP 5512 p(141512238) 13244 E6 2022 Partitions, ECPP 5513 p(141255053) 13232 E6 2022 Partitions, ECPP 5514 p(141150528) 13227 E6 2022 Partitions, ECPP 5515 p(141112026) 13225 E6 2022 Partitions, ECPP 5516 p(141111278) 13225 E6 2022 Partitions, ECPP 5517 p(140859260) 13213 E6 2022 Partitions, ECPP 5518 p(140807155) 13211 E6 2022 Partitions, ECPP 5519 p(140791396) 13210 E6 2022 Partitions, ECPP 5520 primU(94551) 13174 c77 2018 Fibonacci primitive part, ECPP 5521 primB(242295) 13014 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5522 U(61813)/594517433/3761274442997 12897 c77 2018 Fibonacci cofactor, ECPP 5523 (2^42737+1)/3 12865 M 2007 ECPP, generalized Lucas number, Wagstaff 5524 primU(62771) 12791 c77 2018 Fibonacci primitive part, ECPP 5525 primA(154415) 12728 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5526 primA(263865) 12570 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5527 6*Bern(5078)/643283455240626084534218914061 12533 c63 2013 Irregular, ECPP 5528 (2^41681-1)/1052945423/16647332713153/2853686272534246492102086015457 12495 c77 2015 Mersenne cofactor, ECPP 5529 U(59369)/2442423669148466039458303756169988568809269383644075940757020\ 9763004757 12337 c79 2015 Fibonacci cofactor, ECPP 5530 742478255901*2^40069+1 12074 p395 2016 Cunningham chain 2nd kind (4p-3) 5531 996824343*2^40074+1 12073 p395 2016 Cunningham chain 2nd kind (4p-3) 5532 664342014133*2^39840+1 12005 p408 2020 Consecutive primes arithmetic progression (3,d=30) 5533 664342014133*2^39840-29 12005 c93 2020 Consecutive primes arithmetic progression (2,d=30), ECPP 5534 664342014133*2^39840-59 12005 c93 2020 Consecutive primes arithmetic progression (1,d=30), ECPP 5535 V(56003) 11704 p193 2006 Lucas number 5536 primA(143705) 11703 c77 2017 Lucas Aurifeuillian primitive part, ECPP 5537 4207993863*2^38624+5 11637 L5354 2021 Triplet (3), ECPP 5538 4207993863*2^38624+1 11637 L5354 2021 Triplet (2) 5539 4207993863*2^38624-1 11637 L5354 2021 Triplet (1) 5540 primU(73025) 11587 c77 2015 Fibonacci primitive part, ECPP 5541 primU(67781) 11587 c77 2015 Fibonacci primitive part, ECPP 5542 primB(219165) 11557 c77 2015 Lucas Aurifeuillian primitive part, ECPP 5543 198429723072*11^11005+1 11472 L3323 2016 Cunningham chain 2nd kind (4p-3) 5544 U(54799)/4661437953906084533621577211561 11422 c8 2015 Fibonacci cofactor, ECPP 5545 U(54521)/6403194135342743624071073 11370 c8 2015 Fibonacci cofactor, ECPP 5546 primU(67825) 11336 x23 2007 Fibonacci primitive part 5547 3610!-1 11277 C 1993 Factorial 5548 U(53189)/69431662887136064191105625570683133711989 11075 c8 2014 Fibonacci cofactor, ECPP 5549 primU(61733) 11058 c77 2015 Fibonacci primitive part, ECPP 5550 778965587811*2^36627-1 11038 p395 2016 Cunningham chain (4p+3) 5551 778965587811*2^36626-1 11038 p395 2016 Cunningham chain (2p+1) 5552 778965587811*2^36625-1 11038 p395 2016 Cunningham chain (p) 5553 272879344275*2^36622-1 11036 p395 2016 Cunningham chain (4p+3) 5554 272879344275*2^36621-1 11036 p395 2016 Cunningham chain (2p+1) 5555 272879344275*2^36620-1 11036 p395 2016 Cunningham chain (p) 5556 V(52859)/1124137922466041911 11029 c8 2014 Lucas cofactor, ECPP 5557 3507!-1 10912 C 1992 Factorial 5558 V(52201)/70585804042896975505694709575919458733851279868446609 10857 c8 2015 Lucas cofactor, ECPP 5559 V(52009)/39772636393178951550299332730909 10838 c8 2015 Lucas cofactor, ECPP 5560 V(51941)/2808052157610902114547210696868337380250300924116591143641642\ 866931 10789 c8 2015 Lucas cofactor, ECPP 5561 1258566*Bern(4462)/6610083971965402783802518108033 10763 c64 2013 Irregular, ECPP 5562 3428602715439*2^35678+13 10753 c93 2020 Consecutive primes arithmetic progression (3,d=6), ECPP 5563 3428602715439*2^35678+7 10753 c93 2020 Consecutive primes arithmetic progression (2,d=6), ECPP 5564 3428602715439*2^35678+1 10753 p408 2020 Consecutive primes arithmetic progression (1,d=6) 5565 333645655005*2^35549-1 10713 p364 2015 Cunningham chain (4p+3) 5566 333645655005*2^35548-1 10713 p364 2015 Cunningham chain (2p+1) 5567 333645655005*2^35547-1 10713 p364 2015 Cunningham chain (p) 5568 V(51349)/224417260052884218046541 10708 c8 2014 Lucas cofactor, ECPP 5569 V(51169) 10694 p54 2001 Lucas number 5570 U(51031)/95846689435051369 10648 c8 2014 Fibonacci cofactor, ECPP 5571 V(50989)/69818796119453411 10640 c8 2014 Lucas cofactor, ECPP 5572 U(50833) 10624 CH4 2005 Fibonacci number 5573 2683143625525*2^35176+13 10602 c92 2019 Consecutive primes arithmetic progression (3,d=6),ECPP 5574 2683143625525*2^35176+7 10602 c92 2019 Consecutive primes arithmetic progression (2,d=6),ECPP 5575 2683143625525*2^35176+1 10602 p407 2019 Consecutive primes arithmetic progression (1,d=6) 5576 3020616601*24499#+1 10593 p422 2021 Arithmetic progression (6,d=56497325*24499#) 5577 2964119276*24499#+1 10593 p422 2021 Arithmetic progression (5,d=56497325*24499#) 5578 2907621951*24499#+1 10593 p422 2021 Arithmetic progression (4,d=56497325*24499#) 5579 2851124626*24499#+1 10593 p422 2021 Arithmetic progression (3,d=56497325*24499#) 5580 2794627301*24499#+1 10593 p422 2021 Arithmetic progression (2,d=56497325*24499#) 5581 2738129976*24499#+1 10593 p422 2021 Arithmetic progression (1,d=56497325*24499#) 5582 24029#+1 10387 C 1993 Primorial 5583 400791048*24001#+1 10378 p155 2018 Arithmetic progression (5,d=59874860*24001#) 5584 393142614*24001#+1 10378 p155 2018 Arithmetic progression (5,d=54840724*24001#) 5585 340916188*24001#+1 10378 p155 2018 Arithmetic progression (4,d=59874860*24001#) 5586 338301890*24001#+1 10378 p155 2018 Arithmetic progression (4,d=54840724*24001#) 5587 283461166*24001#+1 10377 p155 2018 Arithmetic progression (3,d=54840724*24001#) 5588 281041328*24001#+1 10377 p155 2018 Arithmetic progression (3,d=59874860*24001#) 5589 228620442*24001#+1 10377 p155 2018 Arithmetic progression (2,d=54840724*24001#) 5590 221488788*24001#+1 10377 p155 2018 Arithmetic progression (5,d=22703701*24001#) 5591 221166468*24001#+1 10377 p155 2018 Arithmetic progression (2,d=59874860*24001#) 5592 198785087*24001#+1 10377 p155 2018 Arithmetic progression (4,d=22703701*24001#) 5593 176081386*24001#+1 10377 p155 2018 Arithmetic progression (3,d=22703701*24001#) 5594 173779718*24001#+1 10377 p155 2018 Arithmetic progression (1,d=54840724*24001#) 5595 163456812*24001#+1 10377 p155 2018 Arithmetic progression (2,d=10601738*24001#) 5596 161291608*24001#+1 10377 p155 2018 Arithmetic progression (1,d=59874860*24001#) 5597 152855074*24001#+1 10377 p155 2018 Arithmetic progression (1,d=10601738*24001#) 5598 6*Bern(4306)/2153 10342 FE8 2009 Irregular, ECPP 5599 23801#+1 10273 C 1993 Primorial 5600 667674063382677*2^33608+7 10132 c88 2019 Quadruplet (4), ECPP 5601 667674063382677*2^33608+5 10132 c88 2019 Quadruplet (3), ECPP 5602 667674063382677*2^33608+1 10132 L4808 2019 Quadruplet (2) 5603 667674063382677*2^33608-1 10132 L4808 2019 Quadruplet (1) 5604 9649755890145*2^33335+1 10048 p364 2015 Cunningham chain 2nd kind (4p-3) 5605 32469*2^32469+1 9779 MM 1997 Cullen 5606 8073*2^32294+1 9726 MM 1997 Cullen 5607 E(3308)/39308792292493140803643373186476368389461245 9516 c8 2014 Euler irregular, ECPP 5608 V(44507) 9302 CH3 2005 Lucas number 5609 U(43399)/470400609575881344601538056264109423291827366228494341196421 9010 c8 2013 Fibonacci cofactor, ECPP 5610 U(42829)/107130175995197969243646842778153077 8916 c8 2014 Fibonacci cofactor, ECPP 5611 U(42043)/1681721 8780 c56 2012 Fibonacci cofactor, ECPP 5612 U(40763)/643247084652261620737 8498 c8 2013 Fibonacci cofactor, ECPP 5613 2^27529-2^13765+1 8288 O 2000 Gaussian Mersenne norm 28, generalized unique 5614 18523#+1 8002 D 1989 Primorial 5615 6*Bern(3458)/28329084584758278770932715893606309 7945 c8 2013 Irregular, ECPP 5616 U(37987)/1832721858208455887947958246414213 7906 c39 2012 Fibonacci cofactor, ECPP 5617 U(37511) 7839 x13 2005 Fibonacci number 5618 -E(2762)/2670541 7760 c11 2004 Euler irregular, ECPP 5619 V(36779) 7687 CH3 2005 Lucas number 5620 U(35999) 7523 p54 2001 Fibonacci number, cyclotomy 5621 V(35449) 7409 p12 2001 Lucas number 5622 -30*Bern(3176)/6689693100056872989386833739813089720559189736259127537\ 0617658634396391181 7138 c63 2016 Irregular, ECPP 5623 2154675239*16301#+1 7036 p155 2018 Arithmetic progression (6,d=141836149*16301#) 5624 2012839090*16301#+1 7036 p155 2018 Arithmetic progression (5,d=141836149*16301#) 5625 1871002941*16301#+1 7036 p155 2018 Arithmetic progression (4,d=141836149*16301#) 5626 1729166792*16301#+1 7036 p155 2018 Arithmetic progression (3,d=141836149*16301#) 5627 1587330643*16301#+1 7035 p155 2018 Arithmetic progression (2,d=141836149*16301#) 5628 1445494494*16301#+1 7035 p155 2018 Arithmetic progression (1,d=141836149*16301#) 5629 -10365630*Bern(3100)/1670366116112864481699585217650438278080436881373\ 643007997602585219667 6943 c63 2016 Irregular ECPP 5630 23005*2^23005-1 6930 Y 1997 Woodall 5631 22971*2^22971-1 6920 Y 1997 Woodall 5632 15877#-1 6845 CD 1992 Primorial 5633 6*Bern(2974)/19622040971147542470479091157507 6637 c8 2013 Irregular, ECPP 5634 U(30757) 6428 p54 2001 Fibonacci number, cyclotomy 5635 E(2220)/392431891068600713525 6011 c8 2013 Euler irregular, ECPP 5636 -E(2202)/53781055550934778283104432814129020709 5938 c8 2013 Euler irregular, ECPP 5637 13649#+1 5862 D 1987 Primorial 5638 274386*Bern(2622)/8518594882415401157891061256276973722693 5701 c8 2013 Irregular, ECPP 5639 18885*2^18885-1 5690 K 1987 Woodall 5640 1963!-1 5614 CD 1992 Factorial 5641 289*2^18502+1 5573 K 1984 Cullen, generalized Fermat 5642 E(2028)/11246153954845684745 5412 c55 2011 Euler irregular, ECPP 5643 -30*Bern(2504)/1248230090315232335602406373438221652417581490266755814\ 38903418303340323897 5354 c63 2013 Irregular ECPP 5644 U(25561) 5342 p54 2001 Fibonacci number 5645 -E(1990)/8338208577950624722417016286765473477033741642105671913 5258 c8 2013 Euler irregular, ECPP 5646 33957462*Bern(2370)/40685 5083 c11 2003 Irregular, ECPP 5647 4122429552750669*2^16567+7 5003 c83 2016 Quadruplet (4), ECPP 5648 4122429552750669*2^16567+5 5003 c83 2016 Quadruplet (3), ECPP 5649 4122429552750669*2^16567+1 5003 L4342 2016 Quadruplet (2) 5650 4122429552750669*2^16567-1 5003 L4342 2016 Quadruplet (1) 5651 35734184537*11677#/3+9 5002 c98 2024 Consecutive primes arithmetic progression (4,d=6), ECPP 5652 35734184537*11677#/3+3 5002 c98 2024 Consecutive primes arithmetic progression (3,d=6), ECPP 5653 35734184537*11677#/3-3 5002 c98 2024 Consecutive primes arithmetic progression (2,d=6), ECPP 5654 35734184537*11677#/3-9 5002 c98 2024 Consecutive primes arithmetic progression (1,d=6), ECPP 5655 E(1840)/31237282053878368942060412182384934425 4812 c4 2011 Euler irregular, ECPP 5656 7911*2^15823-1 4768 K 1987 Woodall 5657 E(1736)/13510337079405137518589526468536905 4498 c4 2004 Euler irregular, ECPP 5658 2^14699+2^7350+1 4425 O 2000 Gaussian Mersenne norm 27, generalized unique 5659 744029027072*10111#-1 4362 p364 2025 Cunningham chain (8p+7) 5660 (2^14479+1)/3 4359 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5661 62399583639*9923#-3399421517 4285 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5662 62399583639*9923#-3399421547 4285 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5663 62399583639*9923#-3399421577 4285 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5664 62399583639*9923#-3399421607 4285 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5665 49325406476*9811#*8+1 4234 p382 2019 Cunningham chain 2nd kind (8p-7) 5666 276474*Bern(2030)/469951697500688159155 4200 c8 2003 Irregular, ECPP 5667 V(19469) 4069 x25 2002 Lucas number, cyclotomy, APR-CL assisted 5668 1477!+1 4042 D 1984 Factorial 5669 -2730*Bern(1884)/100983617849 3844 c8 2003 Irregular, ECPP 5670 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+9 3753 c101 2023 Quadruplet (4),ECPP 5671 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+7 3753 c101 2023 Quadruplet (3),ECPP 5672 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+3 3753 c101 2023 Quadruplet (2),ECPP 5673 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+1 3753 c101 2023 Quadruplet (1),ECPP 5674 12379*2^12379-1 3731 K 1984 Woodall 5675 (2^12391+1)/3 3730 M 1996 Generalized Lucas number, Wagstaff 5676 -E(1466)/167900532276654417372106952612534399239 3682 c8 2013 Euler irregular, ECPP 5677 E(1468)/12330876589623053882799895025030461658552339028064108285 3671 c4 2003 Euler irregular, ECPP 5678 1268118079424*8501#-1 3640 p434 2023 Cunningham chain (8p+7) 5679 101406820312263*2^12042+7 3640 c67 2018 Quadruplet (4) 5680 101406820312263*2^12042+5 3640 c67 2018 Quadruplet (3) 5681 101406820312263*2^12042+1 3640 p364 2018 Quadruplet (2) 5682 101406820312263*2^12042-1 3640 p364 2018 Quadruplet (1) 5683 2673092556681*15^3048+4 3598 c67 2015 Quadruplet (4) 5684 2673092556681*15^3048+2 3598 c67 2015 Quadruplet (3) 5685 2673092556681*15^3048-2 3598 c67 2015 Quadruplet (2) 5686 2673092556681*15^3048-4 3598 c67 2015 Quadruplet (1) 5687 6016459977*7927#-1 3407 p364 2022 Arithmetic progression (7,d=577051223*7927#) 5688 5439408754*7927#-1 3407 p364 2022 Arithmetic progression (6,d=577051223*7927#) 5689 4862357531*7927#-1 3407 p364 2022 Arithmetic progression (5,d=577051223*7927#) 5690 4285306308*7927#-1 3407 p364 2022 Arithmetic progression (4,d=577051223*7927#) 5691 3708255085*7927#-1 3407 p364 2022 Arithmetic progression (3,d=577051223*7927#) 5692 3131203862*7927#-1 3407 p364 2022 Arithmetic progression (2,d=577051223*7927#) 5693 2554152639*7927#-1 3407 p364 2022 Arithmetic progression (1,d=577051223*7927#) 5694 62753735335*7919#+3399421667 3404 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5695 62753735335*7919#+3399421637 3404 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5696 62753735335*7919#+3399421607 3404 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5697 62753735335*7919#+3399421577 3404 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5698 (2^11279+1)/3 3395 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 5699 109766820328*7877#-1 3385 p395 2016 Cunningham chain (8p+7) 5700 585150568069684836*7757#/85085+17 3344 c88 2022 Quintuplet (5), ECPP 5701 585150568069684836*7757#/85085+13 3344 c88 2022 Quintuplet (4), ECPP 5702 585150568069684836*7757#/85085+11 3344 c88 2022 Quintuplet (3), ECPP 5703 585150568069684836*7757#/85085+7 3344 c88 2022 Quintuplet (2), ECPP 5704 585150568069684836*7757#/85085+5 3344 c88 2022 Quintuplet (1), ECPP 5705 104052837*7759#-1 3343 p398 2017 Arithmetic progression (6,d=12009836*7759#) 5706 92043001*7759#-1 3343 p398 2017 Arithmetic progression (5,d=12009836*7759#) 5707 80033165*7759#-1 3343 p398 2017 Arithmetic progression (4,d=12009836*7759#) 5708 68023329*7759#-1 3343 p398 2017 Arithmetic progression (3,d=12009836*7759#) 5709 56013493*7759#-1 3343 p398 2017 Arithmetic progression (2,d=12009836*7759#) 5710 44003657*7759#-1 3343 p398 2017 Arithmetic progression (1,d=12009836*7759#) 5711 2072453060816*7699#+1 3316 p364 2019 Cunningham chain 2nd kind (8p-7) 5712 (2^10691+1)/3 3218 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5713 231692481512*7517#-1 3218 p395 2016 Cunningham chain (8p+7) 5714 (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+19 3207 c100 2023 Consecutive primes arithmetic progression (4,d=6),ECPP 5715 (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+13 3207 c100 2023 Consecutive primes arithmetic progression (3,d=6),ECPP 5716 (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+7 3207 c100 2023 Consecutive primes arithmetic progression (2,d=6),ECPP 5717 (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+1 3207 c100 2023 Consecutive primes arithmetic progression (1,d=6),ECPP 5718 (2^10501+1)/3 3161 M 1996 Generalized Lucas number, Wagstaff 5719 2^10141+2^5071+1 3053 O 2000 Gaussian Mersenne norm 26, generalized unique 5720 121152729080*7019#/1729+19 3025 c92 2019 Consecutive primes arithmetic progression (4,d=6), ECPP 5721 121152729080*7019#/1729+13 3025 c92 2019 Consecutive primes arithmetic progression (3,d=6), ECPP 5722 121152729080*7019#/1729+7 3025 c92 2019 Consecutive primes arithmetic progression (2,d=6), ECPP 5723 121152729080*7019#/1729+1 3025 p407 2019 Consecutive primes arithmetic progression (1,d=6) 5724 V(14449) 3020 DK 1995 Lucas number 5725 3124777373*7001#+1 3019 p155 2012 Arithmetic progression (7,d=481789017*7001#) 5726 2996180304*7001#+1 3019 p155 2012 Arithmetic progression (6,d=46793757*7001#) 5727 2949386547*7001#+1 3019 p155 2012 Arithmetic progression (5,d=46793757*7001#) 5728 2946259686*7001#+1 3019 p155 2012 Arithmetic progression (6,d=313558156*7001#) 5729 2911906960*7001#+1 3019 p155 2012 Arithmetic progression (5,d=3093612*7001#) 5730 2908813348*7001#+1 3019 p155 2012 Arithmetic progression (4,d=3093612*7001#) 5731 2905719736*7001#+1 3019 p155 2012 Arithmetic progression (3,d=3093612*7001#) 5732 2902626124*7001#+1 3019 p155 2012 Arithmetic progression (2,d=3093612*7001#) 5733 2902592790*7001#+1 3019 p155 2012 Arithmetic progression (4,d=46793757*7001#) 5734 2899532512*7001#+1 3019 p155 2012 Arithmetic progression (1,d=3093612*7001#) 5735 2855799033*7001#+1 3019 p155 2012 Arithmetic progression (3,d=46793757*7001#) 5736 2809005276*7001#+1 3019 p155 2012 Arithmetic progression (2,d=46793757*7001#) 5737 2762211519*7001#+1 3019 p155 2012 Arithmetic progression (1,d=46793757*7001#) 5738 2642988356*7001#+1 3019 p155 2012 Arithmetic progression (6,d=481789017*7001#) 5739 2161199339*7001#+1 3019 p155 2012 Arithmetic progression (5,d=481789017*7001#) 5740 1679410322*7001#+1 3019 p155 2012 Arithmetic progression (4,d=481789017*7001#) 5741 1197621305*7001#+1 3019 p155 2012 Arithmetic progression (3,d=481789017*7001#) 5742 715832288*7001#+1 3019 p155 2012 Arithmetic progression (2,d=481789017*7001#) 5743 234043271*7001#+1 3018 p155 2012 Arithmetic progression (1,d=481789017*7001#) 5744 U(14431) 3016 p54 2001 Fibonacci number 5745 138281163736*6977#+1 3006 p395 2016 Cunningham chain 2nd kind (8p-7) 5746 375967981369*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5747 V(13963) 2919 c11 2002 Lucas number, ECPP 5748 284787490256*6701#+1 2879 p364 2015 Cunningham chain 2nd kind (8p-7) 5749 9531*2^9531-1 2874 K 1984 Woodall 5750 -E(1174)/50550511342697072710795058639332351763 2829 c8 2013 Euler irregular, ECPP 5751 -E(1142)/6233437695283865492412648122953349079446935570718422828539863\ 59013986902240869 2697 c77 2015 Euler irregular, ECPP 5752 V(12251) 2561 p54 2001 Lucas number 5753 974!-1 2490 CD 1992 Factorial 5754 7755*2^7755-1 2339 K 1984 Woodall 5755 772463767240*5303#+1 2272 p308 2019 Cunningham chain 2nd kind (8p-7) 5756 116814018316*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10892863626*5303#) 5757 116746086504*5303#+1 2271 p406 2019 Arithmetic progression (7,d=9726011684*5303#) 5758 116242725347*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10388428124*5303#) 5759 107020074820*5303#+1 2271 p406 2019 Arithmetic progression (6,d=9726011684*5303#) 5760 105921154690*5303#+1 2271 p406 2019 Arithmetic progression (6,d=10892863626*5303#) 5761 105854297223*5303#+1 2271 p406 2019 Arithmetic progression (6,d=10388428124*5303#) 5762 97867278281*5303#+1 2271 p406 2019 Arithmetic progression (5,d=2972005888*5303#) 5763 97348096836*5303#+1 2271 p406 2019 Arithmetic progression (5,d=5447332033*5303#) 5764 97294063136*5303#+1 2271 p406 2019 Arithmetic progression (5,d=9726011684*5303#) 5765 96461651937*5303#+1 2271 p406 2019 Arithmetic progression (4,d=435232416*5303#) 5766 96026419521*5303#+1 2271 p406 2019 Arithmetic progression (3,d=435232416*5303#) 5767 95664304943*5303#+1 2271 p406 2019 Arithmetic progression (4,d=817534485*5303#) 5768 95591187105*5303#+1 2271 p406 2019 Arithmetic progression (2,d=435232416*5303#) 5769 95155954689*5303#+1 2271 p406 2019 Arithmetic progression (1,d=435232416*5303#) 5770 94895272393*5303#+1 2271 p406 2019 Arithmetic progression (4,d=2972005888*5303#) 5771 94846770458*5303#+1 2271 p406 2019 Arithmetic progression (3,d=817534485*5303#) 5772 94029235973*5303#+1 2271 p406 2019 Arithmetic progression (2,d=817534485*5303#) 5773 93984538785*5303#+1 2271 p406 2019 Arithmetic progression (3,d=387018369*5303#) 5774 93597520416*5303#+1 2271 p406 2019 Arithmetic progression (2,d=387018369*5303#) 5775 93211701488*5303#+1 2271 p406 2019 Arithmetic progression (1,d=817534485*5303#) 5776 93210502047*5303#+1 2271 p406 2019 Arithmetic progression (1,d=387018369*5303#) 5777 69285767989*5303#+1 2271 p406 2019 Arithmetic progression (8,d=3026809034*5303#) 5778 66258958955*5303#+1 2271 p406 2019 Arithmetic progression (7,d=3026809034*5303#) 5779 63232149921*5303#+1 2271 p406 2019 Arithmetic progression (6,d=3026809034*5303#) 5780 60205340887*5303#+1 2271 p406 2019 Arithmetic progression (5,d=3026809034*5303#) 5781 57178531853*5303#+1 2271 p406 2019 Arithmetic progression (4,d=3026809034*5303#) 5782 54151722819*5303#+1 2271 p406 2019 Arithmetic progression (3,d=3026809034*5303#) 5783 51124913785*5303#+1 2271 p406 2019 Arithmetic progression (2,d=3026809034*5303#) 5784 48098104751*5303#+1 2270 p406 2019 Arithmetic progression (1,d=3026809034*5303#) 5785 V(10691) 2235 DK 1995 Lucas number 5786 566761969187*4733#/2+4 2034 c67 2020 Quintuplet (5) 5787 566761969187*4733#/2+2 2034 c67 2020 Quintuplet (4) 5788 566761969187*4733#/2-2 2034 c67 2020 Quintuplet (3) 5789 566761969187*4733#/2-4 2034 c67 2020 Quintuplet (2) 5790 566761969187*4733#/2-8 2034 c67 2020 Quintuplet (1) 5791 U(9677) 2023 c2 2000 Fibonacci number, ECPP 5792 7610828704751636272*4679#-1 2020 p151 2024 Cunningham chain (16p+15) 5793 126831252923413*4657#/273+13 2002 c88 2020 Quintuplet (5) 5794 126831252923413*4657#/273+9 2002 c88 2020 Quintuplet (4) 5795 126831252923413*4657#/273+7 2002 c88 2020 Quintuplet (3) 5796 126831252923413*4657#/273+3 2002 c88 2020 Quintuplet (2) 5797 126831252923413*4657#/273+1 2002 c88 2020 Quintuplet (1) 5798 6611*2^6611+1 1994 K 1984 Cullen 5799 U(9311) 1946 DK 1995 Fibonacci number 5800 2738129459017*4211#+3399421637 1805 c98 2022 Consecutive primes arithmetic progression (5,d=30) 5801 2738129459017*4211#+3399421607 1805 c98 2022 Consecutive primes arithmetic progression (4,d=30) 5802 2738129459017*4211#+3399421577 1805 c98 2022 Consecutive primes arithmetic progression (3,d=30) 5803 2738129459017*4211#+3399421547 1805 c98 2022 Consecutive primes arithmetic progression (2,d=30) 5804 2738129459017*4211#+3399421517 1805 c98 2022 Consecutive primes arithmetic progression (1,d=30) 5805 V(8467) 1770 c2 2000 Lucas number, ECPP 5806 5795*2^5795+1 1749 K 1984 Cullen 5807 (2^5807+1)/3 1748 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 5808 54201838768*3917#-1 1681 p395 2016 Cunningham chain (16p+15) 5809 102619722624*3797#+1 1631 p395 2016 Cunningham chain 2nd kind (16p-15) 5810 394254311495*3733#/2+4 1606 c67 2017 Quintuplet (5) 5811 394254311495*3733#/2+2 1606 c67 2017 Quintuplet (4) 5812 394254311495*3733#/2-2 1606 c67 2017 Quintuplet (3) 5813 394254311495*3733#/2-4 1606 c67 2017 Quintuplet (2) 5814 394254311495*3733#/2-8 1606 c67 2017 Quintuplet (1) 5815 83*2^5318-1 1603 K 1984 Woodall 5816 2316765173284*3593#+16073 1543 c18 2016 Quintuplet (5), ECPP 5817 2316765173284*3593#+16069 1543 c18 2016 Quintuplet (4), ECPP 5818 2316765173284*3593#+16067 1543 c18 2016 Quintuplet (3), ECPP 5819 2316765173284*3593#+16063 1543 c18 2016 Quintuplet (2), ECPP 5820 2316765173284*3593#+16061 1543 c18 2016 Quintuplet (1), ECPP 5821 652229318541*3527#+3399421637 1504 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5822 652229318541*3527#+3399421607 1504 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5823 652229318541*3527#+3399421577 1504 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5824 652229318541*3527#+3399421547 1504 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5825 652229318541*3527#+3399421517 1504 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5826 3199190962192*3499#-1 1494 p382 2016 Cunningham chain (16p+15) 5827 4713*2^4713+1 1423 K 1984 Cullen 5828 449209457832*3307#+1633050403 1408 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5829 449209457832*3307#+1633050373 1408 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5830 449209457832*3307#+1633050343 1408 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5831 449209457832*3307#+1633050313 1408 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5832 449209457832*3307#+1633050283 1408 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5833 5780736564512*3023#-1 1301 p364 2015 Cunningham chain (16p+15) 5834 2746496109133*3001#+27011 1290 c97 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5835 2746496109133*3001#+26981 1290 c97 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5836 2746496109133*3001#+26951 1290 c97 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5837 2746496109133*3001#+26921 1290 c97 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5838 2746496109133*3001#+26891 1290 c97 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5839 898966996992*3001#+1 1289 p364 2015 Cunningham chain 2nd kind (16p-15) 5840 42530119784448*2969#+1 1281 p382 2017 Cunningham chain 2nd kind (16p-15) 5841 22623218234368*2969#+1 1280 p382 2017 Cunningham chain 2nd kind (16p-15) 5842 1542946580224*2851#-1 1231 p364 2023 Cunningham chain (16p+15) 5843 406463527990*2801#+1633050403 1209 x38 2013 Consecutive primes arithmetic progression (5,d=30) 5844 406463527990*2801#+1633050373 1209 x38 2013 Consecutive primes arithmetic progression (4,d=30) 5845 406463527990*2801#+1633050343 1209 x38 2013 Consecutive primes arithmetic progression (3,d=30) 5846 406463527990*2801#+1633050313 1209 x38 2013 Consecutive primes arithmetic progression (2,d=30) 5847 406463527990*2801#+1633050283 1209 x38 2013 Consecutive primes arithmetic progression (1,d=30) 5848 1290733709840*2677#+1 1141 p295 2011 Cunningham chain 2nd kind (16p-15) 5849 U(5387) 1126 WM 1990 Fibonacci number 5850 1176100079*2591#+1 1101 p252 2019 Arithmetic progression (8,d=60355670*2591#) 5851 1115744409*2591#+1 1101 p252 2019 Arithmetic progression (7,d=60355670*2591#) 5852 1055388739*2591#+1 1100 p252 2019 Arithmetic progression (6,d=60355670*2591#) 5853 995033069*2591#+1 1100 p252 2019 Arithmetic progression (5,d=60355670*2591#) 5854 934677399*2591#+1 1100 p252 2019 Arithmetic progression (4,d=60355670*2591#) 5855 874321729*2591#+1 1100 p252 2019 Arithmetic progression (3,d=60355670*2591#) 5856 813966059*2591#+1 1100 p252 2019 Arithmetic progression (2,d=60355670*2591#) 5857 753610389*2591#+1 1100 p252 2019 Arithmetic progression (1,d=60355670*2591#) 5858 (2^3539+1)/3 1065 M 1989 First titanic by ECPP, generalized Lucas number, Wagstaff 5859 2968802755*2459#+1 1057 p155 2009 Arithmetic progression (8,d=359463429*2459#) 5860 2609339326*2459#+1 1057 p155 2009 Arithmetic progression (7,d=359463429*2459#) 5861 2249875897*2459#+1 1057 p155 2009 Arithmetic progression (6,d=359463429*2459#) 5862 1890412468*2459#+1 1056 p155 2009 Arithmetic progression (5,d=359463429*2459#) 5863 1530949039*2459#+1 1056 p155 2009 Arithmetic progression (4,d=359463429*2459#) 5864 1171485610*2459#+1 1056 p155 2009 Arithmetic progression (3,d=359463429*2459#) 5865 812022181*2459#+1 1056 p155 2009 Arithmetic progression (2,d=359463429*2459#) 5866 452558752*2459#+1 1056 p155 2009 Arithmetic progression (1,d=359463429*2459#) 5867 5963982717*2417#-1 1040 p364 2025 Arithmetic progression (8,d=108526765*2417#) 5868 5855455952*2417#-1 1040 p364 2025 Arithmetic progression (7,d=108526765*2417#) 5869 5746929187*2417#-1 1040 p364 2025 Arithmetic progression (6,d=108526765*2417#) 5870 5638402422*2417#-1 1040 p364 2025 Arithmetic progression (5,d=108526765*2417#) 5871 5529875657*2417#-1 1040 p364 2025 Arithmetic progression (4,d=108526765*2417#) 5872 5421348892*2417#-1 1040 p364 2025 Arithmetic progression (3,d=108526765*2417#) 5873 5312822127*2417#-1 1040 p364 2025 Arithmetic progression (2,d=108526765*2417#) 5874 5204295362*2417#-1 1040 p364 2025 Arithmetic progression (1,d=108526765*2417#) 5875 4692090369*2417#-1 1040 p364 2025 Arithmetic progression (8,d=370899838*2417#) 5876 4321190531*2417#-1 1040 p364 2025 Arithmetic progression (7,d=370899838*2417#) 5877 3950290693*2417#-1 1040 p364 2025 Arithmetic progression (6,d=370899838*2417#) 5878 3579390855*2417#-1 1040 p364 2025 Arithmetic progression (5,d=370899838*2417#) 5879 3208491017*2417#-1 1040 p364 2025 Arithmetic progression (4,d=370899838*2417#) 5880 2837591179*2417#-1 1040 p364 2025 Arithmetic progression (3,d=370899838*2417#) 5881 2466691341*2417#-1 1040 p364 2025 Arithmetic progression (2,d=370899838*2417#) 5882 2095791503*2417#-1 1040 p364 2025 Arithmetic progression (1,d=370899838*2417#) 5883 28993093368077*2399#+19433 1037 c18 2016 Sextuplet (6), ECPP 5884 28993093368077*2399#+19429 1037 c18 2016 Sextuplet (5), ECPP 5885 28993093368077*2399#+19427 1037 c18 2016 Sextuplet (4), ECPP 5886 28993093368077*2399#+19423 1037 c18 2016 Sextuplet (3), ECPP 5887 28993093368077*2399#+19421 1037 c18 2016 Sextuplet (2), ECPP 5888 28993093368077*2399#+19417 1037 c18 2016 Sextuplet (1), ECPP 5889 64158976085*2399#+1 1034 p41 2025 Arithmetic progression (9,d=6383832302*2399#) 5890 57775143783*2399#+1 1034 p41 2025 Arithmetic progression (8,d=6383832302*2399#) 5891 51391311481*2399#+1 1034 p41 2025 Arithmetic progression (7,d=6383832302*2399#) 5892 45007479179*2399#+1 1034 p41 2025 Arithmetic progression (6,d=6383832302*2399#) 5893 38623646877*2399#+1 1034 p41 2025 Arithmetic progression (5,d=6383832302*2399#) 5894 32239814575*2399#+1 1034 p41 2025 Arithmetic progression (4,d=6383832302*2399#) 5895 25855982273*2399#+1 1034 p41 2025 Arithmetic progression (3,d=6383832302*2399#) 5896 19472149971*2399#+1 1034 p41 2025 Arithmetic progression (2,d=6383832302*2399#) 5897 13088317669*2399#+1 1034 p41 2025 Arithmetic progression (1,d=6383832302*2399#) 5898 R(1031) 1031 WD 1985 Repunit 5899 89595955370432*2371#-1 1017 p364 2015 Cunningham chain (32p+31) 5900 116040452086*2371#+1 1014 p308 2012 Arithmetic progression (9,d=6317280828*2371#) 5901 109723171258*2371#+1 1014 p308 2012 Arithmetic progression (8,d=6317280828*2371#) 5902 103405890430*2371#+1 1014 p308 2012 Arithmetic progression (7,d=6317280828*2371#) 5903 97336164242*2371#+1 1014 p308 2013 Arithmetic progression (9,d=6350457699*2371#) 5904 97088609602*2371#+1 1014 p308 2012 Arithmetic progression (6,d=6317280828*2371#) 5905 93537753980*2371#+1 1014 p308 2013 Arithmetic progression (9,d=3388165411*2371#) 5906 92836168856*2371#+1 1014 p308 2013 Arithmetic progression (9,d=127155673*2371#) 5907 92709013183*2371#+1 1014 p308 2013 Arithmetic progression (8,d=127155673*2371#) 5908 92581857510*2371#+1 1014 p308 2013 Arithmetic progression (7,d=127155673*2371#) 5909 92454701837*2371#+1 1014 p308 2013 Arithmetic progression (6,d=127155673*2371#) 5910 92327546164*2371#+1 1014 p308 2013 Arithmetic progression (5,d=127155673*2371#) 5911 92200390491*2371#+1 1014 p308 2013 Arithmetic progression (4,d=127155673*2371#) 5912 92073234818*2371#+1 1014 p308 2013 Arithmetic progression (3,d=127155673*2371#) 5913 91946079145*2371#+1 1014 p308 2013 Arithmetic progression (2,d=127155673*2371#) 5914 91818923472*2371#+1 1014 p308 2013 Arithmetic progression (1,d=127155673*2371#) 5915 90985706543*2371#+1 1014 p308 2013 Arithmetic progression (8,d=6350457699*2371#) 5916 90771328774*2371#+1 1014 p308 2012 Arithmetic progression (5,d=6317280828*2371#) 5917 90149588569*2371#+1 1014 p308 2013 Arithmetic progression (8,d=3388165411*2371#) 5918 86761423158*2371#+1 1014 p308 2013 Arithmetic progression (7,d=3388165411*2371#) 5919 84635248844*2371#+1 1014 p308 2013 Arithmetic progression (7,d=6350457699*2371#) 5920 84454047946*2371#+1 1014 p308 2012 Arithmetic progression (4,d=6317280828*2371#) 5921 83373257747*2371#+1 1014 p308 2013 Arithmetic progression (6,d=3388165411*2371#) 5922 79985092336*2371#+1 1014 p308 2013 Arithmetic progression (5,d=3388165411*2371#) 5923 78284791145*2371#+1 1014 p308 2013 Arithmetic progression (6,d=6350457699*2371#) 5924 78136767118*2371#+1 1014 p308 2012 Arithmetic progression (3,d=6317280828*2371#) 5925 76596926925*2371#+1 1014 p308 2013 Arithmetic progression (4,d=3388165411*2371#) 5926 73208761514*2371#+1 1014 p308 2013 Arithmetic progression (3,d=3388165411*2371#) 5927 71934333446*2371#+1 1014 p308 2013 Arithmetic progression (5,d=6350457699*2371#) 5928 71819486290*2371#+1 1014 p308 2012 Arithmetic progression (2,d=6317280828*2371#) 5929 69820596103*2371#+1 1014 p308 2013 Arithmetic progression (2,d=3388165411*2371#) 5930 66432430692*2371#+1 1014 p308 2013 Arithmetic progression (1,d=3388165411*2371#) 5931 65583875747*2371#+1 1014 p308 2013 Arithmetic progression (4,d=6350457699*2371#) 5932 65502205462*2371#+1 1014 p308 2012 Arithmetic progression (1,d=6317280828*2371#) 5933 61526034135*2371#+1 1014 p308 2011 Arithmetic progression (3,d=1298717501*2371#) 5934 60227316634*2371#+1 1014 p308 2011 Arithmetic progression (2,d=1298717501*2371#) 5935 58928599133*2371#+1 1014 p308 2011 Arithmetic progression (1,d=1298717501*2371#) 5936 533098369554*2357#+3399421667 1012 c98 2021 Consecutive primes arithmetic progression (6,d=30), ECPP 5937 533098369554*2357#+3399421637 1012 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5938 533098369554*2357#+3399421607 1012 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5939 533098369554*2357#+3399421577 1012 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5940 533098369554*2357#+3399421547 1012 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5941 533098369554*2357#+3399421517 1012 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5942 113225039190926127209*2339#/57057+21 1002 c88 2021 Septuplet (7) 5943 113225039190926127209*2339#/57057+19 1002 c88 2021 Septuplet (6) 5944 113225039190926127209*2339#/57057+13 1002 c88 2021 Septuplet (5) 5945 113225039190926127209*2339#/57057+9 1002 c88 2021 Septuplet (4) 5946 113225039190926127209*2339#/57057+7 1002 c88 2021 Septuplet (3) 5947 1184490310627008*2339#+1 1001 p364 2025 Cunningham chain 2nd kind (32p-31) ----- ------------------------------- -------- ----- ---- -------------- KEY TO PROOF-CODES (primality provers): A1 Propper, Srsieve, PrimeGrid, PRST A2 Propper, Srsieve, PRST A3 Atnashev, PRST A5 Gahan, Cyclo, PRST A6 Propper, Gcwsieve, PRST A7 Baur, Cyclo, PRST A8 Baur1, Srsieve, PRST A9 Wright1, Srsieve, CRUS, PRST A10 Grosvenor, Srsieve, CRUS, PRST A11 Anonymous, Srsieve, CRUS, PRST A12 Kruse, Srsieve, CRUS, PRST A13 Marler, Cyclo, PRST A14 Thompson5, Srsieve, CRUS, PRST A15 Sielemann, Srsieve, CRUS, PRST A18 Trunov, Cyclo, PRST A19 Propper, Batalov, Srsieve, PRST A20 Propper, Batalov, Gcwsieve, PRST A21 Piesker, Srsieve, CRUS, PRST A22 Doornink, Cyclo, PRST A23 Brown1, Srsieve, PrimeGrid, PRST A24 Ogawa, MultiSieve, NewPGen, PRST A25 Schmidt2, NewPGen, PRST A26 VISCAPI, Srsieve, CRUS, PRST A27 Piesker, PSieve, Srsieve, NPLB, PRST A28 Gingrich1, Srsieve, CRUS, PRST A29 Kelava1, Srsieve, Prime95, PRST A30 Silva2, Srsieve, PrimeGrid, PRST A31 Dinkel, MultiSieve, PRST A32 Cedric, Srsieve, CRUS, PRST A33 Przystawik, Srsieve, CRUS, PRST A38 Batalov, PSieve, Srsieve, PRST A41 Gmirkin, Srsieve, PrimeGrid, PRST A42 Dadocad72, Srsieve, CRUS, PRST A43 Propper, MultiSieve, PRST A44 Smith12, Srsieve, CRUS, PRST A45 Kaczala, Srsieve, PrimeGrid, PRST A46 Primecrunch.com, Hedges, Srsieve, PRST A48 Peteri, Srsieve, CRUS, PRST A49 Swerczek, Srsieve, CRUS, PRST A50 Bird2, Srsieve, CRUS, PRST A51 Gahan, NewPGen, PRST A52 Schumacher, Srsieve, CRUS, PRST A54 Lynch, Srsieve, CRUS, PRST A55 Nielsen1, Gahan, PRST A57 Busler, Srsieve, CRUS, PRST A58 Schmidt2, PSieve, Srsieve, NPLB, PRST A59 Straleger, Srsieve, CRUS, PRST A60 Presler, Srsieve, PrimeGrid, PRST A61 Williams7, Gcwsieve, MultiSieve, PrimeGrid, PRST A62 Gehrke, Srsieve, CRUS, PRST A63 Davies, Srsieve, CRUS, PRST A64 Freeman.kennethgmail.com, Srsieve, CRUS, PRST A65 Dickinson, Srsieve, CRUS, PRST A66 Terber, Srsieve, CRUS, PRST A67 Gahan, Gcwsieve, PRST A68 Schroeder3, Srsieve, CRUS, PRST A69 Chodzinski, Srsieve, CRUS, PRST A70 Korolev, Srsieve, CRUS, PRST A71 Harju, Srsieve, CRUS, PRST A72 Brase, Srsieve, CRUS, PRST A73 Brooks2, Srsieve, CRUS, PRST A75 Yasuhisa, TwinGen, NewPGen, TPS, PRST A76 Brockwell, PSieve, Srsieve, NPLB, PRST A77 Barnes, PSieve, Srsieve, NPLB, PRST A78 Wen, PSieve, Srsieve, NPLB, PRST A79 Vink, Brockwell, Schmidt2, TwinGen, NewPGen, TPS, PRST A80 BLANCHE, Srsieve, CRUS, PRST A81 Arnold1, Srsieve, CRUS, PRST A82 Brockwell, TwinGen, NewPGen, TPS, PRST A83 DEWAR2, Srsieve, CRUS, PRST A86 StPierre, Srsieve, CRUS, PRST A87 Menke, Srsieve, CRUS, PRST C Caldwell, Cruncher c2 Water, Primo c4 Broadhurst, Primo c8 Broadhurst, Water, Primo c11 Oakes, Primo c18 Luhn, Primo c39 Minovic, OpenPFGW, Primo c47 Chandler, Primo c54 Wu_T, Primo c55 Gramolin, Primo c56 Soule, Minovic, OpenPFGW, Primo c58 Kaiser1, NewPGen, OpenPFGW, Primo c59 Metcalfe, OpenPFGW, Primo c63 Ritschel, TOPS, Primo c64 Metcalfe, Minovic, Ritschel, TOPS, Primo c66 Steine, Primo c67 Batalov, NewPGen, OpenPFGW, Primo c69 Jacobsen, Primo c70 Underwood, Dubner, Primo c71 Metcalfe, Ritschel, Andersen, TOPS, Primo c73 Underwood, Lifchitz, Primo c74 Lasher, Dubner, Primo c76 Kaiser1, Water, Underwood, Primo c77 Batalov, Primo c79 Batalov, Broadhurst, Water, Primo c81 Water, Underwood, Primo c82 Steine, Water, Primo c83 Kaiser1, PolySieve, NewPGen, Primo c84 Underwood, Primo c88 Kaiser1, PolySieve, Primo c92 Lamprecht, Luhn, Primo c93 Batalov, PolySieve, Primo c94 Gelhar, Ritschel, TOPS, Primo c95 Gelhar, Primo c97 Lamprecht, Luhn, APSieve, OpenPFGW, Primo c98 Batalov, EMsieve, Primo c99 Kruse, Schoeler, Primo c100 DavisK, APTreeSieve, NewPGen, OpenPFGW, Primo c101 DavisK, APTreeSieve, OpenPFGW, Primo CD Caldwell, Dubner, Cruncher CH10 Batalov, OpenPFGW, Primo, CHG CH12 Propper, Batalov, OpenPFGW, Primo, CHG CH13 Propper, Batalov, EMsieve, OpenPFGW, CHG CH14 Wu_T, CM, OpenPFGW, CHG CH15 Propper, Batalov, CM, OpenPFGW, CHG CH2 Wu_T, OpenPFGW, Primo, CHG CH3 Broadhurst, Water, OpenPFGW, Primo, CHG CH4 Irvine, Broadhurst, Water, OpenPFGW, Primo, CHG CH9 Zhou, OpenPFGW, CHG D Dubner, Cruncher DK Dubner, Keller, Cruncher DS Smith_Darren, Proth.exe E1 Batalov, CM E2 Propper, CM E3 Enge, CM E4 Childers, CM E5 Underwood, CM E6 Lasher, Broadhurst, Underwood, CM E7 Lasher, CM E8 Broadhurst, Underwood, CM E9 Mock, CM E10 Doornink, CM E11 Karpovich, CM E12 Enge, Underwood, CM E13 Batalov, Masser, CM E14 Batalov, EMsieve, CM E15 Batalov, PolySieve, CM E16 Propper, Batalov, CM E17 Foreman, Batalov, CM FE8 Oakes, Broadhurst, Water, Morain, FastECPP G1 Armengaud, GIMPS, Prime95 g1 Caldwell, Proth.exe G2 Spence, GIMPS, Prime95 G3 Clarkson, Kurowski, GIMPS, Prime95 G4 Hajratwala, Kurowski, GIMPS, Prime95 G5 Cameron, Kurowski, GIMPS, Prime95 G6 Shafer, GIMPS, Prime95 G7 Findley_J, GIMPS, Prime95 G8 Nowak, GIMPS, Prime95 G9 Boone, Cooper, GIMPS, Prime95 G10 Smith_E, GIMPS, Prime95 G11 Elvenich, GIMPS, Prime95 G12 Strindmo, GIMPS, Prime95 G13 Cooper, GIMPS, Prime95 G14 Cooper, GIMPS, Prime95 G15 Pace, GIMPS, Prime95 G16 Laroche, GIMPS, Prime95 g23 Ballinger, Proth.exe g25 OHare, Proth.exe g55 Toplic, Proth.exe g236 Heuer, GFN17Sieve, GFNSearch, Proth.exe g245 Cosgrave, NewPGen, PRP, Proth.exe g260 AYENI, Proth.exe g267 Grobstich, NewPGen, PRP, Proth.exe g277 Eaton, NewPGen, PRP, Proth.exe g279 Cooper, NewPGen, PRP, Proth.exe g337 Hsieh, NewPGen, PRP, Proth.exe g403 Yoshimura, ProthSieve, PrimeSierpinski, LLR, Proth.exe g407 HermleGC, MultiSieve, PRP, Proth.exe g413 Scott, AthGFNSieve, Proth.exe g414 Gilvey, Srsieve, PrimeGrid, PrimeSierpinski, LLR, Proth.exe g424 Broadhurst, NewPGen, OpenPFGW, Proth.exe g427 Batalov, Srsieve, LLR, Proth.exe g429 Underbakke, GenefX64, AthGFNSieve, PrimeGrid, Proth.exe g431 Shenton, Srsieve, Proth.exe gm Morii, Proth.exe K Keller L53 Zaveri, ProthSieve, RieselSieve, PRP, LLR L95 Urushi, LLR L124 Rodenkirch, MultiSieve, LLR L129 Snyder, LLR L137 Jaworski, Rieselprime, LLR L161 Schafer, NewPGen, LLR L181 Siegert, LLR L185 Hassler, NewPGen, LLR L192 Jaworski, LLR L201 Siemelink, LLR L256 Underwood, Srsieve, NewPGen, 321search, LLR L381 Mate, Siemelink, Rodenkirch, MultiSieve, LLR L384 Pinho, Srsieve, Rieselprime, LLR L426 Jaworski, Srsieve, Rieselprime, LLR L436 Andersen2, Gcwsieve, MultiSieve, PrimeGrid, LLR L447 Kohlman, Gcwsieve, MultiSieve, PrimeGrid, LLR L466 Zhou, NewPGen, LLR L503 Benson, Srsieve, LLR L521 Thompson1, Gcwsieve, MultiSieve, PrimeGrid, LLR L527 Tornberg, TwinGen, LLR L541 Barnes, Srsieve, CRUS, LLR L550 Bonath, Srsieve, CRUS, LLR L591 Penne, Srsieve, CRUS, LLR L606 Bennett, Srsieve, NewPGen, PrimeGrid, 321search, LLR L613 Keogh, Srsieve, ProthSieve, RieselSieve, LLR L622 Cardall, Srsieve, ProthSieve, RieselSieve, LLR L671 Wong, Srsieve, PrimeGrid, LLR L689 Brown1, Srsieve, PrimeGrid, LLR L690 Cholt, Srsieve, PrimeGrid, LLR L753 Wolfram, Srsieve, PrimeGrid, LLR L760 Riesen, Srsieve, Rieselprime, LLR L764 Ewing, Srsieve, PrimeGrid, LLR L780 Brady, Srsieve, PrimeGrid, LLR L801 Gesker, Gcwsieve, MultiSieve, PrimeGrid, LLR L802 Zachariassen, Srsieve, NPLB, LLR L875 Hatland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L917 Bergman1, Gcwsieve, MultiSieve, PrimeGrid, LLR L923 Kaiser1, Klahn, NewPGen, PrimeGrid, TPS, SunGard, LLR L927 Brown1, TwinGen, PrimeGrid, LLR L983 Wu_T, LLR L1056 Schwieger, Srsieve, PrimeGrid, LLR L1115 Splain, PSieve, Srsieve, PrimeGrid, LLR L1125 Laluk, PSieve, Srsieve, PrimeGrid, LLR L1129 Slomma, PSieve, Srsieve, PrimeGrid, LLR L1134 Ogawa, Srsieve, NewPGen, LLR L1141 Ogawa, NewPGen, LLR L1160 Sunderland, PSieve, Srsieve, PrimeGrid, LLR L1188 Faith, PSieve, Srsieve, PrimeGrid, LLR L1201 Carpenter1, PSieve, Srsieve, PrimeGrid, LLR L1203 Mauno, PSieve, Srsieve, PrimeGrid, LLR L1204 Brown1, PSieve, Srsieve, PrimeGrid, LLR L1209 Wong, PSieve, Srsieve, PrimeGrid, LLR L1223 Courty, PSieve, Srsieve, PrimeGrid, LLR L1300 Yama, PSieve, Srsieve, PrimeGrid, LLR L1301 Sorbera, Srsieve, CRUS, LLR L1349 Wallace, Srsieve, NewPGen, PrimeGrid, LLR L1353 Mumper, Srsieve, PrimeGrid, LLR L1355 Beck, PSieve, Srsieve, PrimeGrid, LLR L1372 Glennie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L1387 Anonymous, PSieve, Srsieve, PrimeGrid, LLR L1412 Jones_M, PSieve, Srsieve, PrimeGrid, LLR L1422 Steichen, PSieve, Srsieve, PrimeGrid, LLR L1444 Davies, PSieve, Srsieve, PrimeGrid, LLR L1448 Hron, PSieve, Srsieve, PrimeGrid, LLR L1455 Heikkila, PSieve, Srsieve, PrimeGrid, LLR L1456 Webster, PSieve, Srsieve, PrimeGrid, LLR L1460 Salah, Srsieve, PrimeGrid, PrimeSierpinski, LLR L1471 Gunn, Srsieve, CRUS, LLR L1474 Brown6, PSieve, Srsieve, PrimeGrid, LLR L1486 Dinkel, PSieve, Srsieve, PrimeGrid, LLR L1502 Champ, PSieve, Srsieve, PrimeGrid, LLR L1576 Craig, PSieve, Srsieve, PrimeGrid, LLR L1675 Schwieger, PSieve, Srsieve, PrimeGrid, LLR L1728 Gasewicz, PSieve, Srsieve, PrimeGrid, LLR L1741 Granowski, PSieve, Srsieve, PrimeGrid, LLR L1745 Cholt, PSieve, Srsieve, PrimeGrid, LLR L1754 Hubbard, PSieve, Srsieve, PrimeGrid, LLR L1774 Schoefer, PSieve, Srsieve, PrimeGrid, LLR L1780 Ming, PSieve, Srsieve, PrimeGrid, LLR L1792 Tang, PSieve, Srsieve, PrimeGrid, LLR L1808 Reynolds1, PSieve, Srsieve, PrimeGrid, LLR L1817 Barnes, PSieve, Srsieve, NPLB, LLR L1823 Larsson, PSieve, Srsieve, PrimeGrid, LLR L1828 Benson, PSieve, Srsieve, Rieselprime, LLR L1862 Curtis, PSieve, Srsieve, Rieselprime, LLR L1884 Jaworski, PSieve, Srsieve, Rieselprime, LLR L1885 Ostaszewski, PSieve, Srsieve, PrimeGrid, LLR L1921 Winslow, TwinGen, PrimeGrid, LLR L1932 Dragnev, PSieve, Srsieve, PrimeGrid, LLR L1935 Channing, PSieve, Srsieve, PrimeGrid, LLR L1949 Pritchard, Srsieve, PrimeGrid, RieselSieve, LLR L1959 Metcalfe, PSieve, Srsieve, Rieselprime, LLR L1979 Tibbott, PSieve, Srsieve, PrimeGrid, LLR L2012 Pedersen_K, Srsieve, CRUS, OpenPFGW, LLR L2017 Hubbard, PSieve, Srsieve, NPLB, LLR L2030 Tonner, PSieve, Srsieve, PrimeGrid, LLR L2035 Greer, TwinGen, PrimeGrid, LLR L2042 Lachance, PSieve, Srsieve, PrimeGrid, LLR L2046 Melvold, Srsieve, PrimeGrid, LLR L2054 Kaiser1, Srsieve, CRUS, LLR L2055 Soule, PSieve, Srsieve, Rieselprime, LLR L2085 Dodson1, PSieve, Srsieve, PrimeGrid, LLR L2086 Sveen, PSieve, Srsieve, PrimeGrid, LLR L2103 Schmidt1, PSieve, Srsieve, PrimeGrid, LLR L2117 Karlsteen, PSieve, Srsieve, PrimeGrid, LLR L2121 VanRangelrooij, PSieve, Srsieve, PrimeGrid, LLR L2125 Greer, PSieve, Srsieve, PrimeGrid, LLR L2137 Hayashi1, PSieve, Srsieve, PrimeGrid, LLR L2142 Hajek, PSieve, Srsieve, PrimeGrid, LLR L2158 Krauss, PSieve, Srsieve, PrimeGrid, LLR L2163 VanRooijen1, PSieve, Srsieve, PrimeGrid, LLR L2233 Herder, Srsieve, PrimeGrid, LLR L2235 Mullage, PSieve, Srsieve, NPLB, LLR L2257 Dettweiler, PSieve, Srsieve, NPLB, LLR L2269 Schori, Srsieve, PrimeGrid, LLR L2322 Szafranski, PSieve, Srsieve, PrimeGrid, LLR L2366 Satoh, PSieve, Srsieve, PrimeGrid, LLR L2371 Luszczek, Srsieve, PrimeGrid, LLR L2373 Tarasov1, Srsieve, PrimeGrid, LLR L2408 Reinman, Srsieve, PrimeGrid, LLR L2425 DallOsto, LLR L2429 Bliedung, TwinGen, PrimeGrid, LLR L2484 Ritschel, PSieve, Srsieve, Rieselprime, LLR L2520 Mamanakis, PSieve, Srsieve, PrimeGrid, LLR L2549 McKay, PSieve, Srsieve, PrimeGrid, LLR L2552 Foulher, PSieve, Srsieve, PrimeGrid, LLR L2561 Vinklat, PSieve, Srsieve, PrimeGrid, LLR L2564 Bravin, PSieve, Srsieve, PrimeGrid, LLR L2583 Nakamura, PSieve, Srsieve, PrimeGrid, LLR L2602 Mueller4, PSieve, Srsieve, PrimeGrid, LLR L2603 Hoffman, PSieve, Srsieve, PrimeGrid, LLR L2606 Slakans, PSieve, Srsieve, PrimeGrid, LLR L2629 Becker2, PSieve, Srsieve, PrimeGrid, LLR L2659 Reber, PSieve, Srsieve, PrimeGrid, LLR L2676 Cox2, PSieve, Srsieve, PrimeGrid, LLR L2714 Piotrowski, PSieve, Srsieve, PrimeGrid, LLR L2715 Donovan, PSieve, Srsieve, PrimeGrid, LLR L2719 Yost, PSieve, Srsieve, PrimeGrid, LLR L2777 Ritschel, Gcwsieve, TOPS, LLR L2785 Meili, PSieve, Srsieve, PrimeGrid, LLR L2805 Barr, PSieve, Srsieve, PrimeGrid, LLR L2840 Santana, PSieve, Srsieve, PrimeGrid, LLR L2842 English1, PSieve, Srsieve, PrimeGrid, LLR L2873 Jurach, PSieve, Srsieve, PrimeGrid, LLR L2885 Busacker, PSieve, Srsieve, PrimeGrid, LLR L2891 Lacroix, PSieve, Srsieve, PrimeGrid, LLR L2914 Merrylees, PSieve, Srsieve, PrimeGrid, LLR L2959 Derrera, PSieve, Srsieve, PrimeGrid, LLR L2973 Kurtovic, Srsieve, PrimeGrid, LLR L2975 Loureiro, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L2992 Boehm, PSieve, Srsieve, PrimeGrid, LLR L2997 Williams2, PSieve, Srsieve, PrimeGrid, LLR L3023 Winslow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3029 Walsh, PSieve, Srsieve, PrimeGrid, LLR L3033 Snow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3035 Scalise, PSieve, Srsieve, PrimeGrid, LLR L3048 Breslin, PSieve, Srsieve, PrimeGrid, LLR L3054 Winslow, Srsieve, PrimeGrid, LLR L3091 Ridgway, PSieve, Srsieve, PrimeGrid, LLR L3101 Reichard, PSieve, Srsieve, PrimeGrid, LLR L3118 Yama, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3141 Kus, PSieve, Srsieve, PrimeGrid, LLR L3168 Schwegler, PSieve, Srsieve, PrimeGrid, LLR L3171 Bergelt, PSieve, Srsieve, PrimeGrid, LLR L3173 Zhou2, PSieve, Srsieve, PrimeGrid, LLR L3174 Boniecki, PSieve, Srsieve, PrimeGrid, LLR L3183 Haller, Srsieve, PrimeGrid, LLR L3184 Hayslette, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3200 Athanas, PSieve, Srsieve, PrimeGrid, LLR L3203 Scalise, TwinGen, PrimeGrid, LLR L3209 McArdle, GenefX64, AthGFNSieve, PrimeGrid, LLR L3222 Yamamoto, PSieve, Srsieve, PrimeGrid, LLR L3223 Yurgandzhiev, PSieve, Srsieve, PrimeGrid, LLR L3230 Kumagai, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3234 Parangalan, PSieve, Srsieve, PrimeGrid, LLR L3249 Lind, PSieve, Srsieve, PrimeGrid, LLR L3260 Stanko, PSieve, Srsieve, PrimeGrid, LLR L3261 Batalov, PSieve, Srsieve, PrimeGrid, LLR L3262 Molder, PSieve, Srsieve, PrimeGrid, LLR L3278 Fischer1, PSieve, Srsieve, PrimeGrid, LLR L3323 Ritschel, NewPGen, TOPS, LLR L3325 Elvy, PSieve, Srsieve, PrimeGrid, LLR L3329 Tatearka, PSieve, Srsieve, PrimeGrid, LLR L3345 Domanov1, PSieve, Rieselprime, LLR L3372 Ryan, PSieve, Srsieve, PrimeGrid, LLR L3430 Durstewitz, PSieve, Srsieve, PrimeGrid, LLR L3431 Gahan, PSieve, Srsieve, PrimeGrid, LLR L3432 Batalov, Srsieve, LLR L3458 Jia, PSieve, Srsieve, PrimeGrid, LLR L3459 Boruvka, PSieve, Srsieve, PrimeGrid, LLR L3460 Ottusch, PSieve, Srsieve, PrimeGrid, LLR L3483 Farrow, PSieve, Srsieve, PrimeGrid, LLR L3494 Batalov, NewPGen, LLR L3502 Ristic, PSieve, Srsieve, PrimeGrid, LLR L3512 Tsuji, PSieve, Srsieve, PrimeGrid, LLR L3514 Bishop1, PSieve, Srsieve, PrimeGrid, OpenPFGW, LLR L3519 Kurtovic, PSieve, Srsieve, Rieselprime, LLR L3523 Brown1, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3532 Batalov, Gcwsieve, LLR L3539 Jacobs, PSieve, Srsieve, PrimeGrid, LLR L3545 Eskam1, PSieve, Srsieve, PrimeGrid, LLR L3547 Ready, Srsieve, PrimeGrid, LLR L3548 Ready, PSieve, Srsieve, PrimeGrid, LLR L3552 Benson2, Srsieve, PrimeGrid, LLR L3553 Cilliers, Srsieve, PrimeGrid, LLR L3562 Schouten, Srsieve, PrimeGrid, LLR L3564 Jaworski, Srsieve, CRUS, LLR L3566 Slakans, Srsieve, PrimeGrid, LLR L3567 Meili, Srsieve, PrimeGrid, LLR L3573 Batalov, TwinGen, PrimeGrid, LLR L3593 Veit, PSieve, Srsieve, PrimeGrid, LLR L3606 Sander, TwinGen, PrimeGrid, LLR L3610 Batalov, Srsieve, CRUS, LLR L3659 Volynsky, Srsieve, PrimeGrid, LLR L3662 Schawe, PSieve, Srsieve, PrimeGrid, LLR L3665 Kelava1, PSieve, Srsieve, Rieselprime, LLR L3686 Yost, Srsieve, PrimeGrid, LLR L3719 Skinner, PSieve, Srsieve, PrimeGrid, LLR L3720 Ohno, Srsieve, PrimeGrid, LLR L3735 Kurtovic, Srsieve, LLR L3749 Meador, Srsieve, PrimeGrid, LLR L3760 Okazaki, PSieve, Srsieve, PrimeGrid, LLR L3763 Martin4, PSieve, Srsieve, PrimeGrid, LLR L3764 Diepeveen, PSieve, Srsieve, Rieselprime, LLR L3770 Tang, Srsieve, PrimeGrid, LLR L3772 Ottusch, Srsieve, PrimeGrid, LLR L3784 Cavnaugh, PSieve, Srsieve, PrimeGrid, LLR L3789 Toda, Srsieve, PrimeGrid, LLR L3802 Aggarwal, Srsieve, LLR L3803 Bredl, PSieve, Srsieve, PrimeGrid, LLR L3813 Chambers2, PSieve, Srsieve, PrimeGrid, LLR L3824 Mazzucato, PSieve, Srsieve, PrimeGrid, LLR L3829 Abrahmi, TwinGen, PrimeGrid, LLR L3839 Batalov, EMsieve, LLR L3849 Smith10, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3859 Clifton, PSieve, Srsieve, PrimeGrid, LLR L3865 Silva, PSieve, Srsieve, PrimeGrid, LLR L3869 Cholt, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3877 Jarne, PSieve, Srsieve, PrimeGrid, LLR L3887 Byerly, PSieve, Rieselprime, LLR L3895 Englehard, PSieve, Srsieve, PrimeGrid, LLR L3898 Christy, PSieve, Srsieve, PrimeGrid, LLR L3903 Miao, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3904 Darimont, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3917 Rodenkirch, PSieve, Srsieve, LLR L3919 Pickering, PSieve, Srsieve, PrimeGrid, LLR L3924 Kim5, PSieve, Srsieve, PrimeGrid, LLR L3925 Okazaki, Srsieve, PrimeGrid, LLR L3933 Batalov, PSieve, Srsieve, CRUS, Rieselprime, LLR L3941 Lee8, PSieve, Srsieve, PrimeGrid, LLR L3961 Darimont, Srsieve, PrimeGrid, LLR L3964 Iakovlev, Srsieve, PrimeGrid, LLR L3993 Gushchak, Srsieve, PrimeGrid, LLR L3994 Domanov1, PSieve, Srsieve, NPLB, LLR L4001 Willig, Srsieve, CRUS, LLR L4031 Darney, PSieve, Srsieve, PrimeGrid, LLR L4034 Vanc, Srsieve, PrimeGrid, LLR L4036 Domanov1, PSieve, Srsieve, CRUS, LLR L4043 Niedbala, PSieve, Srsieve, PrimeGrid, LLR L4045 Chew, PSieve, Srsieve, PrimeGrid, LLR L4064 Davies, Srsieve, CRUS, LLR L4082 Zimmerman, PSieve, Srsieve, PrimeGrid, LLR L4083 Charrondiere, PSieve, Srsieve, PrimeGrid, LLR L4087 Kecic, PSieve, Srsieve, PrimeGrid, LLR L4099 Nietering, PSieve, Srsieve, PrimeGrid, LLR L4103 Klopffleisch, Srsieve, PrimeGrid, LLR L4108 Yoshioka, PSieve, Srsieve, PrimeGrid, LLR L4113 Batalov, PSieve, Srsieve, LLR L4114 Bubloski, PSieve, Srsieve, PrimeGrid, LLR L4119 Nelson3, PSieve, Srsieve, PrimeGrid, LLR L4139 Hawker, Srsieve, CRUS, LLR L4142 Batalov, CycloSv, EMsieve, PIES, LLR L4146 Schmidt1, Srsieve, PrimeGrid, LLR L4147 Mohacsy, PSieve, Srsieve, PrimeGrid, LLR L4148 Glatte, PSieve, Srsieve, PrimeGrid, LLR L4155 Jones4, PSieve, Srsieve, PrimeGrid, LLR L4159 Schulz5, Srsieve, PrimeGrid, LLR L4166 Kwok, PSieve, LLR L4185 Hoefliger, PSieve, Srsieve, PrimeGrid, LLR L4187 Schmidt2, Srsieve, CRUS, LLR L4189 Lawrence, Powell, Srsieve, CRUS, LLR L4190 Fnasek, PSieve, Srsieve, PrimeGrid, LLR L4197 Kumagai1, Srsieve, PrimeGrid, LLR L4198 Rawles, PSieve, Srsieve, PrimeGrid, LLR L4200 Harste, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4201 Brown1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4203 Azarenko, PSieve, Srsieve, PrimeGrid, LLR L4204 Winslow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4205 Bischof, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4207 Jaamann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4208 Farrow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4210 Cholt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4226 Heath, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4231 Schneider1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4245 Greer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4249 Larsson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4250 Vogt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4252 Nietering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4256 Gniesmer, PSieve, Srsieve, PrimeGrid, LLR L4267 Batalov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4273 Rangelrooij, Srsieve, CRUS, LLR L4274 AhlforsDahl, Srsieve, PrimeGrid, LLR L4276 Borbely, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4285 Bravin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4286 Zimmerman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4289 Ito2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4293 Trunov, PSieve, Srsieve, PrimeGrid, LLR L4294 Kurtovic, Srsieve, CRUS, Prime95, LLR L4295 Splain, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4303 Thorson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4307 Keller1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4308 Matillek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4309 Kecic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4314 DeThomas, PSieve, Srsieve, PrimeGrid, LLR L4316 Nilsson1, PSieve, Srsieve, PrimeGrid, LLR L4326 Steel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4329 Okon, Srsieve, LLR L4334 Miller5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4340 Becker4, Srsieve, PrimeGrid, LLR L4341 Goetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4342 Kaiser1, PolySieve, NewPGen, LLR L4343 Norton, PSieve, Srsieve, PrimeGrid, LLR L4348 Burridge, Srsieve, PrimeGrid, LLR L4359 Andou, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4362 Mochizuki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4364 Steinbach, PSieve, Srsieve, PrimeGrid, LLR L4371 Schmidt2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4380 Rix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4387 Davies, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4393 Veit1, Srsieve, CRUS, LLR L4395 Nilsson1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4398 Greer, Srsieve, PrimeGrid, LLR L4400 Norman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4405 Eckhard, Srsieve, LLR L4406 Mathers, PSieve, Srsieve, PrimeGrid, LLR L4408 Fricke, PSieve, Srsieve, PrimeGrid, LLR L4410 Andresson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4411 Leudesdorff, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4414 Falk, PSieve, Srsieve, PrimeGrid, LLR L4424 Miyauchi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4429 Lacroix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4435 Larsson, Srsieve, PrimeGrid, LLR L4444 Terber, Srsieve, CRUS, LLR L4454 Clark5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4456 Chambers2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4457 Geiger, PSieve, Srsieve, PrimeGrid, LLR L4459 Biscop, PSieve, Srsieve, PrimeGrid, LLR L4466 Falk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4472 Harvanek, Gcwsieve, MultiSieve, PrimeGrid, LLR L4476 Shane, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4477 Tennant, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4482 Mena, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4488 Vrontakis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4490 Mazumdar, PSieve, Srsieve, PrimeGrid, LLR L4499 Ohsugi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4501 Eskam1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4504 Sesok, NewPGen, LLR L4505 Lind, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4506 Propper, Batalov, CycloSv, EMsieve, PIES, Prime95, LLR L4510 Ming, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4511 Donovan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4518 Primecrunch.com, Hedges, Srsieve, LLR L4521 Curtis, Srsieve, CRUS, LLR L4525 Kong1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4526 Schoefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4527 Fruzynski, PSieve, Srsieve, PrimeGrid, LLR L4530 Reynolds1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4537 Mayer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4544 Krauss, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4548 Sydekum, Srsieve, CRUS, Prime95, LLR L4549 Schick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4550 Terry, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4552 Koski, PSieve, Srsieve, PrimeGrid, LLR L4559 Okazaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4561 Propper, Batalov, CycloSv, Cyclo, EMsieve, PIES, LLR L4562 Donovan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4564 DeThomas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4568 Vrontakis, PSieve, Srsieve, PrimeGrid, LLR L4582 Kinney, PSieve, Srsieve, PrimeGrid, LLR L4583 Rohmann, PSieve, Srsieve, PrimeGrid, LLR L4584 Goforth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4585 Schawe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4591 Schwieger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4595 Mangio, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4599 Loureiro, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4600 Simbarsky, PSieve, Srsieve, PrimeGrid, LLR L4609 Elgetz, PSieve, Srsieve, PrimeGrid, LLR L4620 Kinney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4622 Jurach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4623 Dugger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4626 Iltus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4645 McKibbon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4649 Humphries, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4654 Voskoboynikov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4656 Beck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4658 Maguin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4659 AverayJones, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4660 Snow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4664 Toledo, PSieve, Srsieve, PrimeGrid, LLR L4665 Szeluga, Kupidura, Banka, LLR L4666 Slade, PSieve, Srsieve, PrimeGrid, LLR L4667 Morelli, LLR L4668 Okazaki, Gcwsieve, MultiSieve, PrimeGrid, LLR L4669 Schwegler, Srsieve, PrimeGrid, LLR L4670 Drumm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4672 Slade, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4673 Okhrimouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4675 Lind, Srsieve, PrimeGrid, LLR L4676 Maloney, Srsieve, PrimeGrid, PrimeSierpinski, LLR L4677 Provencher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4683 Bird2, Srsieve, CRUS, LLR L4684 Sveen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4685 Masser, Srsieve, CRUS, LLR L4687 Campbell1, PSieve, Srsieve, PrimeGrid, LLR L4689 Gordon2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4690 Brandt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4691 Fruzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4692 Hajek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4694 Schapendonk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4695 Goudie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4696 Plottel, PSieve, Srsieve, PrimeGrid, LLR L4697 Sellsted, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4699 Parsonnet, PSieve, Srsieve, PrimeGrid, LLR L4700 Liu4, Srsieve, CRUS, LLR L4701 Kalus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4702 Charette, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4703 Pacini, PSieve, Srsieve, PrimeGrid, LLR L4704 Kurtovic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4706 Kraemer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4710 Wiedemann, PSieve, Srsieve, PrimeGrid, LLR L4711 Closs, PSieve, Srsieve, PrimeGrid, LLR L4712 Gravemeyer, PSieve, Srsieve, PrimeGrid, LLR L4713 Post, PSieve, Srsieve, PrimeGrid, LLR L4715 Skinner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4717 Wypych, PSieve, Srsieve, PrimeGrid, LLR L4718 Brown1, Gcwsieve, MultiSieve, PrimeGrid, LLR L4720 Gahan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4723 Lexut, PSieve, Srsieve, PrimeGrid, LLR L4724 Thonon, PSieve, Srsieve, PrimeGrid, LLR L4726 Miller7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4729 Wimmer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4730 Bowe, PSieve, Srsieve, PrimeGrid, LLR L4732 Miller7, PSieve, Srsieve, PrimeGrid, LLR L4733 Brazier, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4737 Reinhardt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4738 Gelhar, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4740 Silva1, PSieve, Srsieve, PrimeGrid, LLR L4741 Wong, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4742 Schlereth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4743 Plsak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4745 Cavnaugh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4746 Brech, PSieve, Srsieve, PrimeGrid, LLR L4747 Brech, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4752 Harvey2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4753 Riemann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4754 Calvin, PSieve, Srsieve, PrimeGrid, LLR L4755 Glatte, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4756 Dumange, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4757 Johnson9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4758 Walling, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4760 Sipes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4761 Romaidis, PSieve, Srsieve, PrimeGrid, LLR L4763 Guilleminot, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4764 McLean2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4765 Kumsta, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4772 Bird1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4773 Tohmola, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4774 Boehm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4775 Steinbach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4776 Lee7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4777 Kampmeier, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4783 Marini, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4784 Bertolotti, Gcwsieve, MultiSieve, PrimeGrid, LLR L4786 Sydekum, Srsieve, CRUS, LLR L4787 Sunderland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4789 Kurtovic, Srsieve, Prime95, LLR L4791 Vaisanen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4793 Koski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4795 Lawson2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4796 White2, PSieve, Srsieve, PrimeGrid, LLR L4799 Vanderveen1, LLR L4800 Doenges, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4802 Jones5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4806 Rajala, Srsieve, CRUS, LLR L4807 Tsuji, Srsieve, PrimeGrid, LLR L4808 Kaiser1, PolySieve, LLR L4809 Bocan, Srsieve, PrimeGrid, LLR L4810 Dhuyvetters, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4814 Telesz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4815 Kozisek, PSieve, Srsieve, PrimeGrid, LLR L4816 Doenges, PSieve, Srsieve, PrimeGrid, LLR L4819 Inci, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4821 Svantner, PSieve, Srsieve, PrimeGrid, LLR L4822 Magklaras, PSieve, Srsieve, PrimeGrid, LLR L4823 Helm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4824 Allivato, PSieve, Srsieve, PrimeGrid, LLR L4826 Soraku, PSieve, Srsieve, PrimeGrid, LLR L4830 Eisler1, PSieve, Srsieve, PrimeGrid, LLR L4832 Meekins, Srsieve, CRUS, LLR L4834 Helm, PSieve, Srsieve, PrimeGrid, LLR L4835 Katzur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4840 Ylijoki, PSieve, Srsieve, PrimeGrid, LLR L4841 Baur, PSieve, Srsieve, PrimeGrid, LLR L4842 Smith11, PSieve, Srsieve, PrimeGrid, LLR L4843 Hutchins, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4844 Valentino, PSieve, Srsieve, PrimeGrid, LLR L4848 Adamec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4849 Burt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4850 Jones5, PSieve, Srsieve, PrimeGrid, LLR L4851 Schioler, PSieve, Srsieve, PrimeGrid, LLR L4854 Gory, PSieve, Srsieve, PrimeGrid, LLR L4858 Koriabine, PSieve, Srsieve, PrimeGrid, LLR L4859 Wang4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4861 Thonon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4864 Freihube, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4868 Bergmann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4869 Ogata, PSieve, Srsieve, PrimeGrid, LLR L4870 Wharton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4871 Gory, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4875 Parsonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4876 Tennant, Srsieve, CRUS, LLR L4877 Cherenkov, Srsieve, CRUS, LLR L4879 Propper, Batalov, Srsieve, LLR L4880 Goossens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4881 Bonath, Srsieve, LLR L4884 Somer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4889 Hundhausen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4892 Hewitt1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4893 Little, PSieve, Srsieve, PrimeGrid, LLR L4898 Kozisek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4899 Schioler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4903 Laurent1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4904 Dunchouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4905 Niegocki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4907 Reinhardt, PSieve, Srsieve, PrimeGrid, LLR L4909 Hall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4914 Bishop_D, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4917 Corlatti, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4918 Weiss1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4920 Walsh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4922 Bulba, Sesok, LLR L4923 Koriabine, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4925 Korolev, Srsieve, CRUS, LLR L4926 Shenton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4927 Smith12, Srsieve, SRBase, CRUS, LLR L4928 Doornink, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4929 Givoni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4930 Shintani, PSieve, Srsieve, PrimeGrid, LLR L4932 Schroeder2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4933 Jacques, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4935 Simard, PSieve, Srsieve, PrimeGrid, LLR L4937 Ito2, Srsieve, PrimeGrid, LLR L4939 Coscia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4942 Matheis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4943 Stroup, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4944 Schori, LLR2, PSieve, Srsieve, PrimeGrid, LLR L4945 Meili, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4948 SchwartzLowe, PSieve, Srsieve, PrimeGrid, LLR L4951 Niegocki, PSieve, Srsieve, PrimeGrid, LLR L4954 Romaidis, Srsieve, PrimeGrid, LLR L4955 Grosvenor, Srsieve, CRUS, LLR L4956 Merrylees, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4958 Shenton, PSieve, Srsieve, PrimeGrid, LLR L4959 Deakin, PSieve, Srsieve, PrimeGrid, LLR L4960 Kaiser1, NewPGen, TPS, LLR L4963 Mortimore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4964 Doescher, GFNSvCUDA, GeneFer, LLR L4965 Propper, LLR L4968 Kaczala, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4970 Michael, PSieve, Srsieve, PrimeGrid, LLR L4972 Greer, Gcwsieve, MultiSieve, PrimeGrid, LLR L4973 Landrum, PSieve, Srsieve, PrimeGrid, LLR L4975 Thompson5, Srsieve, CRUS, LLR L4976 Propper, Batalov, Gcwsieve, LLR L4977 Miller8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4979 Matheis, PSieve, Srsieve, PrimeGrid, LLR L4980 Poon1, PSieve, Srsieve, PrimeGrid, LLR L4981 MartinezCucalon, PSieve, Srsieve, PrimeGrid, LLR L4984 Hemsley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4985 Veit, Srsieve, CRUS, LLR L4987 Canossi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4988 Harris3, PSieve, Srsieve, PrimeGrid, LLR L4990 Heindl, PSieve, Srsieve, PrimeGrid, LLR L4997 Gardner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4999 Andrews1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5001 Mamonov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5002 Kato, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5005 Hass, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5007 Faith, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5008 Niegocki, Srsieve, PrimeGrid, LLR L5009 Jungmann, Srsieve, LLR L5011 Strajt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5013 Wypych, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5014 Strokov, PSieve, Srsieve, PrimeGrid, LLR L5016 NebredaJunghans, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5018 Nielsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5019 Ayiomamitis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5020 Eikelenboom, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5021 Svantner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5022 Manz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5023 Schulz6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5024 Schumacher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5025 Lexut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5027 Moudy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5029 Krompolc, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5030 Calvin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5031 Schumacher, PSieve, Srsieve, PrimeGrid, LLR L5033 Ni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5036 Jung2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5037 Diepeveen, Underwood, PSieve, Srsieve, Rieselprime, LLR L5039 Gilliland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5041 Wallbaum, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5043 Vanderveen1, Propper, LLR L5044 Bergelt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5047 Little, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5051 Veit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5053 Yoshigoe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5056 Chu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5057 Hauhia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5061 Cooper5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5063 Wendelboe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5067 Tirkkonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5068 Silva1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5069 Friedrichsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5070 Millerick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5071 McLean2, Srsieve, CRUS, LLR L5072 Romaidis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5076 Atnashev, Srsieve, PrimeGrid, LLR L5077 Martinelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5078 McDonald4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5079 Meditz, PSieve, Srsieve, PrimeGrid, LLR L5080 Gahan, GFNSvCUDA, PrivGfnServer, LLR L5081 Howell, Srsieve, PrimeGrid, LLR L5083 Pickering, Srsieve, PrimeGrid, LLR L5084 Yagi, PSieve, Srsieve, PrimeGrid, LLR L5085 Strajt, PSieve, Srsieve, PrimeGrid, LLR L5087 Coscia, PSieve, Srsieve, PrimeGrid, LLR L5088 Hall1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5090 Jourdan, PSieve, Srsieve, PrimeGrid, LLR L5094 Th�mmler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5099 Lobring, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5100 Stephens, PSieve, Srsieve, PrimeGrid, LLR L5101 Candido, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5102 Liu6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5104 Gahan, LLR2, NewPGen, LLR L5105 Helm, LLR2, Srsieve, PrivGfnServer, LLR L5106 Glennie, PSieve, Srsieve, PrimeGrid, LLR L5110 Provencher, PSieve, Srsieve, PrimeGrid, LLR L5112 Vanderveen1, Srsieve, CRUS, LLR L5115 Doescher, LLR L5117 Trunov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5120 Greer, LLR2, PrivGfnServer, LLR L5122 Tennant, LLR2, PrivGfnServer, LLR L5123 Propper, Batalov, EMsieve, LLR L5125 Tirkkonen, PSieve, Srsieve, PrimeGrid, LLR L5126 Warach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5127 Kemenes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5129 Veit, Srsieve, PrimeGrid, LLR L5130 Jourdan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5134 Cooper5, PSieve, Srsieve, PrimeGrid, LLR L5139 Belozersky, PSieve, Srsieve, PrimeGrid, LLR L5143 Dickinson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5144 McNary, PSieve, Srsieve, PrimeGrid, LLR L5155 Harju, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5156 Dinkel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5157 Asano, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5158 Zuschlag, PSieve, Srsieve, PrimeGrid, LLR L5159 Huetter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5161 Greer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5162 Th�mmler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5166 Jaros1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5167 Gelhar, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5168 Hawkinson, PSieve, Srsieve, PrimeGrid, LLR L5169 Atnashev, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5171 Brown1, LLR2, Srsieve, PrimeGrid, LLR L5172 McNary, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5173 Bishop_D, PSieve, Srsieve, PrimeGrid, LLR L5174 Scalise, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5175 Liiv, PSieve, Srsieve, Rieselprime, LLR L5176 Early, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5177 Tapper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5178 Larsson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5179 Okazaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5180 Laluk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5181 Atnashev, LLR2, Srsieve, PrimeGrid, LLR L5183 Winskill1, PSieve, Srsieve, PrimeGrid, 12121search, LLR L5184 Byerly, PSieve, Srsieve, NPLB, LLR L5185 Elgetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5186 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, United, PrimeGrid, LLR L5188 Wong, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5189 Jackson1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5191 Kaiser1, NewPGen, LLR L5192 Anonymous, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5194 Jonas, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5195 Ridgway, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5196 Sielemann, Srsieve, CRUS, LLR L5197 Propper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5198 Elgetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5199 Romaidis, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5200 Terry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5201 Ford, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5202 Molne, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5203 Topham, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5205 Zuschlag, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5206 Wiseler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5207 Atnashev, LLR2, PrivGfnServer, LLR L5208 Schnur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5210 Brech, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5214 Dinkel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5215 Hawkinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5216 Brazier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5217 Wiseler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5220 Jones4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5223 Vera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5226 Brown1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5228 Jacques, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5229 Karpenko, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5230 Tapper, LLR2, Srsieve, PrimeGrid, LLR L5231 Veit, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5232 Bliedung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5233 Sipes, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5234 Greeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5235 Karpinski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5236 Shenton, LLR2, PSieve, Srsieve, PrivGfnServer, PrimeGrid, LLR L5237 Schwieger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5238 Jourdan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5239 Strajt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5242 Krompolc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5246 Vaisanen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5248 Delgado, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5249 Racanelli, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5250 Nakamura, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5253 Burt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5254 Gerstenberger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5256 Snow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5260 Ostaszewski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5261 Kim5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5262 Clark5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5263 Ito2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5264 Cholt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5265 Fleischman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5266 Sheridan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5267 Schnur, LLR2, Srsieve, PrimeGrid, LLR L5269 Clemence, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5270 Hennebert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5272 Conner, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5273 McGonegal, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5275 Templin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5276 Schawe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5277 McDevitt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5278 Nose, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5279 Schick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5282 Somer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5283 Hua, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5284 Fischer1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5285 Merrylees, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5286 Reynolds1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5287 Thonon, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5288 Heindl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5290 Cooper5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5294 Hewitt1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5295 Gilliland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5296 Piaive, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5297 Nakamura, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5298 Kaczmarek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5299 Corlatti, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5300 Hajek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5301 Harju, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5302 Davies, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5305 Thanry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5307 Bauer2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5308 Krauss, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5309 Bishop_D, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5310 Hubbard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5311 Reich, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5312 Tyndall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5313 Barnes, PSieve, Srsieve, Rieselprime, LLR L5314 Satoh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5315 Dec, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5316 Walsh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5317 Freeze, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5318 Ruber, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5319 Abbey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5320 Niegocki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5321 Dark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5322 Monnin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5323 Chan1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5324 Boehm, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5325 Drager, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5326 Deakin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5327 Shenton, LLR2, Srsieve, LLR L5332 Mizusawa, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5334 Jones6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5335 Harvey1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5336 Leblanc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5337 Kawamura1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5338 Deakin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5342 Rodenkirch, Srsieve, CRUS, LLR L5343 Tajika, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5344 Lowe1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5345 Johnson8, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5346 Polansky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5348 Adam, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5350 McDevitt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5352 Eklof, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5353 Belolipetskiy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5354 Doornink, NewPGen, OpenPFGW, LLR L5355 Henriksson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5356 Hsu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5358 Gmirkin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5359 Ridgway, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5360 Leitch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5361 Schneider6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5362 Domanov1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5364 Blyth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5366 Michael, Srsieve, CRUS, LLR L5368 Valentino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5369 Schnur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5370 Piotrowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5372 Vitiello, Srsieve, CRUS, LLR L5373 Baranchikov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5375 Blanchard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5376 Ranch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5377 Yasuhisa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5378 Seeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5379 Smith4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5380 Campulka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5381 Meppiel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5382 Bulanov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5384 Riemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5387 Johns, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5390 Lemkau, Srsieve, CRUS, LLR L5391 Black1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5392 McDonald4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5393 Lu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5395 Early, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5396 Andrade, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5399 Kolesov, LLR L5400 Hefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5401 Champ, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5402 Greer, LLR2, Gcwsieve, MultiSieve, PrimeGrid, LLR L5403 Slade1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5404 Wiseler, LLR2, Srsieve, PrimeGrid, LLR L5405 Gerstenberger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5406 Jaros, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5407 Mahnken, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5408 Kreth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5410 Anonymous, Srsieve, CRUS, LLR L5412 Poon1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5413 David1, Srsieve, CRUS, LLR L5414 Mollerus, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5416 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5418 Pollak, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5421 Iwasaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5425 Lichtenwimmer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5426 Gilliland, Srsieve, CRUS, LLR L5427 Hewitt1, LLR2, Srsieve, PrimeGrid, LLR L5429 Meditz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5432 Tatsianenka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5433 Hatanaka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5434 Parsonnet, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5435 Murphy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5437 Rijfers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5438 Tang, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5439 Batalov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5440 McGonegal, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5441 Cherenkov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5442 Moreira, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5443 Venjakob, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5444 Platz, LLR2, Srsieve, PrimeGrid, LLR L5448 Rubin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5449 Reinhardt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5450 Mizusawa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5451 Wilkins, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5452 Morera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5453 Slaets, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5456 Gundermann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5457 Iwasaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5459 Sekanina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5460 Headrick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5461 Anonymous, LLR2, Srsieve, PrimeGrid, LLR L5462 Raimist, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5463 Goforth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5464 Pickering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5465 Hubbard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5466 Furushima, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5467 Tamai1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5470 Latge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5471 Dunchouk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5472 Ready, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5473 StPierre, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5476 Steinbach, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5477 Meador, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5480 Boddener, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5482 Raimist, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5485 Mahnken, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5488 Kecic, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5491 Piaive, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5492 Slaets, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5493 Liu6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5497 Goetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5499 Osada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5500 Racanelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5501 Seeley, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5502 Floyd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5503 Soule, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5504 Cerny, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5505 Chovanec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5507 Brandt2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5508 Gauch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5509 Nietering, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5512 Akesson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5514 Cavnaugh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5516 Piesker, PSieve, Srsieve, NPLB, LLR L5517 Cavecchia, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5518 Eisler1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5523 Sekanina, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5524 Matillek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5526 Kickler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5527 Doornink, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5529 Baur1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5530 Matillek, LLR2, Srsieve, PrimeGrid, LLR L5531 Koci, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5532 Morera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5534 Cervelle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5535 Skahill, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5536 Bennett1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5537 Schafer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5540 Brown6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5541 Parker, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5543 Lucendo, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5544 Byerly, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5545 Kruse, PSieve, Srsieve, NPLB, LLR L5546 Steinwedel, PSieve, Srsieve, NPLB, LLR L5547 Hoonoki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5548 Steinberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5549 Zhang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5550 Provencher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5553 DAmico, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5554 Lucendo, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5555 Parangalan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5556 Javens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5557 Drake, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5558 Lee7, LLR2, Srsieve, PrimeGrid, LLR L5559 Roberts, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5560 Amberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5562 Cheung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5563 Akesson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5564 Lee7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5565 Bailey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5566 Latge, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5567 Marshall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5568 Schioler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5569 Michael, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5570 Arnold, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5571 Williams7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5572 Sveen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5573 Friedrichsen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5574 Laboisne, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5575 Blanchard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5576 Amorim, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5577 Utebaev, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5578 Jablonski1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5579 Cox2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5581 Pickles, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5582 Einvik, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5583 Tanaka3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5584 Barr, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5585 Faith, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5586 Vultur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5587 AverayJones, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5588 Shi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5589 Kupka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5590 Schumacher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5592 Shintani, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5594 Brown7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5595 Hyvonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5596 Kozisek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5600 Steinberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5601 Sato1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5602 Wen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5604 Takahashi2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5606 Clark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5607 Rodermond, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5608 Pieritz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5609 Sielemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5610 Katzur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5611 Smith13, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5612 Lugowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5613 Delisle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5614 Becker2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5615 Dodd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5616 Miller7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5617 Sliwicki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5618 Wilson4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5619 Piotrowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5620 He, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5621 Millerick, LLR2, Srsieve, PrimeGrid, LLR L5624 Farrow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5625 Sellsted, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5626 Clark, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5627 Bulanov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5628 Baranchikov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5629 Dickinson, Srsieve, CRUS, LLR L5631 Mittelstadt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5632 Marler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5634 Gao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5636 Santosa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5637 Bestor, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5638 Piskun, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5639 Cavecchia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5640 Xu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5641 Kwok, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5645 Orpen1, SRBase, LLR L5646 Dickey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5647 Soraku, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5648 York, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5649 Dietsch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5650 Ketamino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5651 Lexut, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5652 Wilson5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5653 Beck1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5655 Hoffman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5656 McAdams, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5657 Alden, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5658 Sloan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5662 OMalley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5663 Li5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5664 Kaczmarek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5666 Wendelboe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5667 Totty, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5668 Finn, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5670 Heindl1, Srsieve, CRUS, LLR L5671 Rauh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5676 Fnasek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5679 Shane, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5682 Floyd, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5683 Glatte, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5685 Bestor, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5686 Pistorius, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5687 Wellck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5690 Eldred, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5693 Huan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5694 Petersen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5696 Earle, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5697 Black2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5698 Stenschke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5700 Huang1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5703 Koudelka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5704 Hampicke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5705 Wharton, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5706 Wallbaum, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5707 Johns, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5710 Hass, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5711 Gingrich1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5712 Stahl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5714 Loucks, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5715 Calvin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5718 Ketamino, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5720 Trigueiro, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5721 Fischer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5722 Rickard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5723 Fergusson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5724 Pilz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5725 Gingrich1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5726 Noxe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5727 Headrick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5731 Michael, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5732 Monroe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5735 Kobrzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5736 Riva, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5738 Schaeffer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5740 Chu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5742 Steinmetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5745 Saladin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5746 Meister1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5748 Norbert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5749 Gahan, LLR2, LLR L5750 Shi, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5752 Wissel, LLR L5754 Abad, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5755 Kwiatkowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5756 Wei, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5758 Bishop1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5763 Williams7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5764 Tirkkonen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5765 Propper, Gcwsieve, LLR L5766 Takahashi2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5767 Xu2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5768 Lewis2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5769 Welsh1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5770 Silva1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5771 Becker-Bergemann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5772 Tarson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5773 Lugowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5774 Chambers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5775 Garambois, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5776 Anonymous, LLR2, PSieve, Srsieve, United, PrimeGrid, LLR L5778 Sarok, Srsieve, CRUS, LLR L5780 Blanchard, Srsieve, CRUS, LLR L5782 Kang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5783 Bishop1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5784 Coplin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5787 Johnson10, Srsieve, CRUS, LLR L5791 Rindahl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5793 Wang5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5794 Morgan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5796 Hall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5797 Ivanovski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5798 Schoeberl, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5799 Lehmann1, LLR2, Srsieve, PrimeGrid, LLR L5802 Borgerding, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5803 Kwok, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5804 Bowe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5805 Belozersky, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5807 Krauss, Srsieve, PrimeGrid, PRST, LLR L5809 Zhao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5810 Meister1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5811 Dettweiler, LLR2, Srsieve, CRUS, LLR L5812 Song, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5814 Chodzinski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5816 Guenter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5817 Kilstromer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5818 Belozersky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5819 Schmidt2, LLR2, PSieve, Srsieve, NPLB, LLR L5820 Hoonoki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5821 Elmore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5825 Norton, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5826 Morávek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5827 Yasuhisa, TwinGen, NewPGen, TPS, LLR L5829 Dickinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5830 McLean2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5831 Chapman2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5833 Russell2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5834 Roberts, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5836 Becker2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5837 Lin1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5839 Stewart1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5841 Yarham, Srsieve, CRUS, LLR L5842 Steenerson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5843 Vink, Kruse, Kwok, TwinGen, NewPGen, TPS, LLR L5844 Kadowaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5847 Eldredge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5848 Bressani, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5850 Zakharchenko, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5851 Liskay, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5852 Kwiatkowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5853 Simard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5854 Lehmann1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5855 Williams9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5858 GervaisLavoie, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5860 Joseph, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5862 Oppliger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5863 Duvinage, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5864 Amberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5865 Mendrik1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5866 Kim3, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5869 Arnold, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5870 Bodlina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5871 Yakubchak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5875 Monroe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5878 Klinkenberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5879 Sanner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5880 Gehrke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5881 Medcalf, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5882 Basil, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5888 Presler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5894 Tamai1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5904 Rix, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5913 Burtner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5916 Gao, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5923 Ryabchikov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5929 Bauer2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5935 Lacroix, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5938 Philip, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5945 Bush, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5948 Meuler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5952 Hall, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5956 Garnier1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5960 Jayaputera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5961 Carlier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5969 Kang, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5971 Da_Mota, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5974 Presler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5977 Brockerhoff, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5980 Schmidt1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5984 Desbonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5986 Wolfe1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5989 Williams10, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5995 Lee10, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5997 Smith15, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5998 Da_Mota, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6005 Overstreet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6006 Propper, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6010 Chaney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6011 Mehner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6013 Preston1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6015 Uehara1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6018 Varis, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6019 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, Rechenkraft, PrimeGrid, LLR L6026 Bruner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6027 Johnson10, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6029 Schmidt2, Kwok, LLR2, TwinGen, NewPGen, TPS, LLR L6033 Tang3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6035 Garrison1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6036 Hogan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6038 Schafer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6040 Garland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6042 Fink, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6043 Podsada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6044 Chesnut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6047 Wheeler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6049 Chen4, LLR L6056 Coscia, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6057 Kim7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6058 StGeorge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6064 Adrian, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6065 Yakubchak1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6067 O’Hara, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6070 Mumper, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6072 Lundström, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6073 Rojas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6075 Chodzinski, LLR2, Srsieve, PrimeGrid, LLR L6076 Yakubchak2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6077 Vink, Schmidt2, Kwok, TwinGen, NewPGen, TPS, LLR L6078 Zhaozheng, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6080 Sondergard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6082 Mckinley, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6083 Yagi, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6084 Criswell, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6085 Granowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6086 Pastierik, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6087 Osaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6088 Abad, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6089 Lynch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6090 Champ, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6091 Paniczko, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6092 Boerner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6093 Wagner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6094 Skendelis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6095 Stach, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6096 Biggs, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6102 Yakubchak3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6123 Mukanos, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6129 Slade2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6159 Weinberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6163 Drozd, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6166 Carquillat, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6168 Hogan1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6170 Liang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6176 Shriner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6177 Mostad, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6178 Hua, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6182 Jans, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6183 Lack, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6185 Abromeit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6187 Deram, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6189 Mohacsy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6201 Lein, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6202 Stach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6204 Probst, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6205 McDonald3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6207 Allen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6209 Marler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6215 Vykouril, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6217 Keskitalo, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6220 Sandhop, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6221 Wu2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6227 Zhao1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6229 Dean1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6230 Gnann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6235 Rosick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6236 Neujahr, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6237 Steffens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6238 Pabsch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6241 Haberer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6243 Baker2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6245 Perek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6246 Slade, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6247 Slade2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6248 Hui, Srsieve, CRUS, LLR L6249 Puada, MultiSieve, PRST, LLR L6250 Gulliver, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6252 Carlin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6253 Takesue, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6255 Kim8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6256 Sariyar, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6257 Hristoskov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6259 Baker2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6260 Cui, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6261 Saito2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6262 Woodrow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6263 Scheuern, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6264 Ogawa, LLR2, Srsieve, NewPGen, LLR L6265 DiMichina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6266 Pomeranke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6268 Monteith, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6269 Edlund, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6270 Bressani, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6271 Hood1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6272 GervaisLavoie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6273 Hasznos, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6274 Heidrich, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6275 Margossian, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6276 Patterson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6277 Gefreiter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6278 Silva3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6279 Antonov, CRUS, LLR L6280 Birzer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6281 Fitzgerald, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6282 Puppi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6283 Kurtovic, Srsieve, NPLB, Prime95, LLR L6284 Hood2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6285 Abbondanti, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6287 Zaugg1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6288 Kopp1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6289 Mendrik1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6290 Mondon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6291 Rojas, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6292 DePuis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6293 Sriworarat, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6294 Poulos, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6295 Weiss2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6296 Wang6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6297 Geiger1, LLR2, PSieve, Srsieve, PrimeGrid, LLR M Morain MM Morii MP1 Durant, GIMPS, GpuOwl O Oakes p3 Dohmen, OpenPFGW p8 Caldwell, OpenPFGW p12 Water, OpenPFGW p16 Heuer, OpenPFGW p21 Anderson, Robinson, OpenPFGW p41 Luhn, OpenPFGW p44 Broadhurst, OpenPFGW p49 Berg, OpenPFGW p54 Broadhurst, Water, OpenPFGW p58 Glover, Oakes, OpenPFGW p65 DavisK, Kuosa, OpenPFGW p85 Marchal, Carmody, Kuosa, OpenPFGW p137 Rodenkirch, MultiSieve, OpenPFGW p151 Kubota, NewPGen, OpenPFGW p155 DavisK, NewPGen, OpenPFGW p158 Paridon, NewPGen, OpenPFGW p170 Wu_T, Primo, OpenPFGW p189 Bohanon, LLR, OpenPFGW p193 Irvine, Broadhurst, Primo, OpenPFGW p235 Bedwell, OpenPFGW p236 Cooper, NewPGen, PRP, OpenPFGW p247 Bonath, Srsieve, CRUS, LLR, OpenPFGW p252 Oakes, NewPGen, OpenPFGW p268 Rodenkirch, Srsieve, CRUS, OpenPFGW p279 Domanov1, Srsieve, Rieselprime, Prime95, OpenPFGW p286 Batalov, Srsieve, OpenPFGW p290 Domanov1, Fpsieve, PrimeGrid, OpenPFGW p295 Angel, NewPGen, OpenPFGW p296 Kaiser1, Srsieve, LLR, OpenPFGW p301 Winskill1, Fpsieve, PrimeGrid, OpenPFGW p302 Gasewicz, Fpsieve, PrimeGrid, OpenPFGW p308 DavisK, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p309 Yama, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p310 Hubbard, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p312 Doggart, Fpsieve, PrimeGrid, OpenPFGW p314 Hubbard, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p332 Johnson6, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p334 Goetz, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p338 Tomecko, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p342 Trice, OpenPFGW p346 Burt, Fpsieve, PrimeGrid, OpenPFGW p350 Koen, Gcwsieve, GenWoodall, OpenPFGW p355 Domanov1, Srsieve, CRUS, OpenPFGW p362 Snow, Fpsieve, PrimeGrid, OpenPFGW p363 Batalov, OpenPFGW p364 Batalov, NewPGen, OpenPFGW p365 Poplin, Srsieve, CRUS, OpenPFGW p373 Morelli, OpenPFGW p378 Batalov, Srsieve, CRUS, LLR, OpenPFGW p379 Batalov, CycloSv, Cyclo, EMsieve, PIES, OpenPFGW p382 Oestlin, NewPGen, OpenPFGW p384 Booker, OpenPFGW p387 Zimmerman, GeneFer, AthGFNSieve, PrimeGrid, OpenPFGW p391 Keiser, NewPGen, OpenPFGW p394 Fukui, MultiSieve, OpenPFGW p395 Angel, Augustin, NewPGen, OpenPFGW p398 Stocker, OpenPFGW p405 Propper, Cksieve, OpenPFGW p406 DavisK, Luhn, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p407 Lamprecht, Luhn, OpenPFGW p408 Batalov, PolySieve, OpenPFGW p409 Nielsen1, OpenPFGW p413 Morimoto, OpenPFGW p414 Naimi, OpenPFGW p416 Monnin, LLR2, PrivGfnServer, OpenPFGW p417 Tennant, LLR2, PrivGfnServer, OpenPFGW p418 Sielemann, LLR2, PrivGfnServer, OpenPFGW p419 Bird1, LLR2, PrivGfnServer, OpenPFGW p420 Alex, OpenPFGW p421 Gahan, LLR2, PrivGfnServer, OpenPFGW p422 Kaiser1, PolySieve, OpenPFGW p423 Propper, Batalov, EMsieve, OpenPFGW p425 Propper, MultiSieve, OpenPFGW p426 Schoeler, NewPGen, OpenPFGW p427 Niegocki, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p428 Trunov, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p430 Propper, Batalov, NewPGen, OpenPFGW p431 Piesker, Srsieve, CRUS, OpenPFGW p433 Dettweiler, LLR2, Srsieve, CRUS, OpenPFGW p434 Doornink, MultiSieve, OpenPFGW p435 Dettweiler, LLR2, PSieve, Srsieve, NPLB, OpenPFGW p436 Schwieger, OpenPFGW p437 Propper, Batalov, EMsieve, PIES, OpenPFGW p439 Trice, MultiSieve, OpenPFGW p440 Batalov, EMsieve, OpenPFGW p441 Wu_T, CM, OpenPFGW p442 Presler, MultiSieve, PrimeGrid, PRST, OpenPFGW p443 Brochtrup, Srsieve, CRUS, OpenPFGW p444 Kadowaki, MultiSieve, PrimeGrid, PRST, OpenPFGW p445 Merrylees, MultiSieve, PrimeGrid, PRST, OpenPFGW p446 Greer, MultiSieve, PrimeGrid, PRST, OpenPFGW p447 Wallbaum, MultiSieve, PrimeGrid, PRST, OpenPFGW p448 Little, MultiSieve, PrimeGrid, PRST, OpenPFGW p449 Rodriguez2, OpenPFGW p450 Propper, OpenPFGW p451 Davies, MultiSieve, PrimeGrid, PRST, OpenPFGW p452 Propper, Batalov, CM, OpenPFGW p453 Propper, Batalov, CycloSv, Cyclo, EMsieve, PIES, OpenPFGW PM Mihailescu SB10 Agafonov, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB11 Sunde, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB12 Szabolcs, Srsieve, SoBSieve, ProthSieve, Ksieve, PrimeGrid, LLR, SB SB6 Sundquist, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB7 Team_Prime_Rib, SoBSieve, ProthSieve, Ksieve, PRP, SB SB8 Gordon, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB9 Hassler, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SG Slowinski, Gage WD Williams, Dubner, Cruncher WM Morain, Williams x13 Renze x16 Doumen, Beelen, Unknown x20 Irvine, Broadhurst, Water x23 Broadhurst, Water, Renze, OpenPFGW, Primo x24 Jarai_Z, Farkas, Csajbok, Kasza, Jarai, Unknown x25 Broadhurst, Water, OpenPFGW, Primo x28 Iskra x33 Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x36 Irvine, Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x38 Broadhurst, OpenPFGW, Primo x39 Broadhurst, Dubner, Keller, OpenPFGW, Primo x44 Zhou, Unknown x45 Batalov, OpenPFGW, Primo, Unknown x47 Szekeres, Magyar, Gevay, Farkas, Jarai, Unknown x48 Asuncion, Allombert, Unknown x49 Facq, Asuncion, Allombert, Unknown x50 Propper, GFNSvCUDA, GeneFer, Unknown x51 Lexut1, Srsieve, CRUS, Unknown x52 Batalov, PolySieve, OpenPFGW, Unknown x54 Gallot, GeneFer, Unknown Y Young