THE LARGEST KNOWN PRIMES (The 5,000 largest known primes) (selected smaller primes which have comments are included) Originally Compiled by Samuel Yates -- Continued by Chris Caldwell and now maintained by Reginald McLean (Mon Mar 20 02:37:41 UTC 2023) So that I can maintain this database of the 5,000 largest known primes (plus selected smaller primes with 1,000 or more digits), please send any new primes (that are large enough) to: https://t5k.org/bios/submission.php This list in a searchable form (plus information such as how to find large primes and how to prove primality) is available at the interactive web site: https://t5k.org/primes/ See the last pages for information about the provers. The letters after the rank refer to when the prime was submitted. 'a' is this month, 'b' last month... ----- ------------------------------- -------- ----- ---- -------------- rank description digits who year comment ----- ------------------------------- -------- ----- ---- -------------- 1 2^82589933-1 24862048 G16 2018 Mersenne 51?? 2 2^77232917-1 23249425 G15 2018 Mersenne 50?? 3 2^74207281-1 22338618 G14 2016 Mersenne 49?? 4 2^57885161-1 17425170 G13 2013 Mersenne 48 5 2^43112609-1 12978189 G10 2008 Mersenne 47 6 2^42643801-1 12837064 G12 2009 Mersenne 46 7 2^37156667-1 11185272 G11 2008 Mersenne 45 8 2^32582657-1 9808358 G9 2006 Mersenne 44 9 10223*2^31172165+1 9383761 SB12 2016 10 2^30402457-1 9152052 G9 2005 Mersenne 43 11 2^25964951-1 7816230 G8 2005 Mersenne 42 12 2^24036583-1 7235733 G7 2004 Mersenne 41 13 1963736^1048576+1 6598776 L4245 2022 Generalized Fermat 14 1951734^1048576+1 6595985 L5583 2022 Generalized Fermat 15 202705*2^21320516+1 6418121 L5181 2021 16 2^20996011-1 6320430 G6 2003 Mersenne 40 17 1059094^1048576+1 6317602 L4720 2018 Generalized Fermat 18 919444^1048576+1 6253210 L4286 2017 Generalized Fermat 19 7*2^20267500+1 6101127 L4965 2022 20 168451*2^19375200+1 5832522 L4676 2017 21 69*2^19374980-1 5832452 L4965 2022 22 3*2^18924988-1 5696990 L5530 2022 23 69*2^18831865-1 5668959 L4965 2021 24 7*2^18233956+1 5488969 L4965 2020 Divides Fermat F(18233954) 25 3*2^18196595-1 5477722 L5461 2022 26 3*2^17748034-1 5342692 L5404 2021 27 Phi(3,-123447^524288) 5338805 L4561 2017 Generalized unique 28 3622*5^7558139-1 5282917 L4965 2022 29 7*6^6772401+1 5269954 L4965 2019 30c 2*3^10852677+1 5178044 L4965 2023 Divides phi 31 8508301*2^17016603-1 5122515 L4784 2018 Woodall 32 3*2^16819291-1 5063112 L5230 2021 33 3*2^16408818+1 4939547 L5171 2020 Divides GF(16408814,3), GF(16408817,5) 34 69*2^15866556-1 4776312 L4965 2021 35 2525532*73^2525532+1 4705888 L5402 2021 Generalized Cullen 36c 11*2^15502315+1 4666663 L4965 2023 37e 37*2^15474010+1 4658143 L4965 2022 38e 93839*2^15337656-1 4617100 L4965 2022 39 2^15317227+2^7658614+1 4610945 L5123 2020 Gaussian Mersenne norm 41?, generalized unique 40 6*5^6546983+1 4576146 L4965 2020 41 69*2^14977631-1 4508719 L4965 2021 42 192971*2^14773498-1 4447272 L4965 2021 43 4*5^6181673-1 4320805 L4965 2022 44 6962*31^2863120-1 4269952 L5410 2020 45 37*2^14166940+1 4264676 L4965 2022 46 99739*2^14019102+1 4220176 L5008 2019 47 69*2^13832885-1 4164116 L4965 2022 48 404849*2^13764867+1 4143644 L4976 2021 Generalized Cullen 49 25*2^13719266+1 4129912 L4965 2022 Generalized Fermat 50f 81*2^13708272+1 4126603 L4965 2022 Generalized Fermat 51 2740879*2^13704395-1 4125441 L4976 2019 Generalized Woodall 52 479216*3^8625889-1 4115601 L4976 2019 Generalized Woodall 53 Phi(3,-143332^393216) 4055114 L4506 2017 Generalized unique 54f 81*2^13470584+1 4055052 L4965 2022 Generalized Fermat 55 2^13466917-1 4053946 G5 2001 Mersenne 39 56 9*2^13334487+1 4014082 L4965 2020 Divides GF(13334485,3) 57 206039*2^13104952-1 3944989 L4965 2021 58 2805222*5^5610444+1 3921539 L4972 2019 Generalized Cullen 59 19249*2^13018586+1 3918990 SB10 2007 60 2293*2^12918431-1 3888839 L4965 2021 61 81*2^12804541+1 3854553 L4965 2022 62b 4*5^5380542+1 3760839 L4965 2023 Generalized Fermat 63 9*2^12406887+1 3734847 L4965 2020 Divides GF(12406885,3) 64 69*2^12231580-1 3682075 L4965 2021 65 27*2^12184319+1 3667847 L4965 2021 66 3761*2^11978874-1 3606004 L4965 2022 67 3*2^11895718-1 3580969 L4159 2015 68 37*2^11855148+1 3568757 L4965 2022 69d 5897794^524288+1 3549792 x50 2022 Generalized Fermat 70 3*2^11731850-1 3531640 L4103 2015 71 69*2^11718455-1 3527609 L4965 2020 72 41*2^11676439+1 3514960 L4965 2022 73 4896418^524288+1 3507424 L4245 2022 Generalized Fermat 74 81*2^11616017+1 3496772 L4965 2022 75 69*2^11604348-1 3493259 L4965 2020 76 9*2^11500843+1 3462100 L4965 2020 Divides GF(11500840,12) 77 3*2^11484018-1 3457035 L3993 2014 78 193997*2^11452891+1 3447670 L4398 2018 79 3638450^524288+1 3439810 L4591 2020 Generalized Fermat 80 9221*2^11392194-1 3429397 L5267 2021 81 9*2^11366286+1 3421594 L4965 2020 Generalized Fermat 82 5*2^11355764-1 3418427 L4965 2021 83 3214654^524288+1 3411613 L4309 2019 Generalized Fermat 84 146561*2^11280802-1 3395865 L5181 2020 85 2985036^524288+1 3394739 L4752 2019 Generalized Fermat 86 6929*2^11255424-1 3388225 L4965 2022 87 2877652^524288+1 3386397 L4250 2019 Generalized Fermat 88 2788032^524288+1 3379193 L4584 2019 Generalized Fermat 89 2733014^524288+1 3374655 L4929 2019 Generalized Fermat 90 9*2^11158963+1 3359184 L4965 2020 Divides GF(11158962,5) 91 9271*2^11134335-1 3351773 L4965 2021 92 2312092^524288+1 3336572 L4720 2018 Generalized Fermat 93 2061748^524288+1 3310478 L4783 2018 Generalized Fermat 94 1880370^524288+1 3289511 L4201 2018 Generalized Fermat 95 27*2^10902757-1 3282059 L4965 2022 96 3*2^10829346+1 3259959 L3770 2014 Divides GF(10829343,3), GF(10829345,5) 97 11*2^10803449+1 3252164 L4965 2022 98 11*2^10797109+1 3250255 L4965 2022 99 7*2^10612737-1 3194754 L4965 2022 100 37*2^10599476+1 3190762 L4965 2022 101 5*2^10495620-1 3159498 L4965 2021 102 5*2^10349000-1 3115361 L4965 2021 103 Phi(3,-844833^262144) 3107335 L4506 2017 Generalized unique 104 Phi(3,-712012^262144) 3068389 L4506 2017 Generalized unique 105 874208*54^1748416-1 3028951 L4976 2019 Generalized Woodall 106 475856^524288+1 2976633 L3230 2012 Generalized Fermat 107d 2*3^6236772+1 2975697 L4965 2022 108 9*2^9778263+1 2943552 L4965 2020 109 1806676*41^1806676+1 2913785 L4668 2018 Generalized Cullen 110 356926^524288+1 2911151 L3209 2012 Generalized Fermat 111 341112^524288+1 2900832 L3184 2012 Generalized Fermat 112e 213988*5^4138363-1 2892597 L5621 2022 113 43*2^9596983-1 2888982 L4965 2022 114 121*2^9584444+1 2885208 L5183 2020 Generalized Fermat 115 11*2^9381365+1 2824074 L4965 2020 Divides GF(9381364,6) 116 49*2^9187790+1 2765803 L4965 2022 Generalized Fermat 117 27653*2^9167433+1 2759677 SB8 2005 118 90527*2^9162167+1 2758093 L1460 2010 119 6795*2^9144320-1 2752719 L4965 2021 120 1323365*116^1323365+1 2732038 L4718 2018 Generalized Cullen 121 57*2^9075622-1 2732037 L4965 2022 122 63838*5^3887851-1 2717497 L5558 2022 123 13*2^8989858+1 2706219 L4965 2020 124 4159*2^8938471-1 2690752 L4965 2022 125 273809*2^8932416-1 2688931 L1056 2017 126 2*3^5570081+1 2657605 L4965 2020 Divides Phi(3^5570081,2) [g427] 127 25*2^8788628+1 2645643 L5161 2021 Generalized Fermat 128 2038*366^1028507-1 2636562 L2054 2016 129 64598*5^3769854-1 2635020 L5427 2022 130 8*785^900325+1 2606325 L4786 2022 131 17*2^8636199+1 2599757 L5161 2021 Divides GF(8636198,10) 132 75898^524288+1 2558647 p334 2011 Generalized Fermat 133 25*2^8456828+1 2545761 L5237 2021 Divides GF(8456827,12), generalized Fermat 134 39*2^8413422+1 2532694 L5232 2021 135 31*2^8348000+1 2513000 L5229 2021 136 27*2^8342438-1 2511326 L3483 2021 137 3687*2^8261084-1 2486838 L4965 2021 138 273662*5^3493296-1 2441715 L5444 2021 139 81*2^8109236+1 2441126 L4965 2022 Generalized Fermat 140 11*2^8103463+1 2439387 L4965 2020 Divides GF(8103462,12) 141 102818*5^3440382-1 2404729 L5427 2021 142 11*2^7971110-1 2399545 L2484 2019 143 27*2^7963247+1 2397178 L5161 2021 Divides Fermat F(7963245) 144 3177*2^7954621-1 2394584 L4965 2021 145 39*2^7946769+1 2392218 L5226 2021 Divides GF(7946767,12) 146 7*6^3072198+1 2390636 L4965 2019 147 3765*2^7904593-1 2379524 L4965 2021 148 29*2^7899985+1 2378134 L5161 2021 Divides GF(7899984,6) 149e 5113*2^7895471-1 2376778 L4965 2022 150 861*2^7895451-1 2376771 L4965 2021 151 28433*2^7830457+1 2357207 SB7 2004 152 2589*2^7803339-1 2349043 L4965 2022 153 5*2^7755002-1 2334489 L4965 2021 154e 2945*2^7753232-1 2333959 L4965 2022 155 2545*2^7732265-1 2327648 L4965 2021 156 5539*2^7730709-1 2327180 L4965 2021 157 4817*2^7719584-1 2323831 L4965 2021 158 1341174*53^1341174+1 2312561 L4668 2017 Generalized Cullen 159 9467*2^7680034-1 2311925 L4965 2022 160 45*2^7661004+1 2306194 L5200 2020 161 15*2^7619838+1 2293801 L5192 2020 162 3597*2^7580693-1 2282020 L4965 2021 163a 3129*2^7545557-1 2271443 L4965 2023 164 7401*2^7523295-1 2264742 L4965 2021 165 45*2^7513661+1 2261839 L5179 2020 166 Phi(3,-558640^196608) 2259865 L4506 2017 Generalized unique 167 1875*2^7474308-1 2249995 L4965 2022 168 4*5^3189669-1 2229484 L4965 2022 169 29*2^7374577+1 2219971 L5169 2020 Divides GF(7374576,3) 170e 3197*2^7359542-1 2215447 L4965 2022 171 109838*5^3168862-1 2214945 L5129 2020 172 101*2^7345194-1 2211126 L1884 2019 173 15*2^7300254+1 2197597 L5167 2020 174 422429!+1 2193027 p425 2022 Factorial 175 1759*2^7284439-1 2192838 L4965 2021 176 737*2^7269322-1 2188287 L4665 2017 177 118568*5^3112069+1 2175248 L690 2020 178 6039*2^7207973-1 2169820 L4965 2021 179 502573*2^7181987-1 2162000 L3964 2014 180 402539*2^7173024-1 2159301 L3961 2014 181 3343*2^7166019-1 2157191 L1884 2016 182 161041*2^7107964+1 2139716 L4034 2015 183 27*2^7046834+1 2121310 L3483 2018 184 1759*2^7046791-1 2121299 L4965 2021 185 327*2^7044001-1 2120459 L4965 2021 186 5*2^7037188-1 2118406 L4965 2021 187 3*2^7033641+1 2117338 L2233 2011 Divides GF(7033639,3) 188 33661*2^7031232+1 2116617 SB11 2007 189 Phi(3,-237804^196608) 2114016 L4506 2017 Generalized unique 190 207494*5^3017502-1 2109149 L5083 2020 191 15*2^6993631-1 2105294 L4965 2021 192 8943501*2^6972593-1 2098967 L466 2022 193 6020095*2^6972593-1 2098967 L466 2022 194 2^6972593-1 2098960 G4 1999 Mersenne 38 195e 273*2^6963847-1 2096330 L4965 2022 196 6219*2^6958945-1 2094855 L4965 2021 197 51*2^6945567+1 2090826 L4965 2020 Divides GF(6945564,12) [p286] 198 238694*5^2979422-1 2082532 L5081 2020 199 4*72^1119849-1 2079933 L4444 2016 200 33*2^6894190-1 2075360 L4965 2021 201 2345*2^6882320-1 2071789 L4965 2022 202 146264*5^2953282-1 2064261 L1056 2020 203 69*2^6838971-1 2058738 L5037 2020 204 35816*5^2945294-1 2058677 L5076 2020 205 127*2^6836153-1 2057890 L1862 2018 206 19*2^6833086+1 2056966 L5166 2020 207 40597*2^6808509-1 2049571 L3749 2013 208 283*2^6804731-1 2048431 L2484 2020 209 1861709*2^6789999+1 2044000 L5191 2020 210 5781*2^6789459-1 2043835 L4965 2021 211 8435*2^6786180-1 2042848 L4965 2021 212 51*2^6753404+1 2032979 L4965 2020 213 9995*2^6711008-1 2020219 L4965 2021 214 39*2^6684941+1 2012370 L5162 2020 215 6679881*2^6679881+1 2010852 L917 2009 Cullen 216 37*2^6660841-1 2005115 L3933 2014 217 39*2^6648997+1 2001550 L5161 2020 218 304207*2^6643565-1 1999918 L3547 2013 219 69*2^6639971-1 1998833 L5037 2020 220 6471*2^6631137-1 1996175 L4965 2021 221a 9935*2^6603610-1 1987889 L4965 2023 222 1319*2^6506224-1 1958572 L4965 2021 223a 3163*2^6504943-1 1958187 L4965 2023 224 322498*5^2800819-1 1957694 L4954 2019 225 88444*5^2799269-1 1956611 L3523 2019 226 13*2^6481780+1 1951212 L4965 2020 227 21*2^6468257-1 1947141 L4965 2021 228 138514*5^2771922+1 1937496 L4937 2019 229 33*2^6432160-1 1936275 L4965 2022 230 15*2^6429089-1 1935350 L4965 2021 231 398023*2^6418059-1 1932034 L3659 2013 232a 22480000^262144+1 1927230 L4307 2023 Generalized Fermat 233a 22479752^262144+1 1927229 L5159 2023 Generalized Fermat 234a 22470828^262144+1 1927183 L4201 2023 Generalized Fermat 235b 20866766^262144+1 1918752 L4245 2023 Generalized Fermat 236b 20710506^262144+1 1917896 L5676 2023 Generalized Fermat 237b 20543682^262144+1 1916975 L5663 2023 Generalized Fermat 238b 20105956^262144+1 1914523 L5005 2023 Generalized Fermat 239 631*2^6359347-1 1914357 L4965 2021 240f 4965*2^6356707-1 1913564 L4965 2022 241b 19859450^262144+1 1913119 L5025 2023 Generalized Fermat 242b 19527922^262144+1 1911202 L4745 2023 Generalized Fermat 243b 19322744^262144+1 1910000 L4775 2023 Generalized Fermat 244 1995*2^6333396-1 1906546 L4965 2021 245 1582137*2^6328550+1 1905090 L801 2009 Cullen 246d 18395930^262144+1 1904404 x50 2022 Generalized Fermat 247d 17191822^262144+1 1896697 x50 2022 Generalized Fermat 248e 16769618^262144+1 1893866 L4677 2022 Generalized Fermat 249 16048460^262144+1 1888862 L5127 2022 Generalized Fermat 250 10^1888529-10^944264-1 1888529 p423 2021 Near-repdigit, palindrome 251 15913772^262144+1 1887902 L4387 2022 Generalized Fermat 252 15859176^262144+1 1887511 L5544 2022 Generalized Fermat 253 3303*2^6264946-1 1885941 L4965 2021 254 15417192^262144+1 1884293 L5051 2022 Generalized Fermat 255 14741470^262144+1 1879190 L4204 2022 Generalized Fermat 256 14399216^262144+1 1876516 L4745 2021 Generalized Fermat 257 14103144^262144+1 1874151 L5254 2021 Generalized Fermat 258 13911580^262144+1 1872594 L5068 2021 Generalized Fermat 259 13640376^262144+1 1870352 L4307 2021 Generalized Fermat 260 13553882^262144+1 1869628 L4307 2021 Generalized Fermat 261 13039868^262144+1 1865227 L5273 2021 Generalized Fermat 262 7*6^2396573+1 1864898 L4965 2019 263 12959788^262144+1 1864525 L4591 2021 Generalized Fermat 264 12582496^262144+1 1861162 L5202 2021 Generalized Fermat 265 12529818^262144+1 1860684 L4871 2020 Generalized Fermat 266 12304152^262144+1 1858615 L4591 2020 Generalized Fermat 267 12189878^262144+1 1857553 L4905 2020 Generalized Fermat 268 39*2^6164630+1 1855741 L4087 2020 Divides GF(6164629,5) 269 11081688^262144+1 1846702 L5051 2020 Generalized Fermat 270 10979776^262144+1 1845650 L5088 2020 Generalized Fermat 271 10829576^262144+1 1844082 L4677 2020 Generalized Fermat 272 194368*5^2638045-1 1843920 L690 2018 273 10793312^262144+1 1843700 L4905 2020 Generalized Fermat 274 10627360^262144+1 1841936 L4956 2020 Generalized Fermat 275 10578478^262144+1 1841411 L4307 2020 Generalized Fermat 276 66916*5^2628609-1 1837324 L690 2018 277 3*2^6090515-1 1833429 L1353 2010 278 9812766^262144+1 1832857 L4245 2020 Generalized Fermat 279 9750938^262144+1 1832137 L4309 2020 Generalized Fermat 280 8349*2^6082397-1 1830988 L4965 2021 281 9450844^262144+1 1828578 L5020 2020 Generalized Fermat 282 32*470^683151+1 1825448 L4064 2021 283 9125820^262144+1 1824594 L5002 2019 Generalized Fermat 284 8883864^262144+1 1821535 L4715 2019 Generalized Fermat 285 21*2^6048861+1 1820890 L5106 2020 Divides GF(6048860,5) 286 9999*2^6037057-1 1817340 L4965 2021 287 8521794^262144+1 1816798 L4289 2019 Generalized Fermat 288 33*2^6019138-1 1811943 L4965 2022 289 1583*2^5989282-1 1802957 L4036 2015 290 6291332^262144+1 1782250 L4864 2018 Generalized Fermat 291 6287774^262144+1 1782186 L4726 2018 Generalized Fermat 292 327926*5^2542838-1 1777374 L4807 2018 293 81556*5^2539960+1 1775361 L4809 2018 294 5828034^262144+1 1773542 L4720 2018 Generalized Fermat 295 993*10^1768283-1 1768286 L4879 2019 Near-repdigit 296 9*10^1762063-1 1762064 L4879 2020 Near-repdigit 297 5205422^262144+1 1760679 L4201 2018 Generalized Fermat 298 5152128^262144+1 1759508 L4720 2018 Generalized Fermat 299 4489246^262144+1 1743828 L4591 2018 Generalized Fermat 300 2*3^3648969+1 1741001 L5043 2020 Divides Phi(3^3648964,2) [g427] 301 7*2^5775996+1 1738749 L3325 2012 302 4246258^262144+1 1737493 L4720 2018 Generalized Fermat 303 3933508^262144+1 1728783 L4309 2018 Generalized Fermat 304 3853792^262144+1 1726452 L4715 2018 Generalized Fermat 305 3673932^262144+1 1721010 L4649 2017 Generalized Fermat 306 (10^859669-1)^2-2 1719338 p405 2022 Near-repdigit 307 3596074^262144+1 1718572 L4689 2017 Generalized Fermat 308 3547726^262144+1 1717031 L4201 2017 Generalized Fermat 309 8*10^1715905-1 1715906 L4879 2020 Near-repdigit 310 1243*2^5686715-1 1711875 L1828 2016 311 25*2^5658915-1 1703505 L1884 2021 312 41*2^5651731+1 1701343 L1204 2020 313 3060772^262144+1 1700222 L4649 2017 Generalized Fermat 314 9*2^5642513+1 1698567 L3432 2013 315 10*3^3550446+1 1693995 L4965 2020 316 2622*11^1621920-1 1689060 L2054 2015 317 81*2^5600028+1 1685779 L4965 2022 Generalized Fermat 318 2676404^262144+1 1684945 L4591 2017 Generalized Fermat 319 301562*5^2408646-1 1683577 L4675 2017 320 2611294^262144+1 1682141 L4250 2017 Generalized Fermat 321 171362*5^2400996-1 1678230 L4669 2017 322 2514168^262144+1 1677825 L4564 2017 Generalized Fermat 323 31*2^5560820+1 1673976 L1204 2020 Divides GF(5560819,6) 324 13*2^5523860+1 1662849 L1204 2020 Divides Fermat F(5523858) 325 252191*2^5497878-1 1655032 L3183 2012 326 2042774^262144+1 1654187 L4499 2016 Generalized Fermat 327 1828858^262144+1 1641593 L4200 2016 Generalized Fermat 328 258317*2^5450519+1 1640776 g414 2008 329 7*6^2104746+1 1637812 L4965 2019 330 5*2^5429494-1 1634442 L3345 2017 331 43*2^5408183-1 1628027 L1884 2018 332 1615588^262144+1 1627477 L4200 2016 Generalized Fermat 333 2*296598^296598-1 1623035 L4965 2022 334 1349*2^5385004-1 1621051 L1828 2017 335 1488256^262144+1 1618131 L4249 2016 Generalized Fermat 336 1415198^262144+1 1612400 L4308 2016 Generalized Fermat 337 45*2^5308037+1 1597881 L4761 2019 338e 5468*70^864479-1 1595053 L5410 2022 339 Phi(3,-1082083^131072) 1581846 L4506 2017 Generalized unique 340 7*2^5229669-1 1574289 L4965 2021 341 180062*5^2249192-1 1572123 L4435 2016 342 124125*6^2018254+1 1570512 L4001 2019 343 27*2^5213635+1 1569462 L3760 2015 344 9992*10^1567410-1 1567414 L4879 2020 Near-repdigit 345 308084!+1 1557176 p425 2022 Factorial 346 Phi(3,-843575^131072) 1553498 L4506 2017 Generalized unique 347 25*2^5152151-1 1550954 L1884 2020 348 53546*5^2216664-1 1549387 L4398 2016 349 773620^262144+1 1543643 L3118 2012 Generalized Fermat 350 39*2^5119458+1 1541113 L1204 2019 351 607*26^1089034+1 1540957 L5410 2021 352 81*2^5115131+1 1539810 L4965 2022 353 223*2^5105835-1 1537012 L2484 2019 354 99*10^1536527-1 1536529 L4879 2019 Near-repdigit 355 81*2^5100331+1 1535355 L4965 2022 356 992*10^1533933-1 1533936 L4879 2019 Near-repdigit 357 51*2^5085142-1 1530782 L760 2014 358 3*2^5082306+1 1529928 L780 2009 Divides GF(5082303,3), GF(5082305,5) 359 676754^262144+1 1528413 L2975 2012 Generalized Fermat 360 296024*5^2185270-1 1527444 L671 2016 361 5359*2^5054502+1 1521561 SB6 2003 362 13*2^4998362+1 1504659 L3917 2014 363 525094^262144+1 1499526 p338 2012 Generalized Fermat 364 92158*5^2145024+1 1499313 L4348 2016 365 499238*10^1497714-1 1497720 L4976 2019 Generalized Woodall 366 77072*5^2139921+1 1495746 L4340 2016 367 2*3^3123036+1 1490068 L5043 2020 368 519397*2^4908893-1 1477730 L5410 2022 369 306398*5^2112410-1 1476517 L4274 2016 370 265711*2^4858008+1 1462412 g414 2008 371 154222*5^2091432+1 1461854 L3523 2015 372 1271*2^4850526-1 1460157 L1828 2012 373 333*2^4846958-1 1459083 L5546 2022 374 Phi(3,-362978^131072) 1457490 p379 2015 Generalized unique 375 361658^262144+1 1457075 p332 2011 Generalized Fermat 376 100186*5^2079747-1 1453686 L4197 2015 377 288465!+1 1449771 p3 2022 Factorial 378 15*2^4800315+1 1445040 L1754 2019 Divides GF(4800313,3), GF(4800310,5) 379 2^4792057-2^2396029+1 1442553 L3839 2014 Gaussian Mersenne norm 40?, generalized unique 380 92*10^1439761-1 1439763 L4789 2020 Near-repdigit 381 653*10^1435026-1 1435029 p355 2014 382 197*2^4765318-1 1434506 L5175 2021 383c 1401*2^4759435-1 1432736 L4965 2023 384c 2169*2^4754343-1 1431204 L4965 2023 385 188*468^535963+1 1431156 L4832 2019 386d 1809*2^4752792-1 1430737 L4965 2022 387d 2427*2^4749044-1 1429609 L4965 2022 388d 2259*2^4746735-1 1428913 L4965 2022 389d 2223*2^4729304-1 1423666 L4965 2022 390d 1851*2^4727663-1 1423172 L4965 2022 391d 1725*2^4727375-1 1423085 L4965 2022 392d 1611*2^4724014-1 1422074 L4965 2022 393d 1383*2^4719270-1 1420645 L4965 2022 394d 1749*2^4717431-1 1420092 L4965 2022 395d 2325*2^4713991-1 1419057 L4965 2022 396 3267113#-1 1418398 p301 2021 Primorial 397 100*406^543228+1 1417027 L5410 2020 Generalized Fermat 398d 2337*2^4705660-1 1416549 L4965 2022 399 1229*2^4703492-1 1415896 L1828 2018 400 144052*5^2018290+1 1410730 L4146 2015 401 195*2^4685711-1 1410542 L5175 2021 402 9*2^4683555-1 1409892 L1828 2012 403 31*2^4673544+1 1406879 L4990 2019 404 34*993^469245+1 1406305 L4806 2018 405 79*2^4658115-1 1402235 L1884 2018 406 39*2^4657951+1 1402185 L1823 2019 407 4*650^498101-1 1401116 L4294 2021 408 11*2^4643238-1 1397755 L2484 2014 409 68*995^465908-1 1396712 L4001 2017 410 7*6^1793775+1 1395830 L4965 2019 411 Phi(3,-192098^131072) 1385044 p379 2015 Generalized unique 412 27*2^4583717-1 1379838 L2992 2014 413 121*2^4553899-1 1370863 L3023 2012 414 9473*2^4543680-1 1367788 L5037 2022 415 27*2^4542344-1 1367384 L1204 2014 416 29*2^4532463+1 1364409 L4988 2019 417 4*797^468702+1 1359920 L4548 2017 Generalized Fermat 418 145310^262144+1 1353265 p314 2011 Generalized Fermat 419 25*2^4481024+1 1348925 L4364 2019 Generalized Fermat 420a 81*536^493229+1 1346106 p431 2023 421d 303*2^4471002-1 1345909 L5545 2022 422 2*1283^432757+1 1345108 L4879 2019 Divides Phi(1283^432757,2) 423 36772*6^1723287-1 1340983 L1301 2014 424 583854*14^1167708-1 1338349 L4976 2019 Generalized Woodall 425 151*2^4424321-1 1331856 L1884 2016 426 195*2^4373994-1 1316706 L5175 2020 427 (10^657559-1)^2-2 1315118 p405 2022 Near-repdigit 428 49*2^4365175-1 1314051 L1959 2017 429 49*2^4360869-1 1312755 L1959 2017 430 13*2^4333087-1 1304391 L1862 2018 431 353159*2^4331116-1 1303802 L2408 2011 432 9959*2^4308760-1 1297071 L5037 2022 433 23*2^4300741+1 1294654 L4147 2019 434 682156*79^682156+1 1294484 L4472 2016 Generalized Cullen 435 141941*2^4299438-1 1294265 L689 2011 436 612749*2^4254500-1 1280738 L5410 2022 437 2*1151^417747+1 1278756 L4879 2019 Divides Phi(1151^417747,2) 438 15*2^4246384+1 1278291 L3432 2013 Divides GF(4246381,6) 439 3*2^4235414-1 1274988 L606 2008 440 2*1259^411259+1 1274914 L4879 2020 Divides Phi(1259^411259,2) 441 45*436^481613+1 1271213 L5410 2020 442 109208*5^1816285+1 1269534 L3523 2014 443 1091*2^4215518-1 1269001 L1828 2018 444 191*2^4203426-1 1265360 L2484 2012 445 1259*2^4196028-1 1263134 L1828 2016 446 325918*5^1803339-1 1260486 L3567 2014 447 133778*5^1785689+1 1248149 L3903 2014 448 81*2^4131975+1 1243851 L4965 2022 449 17*2^4107544-1 1236496 L4113 2015 450 24032*5^1768249+1 1235958 L3925 2014 451 172*159^561319-1 1235689 L4001 2017 452 10^1234567-20342924302*10^617278-1 1234567 p423 2021 Palindrome 453 10^1234567-3626840486263*10^617277-1 1234567 p423 2021 Palindrome 454 10^1234567-4708229228074*10^617277-1 1234567 p423 2021 Palindrome 455 64*425^467857-1 1229712 p268 2021 456 97*2^4066717-1 1224206 L2484 2019 457 1031*2^4054974-1 1220672 L1828 2017 458f 2022202116^131072+1 1219734 L4704 2022 Generalized Fermat 459 37*2^4046360+1 1218078 L2086 2019 460 39653*430^460397-1 1212446 L4187 2016 461f 1777034894^131072+1 1212377 L4704 2022 Generalized Fermat 462 40734^262144+1 1208473 p309 2011 Generalized Fermat 463 9*2^4005979-1 1205921 L1828 2012 464 12*68^656921+1 1203815 L4001 2016 465 67*688^423893+1 1202836 L4001 2017 466 1993191*2^3986382-1 1200027 L3532 2015 Generalized Woodall 467a 163*2^3984604+1 1199488 L5756 2023 468a 725*2^3983355+1 1199113 L5706 2023 469 (146^276995+1)^2-2 1199030 p405 2022 470a 455*2^3981067+1 1198424 L5724 2023 471 138172*5^1714207-1 1198185 L3904 2014 472 50*383^463313+1 1196832 L2012 2021 473a 339*2^3974295+1 1196385 L5178 2023 474a 699*2^3974045+1 1196310 L5750 2023 475 Phi(3,-1202113^98304) 1195366 L4506 2016 Generalized unique 476 29*2^3964697+1 1193495 L1204 2019 477a 599*2^3963655+1 1193182 L5226 2023 478a 683*2^3962937+1 1192966 L5226 2023 479 39*2^3961129+1 1192421 L1486 2019 480a 165*2^3960664+1 1192281 L5178 2023 481a 79*2^3957238+1 1191250 L5745 2023 482b 687*2^3955918+1 1190853 L5554 2023 Divides GF(3955915,6) 483b 163*2^3954818+1 1190522 L5178 2023 484b 431*2^3953647+1 1190169 L5554 2023 485 Phi(3,-1110815^98304) 1188622 L4506 2016 Generalized unique 486b 341*2^3938565+1 1185629 L5554 2023 487b 503*2^3936845+1 1185112 L5706 2023 488b 717*2^3934760+1 1184484 L5285 2023 489b 493*2^3929192+1 1182808 L5161 2023 490b 273*2^3929128+1 1182788 L5554 2023 491b 609*2^3928682+1 1182654 L5178 2023 492b 609*2^3928441+1 1182582 L5527 2023 493b 281*2^3926467+1 1181987 L5174 2023 494b 153*2^3922478+1 1180786 L5554 2023 495b 69*2^3920863+1 1180300 L5554 2023 496b 273*2^3919321+1 1179836 L5706 2023 497b 531*2^3918985+1 1179735 L5706 2023 498 1000032472^131072+1 1179650 L4704 2022 Generalized Fermat 499b 555*2^3916875+1 1179100 L5302 2023 500b 571*2^3910616+1 1177216 L5178 2023 501b 421*2^3905144+1 1175569 L5600 2023 502d P1174253 1174253 p414 2022 503b 567*2^3897588+1 1173294 L5600 2023 504b 417*2^3895404+1 1172637 L5600 2023 505b 539*2^3894953+1 1172501 L5285 2023 506b 645*2^3893849+1 1172169 L5600 2023 507 22478*5^1675150-1 1170884 L3903 2014 508 1199*2^3889576-1 1170883 L1828 2018 509 298989*2^3886857+1 1170067 L2777 2014 Generalized Cullen 510 93*10^1170023-1 1170025 L4789 2022 Near-repdigit 511b 711*2^3886480+1 1169950 L5320 2023 512b 375*2^3884634+1 1169394 L5600 2023 513 94*872^397354+1 1168428 L5410 2019 514c 269*2^3877485+1 1167242 L5649 2023 515c 163*2^3874556+1 1166360 L5646 2023 Divides GF(3874552,5) 516c 313*2^3869536+1 1164849 L5600 2023 517c 159*2^3860863+1 1162238 L5226 2023 518c 445*2^3860780+1 1162214 L5640 2023 519c 397*2^3859450+1 1161813 L5226 2023 520c 685*2^3856790+1 1161013 L5226 2023 521 27*2^3855094-1 1160501 L3033 2012 522d 537*2^3853860+1 1160131 L5636 2022 523 164*978^387920-1 1160015 L4700 2018 524d 175*2^3850344+1 1159072 L5226 2022 525d 685*2^3847268+1 1158146 L5226 2022 526d 655*2^3846352+1 1157871 L5282 2022 527d 583*2^3846196+1 1157824 L5226 2022 528d 615*2^3844151+1 1157208 L5226 2022 529e 14772*241^485468-1 1156398 L5410 2022 530d 525*2^3840963+1 1156248 L5613 2022 531d 313*2^3837304+1 1155147 L5298 2022 532 49*2^3837090+1 1155081 L4979 2019 Generalized Fermat 533d 431*2^3835247+1 1154528 L5161 2022 534d 97*2^3833722+1 1154068 L5226 2022 535 2*839^394257+1 1152714 L4879 2019 Divides Phi(839^394257,2) 536 125*392^444161+1 1151839 L4832 2022 537e 255*2^3824348+1 1151246 L5226 2022 538 30*514^424652-1 1151218 L4001 2017 539e 569*2^3823191+1 1150898 L5226 2022 540 24518^262144+1 1150678 g413 2008 Generalized Fermat 541e 563*2^3819237+1 1149708 L5178 2022 542e 345*2^3817949+1 1149320 L5373 2022 543 Phi(3,-700219^98304) 1149220 L4506 2016 Generalized unique 544 241*2^3815727-1 1148651 L2484 2019 545e 351*2^3815467+1 1148573 L5226 2022 546 109*980^383669-1 1147643 L4001 2018 547e 427*2^3811610+1 1147412 L5614 2022 548e 569*2^3810475+1 1147071 L5610 2022 549f 213*2^3807864+1 1146284 L5609 2022 550f 87*2^3806438+1 1145854 L5607 2022 551f 369*2^3805321+1 1145519 L5541 2022 552 123547*2^3804809-1 1145367 L2371 2011 553 2564*75^610753+1 1145203 L3610 2014 554f 539*2^3801705+1 1144430 L5161 2022 555f 159*2^3801463+1 1144357 L5197 2022 556f 235*2^3801284+1 1144303 L5608 2022 557 Phi(3,-660955^98304) 1144293 L4506 2016 Generalized unique 558f 519*2^3800625+1 1144105 L5315 2022 559f 281*2^3798465+1 1143455 L5178 2022 560 166*443^432000+1 1143249 L5410 2020 561f 85*2^3797698+1 1143223 L5161 2022 562 326834*5^1634978-1 1142807 L3523 2014 563f 459*2^3795969+1 1142704 L5161 2022 564 447*2^3780151+1 1137942 L5596 2022 565 345*2^3779921+1 1137873 L5557 2022 566 477*2^3779871+1 1137858 L5197 2022 567 251*2^3774587+1 1136267 L5592 2022 568 439*2^3773958+1 1136078 L5557 2022 569 43*182^502611-1 1135939 L4064 2020 570 415267*2^3771929-1 1135470 L2373 2011 571 11*2^3771821+1 1135433 p286 2013 572 427*2^3768104+1 1134315 L5192 2022 573 1455*2^3768024-1 1134292 L1134 2022 574 711*2^3767492+1 1134131 L5161 2022 575 265*2^3765189-1 1133438 L2484 2018 576 297*2^3765140+1 1133423 L5197 2022 577 381*2^3764189+1 1133137 L5589 2022 578 115*2^3763650+1 1132974 L5554 2022 579 411*2^3759067+1 1131595 L5589 2022 580 405*2^3757192+1 1131031 L5590 2022 581 938237*2^3752950-1 1129757 L521 2007 Woodall 582 399866798^131072+1 1127471 L4964 2019 Generalized Fermat 583 701*2^3744713+1 1127274 L5554 2022 584 207394*5^1612573-1 1127146 L3869 2014 585 684*10^1127118+1 1127121 L4036 2017 586 Phi(3,-535386^98304) 1126302 L4506 2016 Generalized unique 587 104944*5^1610735-1 1125861 L3849 2014 588 23451*2^3739388+1 1125673 L591 2015 589 615*2^3738023+1 1125260 L5161 2022 590 347*2^3737875+1 1125216 L5178 2022 591 163*2^3735726+1 1124568 L5477 2022 Divides GF(3735725,6) 592 375*2^3733510+1 1123902 L5584 2022 593 25*2^3733144+1 1123790 L2125 2019 Generalized Fermat 594 629*2^3731479+1 1123290 L5283 2022 595 113*2^3728113+1 1122276 L5161 2022 596 303*2^3725438+1 1121472 L5161 2022 597 187*2^3723972+1 1121030 L5178 2022 598 2*1103^368361+1 1120767 L4879 2019 Divides Phi(1103^368361,2) 599 105*2^3720512+1 1119988 L5493 2022 600 447*2^3719024+1 1119541 L5493 2022 601 177*2^3717746+1 1119156 L5279 2022 602 2*131^528469+1 1118913 L4879 2019 Divides Phi(131^528469,2) 603 123*2^3716758+1 1118858 L5563 2022 604 313*2^3716716+1 1118846 L5237 2022 605 367*2^3712952+1 1117713 L5264 2022 606 53*2^3709297+1 1116612 L5197 2022 607 2^3704053+2^1852027+1 1115032 L3839 2014 Gaussian Mersenne norm 39?, generalized unique 608 395*2^3701693+1 1114324 L5536 2022 609 589*2^3699954+1 1113800 L5576 2022 610 314187728^131072+1 1113744 L4704 2019 Generalized Fermat 611 119*2^3698412-1 1113336 L2484 2018 612 391*2^3693728+1 1111926 L5493 2022 613 485*2^3688111+1 1110235 L5237 2022 614 341*2^3686613+1 1109784 L5573 2022 615 87*2^3686558+1 1109767 L5573 2022 616 675*2^3682616+1 1108581 L5231 2022 617 569*2^3682167+1 1108446 L5488 2022 618 330286*5^1584399-1 1107453 L3523 2014 619 34*951^371834-1 1107391 L5410 2019 620 45*2^3677787+1 1107126 L1204 2019 621 625*2^3676300+1 1106680 L5302 2022 Generalized Fermat 622 13*2^3675223-1 1106354 L1862 2016 623 271643232^131072+1 1105462 L4704 2019 Generalized Fermat 624 463*2^3671262+1 1105163 L5524 2022 625 735*2^3670991+1 1105082 L5575 2022 626 475*2^3670046+1 1104797 L5524 2022 627 15*2^3668194-1 1104238 L3665 2013 628 273*2^3665736+1 1103499 L5192 2022 629 13*2^3664703-1 1103187 L1862 2016 630 Phi(3,-406515^98304) 1102790 L4506 2016 Generalized unique 631 609*2^3662931+1 1102655 L5573 2022 632 118*892^373012+1 1100524 L5071 2020 633 33300*430^417849-1 1100397 L4393 2016 634 655*2^3653008+1 1099668 L5574 2022 635f 291*268^452750-1 1099341 L5410 2022 636 33*2^3649810+1 1098704 L4958 2019 637 295*2^3642206+1 1096416 L5161 2022 638 989*2^3640585+1 1095929 L5115 2020 639 567*2^3639287+1 1095538 L4959 2019 640 639*2^3635707+1 1094460 L1823 2019 641 753*2^3631472+1 1093185 L1823 2019 642 2*205731^205731-1 1093111 L4965 2022 643 65531*2^3629342-1 1092546 L2269 2011 644 1121*2^3629201+1 1092502 L4761 2019 645 215*2^3628962-1 1092429 L2484 2018 646 113*2^3628034-1 1092150 L2484 2014 647 1175*2^3627541+1 1092002 L4840 2019 648 2*431^414457+1 1091878 L4879 2019 Divides Phi(431^414457,2) 649 951*2^3623185+1 1090691 L1823 2019 650 29*920^367810-1 1090113 L4064 2015 651 14641*2^3618876+1 1089395 L181 2018 Generalized Fermat 652 485*2^3618563+1 1089299 L3924 2019 653 95*2^3614033+1 1087935 L1474 2019 654 1005*2^3612300+1 1087414 L1823 2019 655 861*2^3611815+1 1087268 L1745 2019 656 1087*2^3611476+1 1087166 L4834 2019 657 485767*2^3609357-1 1086531 L622 2008 658 675*2^3606447+1 1085652 L3278 2019 659 669*2^3606266+1 1085598 L1675 2019 660 65077*2^3605944+1 1085503 L4685 2020 661 1365*2^3605491+1 1085365 L1134 2022 662 851*2^3604395+1 1085034 L2125 2019 663 1143*2^3602429+1 1084443 L4754 2019 664 1183*2^3601898+1 1084283 L1823 2019 665 189*2^3596375+1 1082620 L3760 2016 666 1089*2^3593267+1 1081685 L3035 2019 667 19581121*2^3589357-1 1080512 p49 2022 668 1101*2^3589103+1 1080431 L1823 2019 669 35*2^3587843+1 1080050 L1979 2014 Divides GF(3587841,5) 670 275*2^3585539+1 1079358 L3803 2016 671 2*59^608685+1 1077892 g427 2014 Divides Phi(59^608685,2) 672 651*2^3579843+1 1077643 L3035 2018 673 583*2^3578402+1 1077210 L3035 2018 674 309*2^3577339+1 1076889 L4406 2016 675 1185*2^3574583+1 1076060 L4851 2018 676 251*2^3574535+1 1076045 L3035 2016 677 1485*2^3574333+1 1075985 L1134 2022 678 1019*2^3571635+1 1075173 L1823 2018 679 119*2^3571416-1 1075106 L2484 2018 680a 159214418^131072+1 1075051 L5755 2023 Generalized Fermat 681a 158831096^131072+1 1074914 L5022 2023 Generalized Fermat 682 35*2^3570777+1 1074913 L2891 2014 683a 158696888^131072+1 1074865 L5030 2023 Generalized Fermat 684a 158472238^131072+1 1074785 L5586 2023 Generalized Fermat 685 33*2^3570132+1 1074719 L2552 2014 686a 157923226^131072+1 1074587 L4249 2023 Generalized Fermat 687 5*2^3569154-1 1074424 L503 2009 688a 157374268^131072+1 1074389 L5578 2023 Generalized Fermat 689 81*492^399095-1 1074352 L4001 2015 690a 156978838^131072+1 1074246 L5332 2023 Generalized Fermat 691a 156789840^131072+1 1074177 L4747 2023 Generalized Fermat 692a 156756400^131072+1 1074165 L4249 2023 Generalized Fermat 693 22934*5^1536762-1 1074155 L3789 2014 694a 156625064^131072+1 1074117 L5694 2023 Generalized Fermat 695a 156519708^131072+1 1074079 L5746 2023 Generalized Fermat 696a 156468140^131072+1 1074060 L4249 2023 Generalized Fermat 697a 156203340^131072+1 1073964 L5578 2023 Generalized Fermat 698a 156171526^131072+1 1073952 L5698 2023 Generalized Fermat 699b 155778562^131072+1 1073809 L4309 2023 Generalized Fermat 700b 155650426^131072+1 1073762 L5668 2023 Generalized Fermat 701b 155536474^131072+1 1073720 L4249 2023 Generalized Fermat 702b 155339878^131072+1 1073648 L5206 2023 Generalized Fermat 703b 155305266^131072+1 1073636 L5549 2023 Generalized Fermat 704b 155006218^131072+1 1073526 L4742 2023 Generalized Fermat 705b 154553092^131072+1 1073359 L4920 2023 Generalized Fermat 706b 154492166^131072+1 1073337 L4326 2023 Generalized Fermat 707b 154478286^131072+1 1073332 L4544 2023 Generalized Fermat 708b 154368914^131072+1 1073291 L5738 2023 Generalized Fermat 709b 153966766^131072+1 1073143 L5732 2023 Generalized Fermat 710 265*2^3564373-1 1072986 L2484 2018 711b 153485148^131072+1 1072965 L5736 2023 Generalized Fermat 712b 153432848^131072+1 1072945 L5030 2023 Generalized Fermat 713b 153413432^131072+1 1072938 L4835 2023 Generalized Fermat 714 771*2^3564109+1 1072907 L2125 2018 715 381*2^3563676+1 1072776 L4190 2016 716b 152966530^131072+1 1072772 L5070 2023 Generalized Fermat 717 555*2^3563328+1 1072672 L4850 2018 718b 152542626^131072+1 1072614 L5460 2023 Generalized Fermat 719b 151999396^131072+1 1072411 L5586 2023 Generalized Fermat 720b 151609814^131072+1 1072265 L5663 2023 Generalized Fermat 721b 151218242^131072+1 1072118 L5588 2023 Generalized Fermat 722b 151108236^131072+1 1072076 L4672 2023 Generalized Fermat 723b 151044622^131072+1 1072052 L5544 2023 Generalized Fermat 724b 151030068^131072+1 1072047 L4774 2023 Generalized Fermat 725b 150908454^131072+1 1072001 L4758 2023 Generalized Fermat 726b 150863054^131072+1 1071984 L5720 2023 Generalized Fermat 727 1183*2^3560584+1 1071846 L1823 2018 728b 150014492^131072+1 1071663 L4476 2023 Generalized Fermat 729b 149972788^131072+1 1071647 L4559 2023 Generalized Fermat 730 415*2^3559614+1 1071554 L3035 2016 731b 149665588^131072+1 1071530 L4892 2023 Generalized Fermat 732b 149142686^131072+1 1071331 L4684 2023 Generalized Fermat 733b 149057554^131072+1 1071298 L4933 2023 Generalized Fermat 734b 148598024^131072+1 1071123 L4476 2023 Generalized Fermat 735d 1103*2^3558177-503*2^1092022-1 1071122 p423 2022 Arithmetic progression (3,d=1103*2^3558176-503*2^1092022) 736 1103*2^3558176-1 1071121 L1828 2018 737b 148592576^131072+1 1071121 L4476 2023 Generalized Fermat 738b 148425726^131072+1 1071057 L4289 2023 Generalized Fermat 739b 148154288^131072+1 1070952 L5714 2023 Generalized Fermat 740b 148093952^131072+1 1070929 L4720 2023 Generalized Fermat 741b 148070542^131072+1 1070920 L5155 2023 Generalized Fermat 742b 147988292^131072+1 1070889 L5155 2023 Generalized Fermat 743b 147816036^131072+1 1070822 L5634 2023 Generalized Fermat 744 1379*2^3557072-1 1070789 L1828 2018 745b 147539992^131072+1 1070716 L4917 2023 Generalized Fermat 746b 147433824^131072+1 1070675 L4753 2023 Generalized Fermat 747b 147310498^131072+1 1070627 L5403 2023 Generalized Fermat 748b 147265916^131072+1 1070610 L5543 2023 Generalized Fermat 749b 146994540^131072+1 1070505 L5634 2023 Generalized Fermat 750b 146520528^131072+1 1070321 L5469 2023 Generalized Fermat 751b 146465338^131072+1 1070300 L5704 2023 Generalized Fermat 752b 146031082^131072+1 1070131 L4697 2023 Generalized Fermat 753b 145949782^131072+1 1070099 L5029 2023 Generalized Fermat 754b 145728478^131072+1 1070013 L5543 2023 Generalized Fermat 755b 145245346^131072+1 1069824 L5586 2023 Generalized Fermat 756b 145137270^131072+1 1069781 L4742 2023 Generalized Fermat 757b 145132288^131072+1 1069779 L4774 2023 Generalized Fermat 758b 144926960^131072+1 1069699 L5036 2023 Generalized Fermat 759b 144810806^131072+1 1069653 L5543 2023 Generalized Fermat 760 681*2^3553141+1 1069605 L3035 2018 761b 144602744^131072+1 1069571 L5543 2023 Generalized Fermat 762b 143844356^131072+1 1069272 L5693 2023 Generalized Fermat 763 599*2^3551793+1 1069200 L3824 2018 764b 143421820^131072+1 1069104 L4904 2023 Generalized Fermat 765 621*2^3551472+1 1069103 L4687 2018 766b 143416574^131072+1 1069102 L4591 2023 Generalized Fermat 767b 143126384^131072+1 1068987 L5288 2023 Generalized Fermat 768b 142589776^131072+1 1068773 L4201 2023 Generalized Fermat 769 773*2^3550373+1 1068772 L1808 2018 770b 142527792^131072+1 1068748 L4387 2023 Generalized Fermat 771b 142207386^131072+1 1068620 L5694 2023 Generalized Fermat 772b 142195844^131072+1 1068616 L5548 2023 Generalized Fermat 773b 141636602^131072+1 1068391 L5639 2023 Generalized Fermat 774b 141554190^131072+1 1068358 L4956 2023 Generalized Fermat 775 1199*2^3548380-1 1068172 L1828 2018 776b 140928044^131072+1 1068106 L4870 2023 Generalized Fermat 777 191*2^3548117+1 1068092 L4203 2015 778b 140859866^131072+1 1068078 L5011 2023 Generalized Fermat 779b 140824516^131072+1 1068064 L4760 2023 Generalized Fermat 780b 140649396^131072+1 1067993 L5578 2023 Generalized Fermat 781 867*2^3547711+1 1067971 L4155 2018 782b 140473436^131072+1 1067922 L4210 2023 Generalized Fermat 783b 140237690^131072+1 1067826 L5051 2023 Generalized Fermat 784b 139941370^131072+1 1067706 L5671 2023 Generalized Fermat 785 Phi(3,3^1118781+1)/3 1067588 L3839 2014 Generalized unique 786b 139352402^131072+1 1067466 L5663 2023 Generalized Fermat 787 351*2^3545752+1 1067381 L4082 2016 788b 138896860^131072+1 1067279 L4745 2023 Generalized Fermat 789b 138894074^131072+1 1067278 L5041 2023 Generalized Fermat 790b 138830036^131072+1 1067252 L5662 2023 Generalized Fermat 791b 138626864^131072+1 1067169 L5663 2023 Generalized Fermat 792b 138527284^131072+1 1067128 L5663 2023 Generalized Fermat 793 93*2^3544744+1 1067077 L1728 2014 794c 138000006^131072+1 1066911 L5051 2023 Generalized Fermat 795b 137900696^131072+1 1066870 L4249 2023 Generalized Fermat 796c 137878102^131072+1 1066860 L5051 2023 Generalized Fermat 797 1159*2^3543702+1 1066764 L1823 2018 798c 137521726^131072+1 1066713 L4672 2023 Generalized Fermat 799c 137486564^131072+1 1066699 L5586 2023 Generalized Fermat 800c 136227118^131072+1 1066175 L5416 2023 Generalized Fermat 801c 136192168^131072+1 1066160 L5556 2023 Generalized Fermat 802c 136124076^131072+1 1066132 L5041 2023 Generalized Fermat 803c 136122686^131072+1 1066131 L5375 2023 Generalized Fermat 804 178658*5^1525224-1 1066092 L3789 2014 805c 135744154^131072+1 1065973 L5068 2023 Generalized Fermat 806c 135695350^131072+1 1065952 L4249 2023 Generalized Fermat 807c 135623220^131072+1 1065922 L5657 2023 Generalized Fermat 808c 135513092^131072+1 1065876 L5656 2023 Generalized Fermat 809c 135497678^131072+1 1065869 L4387 2023 Generalized Fermat 810c 135458028^131072+1 1065852 L5051 2023 Generalized Fermat 811c 135332960^131072+1 1065800 L5655 2023 Generalized Fermat 812c 135135930^131072+1 1065717 L4387 2023 Generalized Fermat 813 1085*2^3539671+1 1065551 L3035 2018 814c 134706086^131072+1 1065536 L5378 2023 Generalized Fermat 815c 134459616^131072+1 1065431 L5658 2023 Generalized Fermat 816c 134447516^131072+1 1065426 L4387 2023 Generalized Fermat 817c 134322272^131072+1 1065373 L4387 2023 Generalized Fermat 818c 134206304^131072+1 1065324 L4684 2023 Generalized Fermat 819c 134176868^131072+1 1065311 L5375 2023 Generalized Fermat 820c 133954018^131072+1 1065217 L5088 2023 Generalized Fermat 821c 133676500^131072+1 1065099 L4387 2023 Generalized Fermat 822c 133569020^131072+1 1065053 L5277 2023 Generalized Fermat 823c 133345154^131072+1 1064958 L4210 2023 Generalized Fermat 824c 133180238^131072+1 1064887 L5586 2023 Generalized Fermat 825c 133096042^131072+1 1064851 L4755 2023 Generalized Fermat 826 465*2^3536871+1 1064707 L4459 2016 827 1019*2^3536312-1 1064539 L1828 2012 828c 131820886^131072+1 1064303 L5069 2023 Generalized Fermat 829c 131412078^131072+1 1064126 L5653 2023 Generalized Fermat 830c 131370186^131072+1 1064108 L5036 2023 Generalized Fermat 831c 131309874^131072+1 1064082 L5069 2023 Generalized Fermat 832c 131112524^131072+1 1063996 L4245 2023 Generalized Fermat 833 1179*2^3534450+1 1063979 L3035 2018 834c 130907540^131072+1 1063907 L4526 2023 Generalized Fermat 835c 130593462^131072+1 1063771 L4559 2023 Generalized Fermat 836 447*2^3533656+1 1063740 L4457 2016 837c 130518578^131072+1 1063738 L5029 2023 Generalized Fermat 838 1059*2^3533550+1 1063708 L1823 2018 839c 130198372^131072+1 1063598 L5416 2023 Generalized Fermat 840c 130148002^131072+1 1063576 L4387 2023 Generalized Fermat 841c 130128232^131072+1 1063567 L5029 2023 Generalized Fermat 842c 130051980^131072+1 1063534 L5416 2023 Generalized Fermat 843c 130048816^131072+1 1063533 L4245 2023 Generalized Fermat 844 345*2^3532957+1 1063529 L4314 2016 845 553*2^3532758+1 1063469 L1823 2018 846c 129292212^131072+1 1063201 L4285 2023 Generalized Fermat 847c 129159632^131072+1 1063142 L5051 2023 Generalized Fermat 848c 128558886^131072+1 1062877 L5518 2023 Generalized Fermat 849c 128520182^131072+1 1062860 L4745 2023 Generalized Fermat 850 543131*2^3529754-1 1062568 L4925 2022 851c 127720948^131072+1 1062504 L5378 2023 Generalized Fermat 852 141*2^3529287+1 1062424 L4185 2015 853c 127093036^131072+1 1062224 L4591 2023 Generalized Fermat 854c 126611934^131072+1 1062008 L4776 2023 Generalized Fermat 855c 126423276^131072+1 1061923 L4201 2023 Generalized Fermat 856c 126334514^131072+1 1061883 L4249 2023 Generalized Fermat 857 13*2^3527315-1 1061829 L1862 2016 858c 126199098^131072+1 1061822 L4591 2023 Generalized Fermat 859c 126189358^131072+1 1061818 L4704 2023 Generalized Fermat 860c 125966884^131072+1 1061717 L4747 2023 Generalized Fermat 861c 125714084^131072+1 1061603 L4745 2023 Generalized Fermat 862c 125141096^131072+1 1061343 L4559 2023 Generalized Fermat 863 1393*2^3525571-1 1061306 L1828 2017 864c 125006494^131072+1 1061282 L5639 2023 Generalized Fermat 865c 124877454^131072+1 1061223 L4245 2023 Generalized Fermat 866c 124875502^131072+1 1061222 L4591 2023 Generalized Fermat 867c 124749274^131072+1 1061164 L4591 2023 Generalized Fermat 868c 124586054^131072+1 1061090 L4249 2023 Generalized Fermat 869c 124582356^131072+1 1061088 L5606 2023 Generalized Fermat 870c 124543852^131072+1 1061071 L4249 2023 Generalized Fermat 871c 124393514^131072+1 1061002 L4774 2023 Generalized Fermat 872c 124219534^131072+1 1060922 L4249 2023 Generalized Fermat 873c 124133348^131072+1 1060883 L5088 2023 Generalized Fermat 874c 124080788^131072+1 1060859 L5639 2023 Generalized Fermat 875 1071*2^3523944+1 1060816 L1675 2018 876c 123910270^131072+1 1060780 L4249 2023 Generalized Fermat 877c 123856592^131072+1 1060756 L4201 2023 Generalized Fermat 878d 123338660^131072+1 1060517 L4905 2022 Generalized Fermat 879c 123306230^131072+1 1060502 L5638 2023 Generalized Fermat 880d 123195196^131072+1 1060451 L5029 2022 Generalized Fermat 881d 122941512^131072+1 1060333 L4559 2022 Generalized Fermat 882d 122869094^131072+1 1060300 L4939 2022 Generalized Fermat 883d 122481106^131072+1 1060120 L4704 2022 Generalized Fermat 884d 122414564^131072+1 1060089 L5627 2022 Generalized Fermat 885d 122372192^131072+1 1060069 L5099 2022 Generalized Fermat 886d 121854624^131072+1 1059828 L5051 2022 Generalized Fermat 887d 121462664^131072+1 1059645 L5632 2022 Generalized Fermat 888d 121158848^131072+1 1059502 L4774 2022 Generalized Fermat 889 329*2^3518451+1 1059162 L1823 2016 890 135*2^3518338+1 1059128 L4045 2015 891d 120106930^131072+1 1059006 L4249 2022 Generalized Fermat 892 2*10^1059002-1 1059003 L3432 2013 Near-repdigit 893d 119744014^131072+1 1058833 L4249 2022 Generalized Fermat 894 64*10^1058794+1 1058796 L4036 2017 Generalized Fermat 895d 119604848^131072+1 1058767 L4201 2022 Generalized Fermat 896d 119541900^131072+1 1058737 L4747 2022 Generalized Fermat 897d 119510296^131072+1 1058722 L4201 2022 Generalized Fermat 898e 119246256^131072+1 1058596 L4249 2022 Generalized Fermat 899e 119137704^131072+1 1058544 L4201 2022 Generalized Fermat 900e 118888350^131072+1 1058425 L4999 2022 Generalized Fermat 901 599*2^3515959+1 1058412 L1823 2018 902e 118583824^131072+1 1058279 L4210 2022 Generalized Fermat 903e 118109876^131072+1 1058051 L4550 2022 Generalized Fermat 904e 117906758^131072+1 1057953 L4249 2022 Generalized Fermat 905e 117687318^131072+1 1057847 L4245 2022 Generalized Fermat 906e 117375862^131072+1 1057696 L4774 2022 Generalized Fermat 907e 117345018^131072+1 1057681 L4848 2022 Generalized Fermat 908e 117196584^131072+1 1057609 L4559 2022 Generalized Fermat 909e 117153716^131072+1 1057588 L4774 2022 Generalized Fermat 910e 117088740^131072+1 1057557 L4559 2022 Generalized Fermat 911e 116936156^131072+1 1057483 L5332 2022 Generalized Fermat 912f 116402336^131072+1 1057222 L4760 2022 Generalized Fermat 913 7*2^3511774+1 1057151 p236 2008 Divides GF(3511773,6) 914f 116036228^131072+1 1057043 L4773 2022 Generalized Fermat 915f 116017862^131072+1 1057034 L4559 2022 Generalized Fermat 916f 115992582^131072+1 1057021 L4835 2022 Generalized Fermat 917f 115873312^131072+1 1056963 L4677 2022 Generalized Fermat 918 1135*2^3510890+1 1056887 L1823 2018 919f 115704568^131072+1 1056880 L4559 2022 Generalized Fermat 920f 115479166^131072+1 1056769 L4774 2022 Generalized Fermat 921 115409608^131072+1 1056735 L4774 2022 Generalized Fermat 922 115256562^131072+1 1056659 L4559 2022 Generalized Fermat 923 114687250^131072+1 1056377 L5007 2022 Generalized Fermat 924 114643510^131072+1 1056356 L4659 2022 Generalized Fermat 925 114340846^131072+1 1056205 L4559 2022 Generalized Fermat 926 114159720^131072+1 1056115 L4787 2022 Generalized Fermat 927 114055498^131072+1 1056063 L4387 2022 Generalized Fermat 928 114009952^131072+1 1056040 L4387 2022 Generalized Fermat 929 113904214^131072+1 1055987 L4559 2022 Generalized Fermat 930 113807058^131072+1 1055939 L5157 2022 Generalized Fermat 931 113550956^131072+1 1055810 L5578 2022 Generalized Fermat 932 113521888^131072+1 1055796 L4387 2022 Generalized Fermat 933 113431922^131072+1 1055751 L4559 2022 Generalized Fermat 934 113328940^131072+1 1055699 L4787 2022 Generalized Fermat 935 113327472^131072+1 1055698 L5467 2022 Generalized Fermat 936 113325850^131072+1 1055698 L4559 2022 Generalized Fermat 937 113313172^131072+1 1055691 L5005 2022 Generalized Fermat 938 113191714^131072+1 1055630 L5056 2022 Generalized Fermat 939 113170004^131072+1 1055619 L4584 2022 Generalized Fermat 940 428639*2^3506452-1 1055553 L2046 2011 941 112996304^131072+1 1055532 L5544 2022 Generalized Fermat 942 112958834^131072+1 1055513 L5512 2022 Generalized Fermat 943 112852910^131072+1 1055459 L5157 2022 Generalized Fermat 944 112719374^131072+1 1055392 L4793 2022 Generalized Fermat 945 112580428^131072+1 1055322 L5512 2022 Generalized Fermat 946 112248096^131072+1 1055154 L5359 2022 Generalized Fermat 947 112053266^131072+1 1055055 L5359 2022 Generalized Fermat 948 112023072^131072+1 1055039 L5156 2022 Generalized Fermat 949 111673524^131072+1 1054861 L5548 2022 Generalized Fermat 950 111181588^131072+1 1054610 L4550 2022 Generalized Fermat 951 104*383^408249+1 1054591 L2012 2021 952 110866802^131072+1 1054449 L5547 2022 Generalized Fermat 953 555*2^3502765+1 1054441 L1823 2018 954 110824714^131072+1 1054427 L4201 2022 Generalized Fermat 955 110428380^131072+1 1054223 L5543 2022 Generalized Fermat 956 110406480^131072+1 1054212 L5051 2022 Generalized Fermat 957 643*2^3501974+1 1054203 L1823 2018 958 2*23^774109+1 1054127 g427 2014 Divides Phi(23^774109,2) 959 1159*2^3501490+1 1054057 L2125 2018 960 109678642^131072+1 1053835 L4559 2022 Generalized Fermat 961 109654098^131072+1 1053823 L5143 2022 Generalized Fermat 962 109142690^131072+1 1053557 L4201 2022 Generalized Fermat 963 109082020^131072+1 1053525 L4773 2022 Generalized Fermat 964 1189*2^3499042+1 1053320 L4724 2018 965 108584736^131072+1 1053265 L5057 2022 Generalized Fermat 966 108581414^131072+1 1053263 L5088 2022 Generalized Fermat 967 108195632^131072+1 1053060 L5025 2022 Generalized Fermat 968 108161744^131072+1 1053043 L4945 2022 Generalized Fermat 969 108080390^131072+1 1053000 L4945 2022 Generalized Fermat 970 107979316^131072+1 1052947 L4559 2022 Generalized Fermat 971 107922308^131072+1 1052916 L5025 2022 Generalized Fermat 972 609*2^3497474+1 1052848 L1823 2018 973 9*2^3497442+1 1052836 L1780 2012 Generalized Fermat, divides GF(3497441,10) 974 107732730^131072+1 1052816 L5518 2022 Generalized Fermat 975 107627678^131072+1 1052761 L5025 2022 Generalized Fermat 976 107492880^131072+1 1052689 L4550 2022 Generalized Fermat 977 107420312^131072+1 1052651 L4550 2022 Generalized Fermat 978 107404768^131072+1 1052643 L4267 2022 Generalized Fermat 979 107222132^131072+1 1052546 L5019 2022 Generalized Fermat 980 107126228^131072+1 1052495 L5025 2022 Generalized Fermat 981 87*2^3496188+1 1052460 L1576 2014 982 106901434^131072+1 1052375 L4760 2022 Generalized Fermat 983 106508704^131072+1 1052166 L5505 2022 Generalized Fermat 984 106440698^131072+1 1052130 L4245 2022 Generalized Fermat 985 106019242^131072+1 1051904 L5025 2022 Generalized Fermat 986 105937832^131072+1 1051860 L4745 2022 Generalized Fermat 987 783*2^3494129+1 1051841 L3824 2018 988 105861526^131072+1 1051819 L5500 2022 Generalized Fermat 989 105850338^131072+1 1051813 L5504 2022 Generalized Fermat 990 105534478^131072+1 1051643 L5025 2022 Generalized Fermat 991 105058710^131072+1 1051386 L5499 2022 Generalized Fermat 992 104907548^131072+1 1051304 L4245 2022 Generalized Fermat 993 104808996^131072+1 1051250 L4591 2022 Generalized Fermat 994 104641854^131072+1 1051159 L4245 2022 Generalized Fermat 995 51*2^3490971+1 1050889 L1823 2014 996 1485*2^3490746+1 1050823 L1134 2021 997 103828182^131072+1 1050715 L5072 2022 Generalized Fermat 998 103605376^131072+1 1050593 L5056 2022 Generalized Fermat 999 103289324^131072+1 1050419 L5044 2022 Generalized Fermat 1000 103280694^131072+1 1050414 L4745 2022 Generalized Fermat 1001 103209792^131072+1 1050375 L5025 2022 Generalized Fermat 1002 103094212^131072+1 1050311 L4245 2022 Generalized Fermat 1003 103013294^131072+1 1050266 L4745 2022 Generalized Fermat 1004 753*2^3488818+1 1050242 L1823 2018 1005 102507732^131072+1 1049986 L4245 2022 Generalized Fermat 1006 102469684^131072+1 1049965 L4245 2022 Generalized Fermat 1007 102397132^131072+1 1049925 L4720 2022 Generalized Fermat 1008 102257714^131072+1 1049847 L4245 2022 Generalized Fermat 1009 699*2^3487253+1 1049771 L1204 2018 1010 102050324^131072+1 1049732 L5036 2022 Generalized Fermat 1011 102021074^131072+1 1049716 L4245 2022 Generalized Fermat 1012 101915106^131072+1 1049656 L5469 2022 Generalized Fermat 1013 101856256^131072+1 1049623 L4774 2022 Generalized Fermat 1014 249*2^3486411+1 1049517 L4045 2015 1015 195*2^3486379+1 1049507 L4108 2015 1016 101607438^131072+1 1049484 L4591 2022 Generalized Fermat 1017 101328382^131072+1 1049328 L4591 2022 Generalized Fermat 1018 101270816^131072+1 1049295 L4245 2022 Generalized Fermat 1019 100865034^131072+1 1049067 L4387 2022 Generalized Fermat 1020 59912*5^1500861+1 1049062 L3772 2014 1021 495*2^3484656+1 1048989 L3035 2016 1022 100719472^131072+1 1048985 L5270 2022 Generalized Fermat 1023 100534258^131072+1 1048880 L4245 2022 Generalized Fermat 1024 100520930^131072+1 1048872 L4201 2022 Generalized Fermat 1025 100441116^131072+1 1048827 L4309 2022 Generalized Fermat 1026 100382228^131072+1 1048794 L4308 2022 Generalized Fermat 1027 100369508^131072+1 1048786 L5157 2022 Generalized Fermat 1028 100324226^131072+1 1048761 L4201 2022 Generalized Fermat 1029 100010426^131072+1 1048582 L5375 2022 Generalized Fermat 1030 323*2^3482789+1 1048427 L1204 2016 1031 99665972^131072+1 1048386 L4201 2022 Generalized Fermat 1032 99650934^131072+1 1048377 L5375 2022 Generalized Fermat 1033 99557826^131072+1 1048324 L5466 2022 Generalized Fermat 1034 99351950^131072+1 1048206 L5143 2022 Generalized Fermat 1035 99189780^131072+1 1048113 L4201 2022 Generalized Fermat 1036 1149*2^3481694+1 1048098 L1823 2018 1037 98978354^131072+1 1047992 L5465 2022 Generalized Fermat 1038 98922946^131072+1 1047960 L5453 2022 Generalized Fermat 1039 98652282^131072+1 1047804 L4201 2022 Generalized Fermat 1040 98557818^131072+1 1047750 L5464 2022 Generalized Fermat 1041 98518362^131072+1 1047727 L5460 2022 Generalized Fermat 1042 98240694^131072+1 1047566 L4720 2022 Generalized Fermat 1043 98200338^131072+1 1047543 L4559 2022 Generalized Fermat 1044 701*2^3479779+1 1047521 L2125 2018 1045 98137862^131072+1 1047507 L4525 2022 Generalized Fermat 1046 813*2^3479728+1 1047506 L4724 2018 1047 97512766^131072+1 1047143 L5460 2022 Generalized Fermat 1048 97046574^131072+1 1046870 L4956 2022 Generalized Fermat 1049 197*2^3477399+1 1046804 L2125 2015 1050 96821302^131072+1 1046738 L5453 2022 Generalized Fermat 1051 96734274^131072+1 1046686 L5297 2022 Generalized Fermat 1052 96475576^131072+1 1046534 L4424 2022 Generalized Fermat 1053 96111850^131072+1 1046319 L4245 2022 Generalized Fermat 1054 95940796^131072+1 1046218 L4591 2022 Generalized Fermat 1055b 4*5^1496566+1 1046056 L4965 2023 Generalized Fermat 1056 95635202^131072+1 1046036 L5452 2021 Generalized Fermat 1057 95596816^131072+1 1046013 L4591 2021 Generalized Fermat 1058 95308284^131072+1 1045841 L4584 2021 Generalized Fermat 1059 491*2^3473837+1 1045732 L4343 2016 1060 94978760^131072+1 1045644 L4201 2021 Generalized Fermat 1061 93950924^131072+1 1045025 L5425 2021 Generalized Fermat 1062 93886318^131072+1 1044985 L5433 2021 Generalized Fermat 1063 1061*2^3471354-1 1044985 L1828 2017 1064 93773904^131072+1 1044917 L4939 2021 Generalized Fermat 1065 93514592^131072+1 1044760 L4591 2021 Generalized Fermat 1066 93035888^131072+1 1044467 L4245 2021 Generalized Fermat 1067 92460588^131072+1 1044114 L5254 2021 Generalized Fermat 1068 92198216^131072+1 1043953 L4738 2021 Generalized Fermat 1069 91767880^131072+1 1043686 L5051 2021 Generalized Fermat 1070 91707732^131072+1 1043649 L4591 2021 Generalized Fermat 1071 91689894^131072+1 1043638 L4591 2021 Generalized Fermat 1072 91685784^131072+1 1043635 L4591 2021 Generalized Fermat 1073 91655310^131072+1 1043616 L4659 2021 Generalized Fermat 1074 91069366^131072+1 1043251 L5277 2021 Generalized Fermat 1075 91049202^131072+1 1043239 L4591 2021 Generalized Fermat 1076 91033554^131072+1 1043229 L4591 2021 Generalized Fermat 1077 90942952^131072+1 1043172 L4387 2021 Generalized Fermat 1078 90938686^131072+1 1043170 L4387 2021 Generalized Fermat 1079 90857490^131072+1 1043119 L4591 2021 Generalized Fermat 1080 90382348^131072+1 1042820 L4267 2021 Generalized Fermat 1081 641*2^3464061+1 1042790 L1444 2018 1082a 6717*2^3463735+1 1042692 L5754 2023 1083a 6015*2^3463561+1 1042640 L5387 2023 1084 90006846^131072+1 1042583 L4773 2021 Generalized Fermat 1085a 1667*2^3463355+1 1042577 L5226 2023 1086a 2871*2^3463313+1 1042565 L5189 2023 1087 89977312^131072+1 1042565 L5070 2021 Generalized Fermat 1088a 6007*2^3463048+1 1042486 L5226 2023 1089 89790434^131072+1 1042446 L5007 2021 Generalized Fermat 1090a 9777*2^3462742+1 1042394 L5197 2023 1091a 5215*2^3462740+1 1042393 L5174 2023 1092a 8365*2^3462722+1 1042388 L5320 2023 1093a 3597*2^3462056+1 1042187 L5174 2023 1094a 2413*2^3461890+1 1042137 L5197 2023 1095 89285798^131072+1 1042125 L5157 2021 Generalized Fermat 1096 453*2^3461688+1 1042075 L3035 2016 1097 89113896^131072+1 1042016 L5338 2021 Generalized Fermat 1098a 4401*2^3461476+1 1042012 L5197 2023 1099a 9471*2^3461305+1 1041961 L5594 2023 1100b 7245*2^3461070+1 1041890 L5449 2023 1101b 3969*2^3460942+1 1041851 L5471 2023 Generalized Fermat 1102a 4365*2^3460914+1 1041843 L5197 2023 1103b 4613*2^3460861+1 1041827 L5614 2023 1104 88760062^131072+1 1041789 L4903 2021 Generalized Fermat 1105b 5169*2^3460553+1 1041734 L5742 2023 1106b 8395*2^3460530+1 1041728 L5284 2023 1107b 5835*2^3460515+1 1041723 L5740 2023 1108b 8059*2^3460246+1 1041642 L5350 2023 1109 571*2^3460216+1 1041632 L3035 2018 1110b 6065*2^3460205+1 1041630 L5683 2023 1111 88243020^131072+1 1041457 L4774 2021 Generalized Fermat 1112 88166868^131072+1 1041408 L5277 2021 Generalized Fermat 1113b 6237*2^3459386+1 1041383 L5509 2023 1114 88068088^131072+1 1041344 L4933 2021 Generalized Fermat 1115b 4029*2^3459062+1 1041286 L5727 2023 1116 87920992^131072+1 1041249 L4249 2021 Generalized Fermat 1117b 7055*2^3458909+1 1041240 L5509 2023 1118b 7297*2^3458768+1 1041197 L5726 2023 1119b 2421*2^3458432+1 1041096 L5725 2023 1120b 7907*2^3458207+1 1041028 L5509 2023 1121 87547832^131072+1 1041006 L4591 2021 Generalized Fermat 1122 87454694^131072+1 1040946 L4672 2021 Generalized Fermat 1123b 7839*2^3457846+1 1040920 L5231 2023 1124 87370574^131072+1 1040891 L5297 2021 Generalized Fermat 1125 87352356^131072+1 1040879 L4387 2021 Generalized Fermat 1126 87268788^131072+1 1040825 L4917 2021 Generalized Fermat 1127 87192538^131072+1 1040775 L4861 2021 Generalized Fermat 1128b 5327*2^3457363+1 1040774 L5715 2023 1129 87116452^131072+1 1040725 L5297 2021 Generalized Fermat 1130 87039658^131072+1 1040675 L5297 2021 Generalized Fermat 1131b 6059*2^3457001+1 1040665 L5197 2023 1132b 8953*2^3456938+1 1040646 L5724 2023 1133b 8669*2^3456759+1 1040593 L5710 2023 1134 86829162^131072+1 1040537 L5265 2021 Generalized Fermat 1135b 4745*2^3456167+1 1040414 L5705 2023 1136b 8213*2^3456141+1 1040407 L5703 2023 1137 86413544^131072+1 1040264 L4914 2021 Generalized Fermat 1138 86347638^131072+1 1040221 L4848 2021 Generalized Fermat 1139 86295564^131072+1 1040186 L5030 2021 Generalized Fermat 1140 1155*2^3455254+1 1040139 L4711 2017 1141 37292*5^1487989+1 1040065 L3553 2013 1142 86060696^131072+1 1040031 L5057 2021 Generalized Fermat 1143b 5525*2^3454069+1 1039783 L5651 2023 1144b 4235*2^3453573+1 1039633 L5650 2023 1145b 6441*2^3453227+1 1039529 L5683 2023 1146b 4407*2^3453195+1 1039519 L5650 2023 1147b 9867*2^3453039+1 1039473 L5686 2023 1148 85115888^131072+1 1039403 L4909 2021 Generalized Fermat 1149b 4857*2^3452675+1 1039363 L5600 2023 1150b 8339*2^3452667+1 1039361 L5651 2023 1151 84924212^131072+1 1039275 L4309 2021 Generalized Fermat 1152b 7079*2^3452367+1 1039270 L5650 2023 1153b 5527*2^3452342+1 1039263 L5679 2023 1154 84817722^131072+1 1039203 L4726 2021 Generalized Fermat 1155 84765338^131072+1 1039168 L4245 2021 Generalized Fermat 1156 84757790^131072+1 1039163 L5051 2021 Generalized Fermat 1157 84723284^131072+1 1039140 L5051 2021 Generalized Fermat 1158 84715930^131072+1 1039135 L4963 2021 Generalized Fermat 1159 84679936^131072+1 1039111 L4864 2021 Generalized Fermat 1160b 3719*2^3451667+1 1039059 L5294 2023 1161b 6725*2^3451455+1 1038996 L5685 2023 1162b 8407*2^3451334+1 1038959 L5524 2023 1163 84445014^131072+1 1038952 L4909 2021 Generalized Fermat 1164 84384358^131072+1 1038912 L4622 2021 Generalized Fermat 1165b 1623*2^3451109+1 1038891 L5308 2023 1166b 8895*2^3450982+1 1038854 L5666 2023 1167 84149050^131072+1 1038753 L5033 2021 Generalized Fermat 1168b 2899*2^3450542+1 1038721 L5600 2023 1169c 6337*2^3449506+1 1038409 L5197 2023 1170c 4381*2^3449456+1 1038394 L5392 2023 1171c 2727*2^3449326+1 1038355 L5421 2023 1172c 2877*2^3449311+1 1038350 L5517 2023 1173c 7507*2^3448920+1 1038233 L5284 2023 1174b 3629*2^3448919+1 1038232 L5192 2023 1175 83364886^131072+1 1038220 L4591 2021 Generalized Fermat 1176 83328182^131072+1 1038195 L5051 2021 Generalized Fermat 1177 1273*2^3448551-1 1038121 L1828 2012 1178c 1461*2^3448423+1 1038082 L4944 2023 1179c 3235*2^3448352+1 1038061 L5571 2023 1180c 4755*2^3448344+1 1038059 L5524 2023 1181c 5655*2^3448288+1 1038042 L5651 2023 1182c 4873*2^3448176+1 1038009 L5524 2023 1183 83003850^131072+1 1037973 L4963 2021 Generalized Fermat 1184c 8139*2^3447967+1 1037946 L5652 2023 1185 1065*2^3447906+1 1037927 L4664 2017 1186c 1717*2^3446756+1 1037581 L5517 2023 1187c 6357*2^3446434+1 1037484 L5284 2023 1188 1155*2^3446253+1 1037429 L3035 2017 1189c 9075*2^3446090+1 1037381 L5648 2023 1190 82008736^131072+1 1037286 L4963 2021 Generalized Fermat 1191 82003030^131072+1 1037282 L4410 2021 Generalized Fermat 1192c 1483*2^3445724+1 1037270 L5650 2023 1193 81976506^131072+1 1037264 L4249 2021 Generalized Fermat 1194c 2223*2^3445682+1 1037257 L5647 2023 1195c 8517*2^3445488+1 1037200 L5302 2023 1196c 2391*2^3445281+1 1037137 L5596 2023 1197c 6883*2^3444784+1 1036988 L5264 2023 1198 81477176^131072+1 1036916 L4245 2020 Generalized Fermat 1199 81444036^131072+1 1036893 L4245 2020 Generalized Fermat 1200c 8037*2^3443920+1 1036728 L5626 2023 1201c 1375*2^3443850+1 1036706 L5192 2023 1202 81096098^131072+1 1036649 L4249 2020 Generalized Fermat 1203 27288429267119080686...(1036580 other digits)...83679577406643267931 1036620 p384 2015 1204 943*2^3442990+1 1036447 L4687 2017 1205c 7743*2^3442814+1 1036395 L5514 2023 1206d 5511*2^3442468+1 1036290 L5514 2022 1207 80284312^131072+1 1036076 L5051 2020 Generalized Fermat 1208d 6329*2^3441717+1 1036064 L5631 2022 1209d 3957*2^3441568+1 1036019 L5476 2022 1210 80146408^131072+1 1035978 L5051 2020 Generalized Fermat 1211d 4191*2^3441427+1 1035977 L5189 2022 1212d 2459*2^3441331+1 1035948 L5514 2022 1213d 4335*2^3441306+1 1035940 L5178 2022 1214d 2331*2^3441249+1 1035923 L5626 2022 1215 79912550^131072+1 1035812 L5186 2020 Generalized Fermat 1216 79801426^131072+1 1035733 L4245 2020 Generalized Fermat 1217 79789806^131072+1 1035725 L4658 2020 Generalized Fermat 1218d 2363*2^3440385+1 1035663 L5625 2022 1219d 5265*2^3440332+1 1035647 L5421 2022 1220d 6023*2^3440241+1 1035620 L5517 2022 1221 943*2^3440196+1 1035606 L1448 2017 1222d 6663*2^3439901+1 1035518 L5624 2022 1223 79485098^131072+1 1035507 L5130 2020 Generalized Fermat 1224 79428414^131072+1 1035466 L4793 2020 Generalized Fermat 1225 79383608^131072+1 1035434 L4387 2020 Generalized Fermat 1226e 5745*2^3439450+1 1035382 L5178 2022 1227 79201682^131072+1 1035303 L5051 2020 Generalized Fermat 1228e 5109*2^3439090+1 1035273 L5594 2022 1229 543*2^3438810+1 1035188 L3035 2017 1230 625*2^3438572+1 1035117 L1355 2017 Generalized Fermat 1231e 3325*2^3438506+1 1035097 L5619 2022 1232 78910032^131072+1 1035093 L5051 2020 Generalized Fermat 1233 78880690^131072+1 1035072 L5159 2020 Generalized Fermat 1234 78851276^131072+1 1035051 L4928 2020 Generalized Fermat 1235e 4775*2^3438217+1 1035011 L5618 2022 1236 78714954^131072+1 1034953 L5130 2020 Generalized Fermat 1237e 6963*2^3437988+1 1034942 L5616 2022 1238 74*941^348034-1 1034913 L5410 2020 1239e 7423*2^3437856+1 1034902 L5192 2022 1240e 6701*2^3437801+1 1034886 L5615 2022 1241e 5741*2^3437773+1 1034877 L5517 2022 1242 78439440^131072+1 1034753 L5051 2020 Generalized Fermat 1243e 5601*2^3437259+1 1034722 L5612 2022 1244e 7737*2^3437192+1 1034702 L5611 2022 1245 113*2^3437145+1 1034686 L4045 2015 1246 78240016^131072+1 1034608 L4245 2020 Generalized Fermat 1247e 6387*2^3436719+1 1034560 L5613 2022 1248 78089172^131072+1 1034498 L4245 2020 Generalized Fermat 1249f 2921*2^3436299+1 1034433 L5231 2022 1250f 9739*2^3436242+1 1034416 L5178 2022 1251 77924964^131072+1 1034378 L5051 2020 Generalized Fermat 1252 77918854^131072+1 1034374 L4760 2020 Generalized Fermat 1253 1147*2^3435970+1 1034334 L3035 2017 1254f 4589*2^3435707+1 1034255 L5174 2022 1255f 7479*2^3435683+1 1034248 L5421 2022 1256f 2863*2^3435616+1 1034227 L5197 2022 1257 77469882^131072+1 1034045 L4591 2020 Generalized Fermat 1258f 9863*2^3434697+1 1033951 L5189 2022 1259f 4065*2^3434623+1 1033929 L5197 2022 1260 77281404^131072+1 1033906 L4963 2020 Generalized Fermat 1261f 9187*2^3434126+1 1033779 L5600 2022 1262f 9531*2^3434103+1 1033772 L5601 2022 1263 1757*2^3433547+1 1033604 L5594 2022 1264 1421*2^3433099+1 1033469 L5237 2022 1265 3969*2^3433007+1 1033442 L5189 2022 1266 6557*2^3433003+1 1033441 L5261 2022 1267 7335*2^3432982+1 1033435 L5231 2022 1268 7125*2^3432836+1 1033391 L5594 2022 1269 2517*2^3432734+1 1033360 L5231 2022 1270 911*2^3432643+1 1033332 L1355 2017 1271 5413*2^3432626+1 1033328 L5231 2022 1272 76416048^131072+1 1033265 L4672 2020 Generalized Fermat 1273 3753*2^3432413+1 1033263 L5261 2022 1274 2691*2^3432191+1 1033196 L5585 2022 1275 3933*2^3432125+1 1033177 L5387 2022 1276 76026988^131072+1 1032975 L5094 2020 Generalized Fermat 1277 76018874^131072+1 1032969 L4774 2020 Generalized Fermat 1278 1435*2^3431284+1 1032923 L5587 2022 1279 75861530^131072+1 1032851 L5053 2020 Generalized Fermat 1280 6783*2^3430781+1 1032772 L5261 2022 1281 8079*2^3430683+1 1032743 L5585 2022 1282 75647276^131072+1 1032690 L4677 2020 Generalized Fermat 1283 75521414^131072+1 1032595 L4584 2020 Generalized Fermat 1284 6605*2^3430187+1 1032593 L5463 2022 1285 3761*2^3430057+1 1032554 L5582 2022 1286 6873*2^3429937+1 1032518 L5294 2022 1287 8067*2^3429891+1 1032504 L5581 2022 1288 3965*2^3429719+1 1032452 L5579 2022 1289 3577*2^3428812+1 1032179 L5401 2022 1290 8747*2^3428755+1 1032163 L5493 2022 1291 9147*2^3428638+1 1032127 L5493 2022 1292 3899*2^3428535+1 1032096 L5174 2022 1293 74833516^131072+1 1032074 L5102 2020 Generalized Fermat 1294 74817490^131072+1 1032062 L4591 2020 Generalized Fermat 1295 8891*2^3428303+1 1032026 L5532 2022 1296 2147*2^3427371+1 1031745 L5189 2022 1297 74396818^131072+1 1031741 L4791 2020 Generalized Fermat 1298 74381296^131072+1 1031729 L4550 2020 Generalized Fermat 1299 74363146^131072+1 1031715 L4898 2020 Generalized Fermat 1300 1127*2^3427219+1 1031699 L3035 2017 1301 74325990^131072+1 1031687 L5024 2020 Generalized Fermat 1302 3021*2^3427059+1 1031652 L5554 2022 1303 3255*2^3426983+1 1031629 L5231 2022 1304 1733*2^3426753+1 1031559 L5565 2022 1305 2339*2^3426599+1 1031513 L5237 2022 1306 4729*2^3426558+1 1031501 L5493 2022 1307 73839292^131072+1 1031313 L4550 2020 Generalized Fermat 1308 5445*2^3425839+1 1031285 L5237 2022 1309 159*2^3425766+1 1031261 L4045 2015 1310 73690464^131072+1 1031198 L4884 2020 Generalized Fermat 1311 3405*2^3425045+1 1031045 L5261 2022 1312 73404316^131072+1 1030976 L5011 2020 Generalized Fermat 1313 1695*2^3424517+1 1030886 L5387 2022 1314 4715*2^3424433+1 1030861 L5557 2022 1315 5525*2^3424423+1 1030858 L5387 2022 1316 8615*2^3424231+1 1030801 L5261 2022 1317 5805*2^3424200+1 1030791 L5237 2022 1318 73160610^131072+1 1030787 L4550 2020 Generalized Fermat 1319 73132228^131072+1 1030765 L4905 2020 Generalized Fermat 1320 73099962^131072+1 1030740 L5068 2020 Generalized Fermat 1321c 2109*2^3423798-3027*2^988658+1 1030670 CH13 2023 Arithmetic progression (3,d=2109*2^3423797-3027*2^988658) 1322 2109*2^3423797+1 1030669 L5197 2022 1323 4929*2^3423494+1 1030579 L5554 2022 1324 2987*2^3422911+1 1030403 L5226 2022 1325 72602370^131072+1 1030351 L4201 2020 Generalized Fermat 1326 4843*2^3422644+1 1030323 L5553 2022 1327 5559*2^3422566+1 1030299 L5555 2022 1328 7583*2^3422501+1 1030280 L5421 2022 1329 1119*2^3422189+1 1030185 L1355 2017 1330c 2895*2^3422031-143157*2^2144728+1 1030138 p423 2023 Arithmetic progression (3,d=2895*2^3422030-143157*2^2144728) 1331 2895*2^3422030+1 1030138 L5237 2022 1332 2835*2^3421697+1 1030037 L5387 2022 1333 3363*2^3421353+1 1029934 L5226 2022 1334 72070092^131072+1 1029932 L4201 2020 Generalized Fermat 1335 9147*2^3421264+1 1029908 L5237 2022 1336 9705*2^3420915+1 1029803 L5540 2022 1337 1005*2^3420846+1 1029781 L2714 2017 Divides GF(3420844,10) 1338 8919*2^3420758+1 1029755 L5226 2022 1339 71732900^131072+1 1029665 L5053 2020 Generalized Fermat 1340 71679108^131072+1 1029623 L5072 2020 Generalized Fermat 1341 5489*2^3420137+1 1029568 L5174 2022 1342 9957*2^3420098+1 1029557 L5237 2022 1343 93*10^1029523-1 1029525 L4789 2019 Near-repdigit 1344 71450224^131072+1 1029440 L5029 2020 Generalized Fermat 1345 7213*2^3419370+1 1029337 L5421 2022 1346 7293*2^3419264+1 1029305 L5192 2022 1347 975*2^3419230+1 1029294 L3545 2017 1348 4191*2^3419227+1 1029294 L5421 2022 1349 2393*2^3418921+1 1029202 L5197 2022 1350 999*2^3418885+1 1029190 L3035 2017 1351 2925*2^3418543+1 1029088 L5174 2022 1352 70960658^131072+1 1029049 L5039 2020 Generalized Fermat 1353 70948704^131072+1 1029039 L4660 2020 Generalized Fermat 1354 70934282^131072+1 1029028 L5067 2020 Generalized Fermat 1355 7383*2^3418297+1 1029014 L5189 2022 1356 70893680^131072+1 1028995 L5063 2020 Generalized Fermat 1357 907*2^3417890+1 1028891 L3035 2017 1358 5071*2^3417884+1 1028890 L5237 2022 1359 3473*2^3417741+1 1028847 L5541 2022 1360 191249*2^3417696-1 1028835 L1949 2010 1361 70658696^131072+1 1028806 L5051 2020 Generalized Fermat 1362 3299*2^3417329+1 1028723 L5421 2022 1363 6947*2^3416979+1 1028618 L5540 2022 1364 70421038^131072+1 1028615 L4984 2020 Generalized Fermat 1365 8727*2^3416652+1 1028519 L5226 2022 1366 8789*2^3416543+1 1028486 L5197 2022 1367 70050828^131072+1 1028315 L5021 2020 Generalized Fermat 1368 7917*2^3415947+1 1028307 L5537 2022 1369 70022042^131072+1 1028291 L4201 2020 Generalized Fermat 1370 2055*2^3415873+1 1028284 L5535 2022 1371 4731*2^3415712+1 1028236 L5192 2022 1372 2219*2^3415687+1 1028228 L5178 2022 1373 69915032^131072+1 1028204 L4591 2020 Generalized Fermat 1374 5877*2^3415419+1 1028148 L5532 2022 1375 3551*2^3415275+1 1028104 L5231 2022 1376 69742382^131072+1 1028063 L5053 2020 Generalized Fermat 1377 2313*2^3415046+1 1028035 L5226 2022 1378 69689592^131072+1 1028020 L4387 2020 Generalized Fermat 1379 7637*2^3414875+1 1027984 L5507 2022 1380 2141*2^3414821+1 1027967 L5226 2022 1381 69622572^131072+1 1027965 L4909 2020 Generalized Fermat 1382 3667*2^3414686+1 1027927 L5226 2022 1383 69565722^131072+1 1027919 L4387 2020 Generalized Fermat 1384 6159*2^3414623+1 1027908 L5226 2022 1385 69534788^131072+1 1027894 L5029 2020 Generalized Fermat 1386 4577*2^3413539+1 1027582 L5387 2022 1387 5137*2^3413524+1 1027577 L5261 2022 1388 8937*2^3413364+1 1027529 L5527 2022 1389 8829*2^3413339+1 1027522 L5531 2022 1390 7617*2^3413315+1 1027515 L5197 2022 1391 68999820^131072+1 1027454 L5044 2020 Generalized Fermat 1392 3141*2^3413112+1 1027453 L5463 2022 1393 8831*2^3412931+1 1027399 L5310 2022 1394 68924112^131072+1 1027391 L4745 2020 Generalized Fermat 1395 68918852^131072+1 1027387 L5021 2020 Generalized Fermat 1396 5421*2^3412877+1 1027383 L5310 2022 1397 9187*2^3412700+1 1027330 L5337 2022 1398 68811158^131072+1 1027298 L4245 2020 Generalized Fermat 1399 8243*2^3412577+1 1027292 L5524 2022 1400 1751*2^3412565+1 1027288 L5523 2022 1401 9585*2^3412318+1 1027215 L5197 2022 1402 9647*2^3412247+1 1027193 L5178 2022 1403 3207*2^3412108+1 1027151 L5189 2022 1404 479*2^3411975+1 1027110 L2873 2016 1405 245*2^3411973+1 1027109 L1935 2015 1406 177*2^3411847+1 1027071 L4031 2015 1407 68536972^131072+1 1027071 L5027 2020 Generalized Fermat 1408 9963*2^3411566+1 1026988 L5237 2022 1409 68372810^131072+1 1026934 L4956 2020 Generalized Fermat 1410 9785*2^3411223+1 1026885 L5189 2022 1411 5401*2^3411136+1 1026858 L5261 2022 1412 68275006^131072+1 1026853 L4963 2020 Generalized Fermat 1413 9431*2^3411105+1 1026849 L5237 2022 1414 8227*2^3410878+1 1026781 L5316 2022 1415 4735*2^3410724+1 1026734 L5226 2022 1416 9515*2^3410707+1 1026730 L5237 2022 1417 6783*2^3410690+1 1026724 L5434 2022 1418 8773*2^3410558+1 1026685 L5261 2022 1419 4629*2^3410321+1 1026613 L5517 2022 1420 67894288^131072+1 1026535 L5025 2020 Generalized Fermat 1421 113*2^3409934-1 1026495 L2484 2014 1422 5721*2^3409839+1 1026468 L5226 2022 1423 67725850^131072+1 1026393 L5029 2020 Generalized Fermat 1424 6069*2^3409493+1 1026364 L5237 2022 1425 1981*910^346850+1 1026347 L1141 2021 1426 5317*2^3409236+1 1026287 L5471 2022 1427 7511*2^3408985+1 1026211 L5514 2022 1428 7851*2^3408909+1 1026188 L5176 2022 1429 67371416^131072+1 1026094 L4550 2020 Generalized Fermat 1430 6027*2^3408444+1 1026048 L5239 2022 1431 59*2^3408416-1 1026038 L426 2010 1432 2153*2^3408333+1 1026014 L5237 2022 1433 9831*2^3408056+1 1025932 L5233 2022 1434 3615*2^3408035+1 1025925 L5217 2022 1435 6343*2^3407950+1 1025899 L5226 2022 1436 8611*2^3407516+1 1025769 L5509 2022 1437 66982940^131072+1 1025765 L4249 2020 Generalized Fermat 1438 7111*2^3407452+1 1025750 L5508 2022 1439 66901180^131072+1 1025696 L5018 2020 Generalized Fermat 1440 6945*2^3407256+1 1025691 L5507 2022 1441 6465*2^3407229+1 1025682 L5301 2022 1442 1873*2^3407156+1 1025660 L5440 2022 1443 7133*2^3406377+1 1025426 L5279 2022 1444 7063*2^3406122+1 1025349 L5178 2022 1445 3105*2^3405800+1 1025252 L5502 2022 1446 953*2^3405729+1 1025230 L3035 2017 1447 66272848^131072+1 1025159 L5013 2020 Generalized Fermat 1448 66131722^131072+1 1025037 L4530 2020 Generalized Fermat 1449 373*2^3404702+1 1024921 L3924 2016 1450 7221*2^3404507+1 1024863 L5231 2022 1451 6641*2^3404259+1 1024788 L5501 2022 1452 9225*2^3404209+1 1024773 L5250 2022 1453 65791182^131072+1 1024743 L4623 2019 Generalized Fermat 1454 833*2^3403765+1 1024639 L3035 2017 1455 65569854^131072+1 1024552 L4210 2019 Generalized Fermat 1456 2601*2^3403459+1 1024547 L5350 2022 1457 8835*2^3403266+1 1024490 L5161 2022 1458 7755*2^3403010+1 1024412 L5161 2022 1459 3123*2^3402834+1 1024359 L5260 2022 1460 65305572^131072+1 1024322 L5001 2019 Generalized Fermat 1461 65200798^131072+1 1024230 L4999 2019 Generalized Fermat 1462 1417*2^3402246+1 1024182 L5497 2022 1463 5279*2^3402241+1 1024181 L5250 2022 1464 6651*2^3402137+1 1024150 L5476 2022 1465 1779*2^3401715+1 1024022 L5493 2022 1466 64911056^131072+1 1023977 L4870 2019 Generalized Fermat 1467 8397*2^3401502+1 1023959 L5476 2022 1468 4057*2^3401472+1 1023949 L5492 2022 1469 64791668^131072+1 1023872 L4905 2019 Generalized Fermat 1470 4095*2^3401174+1 1023860 L5418 2022 1471 5149*2^3400970+1 1023798 L5176 2022 1472 4665*2^3400922+1 1023784 L5308 2022 1473 24*414^391179+1 1023717 L4273 2016 1474 64568930^131072+1 1023676 L4977 2019 Generalized Fermat 1475 64506894^131072+1 1023621 L4977 2019 Generalized Fermat 1476 1725*2^3400371+1 1023617 L5197 2022 1477 64476916^131072+1 1023595 L4997 2019 Generalized Fermat 1478 9399*2^3400243+1 1023580 L5488 2022 1479 1241*2^3400127+1 1023544 L5279 2022 1480 1263*2^3399876+1 1023468 L5174 2022 1481 1167*2^3399748+1 1023430 L3545 2017 1482 64024604^131072+1 1023194 L4591 2019 Generalized Fermat 1483 7679*2^3398569+1 1023076 L5295 2022 1484 6447*2^3398499+1 1023054 L5302 2022 1485 63823568^131072+1 1023015 L4585 2019 Generalized Fermat 1486 2785*2^3398332+1 1023004 L5250 2022 1487 611*2^3398273+1 1022985 L3035 2017 1488 2145*2^3398034+1 1022914 L5302 2022 1489 3385*2^3397254+1 1022679 L5161 2022 1490 4*3^2143374+1 1022650 L4965 2020 Generalized Fermat 1491 4463*2^3396657+1 1022500 L5476 2022 1492 2889*2^3396450+1 1022437 L5178 2022 1493 8523*2^3396448+1 1022437 L5231 2022 1494 63168480^131072+1 1022428 L4861 2019 Generalized Fermat 1495 63165756^131072+1 1022425 L4987 2019 Generalized Fermat 1496 3349*2^3396326+1 1022400 L5480 2022 1497 63112418^131072+1 1022377 L4201 2019 Generalized Fermat 1498 4477*2^3395786+1 1022238 L5161 2022 1499 3853*2^3395762+1 1022230 L5302 2022 1500 2693*2^3395725+1 1022219 L5284 2022 1501 8201*2^3395673+1 1022204 L5178 2022 1502 255*2^3395661+1 1022199 L3898 2014 1503 1049*2^3395647+1 1022195 L3035 2017 1504 9027*2^3395623+1 1022189 L5263 2022 1505 2523*2^3395549+1 1022166 L5472 2022 1506 3199*2^3395402+1 1022122 L5264 2022 1507 342924651*2^3394939-1 1021988 L4166 2017 1508 3825*2^3394947+1 1021985 L5471 2022 1509 1895*2^3394731+1 1021920 L5174 2022 1510 62276102^131072+1 1021618 L4715 2019 Generalized Fermat 1511 555*2^3393389+1 1021515 L2549 2017 1512 1865*2^3393387+1 1021515 L5237 2022 1513 4911*2^3393373+1 1021511 L5231 2022 1514 62146946^131072+1 1021500 L4720 2019 Generalized Fermat 1515 5229*2^3392587+1 1021275 L5463 2022 1516 61837354^131072+1 1021215 L4656 2019 Generalized Fermat 1517 609*2^3392301+1 1021188 L3035 2017 1518 9787*2^3392236+1 1021169 L5350 2022 1519 303*2^3391977+1 1021090 L2602 2016 1520 805*2^3391818+1 1021042 L4609 2017 1521 6475*2^3391496+1 1020946 L5174 2022 1522 67*2^3391385-1 1020911 L1959 2014 1523 61267078^131072+1 1020688 L4923 2019 Generalized Fermat 1524 4639*2^3390634+1 1020687 L5189 2022 1525 5265*2^3390581+1 1020671 L5456 2022 1526 663*2^3390469+1 1020636 L4316 2017 1527 6945*2^3390340+1 1020598 L5174 2022 1528 5871*2^3390268+1 1020577 L5231 2022 1529 7443*2^3390141+1 1020539 L5226 2022 1530 5383*2^3389924+1 1020473 L5350 2021 1531 61030988^131072+1 1020468 L4898 2019 Generalized Fermat 1532 9627*2^3389331+1 1020295 L5231 2021 1533 60642326^131072+1 1020104 L4591 2019 Generalized Fermat 1534 8253*2^3388624+1 1020082 L5226 2021 1535 3329*2^3388472-1 1020036 L4841 2020 1536 4695*2^3388393+1 1020012 L5237 2021 1537 60540024^131072+1 1020008 L4591 2019 Generalized Fermat 1538 7177*2^3388144+1 1019937 L5174 2021 1539 60455792^131072+1 1019929 L4760 2019 Generalized Fermat 1540 9611*2^3388059+1 1019912 L5435 2021 1541 1833*2^3387760+1 1019821 L5226 2021 1542 9003*2^3387528+1 1019752 L5189 2021 1543 3161*2^3387141+1 1019635 L5226 2021 1544 7585*2^3387110+1 1019626 L5189 2021 1545 60133106^131072+1 1019624 L4942 2019 Generalized Fermat 1546 453*2^3387048+1 1019606 L2602 2016 1547 5177*2^3386919+1 1019568 L5226 2021 1548 8739*2^3386813+1 1019537 L5226 2021 1549 2875*2^3386638+1 1019484 L5226 2021 1550 7197*2^3386526+1 1019450 L5178 2021 1551 1605*2^3386229+1 1019360 L5226 2021 1552 8615*2^3386181+1 1019346 L5442 2021 1553 3765*2^3386141+1 1019334 L5174 2021 1554 5379*2^3385806+1 1019233 L5237 2021 1555 59720358^131072+1 1019232 L4656 2019 Generalized Fermat 1556 59692546^131072+1 1019206 L4747 2019 Generalized Fermat 1557 59515830^131072+1 1019037 L4737 2019 Generalized Fermat 1558 173198*5^1457792-1 1018959 L3720 2013 1559 59405420^131072+1 1018931 L4645 2019 Generalized Fermat 1560 2109*2^3384733+1 1018910 L5261 2021 1561 7067*2^3384667+1 1018891 L5439 2021 1562 59362002^131072+1 1018890 L4249 2019 Generalized Fermat 1563 59305348^131072+1 1018835 L4932 2019 Generalized Fermat 1564 2077*2^3384472+1 1018831 L5237 2021 1565 59210784^131072+1 1018745 L4926 2019 Generalized Fermat 1566 59161754^131072+1 1018697 L4928 2019 Generalized Fermat 1567 9165*2^3383917+1 1018665 L5435 2021 1568 5579*2^3383209+1 1018452 L5434 2021 1569 8241*2^3383131+1 1018428 L5387 2021 1570 7409*2^3382869+1 1018349 L5161 2021 1571 4883*2^3382813+1 1018332 L5161 2021 1572 9783*2^3382792+1 1018326 L5189 2021 1573 58589880^131072+1 1018145 L4923 2019 Generalized Fermat 1574 58523466^131072+1 1018080 L4802 2019 Generalized Fermat 1575 8877*2^3381936+1 1018069 L5429 2021 1576 58447816^131072+1 1018006 L4591 2019 Generalized Fermat 1577 58447642^131072+1 1018006 L4591 2019 Generalized Fermat 1578 6675*2^3381688+1 1017994 L5197 2021 1579 2445*2^3381129+1 1017825 L5231 2021 1580 58247118^131072+1 1017811 L4309 2019 Generalized Fermat 1581 3381*2^3380585+1 1017662 L5237 2021 1582 7899*2^3380459+1 1017624 L5421 2021 1583 5945*2^3379933+1 1017465 L5418 2021 1584 1425*2^3379921+1 1017461 L1134 2020 1585 4975*2^3379420+1 1017311 L5161 2021 1586 57704312^131072+1 1017278 L4591 2019 Generalized Fermat 1587 57694224^131072+1 1017268 L4656 2019 Generalized Fermat 1588 57594734^131072+1 1017169 L4656 2019 Generalized Fermat 1589 9065*2^3378851+1 1017140 L5414 2021 1590 2369*2^3378761+1 1017112 L5197 2021 1591 57438404^131072+1 1017015 L4745 2019 Generalized Fermat 1592 621*2^3378148+1 1016927 L3035 2017 1593 7035*2^3378141+1 1016926 L5408 2021 1594 2067*2^3378115+1 1016918 L5405 2021 1595 1093*2^3378000+1 1016883 L4583 2017 1596 9577*2^3377612+1 1016767 L5406 2021 1597 861*2^3377601+1 1016763 L4582 2017 1598 5811*2^3377016+1 1016587 L5261 2021 1599 2285*2^3376911+1 1016555 L5261 2021 1600 4199*2^3376903+1 1016553 L5174 2021 1601 6405*2^3376890+1 1016549 L5269 2021 1602 1783*2^3376810+1 1016525 L5261 2021 1603 5401*2^3376768+1 1016513 L5174 2021 1604 56917336^131072+1 1016496 L4729 2019 Generalized Fermat 1605 2941*2^3376536+1 1016443 L5174 2021 1606 1841*2^3376379+1 1016395 L5401 2021 1607 6731*2^3376133+1 1016322 L5261 2021 1608 56735576^131072+1 1016314 L4760 2019 Generalized Fermat 1609 8121*2^3375933+1 1016262 L5356 2021 1610 5505*2^3375777+1 1016214 L5174 2021 1611 56584816^131072+1 1016162 L4289 2019 Generalized Fermat 1612 3207*2^3375314+1 1016075 L5237 2021 1613 56459558^131072+1 1016036 L4892 2019 Generalized Fermat 1614 5307*2^3374939+1 1015962 L5392 2021 1615 56383242^131072+1 1015959 L4889 2019 Generalized Fermat 1616 56307420^131072+1 1015883 L4843 2019 Generalized Fermat 1617 208003!-1 1015843 p394 2016 Factorial 1618 6219*2^3374198+1 1015739 L5393 2021 1619 3777*2^3374072+1 1015701 L5261 2021 1620 9347*2^3374055+1 1015696 L5387 2021 1621 1461*2^3373383+1 1015493 L5384 2021 1622 6395*2^3373135+1 1015419 L5382 2021 1623 7869*2^3373021+1 1015385 L5381 2021 1624 55645700^131072+1 1015210 L4745 2019 Generalized Fermat 1625 4905*2^3372216+1 1015142 L5261 2021 1626 55579418^131072+1 1015142 L4745 2019 Generalized Fermat 1627 2839*2^3372034+1 1015087 L5174 2021 1628 7347*2^3371803+1 1015018 L5217 2021 1629 9799*2^3371378+1 1014890 L5261 2021 1630 4329*2^3371201+1 1014837 L5197 2021 1631 3657*2^3371183+1 1014831 L5360 2021 1632 55268442^131072+1 1014822 L4525 2019 Generalized Fermat 1633 179*2^3371145+1 1014819 L3763 2014 1634 5155*2^3371016+1 1014781 L5237 2021 1635 7575*2^3371010+1 1014780 L5237 2021 1636 55184170^131072+1 1014736 L4871 2018 Generalized Fermat 1637 9195*2^3370798+1 1014716 L5178 2021 1638 1749*2^3370786+1 1014711 L5362 2021 1639 8421*2^3370599+1 1014656 L5174 2021 1640 55015050^131072+1 1014561 L4205 2018 Generalized Fermat 1641 4357*2^3369572+1 1014346 L5231 2021 1642 6073*2^3369544+1 1014338 L5358 2021 1643 839*2^3369383+1 1014289 L2891 2017 1644 65*2^3369359+1 1014280 L5236 2021 1645 8023*2^3369228+1 1014243 L5356 2021 1646 677*2^3369115+1 1014208 L2103 2017 1647 1437*2^3369083+1 1014199 L5282 2021 1648 9509*2^3368705+1 1014086 L5237 2021 1649 54548788^131072+1 1014076 L4726 2018 Generalized Fermat 1650 4851*2^3368668+1 1014074 L5307 2021 1651 7221*2^3368448+1 1014008 L5353 2021 1652 5549*2^3368437+1 1014005 L5217 2021 1653 715*2^3368210+1 1013936 L4527 2017 1654 617*2^3368119+1 1013908 L4552 2017 1655 54361742^131072+1 1013881 L4210 2018 Generalized Fermat 1656 1847*2^3367999+1 1013872 L5352 2021 1657 54334044^131072+1 1013852 L4745 2018 Generalized Fermat 1658 6497*2^3367743+1 1013796 L5285 2021 1659 2533*2^3367666+1 1013772 L5326 2021 1660 6001*2^3367552+1 1013738 L5350 2021 1661 54212352^131072+1 1013724 L4307 2018 Generalized Fermat 1662 54206254^131072+1 1013718 L4249 2018 Generalized Fermat 1663 777*2^3367372+1 1013683 L4408 2017 1664 9609*2^3367351+1 1013678 L5285 2021 1665 54161106^131072+1 1013670 L4307 2018 Generalized Fermat 1666 2529*2^3367317+1 1013667 L5237 2021 1667 5941*2^3366960+1 1013560 L5189 2021 1668 5845*2^3366956+1 1013559 L5197 2021 1669 54032538^131072+1 1013535 L4591 2018 Generalized Fermat 1670 9853*2^3366608+1 1013454 L5178 2021 1671 61*2^3366033-1 1013279 L4405 2017 1672 7665*2^3365896+1 1013240 L5345 2021 1673 8557*2^3365648+1 1013165 L5346 2021 1674 369*2^3365614+1 1013154 L4364 2016 1675 53659976^131072+1 1013141 L4823 2018 Generalized Fermat 1676 8201*2^3365283+1 1013056 L5345 2021 1677 9885*2^3365151+1 1013016 L5344 2021 1678 5173*2^3365096+1 1012999 L5285 2021 1679 8523*2^3364918+1 1012946 L5237 2021 1680 3985*2^3364776+1 1012903 L5178 2021 1681 9711*2^3364452+1 1012805 L5192 2021 1682 7003*2^3364172+1 1012721 L5217 2021 1683 6703*2^3364088+1 1012696 L5337 2021 1684 7187*2^3364011+1 1012673 L5217 2021 1685 53161266^131072+1 1012610 L4307 2018 Generalized Fermat 1686 53078434^131072+1 1012521 L4835 2018 Generalized Fermat 1687 2345*2^3363157+1 1012415 L5336 2021 1688 6527*2^3363135+1 1012409 L5167 2021 1689 9387*2^3363088+1 1012395 L5161 2021 1690 8989*2^3362986+1 1012364 L5161 2021 1691 533*2^3362857+1 1012324 L3171 2017 1692 619*2^3362814+1 1012311 L4527 2017 1693 2289*2^3362723+1 1012284 L5161 2021 1694 7529*2^3362565+1 1012237 L5161 2021 1695 7377*2^3362366+1 1012177 L5161 2021 1696 4509*2^3362311+1 1012161 L5324 2021 1697 7021*2^3362208+1 1012130 L5178 2021 1698 52712138^131072+1 1012127 L4819 2018 Generalized Fermat 1699 104*873^344135-1 1012108 L4700 2018 1700 4953*2^3362054+1 1012083 L5323 2021 1701 8575*2^3361798+1 1012006 L5237 2021 1702 2139*2^3361706+1 1011978 L5174 2021 1703 6939*2^3361203+1 1011827 L5217 2021 1704 52412612^131072+1 1011802 L4289 2018 Generalized Fermat 1705 3^2120580-3^623816-1 1011774 CH9 2019 1706 8185*2^3360896+1 1011735 L5189 2021 1707 2389*2^3360882+1 1011730 L5317 2021 1708 2787*2^3360631+1 1011655 L5197 2021 1709 6619*2^3360606+1 1011648 L5316 2021 1710 2755*2^3360526+1 1011623 L5174 2021 1711 1445*2^3360099+1 1011494 L5261 2021 1712 8757*2^3359788+1 1011401 L5197 2021 1713 52043532^131072+1 1011400 L4810 2018 Generalized Fermat 1714 5085*2^3359696+1 1011373 L5261 2021 1715 51954384^131072+1 1011303 L4720 2018 Generalized Fermat 1716 6459*2^3359457+1 1011302 L5310 2021 1717 51872628^131072+1 1011213 L4591 2018 Generalized Fermat 1718 6115*2^3358998+1 1011163 L5309 2021 1719 7605*2^3358929+1 1011143 L5308 2021 1720 2315*2^3358899+1 1011133 L5197 2021 1721 6603*2^3358525+1 1011021 L5307 2021 1722 51580416^131072+1 1010891 L4765 2018 Generalized Fermat 1723 51570250^131072+1 1010880 L4591 2018 Generalized Fermat 1724 51567684^131072+1 1010877 L4800 2018 Generalized Fermat 1725 5893*2^3357490+1 1010709 L5285 2021 1726 6947*2^3357075+1 1010585 L5302 2021 1727 4621*2^3357068+1 1010582 L5301 2021 1728 51269192^131072+1 1010547 L4795 2018 Generalized Fermat 1729 1479*2^3356275+1 1010343 L5178 2021 1730 3645*2^3356232+1 1010331 L5296 2021 1731 1259*2^3356215+1 1010325 L5298 2021 1732 2075*2^3356057+1 1010278 L5174 2021 1733 4281*2^3356051+1 1010276 L5295 2021 1734 1275*2^3356045+1 1010274 L5294 2021 1735 50963598^131072+1 1010206 L4726 2018 Generalized Fermat 1736 4365*2^3355770+1 1010192 L5261 2021 1737 50844724^131072+1 1010074 L4656 2018 Generalized Fermat 1738 2183*2^3355297+1 1010049 L5266 2021 1739 3087*2^3355000+1 1009960 L5226 2021 1740 8673*2^3354760+1 1009888 L5233 2021 1741 50495632^131072+1 1009681 L4591 2018 Generalized Fermat 1742 3015*2^3353943+1 1009641 L5290 2021 1743 6819*2^3353877+1 1009622 L5174 2021 1744 9*10^1009567-1 1009568 L3735 2016 Near-repdigit 1745 6393*2^3353366+1 1009468 L5287 2021 1746 3573*2^3353273+1 1009440 L5161 2021 1747 4047*2^3353222+1 1009425 L5286 2021 1748 1473*2^3353114+1 1009392 L5161 2021 1749 1183*2^3353058+1 1009375 L3824 2017 1750 50217306^131072+1 1009367 L4720 2018 Generalized Fermat 1751 81*2^3352924+1 1009333 L1728 2012 Generalized Fermat 1752 50110436^131072+1 1009245 L4591 2018 Generalized Fermat 1753 50055102^131072+1 1009183 L4309 2018 Generalized Fermat 1754 7123*2^3352180+1 1009111 L5161 2021 1755 2757*2^3352180+1 1009111 L5285 2021 1756 9307*2^3352014+1 1009061 L5284 2021 1757 2217*2^3351732+1 1008976 L5283 2021 1758 543*2^3351686+1 1008961 L4198 2017 1759 4419*2^3351666+1 1008956 L5279 2021 1760 49817700^131072+1 1008912 L4760 2018 Generalized Fermat 1761 3059*2^3351379+1 1008870 L5278 2021 1762 7789*2^3351046+1 1008770 L5276 2021 1763 9501*2^3350668+1 1008656 L5272 2021 1764 49530004^131072+1 1008582 L4591 2018 Generalized Fermat 1765 9691*2^3349952+1 1008441 L5242 2021 1766 49397682^131072+1 1008430 L4764 2018 Generalized Fermat 1767 3209*2^3349719+1 1008370 L5269 2021 1768 49331672^131072+1 1008354 L4763 2018 Generalized Fermat 1769 393*2^3349525+1 1008311 L3101 2016 1770 49243622^131072+1 1008252 L4741 2018 Generalized Fermat 1771 5487*2^3349303+1 1008245 L5266 2021 1772 49225986^131072+1 1008232 L4757 2018 Generalized Fermat 1773 2511*2^3349104+1 1008185 L5264 2021 1774 1005*2^3349046-1 1008167 L4518 2021 1775 7659*2^3348894+1 1008122 L5263 2021 1776 9703*2^3348872+1 1008115 L5262 2021 1777 49090656^131072+1 1008075 L4752 2018 Generalized Fermat 1778 7935*2^3348578+1 1008027 L5161 2021 1779 49038514^131072+1 1008015 L4743 2018 Generalized Fermat 1780 7821*2^3348400+1 1007973 L5260 2021 1781 7911*2^3347532+1 1007712 L5250 2021 1782 8295*2^3347031+1 1007561 L5249 2021 1783 48643706^131072+1 1007554 L4691 2018 Generalized Fermat 1784 4029*2^3346729+1 1007470 L5239 2021 1785 9007*2^3346716+1 1007466 L5161 2021 1786 8865*2^3346499+1 1007401 L5238 2021 1787 6171*2^3346480+1 1007395 L5174 2021 1788 6815*2^3346045+1 1007264 L5235 2021 1789 5*326^400785+1 1007261 L4786 2019 1790 5951*2^3345977+1 1007244 L5233 2021 1791 48370248^131072+1 1007234 L4701 2018 Generalized Fermat 1792 1257*2^3345843+1 1007203 L5192 2021 1793 4701*2^3345815+1 1007195 L5192 2021 1794 48273828^131072+1 1007120 L4456 2018 Generalized Fermat 1795 7545*2^3345355+1 1007057 L5231 2021 1796 5559*2^3344826+1 1006897 L5223 2021 1797 6823*2^3344692+1 1006857 L5223 2021 1798 4839*2^3344453+1 1006785 L5188 2021 1799 7527*2^3344332+1 1006749 L5220 2021 1800 7555*2^3344240+1 1006721 L5188 2021 1801 6265*2^3344080+1 1006673 L5197 2021 1802 1299*2^3343943+1 1006631 L5217 2021 1803 2815*2^3343754+1 1006574 L5216 2021 1804 5349*2^3343734+1 1006568 L5174 2021 1805 2863*2^3342920+1 1006323 L5179 2020 1806 7387*2^3342848+1 1006302 L5208 2020 1807 9731*2^3342447+1 1006181 L5203 2020 1808 7725*2^3341708+1 1005959 L5195 2020 1809 7703*2^3341625+1 1005934 L5178 2020 1810 7047*2^3341482+1 1005891 L5194 2020 1811 4839*2^3341309+1 1005838 L5192 2020 1812 47179704^131072+1 1005815 L4673 2017 Generalized Fermat 1813 47090246^131072+1 1005707 L4654 2017 Generalized Fermat 1814 8989*2^3340866+1 1005705 L5189 2020 1815 6631*2^3340808+1 1005688 L5188 2020 1816 1341*2^3340681+1 1005649 L5188 2020 1817 733*2^3340464+1 1005583 L3035 2016 1818 2636*138^469911+1 1005557 L5410 2021 1819 3679815*2^3340001+1 1005448 L4922 2019 1820 57*2^3339932-1 1005422 L3519 2015 1821 46776558^131072+1 1005326 L4659 2017 Generalized Fermat 1822 46736070^131072+1 1005277 L4245 2017 Generalized Fermat 1823 46730280^131072+1 1005270 L4656 2017 Generalized Fermat 1824 3651*2^3339341+1 1005246 L5177 2020 1825 3853*2^3339296+1 1005232 L5178 2020 1826 8015*2^3339267+1 1005224 L5176 2020 1827 3027*2^3339182+1 1005198 L5174 2020 1828 9517*2^3339002+1 1005144 L5172 2020 1829 4003*2^3338588+1 1005019 L3035 2020 1830 6841*2^3338336+1 1004944 L1474 2020 1831 2189*2^3338209+1 1004905 L5031 2020 1832 46413358^131072+1 1004883 L4626 2017 Generalized Fermat 1833 46385310^131072+1 1004848 L4622 2017 Generalized Fermat 1834 46371508^131072+1 1004831 L4620 2017 Generalized Fermat 1835 2957*2^3337667+1 1004742 L5144 2020 1836 1515*2^3337389+1 1004658 L1474 2020 1837 7933*2^3337270+1 1004623 L4666 2020 1838 1251*2^3337116+1 1004576 L4893 2020 1839 651*2^3337101+1 1004571 L3260 2016 1840 46077492^131072+1 1004469 L4595 2017 Generalized Fermat 1841 8397*2^3336654+1 1004437 L5125 2020 1842 8145*2^3336474+1 1004383 L5110 2020 1843 1087*2^3336385-1 1004355 L1828 2012 1844 5325*2^3336120+1 1004276 L2125 2020 1845 849*2^3335669+1 1004140 L3035 2016 1846 8913*2^3335216+1 1004005 L5079 2020 1847 7725*2^3335213+1 1004004 L3035 2020 1848 611*2^3334875+1 1003901 L3813 2016 1849 45570624^131072+1 1003840 L4295 2017 Generalized Fermat 1850 403*2^3334410+1 1003761 L4293 2016 1851 5491*2^3334392+1 1003756 L4815 2020 1852 6035*2^3334341+1 1003741 L2125 2020 1853 1725*2^3334341+1 1003740 L2125 2020 1854 4001*2^3334031+1 1003647 L1203 2020 1855 2315*2^3333969+1 1003629 L2125 2020 1856 6219*2^3333810+1 1003581 L4582 2020 1857 8063*2^3333721+1 1003554 L1823 2020 1858 9051*2^3333677+1 1003541 L3924 2020 1859 45315256^131072+1 1003520 L4562 2017 Generalized Fermat 1860 4091*2^3333153+1 1003383 L1474 2020 1861 9949*2^3332750+1 1003262 L5090 2020 1862 3509*2^3332649+1 1003231 L5085 2020 1863 3781*2^3332436+1 1003167 L1823 2020 1864 4425*2^3332394+1 1003155 L3431 2020 1865 6459*2^3332086+1 1003062 L2629 2020 1866 44919410^131072+1 1003020 L4295 2017 Generalized Fermat 1867 5257*2^3331758+1 1002963 L1188 2020 1868 2939*2^3331393+1 1002853 L1823 2020 1869 6959*2^3331365+1 1002845 L1675 2020 1870 8815*2^3330748+1 1002660 L3329 2020 1871 4303*2^3330652+1 1002630 L4730 2020 1872 8595*2^3330649+1 1002630 L4723 2020 1873 673*2^3330436+1 1002564 L3035 2016 1874 8163*2^3330042+1 1002447 L3278 2020 1875 44438760^131072+1 1002408 L4505 2016 Generalized Fermat 1876 193*2^3329782+1 1002367 L3460 2014 Divides Fermat F(3329780) 1877 44330870^131072+1 1002270 L4501 2016 Generalized Fermat 1878 2829*2^3329061+1 1002151 L4343 2020 1879 5775*2^3329034+1 1002143 L1188 2020 1880 7101*2^3328905+1 1002105 L4568 2020 1881 7667*2^3328807+1 1002075 L4087 2020 1882 129*2^3328805+1 1002073 L3859 2014 1883 7261*2^3328740+1 1002055 L2914 2020 1884 4395*2^3328588+1 1002009 L3924 2020 1885 44085096^131072+1 1001953 L4482 2016 Generalized Fermat 1886 143183*2^3328297+1 1001923 L4504 2017 1887 44049878^131072+1 1001908 L4466 2016 Generalized Fermat 1888 9681*2^3327987+1 1001828 L1204 2020 1889 2945*2^3327987+1 1001828 L2158 2020 1890 5085*2^3327789+1 1001769 L1823 2020 1891 8319*2^3327650+1 1001727 L1204 2020 1892 4581*2^3327644+1 1001725 L2142 2020 1893 655*2^3327518+1 1001686 L4490 2016 1894 8863*2^3327406+1 1001653 L1675 2020 1895 659*2^3327371+1 1001642 L3502 2016 1896 3411*2^3327343+1 1001634 L1675 2020 1897 4987*2^3327294+1 1001619 L3924 2020 1898 821*2^3327003+1 1001531 L3035 2016 1899 2435*2^3326969+1 1001521 L3035 2020 1900 1931*2^3326850-1 1001485 L4113 2022 1901 2277*2^3326794+1 1001469 L5014 2020 1902 6779*2^3326639+1 1001422 L3924 2020 1903 6195*2^3325993+1 1001228 L1474 2019 1904 555*2^3325925+1 1001206 L4414 2016 1905 9041*2^3325643+1 1001123 L3924 2019 1906 1965*2^3325639-1 1001121 L4113 2022 1907 1993*2^3325302+1 1001019 L3662 2019 1908 6179*2^3325027+1 1000937 L3048 2019 1909 4485*2^3324900+1 1000899 L1355 2019 1910 3559*2^3324650+1 1000823 L3035 2019 1911 43165206^131072+1 1000753 L4309 2016 Generalized Fermat 1912 43163894^131072+1 1000751 L4334 2016 Generalized Fermat 1913 6927*2^3324387+1 1000745 L3091 2019 1914 9575*2^3324287+1 1000715 L3824 2019 1915 1797*2^3324259+1 1000705 L3895 2019 1916 4483*2^3324048+1 1000642 L3035 2019 1917 791*2^3323995+1 1000626 L3035 2016 1918 6987*2^3323926+1 1000606 L4973 2019 1919 3937*2^3323886+1 1000593 L3035 2019 1920 2121*2^3323852+1 1000583 L1823 2019 1921 1571*2^3323493+1 1000475 L3035 2019 1922 2319*2^3323402+1 1000448 L4699 2019 1923 2829*2^3323341+1 1000429 L4754 2019 1924 4335*2^3323323+1 1000424 L1823 2019 1925 8485*2^3322938+1 1000308 L4858 2019 1926 6505*2^3322916+1 1000302 L4858 2019 1927 597*2^3322871+1 1000287 L3035 2016 1928 9485*2^3322811+1 1000270 L2603 2019 1929 8619*2^3322774+1 1000259 L3035 2019 1930 387*2^3322763+1 1000254 L1455 2016 1931 1965*2^3322579-1 1000200 L4113 2022 1932 42654182^131072+1 1000075 L4208 2015 Generalized Fermat 1933 6366*745^348190-1 1000060 L4189 2022 1934 5553507*2^3322000+1 1000029 p391 2016 1935 5029159647*2^3321910-1 1000005 L4960 2021 1936 5009522505*2^3321910-1 1000005 L4960 2021 1937 4766298357*2^3321910-1 1000005 L4960 2021 1938 4759383915*2^3321910-1 1000005 L4960 2021 1939 4635733263*2^3321910-1 1000005 L4960 2021 1940 4603393047*2^3321910-1 1000005 L4960 2021 1941 4550053935*2^3321910-1 1000005 L4960 2021 1942 4288198767*2^3321910-1 1000005 L4960 2021 1943 4229494557*2^3321910-1 1000005 L4960 2021 1944 4110178197*2^3321910-1 1000005 L4960 2021 1945 4022490843*2^3321910-1 1000005 L4960 2021 1946 3936623697*2^3321910-1 1000005 L4960 2021 1947 3751145343*2^3321910-1 1000005 L4960 2021 1948 3715773735*2^3321910-1 1000005 L4960 2021 1949 3698976057*2^3321910-1 1000005 L4960 2021 1950 3659465685*2^3321910-1 1000005 L4960 2020 1951 3652932033*2^3321910-1 1000005 L4960 2020 1952 3603204333*2^3321910-1 1000005 L4960 2020 1953 3543733545*2^3321910-1 1000005 L4960 2020 1954 3191900133*2^3321910-1 1000005 L4960 2020 1955 3174957723*2^3321910-1 1000005 L4960 2020 1956 2973510903*2^3321910-1 1000005 L4960 2019 1957 2848144257*2^3321910-1 1000005 L4960 2019 1958 2820058827*2^3321910-1 1000005 L4960 2019 1959 2611553775*2^3321910-1 1000004 L4960 2020 1960 2601087525*2^3321910-1 1000004 L4960 2019 1961 2386538565*2^3321910-1 1000004 L4960 2019 1962 2272291887*2^3321910-1 1000004 L4960 2019 1963 2167709265*2^3321910-1 1000004 L4960 2019 1964 2087077797*2^3321910-1 1000004 L4960 2019 1965 1848133623*2^3321910-1 1000004 L4960 2019 1966 1825072257*2^3321910-1 1000004 L4960 2019 1967 1633473837*2^3321910-1 1000004 L4960 2019 1968 1228267623*2^3321910-1 1000004 L4808 2019 1969 1148781333*2^3321910-1 1000004 L4808 2019 1970 1065440787*2^3321910-1 1000004 L4808 2019 1971 1055109357*2^3321910-1 1000004 L4960 2019 1972 992309607*2^3321910-1 1000004 L4808 2019 1973 926102325*2^3321910-1 1000004 L4808 2019 1974 892610007*2^3321910-1 1000004 L4960 2019 1975 763076757*2^3321910-1 1000004 L4960 2019 1976 607766997*2^3321910-1 1000004 L4808 2019 1977 539679177*2^3321910-1 1000004 L4808 2019 1978 425521077*2^3321910-1 1000004 L4808 2019 1979 132940575*2^3321910-1 1000003 L4808 2019 1980 239378138685*2^3321891+1 1000001 L5104 2020 1981 464253*2^3321908-1 1000000 L466 2013 1982 3^2095902+3^647322-1 1000000 x44 2018 1983 191273*2^3321908-1 1000000 L466 2013 1984 1814570322984178^65536+1 1000000 L5080 2020 Generalized Fermat 1985 1814570322977518^65536+1 1000000 L5080 2020 Generalized Fermat 1986a 3292665455999520712131952624640^32768+1 1000000 L5749 2023 Generalized Fermat 1987 3292665455999520712131951642528^32768+1 1000000 L5120 2020 Generalized Fermat 1988 3292665455999520712131951625894^32768+1 1000000 L5122 2020 Generalized Fermat 1989 10841645805132531666786792405311319418846637043199917731311876^16384+1 1000000 L5207 2020 Generalized Fermat 1990 10841645805132531666786792405311319418846637043199917731150000^16384+1 1000000 L5122 2020 Generalized Fermat 1991 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729375350^8192+1 1000000 p417 2021 Generalized Fermat 1992 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729240092^8192+1 1000000 p419 2021 Generalized Fermat 1993 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729154678^8192+1 1000000 p418 2021 Generalized Fermat 1994 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729122666^8192+1 1000000 p417 2021 Generalized Fermat 1995 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729023786^8192+1 1000000 p416 2021 Generalized Fermat 1996 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097875144^4096+1 1000000 p421 2021 Generalized Fermat 1997 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097840702^4096+1 1000000 p417 2021 Generalized Fermat 1998 ((sqrtnint(10^999999,2048)+2)+364176)^2048+1 1000000 p417 2022 Generalized Fermat 1999 10^999999+308267*10^292000+1 1000000 CH10 2021 2000 10^999999-1022306*10^287000-1 999999 CH13 2021 2001 10^999999-1087604*10^287000-1 999999 CH13 2021 2002 531631540026641*6^1285077+1 999999 L3494 2021 2003 3139*2^3321905-1 999997 L185 2008 2004 42550702^131072+1 999937 L4309 2022 Generalized Fermat 2005 42414020^131072+1 999753 L5030 2022 Generalized Fermat 2006 4847*2^3321063+1 999744 SB9 2005 2007 42254832^131072+1 999539 L5375 2022 Generalized Fermat 2008 42243204^131072+1 999524 L4898 2022 Generalized Fermat 2009 42230406^131072+1 999506 L5453 2022 Generalized Fermat 2010 42168978^131072+1 999424 L5462 2022 Generalized Fermat 2011 439*2^3318318+1 998916 L5573 2022 2012 41688706^131072+1 998772 L5270 2022 Generalized Fermat 2013 41364744^131072+1 998327 L5453 2022 Generalized Fermat 2014 41237116^131072+1 998152 L5459 2022 Generalized Fermat 2015 41102236^131072+1 997965 L4245 2022 Generalized Fermat 2016 41007562^131072+1 997834 L4210 2022 Generalized Fermat 2017 41001148^131072+1 997825 L4210 2022 Generalized Fermat 2018 975*2^3312951+1 997301 L5231 2022 2019 40550398^131072+1 997196 L4245 2022 Generalized Fermat 2020b 11796*46^599707+1 997172 L5670 2023 2021 40463598^131072+1 997074 L4591 2022 Generalized Fermat 2022 689*2^3311423+1 996841 L5226 2022 2023 40151896^131072+1 996633 L4245 2022 Generalized Fermat 2024 593*2^3309333+1 996212 L5572 2022 2025 383*2^3309321+1 996208 L5570 2022 2026 49*2^3309087-1 996137 L1959 2013 2027 39746366^131072+1 996056 L4201 2022 Generalized Fermat 2028 139413*6^1279992+1 996033 L4001 2015 2029 51*2^3308171+1 995861 L2840 2015 2030 719*2^3308127+1 995849 L5192 2022 2031 39597790^131072+1 995842 L4737 2022 Generalized Fermat 2032 39502358^131072+1 995705 L5453 2022 Generalized Fermat 2033 39324372^131072+1 995448 L5202 2022 Generalized Fermat 2034 245114*5^1424104-1 995412 L3686 2013 2035 39100746^131072+1 995123 L5441 2022 Generalized Fermat 2036 38824296^131072+1 994719 L4245 2022 Generalized Fermat 2037 38734748^131072+1 994588 L4249 2021 Generalized Fermat 2038 175124*5^1422646-1 994393 L3686 2013 2039 453*2^3303073+1 994327 L5568 2022 2040 38310998^131072+1 993962 L4737 2021 Generalized Fermat 2041 531*2^3301693+1 993912 L5226 2022 2042 38196496^131072+1 993791 L4861 2021 Generalized Fermat 2043 38152876^131072+1 993726 L4245 2021 Generalized Fermat 2044 195*2^3301018+1 993708 L5569 2022 2045 341*2^3300789+1 993640 L5192 2022 2046 37909914^131072+1 993363 L4249 2021 Generalized Fermat 2047 849*2^3296427+1 992327 L5571 2022 2048 1611*22^738988+1 992038 L4139 2015 2049 36531196^131072+1 991254 L4249 2021 Generalized Fermat 2050 2017*2^3292325-1 991092 L3345 2017 2051 36422846^131072+1 991085 L4245 2021 Generalized Fermat 2052 36416848^131072+1 991076 L5202 2021 Generalized Fermat 2053 885*2^3290927+1 990671 L5161 2022 2054 36038176^131072+1 990481 L4245 2021 Generalized Fermat 2055 35997532^131072+1 990416 L4245 2021 Generalized Fermat 2056 35957420^131072+1 990353 L4245 2021 Generalized Fermat 2057 Phi(3,-107970^98304) 989588 L4506 2016 Generalized unique 2058 35391288^131072+1 989449 L5070 2021 Generalized Fermat 2059 35372304^131072+1 989419 L5443 2021 Generalized Fermat 2060 219*2^3286614+1 989372 L5567 2022 2061 61*2^3286535-1 989348 L4405 2016 2062 35327718^131072+1 989347 L4591 2021 Generalized Fermat 2063 35282096^131072+1 989274 L4245 2021 Generalized Fermat 2064 35141602^131072+1 989046 L4729 2021 Generalized Fermat 2065 35139782^131072+1 989043 L4245 2021 Generalized Fermat 2066 35047222^131072+1 988893 L4249 2021 Generalized Fermat 2067 531*2^3284944+1 988870 L5536 2022 2068 34957136^131072+1 988747 L5321 2021 Generalized Fermat 2069 301*2^3284232+1 988655 L5564 2022 2070 34871942^131072+1 988608 L4245 2021 Generalized Fermat 2071 34763644^131072+1 988431 L4737 2021 Generalized Fermat 2072 34585314^131072+1 988138 L4201 2021 Generalized Fermat 2073 311*2^3282455+1 988120 L5568 2022 2074 34530386^131072+1 988048 L5070 2021 Generalized Fermat 2075 833*2^3282181+1 988038 L5564 2022 2076 561*2^3281889+1 987950 L5477 2022 2077 34087952^131072+1 987314 L4764 2021 Generalized Fermat 2078 87*2^3279368+1 987191 L3458 2015 2079 965*2^3279151+1 987126 L5564 2022 2080 33732746^131072+1 986717 L4359 2021 Generalized Fermat 2081 33474284^131072+1 986279 L5051 2021 Generalized Fermat 2082 33395198^131072+1 986145 L4658 2021 Generalized Fermat 2083 427*2^3275606+1 986059 L5566 2022 2084 33191418^131072+1 985796 L4201 2021 Generalized Fermat 2085 337*2^3274106+1 985607 L5564 2022 2086 357*2^3273543+1 985438 L5237 2022 Divides GF(3273542,10) 2087 1045*2^3273488+1 985422 L5192 2022 2088 32869172^131072+1 985241 L4285 2021 Generalized Fermat 2089 32792696^131072+1 985108 L5198 2021 Generalized Fermat 2090 1047*2^3272351+1 985079 L5563 2022 2091 32704348^131072+1 984955 L5312 2021 Generalized Fermat 2092 32608738^131072+1 984788 L5395 2021 Generalized Fermat 2093 933*2^3270993+1 984670 L5562 2022 2094 311*2^3270759+1 984600 L5560 2022 2095 32430486^131072+1 984476 L4245 2021 Generalized Fermat 2096 32417420^131072+1 984453 L4245 2021 Generalized Fermat 2097 65*2^3270127+1 984409 L3924 2015 2098 32348894^131072+1 984333 L4245 2021 Generalized Fermat 2099 579*2^3269850+1 984326 L5226 2022 2100 32286660^131072+1 984223 L5400 2021 Generalized Fermat 2101 32200644^131072+1 984071 L4387 2021 Generalized Fermat 2102 32137342^131072+1 983959 L4559 2021 Generalized Fermat 2103 32096608^131072+1 983887 L4559 2021 Generalized Fermat 2104 32055422^131072+1 983814 L4559 2021 Generalized Fermat 2105 31821360^131072+1 983397 L4861 2021 Generalized Fermat 2106 31768014^131072+1 983301 L4252 2021 Generalized Fermat 2107 335*2^3266237+1 983238 L5559 2022 2108 1031*2^3265915+1 983142 L5364 2022 2109 31469984^131072+1 982765 L5078 2021 Generalized Fermat 2110 5*2^3264650-1 982759 L384 2013 2111 223*2^3264459-1 982703 L1884 2012 2112 1101*2^3264400+1 982686 L5231 2022 2113 483*2^3264181+1 982620 L5174 2022 2114 525*2^3263227+1 982332 L5231 2022 2115 31145080^131072+1 982174 L4201 2021 Generalized Fermat 2116c 622*48^584089+1 981998 L5629 2023 2117 31044982^131072+1 981991 L5041 2021 Generalized Fermat 2118 683*2^3262037+1 981974 L5192 2022 2119 923*2^3261401+1 981783 L5477 2022 2120 30844300^131072+1 981622 L5102 2021 Generalized Fermat 2121 30819256^131072+1 981575 L4201 2021 Generalized Fermat 2122 9*2^3259381-1 981173 L1828 2011 2123 1059*2^3258751+1 980985 L5231 2022 2124 6*5^1403337+1 980892 L4965 2020 2125 30318724^131072+1 980643 L4309 2021 Generalized Fermat 2126 30315072^131072+1 980636 L5375 2021 Generalized Fermat 2127 30300414^131072+1 980609 L4755 2021 Generalized Fermat 2128 30225714^131072+1 980468 L4201 2021 Generalized Fermat 2129 875*2^3256589+1 980334 L5550 2022 2130 30059800^131072+1 980155 L4928 2021 Generalized Fermat 2131 30022816^131072+1 980085 L5273 2021 Generalized Fermat 2132 29959190^131072+1 979964 L4905 2021 Generalized Fermat 2133 29607314^131072+1 979292 L5378 2021 Generalized Fermat 2134 779*2^3253063+1 979273 L5192 2022 2135 29505368^131072+1 979095 L5378 2021 Generalized Fermat 2136 163*2^3250978+1 978645 L5161 2022 Divides GF(3250977,6) 2137 29169314^131072+1 978443 L5380 2021 Generalized Fermat 2138 417*2^3248255+1 977825 L5178 2022 2139 28497098^131072+1 977116 L4308 2021 Generalized Fermat 2140 28398204^131072+1 976918 L5379 2021 Generalized Fermat 2141 28294666^131072+1 976710 L5375 2021 Generalized Fermat 2142 28175634^131072+1 976470 L5378 2021 Generalized Fermat 2143 33*2^3242126-1 975979 L3345 2014 2144 27822108^131072+1 975752 L4760 2021 Generalized Fermat 2145 39*2^3240990+1 975637 L3432 2014 2146 27758510^131072+1 975621 L4289 2021 Generalized Fermat 2147 27557876^131072+1 975208 L4245 2021 Generalized Fermat 2148 27544748^131072+1 975181 L4387 2021 Generalized Fermat 2149 27408050^131072+1 974898 L4210 2021 Generalized Fermat 2150 225*2^3236967+1 974427 L5529 2022 2151 27022768^131072+1 974092 L4309 2021 Generalized Fermat 2152 26896670^131072+1 973826 L5376 2021 Generalized Fermat 2153 1075*2^3234606+1 973717 L5192 2022 2154 26757382^131072+1 973530 L5375 2021 Generalized Fermat 2155 26599558^131072+1 973194 L4245 2021 Generalized Fermat 2156 6*5^1392287+1 973168 L4965 2020 2157 26500832^131072+1 972982 L4956 2021 Generalized Fermat 2158 325*2^3231474+1 972774 L5536 2022 2159 933*2^3231438+1 972763 L5197 2022 2160 123*2^3230548+1 972494 L5178 2022 Divides GF(3230546,12) 2161 26172278^131072+1 972272 L4245 2021 Generalized Fermat 2162 697*2^3229518+1 972185 L5534 2022 2163 22598*745^338354-1 971810 L4189 2022 2164 385*2^3226814+1 971371 L5178 2022 2165 211195*2^3224974+1 970820 L2121 2013 2166 1173*2^3223546+1 970388 L5178 2022 2167 7*6^1246814+1 970211 L4965 2019 2168 25128150^131072+1 969954 L4738 2021 Generalized Fermat 2169 25124378^131072+1 969946 L5102 2021 Generalized Fermat 2170 1089*2^3221691+1 969829 L5178 2022 2171 35*832^332073-1 969696 L4001 2019 2172 600921*2^3219922-1 969299 g337 2018 2173 939*2^3219319+1 969115 L5178 2022 2174 24734116^131072+1 969055 L5070 2021 Generalized Fermat 2175 24644826^131072+1 968849 L5070 2021 Generalized Fermat 2176 24642712^131072+1 968844 L5070 2021 Generalized Fermat 2177 24641166^131072+1 968840 L5070 2021 Generalized Fermat 2178 129*2^3218214+1 968782 L5529 2022 2179 24522386^131072+1 968565 L5070 2021 Generalized Fermat 2180 24486806^131072+1 968483 L4737 2021 Generalized Fermat 2181 811*2^3216944+1 968400 L5233 2022 2182 24297936^131072+1 968042 L4201 2021 Generalized Fermat 2183 1023*2^3214745+1 967738 L5178 2022 2184 187*2^3212152+1 966957 L5178 2022 2185 301*2^3211281-1 966695 L5545 2022 2186 6*409^369832+1 965900 L4001 2015 2187 23363426^131072+1 965809 L5033 2021 Generalized Fermat 2188 1165*2^3207702+1 965618 L5178 2022 2189 94373*2^3206717+1 965323 L2785 2013 2190 2751*2^3206569-1 965277 L4036 2015 2191 761*2^3206341+1 965208 L5178 2022 2192 23045178^131072+1 965029 L5023 2021 Generalized Fermat 2193 23011666^131072+1 964946 L5273 2021 Generalized Fermat 2194 911*2^3205225+1 964872 L5364 2022 2195 22980158^131072+1 964868 L4201 2021 Generalized Fermat 2196 22901508^131072+1 964673 L4743 2021 Generalized Fermat 2197 22808110^131072+1 964440 L5248 2021 Generalized Fermat 2198 22718284^131072+1 964215 L5254 2021 Generalized Fermat 2199 22705306^131072+1 964183 L5248 2021 Generalized Fermat 2200 113983*2^3201175-1 963655 L613 2008 2201 34*888^326732-1 963343 L4001 2017 2202 899*2^3198219+1 962763 L5503 2022 2203 22007146^131072+1 962405 L4245 2020 Generalized Fermat 2204 4*3^2016951+1 962331 L4965 2020 2205 21917442^131072+1 962173 L4622 2020 Generalized Fermat 2206 987*2^3195883+1 962060 L5282 2022 2207 21869554^131072+1 962048 L5061 2020 Generalized Fermat 2208 21757066^131072+1 961754 L4773 2020 Generalized Fermat 2209 21582550^131072+1 961296 L5068 2020 Generalized Fermat 2210 21517658^131072+1 961125 L5126 2020 Generalized Fermat 2211 20968936^131072+1 959654 L4245 2020 Generalized Fermat 2212 671*2^3185411+1 958908 L5315 2022 2213 20674450^131072+1 958849 L4245 2020 Generalized Fermat 2214 1027*2^3184540+1 958646 L5174 2022 2215 789*2^3183463+1 958321 L5482 2022 2216 855*2^3183158+1 958229 L5161 2022 2217 20234282^131072+1 957624 L4942 2020 Generalized Fermat 2218 20227142^131072+1 957604 L4677 2020 Generalized Fermat 2219 625*2^3180780+1 957513 L5178 2022 Generalized Fermat 2220 20185276^131072+1 957486 L4201 2020 Generalized Fermat 2221 935*2^3180599+1 957459 L5477 2022 2222 573*2^3179293+1 957066 L5226 2022 2223 33*2^3176269+1 956154 L3432 2013 2224 81*2^3174353-1 955578 L3887 2022 2225 19464034^131072+1 955415 L4956 2020 Generalized Fermat 2226 600921*2^3173683-1 955380 g337 2018 2227 587*2^3173567+1 955342 L5301 2022 2228 19216648^131072+1 954687 L5024 2020 Generalized Fermat 2229 1414*95^482691-1 954633 L4877 2019 2230 305*2^3171039+1 954581 L5301 2022 2231 755*2^3170701+1 954479 L5302 2022 2232 775*2^3170580+1 954443 L5449 2022 2233 78*236^402022-1 953965 L5410 2020 2234 18968126^131072+1 953946 L5011 2020 Generalized Fermat 2235 18813106^131072+1 953479 L4201 2020 Generalized Fermat 2236 18608780^131072+1 952857 L4488 2020 Generalized Fermat 2237 1087*2^3164677-1 952666 L1828 2012 2238 18509226^131072+1 952552 L4884 2020 Generalized Fermat 2239 18501600^131072+1 952528 L4875 2020 Generalized Fermat 2240 459*2^3163175+1 952214 L5178 2022 2241 15*2^3162659+1 952057 p286 2012 2242 18309468^131072+1 951934 L4928 2020 Generalized Fermat 2243 18298534^131072+1 951900 L4201 2020 Generalized Fermat 2244 849*2^3161727+1 951778 L5178 2022 2245 67*2^3161450+1 951694 L3223 2015 2246 119*2^3161195+1 951617 L5320 2022 2247 1759*2^3160863-1 951518 L4965 2021 2248 58*117^460033+1 951436 L5410 2020 2249 417*2^3160443+1 951391 L5302 2022 2250 9231*70^515544+1 951234 L5410 2021 2251 671*2^3159523+1 951115 L5188 2022 2252 17958952^131072+1 950834 L4201 2020 Generalized Fermat 2253 17814792^131072+1 950375 L4752 2020 Generalized Fermat 2254 17643330^131072+1 949824 L4201 2020 Generalized Fermat 2255 19*2^3155009-1 949754 L1828 2012 2256 281*2^3151457+1 948686 L5316 2022 2257 179*2^3150265+1 948327 L5302 2022 2258 17141888^131072+1 948183 L4963 2019 Generalized Fermat 2259 17138628^131072+1 948172 L4963 2019 Generalized Fermat 2260 17119936^131072+1 948110 L4963 2019 Generalized Fermat 2261 17052490^131072+1 947885 L4715 2019 Generalized Fermat 2262 17025822^131072+1 947796 L4870 2019 Generalized Fermat 2263 16985784^131072+1 947662 L4295 2019 Generalized Fermat 2264 865*2^3147482+1 947490 L5178 2021 2265 963*2^3145753+1 946969 L5451 2021 2266 16741226^131072+1 946837 L4201 2019 Generalized Fermat 2267 387*2^3144483+1 946587 L5450 2021 2268 1035*2^3144236+1 946513 L5449 2021 2269 1065*2^3143667+1 946342 L4944 2021 2270 193*2^3142150+1 945884 L5178 2021 2271 915*2^3141942+1 945822 L5448 2021 2272 939*2^3141397+1 945658 L5320 2021 2273 1063*2^3141350+1 945644 L5178 2021 2274 16329572^131072+1 945420 L4201 2019 Generalized Fermat 2275 69*2^3140225-1 945304 L3764 2014 2276 3*2^3136255-1 944108 L256 2007 2277 417*2^3136187+1 944089 L5178 2021 2278 15731520^131072+1 943296 L4245 2019 Generalized Fermat 2279 Phi(3,-62721^98304) 943210 L4506 2016 Generalized unique 2280 15667716^131072+1 943064 L4387 2019 Generalized Fermat 2281 15567144^131072+1 942698 L4918 2019 Generalized Fermat 2282 299*2^3130621+1 942414 L5178 2021 2283 15342502^131072+1 941870 L4245 2019 Generalized Fermat 2284 15237960^131072+1 941481 L4898 2019 Generalized Fermat 2285 571*2^3127388+1 941441 L5440 2021 2286 15147290^131072+1 941141 L4861 2019 Generalized Fermat 2287 197*2^3126343+1 941126 L5178 2021 2288 15091270^131072+1 940930 L4760 2019 Generalized Fermat 2289 1097*2^3124455+1 940558 L5178 2021 2290 3125*2^3124079+1 940445 L1160 2019 2291 495*2^3123624+1 940308 L5438 2021 2292 14790404^131072+1 939784 L4871 2019 Generalized Fermat 2293 1041*2^3120649+1 939412 L5437 2021 2294 14613898^131072+1 939101 L4926 2019 Generalized Fermat 2295 3317*2^3117162-1 938363 L5399 2021 2296 763*2^3115684+1 937918 L4944 2021 2297 581*2^3114611+1 937595 L5178 2021 2298 14217182^131072+1 937534 L4387 2019 Generalized Fermat 2299 134*864^319246-1 937473 L5410 2020 2300 700057*2^3113753-1 937339 L5410 2022 2301 1197*2^3111838+1 936760 L5178 2021 2302 14020004^131072+1 936739 L4249 2019 Generalized Fermat 2303 27777*2^3111027+1 936517 L2777 2014 Generalized Cullen 2304 755*2^3110759+1 936435 L5320 2021 2305 13800346^131072+1 935840 L4880 2019 Generalized Fermat 2306 13613070^131072+1 935062 L4245 2019 Generalized Fermat 2307 628*80^491322+1 935033 L5410 2021 2308 761*2^3105087+1 934728 L5197 2021 2309 13433028^131072+1 934305 L4868 2018 Generalized Fermat 2310 1019*2^3103680-1 934304 L1828 2012 2311 579*2^3102639+1 933991 L5315 2021 2312 99*2^3102401-1 933918 L1862 2017 2313 256612*5^1335485-1 933470 L1056 2013 2314 13083418^131072+1 932803 L4747 2018 Generalized Fermat 2315 69*2^3097340-1 932395 L3764 2014 2316 153*2^3097277+1 932376 L4944 2021 2317 12978952^131072+1 932347 L4849 2018 Generalized Fermat 2318 12961862^131072+1 932272 L4245 2018 Generalized Fermat 2319 207*2^3095391+1 931808 L5178 2021 2320 12851074^131072+1 931783 L4670 2018 Generalized Fermat 2321 45*2^3094632-1 931579 L1862 2018 2322 259*2^3094582+1 931565 L5214 2021 2323 553*2^3094072+1 931412 L4944 2021 2324 57*2^3093440-1 931220 L2484 2020 2325 12687374^131072+1 931054 L4289 2018 Generalized Fermat 2326 513*2^3092705+1 931000 L4329 2016 2327 12661786^131072+1 930939 L4819 2018 Generalized Fermat 2328 933*2^3091825+1 930736 L5178 2021 2329 38*875^316292-1 930536 L4001 2019 2330 5*2^3090860-1 930443 L1862 2012 2331 12512992^131072+1 930266 L4814 2018 Generalized Fermat 2332 4*5^1330541-1 930009 L4965 2022 2333 12357518^131072+1 929554 L4295 2018 Generalized Fermat 2334 12343130^131072+1 929488 L4720 2018 Generalized Fermat 2335 297*2^3087543+1 929446 L5326 2021 2336 1149*2^3087514+1 929438 L5407 2021 2337 745*2^3087428+1 929412 L5178 2021 2338 373*520^342177+1 929357 L3610 2014 2339 19401*2^3086450-1 929119 L541 2015 2340 75*2^3086355+1 929088 L3760 2015 2341 65*2^3080952-1 927461 L2484 2020 2342 11876066^131072+1 927292 L4737 2018 Generalized Fermat 2343 1139*2^3079783+1 927111 L5174 2021 2344 271*2^3079189-1 926931 L2484 2018 2345 766*33^610412+1 926923 L4001 2016 2346 11778792^131072+1 926824 L4672 2018 Generalized Fermat 2347 555*2^3078792+1 926812 L5226 2021 2348 31*332^367560+1 926672 L4294 2018 2349 167*2^3077568-1 926443 L1862 2020 2350 10001*2^3075602-1 925853 L4405 2019 2351 116*107^455562-1 924513 L4064 2021 2352 11292782^131072+1 924425 L4672 2018 Generalized Fermat 2353 14844*430^350980-1 924299 L4001 2016 2354 11267296^131072+1 924297 L4654 2017 Generalized Fermat 2355 4*3^1936890+1 924132 L4965 2020 Generalized Fermat 2356 1105*2^3069884+1 924131 L5314 2021 2357 319*2^3069362+1 923973 L5377 2021 2358 11195602^131072+1 923933 L4706 2017 Generalized Fermat 2359 973*2^3069092+1 923892 L5214 2021 2360 765*2^3068511+1 923717 L5174 2021 2361 60849*2^3067914+1 923539 L591 2014 2362 674*249^385359+1 923400 L5410 2019 2363 499*2^3066970+1 923253 L5373 2021 2364 553*2^3066838+1 923213 L5368 2021 2365 629*2^3066827+1 923210 L5226 2021 2366 11036888^131072+1 923120 L4660 2017 Generalized Fermat 2367 261*2^3066009+1 922964 L5197 2021 2368 10994460^131072+1 922901 L4704 2017 Generalized Fermat 2369 21*2^3065701+1 922870 p286 2012 2370 10962066^131072+1 922733 L4702 2017 Generalized Fermat 2371 10921162^131072+1 922520 L4559 2017 Generalized Fermat 2372 875*2^3063847+1 922313 L5364 2021 2373 43*2^3063674+1 922260 L3432 2013 2374 677*2^3063403+1 922180 L5346 2021 2375 8460*241^387047-1 921957 L5410 2019 2376 10765720^131072+1 921704 L4695 2017 Generalized Fermat 2377 111*2^3060238-1 921226 L2484 2020 2378 1165*2^3060228+1 921224 L5360 2021 2379 5*2^3059698-1 921062 L503 2008 2380 10453790^131072+1 920031 L4694 2017 Generalized Fermat 2381 453*2^3056181+1 920005 L5320 2021 2382 791*2^3055695+1 919859 L5177 2021 2383 10368632^131072+1 919565 L4692 2017 Generalized Fermat 2384 582971*2^3053414-1 919175 L5410 2022 2385 123*2^3049038+1 917854 L4119 2015 2386 10037266^131072+1 917716 L4691 2017 Generalized Fermat 2387 400*95^463883-1 917435 L4001 2019 2388 9907326^131072+1 916975 L4690 2017 Generalized Fermat 2389 454*383^354814+1 916558 L2012 2020 2390 9785844^131072+1 916272 L4326 2017 Generalized Fermat 2391 435*2^3041954+1 915723 L5320 2021 2392 639*2^3040438+1 915266 L5320 2021 2393 1045*2^3037988+1 914529 L5178 2021 2394 291*2^3037904+1 914503 L3545 2015 2395 311*2^3037565+1 914401 L5178 2021 2396 373*2^3036746+1 914155 L5178 2021 2397 9419976^131072+1 914103 L4591 2017 Generalized Fermat 2398 801*2^3036045+1 913944 L5348 2021 2399 915*2^3033775+1 913261 L5178 2021 2400 38804*3^1913975+1 913203 L5410 2021 2401 9240606^131072+1 913009 L4591 2017 Generalized Fermat 2402 869*2^3030655+1 912322 L5260 2021 2403 643*2^3030650+1 912320 L5320 2021 2404 99*2^3029959-1 912111 L1862 2020 2405 417*2^3029342+1 911926 L5178 2021 2406 345*2^3027769+1 911452 L5343 2021 2407 26*3^1910099+1 911351 L4799 2020 2408 355*2^3027372+1 911333 L5174 2021 2409 99*2^3026660-1 911118 L1862 2020 2410 417*2^3026492+1 911068 L5197 2021 2411 1065*2^3025527+1 910778 L5208 2021 2412 34202*3^1908800+1 910734 L5410 2021 2413 8343*42^560662+1 910099 L4444 2020 2414 699*2^3023263+1 910096 L5335 2021 2415 8770526^131072+1 910037 L4245 2017 Generalized Fermat 2416 8704114^131072+1 909604 L4670 2017 Generalized Fermat 2417 383731*2^3021377-1 909531 L466 2011 2418 46821*2^3021380-374567 909531 p363 2013 2419 2^3021377-1 909526 G3 1998 Mersenne 37 2420 615*2^3019445+1 908947 L5260 2021 2421 389*2^3019025+1 908820 L5178 2021 2422 875*2^3018175+1 908565 L5334 2021 2423 555*2^3016352+1 908016 L5178 2021 2424 7*2^3015762+1 907836 g279 2008 2425 759*2^3015314+1 907703 L5178 2021 2426 32582*3^1901790+1 907389 L5372 2021 2427 75*2^3012342+1 906808 L3941 2015 2428 459*2^3011814+1 906650 L5178 2021 2429 991*2^3010036+1 906115 L5326 2021 2430 583*2^3009698+1 906013 L5325 2021 2431 8150484^131072+1 905863 L4249 2017 Generalized Fermat 2432 593*2^3006969+1 905191 L5178 2021 2433 367*2^3004536+1 904459 L5178 2021 2434 7926326^131072+1 904276 L4249 2017 Generalized Fermat 2435 1003*2^3003756+1 904224 L5320 2021 2436 573*2^3002662+1 903895 L5319 2021 2437 7858180^131072+1 903784 L4201 2017 Generalized Fermat 2438 329*2^3002295+1 903784 L5318 2021 2439 4*5^1292915-1 903710 L4965 2022 2440 7832704^131072+1 903599 L4249 2017 Generalized Fermat 2441 268514*5^1292240-1 903243 L3562 2013 2442 7*10^902708+1 902709 p342 2013 2443 435*2^2997453+1 902326 L5167 2021 2444 583*2^2996526+1 902047 L5174 2021 2445 1037*2^2995695+1 901798 L5178 2021 2446 717*2^2995326+1 901686 L5178 2021 2447 885*2^2995274+1 901671 L5178 2021 2448 43*2^2994958+1 901574 L3222 2013 2449 1065*2^2994154+1 901334 L5315 2021 2450 561*2^2994132+1 901327 L5314 2021 2451 1095*2^2992587-1 900862 L1828 2011 2452 519*2^2991849+1 900640 L5311 2021 2453 7379442^131072+1 900206 L4201 2017 Generalized Fermat 2454 459*2^2990134+1 900123 L5197 2021 2455 15*2^2988834+1 899730 p286 2012 2456 29*564^326765+1 899024 L4001 2017 2457 971*2^2982525+1 897833 L5197 2021 2458 1033*2^2980962+1 897362 L5305 2021 2459a 357*2^2980540-1 897235 L2257 2023 2460a 367*2^2979033-1 896781 L2257 2023 2461 39*2^2978894+1 896739 L2719 2013 2462 38*977^299737+1 896184 L5410 2021 2463 4348099*2^2976221-1 895939 L466 2008 2464 205833*2^2976222-411665 895938 L4667 2017 2465 18976*2^2976221-18975 895937 p373 2014 2466 2^2976221-1 895932 G2 1997 Mersenne 36 2467 1024*3^1877301+1 895704 p378 2014 2468 1065*2^2975442+1 895701 L5300 2021 Divides GF(2975440,3) 2469 24704*3^1877135+1 895626 L5410 2021 2470 591*2^2975069+1 895588 L5299 2021 2471 249*2^2975002+1 895568 L2322 2015 2472 195*2^2972947+1 894949 L3234 2015 2473 6705932^131072+1 894758 L4201 2017 Generalized Fermat 2474 391*2^2971600+1 894544 L5242 2021 2475 46425*2^2971203+1 894426 L2777 2014 Generalized Cullen 2476 625*2^2970336+1 894164 L5233 2021 Generalized Fermat 2477a 369*2^2968175-1 893513 L2257 2023 2478 493*72^480933+1 893256 L3610 2014 2479 561*2^2964753+1 892483 L5161 2021 2480 1185*2^2964350+1 892362 L5161 2021 2481 6403134^131072+1 892128 L4510 2016 Generalized Fermat 2482 6391936^131072+1 892028 L4511 2016 Generalized Fermat 2483a 395*2^2961370-1 891464 L2257 2023 2484 21*2^2959789-1 890987 L5313 2021 2485 627*2^2959098+1 890781 L5197 2021 2486 45*2^2958002-1 890449 L1862 2017 2487 729*2^2955389+1 889664 L5282 2021 2488 198677*2^2950515+1 888199 L2121 2012 2489 88*985^296644+1 887987 L5410 2020 2490 303*2^2949403-1 887862 L1817 2022 2491 5877582^131072+1 887253 L4245 2016 Generalized Fermat 2492 321*2^2946654-1 887034 L1817 2022 2493 17*2^2946584-1 887012 L3519 2013 2494 489*2^2944673+1 886438 L5167 2021 2495 141*2^2943065+1 885953 L3719 2015 2496 757*2^2942742+1 885857 L5261 2021 2497 5734100^131072+1 885846 L4477 2016 Generalized Fermat 2498 33*2^2939064-5606879602425*2^1290000-1 884748 p423 2021 Arithmetic progression (3,d=33*2^2939063-5606879602425*2^1290000) 2499 33*2^2939063-1 884748 L3345 2013 2500 5903*2^2938744-1 884654 L4036 2015 2501 717*2^2937963+1 884418 L5256 2021 2502 5586416^131072+1 884361 L4454 2016 Generalized Fermat 2503 243*2^2937316+1 884223 L4114 2015 2504 973*2^2937046+1 884142 L5253 2021 2505 61*2^2936967-1 884117 L2484 2017 2506 903*2^2934602+1 883407 L5246 2021 2507 5471814^131072+1 883181 L4362 2016 Generalized Fermat 2508 188*228^374503+1 883056 L4786 2020 2509 53*248^368775+1 883016 L5196 2020 2510 5400728^131072+1 882436 L4201 2016 Generalized Fermat 2511 17*326^350899+1 881887 L4786 2019 2512 855*2^2929550+1 881886 L5200 2021 2513 5326454^131072+1 881648 L4201 2016 Generalized Fermat 2514 839*2^2928551+1 881585 L5242 2021 2515 7019*10^881309-1 881313 L3564 2013 2516 25*2^2927222+1 881184 L1935 2013 Generalized Fermat 2517a 391*2^2925759-1 880744 L2257 2023 2518 577*2^2925602+1 880697 L5201 2021 2519 97366*5^1259955-1 880676 L3567 2013 2520 973*2^2923062+1 879933 L5228 2021 2521 1126*177^391360+1 879770 L4955 2020 2522 243944*5^1258576-1 879713 L3566 2013 2523 693*2^2921528+1 879471 L5201 2021 2524 6*10^879313+1 879314 L5009 2019 2525 269*2^2918105+1 878440 L2715 2015 2526 331*2^2917844+1 878362 L5210 2021 2527 169*2^2917805-1 878350 L2484 2018 2528 1085*2^2916967+1 878098 L5174 2020 2529 389*2^2916499+1 877957 L5215 2020 2530 431*2^2916429+1 877936 L5214 2020 2531 1189*2^2916406+1 877929 L5174 2020 2532 7*2^2915954+1 877791 g279 2008 Divides GF(2915953,12) [g322] 2533 4974408^131072+1 877756 L4380 2016 Generalized Fermat 2534 465*2^2914079+1 877228 L5210 2020 2535 427194*113^427194+1 877069 p310 2012 Generalized Cullen 2536 4893072^131072+1 876817 L4303 2016 Generalized Fermat 2537 493*2^2912552+1 876769 L5192 2021 2538b 379*2^2911423-1 876429 L2257 2023 2539 143157*2^2911403+1 876425 L4504 2017 2540 567*2^2910402+1 876122 L5201 2020 2541 683*2^2909217+1 875765 L5199 2020 2542 674*249^365445+1 875682 L5410 2019 2543 475*2^2908802+1 875640 L5192 2021 2544 371*2^2907377+1 875211 L5197 2020 2545 207*2^2903535+1 874054 L3173 2015 2546 851*2^2902731+1 873813 L5177 2020 2547 777*2^2901907+1 873564 L5192 2020 2548 717*2^2900775+1 873224 L5185 2020 2549 99*2^2899303-1 872780 L1862 2017 2550 63*2^2898957+1 872675 L3262 2013 2551 11*2^2897409+1 872209 L2973 2013 Divides GF(2897408,3) 2552 747*2^2895307+1 871578 L5178 2020 2553 403*2^2894566+1 871354 L5180 2020 2554 629*2^2892961+1 870871 L5173 2020 2555 627*2^2891514+1 870436 L5168 2020 2556 325*2^2890955-1 870267 L5545 2022 2557 363*2^2890208+1 870042 L3261 2020 2558 471*2^2890148+1 870024 L5158 2020 2559 4329134^131072+1 869847 L4395 2016 Generalized Fermat 2560 583*2^2889248+1 869754 L5139 2020 2561b 353*2^2888332-1 869478 L2257 2023 2562 955*2^2887934+1 869358 L4958 2020 2563 303*2^2887603-1 869258 L5184 2022 2564 937*2^2887130+1 869116 L5134 2020 2565 885*2^2886389+1 868893 L3924 2020 2566 763*2^2885928+1 868754 L2125 2020 2567 1071*2^2884844+1 868428 L3593 2020 2568 1181*2^2883981+1 868168 L3593 2020 2569 327*2^2881349-1 867375 L5545 2022 2570 51*2^2881227+1 867338 L3512 2013 2571 933*2^2879973+1 866962 L4951 2020 2572 261*2^2879941+1 866952 L4119 2015 2573 4085818^131072+1 866554 L4201 2016 Generalized Fermat 2574 65*2^2876718-1 865981 L2484 2016 2575 21*948^290747-1 865500 L4985 2019 2576 4013*2^2873250-1 864939 L1959 2014 2577 41*2^2872058-1 864578 L2484 2013 2578 359*2^2870935+1 864241 L1300 2020 2579 165*2^2870868+1 864220 L4119 2015 2580 961*2^2870596+1 864139 L1300 2020 Generalized Fermat 2581 665*2^2869847+1 863913 L2885 2020 2582 283*2^2868750+1 863583 L3877 2015 2583 845*2^2868291+1 863445 L5100 2020 2584 3125*2^2867399+1 863177 L1754 2019 2585 701*2^2867141+1 863099 L1422 2020 2586 3814944^131072+1 862649 L4201 2016 Generalized Fermat 2587e 119*954^289255+1 861852 L5410 2022 2588 307*2^2862962+1 861840 L4740 2020 2589 147*2^2862651+1 861746 L1741 2015 2590 1207*2^2861901-1 861522 L1828 2011 2591 231*2^2860725+1 861167 L2873 2015 2592 193*2^2858812+1 860591 L2997 2015 2593 629*2^2857891+1 860314 L3035 2020 2594 493*2^2857856+1 860304 L5087 2020 2595 241*2^2857313-1 860140 L2484 2018 2596 707*2^2856331+1 859845 L5084 2020 2597 3615210^131072+1 859588 L4201 2016 Generalized Fermat 2598 949*2^2854946+1 859428 L2366 2020 2599 222361*2^2854840+1 859398 g403 2006 2600 725*2^2854661+1 859342 L5031 2020 2601 399*2^2851994+1 858539 L4099 2020 2602 225*2^2851959+1 858528 L3941 2015 2603 247*2^2851602+1 858421 L3865 2015 2604 183*2^2850321+1 858035 L2117 2015 2605 1191*2^2849315+1 857733 L1188 2020 2606 717*2^2848598+1 857517 L1204 2020 2607 795*2^2848360+1 857445 L4099 2020 2608b 4242104*15^728840-1 857189 L5410 2023 2609 3450080^131072+1 856927 L4201 2016 Generalized Fermat 2610 705*2^2846638+1 856927 L1808 2020 2611 369*2^2846547+1 856899 L4099 2020 2612 233*2^2846392-1 856852 L2484 2021 2613 955*2^2844974+1 856426 L1188 2020 2614 753*2^2844700+1 856343 L1204 2020 2615 11138*745^297992-1 855884 L4189 2019 2616 111*2^2841992+1 855527 L1792 2015 2617 44*744^297912-1 855478 L5410 2021 2618 649*2^2841318+1 855325 L4732 2020 2619 228*912^288954-1 855305 L5410 2022 2620 305*2^2840155+1 854975 L4907 2020 2621 1149*2^2839622+1 854815 L2042 2020 2622 95*2^2837909+1 854298 L3539 2013 2623 199*2^2835667-1 853624 L2484 2019 2624 595*2^2833406+1 852943 L4343 2020 2625 1101*2^2832061+1 852539 L4930 2020 2626 813*2^2831757+1 852447 L4951 2020 2627 435*2^2831709+1 852432 L4951 2020 2628b 393*2^2828738-1 851538 L2257 2023 2629 543*2^2828217+1 851381 L4746 2019 2630 704*249^354745+1 850043 L5410 2019 2631 1001*2^2822037+1 849521 L1209 2019 2632 84466*5^1215373-1 849515 L3562 2013 2633 97*2^2820650+1 849103 L2163 2013 2634b 381*2^2820157-1 848955 L2257 2023 2635 107*2^2819922-1 848884 L2484 2013 2636 84256*3^1778899+1 848756 L4789 2018 2637 45472*3^1778899-1 848756 L4789 2018 2638 14804*3^1778530+1 848579 L4064 2021 2639 497*2^2818787+1 848543 L4842 2019 2640 97*2^2818306+1 848397 L3262 2013 2641 313*2^2817751-1 848231 L802 2021 2642 177*2^2816050+1 847718 L129 2012 2643 553*2^2815596+1 847582 L4980 2019 2644 1071*2^2814469+1 847243 L3035 2019 2645 105*2^2813000+1 846800 L3200 2015 2646 1115*2^2812911+1 846774 L1125 2019 2647 96*10^846519-1 846521 L2425 2011 Near-repdigit 2648 763*2^2811726+1 846417 L3919 2019 2649 1125*2^2811598+1 846379 L4981 2019 2650 891*2^2810100+1 845928 L4981 2019 2651 441*2^2809881+1 845862 L4980 2019 2652 711*2^2808473+1 845438 L1502 2019 2653 1089*2^2808231+1 845365 L4687 2019 2654 63*2^2807130+1 845033 L3262 2013 2655 1083*2^2806536+1 844855 L3035 2019 2656 675*2^2805669+1 844594 L1932 2019 2657 819*2^2805389+1 844510 L3372 2019 2658 1027*2^2805222+1 844459 L3035 2019 2659 437*2^2803775+1 844024 L3168 2019 2660b 381*2^2801281-1 843273 L2257 2023 2661 4431*372^327835-1 842718 L5410 2019 2662 150344*5^1205508-1 842620 L3547 2013 2663 311*2^2798459+1 842423 L4970 2019 2664 81*2^2797443-1 842117 L3887 2021 2665 400254*127^400254+1 842062 g407 2013 Generalized Cullen 2666 2639850^131072+1 841690 L4249 2016 Generalized Fermat 2667 43*2^2795582+1 841556 L2842 2013 2668 1001*2^2794357+1 841189 L1675 2019 2669 117*2^2794014+1 841085 L1741 2015 2670 1057*2^2792700+1 840690 L1675 2019 2671 345*2^2792269+1 840560 L1754 2019 2672 711*2^2792072+1 840501 L4256 2019 2673 315*2^2791414-1 840302 L2235 2021 2674 973*2^2789516+1 839731 L3372 2019 2675 27602*3^1759590+1 839543 L4064 2021 2676 2187*2^2786802+1 838915 L1745 2019 2677 15*2^2785940+1 838653 p286 2012 2678 333*2^2785626-1 838560 L802 2021 2679 1337*2^2785444-1 838506 L4518 2017 2680 711*2^2784213+1 838135 L4687 2019 2681 58582*91^427818+1 838118 L5410 2020 2682 923*2^2783153+1 837816 L1675 2019 2683 1103*2^2783149+1 837815 L3784 2019 2684 485*2^2778151+1 836310 L1745 2019 2685 600921*2^2776014-1 835670 g337 2017 2686 1129*2^2774934+1 835342 L1774 2019 2687 750*1017^277556-1 834703 L4955 2021 2688 8700*241^350384-1 834625 L5410 2019 2689 1023*2^2772512+1 834613 L4724 2019 2690 656*249^348030+1 833953 L5410 2019 2691 92*10^833852-1 833854 L4789 2018 Near-repdigit 2692 437*2^2769299+1 833645 L3760 2019 2693 967*2^2768408+1 833377 L3760 2019 2694 2280466^131072+1 833359 L4201 2016 Generalized Fermat 2695 1171*2^2768112+1 833288 L2676 2019 2696 57*2^2765963+1 832640 L3262 2013 2697 1323*2^2764024+1 832058 L1115 2019 2698 77*2^2762047+1 831461 L3430 2013 2699 745*2^2761514+1 831302 L1204 2019 2700 2194180^131072+1 831164 L4276 2016 Generalized Fermat 2701 7*10^830865+1 830866 p342 2014 2702 893*2^2758841+1 830497 L4826 2019 2703 537*2^2755164+1 829390 L3035 2019 2704 579*2^2754370+1 829151 L1823 2019 2705 441*2^2754188+1 829096 L2564 2019 Generalized Fermat 2706 215*2^2751022-1 828143 L2484 2018 2707 337*2^2750860+1 828094 L4854 2019 2708 701*2^2750267+1 827916 L3784 2019 2709 467*2^2749195+1 827593 L1745 2019 2710 245*2^2748663+1 827433 L3173 2015 2711 591*2^2748315+1 827329 L3029 2019 2712 57*2^2747499+1 827082 L3514 2013 Divides Fermat F(2747497) 2713e 1007*2^2747268-1 827014 L4518 2022 2714 1089*2^2746155+1 826679 L2583 2019 2715 707*2^2745815+1 826576 L3760 2019 2716 459*2^2742310+1 825521 L4582 2019 2717 777*2^2742196+1 825487 L3919 2019 2718 609*2^2741078+1 825150 L3091 2019 2719 684*157^375674+1 824946 L5112 2022 2720 639*2^2740186+1 824881 L4958 2019 2721 905*2^2739805+1 824767 L4958 2019 2722e 119*954^276761+1 824625 L5410 2022 2723 1955556^131072+1 824610 L4250 2015 Generalized Fermat 2724 777*2^2737282+1 824007 L1823 2019 2725 765*2^2735232+1 823390 L1823 2019 2726 609*2^2735031+1 823330 L1823 2019 2727 305*2^2733989+1 823016 L1823 2019 2728 165*2^2732983+1 822713 L1741 2015 2729 1133*2^2731993+1 822415 L4687 2019 2730 251*2^2730917+1 822091 L3924 2015 2731 1185*2^2730620+1 822002 L4948 2019 2732 (10^410997+1)^2-2 821995 p405 2022 2733 173*2^2729905+1 821786 L3895 2015 2734 1981*2^2728877-1 821478 L1134 2018 2735 693*2^2728537+1 821375 L3035 2019 2736 501*2^2728224+1 821280 L3035 2019 2737 763*2^2727928+1 821192 L3924 2019 2738 10*743^285478+1 819606 L4955 2019 2739 17*2^2721830-1 819354 p279 2010 2740 1006*639^291952+1 819075 L4444 2021 2741 1101*2^2720091+1 818833 L4935 2019 2742 1766192^131072+1 818812 L4231 2015 Generalized Fermat 2743 165*2^2717378-1 818015 L2055 2012 2744 68633*2^2715609+1 817485 L5105 2020 2745 1722230^131072+1 817377 L4210 2015 Generalized Fermat 2746 9574*5^1169232+1 817263 L5410 2021 2747 1717162^131072+1 817210 L4226 2015 Generalized Fermat 2748 133*2^2713410+1 816820 L3223 2015 2749 45*2^2711732+1 816315 L1349 2012 2750 569*2^2711451+1 816231 L4568 2019 2751 12830*3^1709456+1 815622 L5410 2021 2752 335*2^2708958-1 815481 L2235 2020 2753 93*2^2708718-1 815408 L1862 2016 2754 1660830^131072+1 815311 L4207 2015 Generalized Fermat 2755 837*2^2708160+1 815241 L4314 2019 2756 1005*2^2707268+1 814972 L4687 2019 2757 13*458^306196+1 814748 L3610 2015 2758 253*2^2705844+1 814543 L4083 2015 2759 657*2^2705620+1 814476 L4907 2019 2760 39*2^2705367+1 814399 L1576 2013 Divides GF(2705360,3) 2761 303*2^2703864+1 813947 L1204 2019 2762 141*2^2702160+1 813434 L1741 2015 2763 753*2^2701925+1 813364 L4314 2019 2764 133*2^2701452+1 813221 L3173 2015 2765 521*2^2700095+1 812813 L4854 2019 2766 393*2^2698956+1 812470 L1823 2019 2767 417*2^2698652+1 812378 L3035 2019 2768 525*2^2698118+1 812218 L1823 2019 2769 3125*2^2697651+1 812078 L3924 2019 2770 153*2^2697173+1 811933 L3865 2015 2771 1560730^131072+1 811772 L4201 2015 Generalized Fermat 2772 26*3^1700041+1 811128 L4799 2020 2773 Phi(3,-1538654^65536) 810961 L4561 2017 Generalized unique 2774 11*2^2691961+1 810363 p286 2013 Divides GF(2691960,12) 2775 58*536^296735-1 809841 L5410 2021 2776 33016*3^1696980+1 809670 L5366 2021 2777 7335*2^2689080-1 809498 L4036 2015 2778 1049*2^2688749+1 809398 L4869 2018 2779 329*2^2688221+1 809238 L3035 2018 2780 865*2^2687434+1 809002 L4844 2018 2781 989*2^2686591+1 808748 L2805 2018 2782 136*904^273532+1 808609 L5410 2020 2783 243*2^2685873+1 808531 L3865 2015 2784 909*2^2685019+1 808275 L3431 2018 2785 1455*2^2683954-6325241166627*2^1290000-1 807954 p423 2021 Arithmetic progression (3,d=1455*2^2683953-6325241166627*2^1290000) 2786 1455*2^2683953-1 807954 L1134 2020 2787 11210*241^339153-1 807873 L5410 2019 2788 Phi(3,-1456746^65536) 807848 L4561 2017 Generalized unique 2789 975*2^2681840+1 807318 L4155 2018 2790 999*2^2681353-1 807171 L4518 2022 2791 295*2^2680932+1 807044 L1741 2015 2792 Phi(3,-1427604^65536) 806697 L4561 2017 Generalized unique 2793 575*2^2679711+1 806677 L2125 2018 2794 2386*52^469972+1 806477 L4955 2019 2795 219*2^2676229+1 805628 L1792 2015 2796 637*2^2675976+1 805552 L3035 2018 2797 Phi(3,-1395583^65536) 805406 L4561 2017 Generalized unique 2798 951*2^2674564+1 805127 L1885 2018 2799 1372930^131072+1 804474 g236 2003 Generalized Fermat 2800 662*1009^267747-1 804286 L5410 2020 2801 261*2^2671677+1 804258 L3035 2015 2802 895*2^2671520+1 804211 L3035 2018 2803 1361244^131072+1 803988 g236 2004 Generalized Fermat 2804 789*2^2670409+1 803877 L3035 2018 2805 256*11^771408+1 803342 L3802 2014 Generalized Fermat 2806 503*2^2668529+1 803310 L4844 2018 2807 255*2^2668448+1 803286 L1129 2015 2808 4189*2^2666639-1 802742 L1959 2017 2809 539*2^2664603+1 802129 L4717 2018 2810 3^1681130+3^445781+1 802103 CH9 2022 2811 26036*745^279261-1 802086 L4189 2020 2812 1396*5^1146713-1 801522 L3547 2013 2813a 676*687^282491-1 801418 L5426 2023 2814 267*2^2662090+1 801372 L3234 2015 Divides Fermat F(2662088) 2815 51*892^271541+1 801147 L5410 2019 2816 297*2^2660048+1 800757 L3865 2015 2817 99*2^2658496-1 800290 L1862 2021 2818 851*2^2656411+1 799663 L4717 2018 2819 487*2^2655008+1 799240 L3760 2018 2820 371*2^2651663+1 798233 L3760 2018 2821 69*2^2649939-1 797713 L3764 2014 2822 207*2^2649810+1 797675 L1204 2015 2823 505*2^2649496+1 797581 L3760 2018 2824 993*2^2649256+1 797509 L3760 2018 2825 517*2^2648698+1 797341 L3760 2018 2826 340*703^280035+1 797250 L4001 2018 2827 441*2^2648307+1 797223 L3760 2018 2828 1129*2^2646590+1 796707 L3760 2018 2829 128*518^293315+1 796156 L4001 2019 2830 211*744^277219-1 796057 L5410 2021 2831 Phi(3,-1181782^65536) 795940 L4142 2015 Generalized unique 2832 1176694^131072+1 795695 g236 2003 Generalized Fermat 2833 13*2^2642943-1 795607 L1862 2012 2834 119*410^304307+1 795091 L4294 2019 2835 501*2^2641052+1 795039 L3035 2018 2836 879*2^2639962+1 794711 L3760 2018 2837 57*2^2639528-1 794579 L2484 2016 2838 342673*2^2639439-1 794556 L53 2007 2839 813*2^2639092+1 794449 L2158 2018 2840 Phi(3,-1147980^65536) 794288 L4142 2015 Generalized unique 2841 197*972^265841-1 794247 L4955 2022 2842 1027*2^2638186+1 794177 L3760 2018 2843 889*2^2637834+1 794071 L3545 2018 2844 92182*5^1135262+1 793520 L3547 2013 2845 5608*70^429979+1 793358 L5390 2021 2846 741*2^2634385+1 793032 L1204 2018 2847 465*2^2630496+1 791861 L1444 2018 2848 189*2^2630487+1 791858 L3035 2015 2849 87*2^2630468+1 791852 L3262 2013 2850 4*5^1132659-1 791696 L4965 2022 2851 1131*2^2629345+1 791515 L4826 2018 2852 967*2^2629344+1 791515 L3760 2018 2853 267*2^2629210+1 791474 L3035 2015 2854 154*883^268602+1 791294 L5410 2020 2855 819*2^2627529+1 790968 L1387 2018 2856 17152*5^1131205-1 790683 L3552 2013 2857 183*2^2626442+1 790641 L3035 2015 2858 813*2^2626224+1 790576 L4830 2018 2859 807*2^2625044+1 790220 L1412 2018 2860 1063730^131072+1 789949 g260 2013 Generalized Fermat 2861 1243*2^2623707-1 789818 L1828 2011 2862 693*2^2623557+1 789773 L3278 2018 2863 981*2^2622032+1 789314 L1448 2018 2864 145*2^2621020+1 789008 L3035 2015 2865 963*792^271959-1 788338 L5410 2021 2866 541*2^2614676+1 787099 L4824 2018 2867 (10^393063-1)^2-2 786126 p405 2022 Near-repdigit 2868 1061*268^323645-1 785857 L5410 2019 2869 1662*483^292719-1 785646 L5410 2022 2870 Phi(3,-984522^65536) 785545 p379 2015 Generalized unique 2871 1071*2^2609316+1 785486 L3760 2018 2872 87*2^2609046+1 785404 L2520 2013 2873 18922*111^383954+1 785315 L4927 2021 2874 543*2^2608129+1 785128 L4822 2018 2875b 377*2^2607856-1 785046 L2257 2023 2876 329584*5^1122935-1 784904 L3553 2013 2877 10*311^314806+1 784737 L3610 2014 2878 1019*2^2606525+1 784646 L1201 2018 2879 977*2^2606211+1 784551 L4746 2018 2880 13*2^2606075-1 784508 L1862 2011 2881 693*2^2605905+1 784459 L4821 2018 2882 147*2^2604275+1 783968 L1741 2015 2883 105*2^2603631+1 783774 L3459 2015 2884 93*2^2602483-1 783428 L1862 2016 2885 155*2^2602213+1 783347 L2719 2015 2886 303*2^2601525+1 783140 L4816 2018 2887 711*2^2600535+1 782842 L4815 2018 2888 1133*2^2599345+1 782484 L4796 2018 2889 397*2^2598796+1 782319 L3877 2018 2890 1536*177^347600+1 781399 L5410 2020 2891 1171*2^2595736+1 781398 L3035 2018 2892 (146^180482+1)^2-2 781254 p405 2022 2893 909548^131072+1 781036 p387 2015 Generalized Fermat 2894 2*218^333925+1 780870 L4683 2017 2895 1149*2^2593359+1 780682 L1125 2018 2896 225*2^2592918+1 780549 L1792 2015 Generalized Fermat 2897 333*2^2591874-1 780235 L2017 2019 2898 Phi(3,-883969^65536) 779412 p379 2015 Generalized unique 2899a 2154*687^274573-1 778956 L5752 2023 2900 Phi(3,-872989^65536) 778700 p379 2015 Generalized unique 2901 703*2^2586728+1 778686 L4256 2018 2902 2642*372^302825-1 778429 L5410 2019 2903 120*825^266904+1 778416 L4001 2018 2904 337*2^2585660+1 778364 L2873 2018 2905d 31*2^2585311-1 778258 L4521 2022 2906 393*2^2584957+1 778153 L4600 2018 2907 151*2^2584480+1 778009 L4043 2015 2908 Phi(3,-862325^65536) 778001 p379 2015 Generalized unique 2909 385*2^2584280+1 777949 L4600 2018 2910 Phi(3,-861088^65536) 777919 p379 2015 Generalized unique 2911 65*2^2583720-1 777780 L2484 2015 2912 25*2^2583690+1 777770 L3249 2013 Generalized Fermat 2913 82*920^262409-1 777727 L4064 2015 2914 1041*2^2582112+1 777297 L1456 2018 2915 334310*211^334310-1 777037 p350 2012 Generalized Woodall 2916 229*2^2581111-1 776995 L1862 2017 2917 61*2^2580689-1 776867 L2484 2015 2918 1113*2^2580205+1 776723 L4724 2018 2919 51*2^2578652+1 776254 L3262 2013 2920 173*2^2578197+1 776117 L3035 2015 2921 833*2^2578029+1 776067 L4724 2018 2922 80*394^298731-1 775358 L541 2020 2923 302*423^295123-1 775096 L5413 2021 2924 460*628^276994+1 775021 L5410 2020 2925 459*2^2573899+1 774824 L1204 2018 2926 Phi(3,-806883^65536) 774218 p379 2015 Generalized unique 2927b 357*2^2568110-1 773081 L2257 2023 2928 627*2^2567718+1 772963 L3803 2018 2929 933*2^2567598+1 772927 L4724 2018 2930 757*2^2566468+1 772587 L2606 2018 2931 231*2^2565263+1 772224 L3035 2015 2932 4*737^269302+1 772216 L4294 2016 Generalized Fermat 2933 941*2^2564867+1 772105 L4724 2018 2934 923*2^2563709+1 771757 L1823 2018 2935 151*596^278054+1 771671 L4876 2019 2936 Phi(3,-770202^65536) 771570 p379 2015 Generalized unique 2937 303*2^2562423-1 771369 L2017 2018 2938 75*2^2562382-1 771356 L2055 2011 2939 147559*2^2562218+1 771310 L764 2012 2940 117*412^294963+1 771300 p268 2021 2941 829*2^2561730+1 771161 L1823 2018 2942 404*12^714558+1 771141 L1471 2011 2943 Phi(3,-757576^65536) 770629 p379 2015 Generalized unique 2944 295*80^404886+1 770537 L5410 2021 2945 1193*2^2559453+1 770476 L2030 2018 2946 19*984^257291+1 770072 L5410 2020 2947 116*950^258458-1 769619 L5410 2021 2948 Phi(3,-731582^65536) 768641 p379 2015 Generalized unique 2949 65*752^267180-1 768470 L5410 2020 2950 419*2^2552363+1 768341 L4713 2018 2951b 369*2^2551955-1 768218 L2257 2023 2952 34*759^266676-1 768093 L4001 2019 2953 315*2^2550412+1 767754 L4712 2017 2954 415*2^2549590+1 767506 L4710 2017 2955 1152*792^264617-1 767056 L4955 2021 2956 693*2^2547752+1 766953 L4600 2017 2957 673*2^2547226+1 766795 L2873 2017 2958 169*2^2545526+1 766282 L2125 2015 Divides GF(2545525,10), generalized Fermat 2959 196*814^263256+1 766242 L5410 2021 Generalized Fermat 2960 183*2^2545116+1 766159 L3035 2015 2961 311*2^2544778-1 766058 L2017 2018 2962 9*2^2543551+1 765687 L1204 2011 Divides Fermat F(2543548), GF(2543549,3), GF(2543549,6), GF(2543549,12) 2963 67*446^288982+1 765612 L4273 2020 2964 663*2^2542990+1 765520 L4703 2017 2965 705*2^2542464+1 765361 L2873 2017 2966 689186^131072+1 765243 g429 2013 Generalized Fermat 2967 745*2^2540726+1 764838 L4696 2017 2968 Phi(3,-682504^65536) 764688 p379 2015 Generalized unique 2969 64*177^340147-1 764644 L3610 2015 2970 421*2^2539336+1 764419 L4148 2017 2971 123287*2^2538167+1 764070 L3054 2012 2972 305716*5^1093095-1 764047 L3547 2013 2973 223*2^2538080+1 764041 L2125 2015 2974 83*2^2537641+1 763908 L1300 2013 2975 543539*2^2536028-1 763427 L4187 2022 2976 645*2^2532811+1 762455 L4600 2017 2977 953*2^2531601+1 762091 L4404 2017 2978 694*567^276568-1 761556 L4444 2021 2979 545*2^2528179+1 761061 L1502 2017 2980 203*2^2526505+1 760557 L3910 2015 2981 967*2^2526276+1 760488 L1204 2017 2982 3317*2^2523366-1 759613 L5399 2021 2983 241*2^2522801-1 759442 L2484 2018 2984 360307*6^975466-1 759066 p255 2017 2985 326*80^398799+1 758953 L4444 2021 2986 749*2^2519457+1 758436 L1823 2017 2987 199*2^2518871-1 758259 L2484 2018 2988 6*10^758068+1 758069 L5009 2019 2989 87*2^2518122-1 758033 L2484 2014 2990 Phi(3,-605347^65536) 757859 p379 2015 Generalized unique 2991 711*2^2516187+1 757451 L3035 2017 2992 967*2^2514698+1 757003 L4600 2017 2993 33*2^2513872-1 756753 L3345 2013 2994 973*2^2511920+1 756167 L1823 2017 2995 679*2^2511814+1 756135 L4598 2017 2996 1093*2^2511384+1 756005 L1823 2017 2997 38*875^256892-1 755780 L4001 2019 2998 45*2^2507894+1 754953 L1349 2012 2999 130484*5^1080012-1 754902 L3547 2013 3000 572186^131072+1 754652 g0 2004 Generalized Fermat 3001 242*501^279492-1 754586 L4911 2019 3002 883*2^2506382+1 754500 L1823 2017 3003 847*2^2505540+1 754246 L4600 2017 3004 191*2^2504121+1 753818 L3035 2015 3005 783*2^2500912+1 752853 L1823 2017 3006 165*2^2500130-1 752617 L2055 2011 3007 33*2^2499883-1 752542 L3345 2013 3008 319*2^2498685-1 752182 L2017 2018 3009 321*2^2496594-1 751553 L2235 2018 3010 365*2^2494991+1 751070 L3035 2017 3011 213*2^2493004-1 750472 L1863 2017 3012 777*2^2492560+1 750339 L3035 2017 3013 57*2^2492031+1 750178 L1230 2013 3014 879*2^2491342+1 749972 L4600 2017 3015 14*152^343720-1 749945 L3610 2015 3016 231*2^2489083+1 749292 L3035 2015 3017 255*2^2488562+1 749135 L3035 2015 3018 708*48^445477-1 748958 L5410 2022 3019 221*780^258841-1 748596 L4001 2018 3020 303*2^2486629+1 748553 L3035 2017 3021 6*433^283918-1 748548 L3610 2015 3022 617*2^2485919+1 748339 L1885 2017 3023 515*2^2484885+1 748028 L3035 2017 3024 1095*2^2484828+1 748011 L3035 2017 3025 1113*2^2484125+1 747800 L3035 2017 3026 607*2^2483616+1 747646 L3035 2017 3027 625*2^2483272+1 747543 L2487 2017 Generalized Fermat 3028 723*2^2482064+1 747179 L3035 2017 3029a 2154*687^263317-1 747023 L5410 2023 3030 26*3^1565545+1 746957 L4799 2020 3031 14336*3^1563960+1 746203 L5410 2021 3032 3*2^2478785+1 746190 g245 2003 Divides Fermat F(2478782), GF(2478782,3), GF(2478776,6), GF(2478782,12) 3033 1071*2^2477584+1 745831 L3035 2017 3034 22*30^504814-1 745673 p355 2014 3035 2074*483^277812-1 745637 L5410 2022 3036 11*2^2476839+1 745604 L2691 2011 3037 825*2^2474996+1 745051 L1300 2017 3038 1061*2^2474282-1 744837 L1828 2012 3039 435*2^2473905+1 744723 L3035 2017 3040 1005*2^2473724-1 744669 L4518 2021 3041 1121*2^2473401+1 744571 L3924 2017 3042 325*2^2473267-1 744531 L2017 2018 3043d 400*639^265307-1 744322 L5410 2022 3044 11996*3^1559395+1 744025 L5410 2021 3045 889*2^2471082+1 743873 L1300 2017 3046 529*2^2470514+1 743702 L3924 2017 Generalized Fermat 3047 883*2^2469268+1 743327 L4593 2017 3048 5754*313^297824-1 743237 L5089 2020 3049 81*2^2468789+1 743182 g418 2009 3050 55154*5^1063213+1 743159 L3543 2013 3051 119*2^2468556-1 743112 L2484 2018 3052 2136*396^285974+1 742877 L5410 2021 3053 525*2^2467658+1 742842 L3035 2017 3054 715*2^2465640+1 742235 L3035 2017 3055 26773*2^2465343-1 742147 L197 2006 3056 581*550^270707-1 741839 L5410 2020 3057 993*2^2464082+1 741766 L3035 2017 3058 1179*2^2463746+1 741665 L3035 2017 3059 857*2^2463411+1 741564 L3662 2017 3060 103*2^2462567-1 741309 L2484 2014 3061 12587*2^2462524-1 741298 L2012 2017 3062 5*2^2460482-1 740680 L503 2008 3063 763*2^2458592+1 740113 L1823 2017 3064 453*2^2458461+1 740074 L3035 2017 3065 519*2^2458058+1 739952 L3803 2017 3066c 373*2^2457859-1 739892 L2257 2023 3067 137*2^2457639+1 739826 L4021 2014 3068 41676*7^875197-1 739632 L2777 2012 Generalized Woodall 3069 2688*991^246849+1 739582 L5410 2021 3070 133*2^2455666+1 739232 L2322 2014 3071 99*2^2455541-1 739194 L1862 2015 3072 377*2^2452639+1 738321 L3035 2017 3073 2189*138^345010+1 738284 L5410 2020 3074 1129*2^2452294+1 738218 L3035 2017 3075 1103*2^2451133+1 737868 L4531 2017 3076 65*2^2450614-1 737711 L2074 2014 3077 549*2^2450523+1 737684 L3035 2017 3078 4*789^254595+1 737582 L4955 2019 3079 3942*55^423771-1 737519 L4955 2019 3080 2166*483^274670-1 737204 L5410 2022 3081 765*2^2448660+1 737123 L4412 2017 3082 607*2^2447836+1 736875 L4523 2017 3083 1261*988^246031+1 736807 L5342 2021 3084 1005*2^2446722+1 736540 L4522 2017 3085 703*2^2446472+1 736465 L2805 2017 3086 75*2^2446050+1 736337 L3035 2013 3087 115*26^520277-1 736181 L1471 2014 3088 114986*5^1052966-1 735997 L3528 2013 3089 1029*2^2444707+1 735934 L3035 2017 3090b 4*5^1052422+1 735613 L4965 2023 Generalized Fermat 3091 1035*2^2443369+1 735531 L3173 2017 3092 1017*2^2442723+1 735336 L4417 2017 3093 962*3^1540432+1 734976 L5410 2021 3094 1065*2^2441132+1 734857 L1823 2017 3095c 369*2^2436949-1 733598 L2257 2023 3096 393*2^2436849+1 733568 L3035 2016 3097 1425*2^2435607-1 733194 L1134 2020 3098 386892^131072+1 732377 p259 2009 Generalized Fermat 3099 465*2^2431455+1 731944 L3035 2016 3100 905*2^2430509+1 731660 L4408 2016 3101 223*2^2430490+1 731653 L4016 2014 3102 8*410^279991+1 731557 L4700 2019 3103 69*2^2428251-1 730979 L384 2014 3104 6070*466^273937+1 730974 L5410 2021 3105 233*2^2426512-1 730456 L2484 2020 3106 645*2^2426494+1 730451 L3035 2016 3107 665*2^2425789+1 730239 L3173 2016 3108 23*2^2425641+1 730193 L2675 2011 3109 361*2^2424232+1 729770 L3035 2016 Generalized Fermat 3110 753*2^2422914+1 729373 L3035 2016 3111 5619*52^424922+1 729172 L5410 2019 3112 105*2^2422105+1 729129 L2520 2014 3113 62*962^244403+1 729099 L5409 2021 3114 3338*396^280633+1 729003 L5410 2021 3115 201*2^2421514-1 728951 L1862 2016 3116 1084*7^862557+1 728949 L5211 2021 3117 239*2^2421404-1 728918 L2484 2018 3118 577*2^2420868+1 728757 L4489 2016 3119 929*2^2417767+1 727824 L3924 2016 3120 4075*2^2417579-1 727768 L1959 2017 3121 303*2^2417452-1 727729 L2235 2018 3122 895*2^2417396+1 727712 L3035 2016 3123 1764*327^289322+1 727518 L5410 2020 Generalized Fermat 3124 3317*2^2415998-1 727292 L5399 2021 3125 5724*313^291243-1 726814 L4444 2020 3126 1081*2^2412780+1 726323 L1203 2016 3127 333*2^2412735-1 726309 L2017 2018 3128 6891*52^423132+1 726100 L5410 2019 3129 83*2^2411962-1 726075 L1959 2018 3130 69*2^2410035-1 725495 L2074 2013 3131 12362*1027^240890-1 725462 L4444 2018 3132 143157*2^2409056+1 725204 L4504 2016 3133 Phi(3,-340594^65536) 725122 p379 2015 Generalized unique 3134 339*2^2408337+1 724985 L3029 2016 3135 811*2^2408096+1 724913 L2526 2016 3136 157*2^2407958+1 724870 L1741 2014 3137 243686*5^1036954-1 724806 L3549 2013 3138 3660*163^327506+1 724509 L4955 2019 3139 303*2^2406433+1 724411 L4425 2016 3140 345*2^2405701+1 724191 L3035 2016 3141 921*2^2405056+1 723997 L2805 2016 3142 673*2^2403606+1 723561 L3035 2016 3143 475*2^2403220+1 723444 L4445 2016 3144 837*2^2402798+1 723318 L3372 2016 3145 Phi(3,-329886^65536) 723303 p379 2015 Generalized unique 3146 231*2^2402748+1 723302 L3995 2014 3147 375*2^2401881+1 723041 L2805 2016 3148 107*2^2401731+1 722996 L3998 2014 3149 1023*2^2398601+1 722054 L4414 2016 3150 539*2^2398227+1 721941 L4061 2016 3151 659*2^2397567+1 721743 L4441 2016 3152 40*844^246524+1 721416 L4001 2017 3153 465*2^2395133+1 721010 L4088 2016 3154 56*318^288096+1 720941 L1471 2019 3155 667*2^2394430+1 720799 L4408 2016 3156 15*2^2393365+1 720476 L1349 2010 3157 1642*273^295670+1 720304 L5410 2019 3158 8*908^243439+1 720115 L5410 2021 3159 633*2^2391222+1 719833 L3743 2016 3160 273*2^2388104+1 718894 L3668 2014 3161 118*558^261698+1 718791 L4877 2019 3162 1485*2^2386037-1 718272 L1134 2017 3163 399*2^2384115+1 717693 L4412 2016 3164 99*2^2383846+1 717612 L1780 2013 3165 737*2^2382804-1 717299 L191 2007 3166 111*2^2382772+1 717288 L3810 2014 3167 61*2^2381887-1 717022 L2432 2012 3168 202*249^299162+1 716855 L5410 2019 3169 321*2^2378535-1 716013 L2017 2018 3170 435*2^2378522+1 716010 L1218 2016 3171 4*3^1499606+1 715495 L4962 2020 Generalized Fermat 3172 147*2^2375995+1 715248 L1130 2014 3173 915*2^2375923+1 715228 L1741 2016 3174 1981*2^2375591-1 715128 L1134 2017 3175 81*2^2375447-1 715083 L3887 2021 3176 1129*2^2374562+1 714818 L3035 2016 3177 97*2^2374485-1 714794 L2484 2018 3178 1117*2^2373977-1 714642 L1828 2012 3179 949*2^2372902+1 714318 L4408 2016 3180 1005*2^2372754-1 714274 L4518 2021 3181 659*2^2372657+1 714244 L3035 2016 3182 1365*2^2372586+1 714223 L1134 2016 3183 509*2^2370721+1 713661 L1792 2016 3184 99*2^2370390+1 713561 L1204 2013 3185 959*2^2370077+1 713468 L1502 2016 3186 1135*2^2369808+1 713387 L2520 2016 3187 125*2^2369461+1 713281 L3035 2014 3188 1183953*2^2367907-1 712818 L447 2007 Woodall 3189 57671892869766803925...(712708 other digits)...06520121133805600769 712748 p360 2013 3190 119878*5^1019645-1 712707 L3528 2013 3191 453*2^2367388+1 712658 L3035 2016 3192 150209!+1 712355 p3 2011 Factorial 3193 281*2^2363327+1 711435 L1741 2014 3194 2683*2^2360743-1 710658 L1959 2012 3195 409*2^2360166+1 710484 L1199 2016 3196 305*2^2358854-1 710089 L2017 2018 3197 1706*123^339764+1 710078 L5410 2021 3198 403*2^2357572+1 709703 L3029 2016 3199 155*2^2357111+1 709564 L3975 2014 3200 365*2^2355607+1 709111 L2117 2016 3201 33706*6^910462+1 708482 L587 2014 3202 1087*2^2352830+1 708276 L1492 2016 3203 152*1002^235971+1 708120 L5410 2019 3204 179*2^2352291+1 708113 L1741 2014 3205 559*2^2351894+1 707994 L3924 2016 3206 24573*2^2350824+1 707673 p168 2018 3207 1035*2^2350388+1 707541 L2526 2016 3208 433*2^2348252+1 706897 L2322 2016 3209 329*2^2348105+1 706853 L3029 2016 3210 45*2^2347187+1 706576 L1349 2012 3211 7675*46^424840+1 706410 L5410 2019 3212 127*2^2346377-1 706332 L282 2009 3213 933*2^2345893+1 706188 L3035 2016 3214 903*2^2345013+1 705923 L2006 2016 3215 33*2^2345001+1 705918 L2322 2013 3216 Phi(3,-242079^65536) 705687 p379 2015 Generalized unique 3217 627*2^2343140+1 705359 L3125 2016 3218 83*2^2342345+1 705119 L2626 2013 3219 61*380^273136+1 704634 L5410 2019 3220 277*2^2340182+1 704468 L1158 2014 3221 159*2^2339566+1 704282 L3035 2014 3222 335*2^2338972-1 704104 L2235 2017 3223 22*422^268038+1 703685 L4955 2019 3224 9602*241^295318-1 703457 L5410 2019 3225 1149*2^2336638+1 703402 L4388 2016 3226 339*2^2336421-1 703336 L2519 2017 3227 231*2^2335281-1 702992 L1862 2019 3228 275293*2^2335007-1 702913 L193 2006 3229 105*2^2334755-1 702834 L1959 2018 3230 228188^131072+1 702323 g124 2010 Generalized Fermat 3231 809*2^2333017+1 702312 L2675 2016 3232 795*2^2332488+1 702152 L3029 2016 3233 3^1471170-3^529291+1 701927 p269 2019 3234c 351*2^2331311-1 701798 L2257 2023 3235 229*2^2331017-1 701709 L1862 2021 3236 118*761^243458+1 701499 L5410 2019 3237 435*2^2329948+1 701387 L2322 2016 3238 585*2^2329350+1 701207 L2707 2016 3239 213*2^2328530-1 700960 L1863 2017 3240 1482*327^278686+1 700773 L5410 2020 3241 26472*91^357645+1 700646 L5410 2020 3242 1107*2^2327472+1 700642 L3601 2016 3243 435*2^2327152+1 700546 L2337 2016 3244a 413*2^2327048-1 700514 L5516 2023 3245 4161*2^2326875-1 700463 L1959 2016 3246 427*2^2326288+1 700286 L2719 2016 3247 438*19^547574-1 700215 L5410 2020 3248 147855!-1 700177 p362 2013 Factorial 3249 5872*3^1467401+1 700132 L4444 2021 3250a 421*2^2324375-1 699710 L5516 2023 3251 451*2^2323952+1 699582 L3173 2016 3252 431*2^2323633+1 699486 L3260 2016 3253 228*912^236298-1 699444 L5366 2022 3254 1085*2^2323291+1 699384 L1209 2016 3255 15*2^2323205-1 699356 L2484 2011 3256 7566*46^420563+1 699299 L5410 2019 3257 1131*2^2322167+1 699045 L1823 2016 3258 385*2^2321502+1 698845 L1129 2016 3259 8348*3^1464571+1 698782 L5367 2021 3260 645*2^2320231+1 698462 L3377 2016 3261 1942*877^237267+1 698280 L5410 2022 3262 165*2^2319575+1 698264 L2627 2014 3263 809*2^2319373+1 698204 L3924 2016 3264 125098*6^896696+1 697771 L587 2014 3265 65536*5^997872+1 697488 L3802 2014 Generalized Fermat 3266 381*2^2314743+1 696810 L4358 2016 3267 120*825^238890+1 696714 L4837 2018 3268 3375*2^2314297+1 696677 L1745 2019 3269 4063*2^2313843-1 696540 L1959 2016 3270 345*2^2313720-1 696502 L2017 2017 3271 74*830^238594-1 696477 L5410 2020 3272a 495*2^2313462-1 696425 L5545 2023 3273d 926*639^248221-1 696388 L4444 2022 3274 361*2^2312832+1 696235 L3415 2016 Generalized Fermat 3275 1983*366^271591-1 696222 L2054 2012 3276 3*2^2312734-1 696203 L158 2005 3277 2643996*7^823543-1 695981 p396 2021 3278 53653*2^2311848+1 695941 L2012 2017 3279 873*2^2311086+1 695710 L2526 2016 3280 1033*2^2310976+1 695677 L4352 2016 3281 4063*2^2310187-1 695440 L1959 2016 3282 4063*2^2309263-1 695162 L1959 2016 3283 565*2^2308984+1 695077 L2322 2016 3284a 447*2^2308104-1 694812 L5516 2023 3285 450457*2^2307905-1 694755 L172 2006 3286 1018*3^1455600+1 694501 L5410 2021 3287a 553*2^2306343-1 694282 L5516 2023 3288 1185*2^2306324+1 694276 L4347 2016 3289 3267*2^2305266+1 693958 L1204 2019 3290 107*770^240408-1 693938 L4955 2020 3291b 467*2^2304298-1 693666 L5516 2023 3292 537*2^2304115+1 693611 L3267 2016 3293 842*1017^230634-1 693594 L4001 2017 3294 729*2^2303162+1 693324 L1204 2016 Generalized Fermat 3295 641*2^2302879+1 693239 L2051 2016 3296 729*2^2300290+1 692460 L1204 2016 Generalized Fermat 3297 189*2^2299959+1 692359 L2627 2014 3298 2582*111^338032-1 691389 L4786 2021 3299 659*2^2294393+1 690684 L3378 2016 3300 1087*2^2293345-1 690369 L1828 2011 3301 97768*5^987383-1 690157 L1016 2013 3302 4761657101009*2^2292504-1 690126 L257 2019 3303 3*2^2291610+1 689844 L753 2008 Divides GF(2291607,3), GF(2291609,5) 3304 319*2^2290722+1 689579 L1792 2015 3305 779*2^2290273+1 689444 L3034 2016 3306 1001*2^2289438-1 689193 L4518 2020 3307 971*2^2289135+1 689102 L4198 2016 3308 399*2^2288691+1 688968 L1990 2015 3309 1425*2^2288483-1 688906 L1134 2021 3310 Phi(3,-180139^65536) 688864 p379 2015 Generalized unique 3311 74270*151^315734-1 687982 L4001 2018 3312 23902*52^400831+1 687832 L5410 2019 3313 417*2^2284402+1 687677 L2322 2015 3314 130*686^242244+1 687085 L4064 2018 3315 427*2^2282080+1 686978 L3260 2015 3316 109*2^2280194+1 686409 L2520 2014 3317 105*2^2280078-1 686374 L2444 2014 3318 1019*2^2278467+1 685890 L4323 2016 3319 213*2^2277870-1 685710 L1863 2017 3320 904*957^229937-1 685425 L5410 2022 3321 547*2^2276648+1 685343 L3260 2015 3322 26*3^1435875+1 685088 L4799 2020 3323 7913*2^2275664-1 685048 L4036 2015 3324 651*2^2275040+1 684859 L4082 2016 3325 155877*2^2273465-1 684387 L541 2014 3326 16*710^240014+1 684344 L5410 2019 Generalized Fermat 3327 739*2^2272938+1 684226 L1209 2016 3328 279*798^235749-1 684147 L541 2021 3329 4821*396^263301+1 683980 L5410 2021 3330 (362^133647+1)^2-2 683928 p403 2019 3331 943*2^2269594+1 683219 L1823 2016 3332b 493*2^2269427-1 683169 L5516 2023 3333 182*792^235539+1 682766 L4837 2019 3334 1286*603^245567+1 682758 L4444 2019 3335 50*893^231310-1 682564 L4975 2019 3336 329*2^2266631+1 682327 L4109 2015 3337 739*2^2266602+1 682319 L2520 2016 3338 19683*2^2265896+1 682107 L2914 2019 3339 1151*2^2265761+1 682066 L1823 2016 3340 851*2^2265691+1 682044 L3173 2016 3341 977*2^2265655+1 682034 L2413 2016 3342 2*11171^168429+1 681817 g427 2014 Divides Phi(11171^168429,2) 3343 185*2^2264906-1 681807 L2484 2022 3344 31924*3^1428855+1 681742 L5410 2021 3345 217*2^2264546+1 681699 L3179 2014 3346e 178*821^233901-1 681671 L5410 2022 3347 841*2^2264184+1 681591 L1823 2016 Generalized Fermat 3348 93*2^2263894+1 681502 L2826 2013 3349 34*912^230098+1 681091 L5410 2022 3350c 377*2^2262094-1 680961 L2257 2023 3351 74*932^229308-1 680913 L4444 2021 3352 217499*28^470508-1 680905 p366 2013 3353 963*2^2261357+1 680740 L1300 2016 3354 2138*3^1426626+1 680677 L5410 2021 3355 1065*2^2260193+1 680389 L1204 2016 3356 837*2^2259470+1 680172 L1823 2016 3357 927*2^2258112+1 679763 L4287 2016 3358 265*2^2258071-1 679750 L2484 2018 3359 561*2^2256600+1 679308 L3877 2015 3360 495*2^2255944+1 679110 L4119 2015 3361c 489*2^2255331-1 678925 L5516 2023 3362 129*2^2255199+1 678885 L3049 2014 3363 735*2^2254660+1 678724 L4283 2016 3364 162*814^233173+1 678682 L5410 2021 3365c 403*2^2254355-1 678632 L5516 2023 3366 973*2^2254320+1 678621 L1204 2016 3367 275102*151^311399-1 678537 L4001 2018 3368 603*2^2252402+1 678044 L1803 2016 3369 1029*2^2252198+1 677983 L3125 2016 3370 39*2^2251104-1 677652 L177 2015 3371 575*2^2250751+1 677547 L1741 2015 3372 2838*88^348438+1 677536 L5410 2020 3373 725*2^2250697+1 677531 L2859 2016 3374 65*2^2250637+1 677512 L3487 2013 3375 14641*2^2250096+1 677351 L181 2017 Generalized Fermat 3376 187*2^2249974+1 677312 L2322 2014 3377 141*2^2249967+1 677310 L3877 2014 3378 459*2^2249183+1 677075 L3877 2015 3379 904*957^227111-1 677001 L5410 2022 3380 319*2^2248914+1 676994 L2322 2015 3381 569*2^2248709+1 676932 L4133 2015 3382c 571*2^2248701-1 676930 L5516 2023 3383 221*2^2248363+1 676828 L1130 2014 3384 144912*151^310514-1 676609 L4001 2018 3385 649*2^2247490+1 676565 L1204 2016 3386 374565*2^2247391+1 676538 L3532 2013 Generalized Cullen 3387 721*2^2246420+1 676243 L3037 2016 3388 875*2^2246363+1 676226 L2859 2016 3389 3888*931^227714-1 676075 L4001 2018 3390 347*2^2245598-1 675995 L2519 2017 3391 1199*2^2244631+1 675705 L3593 2016 3392 137*2^2244398-1 675634 L2484 2022 3393 197*2^2244347+1 675619 L1129 2014 3394 6510*565^245490+1 675605 L5410 2022 3395c 507*2^2244237-1 675586 L5516 2023 3396 5055*2^2242777-1 675147 L4036 2015 3397 651*2^2241783+1 674847 L3260 2016 3398 35*2^2241049+1 674625 L2742 2013 3399 4161*2^2240358-1 674419 L1959 2016 3400 164978*151^309413-1 674210 L4001 2018 3401c 493*2^2238775-1 673942 L5516 2023 3402 2354*138^314727+1 673482 L5410 2020 3403 20*698^236810-1 673455 L5410 2020 3404 146*447^254042-1 673292 L4001 2018 3405 675*2^2236244+1 673180 L4191 2016 3406 615*2^2235833+1 673056 L1823 2016 3407 53069*28^465060-1 673021 p257 2016 3408 831*2^2235253+1 672882 L3432 2013 3409 185*2^2235003+1 672806 L2322 2014 3410 103*2^2234536+1 672665 L3865 2014 3411 885*2^2234318+1 672600 L3125 2016 3412 963*2^2234249+1 672579 L1823 2016 3413 305*2^2233655+1 672400 L4118 2015 3414 267*2^2233376+1 672316 L1792 2014 3415 221*994^224221-1 672080 L5410 2020 3416 103*2^2232551-1 672067 L2484 2013 3417 889*2^2231034+1 671612 L2526 2016 3418 1779*88^345359+1 671548 L5410 2020 3419 907*2^2230776+1 671534 L4269 2016 3420 11*2^2230369+1 671410 L2561 2011 Divides GF(2230368,3) 3421 1425*2^2229009+1 671002 L1134 2016 3422 747*2^2228814+1 670943 L2526 2016 3423 9760*3^1406070+1 670870 L4444 2021 3424 969*2^2228379+1 670812 L4262 2016 3425 887*2^2228179+1 670752 L2840 2015 3426 130816^131072+1 670651 g308 2003 Generalized Fermat 3427 1123*2^2227338+1 670499 L3924 2015 3428 3478*378^260076+1 670348 L4955 2021 3429 213*2^2226329+1 670195 L2125 2014 3430 505*2^2225296+1 669884 L4111 2015 3431 11*878^227481+1 669591 L5410 2019 3432 271*2^2223601-1 669374 L2484 2018 3433 325*2^2223243-1 669266 L2235 2016 3434 (10^334568-1)^2-2 669136 p405 2022 Near-repdigit 3435 84363*2^2222321+1 668991 L541 2014 3436 2516745*2^2222222+1 668962 p396 2017 3437 7043*48^397817-1 668831 p255 2016 3438 1137*2^2221062+1 668610 L4040 2015 3439c 471*2^2220478-1 668434 L5516 2023 3440 152*806^229984-1 668413 L4001 2018 3441 1425*2^2219664-1 668189 L1134 2021 3442 1031*2^2218785+1 667924 L1204 2015 3443 911*2^2218151+1 667733 L3260 2015 3444 27*2^2218064+1 667706 L690 2009 3445 587*2^2217355+1 667494 L4109 2015 3446 547*2^2216110+1 667119 L2322 2015 3447 67*2^2215581-1 666959 L268 2010 3448 33*2^2215291-1 666871 L3345 2013 3449 157533*2^2214598-1 666666 L3494 2013 3450 1105*2^2213846+1 666438 L2321 2015 3451 33*2^2212971-1 666173 L3345 2013 3452 101*2^2212769+1 666112 L1741 2014 3453 3*10^665829+1 665830 p300 2012 3454 4207801666259*2^2211084-1 665616 L257 2019 3455 298*912^224846+1 665546 L5410 2022 3456 631*2^2210260+1 665358 L2322 2015 3457 479*2^2209541+1 665141 L4106 2015 3458 165*2^2207550-1 664541 L2055 2011 3459 819*2^2206370+1 664187 L2526 2015 3460 19*2^2206266+1 664154 p189 2006 3461 45*2^2205977-1 664067 L1862 2015 3462 1323*2^2205832+1 664025 L4893 2019 3463 2*179^294739+1 664004 g424 2011 Divides Phi(179^294739,2) 3464 73*416^253392+1 663660 L3610 2015 3465d 531*2^2203439-1 663304 L5516 2022 3466e 790*821^227461-1 662903 L5410 2022 3467 Phi(3,-16159^78732) 662674 p294 2014 Generalized unique 3468 1041*2^2201196+1 662630 L3719 2015 3469 481*2^2201148+1 662615 L1741 2015 3470 1344*73^355570+1 662545 L3610 2014 3471d 551*2^2200462-1 662408 L5516 2022 3472 783*2^2200256+1 662346 L3924 2015 3473 969*2^2200223+1 662337 L1209 2015 3474 173*2^2199301+1 662058 L1204 2014 3475 5077*2^2198565-1 661838 L251 2008 3476 114487*2^2198389-1 661787 L179 2006 3477 1035*2^2197489+1 661514 L2517 2014 3478 903*2^2197294+1 661455 L2322 2014 3479 404882*43^404882-1 661368 p310 2011 Generalized Woodall 3480 638*520^243506-1 661366 L4877 2019 3481d 537*2^2196693-1 661274 L5516 2022 3482 12192710656^65536+1 661003 L5218 2021 Generalized Fermat 3483 256*3^1384608+1 660629 L3802 2014 Generalized Fermat 3484 2*10271^164621+1 660397 g427 2014 Divides Phi(10271^164621,2) 3485 10880*151^302997-1 660228 L4001 2018 3486 1073*2^2193069+1 660183 L2487 2014 3487 169*2^2193049-1 660176 L2484 2018 3488 26040*421^251428+1 659823 L5410 2021 3489 202064*151^302700-1 659582 L4001 2018 3490 2*659^233973+1 659544 g424 2015 Divides Phi(659^233973,2) 3491 819*2^2190853+1 659516 L3234 2014 3492d 591*2^2190433-1 659389 L5516 2022 3493 1179*2^2189870+1 659220 L2517 2014 3494e 385*2^2189441-1 659091 L2235 2022 3495 269*2^2189235+1 659028 L1204 2014 3496 39*2^2188855+1 658913 p286 2013 3497 433*2^2188076+1 658680 L3855 2014 3498 1323*2^2186806+1 658298 L4974 2019 3499 815*2^2185439+1 657886 L3035 2014 3500 249*2^2185003+1 657754 L1300 2014 3501 585*2^2184510+1 657606 L3838 2014 3502 1033*2^2183858+1 657410 L3865 2014 3503 1035*2^2183770+1 657384 L3514 2014 3504 193020*151^301686-1 657373 L4001 2018 3505 353938*7^777777+1 657304 L4789 2020 3506 1179*2^2182691+1 657059 L2163 2014 3507 2*191^287901+1 656713 g424 2015 Divides Phi(191^287901,2) 3508 23902*52^382687+1 656697 L4876 2019 3509 525*2^2180848+1 656504 L3797 2014 3510 135*2^2180256-1 656325 L1959 2019 3511 1107*2^2180142+1 656292 L1741 2014 3512 447*2^2180102+1 656279 L3760 2014 3513 315*2^2179612-1 656132 L2235 2015 3514 1423*2^2179023-1 655955 L3887 2015 3515 995*2^2178819+1 655893 L1741 2014 3516 219*2^2178673-1 655849 L5313 2021 3517 1423*2^2178363-1 655756 L3887 2015 3518 196597*2^2178109-1 655682 L175 2006 3519 6*10^655642+1 655643 L5009 2019 3520 879*2^2177186+1 655402 L2981 2014 3521e 573*2^2176326-1 655143 L5516 2022 3522 67*410^250678+1 654970 L4444 2019 3523e 587*2^2175602-1 654925 L5516 2022 3524 70082*5^936972-1 654921 L3523 2013 3525 699*2^2175031+1 654753 L3865 2014 3526 1260*991^218477+1 654577 L5410 2021 3527 69*2^2174213-1 654506 L2055 2012 3528 1069*2^2174122+1 654479 L3865 2014 3529 793*2^2173720+1 654358 L2322 2014 3530 3267*2^2173170+1 654193 L1204 2019 3531 651*2^2173159+1 654189 L3864 2014 3532 187*2^2172693-1 654049 L1959 2019 3533 10001*2^2172615+1 654027 L4405 2018 3534 1011*2^2172063+1 653860 L2826 2014 3535 1105*2^2171956+1 653827 L3035 2014 3536 4165*2^2171145-1 653584 L1959 2017 3537 Phi(3,-96873^65536) 653552 L4026 2014 Generalized unique 3538 739*2^2170786+1 653475 L2121 2014 3539 134*937^219783-1 653140 L5410 2021 3540 701*2^2169041+1 652950 L3863 2014 3541 1779*88^335783+1 652928 L5410 2020 3542 295*2^2168448+1 652771 L1935 2014 3543 7*2^2167800+1 652574 g279 2007 Divides Fermat F(2167797), GF(2167799,5), GF(2167799,10) 3544 359*2^2165551+1 651899 L3838 2014 3545e 453*2^2165267-1 651813 L5516 2022 3546 1059*2^2164149+1 651477 L2322 2014 3547 329*2^2163717+1 651347 L2117 2014 3548 559*2^2163382+1 651246 L1741 2014 3549 235*2^2163273-1 651213 L5313 2021 3550 775*2^2162344+1 650934 L3588 2014 3551 21*2^2160479-1 650371 L2074 2012 3552 399*2^2160379-1 650342 L5545 2022 3553 102976*5^929801-1 649909 L3313 2013 3554 1007*2^2158720-1 649843 L4518 2021 3555 1179*2^2158475+1 649769 L3035 2014 Divides GF(2158470,6) 3556 617*2^2156699+1 649234 L1675 2014 3557 65536*3^1360576+1 649165 L3802 2014 Generalized Fermat 3558 57*572^235362+1 648989 L4444 2021 3559 2*3^1360104-1 648935 p390 2015 3560 483*2^2155456+1 648860 L3760 2014 3561 105*2^2155392+1 648840 L3580 2014 3562 40*1017^215605+1 648396 L4927 2018 3563 1005*2^2153712-1 648335 L4518 2021 3564 31340*6^833096+1 648280 p271 2013 3565e 537*2^2153392-1 648239 L5516 2022 3566e 415*2^2153341-1 648223 L5516 2022 3567 427*2^2153306+1 648213 L3838 2014 3568 834*709^227380-1 648183 L5410 2021 3569 395*2^2152816-1 648065 L5598 2022 3570 261*2^2152805+1 648062 L1125 2014 3571e 405*2^2152377-1 647933 L1862 2022 3572 371*2^2150871+1 647480 L2545 2014 3573 111*2^2150802-1 647458 L2484 2013 3574 357*2^2148518+1 646771 L1741 2014 3575 993*2^2148205+1 646678 L1741 2014 3576 67*2^2148060+1 646633 L3276 2013 3577 243*2^2147387-1 646431 L2444 2014 3578 693*2^2147024+1 646322 L3862 2014 3579e 567*2^2146332-1 646114 L5516 2022 3580 3*2^2145353+1 645817 g245 2003 Divides Fermat F(2145351), GF(2145351,3), GF(2145352,5), GF(2145348,6), GF(2145352,10), GF(2145351,12) 3581 143157*2^2144728+1 645633 L4504 2016 3582 509*2^2144181+1 645466 L3035 2014 3583 753*2^2143388+1 645227 L2583 2014 Divides GF(2143383,3) 3584 161*2^2142431+1 644939 L3105 2014 3585e 587*2^2142136-1 644850 L5516 2022 3586 25*2^2141884+1 644773 L1741 2011 Divides Fermat F(2141872), GF(2141871,5), GF(2141872,10); generalized Fermat 3587e 571*2^2141727-1 644727 L5516 2022 3588 23*2^2141626-1 644696 L545 2008 3589 519*2^2140311+1 644301 L2659 2014 3590 7*2^2139912+1 644179 g279 2007 Divides GF(2139911,12) 3591 315*2^2139665+1 644106 L3838 2014 3592 193*2^2139400+1 644026 L3538 2014 3593 1113*2^2139060+1 643925 L3914 2014 3594 292402*159^292402+1 643699 g407 2012 Generalized Cullen 3595 307*2^2137553-1 643471 L2235 2015 3596 1051*2^2137440+1 643437 L3865 2014 3597 1185*2^2137344+1 643408 L3877 2014 3598 405*2^2137280-1 643388 L1862 2016 3599e 483*2^2136414-1 643128 L5516 2022 3600 513*2^2135642+1 642896 L3843 2014 3601 241*2^2135279-1 642786 L2484 2018 3602 915*2^2135151+1 642748 L2322 2014 3603 61*2^2134577-1 642574 L2055 2011 3604 2*3^1346542+1 642465 L5043 2020 3605 93*10^642225-1 642227 L4789 2020 Near-repdigit 3606 26362*421^244658+1 642057 L5388 2021 3607 5428*378^249058+1 641949 L5410 2021 3608 711*2^2132477+1 641943 L2125 2014 3609 81*984^214452+1 641856 L5410 2020 Generalized Fermat 3610 215*2^2131988-1 641795 L2484 2018 3611e 473*2^2130944-1 641481 L5516 2022 3612 319*2^2130729-1 641416 L1817 2015 3613 78792*151^294324-1 641331 L4001 2018 3614 75*2^2130432-1 641326 L2055 2011 3615 1145*2^2130307+1 641290 L3909 2014 3616 110488*5^917100+1 641031 L3354 2013 3617 37*2^2128328+1 640693 L3422 2013 3618 103*2^2128242+1 640667 L3787 2014 3619 185*2^2127966-1 640584 L1959 2019 3620 3762*70^347127+1 640487 L4876 2019 3621 253*2^2126968+1 640284 L1935 2014 3622 583*2^2126166+1 640043 L1741 2014 3623 999*2^2125575+1 639865 L1741 2014 3624 7*848^218439-1 639677 L5410 2020 3625 587*2^2124947+1 639676 L3838 2014 3626 451*2^2124636+1 639582 L1741 2014 3627 887*2^2124027+1 639399 L3865 2014 3628 721751*2^2123838-1 639345 L4001 2022 3629f 545*2^2122250-1 638864 L5516 2022 3630 693*2^2121393+1 638606 L3278 2014 3631 118*107^314663-1 638575 L5227 2021 3632 8331405*2^2120345-1 638295 L2055 2013 3633 975*2^2119209+1 637949 L1158 2014 3634 33*2^2118570-1 637755 L3345 2013 3635 117*2^2117600-1 637464 L1959 2019 3636 254*5^911506-1 637118 p292 2010 3637f 579*2^2116044-1 636996 L5516 2022 3638 1139*2^2115949+1 636968 L3865 2014 3639 771*2^2115741+1 636905 L1675 2014 3640 411*2^2115559+1 636850 L2840 2014 3641 34*3^1334729+1 636830 L4799 2021 3642 189*2^2115473+1 636824 L3784 2014 Divides GF(2115468,6) 3643 929*2^2114679+1 636585 L3035 2014 3644f 571*2^2113491-1 636227 L5516 2022 3645 1065*2^2113463+1 636219 L2826 2014 3646 609179*2^2111132-1 635520 L5410 2022 3647 591*2^2111001+1 635478 L1360 2014 3648 357*2^2109585-1 635051 L5546 2022 3649 1051*2^2109344+1 634979 L3035 2014 3650 433*2^2109146+1 634919 L1935 2014 3651 519*2^2108910+1 634848 L1356 2014 3652 1047*2^2108751+1 634801 L3824 2014 3653 257*2^2108554-1 634741 L5313 2021 3654 3261*46^381439+1 634245 L5000 2019 3655 765*2^2106027+1 633981 L3838 2014 3656 503*2^2106013+1 633976 L1741 2014 3657 316903*10^633806+1 633812 L3532 2014 Generalized Cullen 3658 113*2^2104825+1 633618 L3785 2014 3659 381*2^2103999+1 633370 L2322 2014 3660 1246461300659*2^2103424-1 633206 L2484 2015 3661 57*2^2103370-1 633180 L2055 2011 3662 539*2^2102167+1 632819 L3125 2014 3663 1425*2^2101260-1 632546 L1134 2020 3664 1001*2^2101062-1 632486 L4518 2020 3665 179*894^214290-1 632445 L5209 2020 3666 687*2^2100243+1 632239 L3867 2014 3667 329*2^2099771+1 632097 L2507 2014 3668 35*2^2099769+1 632095 L3432 2013 3669 405*2^2099716+1 632081 L3154 2014 3670 575*2^2098483+1 631710 L3168 2014 3671f 523*2^2098043-1 631577 L5516 2022 3672 1005*2^2097683-1 631469 L4518 2021 3673f 2509589*2^2097152-1 631313 L466 2022 3674 522335*2^2097154-1 631312 L466 2022 3675 695265*2^2097153-1 631312 L466 2020 3676 208703*2^2097153+1 631312 L466 2018 3677 28401*2^2097152+1 631311 L4547 2017 3678 399*2^2096857-1 631220 L5546 2022 3679 907*2^2095896+1 630931 L1129 2014 3680 815730721*2^2095440+1 630800 L466 2019 Generalized Fermat 3681 2503*2^2094587-1 630537 L4113 2017 3682 14641*2^2093384+1 630176 L181 2017 Generalized Fermat 3683 103*2^2093350+1 630164 L3432 2013 3684 4001*2^2093286-1 630146 L1959 2014 3685 14172*1027^209226-1 630103 L4001 2018 3686 369*2^2093022+1 630065 L3514 2014 3687 217*2^2092673-1 629960 L2484 2018 3688 2188*253^262084+1 629823 L5410 2020 3689 68*920^212407+1 629532 L4001 2017 3690 165*2^2090645+1 629350 L1209 2014 3691 1119*2^2090509+1 629309 L2520 2014 3692 941*2^2090243+1 629229 L1356 2014 3693f 435*2^2089948-1 629140 L5516 2022 3694 62722^131072+1 628808 g308 2003 Generalized Fermat 3695 401*2^2088713+1 628768 L3035 2014 3696 1702*1021^208948+1 628734 L5410 2021 3697 819*2^2088423+1 628681 L3890 2014 3698 363*2^2088182-1 628608 L5545 2022 3699f 423*2^2088102-1 628584 L5516 2022 3700 1009*2^2087690+1 628461 L3728 2014 3701 85*2^2087651-1 628448 L2338 2013 3702 467*2^2085835+1 627902 L3625 2014 3703 563528*13^563528-1 627745 p262 2009 Generalized Woodall 3704 55*2^2084305-1 627441 L3887 2021 3705 (146^144882-1)^2-2 627152 p405 2022 3706 437960*3^1313880+1 626886 L2777 2012 Generalized Cullen 3707 18*984^209436-1 626843 L5410 2019 3708 247*2^2082202+1 626808 L3294 2014 3709 107*2^2081775+1 626679 L3432 2013 Divides GF(2081774,6) 3710 159*2^2081069-1 626467 L1959 2019 3711 27*634^223550+1 626409 L4001 2018 3712 399*2^2080579-1 626320 L5546 2022 3713 655*2^2080562+1 626315 L3859 2014 3714 201*2^2080464+1 626285 L1741 2014 3715 269328*211^269328+1 626000 p354 2012 Generalized Cullen 3716 153*2^2079401+1 625965 L3601 2014 3717 279*2^2079167+1 625895 L2413 2014 3718 692*95^316400-1 625755 L4444 2019 3719 643*2^2078306+1 625636 L3035 2014 3720 79*2^2078162+1 625591 L2117 2013 3721 1485*2^2077172+1 625295 L1134 2015 3722 405*2^2076673-1 625144 L5516 2022 3723 239*2^2076663+1 625141 L2413 2014 3724 1003*2^2076535-1 625103 L51 2008 3725 2186*7^739474-1 624932 p258 2011 3726 73*2^2075936+1 624921 L3464 2013 3727 807*2^2075519+1 624797 L3555 2014 3728 585*2^2075384-1 624756 L5516 2022 3729 1425*2^2075382+1 624756 L1134 2015 3730 65*2^2073229+1 624106 L1480 2013 3731 693*2^2072564+1 623907 L3290 2014 3732 55*552^227540-1 623903 L4786 2019 3733 375*2^2071598+1 623616 L2413 2014 3734 73*2^2071592+1 623614 L1480 2013 3735 125*2^2071555+1 623603 L3432 2013 3736 1107*2^2071480+1 623581 L2520 2014 3737 6207*28^430803-1 623444 L1471 2014 3738 299*2^2070979+1 623430 L1741 2014 3739 99*2^2070908-1 623408 L1862 2015 3740 19062*1027^206877-1 623029 L4444 2018 3741 891*2^2069024+1 622842 L2520 2014 3742 943*2^2068944+1 622818 L1741 2014 3743 579*2^2068647+1 622728 L2967 2014 3744 911*2^2068497+1 622683 L1741 2014 3745 501*2^2067915-1 622508 L5551 2022 3746 1005*2^2067272+1 622314 L3895 2014 3747 441*2^2067233-1 622302 L5516 2022 3748 3474*5^890253+1 622264 L5410 2021 3749 393*2^2066540+1 622094 L3700 2014 3750 44*950^208860-1 621929 L4187 2021 3751 951*2^2065180+1 621685 L1403 2014 3752 915*2^2064663+1 621529 L3035 2014 3753 213*2^2064426-1 621457 L1863 2017 3754 29*468^232718+1 621416 L4832 2018 3755 1455*2^2064103-1 621361 L1134 2016 3756a 983*2^2064020-1 621335 L2257 2023 3757 824*423^236540-1 621238 L5410 2021 3758 447*2^2063218-1 621094 L5551 2022 3759d 9756404*15^527590-1 620501 L5630 2022 3760 9*2^2060941-1 620407 L503 2008 3761a 813*2^2060392-1 620243 L2257 2023 3762 1455*2^2059553+1 619991 L1134 2015 3763 659*2^2058623+1 619711 L3860 2014 3764 128448*151^284308-1 619506 L4001 2018 3765 477*2^2057225-1 619290 L5516 2022 3766a 909*2^2056937-1 619203 L2257 2023 3767 575*2^2056081+1 618945 L1935 2014 3768 1095*2^2055975+1 618914 L3518 2014 3769 589*2^2055877-1 618884 L5516 2022 3770 3*10^618853+1 618854 p300 2012 3771 225*2^2055433-1 618750 L2484 2022 3772 819*2^2054470+1 618461 L2826 2014 3773 969*2^2054054+1 618335 L3668 2014 3774 3394*28^427262+1 618320 p385 2015 3775 318564*151^283711-1 618206 L4444 2018 3776 675*2^2053578+1 618192 L1792 2014 3777 178998*151^283702-1 618186 L4001 2018 3778 551*2^2051922-1 617693 L5516 2022 3779 281*2^2051865+1 617676 L5519 2022 3780 5916*277^252878-1 617654 L5410 2020 3781 739*2^2051658+1 617614 L3838 2014 3782 71*2^2051313+1 617509 L1480 2013 3783 265*2^2051155-1 617462 L2484 2018 3784 779*2^2050881+1 617380 L3453 2014 3785 75*2^2050637-1 617306 L2055 2011 3786 377*2^2050148-1 617159 L2235 2022 3787 935*2^2050113+1 617149 L3696 2014 3788 847*2^2049400+1 616934 L2322 2014 3789 4998*235^260170-1 616885 L5410 2019 3790 541*2^2049193-1 616872 L5516 2022 3791 73*2^2048754+1 616739 L3432 2013 3792 30*712^215913+1 615889 L4444 2022 3793 527*2^2045751+1 615836 L4123 2014 3794 785*2^2045419+1 615736 L3861 2014 3795 195*2^2044789+1 615546 L3744 2014 3796 537*2^2044162+1 615357 L1741 2014 3797 413*2^2043829+1 615257 L1300 2014 3798 1682*655^218457-1 615231 L4925 2022 3799 431*2^2043666-1 615208 L5516 2022 3800 1334*567^223344-1 615000 L5410 2021 3801 345*2^2042295+1 614795 L2562 2014 3802a 777*2^2041710-1 614619 L2257 2023 3803 216848*151^282017-1 614514 L4700 2018 3804 104*579^222402-1 614428 L4001 2018 3805 57257*2^2040062-1 614125 L4812 2019 3806 1069*2^2039562+1 613973 L1741 2014 3807 625*2^2039416+1 613929 L1741 2014 Generalized Fermat 3808 7188*313^245886-1 613624 L5410 2020 3809 1085*2^2038005+1 613504 L2520 2014 3810 125*2^2037752-1 613427 L2444 2014 3811 1069*2^2036902+1 613172 L3876 2014 3812 10020*171^274566+1 613109 L5410 2019 3813 417*2^2036482+1 613045 L1847 2014 3814 701*2^2035955+1 612887 L2823 2014 3815 1025*2^2034405+1 612420 L1741 2014 3816 651*2^2034352+1 612404 L3459 2014 3817 121*2^2033941-1 612280 L162 2006 3818 19683*2^2033900+1 612270 L1823 2019 3819 57*2^2033643+1 612190 L3432 2013 3820 4175*2^2032552-1 611863 L1959 2017 3821 249*2^2031803+1 611637 L2327 2014 3822 783*2^2031629+1 611585 L2126 2014 3823 10005*2^2031284+1 611482 p168 2022 3824 (290^124116-1)^2-2 611246 p403 2019 3825a 767*2^2030354-1 611201 L2257 2023 3826 872*268^251714-1 611199 L5410 2019 3827a 921*2^2030231-1 611164 L2257 2023 3828 4157*2^2029894-1 611063 L1959 2017 3829 293028*151^280273-1 610714 L4001 2018 3830 285*2^2028495+1 610641 L2594 2014 3831a 615*2^2028140-1 610534 L2257 2023 3832 775*2^2027562+1 610360 L1204 2014 3833 199*686^215171-1 610297 L4001 2018 3834 4190*235^257371-1 610248 L5410 2019 3835 621*2^2026864+1 610150 L3446 2014 3836 357*2^2026846+1 610144 L2163 2014 3837 425*2^2026610-1 610074 L5516 2022 3838 122112*151^279966-1 610045 L4001 2018 3839 879*2^2026501+1 610041 L1139 2014 3840 4185*2^2026400-1 610011 L1959 2017 3841 787*2^2026242+1 609963 L2122 2014 3842 2*3^1277862+1 609696 L5043 2020 3843 273*2^2024810-1 609531 L5118 2020 3844 919*2^2024094+1 609316 L1741 2014 3845 325*2^2024035-1 609298 L4076 2015 3846a 811*2^2023885-1 609254 L2257 2023 3847 235*2^2023486+1 609133 L2594 2014 3848 559*2^2023437-1 609118 L5516 2022 3849 195*2^2023030+1 608996 L4122 2014 3850 8*10^608989-1 608990 p297 2011 Near-repdigit 3851 1485*2^2022873+1 608949 L1134 2015 3852 233*2^2022801+1 608927 L3767 2014 3853 521*2^2022059+1 608704 L3760 2014 3854 569*2^2021884-1 608651 L5516 2022 3855 5678*1027^202018-1 608396 L4001 2018 3856 94*790^209857+1 608090 L4001 2018 3857 19650619*2^2019807-1 608030 L3432 2022 3858 431*2^2019693+1 607991 L2100 2014 3859 1155*2^2019244+1 607857 L3873 2014 3860 195*2^2018866+1 607742 L2413 2014 3861 59506*6^780877+1 607646 p254 2013 3862 4101*2^2018133-1 607523 L1959 2017 3863 2152*177^270059+1 607089 L5410 2020 3864 5844*693^213666+1 606972 L5410 2022 3865 4081*2^2015959-1 606868 L1959 2017 3866 4191*2^2015150-1 606625 L1959 2017 3867 45*2^2014557+1 606444 L1349 2012 Divides GF(2014552,10) 3868 251749*2^2013995-1 606279 L436 2007 Woodall 3869 126*523^222906-1 605973 L4001 2017 3870 1023*2^2012570+1 605847 L1741 2014 3871 403*2^2012412+1 605799 L3538 2014 3872 1173*2^2012185+1 605732 L1413 2014 3873 85*730^211537+1 605701 L4001 2018 3874 Phi(3,-1449889^49152) 605684 L4142 2017 Generalized unique 3875 751*2^2010924+1 605352 L3859 2014 3876 101*2^2009735+1 604993 L3432 2013 3877b 915*2^2009048-1 604787 L2257 2023 3878 1069*2^2008558+1 604640 L1595 2014 3879 881*2^2008309+1 604565 L3260 2014 3880 959*2^2008035+1 604482 L1422 2014 3881 633*2^2007897+1 604441 L3857 2014 3882 143*2^2007888-1 604437 L384 2016 3883 4*5^864751-1 604436 L4881 2019 3884 223*2^2007748+1 604395 L1741 2014 3885 461*2^2007631+1 604360 L1300 2014 3886 1731*352^237258-1 604191 L5410 2022 3887 477*2^2006719+1 604086 L3803 2014 3888 428551*2^2006520+1 604029 g411 2011 3889 6844*565^219383+1 603757 L5580 2022 3890 1097*2^2005203+1 603630 L3868 2014 3891 Phi(3,-1373894^49152) 603386 L4142 2016 Generalized unique 3892 6*5^862923+1 603159 L4965 2020 3893 493*2^2002964+1 602955 L3800 2014 3894 315*2^2002904+1 602937 L3790 2014 3895 77*2^2002742-1 602888 L2074 2013 3896 585*2^2002589+1 602843 L3035 2014 3897 1059*2^2001821+1 602612 L2103 2014 3898 249*2^2001627-1 602553 L1862 2015 3899 47*158^273942-1 602307 L541 2020 3900 1115*2^2000291+1 602151 L3588 2014 3901 891*2^2000268+1 602144 L3440 2014 3902 1067*792^207705-1 602083 L5410 2021 3903c 841*2^1999951-1 602049 L2257 2023 3904 17872*430^228564+1 601921 L4955 2020 3905 343388*151^276191-1 601820 L4700 2018 3906 537*2^1999105-1 601794 L5516 2022 3907 657*2^1998854+1 601718 L2520 2013 Divides GF(1998852,10) 3908 Phi(3,-1316236^49152) 601555 L4142 2016 Generalized unique 3909 573*2^1998232+1 601531 L1300 2013 3910 1323*2^1998103-1 601493 L1828 2016 3911 Phi(3,-1310544^49152) 601370 L4142 2016 Generalized unique 3912 1274*3^1260173+1 601259 L5410 2021 3913 561*2^1996865-1 601120 L5516 2022 3914 669*2^1995918+1 600835 L2659 2013 3915 19861029*2^1995311-1 600656 L895 2013 3916 261*2^1995105+1 600589 L3378 2013 3917 68398*1027^199397+1 600503 L4001 2018 3918 1031*2^1994741+1 600480 L2626 2014 3919 577*2^1994634+1 600448 L3035 2013 3920 497*2^1994051+1 600272 L2413 2013 3921 8331405*2^1993674-1 600163 L260 2011 3922c 655*2^1993685-1 600162 L5598 2023 3923 1965*2^1993666-1 600157 L4113 2022 3924 467917*2^1993429-1 600088 L160 2005 3925 137137*2^1993201-1 600019 L321 2007 3926c 781*2^1993173-1 600008 L2257 2023 3927b 2*7^709976+2*7^211441+1 600000 CH9 2023 3928 589*2^1992774+1 599888 L2322 2013 3929 209*2^1992071+1 599676 L3422 2013 3930 2955*2^1991780-1 599589 L1862 2019 3931 317*2^1991592-1 599532 L1809 2014 3932 Phi(3,-1249158^49152) 599322 L4142 2016 Generalized unique 3933 547*2^1990606+1 599235 L3173 2013 3934 17*2^1990299+1 599141 g267 2006 Divides GF(1990298,3) 3935 508*1017^199220-1 599122 L4700 2017 3936c 885*2^1990215-1 599118 L5184 2023 3937 1606*877^203564+1 599092 L5410 2022 3938 105*2^1989208-1 598814 L1959 2014 3939 1925975*2^1989191+1 598813 L5327 2022 3940 1019*2^1988959+1 598740 L3514 2013 3941 1455*2^1988795-1 598691 L1134 2015 3942 629*2^1988579+1 598625 L2117 2013 3943 101*2^1988279+1 598534 L3141 2013 Divides GF(1988278,12) 3944 733*2^1988086+1 598477 L3502 2013 3945 135*2^1987735+1 598370 L1300 2013 3946 162434*5^856004-1 598327 L3410 2013 3947 749*2^1986977+1 598143 L1492 2013 3948 4141*2^1986959-1 598138 L1959 2016 3949 34*3^1253399+1 598025 L4799 2020 3950 3792*217^255934-1 597984 L5410 2020 3951 32*236^251993+1 597959 L4786 2019 3952 174344*5^855138-1 597722 L3354 2013 3953 6292*1027^198459+1 597678 L4001 2018 3954 4125*2^1984855-1 597505 L1959 2017 3955 8331405*2^1984565-1 597421 L260 2011 3956 1133*2^1984488-1 597394 L1828 2016 3957 195*2^1983875-1 597209 L1828 2014 3958 2631730144*10^597115+1 597125 L4789 2022 3959c 675*2^1982779-1 596879 L2257 2023 3960 1071855*2^1981910-1 596621 L5340 2021 3961 523895*2^1981910-1 596621 L5340 2021 3962 496177*2^1981910+1 596621 L5340 2021 3963 445*2^1980900+1 596313 L3577 2013 3964 731*2^1980503+1 596194 L3035 2013 3965 1147*2^1978390+1 595558 L1741 2013 3966 5758*211^256223+1 595539 L5410 2020 3967b 4*5^851878+1 595438 L4965 2023 Generalized Fermat 3968 25*2^1977369-1 595249 L426 2008 3969 245478*151^273168-1 595233 L4001 2018 3970 1197*2^1977152-1 595186 L1828 2016 3971 43*780^205685+1 594863 L5410 2019 3972 1234*95^300749-1 594802 L4444 2019 3973 866*183^262883+1 594763 L3610 2015 3974 386*117^287544+1 594698 L5410 2020 3975 1149*2^1975451-1 594674 L1828 2016 3976c 651*2^1974918-1 594513 L2257 2023 3977 381*2^1974841-1 594489 L1809 2014 3978 19920911*2^1974666-1 594441 L806 2017 3979 Phi(3,-1109580^49152) 594264 L4142 2016 Generalized unique 3980 148323*2^1973319-1 594034 L587 2011 3981 705*2^1972428+1 593763 L3043 2013 3982 549*2^1971947-1 593618 L5516 2022 3983 74*894^201093+1 593496 L5410 2022 3984 549*2^1971183+1 593388 L2840 2013 3985 4197*2^1970430-1 593163 L1959 2016 3986 1387*2^1970033-1 593043 L1828 2016 3987f 92163*2^1969778+1 592968 L5115 2022 3988 1616*277^242731-1 592869 L5410 2020 3989f 84969*2^1969323+1 592831 L5115 2022 3990 1693*396^228140+1 592642 L5410 2021 3991 441*2^1968431+1 592560 L3035 2013 3992 1485*2^1968400-1 592551 L1134 2014 3993 1159*2^1968190+1 592488 L3035 2013 3994 731*2^1968039+1 592442 L3682 2013 3995 833*2^1967841+1 592383 L3744 2013 3996 989*2^1967819+1 592376 L3738 2013 3997 1035*2^1967708+1 592343 L3739 2013 3998 148*789^204455+1 592325 L5410 2019 3999 1309*2^1967613-1 592314 L1828 2016 4000 449*2^1967140-1 592171 L5516 2022 4001c 611*2^1966866-1 592089 L2257 2023 4002 4025*2^1966732-1 592049 L1959 2016 4003 203*2^1966689+1 592035 L1408 2013 4004 101594*151^271697-1 592027 L4001 2018 4005c 921*2^1966634-1 592019 L2257 2023 4006 273*2^1966630+1 592018 L2532 2013 4007 93*2^1965880+1 591791 L1210 2011 4008 465*2^1965363-1 591636 L5516 2022 4009 253*2^1965215-1 591592 L3345 2012 4010 1089*2^1964781+1 591462 L3737 2013 4011c 657*2^1964578-1 591400 L2257 2023 4012 10*173^264234+1 591369 L1471 2015 4013 1089*2^1964474+1 591369 L3736 2013 Generalized Fermat 4014 125*2^1963964-1 591215 L1959 2014 4015 Phi(3,-1020993^49152) 590711 L4142 2016 Generalized unique 4016 175*2^1962288+1 590710 L2137 2013 Divides GF(1962284,10) 4017 102088*6^759012-1 590632 L4521 2019 4018 4065*2^1961907-1 590597 L1959 2016 4019c 609*2^1961889-1 590591 L2257 2023 4020 113*2^1960341+1 590124 L3091 2013 4021 57406*5^844253-1 590113 L3313 2012 4022 1010036096^65536+1 590109 L4704 2022 Generalized Fermat 4023 225*2^1960083+1 590047 L3548 2013 Divides GF(1960078,6) 4024 1111*2^1959625-1 589909 L1828 2016 4025 24838*421^224768+1 589860 L5410 2021 4026 803*2^1959445+1 589855 L2724 2013 4027 552*360^230680+1 589691 L5410 2021 4028c 915*2^1958653-1 589617 L2257 2023 4029 6166*3^1235741+1 589603 L5365 2021 4030c 727*2^1958505-1 589572 L2257 2023 4031 45*2^1957377-1 589231 L1862 2014 4032 1065*2^1957291-1 589207 L1828 2016 4033 1149*2^1957223+1 589186 L1935 2013 4034 6326*333^233552+1 589126 L4001 2017 4035 129*2^1956915+1 589093 L2826 2013 4036 229*2^1956294+1 588906 L3548 2013 4037 74*500^218184-1 588874 p355 2013 4038 27*342^232379+1 588856 L5410 2021 4039c 801*2^1956058-1 588836 L2257 2023 4040 525*2^1955409-1 588640 L5516 2022 4041 1045*2^1955356+1 588624 L1186 2013 4042 112*113^286643-1 588503 L426 2012 4043 1137*2^1954730+1 588436 L3733 2013 4044 673*2^1954456+1 588353 L3666 2013 4045 Phi(3,-965206^49152) 588313 L4142 2017 Generalized unique 4046 121*2^1954243-1 588288 L162 2006 4047 351*2^1954003+1 588217 L2413 2013 4048c 829*2^1953661-1 588114 L2257 2023 4049 539*2^1953060-1 587933 L5516 2022 4050 641*2^1952941+1 587897 L3487 2013 4051 188378*151^269725-1 587730 L4001 2018 4052 4027*2^1951909-1 587587 L1959 2016 4053 1019*138^274533+1 587471 L5410 2020 4054 Phi(3,94259^59049) 587458 p269 2014 Generalized unique 4055 1173*2^1951169+1 587364 L3171 2013 4056 1101*2^1950812+1 587256 L2719 2013 4057 P587124 587124 p414 2020 4058 3317*2^1949958-1 587000 L5399 2021 4059 4007*2^1949916-1 586987 L1959 2016 4060 313*2^1949544+1 586874 L2520 2013 4061 391*2^1949159-1 586758 L2519 2014 4062 539*2^1949135+1 586751 L1130 2013 4063c 675*2^1949015-1 586715 L2257 2023 4064 1167*2^1949013-1 586715 L1828 2016 4065 351*2^1947281-1 586193 L1809 2014 4066 3068*5^838561+1 586133 L5410 2021 4067 4892*693^206286+1 586008 L5410 2022 4068 21290*745^203998-1 585919 L4189 2017 4069 111*2^1946322-1 585904 L2484 2012 4070 1209*2^1946260-1 585886 L1828 2016 4071 1339*2^1945965-1 585797 L1828 2016 4072 149*2^1945668-1 585707 L3967 2015 4073 4011*2^1945630-1 585697 L1959 2016 4074 639*2^1945473+1 585649 L2649 2013 4075 675*2^1945232+1 585577 L3688 2013 4076c 949*2^1944741-1 585429 L2257 2023 4077c 603*2^1944086-1 585231 L2257 2023 4078 30364*1027^194319+1 585210 L4001 2018 4079 417*2^1943755+1 585132 L3173 2013 4080 89*2^1943337+1 585005 L2413 2011 4081 Phi(3,-889529^49152) 584827 L4142 2016 Generalized unique 4082c 607*2^1942565-1 584774 L2257 2023 4083 269*2^1942389+1 584720 L3548 2013 4084 549*2^1942139-1 584645 L5545 2022 4085 4173*2^1941820-1 584550 L1959 2016 4086 1093*2^1941672+1 584505 L2322 2013 4087 144*471^218627-1 584397 L4064 2021 4088 193*2^1940804+1 584243 L3418 2013 4089 827*2^1940747+1 584226 L3206 2013 4090 221*2^1940211+1 584065 L2327 2013 4091 421*138^272919-1 584017 L5410 2020 4092 Phi(3,-872232^49152) 583988 L4142 2017 Generalized unique 4093d 9105446*15^496499-1 583936 L5629 2022 4094 9*10^583696+1 583697 L4789 2020 Generalized Fermat 4095 575*2^1938673+1 583602 L2019 2013 4096 1179*2^1938570+1 583571 L1300 2013 4097c 743*2^1938344-1 583503 L2257 2023 4098 865*2^1938180+1 583454 L3233 2013 4099 17702*1027^193732-1 583442 L4700 2018 4100 1091*2^1937857+1 583357 L3731 2013 4101 555*2^1937595+1 583277 L2826 2013 4102c 765*2^1937364-1 583208 L2257 2023 4103 9299*2^1937309+1 583193 L3886 2014 4104 30*386^225439+1 583120 L3610 2015 4105 34910*430^221380-1 583002 L4001 2015 4106 56064*1027^193573+1 582964 L4700 2018 4107 239*2^1936025+1 582804 L1741 2013 4108 1191*2^1935613-1 582681 L1828 2016 4109c 859*2^1935299-1 582586 L2257 2023 4110 4047*2^1934881-1 582461 L1959 2016 4111 357*2^1934704-1 582407 L1809 2014 4112 182627*2^1934664-1 582398 L3336 2012 4113 64*497^215875-1 582078 L4925 2019 4114c 771*2^1933543-1 582058 L2257 2023 4115 14172*1027^193213-1 581879 L4001 2018 4116 363*2^1932724+1 581811 L3171 2013 4117 1265*2^1932660-1 581792 L1828 2016 4118 134*383^225187+1 581705 L2012 2019 4119 143*2^1932112-1 581626 L1828 2012 4120 48764*5^831946-1 581510 L3313 2012 4121 1095*2^1931213-1 581357 L1828 2016 4122 1365*2^1931200+1 581353 L1134 2016 4123 1789*138^271671+1 581347 L5211 2020 4124 387*2^1930200+1 581051 L1129 2013 4125 2135489665061*2^1929362-1 580809 L2484 2015 4126 1101*2^1929297-1 580780 L1828 2016 4127 735*2^1929225+1 580758 L3378 2013 4128 214519*2^1929114+1 580727 g346 2006 4129 481*2^1928773-1 580622 L5516 2022 4130 1071*2^1928515-1 580544 L1828 2016 4131c 877*2^1927713-1 580303 L2257 2023 4132 2*47^346759+1 579816 g424 2011 Divides Phi(47^346759,2) 4133 3871*2^1925976+1 579781 L5327 2022 4134 633*2^1925684+1 579692 L1408 2013 4135 3580*408^222030+1 579649 L5410 2021 4136 5724*313^232269-1 579642 L5410 2020 4137 1965*2^1925248-1 579561 L4113 2022 4138 968*288^235591+1 579414 L5410 2020 4139 1283*2^1924402-1 579306 L1828 2016 4140 1005*2^1923658+1 579082 L3514 2013 4141 243*2^1923567-1 579054 L2055 2011 4142 4005*2^1923385-1 579001 L1959 2016 4143a 4508*687^204090-1 578999 L5410 2023 4144 319*2^1923378+1 578997 L3548 2013 4145 1620198*7^684923-1 578834 L4786 2021 4146c 815*2^1922594-1 578762 L2257 2023 4147 280992*151^265553-1 578640 L4001 2018 4148 851*2^1922179+1 578637 L3180 2013 4149c 685*2^1921923-1 578560 L2257 2023 4150 625*2^1921056+1 578299 L3378 2013 Generalized Fermat 4151 314159*2^1920875+1 578247 L4994 2019 4152 157*2^1920152+1 578026 L2494 2013 4153 14066*60^324990+1 577886 L4444 2018 4154c 689*2^1919392-1 577798 L2257 2023 4155 143171*2^1918679+1 577586 L4504 2017 4156 1187*2^1918188-1 577436 L1828 2015 4157 Phi(3,-747624^49152) 577407 L4142 2016 Generalized unique 4158 75492*151^264966-1 577360 L4444 2018 4159 459*2^1917881-1 577343 L5551 2022 4160 1071*2^1917749-1 577304 L1828 2015 4161 335*2^1917610-1 577261 L1809 2014 4162 51*712^202369-1 577256 L4001 2018 4163 133631*28^398790-1 577118 p255 2013 4164c 783*2^1916988-1 577074 L2257 2023 4165 191*2^1916611+1 576960 L1792 2013 4166 1087*2^1916212+1 576841 L2719 2013 4167 1065*2^1916200-1 576837 L1828 2015 4168 1682*161^261371+1 576804 L5410 2020 4169c 861*2^1915741-1 576699 L2257 2023 4170 1125*2^1915695+1 576685 L3719 2013 4171 Phi(3,-731896^49152) 576499 L4142 2016 Generalized unique 4172 63348*1027^191392+1 576396 L4001 2018 4173 93788*151^264402-1 576131 L4001 2018 4174 461*2^1913118-1 575909 L5551 2022 4175 207*2^1913067+1 575893 L1741 2013 4176 80618*151^264291-1 575889 L4001 2018 4177 849*2^1913021+1 575880 L2413 2013 4178 72844*1027^191206+1 575836 L4001 2018 4179 859*430^218562+1 575580 L5410 2020 4180 535*2^1911715-1 575487 L5545 2022 4181 280*53^333574+1 575177 L4294 2021 4182 85*2^1910520+1 575126 L2703 2011 4183 267*2^1909876-1 574933 L1828 2013 4184 4103*2^1909766-1 574901 L1959 2016 4185 621*2^1909716+1 574885 L2117 2013 4186 611*2^1909525+1 574828 L2413 2013 4187 379*2^1909097-1 574699 L1809 2014 4188 435*2^1908579+1 574543 L3385 2013 4189 4035*2^1907685-1 574275 L1959 2016 4190 291*2^1907541-1 574230 L2484 2013 4191 573*2^1907450+1 574203 L2520 2013 4192 10005*2^1906876-1 574031 L4405 2019 4193 14*814^197138-1 573796 L4001 2018 4194d 751*2^1905889-1 573733 L2257 2022 4195 19061965*2^1905351-1 573576 p286 2022 4196 263*2^1904406-1 573286 L2484 2015 4197 969*2^1904357+1 573272 L2719 2013 4198 17*962^192155+1 573234 L4786 2020 4199d 699*2^1903573-1 573036 L2257 2022 4200 27*2^1902689-1 572768 L1153 2009 4201 553*2^1902102+1 572593 L2520 2013 4202 1112*423^218014-1 572583 L5410 2021 4203 4171*2^1901433-1 572392 L1959 2016 4204 86*394^220461-1 572208 L541 2020 4205 20707410481*2^1900579-1 572142 L5327 2021 4206d 825*2^1899868-1 571921 L2257 2022 4207 271562*151^262431-1 571837 L4001 2018 4208 1323*2^1899548-1 571825 L1828 2014 4209 10005*2^1898938-1 571642 L4405 2019 4210 4806*37^364466-1 571560 L4001 2015 4211 314159*2^1898333+1 571461 L4994 2019 4212 2707*352^224386+1 571412 L5410 2021 4213 633*2^1897632+1 571247 L1741 2013 4214 451*2^1897621-1 571244 L5516 2022 4215 1131*2^1897379-1 571172 L1828 2014 4216 7092*313^228770-1 570910 L5410 2020 4217 707*2^1895035+1 570466 L3035 2013 4218 429*2^1894947-1 570439 L5516 2022 4219d 781*2^1894473-1 570297 L2257 2022 4220 3945*2^1894329-1 570254 L4036 2015 4221c 5732*29^389934-1 570243 L5660 2023 4222 Phi(3,-628716^49152) 570012 L4142 2016 Generalized unique 4223 4157*2^1892772-1 569785 L1959 2015 4224 154*730^198988+1 569770 L4001 2018 4225 10005*2^1892466-1 569694 L4405 2019 4226 1053*2^1891799-1 569492 L1828 2014 4227 687*2^1891730+1 569471 L3221 2013 4228 5758*211^244970+1 569384 L5410 2020 4229 87*2^1891391+1 569368 L2673 2011 4230d 929*2^1890324-1 569048 L2257 2022 4231 85287*2^1890011+1 568955 p254 2011 4232 221*2^1889983+1 568944 L1741 2013 4233 597*2^1889088-1 568675 L5516 2022 4234d 607*2^1888525-1 568506 L2257 2022 4235 585*2^1887819+1 568293 L3171 2013 4236 347*2^1887507+1 568199 L3548 2013 4237 391*2^1886863-1 568005 L1809 2014 4238d 759*2^1886119-1 567782 L2257 2022 4239 791*2^1885961+1 567734 L3075 2013 4240 975*2^1885724+1 567663 L1129 2013 4241 22*615^203539-1 567647 L4001 2018 4242 987*2^1885160+1 567493 L2070 2013 4243 Phi(3,-590826^49152) 567358 L4142 2017 Generalized unique 4244 744716047603963*2^1884575-1 567329 L257 2013 4245 485*2^1884579+1 567318 L3548 2013 4246 14296*421^216090+1 567086 L5410 2021 4247 879*2^1883385+1 566959 L3223 2013 4248 815730721*2^1882432+1 566678 L466 2018 Generalized Fermat 4249 693*2^1881882+1 566506 L2322 2013 4250 30*7^670289+1 566462 L3610 2014 4251 639*2^1880451+1 566075 L3141 2013 4252d 927*2^1880136-1 565981 L2257 2022 4253 277*2^1880022+1 565946 L3418 2013 4254 46498*1027^187913+1 565918 L4001 2018 4255d 747*2^1879749-1 565864 L2257 2022 4256 2655*2^1879275-1 565722 L2484 2018 4257 89*2^1879132-1 565678 L1828 2013 4258 441*2^1879067+1 565659 L2840 2013 4259 283*2^1879051-1 565654 L2484 2015 4260 214*378^219424-1 565566 L5410 2020 4261 729*2^1877995+1 565336 L1792 2013 4262 645*2^1877756+1 565264 L2981 2013 4263 Phi(3,-561180^49152) 565160 L4142 2017 Generalized unique 4264 613*2^1876758+1 564964 L2413 2013 4265 10005*2^1876648-1 564932 L4405 2019 4266 267*2^1876604+1 564917 L1792 2013 4267 345067*2^1876573-1 564911 g59 2005 4268 1063*2^1876427-1 564864 L1828 2014 4269 1389*2^1876376-1 564849 L1828 2014 4270 1183414*3^1183414+1 564639 L2841 2014 Generalized Cullen 4271 4015*2^1875453-1 564572 L1959 2014 4272 1043*2^1875213+1 564499 L2413 2013 4273 1209*2^1874804-1 564376 L1828 2014 4274 4125*2^1874718-1 564350 L1959 2015 4275 1199*2^1874495+1 564283 L2827 2013 4276 495*2^1874077+1 564157 L1344 2013 4277 505*2^1873631-1 564022 L5516 2022 4278 71*2^1873569+1 564003 L1223 2011 Divides GF(1873568,5) 4279 Phi(3,-544951^49152) 563907 L4142 2017 Generalized unique 4280c 1958*687^198762-1 563883 L4955 2023 4281 21*2^1872923-1 563808 L2074 2012 4282 4039*2^1872875-1 563796 L1959 2015 4283d 789*2^1872863-1 563791 L2257 2022 4284 439*2^1872789-1 563769 L5516 2022 4285 399878576^65536+1 563736 L4964 2019 Generalized Fermat 4286 357*2^1871600-1 563411 L2519 2014 4287 1309*2^1871045-1 563244 L1828 2014 4288d 901*2^1870997-1 563230 L2257 2022 4289d 859*2^1870639-1 563122 L2519 2022 4290 Phi(3,-533612^49152) 563010 L4142 2017 Generalized unique 4291 735*2^1870118+1 562965 L3075 2013 4292 575*2^1869989+1 562926 L3650 2013 4293 315*2^1869119-1 562664 L2235 2012 4294 19683*2^1868828+1 562578 L3784 2019 4295 400*315^225179-1 562570 L4444 2021 4296 933*2^1868602+1 562509 L3709 2013 4297 503*2^1868417+1 562453 L3378 2013 4298 1073*2^1867944-1 562311 L1828 2014 4299 2*1595^175532-1 562188 L4961 2019 4300 13162*3^1177896+1 562004 L5410 2021 4301 1115*2^1866094-1 561754 L1828 2014 4302d 955*2^1865553-1 561591 L2257 2022 4303d 621*2^1865542-1 561587 L2257 2022 4304 70*905^189879-1 561408 L541 2017 4305 407*2^1864735+1 561344 L2520 2013 4306 10005*2^1864432-1 561254 L4405 2019 4307 489*2^1864339+1 561225 L2520 2013 4308 427*2^1863702+1 561033 L3586 2013 4309 1161*2^1863637+1 561014 L3213 2013 4310d 653*2^1862782-1 560757 L2257 2022 4311 2*3^1175232+1 560729 p199 2010 4312 347*2^1861974-1 560513 L2519 2014 4313 13*2^1861732+1 560439 g267 2005 Divides GF(1861731,6) 4314 411*2^1861627+1 560409 L1741 2013 4315 281*2^1860862-1 560178 L2484 2015 4316 1165*2^1860749-1 560145 L1828 2014 4317 231*2^1860743-1 560142 L1862 2015 4318 103*2^1860103-1 559949 L2484 2012 4319 350006744^65536+1 559945 L4964 2019 Generalized Fermat 4320 11726*1027^185913-1 559895 L4001 2018 4321 2655*2^1859692-1 559827 L1862 2018 4322 161*2^1859586-1 559794 L177 2013 4323d 813*2^1859419-1 559744 L2519 2022 4324d 981*2^1859266-1 559698 L2257 2022 4325 51*2^1859193+1 559675 L1204 2011 4326 1177*2^1859144+1 559662 L3625 2013 4327 1818*378^217098+1 559572 L5410 2021 4328 1455*2^1858634-1 559508 L1134 2015 4329 8331405*2^1858587-1 559498 L260 2011 4330 8*3^1172480+1 559417 L4799 2020 4331d 663*2^1858195-1 559376 L1817 2022 4332d 671*2^1857950-1 559302 L1817 2022 4333 145*590^201814+1 559199 L5410 2022 4334 435*2^1857332-1 559116 L5551 2022 4335 669*2^1857223+1 559083 L2413 2013 4336 296990*151^256535-1 558990 L4700 2018 4337 525*2^1856834-1 558966 L5516 2022 4338 1125*2^1856703-1 558927 L1828 2014 4339 429*2^1856373-1 558827 L5516 2022 4340 52600*91^285235+1 558792 L5410 2020 4341 1155*2^1855389-1 558531 L1828 2014 4342 4031*2^1855338-1 558516 L1959 2014 4343 229*372^217261-1 558482 L4876 2019 4344 Phi(3,-478421^49152) 558349 L4142 2017 Generalized unique 4345d 917*2^1854642-1 558306 L1817 2022 4346 126072*31^374323-1 558257 L2054 2012 4347 3^1170000+3^364398+1 558232 x44 2017 4348 4918*3^1169850+1 558164 L5410 2021 4349 19*932^187910+1 557985 L5410 2022 4350 435*2^1853363-1 557921 L4036 2015 4351 1229*2^1853192-1 557870 L1828 2014 4352 3161*618^199877+1 557858 L4714 2018 4353 333*2^1853115-1 557846 L1830 2012 4354 87*2^1852590-1 557688 L2055 2011 4355 765*2^1849609+1 556791 L1792 2013 4356 137*2^1849238-1 556679 L321 2007 4357 639*2^1848903+1 556579 L3439 2013 4358 1061*268^229202-1 556537 L5410 2019 4359 261*2^1848217+1 556372 L1983 2013 4360 Phi(3,-456551^49152) 556351 L4142 2017 Generalized unique 4361e 917*2^1847872-1 556268 L2519 2022 4362 465*2^1847589-1 556183 L5516 2022 4363e 663*2^1847319-1 556102 L1817 2022 4364e 775*2^1846945-1 555989 L1817 2022 4365 88*107^273915-1 555881 L4444 2021 4366 275*2^1846390-1 555822 L2444 2014 4367 1011*2^1846173+1 555757 L3221 2013 4368 575*2^1845718-1 555620 L5516 2022 4369 1029*2^1844975+1 555396 L2626 2013 4370 133*2^1843619-1 554987 L1959 2014 4371 261*2^1843555-1 554968 L1828 2013 4372e 655*2^1843379-1 554916 L1817 2022 4373 2^120*611953#*611957^50000+1 554832 p383 2015 4374 73246*1027^184192+1 554713 L4001 2018 4375 503*2^1842034-1 554511 L5516 2022 4376 953*2^1841461+1 554338 L3612 2013 4377e 713*2^1841166-1 554250 L1817 2022 4378 4171*2^1841157-1 554248 L1959 2016 4379 19061965*2^1840922+1 554181 p286 2022 4380 1089*2^1840695-1 554108 L1828 2014 4381e 705*2^1840379-1 554013 L1817 2022 4382 105*2^1840262-1 553977 L1959 2014 4383 1009*2^1840225-1 553966 L1828 2014 4384 1323*2^1839623-1 553785 L1828 2014 4385 681*2^1839269+1 553678 L3141 2013 4386e 667*2^1839205-1 553659 L1817 2022 4387 399*2^1839019-1 553603 L1809 2014 4388 779*2^1838955+1 553584 L3640 2013 4389 503*2^1838444-1 553430 L5545 2022 4390 135*2^1838124+1 553333 L3472 2013 4391 15*2^1837873-1 553257 L632 2008 4392 28*392^213295-1 553137 L4001 2017 4393 1111*792^190801-1 553083 L5426 2021 4394 379*2^1837291-1 553083 L1809 2014 4395 333*2^1837105+1 553027 L3470 2013 4396e 825*2^1837054-1 553012 L1817 2022 4397 4167*2^1836466-1 552835 L1959 2015 4398 523061!5+1 552801 x46 2022 Multifactorial 4399 309*2^1836139+1 552736 L3460 2013 4400 271018852^65536+1 552666 L4704 2019 Generalized Fermat 4401 4061*2^1835582-1 552569 L1959 2014 4402 423*2^1835585+1 552569 L2873 2013 4403e 621*2^1835567-1 552564 L1817 2022 4404 1181*2^1834802-1 552334 L1828 2014 4405 73*2^1834526+1 552250 L1513 2011 4406 309*2^1834379+1 552206 L3471 2013 4407 3748*333^218908+1 552187 L4575 2017 4408 87*2^1834098+1 552121 L1513 2011 4409 26*578^199886-1 552073 L5415 2021 4410 1021*2^1833459-1 551930 L1828 2014 4411 34*813^189659-1 551927 L4001 2018 4412 489*2^1833431-1 551921 L5545 2022 4413 121458*151^253264-1 551862 L4001 2018 4414 1485*2^1832651-1 551687 L1134 2014 4415 3*2^1832496+1 551637 p189 2007 Divides GF(1832490,3), GF(1832494,5) 4416 549*2^1832457+1 551628 L3641 2013 4417 295*2^1832129-1 551529 L2444 2014 4418a 260099934^65536+1 551495 L4753 2023 Generalized Fermat 4419a 260015652^65536+1 551486 L5457 2023 Generalized Fermat 4420a 259990214^65536+1 551483 L4318 2023 Generalized Fermat 4421a 259918632^65536+1 551475 L5639 2023 Generalized Fermat 4422a 259745430^65536+1 551456 L5639 2023 Generalized Fermat 4423a 259727486^65536+1 551454 L5627 2023 Generalized Fermat 4424a 259726826^65536+1 551454 L5457 2023 Generalized Fermat 4425a 259701984^65536+1 551452 L5457 2023 Generalized Fermat 4426a 259673276^65536+1 551448 L4201 2023 Generalized Fermat 4427a 259465102^65536+1 551426 L5457 2023 Generalized Fermat 4428a 259274862^65536+1 551405 L5753 2023 Generalized Fermat 4429a 259240394^65536+1 551401 L5275 2023 Generalized Fermat 4430a 259111716^65536+1 551387 L5720 2023 Generalized Fermat 4431a 259108650^65536+1 551386 L5403 2023 Generalized Fermat 4432 761*2^1831569+1 551361 L2117 2013 4433a 258656540^65536+1 551337 L5143 2023 Generalized Fermat 4434a 258563862^65536+1 551327 L5332 2023 Generalized Fermat 4435a 258513334^65536+1 551321 L5457 2023 Generalized Fermat 4436 519*2^1831415+1 551314 L3277 2013 4437a 258433738^65536+1 551312 L4737 2023 Generalized Fermat 4438a 258254400^65536+1 551292 L4933 2023 Generalized Fermat 4439a 258227220^65536+1 551289 L5485 2023 Generalized Fermat 4440a 258197364^65536+1 551286 L5347 2023 Generalized Fermat 4441a 258172964^65536+1 551283 L5403 2023 Generalized Fermat 4442a 258165070^65536+1 551283 L5143 2023 Generalized Fermat 4443 517*2^1831257-1 551267 L5516 2022 4444a 257810858^65536+1 551244 L5128 2023 Generalized Fermat 4445a 257472418^65536+1 551206 L5673 2023 Generalized Fermat 4446a 257441432^65536+1 551203 L5143 2023 Generalized Fermat 4447a 257437916^65536+1 551202 L5457 2023 Generalized Fermat 4448a 257218606^65536+1 551178 L5457 2023 Generalized Fermat 4449a 257116968^65536+1 551167 L5751 2023 Generalized Fermat 4450 21*2^1830919+1 551163 g279 2004 4451a 256959206^65536+1 551149 L5639 2023 Generalized Fermat 4452a 256955844^65536+1 551149 L5070 2023 Generalized Fermat 4453a 256951594^65536+1 551149 L5748 2023 Generalized Fermat 4454a 256904910^65536+1 551143 L5452 2023 Generalized Fermat 4455a 256867298^65536+1 551139 L5452 2023 Generalized Fermat 4456a 256634902^65536+1 551113 L4968 2023 Generalized Fermat 4457a 256619040^65536+1 551112 L5588 2023 Generalized Fermat 4458a 256471420^65536+1 551095 L5457 2023 Generalized Fermat 4459a 256460156^65536+1 551094 L5347 2023 Generalized Fermat 4460a 256345726^65536+1 551081 L5588 2023 Generalized Fermat 4461a 256249136^65536+1 551071 L5588 2023 Generalized Fermat 4462 489*2^1830584-1 551064 L5516 2022 4463a 255439068^65536+1 550980 L4968 2023 Generalized Fermat 4464a 255399886^65536+1 550976 L5639 2023 Generalized Fermat 4465a 255380528^65536+1 550974 L5457 2023 Generalized Fermat 4466a 255318314^65536+1 550967 L5462 2023 Generalized Fermat 4467 197*2^1830255+1 550964 L1360 2013 4468a 255195780^65536+1 550953 L4933 2023 Generalized Fermat 4469a 255152102^65536+1 550948 L4726 2023 Generalized Fermat 4470a 255136394^65536+1 550947 L5747 2023 Generalized Fermat 4471a 254921918^65536+1 550923 L5744 2023 Generalized Fermat 4472a 254851288^65536+1 550915 L4933 2023 Generalized Fermat 4473a 254818854^65536+1 550911 L5637 2023 Generalized Fermat 4474a 254751294^65536+1 550904 L5673 2023 Generalized Fermat 4475 4*3^1154598+1 550884 L4962 2019 Generalized Fermat 4476b 254425436^65536+1 550867 L5457 2023 Generalized Fermat 4477b 254414726^65536+1 550866 L5289 2023 Generalized Fermat 4478 63708*151^252785-1 550818 L4001 2018 4479a 253748852^65536+1 550792 L4201 2023 Generalized Fermat 4480b 253589610^65536+1 550774 L4410 2023 Generalized Fermat 4481b 253452084^65536+1 550758 L4201 2023 Generalized Fermat 4482b 253430820^65536+1 550756 L4476 2023 Generalized Fermat 4483b 253289612^65536+1 550740 L5689 2023 Generalized Fermat 4484b 253088664^65536+1 550717 L5637 2023 Generalized Fermat 4485f 793*2^1829335-1 550688 L1817 2022 4486b 252660602^65536+1 550669 L4201 2023 Generalized Fermat 4487b 252625084^65536+1 550665 L4387 2023 Generalized Fermat 4488b 252476426^65536+1 550648 L5730 2023 Generalized Fermat 4489b 252397810^65536+1 550640 L5743 2023 Generalized Fermat 4490b 252289278^65536+1 550627 L4550 2023 Generalized Fermat 4491b 252140008^65536+1 550610 L4745 2023 Generalized Fermat 4492b 252137020^65536+1 550610 L4835 2023 Generalized Fermat 4493b 252040878^65536+1 550599 L4387 2023 Generalized Fermat 4494b 252014384^65536+1 550596 L4201 2023 Generalized Fermat 4495b 251843778^65536+1 550577 L5717 2023 Generalized Fermat 4496b 251822364^65536+1 550575 L5070 2023 Generalized Fermat 4497b 251343752^65536+1 550520 L4387 2023 Generalized Fermat 4498b 251239416^65536+1 550509 L5520 2023 Generalized Fermat 4499b 251188898^65536+1 550503 L4477 2023 Generalized Fermat 4500b 251042352^65536+1 550486 L4201 2023 Generalized Fermat 4501b 250919626^65536+1 550472 L4387 2023 Generalized Fermat 4502b 250903400^65536+1 550471 L4387 2023 Generalized Fermat 4503b 250782644^65536+1 550457 L4544 2023 Generalized Fermat 4504 10*3^1153674+1 550444 L4965 2020 4505b 250311180^65536+1 550403 L5723 2023 Generalized Fermat 4506b 250138704^65536+1 550384 L5741 2023 Generalized Fermat 4507b 249554320^65536+1 550317 L4387 2023 Generalized Fermat 4508b 249453420^65536+1 550306 L5297 2023 Generalized Fermat 4509b 249363372^65536+1 550295 L5070 2023 Generalized Fermat 4510b 249326008^65536+1 550291 L4387 2023 Generalized Fermat 4511 6297*46^330940-1 550277 L4001 2019 4512b 248959600^65536+1 550249 L5070 2023 Generalized Fermat 4513b 248762342^65536+1 550227 L5599 2023 Generalized Fermat 4514b 248664392^65536+1 550215 L4201 2023 Generalized Fermat 4515b 248568736^65536+1 550204 L5701 2023 Generalized Fermat 4516b 248504260^65536+1 550197 L5732 2023 Generalized Fermat 4517b 248477032^65536+1 550194 L5586 2023 Generalized Fermat 4518b 248410726^65536+1 550186 L4745 2023 Generalized Fermat 4519b 248226812^65536+1 550165 L5030 2023 Generalized Fermat 4520 220*848^187868+1 550155 L5436 2021 4521b 248042940^65536+1 550144 L4776 2023 Generalized Fermat 4522b 247845016^65536+1 550121 L4387 2023 Generalized Fermat 4523b 247742104^65536+1 550110 L5737 2023 Generalized Fermat 4524b 247726208^65536+1 550108 L4387 2023 Generalized Fermat 4525b 247709768^65536+1 550106 L4201 2023 Generalized Fermat 4526b 247680242^65536+1 550103 L4387 2023 Generalized Fermat 4527b 247613680^65536+1 550095 L5586 2023 Generalized Fermat 4528b 247577446^65536+1 550091 L5687 2023 Generalized Fermat 4529b 247502536^65536+1 550082 L5739 2023 Generalized Fermat 4530 1021*2^1827279-1 550069 L1828 2013 4531b 247230562^65536+1 550051 L5733 2023 Generalized Fermat 4532b 247226220^65536+1 550050 L4904 2023 Generalized Fermat 4533b 247100148^65536+1 550036 L5512 2023 Generalized Fermat 4534b 247017366^65536+1 550026 L4201 2023 Generalized Fermat 4535b 246971624^65536+1 550021 L4387 2023 Generalized Fermat 4536b 246884334^65536+1 550011 L5070 2023 Generalized Fermat 4537 573*2^1827066-1 550005 L5184 2022 4538b 246774708^65536+1 549998 L5656 2023 Generalized Fermat 4539b 246734222^65536+1 549994 L4894 2023 Generalized Fermat 4540b 246640716^65536+1 549983 L4999 2023 Generalized Fermat 4541b 246574332^65536+1 549975 L4387 2023 Generalized Fermat 4542b 246533046^65536+1 549970 L4387 2023 Generalized Fermat 4543b 246436278^65536+1 549959 L5701 2023 Generalized Fermat 4544b 246419086^65536+1 549957 L4201 2023 Generalized Fermat 4545b 246263728^65536+1 549939 L5722 2023 Generalized Fermat 4546b 246195704^65536+1 549931 L4201 2023 Generalized Fermat 4547b 246094116^65536+1 549920 L4387 2023 Generalized Fermat 4548b 246018622^65536+1 549911 L4201 2023 Generalized Fermat 4549b 245913880^65536+1 549899 L5490 2023 Generalized Fermat 4550b 245770616^65536+1 549882 L5460 2023 Generalized Fermat 4551b 245608914^65536+1 549864 L4584 2023 Generalized Fermat 4552b 245350104^65536+1 549834 L4999 2023 Generalized Fermat 4553b 245320688^65536+1 549830 L4933 2023 Generalized Fermat 4554b 244883840^65536+1 549779 L4763 2023 Generalized Fermat 4555b 244809426^65536+1 549771 L4387 2023 Generalized Fermat 4556b 244742918^65536+1 549763 L5070 2023 Generalized Fermat 4557b 244568286^65536+1 549743 L4933 2023 Generalized Fermat 4558b 244486036^65536+1 549733 L5460 2023 Generalized Fermat 4559f 983*2^1826160-1 549732 L1817 2022 4560b 244349268^65536+1 549717 L4933 2023 Generalized Fermat 4561b 244153974^65536+1 549694 L5734 2023 Generalized Fermat 4562b 244119564^65536+1 549690 L5512 2023 Generalized Fermat 4563c 1262*161^249078-1 549675 L5645 2023 4564b 243929822^65536+1 549668 L4201 2023 Generalized Fermat 4565b 243855048^65536+1 549660 L5512 2023 Generalized Fermat 4566b 243760384^65536+1 549649 L5459 2023 Generalized Fermat 4567b 243492890^65536+1 549617 L4550 2023 Generalized Fermat 4568b 243146354^65536+1 549577 L4387 2023 Generalized Fermat 4569b 243133328^65536+1 549575 L4763 2023 Generalized Fermat 4570b 243062860^65536+1 549567 L4549 2023 Generalized Fermat 4571b 242933786^65536+1 549552 L4387 2023 Generalized Fermat 4572b 242864832^65536+1 549544 L4201 2023 Generalized Fermat 4573b 242826544^65536+1 549539 L4763 2023 Generalized Fermat 4574b 242740738^65536+1 549529 L5731 2023 Generalized Fermat 4575b 242644232^65536+1 549518 L4387 2023 Generalized Fermat 4576b 242642004^65536+1 549518 L4745 2023 Generalized Fermat 4577 825*2^1825439+1 549515 L3289 2013 4578b 242566510^65536+1 549509 L4387 2023 Generalized Fermat 4579b 242547034^65536+1 549506 L4745 2023 Generalized Fermat 4580b 242427454^65536+1 549492 L4933 2023 Generalized Fermat 4581b 242287840^65536+1 549476 L4537 2023 Generalized Fermat 4582b 242282182^65536+1 549475 L4387 2023 Generalized Fermat 4583b 242066806^65536+1 549450 L4549 2023 Generalized Fermat 4584b 241955652^65536+1 549437 L5729 2023 Generalized Fermat 4585b 241935036^65536+1 549435 L4201 2023 Generalized Fermat 4586b 241606650^65536+1 549396 L4745 2023 Generalized Fermat 4587b 241393748^65536+1 549371 L5691 2023 Generalized Fermat 4588 679*2^1824918+1 549358 L2100 2013 4589 39*2^1824871+1 549343 L2664 2011 Divides GF(1824867,6) 4590b 241114232^65536+1 549338 L5586 2023 Generalized Fermat 4591 439*2^1824841-1 549335 L5184 2022 4592b 241077190^65536+1 549333 L4904 2023 Generalized Fermat 4593b 241062278^65536+1 549332 L4201 2023 Generalized Fermat 4594b 241027766^65536+1 549328 L5716 2023 Generalized Fermat 4595b 240956808^65536+1 549319 L5717 2023 Generalized Fermat 4596b 240935538^65536+1 549317 L4201 2023 Generalized Fermat 4597b 240913004^65536+1 549314 L4201 2023 Generalized Fermat 4598b 240897482^65536+1 549312 L5735 2023 Generalized Fermat 4599b 240880332^65536+1 549310 L5332 2023 Generalized Fermat 4600b 240836100^65536+1 549305 L4200 2023 Generalized Fermat 4601b 240831364^65536+1 549304 L4387 2023 Generalized Fermat 4602b 240699934^65536+1 549289 L4387 2023 Generalized Fermat 4603b 240671732^65536+1 549286 L4763 2023 Generalized Fermat 4604b 240636488^65536+1 549281 L5673 2023 Generalized Fermat 4605b 240608460^65536+1 549278 L4880 2023 Generalized Fermat 4606 4029*2^1824569-1 549254 L1959 2015 4607b 240403842^65536+1 549254 L4201 2023 Generalized Fermat 4608 235*2^1824515-1 549237 L2444 2014 4609b 240171474^65536+1 549226 L4387 2023 Generalized Fermat 4610 162668*5^785748-1 549220 L3190 2012 4611b 240057314^65536+1 549213 L5728 2023 Generalized Fermat 4612 389*2^1824385+1 549198 L1487 2013 4613b 239917622^65536+1 549196 L5722 2023 Generalized Fermat 4614b 239859670^65536+1 549189 L5586 2023 Generalized Fermat 4615b 239800056^65536+1 549182 L4387 2023 Generalized Fermat 4616b 239684844^65536+1 549169 L4387 2023 Generalized Fermat 4617b 239655192^65536+1 549165 L4201 2023 Generalized Fermat 4618b 239553984^65536+1 549153 L5627 2023 Generalized Fermat 4619b 239332584^65536+1 549127 L4201 2023 Generalized Fermat 4620b 239262342^65536+1 549118 L5457 2023 Generalized Fermat 4621 1135*2^1824103-1 549113 L1828 2013 4622b 239216082^65536+1 549113 L4201 2023 Generalized Fermat 4623b 239192664^65536+1 549110 L5512 2023 Generalized Fermat 4624b 239187784^65536+1 549110 L5656 2023 Generalized Fermat 4625b 238975850^65536+1 549084 L4544 2023 Generalized Fermat 4626b 238627434^65536+1 549043 L4745 2023 Generalized Fermat 4627b 238622298^65536+1 549042 L5361 2023 Generalized Fermat 4628f 687*2^1823833-1 549032 L2519 2022 4629 4005*2^1823819-1 549028 L1959 2015 4630b 238483106^65536+1 549026 L5707 2023 Generalized Fermat 4631b 238346958^65536+1 549009 L4880 2023 Generalized Fermat 4632b 238334738^65536+1 549008 L4201 2023 Generalized Fermat 4633b 238329440^65536+1 549007 L4745 2023 Generalized Fermat 4634b 238311564^65536+1 549005 L4201 2023 Generalized Fermat 4635b 238230596^65536+1 548995 L4933 2023 Generalized Fermat 4636b 238122736^65536+1 548983 L5656 2023 Generalized Fermat 4637b 238117228^65536+1 548982 L4999 2023 Generalized Fermat 4638 91179*2^1823580-1 548958 L2777 2016 4639b 237769386^65536+1 548940 L4899 2023 Generalized Fermat 4640b 237602216^65536+1 548920 L5723 2023 Generalized Fermat 4641b 237507818^65536+1 548909 L5072 2023 Generalized Fermat 4642b 237460770^65536+1 548903 L4622 2023 Generalized Fermat 4643b 237415240^65536+1 548898 L5707 2023 Generalized Fermat 4644b 237280930^65536+1 548882 L4742 2023 Generalized Fermat 4645 3874*253^228394+1 548862 L5410 2020 4646b 237064300^65536+1 548856 L5459 2023 Generalized Fermat 4647b 236986698^65536+1 548846 L5512 2023 Generalized Fermat 4648b 236868816^65536+1 548832 L4745 2023 Generalized Fermat 4649b 236739740^65536+1 548817 L5722 2023 Generalized Fermat 4650b 236552518^65536+1 548794 L4904 2023 Generalized Fermat 4651b 236451326^65536+1 548782 L5701 2023 Generalized Fermat 4652b 236393742^65536+1 548775 L4201 2023 Generalized Fermat 4653b 236290432^65536+1 548763 L4201 2023 Generalized Fermat 4654b 236083418^65536+1 548738 L4201 2023 Generalized Fermat 4655b 236082486^65536+1 548738 L5512 2023 Generalized Fermat 4656b 235956490^65536+1 548722 L5459 2023 Generalized Fermat 4657b 235943220^65536+1 548721 L4544 2023 Generalized Fermat 4658b 235558640^65536+1 548674 L4387 2023 Generalized Fermat 4659b 235371942^65536+1 548652 L5721 2023 Generalized Fermat 4660b 235232284^65536+1 548635 L4201 2023 Generalized Fermat 4661b 235041026^65536+1 548612 L5637 2023 Generalized Fermat 4662 991*2^1822216+1 548545 L1312 2013 4663b 234486044^65536+1 548544 L5036 2023 Generalized Fermat 4664b 234450388^65536+1 548540 L5047 2023 Generalized Fermat 4665b 234438406^65536+1 548539 L5520 2023 Generalized Fermat 4666b 234305770^65536+1 548523 L4308 2023 Generalized Fermat 4667b 233976000^65536+1 548483 L4201 2023 Generalized Fermat 4668b 233926532^65536+1 548476 L4201 2023 Generalized Fermat 4669b 233878722^65536+1 548471 L4892 2023 Generalized Fermat 4670b 233772308^65536+1 548458 L5539 2023 Generalized Fermat 4671b 233597866^65536+1 548436 L4308 2023 Generalized Fermat 4672b 233589678^65536+1 548435 L5548 2023 Generalized Fermat 4673b 233479292^65536+1 548422 L4326 2023 Generalized Fermat 4674b 233466434^65536+1 548420 L4622 2023 Generalized Fermat 4675b 233436506^65536+1 548417 L4201 2023 Generalized Fermat 4676b 232946282^65536+1 548357 L4745 2023 Generalized Fermat 4677b 232927810^65536+1 548355 L5419 2023 Generalized Fermat 4678b 232916696^65536+1 548353 L5719 2023 Generalized Fermat 4679b 232893592^65536+1 548351 L4880 2023 Generalized Fermat 4680b 232838420^65536+1 548344 L4308 2023 Generalized Fermat 4681b 232746236^65536+1 548333 L5470 2023 Generalized Fermat 4682b 232673338^65536+1 548324 L4326 2023 Generalized Fermat 4683b 232575128^65536+1 548312 L4387 2023 Generalized Fermat 4684 13984*24^397259+1 548306 L4806 2019 4685 1089*2^1821417+1 548305 L1741 2013 4686b 232287382^65536+1 548276 L4622 2023 Generalized Fermat 4687 552*1006^182599-1 548275 L4064 2021 4688b 232193644^65536+1 548265 L4387 2023 Generalized Fermat 4689b 232177160^65536+1 548263 L4308 2023 Generalized Fermat 4690b 232096264^65536+1 548253 L4201 2023 Generalized Fermat 4691b 232029144^65536+1 548245 L4308 2023 Generalized Fermat 4692b 232028018^65536+1 548245 L5711 2023 Generalized Fermat 4693b 232000362^65536+1 548241 L4892 2023 Generalized Fermat 4694b 231960504^65536+1 548236 L4201 2023 Generalized Fermat 4695 993*2^1821088+1 548206 L2131 2013 4696b 231670536^65536+1 548201 L4956 2023 Generalized Fermat 4697 513*2^1820982+1 548173 L2826 2013 4698b 231448074^65536+1 548173 L5701 2023 Generalized Fermat 4699b 231435970^65536+1 548172 L5718 2023 Generalized Fermat 4700b 231292156^65536+1 548154 L4622 2023 Generalized Fermat 4701b 231133096^65536+1 548135 L4726 2023 Generalized Fermat 4702b 231111012^65536+1 548132 L4308 2023 Generalized Fermat 4703b 231077756^65536+1 548128 L5707 2023 Generalized Fermat 4704b 230987634^65536+1 548117 L5548 2023 Generalized Fermat 4705b 230960736^65536+1 548113 L5288 2023 Generalized Fermat 4706b 230914166^65536+1 548108 L5711 2023 Generalized Fermat 4707b 230821134^65536+1 548096 L5676 2023 Generalized Fermat 4708b 230766608^65536+1 548089 L5717 2023 Generalized Fermat 4709b 230684974^65536+1 548079 L4308 2023 Generalized Fermat 4710b 230548088^65536+1 548062 L4308 2023 Generalized Fermat 4711b 230530128^65536+1 548060 L4201 2023 Generalized Fermat 4712b 230239312^65536+1 548024 L4387 2023 Generalized Fermat 4713b 230174934^65536+1 548016 L4201 2023 Generalized Fermat 4714b 230079528^65536+1 548005 L5459 2023 Generalized Fermat 4715b 230071200^65536+1 548004 L5548 2023 Generalized Fermat 4716b 230069646^65536+1 548003 L4549 2023 Generalized Fermat 4717b 230052046^65536+1 548001 L4387 2023 Generalized Fermat 4718b 230036022^65536+1 547999 L4201 2023 Generalized Fermat 4719b 229937222^65536+1 547987 L4892 2023 Generalized Fermat 4720b 229824620^65536+1 547973 L4308 2023 Generalized Fermat 4721b 229785792^65536+1 547968 L5539 2023 Generalized Fermat 4722b 229727466^65536+1 547961 L4892 2023 Generalized Fermat 4723b 229620050^65536+1 547948 L5548 2023 Generalized Fermat 4724f 979*2^1820167-1 547928 L1817 2022 4725 591*2^1820118-1 547913 L5516 2022 4726b 229325262^65536+1 547911 L4892 2023 Generalized Fermat 4727 933*2^1820068+1 547899 L2895 2013 4728b 229164076^65536+1 547891 L4622 2023 Generalized Fermat 4729b 229142748^65536+1 547888 L4308 2023 Generalized Fermat 4730b 229140434^65536+1 547888 L5030 2023 Generalized Fermat 4731b 229107806^65536+1 547884 L4308 2023 Generalized Fermat 4732b 228634818^65536+1 547825 L4387 2023 Generalized Fermat 4733b 228552216^65536+1 547815 L4308 2023 Generalized Fermat 4734b 228196194^65536+1 547771 L4201 2023 Generalized Fermat 4735b 228038780^65536+1 547751 L4201 2023 Generalized Fermat 4736 921*2^1819560+1 547746 L1741 2013 4737b 227649204^65536+1 547702 L4622 2023 Generalized Fermat 4738b 227510496^65536+1 547685 L4201 2023 Generalized Fermat 4739b 227380044^65536+1 547669 L5416 2023 Generalized Fermat 4740b 227324942^65536+1 547662 L4387 2023 Generalized Fermat 4741f 677*2^1819216-1 547642 L1817 2022 4742b 227153906^65536+1 547640 L5419 2023 Generalized Fermat 4743 557*2^1819191+1 547634 L2526 2013 4744 20*317^218953+1 547616 L541 2020 4745b 226834510^65536+1 547600 L5628 2023 Generalized Fermat 4746b 226806790^65536+1 547597 L5047 2023 Generalized Fermat 4747b 226590466^65536+1 547570 L4387 2023 Generalized Fermat 4748b 226456824^65536+1 547553 L4917 2023 Generalized Fermat 4749b 226305686^65536+1 547534 L5588 2023 Generalized Fermat 4750b 226278932^65536+1 547530 L4875 2023 Generalized Fermat 4751b 226271048^65536+1 547529 L4898 2023 Generalized Fermat 4752 593*2^1818825+1 547524 L3630 2013 4753b 226046502^65536+1 547501 L4544 2023 Generalized Fermat 4754b 225972638^65536+1 547492 L4201 2023 Generalized Fermat 4755b 225948526^65536+1 547489 L4201 2023 Generalized Fermat 4756 1161*2^1818637+1 547468 L2399 2013 4757b 225761764^65536+1 547465 L4210 2023 Generalized Fermat 4758 1387*2^1818593-1 547455 L1828 2012 4759b 225603822^65536+1 547445 L4201 2023 Generalized Fermat 4760b 225463688^65536+1 547428 L4387 2023 Generalized Fermat 4761b 225379390^65536+1 547417 L4904 2023 Generalized Fermat 4762 875*2^1818427+1 547405 L3035 2013 4763b 225167480^65536+1 547390 L4904 2023 Generalized Fermat 4764b 224985684^65536+1 547367 L4201 2023 Generalized Fermat 4765b 224964154^65536+1 547365 L4201 2023 Generalized Fermat 4766b 224447686^65536+1 547299 L4201 2023 Generalized Fermat 4767 229*2^1818078+1 547299 L3456 2013 4768b 224443110^65536+1 547299 L5702 2023 Generalized Fermat 4769b 224380682^65536+1 547291 L4999 2023 Generalized Fermat 4770b 224355844^65536+1 547288 L5549 2023 Generalized Fermat 4771 323473!3+1 547270 x46 2022 Multifactorial 4772b 224159044^65536+1 547263 L4537 2023 Generalized Fermat 4773 454483*2^1817935-1 547259 p77 2014 4774b 223971614^65536+1 547239 L5588 2023 Generalized Fermat 4775b 223960268^65536+1 547237 L4526 2023 Generalized Fermat 4776 127*2^1817862+1 547234 L3452 2013 4777b 223831336^65536+1 547221 L5655 2023 Generalized Fermat 4778b 223781540^65536+1 547215 L4201 2023 Generalized Fermat 4779b 223576872^65536+1 547189 L5586 2023 Generalized Fermat 4780b 223533972^65536+1 547183 L4201 2023 Generalized Fermat 4781b 223272528^65536+1 547150 L5457 2023 Generalized Fermat 4782b 223135850^65536+1 547132 L4201 2023 Generalized Fermat 4783b 223107672^65536+1 547129 L5470 2023 Generalized Fermat 4784 4065*2^1817502-1 547127 L1959 2015 4785b 223091236^65536+1 547127 L5643 2023 Generalized Fermat 4786 35*2^1817486-1 547120 L2074 2011 4787b 223010458^65536+1 547116 L5701 2023 Generalized Fermat 4788b 222916632^65536+1 547104 L5673 2023 Generalized Fermat 4789b 222728042^65536+1 547080 L5416 2023 Generalized Fermat 4790b 222721160^65536+1 547079 L5520 2023 Generalized Fermat 4791b 222542724^65536+1 547057 L5470 2023 Generalized Fermat 4792b 222465034^65536+1 547047 L4742 2023 Generalized Fermat 4793b 222281114^65536+1 547023 L5526 2023 Generalized Fermat 4794b 222276980^65536+1 547023 L5056 2023 Generalized Fermat 4795b 222276036^65536+1 547022 L4526 2023 Generalized Fermat 4796b 222161626^65536+1 547008 L4387 2023 Generalized Fermat 4797b 222062690^65536+1 546995 L5697 2023 Generalized Fermat 4798b 222057854^65536+1 546995 L5520 2023 Generalized Fermat 4799b 222041676^65536+1 546992 L5586 2023 Generalized Fermat 4800b 221958924^65536+1 546982 L4549 2023 Generalized Fermat 4801b 221743944^65536+1 546954 L4201 2023 Generalized Fermat 4802b 221726816^65536+1 546952 L5395 2023 Generalized Fermat 4803b 221707144^65536+1 546950 L4892 2023 Generalized Fermat 4804b 221673304^65536+1 546945 L5673 2023 Generalized Fermat 4805b 221467132^65536+1 546919 L4201 2023 Generalized Fermat 4806b 221424298^65536+1 546913 L4745 2023 Generalized Fermat 4807b 221390476^65536+1 546909 L4201 2023 Generalized Fermat 4808 1155*2^1816779-1 546909 L1828 2012 4809 69*2^1816739+1 546895 L1204 2011 4810b 221166352^65536+1 546880 L4201 2023 Generalized Fermat 4811b 220933684^65536+1 546850 L5697 2023 Generalized Fermat 4812b 220893032^65536+1 546845 L5713 2023 Generalized Fermat 4813b 220816904^65536+1 546835 L5713 2023 Generalized Fermat 4814b 220437240^65536+1 546786 L5730 2023 Generalized Fermat 4815b 220394408^65536+1 546780 L5712 2023 Generalized Fermat 4816b 220110520^65536+1 546744 L4387 2023 Generalized Fermat 4817b 220035568^65536+1 546734 L4201 2023 Generalized Fermat 4818b 219869474^65536+1 546713 L5347 2023 Generalized Fermat 4819b 219839762^65536+1 546709 L4999 2023 Generalized Fermat 4820b 219836394^65536+1 546708 L4387 2023 Generalized Fermat 4821b 219652976^65536+1 546685 L5676 2023 Generalized Fermat 4822b 219606206^65536+1 546679 L5711 2023 Generalized Fermat 4823 4101*2^1816007-1 546677 L1959 2015 4824b 219548268^65536+1 546671 L4201 2023 Generalized Fermat 4825b 219482172^65536+1 546662 L4387 2023 Generalized Fermat 4826b 219464964^65536+1 546660 L5674 2023 Generalized Fermat 4827b 219433754^65536+1 546656 L4905 2023 Generalized Fermat 4828b 219380876^65536+1 546649 L4387 2023 Generalized Fermat 4829b 219352956^65536+1 546646 L5691 2023 Generalized Fermat 4830b 219144800^65536+1 546619 L5297 2023 Generalized Fermat 4831b 218968550^65536+1 546596 L5297 2023 Generalized Fermat 4832b 218917036^65536+1 546589 L5533 2023 Generalized Fermat 4833b 218843090^65536+1 546579 L5681 2023 Generalized Fermat 4834b 218836566^65536+1 546579 L5707 2023 Generalized Fermat 4835b 218796596^65536+1 546573 L5658 2023 Generalized Fermat 4836b 218742112^65536+1 546566 L4201 2023 Generalized Fermat 4837b 218564820^65536+1 546543 L5520 2023 Generalized Fermat 4838b 218562116^65536+1 546543 L4905 2023 Generalized Fermat 4839b 218528914^65536+1 546539 L4387 2023 Generalized Fermat 4840b 218510440^65536+1 546536 L5637 2023 Generalized Fermat 4841b 218469788^65536+1 546531 L5019 2023 Generalized Fermat 4842b 218436882^65536+1 546527 L4904 2023 Generalized Fermat 4843b 218289568^65536+1 546507 L5687 2023 Generalized Fermat 4844b 218274630^65536+1 546505 L5561 2023 Generalized Fermat 4845b 217941154^65536+1 546462 L4763 2023 Generalized Fermat 4846b 217910546^65536+1 546458 L5708 2023 Generalized Fermat 4847b 217861586^65536+1 546452 L4745 2023 Generalized Fermat 4848b 217458896^65536+1 546399 L4999 2023 Generalized Fermat 4849b 217420558^65536+1 546394 L4387 2023 Generalized Fermat 4850b 217387670^65536+1 546390 L4387 2023 Generalized Fermat 4851b 217151030^65536+1 546359 L5709 2023 Generalized Fermat 4852b 217122336^65536+1 546355 L4201 2023 Generalized Fermat 4853b 217120952^65536+1 546355 L4201 2023 Generalized Fermat 4854 875*2^1814911+1 546346 L3691 2013 4855b 216916114^65536+1 546328 L4904 2023 Generalized Fermat 4856b 216884588^65536+1 546324 L5707 2023 Generalized Fermat 4857b 216838048^65536+1 546317 L4201 2023 Generalized Fermat 4858b 216765888^65536+1 546308 L4537 2023 Generalized Fermat 4859b 216749134^65536+1 546306 L5088 2023 Generalized Fermat 4860b 216679928^65536+1 546297 L5341 2023 Generalized Fermat 4861b 216552556^65536+1 546280 L5697 2023 Generalized Fermat 4862b 216547898^65536+1 546279 L5332 2023 Generalized Fermat 4863b 216535132^65536+1 546278 L4537 2023 Generalized Fermat 4864b 216521720^65536+1 546276 L5637 2023 Generalized Fermat 4865b 216390866^65536+1 546259 L5637 2023 Generalized Fermat 4866b 215972386^65536+1 546204 L4201 2023 Generalized Fermat 4867b 215882712^65536+1 546192 L4387 2023 Generalized Fermat 4868 18092*565^198465-1 546190 L4001 2017 4869b 215789524^65536+1 546180 L4745 2023 Generalized Fermat 4870b 215733746^65536+1 546172 L4544 2023 Generalized Fermat 4871b 215662978^65536+1 546163 L4201 2023 Generalized Fermat 4872b 215499098^65536+1 546141 L5702 2023 Generalized Fermat 4873b 215489470^65536+1 546140 L5702 2023 Generalized Fermat 4874b 215449846^65536+1 546135 L5700 2023 Generalized Fermat 4875b 215397590^65536+1 546128 L5700 2023 Generalized Fermat 4876b 215151034^65536+1 546095 L5634 2023 Generalized Fermat 4877b 214925238^65536+1 546065 L4201 2023 Generalized Fermat 4878b 214911312^65536+1 546063 L4201 2023 Generalized Fermat 4879b 214797082^65536+1 546048 L5637 2023 Generalized Fermat 4880b 214766484^65536+1 546044 L5275 2023 Generalized Fermat 4881b 214694902^65536+1 546035 L4201 2023 Generalized Fermat 4882 1029*2^1813839+1 546023 L3378 2013 4883b 214542646^65536+1 546015 L4201 2023 Generalized Fermat 4884a 214289372^65536+1 545981 L5416 2023 Generalized Fermat 4885b 214171074^65536+1 545965 L4747 2023 Generalized Fermat 4886b 214118470^65536+1 545958 L5460 2023 Generalized Fermat 4887 555*2^1813556+1 545938 L3233 2013 4888b 213943110^65536+1 545935 L5687 2023 Generalized Fermat 4889 138*273^224093-1 545930 L4444 2022 4890 33*2^1813526-1 545928 L621 2008 4891b 213761362^65536+1 545911 L4201 2023 Generalized Fermat 4892b 213701308^65536+1 545903 L4544 2023 Generalized Fermat 4893 1347*2^1813433-1 545901 L1828 2012 4894b 213541070^65536+1 545881 L5691 2023 Generalized Fermat 4895b 213534046^65536+1 545880 L4905 2023 Generalized Fermat 4896b 213452024^65536+1 545870 L4672 2023 Generalized Fermat 4897b 213439416^65536+1 545868 L4201 2023 Generalized Fermat 4898b 213002198^65536+1 545809 L4672 2023 Generalized Fermat 4899 1143*2^1813125+1 545809 L3514 2013 4900b 212976652^65536+1 545806 L4537 2023 Generalized Fermat 4901b 212902420^65536+1 545796 L5699 2023 Generalized Fermat 4902b 212893710^65536+1 545795 L4862 2023 Generalized Fermat 4903b 212583764^65536+1 545754 L4201 2023 Generalized Fermat 4904b 212505414^65536+1 545743 L5470 2023 Generalized Fermat 4905b 212396524^65536+1 545728 L4201 2023 Generalized Fermat 4906b 212365136^65536+1 545724 L4999 2023 Generalized Fermat 4907b 212220714^65536+1 545705 L4201 2023 Generalized Fermat 4908b 212076890^65536+1 545686 L5689 2023 Generalized Fermat 4909b 211774318^65536+1 545645 L4201 2023 Generalized Fermat 4910b 211619606^65536+1 545624 L4745 2023 Generalized Fermat 4911b 211556550^65536+1 545616 L4387 2023 Generalized Fermat 4912b 211445900^65536+1 545601 L4904 2023 Generalized Fermat 4913b 211436104^65536+1 545599 L5470 2023 Generalized Fermat 4914b 211414138^65536+1 545596 L4904 2023 Generalized Fermat 4915b 211217704^65536+1 545570 L4201 2023 Generalized Fermat 4916b 211140696^65536+1 545560 L5586 2023 Generalized Fermat 4917b 211043250^65536+1 545547 L4201 2023 Generalized Fermat 4918b 210839596^65536+1 545519 L4745 2023 Generalized Fermat 4919b 210811290^65536+1 545515 L5470 2023 Generalized Fermat 4920b 210773882^65536+1 545510 L5030 2023 Generalized Fermat 4921b 210770376^65536+1 545510 L4201 2023 Generalized Fermat 4922b 210753582^65536+1 545507 L4387 2023 Generalized Fermat 4923b 210720818^65536+1 545503 L4201 2023 Generalized Fermat 4924b 210645514^65536+1 545493 L5457 2023 Generalized Fermat 4925b 210573526^65536+1 545483 L5673 2023 Generalized Fermat 4926b 210396302^65536+1 545459 L5696 2023 Generalized Fermat 4927b 210304546^65536+1 545447 L5701 2023 Generalized Fermat 4928b 210291010^65536+1 545445 L4387 2023 Generalized Fermat 4929b 210172426^65536+1 545429 L5697 2023 Generalized Fermat 4930b 210152754^65536+1 545426 L5697 2023 Generalized Fermat 4931 1197*2^1811852+1 545425 L3035 2013 4932b 210096232^65536+1 545419 L4387 2023 Generalized Fermat 4933 10007*2^1811598-1 545350 L1751 2018 4934b 209489836^65536+1 545336 L4905 2023 Generalized Fermat 4935 693*2^1811517+1 545324 L2967 2013 4936b 209365170^65536+1 545319 L5005 2023 Generalized Fermat 4937b 209304316^65536+1 545311 L5539 2023 Generalized Fermat 4938b 209242136^65536+1 545303 L4737 2023 Generalized Fermat 4939b 208805780^65536+1 545243 L4745 2023 Generalized Fermat 4940b 208673358^65536+1 545225 L5696 2023 Generalized Fermat 4941b 208535566^65536+1 545206 L4755 2023 Generalized Fermat 4942b 208516246^65536+1 545204 L5459 2023 Generalized Fermat 4943b 208259754^65536+1 545169 L4387 2023 Generalized Fermat 4944 1099*2^1810686+1 545074 L3458 2013 4945b 207503472^65536+1 545065 L4201 2023 Generalized Fermat 4946b 207280568^65536+1 545034 L5692 2023 Generalized Fermat 4947b 206917080^65536+1 544985 L4742 2023 Generalized Fermat 4948b 206772626^65536+1 544965 L4999 2023 Generalized Fermat 4949b 206547106^65536+1 544934 L5656 2023 Generalized Fermat 4950b 206366824^65536+1 544909 L4774 2023 Generalized Fermat 4951 92*10^544905-1 544907 L3735 2015 Near-repdigit 4952b 206150098^65536+1 544879 L4201 2023 Generalized Fermat 4953b 206133716^65536+1 544877 L4726 2023 Generalized Fermat 4954b 206116790^65536+1 544874 L5470 2023 Generalized Fermat 4955b 206060852^65536+1 544867 L5416 2023 Generalized Fermat 4956b 205995222^65536+1 544857 L5701 2023 Generalized Fermat 4957b 205895126^65536+1 544844 L5470 2023 Generalized Fermat 4958b 205855026^65536+1 544838 L4773 2023 Generalized Fermat 4959b 205800632^65536+1 544831 L4201 2023 Generalized Fermat 4960b 205583572^65536+1 544801 L4544 2023 Generalized Fermat 4961 1305*2^1809766-1 544797 L1828 2011 4962b 205367236^65536+1 544771 L5543 2023 Generalized Fermat 4963b 205161928^65536+1 544742 L5691 2023 Generalized Fermat 4964 1185*2^1809466-1 544707 L1828 2011 4965b 204789640^65536+1 544690 L5689 2023 Generalized Fermat 4966b 204771218^65536+1 544688 L4201 2023 Generalized Fermat 4967b 204678214^65536+1 544675 L5690 2023 Generalized Fermat 4968b 204384308^65536+1 544634 L5688 2023 Generalized Fermat 4969b 204355834^65536+1 544630 L5102 2023 Generalized Fermat 4970b 204241794^65536+1 544614 L5452 2023 Generalized Fermat 4971b 204204840^65536+1 544609 L4741 2023 Generalized Fermat 4972b 204152188^65536+1 544602 L5687 2023 Generalized Fermat 4973b 204037930^65536+1 544586 L5470 2023 Generalized Fermat 4974b 204014092^65536+1 544582 L4201 2023 Generalized Fermat 4975b 204010404^65536+1 544582 L4201 2023 Generalized Fermat 4976b 203798434^65536+1 544552 L5543 2023 Generalized Fermat 4977b 203705016^65536+1 544539 L5416 2023 Generalized Fermat 4978b 203644628^65536+1 544531 L4201 2023 Generalized Fermat 4979b 203608586^65536+1 544526 L4326 2023 Generalized Fermat 4980b 203438882^65536+1 544502 L5206 2023 Generalized Fermat 4981b 203342204^65536+1 544488 L5457 2023 Generalized Fermat 4982b 203300198^65536+1 544483 L4201 2023 Generalized Fermat 4983 659*2^1808691+1 544474 L3625 2013 4984b 203231136^65536+1 544473 L4672 2023 Generalized Fermat 4985b 202970532^65536+1 544436 L5543 2023 Generalized Fermat 4986b 202905452^65536+1 544427 L5684 2023 Generalized Fermat 4987b 202851280^65536+1 544420 L4672 2023 Generalized Fermat 4988b 202820684^65536+1 544415 L5332 2023 Generalized Fermat 4989b 202712616^65536+1 544400 L4898 2023 Generalized Fermat 4990b 202629192^65536+1 544389 L5457 2023 Generalized Fermat 4991b 202562870^65536+1 544379 L4763 2023 Generalized Fermat 4992b 202473768^65536+1 544367 L4942 2023 Generalized Fermat 4993b 202370864^65536+1 544352 L5682 2023 Generalized Fermat 4994b 202317128^65536+1 544345 L4884 2023 Generalized Fermat 4995b 202311142^65536+1 544344 L5586 2023 Generalized Fermat 4996b 202011896^65536+1 544302 L5030 2023 Generalized Fermat 4997b 201772730^65536+1 544268 L5681 2023 Generalized Fermat 4998b 201708880^65536+1 544259 L5470 2023 Generalized Fermat 4999b 201629246^65536+1 544248 L4477 2023 Generalized Fermat 5000b 201617630^65536+1 544246 L4476 2023 Generalized Fermat 5001 45*2^1779971+1 535827 L1223 2011 Divides GF(1779969,5) 5002 5*2^1777515+1 535087 p148 2005 Divides GF(1777511,5), GF(1777514,6) 5003 129*2^1774709+1 534243 L2526 2013 Divides GF(1774705,12) 5004 190088*5^760352-1 531469 L2841 2012 Generalized Woodall 5005 2*191^232149+1 529540 g424 2011 Divides Phi(191^232149,2) 5006 183*2^1747660+1 526101 L2163 2013 Divides Fermat F(1747656) 5007 63*2^1686050+1 507554 L2085 2011 Divides GF(1686047,12) 5008 110059!+1 507082 p312 2011 Factorial 5009 55*2^1669798+1 502662 L2518 2011 Divides GF(1669797,12) 5010 2^1667321-2^833661+1 501914 L137 2011 Gaussian Mersenne norm 38?, generalized unique 5011 30981*14^433735-1 497121 p77 2015 Generalized Woodall 5012 1035092*3^1035092-1 493871 L3544 2013 Generalized Woodall 5013 2*359^192871+1 492804 g424 2014 Divides Phi(359^192871,2) 5014 321671*34^321671-1 492638 L4780 2019 Generalized Woodall 5015 10^490000+3*(10^7383-1)/9*10^241309+1 490001 p413 2021 Palindrome 5016 216290*167^216290-1 480757 L2777 2012 Generalized Woodall 5017 1098133#-1 476311 p346 2012 Primorial 5018 87*2^1580858+1 475888 L2487 2011 Divides GF(1580856,6) 5019 10^474500+999*10^237249+1 474501 p363 2014 Palindrome 5020 199388*233^199388-1 472028 L4780 2018 Generalized Woodall 5021 103040!-1 471794 p301 2010 Factorial 5022 3803*2^1553013+1 467508 L1957 2020 Divides GF(1553012,5) 5023 341351*22^341351-1 458243 p260 2017 Generalized Woodall 5024 135*2^1515894+1 456332 L1129 2013 Divides GF(1515890,10) 5025 2*839^155785+1 455479 g424 2014 Divides Phi(839^155785,2) 5026 13*2^1499876+1 451509 g267 2004 Divides GF(1499875,3) 5027 131*2^1494099+1 449771 L2959 2012 Divides Fermat F(1494096) 5028 7*2^1491852+1 449094 p166 2005 Divides GF(1491851,6) 5029 1286*3^937499+1 447304 L2777 2012 Generalized Cullen 5030 176660*18^353320-1 443519 p325 2011 Generalized Woodall 5031 1467763*2^1467763-1 441847 L381 2007 Woodall 5032 4125*2^1445205-1 435054 L1959 2014 Arithmetic progression (2,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5033 94550!-1 429390 p290 2010 Factorial 5034 15*2^1418605+1 427044 g279 2006 Divides GF(1418600,5), GF(1418601,6) 5035 2415*2^1413627-1 425548 L1959 2014 Arithmetic progression (2,d=2415*2^1413627-1489088842587*2^1290000) [p199] 5036 2985*2^1404274-1 422733 L1959 2014 Arithmetic progression (2,d=2985*2^1404274-770527213395*2^1290000) [p199] 5037 2^1398269-1 420921 G1 1996 Mersenne 35 5038 182402*14^364804-1 418118 p325 2011 Generalized Woodall 5039 17*2^1388355+1 417938 g267 2005 Divides GF(1388354,10) 5040 249798*47^249798-1 417693 L4780 2018 Generalized Woodall 5041 338707*2^1354830+1 407850 L124 2005 Cullen 5042 107*2^1337019+1 402485 L2659 2012 Divides GF(1337018,10) 5043 1389*2^1335434+1 402009 L1209 2015 Divides GF(1335433,10) 5044 10^400000+4*(10^102381-1)/9*10^148810+1 400001 p413 2021 Palindrome 5045 5*2^1320487+1 397507 g55 2002 Divides GF(1320486,12) 5046 94189*2^1318646+1 396957 L2777 2013 Generalized Cullen 5047 10^390636+999*10^195317+1 390637 p363 2014 Palindrome 5048 6325241166627*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=1455*2^2683953-6325241166627*2^1290000) 5049 5606879602425*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=33*2^2939063-5606879602425*2^1290000) 5050 2618163402417*2^1290001-1 388342 L927 2016 Sophie Germain (2p+1) 5051 4966510140375*2^1290000-1 388342 L3573 2020 Arithmetic progression (2,d=2227792035315*2^1290001) 5052 2996863034895*2^1290000+1 388342 L2035 2016 Twin (p+2) 5053 2996863034895*2^1290000-1 388342 L2035 2016 Twin (p) 5054 2723880039837*2^1290000-1 388342 L3829 2016 Arithmetic progression (1,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5055 2618163402417*2^1290000-1 388342 L927 2016 Sophie Germain (p) 5056 2060323099527*2^1290000-1 388342 L3606 2015 Arithmetic progression (2,d=69718264533*2^1290002) [p199] 5057 1938662032575*2^1290000-1 388341 L927 2015 Arithmetic progression (1,d=10032831585*2^1290001) [p199] 5058 1781450041395*2^1290000-1 388341 L3203 2015 Arithmetic progression (1,d=69718264533*2^1290002) [p199] 5059 5*2^1282755+1 386149 g55 2002 Divides GF(1282754,3), GF(1282748,5) 5060 15*2^1276177+1 384169 g279 2006 Divides GF(1276174,3), GF(1276174,10) 5061 1268979*2^1268979-1 382007 L201 2007 Woodall 5062 2^1257787-1 378632 SG 1996 Mersenne 34 5063 329*2^1246017+1 375092 L2085 2012 Divides Fermat F(1246013) 5064 843301#-1 365851 p302 2010 Primorial 5065 25*2^1211488+1 364696 g279 2005 Generalized Fermat, divides GF(1211487,12) 5066 10^362600+666*10^181299+1 362601 p363 2014 Palindrome 5067 2^1203793-2^601897+1 362378 L192 2006 Gaussian Mersenne norm 37, generalized unique 5068 1195203*2^1195203-1 359799 L124 2005 Woodall 5069 5245*2^1153762+1 347321 L1204 2013 Divides GF(1153761,12) 5070 29*2^1152765+1 347019 g300 2005 Divides GF(1152760,10) 5071 33*2^1130884+1 340432 L165 2006 Divides GF(1130881,12) 5072 163*2^1129934+1 340147 L1751 2010 Divides GF(1129933,10) 5073 2145*2^1099064+1 330855 L1792 2013 Divides Fermat F(1099061) 5074 Phi(3,10^160118)+(137*10^160119+731*10^159275)*(10^843-1)/999 320237 p44 2014 Palindrome 5075 Phi(3,10^160048)+(137*10^160049+731*10^157453)*(10^2595-1)/999 320097 p44 2014 Palindrome 5076 1491*2^1050764+1 316315 L2826 2013 Divides GF(1050763,10) 5077 10^314727-8*10^157363-1 314727 p235 2013 Near-repdigit, palindrome 5078 9539*2^1034437+1 311401 L1502 2013 Divides GF(1034434,10) 5079 10^300000+5*(10^48153-1)/9*10^125924+1 300001 p413 2021 Palindrome 5080 2^991961-2^495981+1 298611 x28 2005 Gaussian Mersenne norm 36, generalized unique 5081 10^290253-2*10^145126-1 290253 p235 2012 Near-repdigit, Palindrome 5082 11*2^960901+1 289262 g277 2005 Divides Fermat F(960897) 5083 10^283355-737*10^141676-1 283355 p399 2020 Palindrome 5084 Phi(3,10^137747)+(137*10^137748+731*10^129293)*(10^8454-1)/999 275495 p44 2012 Palindrome 5085 1705*2^906110+1 272770 L3174 2012 Divides Fermat F(906108) 5086 10^269479-7*10^134739-1 269479 p235 2012 Near-repdigit, Palindrome 5087 10^262144+7*(10^5193-1)/9*10^128476+1 262145 p413 2021 Palindrome 5088 2^859433-1 258716 SG 1994 Mersenne 33 5089 2^756839-1 227832 SG 1992 Mersenne 32 5090 10^223663-454*10^111830-1 223663 p363 2016 Palindrome 5091 10^220285-949*10^110141-1 220285 p363 2016 Palindrome 5092 27*2^672007+1 202296 g279 2005 Divides Fermat F(672005) 5093 667071*2^667071-1 200815 g55 2000 Woodall 5094 18543637900515*2^666668-1 200701 L2429 2012 Sophie Germain (2p+1) 5095 18543637900515*2^666667-1 200701 L2429 2012 Sophie Germain (p) 5096 3756801695685*2^666669+1 200700 L1921 2011 Twin (p+2) 5097 3756801695685*2^666669-1 200700 L1921 2011 Twin (p) 5098 659*2^617815+1 185984 L732 2009 Divides Fermat F(617813) 5099 151*2^585044+1 176118 L446 2007 Divides Fermat F(585042) 5100 392113#+1 169966 p16 2001 Primorial 5101a 213778324725*2^561418+1 169015 p430 2023 Cunningham chain 2nd kind (2p-1) 5102a 213778324725*2^561417+1 169015 p430 2023 Cunningham chain 2nd kind (p) 5103 366439#+1 158936 p16 2001 Primorial 5104b 2*893962950^16384+1 146659 p428 2023 Cunningham chain 2nd kind (2p-1) 5105b 893962950^16384+1 146659 p427 2023 Cunningham chain 2nd kind (p), generalized Fermat 5106 481899*2^481899+1 145072 gm 1998 Cullen 5107 34790!-1 142891 p85 2002 Factorial 5108 2^364289-2^182145+1 109662 p58 2001 Gaussian Mersenne norm 35, generalized unique 5109 361275*2^361275+1 108761 DS 1998 Cullen 5110 26951!+1 107707 p65 2002 Factorial 5111 65516468355*2^333333+1 100355 L923 2009 Twin (p+2) 5112 65516468355*2^333333-1 100355 L923 2009 Twin (p) 5113 (7176^24691-1)/7175 95202 CH2 2017 Generalized repunit 5114 21480!-1 83727 p65 2001 Factorial 5115 183027*2^265441-1 79911 L983 2010 Sophie Germain (2p+1) 5116 183027*2^265440-1 79911 L983 2010 Sophie Germain (p) 5117 262419*2^262419+1 79002 DS 1998 Cullen 5118 160204065*2^262148+1 78923 L5115 2021 Twin (p+2) 5119 160204065*2^262148-1 78923 L5115 2021 Twin (p) 5120 3622179275715*2^256003+1 77078 x47 2020 Cunningham chain 2nd kind (2p-1) 5121 3622179275715*2^256002+1 77077 x47 2020 Cunningham chain 2nd kind (p) 5122 648621027630345*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5123 620366307356565*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5124 648621027630345*2^253824-1 76424 x24 2009 Sophie Germain (p) 5125 620366307356565*2^253824-1 76424 x24 2009 Sophie Germain (p) 5126 2570606397*2^252763+1 76099 p364 2020 Cunningham chain 2nd kind (2p-1) 5127 2570606397*2^252762+1 76099 p364 2020 Cunningham chain 2nd kind (p) 5128 (40734^16111-1)/40733 74267 CH2 2015 Generalized repunit 5129 (64758^15373-1)/64757 73960 p170 2018 Generalized repunit 5130b 5^104824+104824^5 73269 E4 2023 ECPP 5131 primV(111534,1,27000) 72683 x25 2013 Generalized Lucas primitive part 5132 (58729^15091-1)/58728 71962 CH2 2017 Generalized repunit 5133 2*352666770^8192+1 70021 p409 2020 Cunningham chain 2nd kind (2p-1) 5134 352666770^8192+1 70021 p411 2020 Cunningham chain 2nd kind (p), generalized Fermat 5135 (27987^15313-1)/27986 68092 CH12 2020 Generalized repunit 5136 (23340^15439-1)/23339 67435 p170 2020 Generalized repunit 5137 12770275971*2^222225+1 66907 L527 2017 Twin (p+2) 5138 12770275971*2^222225-1 66907 L527 2017 Twin (p) 5139 (24741^15073-1)/24740 66218 p170 2020 Generalized repunit 5140 (63847^13339-1)/63846 64091 p170 2013 Generalized repunit 5141 12599682117*2^211088+1 63554 L4166 2022 Twin (p+2) 5142 12599682117*2^211088-1 63554 L4166 2022 Twin (p) 5143 12566577633*2^211088+1 63554 L4166 2022 Twin (p+2) 5144 12566577633*2^211088-1 63554 L4166 2022 Twin (p) 5145 1068669447*2^211089-1 63554 L4166 2020 Sophie Germain (2p+1) 5146 1068669447*2^211088-1 63553 L4166 2020 Sophie Germain (p) 5147 145823#+1 63142 p21 2000 Primorial 5148 U(15694,1,14700)+U(15694,1,14699) 61674 x45 2019 Lehmer number 5149 (28507^13831-1)/28506 61612 CH12 2020 Generalized repunit 5150 2^203789+2^101895+1 61347 O 2000 Gaussian Mersenne norm 34, generalized unique 5151 (26371^13681-1)/26370 60482 p170 2012 Generalized repunit 5152 U(24,-25,43201) 60391 CH12 2020 Generalized Lucas number 5153 99064503957*2^200009-1 60220 L95 2016 Sophie Germain (2p+1) 5154 99064503957*2^200008-1 60220 L95 2016 Sophie Germain (p) 5155 70965694293*2^200006+1 60219 L95 2016 Twin (p+2) 5156 70965694293*2^200006-1 60219 L95 2016 Twin (p) 5157 66444866235*2^200003+1 60218 L95 2016 Twin (p+2) 5158 66444866235*2^200003-1 60218 L95 2016 Twin (p) 5159 (4529^16381-1)/4528 59886 CH2 2012 Generalized repunit 5160 4884940623*2^198800+1 59855 L4166 2015 Twin (p+2) 5161 4884940623*2^198800-1 59855 L4166 2015 Twin (p) 5162d 3^125330+1968634623437000 59798 E4 2022 ECPP 5163 (9082^15091-1)/9081 59729 CH2 2014 Generalized repunit 5164 2003663613*2^195000+1 58711 L202 2007 Twin (p+2) 5165 2003663613*2^195000-1 58711 L202 2007 Twin (p) 5166 primV(27655,1,19926) 57566 x25 2013 Generalized Lucas primitive part 5167 Ramanujan tau function at 199^4518 57125 E3 2022 ECPP 5168 (43326^12041-1)/43325 55827 p170 2017 Generalized repunit 5169 12443794755*2^184517-1 55556 L3494 2021 Sophie Germain (2p+1) 5170 21749869755*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 5171 14901867165*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 5172 12443794755*2^184516-1 55555 L3494 2021 Sophie Germain (p) 5173 21749869755*2^184515-1 55555 L3494 2021 Sophie Germain (p) 5174 14901867165*2^184515-1 55555 L3494 2021 Sophie Germain (p) 5175 17976255129*2^183241+1 55172 p415 2021 Twin (p+2) 5176 17976255129*2^183241-1 55172 p415 2021 Twin (p) 5177 607095*2^176312-1 53081 L983 2009 Sophie Germain (2p+1) 5178 607095*2^176311-1 53081 L983 2009 Sophie Germain (p) 5179 (38284^11491-1)/38283 52659 CH2 2013 Generalized repunit 5180e (2^174533-1)/193594572654550537/91917886778031629891960890057 52494 E5 2022 Mersenne cofactor, ECPP 5181 191547657*2^173372+1 52199 L5116 2020 Twin (p+2) 5182 191547657*2^173372-1 52199 L5116 2020 Twin (p) 5183 38529154785*2^173250+1 52165 L3494 2014 Twin (p+2) 5184 38529154785*2^173250-1 52165 L3494 2014 Twin (p) 5185 29055814795*(2^172486-2^86243)+2^86245+1 51934 p408 2022 Consecutive primes arithmetic progression (2,d=4) 5186 11922002779*(2^172486-2^86243)+2^86245+1 51934 p408 2022 Consecutive primes arithmetic progression (2,d=6) 5187 48047305725*2^172404-1 51910 L99 2007 Sophie Germain (2p+1) 5188 48047305725*2^172403-1 51910 L99 2007 Sophie Germain (p) 5189 137211941292195*2^171961-1 51780 x24 2006 Sophie Germain (2p+1) 5190 194772106074315*2^171960+1 51780 x24 2007 Twin (p+2) 5191 194772106074315*2^171960-1 51780 x24 2007 Twin (p) 5192 137211941292195*2^171960-1 51780 x24 2006 Sophie Germain (p) 5193 100314512544015*2^171960+1 51780 x24 2006 Twin (p+2) 5194 100314512544015*2^171960-1 51780 x24 2006 Twin (p) 5195 16869987339975*2^171960+1 51779 x24 2005 Twin (p+2) 5196 16869987339975*2^171960-1 51779 x24 2005 Twin (p) 5197 (34120^11311-1)/34119 51269 CH2 2011 Generalized repunit 5198 33218925*2^169690+1 51090 g259 2002 Twin (p+2) 5199 33218925*2^169690-1 51090 g259 2002 Twin (p) 5200 U(809,1,17325)-U(809,1,17324) 50378 x45 2019 Lehmer number 5201 10^50000+65859 50001 E3 2022 ECPP 5202 R(49081) 49081 c70 2022 Repunit, unique, ECPP 5203 (50091^10357-1)/50090 48671 p170 2016 Generalized repunit 5204b 268981272*5^69421+1 48532 L5695 2023 Twin (p+2) 5205b 268981272*5^69421-1 48532 L5695 2023 Twin (p) 5206 2^160423-2^80212+1 48293 O 2000 Gaussian Mersenne norm 33, generalized unique 5207 U(67,-1,26161) 47773 x45 2019 Generalized Lucas number 5208 primV(40395,-1,15588) 47759 x23 2007 Generalized Lucas primitive part 5209 110427610*3^100003+1 47722 p415 2021 Twin (p+2) 5210 110427610*3^100003-1 47722 p415 2021 Twin (p) 5211 primV(53394,-1,15264) 47200 CH4 2007 Generalized Lucas primitive part 5212 (44497^10093-1)/44496 46911 p170 2016 Generalized repunit 5213 4931286045*2^152850-1 46023 L5389 2021 Sophie Germain (2p+1) 5214 4318624617*2^152850-1 46023 L5389 2021 Sophie Germain (2p+1) 5215 4931286045*2^152849-1 46022 L5389 2021 Sophie Germain (p) 5216 4318624617*2^152849-1 46022 L5389 2021 Sophie Germain (p) 5217 151023*2^151023-1 45468 g25 1998 Woodall 5218 (1852^13477-1)/1851 44035 p170 2015 Generalized repunit 5219 U(52245,1,9241)+U(52245,1,9240) 43595 x45 2019 Lehmer number 5220a 17147299833*2^143732-1 43278 L3494 2023 Sophie Germain (2p+1) 5221a 17147299833*2^143731-1 43278 L3494 2023 Sophie Germain (p) 5222 21195711*2^143631-1 43245 L3494 2019 Sophie Germain (2p+1) 5223 21195711*2^143630-1 43245 L3494 2019 Sophie Germain (p) 5224 (42417^9337-1)/42416 43203 p170 2015 Generalized repunit 5225 838269645*2^143166-1 43107 L3494 2019 Sophie Germain (2p+1) 5226 838269645*2^143165-1 43106 L3494 2019 Sophie Germain (p) 5227 570409245*2^143164-1 43106 L3494 2019 Sophie Germain (2p+1) 5228 570409245*2^143163-1 43106 L3494 2019 Sophie Germain (p) 5229 2830598517*2^143113-1 43091 L3494 2019 Sophie Germain (2p+1) 5230 2830598517*2^143112-1 43091 L3494 2019 Sophie Germain (p) 5231 71509*2^143019-1 43058 g23 1998 Woodall, arithmetic progression (2,d=(143018*2^83969-80047)*2^59049) [x12] 5232 U(2449,-1,12671) 42939 x45 2018 Generalized Lucas number, cyclotomy 5233 (36210^9319-1)/36209 42480 p170 2019 Generalized repunit 5234 E(11848)/7910215 40792 E8 2022 Euler irregular, ECPP 5235 10^40000+14253 40001 E3 2022 ECPP 5236 p(1289844341) 40000 c84 2020 Partitions, ECPP 5237 primV(4836,1,16704) 39616 x25 2013 Generalized Lucas primitive part 5238b (2^130439-1)/260879 39261 E9 2023 Mersenne cofactor, ECPP 5239 U(21041,-1,9059) 39159 x45 2018 Generalized Lucas number, cyclotomy 5240 tau(47^4176) 38404 E3 2022 ECPP 5241c (2^127031+1)/3 38240 E5 2023 Wagstaff, ECPP, generalized Lucas number 5242 3^78296+479975120078336 37357 E4 2022 ECPP 5243c 63^20018+20018^63 36020 E4 2023 ECPP 5244 U(5617,-1,9539) 35763 x45 2019 Generalized Lucas number, cyclotomy 5245 (2^117239+1)/3 35292 E2 2022 Wagstaff, ECPP, generalized Lucas number 5246 p(1000007396) 35219 E4 2022 Partitions, ECPP 5247 2^116224-15905 34987 c87 2017 ECPP 5248 (V(60145,1,7317)-1)/(V(60145,1,27)-1) 34841 x45 2019 Lehmer primitive part 5249 primV(38513,-1,11502) 34668 x23 2006 Generalized Lucas primitive part 5250 primV(9008,1,16200) 34168 x23 2005 Generalized Lucas primitive part 5251 (14665*10^34110-56641)/9999 34111 c89 2018 ECPP, Palindrome 5252 10000000000000000000...(34053 other digits)...00000000000000532669 34093 c84 2016 ECPP 5253 (V(28138,1,7587)-1)/(V(28138,1,27)-1) 33637 x45 2019 Lehmer primitive part 5254 U(35896,1,7260)+U(35896,1,7259) 33066 x45 2019 Lehmer number 5255 primV(6586,1,16200) 32993 x25 2013 Generalized Lucas primitive part 5256 U(1624,-1,10169) 32646 x45 2018 Generalized Lucas number, cyclotomy 5257 (V(48395,1,6921)-1)/(V(48395,1,9)-1) 32382 x45 2019 Lehmer primitive part 5258 (18^25667-1)/17 32218 E5 2022 Generalized repunit, ECPP 5259 2^106693+2^53347+1 32118 O 2000 Gaussian Mersenne norm 32, generalized unique 5260 primV(28875,1,13500) 32116 x25 2016 Generalized Lucas primitive part 5261 (2^106391-1)/286105171290931103 32010 c95 2022 Mersenne cofactor, ECPP 5262 (V(77786,1,6453)+1)/(V(77786,1,27)+1) 31429 x25 2012 Lehmer primitive part 5263 primV(10987,1,14400) 31034 x25 2005 Generalized Lucas primitive part 5264 V(148091) 30950 c81 2015 Lucas number, ECPP 5265 U(148091) 30949 x49 2021 Fibonacci number, ECPP 5266f Phi(11589,-10000) 30897 E1 2022 Unique,ECPP 5267 (V(73570,1,6309)-1)/(V(73570,1,9)-1) 30661 x25 2016 Lehmer primitive part 5268 1524633857*2^99902-1 30083 p364 2022 Arithmetic progression (4,d=928724769*2^99901) 5269 Phi(36547,-10) 29832 E1 2022 Unique, ECPP 5270 49363*2^98727-1 29725 Y 1997 Woodall 5271 U(2341,-1,8819) 29712 x25 2008 Generalized Lucas number 5272 primV(24127,-1,6718) 29433 CH3 2005 Generalized Lucas primitive part 5273 primV(12215,-1,13500) 29426 x25 2016 Generalized Lucas primitive part 5274 V(140057) 29271 c76 2014 Lucas number,ECPP 5275 U(1404,-1,9209) 28981 CH10 2018 Generalized Lucas number, cyclotomy 5276 U(23396,1,6615)+U(23396,1,6614) 28898 x45 2019 Lehmer number 5277 (2^95369+1)/3 28709 x49 2021 Generalized Lucas number, Wagstaff, ECPP 5278 primV(45922,1,11520) 28644 x25 2011 Generalized Lucas primitive part 5279 primV(205011) 28552 x39 2009 Lucas primitive part 5280 -30*Bern(10264)/(1040513*252354668864651) 28506 c94 2021 Irregular, ECPP 5281 U(16531,1,6721)-U(16531,1,6720) 28347 x36 2007 Lehmer number 5282 (V(28286,1,6309)+1)/(V(28286,1,9)+1) 28045 x25 2016 Lehmer primitive part 5283 U(5092,1,7561)+U(5092,1,7560) 28025 x25 2014 Lehmer number 5284 90825*2^90825+1 27347 Y 1997 Cullen 5285 U(5239,1,7350)-U(5239,1,7349) 27333 CH10 2017 Lehmer number 5286 U(130021) 27173 x48 2021 Fibonacci number, ECPP 5287 primV(5673,1,13500) 27028 CH3 2005 Generalized Lucas primitive part 5288 primV(44368,1,9504) 26768 CH3 2005 Generalized Lucas primitive part 5289 546351925018076058*Bern(9702)/129255048976106804786904258880518941 26709 c77 2021 Irregular, ECPP 5290 22359307*60919#+1 26383 p364 2022 Arithmetic progression (4,d=5210718*60919#) 5291 17029817*60919#+1 26383 p364 2022 Arithmetic progression (4,d=1809778*60919#) 5292f (2^87691-1)/806957040167570408395443233 26371 E1 2022 Mersenne cofactor, ECPP 5293 primV(10986,-1,9756) 26185 x23 2005 Generalized Lucas primitive part 5294 1043945909*60013#+1 25992 p155 2019 Arithmetic progression (4,d=7399459*60013#) 5295 1041073153*60013#+1 25992 p155 2019 Arithmetic progression (4,d=10142823*60013#) 5296 (2^86371-1)/41681512921035887 25984 E2 2022 Mersenne cofactor, ECPP 5297 (2^86137-1)/2584111/7747937967916174363624460881 25896 c84 2022 Mersenne cofactor, ECPP 5298 primV(11076,-1,12000) 25885 x25 2005 Generalized Lucas primitive part 5299 2^85237+2^42619+1 25659 x16 2000 Gaussian Mersenne norm 31, generalized unique 5300 primV(17505,1,11250) 25459 x25 2011 Generalized Lucas primitive part 5301 U(2325,-1,7561) 25451 x20 2013 Generalized Lucas number 5302 U(13084,-13085,6151) 25319 x45 2018 Generalized Lucas number, cyclotomy 5303 (2^84211-1)/1347377/31358793176711980763958121/33146416760423478241695\ 91561 25291 c95 2020 Mersenne cofactor, ECPP 5304 primV(42,-1,23376) 25249 x23 2007 Generalized Lucas primitive part 5305 U(1064,-1065,8311) 25158 CH10 2018 Generalized Lucas number, cyclotomy 5306 primV(7577,-1,10692) 25140 x33 2007 Generalized Lucas primitive part 5307 (2^83339+1)/3 25088 c54 2014 ECPP, generalized Lucas number, Wagstaff 5308 (2^82939-1)/883323903012540278033571819073 24938 c84 2021 Mersenne cofactor, ECPP 5309 U(1766,1,7561)-U(1766,1,7560) 24548 x25 2013 Lehmer number 5310 U(1383,1,7561)+U(1383,1,7560) 23745 x25 2013 Lehmer number 5311 798*Bern(8766)/(2267959*6468702182951641) 23743 c94 2021 Irregular, ECPP 5312 Phi(11867,-100) 23732 c47 2021 Unique, ECPP 5313 (2^78737-1)/1590296767505866614563328548192658003295567890593 23654 E2 2022 Mersenne cofactor, ECPP 5314 Phi(35421,-10) 23613 c77 2021 Unique, ECPP 5315 6917!-1 23560 g1 1998 Factorial 5316 2^77291+2^38646+1 23267 O 2000 Gaussian Mersenne norm 30, generalized unique 5317 (V(59936,1,4863)+1)/(V(59936,1,3)+1) 23220 x25 2013 Lehmer primitive part 5318 U(1118,1,7561)-U(1118,1,7560) 23047 x25 2013 Lehmer number 5319 (V(45366,1,4857)+1)/(V(45366,1,3)+1) 22604 x25 2013 Lehmer primitive part 5320d 348054*Bern(8286)/1570865077944473903275073668721 22234 E1 2022 Irregular, ECPP 5321 p(398256632) 22223 E1 2022 Partitions, ECPP 5322 U(105509)/144118801533126010445795676378394340544227572822879081 21997 E1 2022 Fibonacci cofactor, ECPP 5323 U(104911) 21925 c82 2015 Fibonacci number, ECPP 5324 Phi(1203,10^27) 21600 c47 2021 Unique, ECPP 5325 U(19258,-1,5039) 21586 x23 2007 Generalized Lucas number 5326 6380!+1 21507 g1 1998 Factorial 5327 U(43100,1,4620)+U(43100,1,4619) 21407 x25 2016 Lehmer number 5328 -E(6658)/85079 21257 c77 2020 Euler irregular, ECPP 5329 Phi(39855,-10) 21248 c95 2020 Unique, ECPP 5330 (V(23354,1,4869)-1)/(V(23354,1,9)-1) 21231 x25 2013 Lehmer primitive part 5331 U(15631,1,5040)-U(15631,1,5039) 21134 x25 2003 Lehmer number 5332 U(35759,1,4620)+U(35759,1,4619) 21033 x25 2016 Lehmer number 5333 p(355646102) 21000 E1 2022 Partitions, ECPP 5334 p(350199893) 20838 E7 2022 Partitions, ECPP 5335 U(31321,1,4620)-U(31321,1,4619) 20767 x25 2016 Lehmer number 5336 primU(105821) 20598 E1 2022 Fibonacci primitive part, ECPP 5337 primU(172179) 20540 E1 2022 Fibonacci primitive part, ECPP 5338 U(11200,-1,5039) 20400 x25 2004 Generalized Lucas number, cyclotomy 5339 Phi(23749,-10) 20160 c47 2014 Unique, ECPP 5340 U(22098,1,4620)+U(22098,1,4619) 20067 x25 2016 Lehmer number 5341 primV(112028) 20063 E1 2022 Lucas primitive part, ECPP 5342 1128330746865*2^66441-1 20013 p158 2020 Cunningham chain (4p+3) 5343 1128330746865*2^66440-1 20013 p158 2020 Cunningham chain (2p+1) 5344 1128330746865*2^66439-1 20013 p158 2020 Cunningham chain (p) 5345 4111286921397*2^66420+5 20008 c88 2019 Triplet (3) 5346 4111286921397*2^66420+1 20008 L4808 2019 Triplet (2) 5347 4111286921397*2^66420-1 20008 L4808 2019 Triplet (1) 5348 U(21412,1,4620)-U(21412,1,4619) 20004 x25 2016 Lehmer number 5349 p(322610098) 20000 E1 2022 Partitions, ECPP 5350 primV(151521) 19863 E1 2022 Lucas primitive part, ECPP 5351 V(94823) 19817 c73 2014 Lucas number, ECPP 5352 U(19361,1,4620)+U(19361,1,4619) 19802 x25 2016 Lehmer number 5353 U(8454,-1,5039) 19785 x25 2013 Generalized Lucas number 5354 U(6584,-1,5039) 19238 x23 2007 Generalized Lucas number 5355 V(91943)/551659/2390519/9687119153094919 19187 E1 2022 Lucas cofactor, ECPP 5356 (V(428,1,8019)-1)/(V(428,1,729)-1) 19184 E1 2022 Lehmer primitive part, ECPP 5357 V(91873)/3674921/193484539/167745030829 19175 E1 2022 Lucas cofactor, ECPP 5358 (2^63703-1)/42808417 19169 c59 2014 Mersenne cofactor, ECPP 5359 primU(137439) 19148 E1 2022 Fibonacci primitive part, ECPP 5360 primU(107779) 18980 E1 2022 Fibonacci primitive part, ECPP 5361 (U(162,1,8581)+U(162,1,8580))/(U(162,1,66)+U(162,1,65)) 18814 E1 2022 Lehmer primitive part, ECPP 5362 V(89849) 18778 c70 2014 Lucas number, ECPP 5363 primV(145353) 18689 c69 2013 ECPP, Lucas primitive part 5364 Phi(14943,-100) 18688 c47 2014 Unique, ECPP 5365 (U(859,1,6385)-U(859,1,6384))/(U(859,1,57)-U(859,1,56)) 18567 E1 2022 Lehmer primitive part, ECPP 5366 Phi(18827,10) 18480 c47 2014 Unique, ECPP 5367 primB(220895) 18465 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5368 primV(153279) 18283 E1 2022 Lucas primitive part, ECPP 5369 42209#+1 18241 p8 1999 Primorial 5370 (V(46662,1,3879)-1)/(V(46662,1,9)-1) 18069 x25 2012 Lehmer primitive part 5371 V(86477)/1042112515940998434071039 18049 c77 2020 Lucas cofactor, ECPP 5372 7457*2^59659+1 17964 Y 1997 Cullen 5373 primB(235015) 17856 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5374 primV(148197) 17696 E1 2022 Lucas primitive part, ECPP 5375 (V(447,1,6723)+1)/(V(447,1,81)+1) 17604 E1 2022 Lehmer primitive part, ECPP 5376 (2^58199-1)/237604901713907577052391 17497 c59 2015 Mersenne cofactor, ECPP 5377 Phi(26031,-10) 17353 c47 2014 Unique, ECPP 5378 primV(169830) 17335 E1 2022 Lucas primitive part, ECPP 5379 (V(561,1,6309)+1)/(V(561,1,9)+1) 17319 x25 2016 Lehmer primitive part 5380 U(5768,-5769,4591) 17264 x45 2018 Generalized Lucas number, cyclotomy 5381 U(9657,1,4321)-U(9657,1,4320) 17215 x23 2005 Lehmer number 5382 (2^57131-1)/61481396117165983261035042726614288722959856631 17152 c59 2015 Mersenne cofactor, ECPP 5383 U(81839) 17103 p54 2001 Fibonacci number 5384 (V(1578,1,5589)+1)/(V(1578,1,243)+1) 17098 E1 2022 Lehmer primitive part, ECPP 5385 V(81671) 17069 c66 2013 Lucas number, ECPP 5386 primV(101510) 16970 E1 2022 Lucas primitive part, ECPP 5387 primV(86756) 16920 c74 2015 Lucas primitive part, ECPP 5388 V(80761)/(23259169*24510801979) 16861 c77 2020 Lucas cofactor, ECPP 5389 6521953289619*2^55555+1 16737 p296 2013 Triplet (3) 5390 6521953289619*2^55555-1 16737 p296 2013 Triplet (2) 5391 6521953289619*2^55555-5 16737 c58 2013 Triplet (1), ECPP 5392 primV(122754) 16653 c77 2021 Lucas primitive part, ECPP 5393 U(15823,1,3960)-U(15823,1,3959) 16625 x25 2002 Lehmer number, cyclotomy 5394 p(221444161) 16569 c77 2017 Partitions, ECPP 5395 (V(1240,1,5589)-1)/(V(1240,1,243)-1) 16538 E1 2022 Lehmer primitive part, ECPP 5396 primA(201485) 16535 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5397 U(78919)/15574900936381642440917 16471 c77 2020 Fibonacci cofactor, ECPP 5398 (U(800,1,5725)-U(800,1,5724))/(U(800,1,54)-U(800,1,53)) 16464 E1 2022 Lehmer primitive part, ECPP 5399 (V(21151,1,3777)-1)/(V(21151,1,3)-1) 16324 x25 2011 Lehmer primitive part 5400 primV(123573) 16198 c77 2019 Lucas primitive part, ECPP 5401 primB(225785) 16176 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5402 V(77417)/313991497376559420151 16159 c77 2020 Lucas cofactor, ECPP 5403 (2^53381-1)/15588960193/38922536168186976769/1559912715971690629450336\ 68006103 16008 c84 2017 Mersenne cofactor, ECPP 5404 -E(5186)/(704695260558899*578291717*726274378546751504461) 15954 c63 2018 Euler irregular, ECPP 5405 primV(121227) 15890 c77 2019 Lucas primitive part, ECPP 5406 Phi(2949,-100000000) 15713 c47 2013 Unique, ECPP 5407 primU(131481) 15695 c77 2019 Fibonacci primitive part, ECPP 5408 primV(120258) 15649 c77 2019 Lucas primitive part, ECPP 5409 (U(9275,1,3961)+U(9275,1,3960))/(U(9275,1,45)+U(9275,1,44)) 15537 x38 2009 Lehmer primitive part 5410 (2^51487-1)/57410994232247/17292148963401772464767849635553 15455 c77 2018 Mersenne cofactor, ECPP 5411 primB(183835) 15368 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5412 primU(77387) 15319 c77 2019 Fibonacci primitive part, ECPP 5413 primB(181705) 15189 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5414 primV(76568) 15034 c74 2015 Lucas primitive part, ECPP 5415 U(71983)/5614673/363946049 15028 c77 2018 Fibonacci cofactor, ECPP 5416 2494779036241*2^49800+13 15004 c93 2022 Consecutive primes arithmetic progression (3,d=6) 5417 2494779036241*2^49800+7 15004 c93 2022 Consecutive primes arithmetic progression (2,d=6) 5418 2494779036241*2^49800+1 15004 p408 2022 Consecutive primes arithmetic progression (1,d=6) 5419 primB(268665) 14972 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5420 primV(75316) 14897 c74 2015 Lucas primitive part, ECPP 5421 Phi(5015,-10000) 14848 c47 2013 Unique, ECPP 5422 primV(91322) 14847 c74 2016 Lucas primitive part, ECPP 5423 2^49207-2^24604+1 14813 x16 2000 Gaussian Mersenne norm 29, generalized unique 5424 primV(110676) 14713 c74 2016 Lucas primitive part, ECPP 5425 primA(284895) 14626 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5426 U(69239)/1384781 14464 c77 2018 Fibonacci cofactor, ECPP 5427 primV(112914) 14446 c74 2016 Lucas primitive part, ECPP 5428 primA(170575) 14258 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5429 V(68213)/7290202116115634431 14237 c77 2018 Lucas cofactor, ECPP 5430 p(158375386) 14011 E1 2022 Partitions, ECPP 5431 p(158295265) 14007 E1 2022 Partitions, ECPP 5432 p(158221457) 14004 E1 2022 Partitions, ECPP 5433 primU(67703) 13954 c77 2018 Fibonacci primitive part, ECPP 5434 U(66947)/12485272838388758877279873712131648167413 13951 c77 2017 Fibonacci cofactor, ECPP 5435 V(66533)/2128184670585621839884209100279 13875 c77 2018 Lucas cofactor, ECPP 5436 6*Bern(5534)/(89651360098907*22027790155387*114866371) 13862 c71 2014 Irregular, ECPP 5437 4410546*Bern(5526)/(4931516285027*1969415121333695957254369297) 13840 c63 2018 Irregular,ECPP 5438 primV(82630) 13814 c74 2014 Lucas primitive part, ECPP 5439 primB(163595) 13675 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5440 6*Bern(5462)/(724389557*8572589*3742097186099) 13657 c64 2013 Irregular, ECPP 5441 56667641271*2^44441+5 13389 c99 2022 Triplet (3), ECPP 5442 56667641271*2^44441+1 13389 p426 2022 Triplet (2) 5443 56667641271*2^44441-1 13389 p426 2022 Triplet (1) 5444 512792361*30941#+1 13338 p364 2022 Arithmetic progression (5,d=18195056*30941#) 5445 1815615642825*2^44046-1 13272 p395 2016 Cunningham chain (4p+3) 5446 1815615642825*2^44045-1 13272 p395 2016 Cunningham chain (2p+1) 5447 1815615642825*2^44044-1 13271 p395 2016 Cunningham chain (p) 5448 p(141528106) 13244 E6 2022 Partitions, ECPP 5449 p(141513546) 13244 E6 2022 Partitions, ECPP 5450 p(141512238) 13244 E6 2022 Partitions, ECPP 5451 p(141255053) 13232 E6 2022 Partitions, ECPP 5452 p(141150528) 13227 E6 2022 Partitions, ECPP 5453 p(141112026) 13225 E6 2022 Partitions, ECPP 5454 p(141111278) 13225 E6 2022 Partitions, ECPP 5455 p(140859260) 13213 E6 2022 Partitions, ECPP 5456 p(140807155) 13211 E6 2022 Partitions, ECPP 5457 p(140791396) 13210 E6 2022 Partitions, ECPP 5458 primU(94551) 13174 c77 2018 Fibonacci primitive part, ECPP 5459 primB(242295) 13014 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5460 U(61813)/594517433/3761274442997 12897 c77 2018 Fibonacci cofactor, ECPP 5461 (2^42737+1)/3 12865 M 2007 ECPP, generalized Lucas number, Wagstaff 5462 primU(62771) 12791 c77 2018 Fibonacci primitive part, ECPP 5463 primA(154415) 12728 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5464 primA(263865) 12570 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5465 6*Bern(5078)/(64424527603*9985070580644364287) 12533 c63 2013 Irregular, ECPP 5466 (2^41681-1)/1052945423/16647332713153/2853686272534246492102086015457 12495 c77 2015 Mersenne cofactor, ECPP 5467 (2^41521-1)/41602235382028197528613357724450752065089 12459 c54 2012 Mersenne cofactor, ECPP 5468 (2^41263-1)/(1402943*983437775590306674647) 12395 c59 2012 Mersenne cofactor, ECPP 5469 U(59369)/2442423669148466039458303756169988568809269383644075940757020\ 9763004757 12337 c79 2015 Fibonacci cofactor, ECPP 5470 primV(73549) 12324 c74 2015 Lucas primitive part, ECPP 5471 742478255901*2^40069+1 12074 p395 2016 Cunningham chain 2nd kind (4p-3) 5472 996824343*2^40074+1 12073 p395 2016 Cunningham chain 2nd kind (4p-3) 5473 664342014133*2^39840+1 12005 p408 2020 Consecutive primes arithmetic progression (3,d=30) 5474 664342014133*2^39840-29 12005 c93 2020 Consecutive primes arithmetic progression (2,d=30), ECPP 5475 664342014133*2^39840-59 12005 c93 2020 Consecutive primes arithmetic progression (1,d=30), ECPP 5476 V(56003) 11704 p193 2006 Lucas number 5477 primA(143705) 11703 c77 2017 Lucas Aurifeuillian primitive part, ECPP 5478 4207993863*2^38624+5 11637 L5354 2021 Triplet (3), ECPP 5479 4207993863*2^38624+1 11637 L5354 2021 Triplet (2) 5480 4207993863*2^38624-1 11637 L5354 2021 Triplet (1) 5481 primU(73025) 11587 c77 2015 Fibonacci primitive part, ECPP 5482 primU(67781) 11587 c77 2015 Fibonacci primitive part, ECPP 5483 primB(219165) 11557 c77 2015 Lucas Aurifeuillian primitive part, ECPP 5484 198429723072*11^11005+1 11472 L3323 2016 Cunningham chain 2nd kind (4p-3) 5485 U(54799)/4661437953906084533621577211561 11422 c8 2015 Fibonacci cofactor, ECPP 5486 U(54521)/6403194135342743624071073 11370 c8 2015 Fibonacci cofactor, ECPP 5487 primU(67825) 11336 x23 2007 Fibonacci primitive part 5488 3610!-1 11277 C 1993 Factorial 5489 U(53189)/69431662887136064191105625570683133711989 11075 c8 2014 Fibonacci cofactor, ECPP 5490 primU(61733) 11058 c77 2015 Fibonacci primitive part, ECPP 5491 14059969053*2^36672+1 11050 p364 2018 Triplet (3) 5492 14059969053*2^36672-1 11050 p364 2018 Triplet (2) 5493 14059969053*2^36672-5 11050 c67 2018 Triplet (1), ECPP 5494 778965587811*2^36627-1 11038 p395 2016 Cunningham chain (4p+3) 5495 778965587811*2^36626-1 11038 p395 2016 Cunningham chain (2p+1) 5496 778965587811*2^36625-1 11038 p395 2016 Cunningham chain (p) 5497 272879344275*2^36622-1 11036 p395 2016 Cunningham chain (4p+3) 5498 272879344275*2^36621-1 11036 p395 2016 Cunningham chain (2p+1) 5499 272879344275*2^36620-1 11036 p395 2016 Cunningham chain (p) 5500 V(52859)/1124137922466041911 11029 c8 2014 Lucas cofactor, ECPP 5501 3507!-1 10912 C 1992 Factorial 5502 V(52201)/70585804042896975505694709575919458733851279868446609 10857 c8 2015 Lucas cofactor, ECPP 5503 V(52009)/39772636393178951550299332730909 10838 c8 2015 Lucas cofactor, ECPP 5504 V(51941)/2808052157610902114547210696868337380250300924116591143641642\ 866931 10789 c8 2015 Lucas cofactor, ECPP 5505 1258566*Bern(4462)/(2231*596141126178107*4970022131749) 10763 c64 2013 Irregular, ECPP 5506 3428602715439*2^35678+13 10753 c93 2020 Consecutive primes arithmetic progression (3,d=6), ECPP 5507 3428602715439*2^35678+7 10753 c93 2020 Consecutive primes arithmetic progression (2,d=6), ECPP 5508 3428602715439*2^35678+1 10753 p408 2020 Consecutive primes arithmetic progression (1,d=6) 5509 333645655005*2^35549-1 10713 p364 2015 Cunningham chain (4p+3) 5510 333645655005*2^35548-1 10713 p364 2015 Cunningham chain (2p+1) 5511 333645655005*2^35547-1 10713 p364 2015 Cunningham chain (p) 5512 V(51349)/224417260052884218046541 10708 c8 2014 Lucas cofactor, ECPP 5513 V(51169) 10694 p54 2001 Lucas number 5514 U(51031)/95846689435051369 10648 c8 2014 Fibonacci cofactor, ECPP 5515 V(50989)/69818796119453411 10640 c8 2014 Lucas cofactor, ECPP 5516 Phi(13285,-10) 10625 c47 2012 Unique, ECPP 5517 U(50833) 10624 CH4 2005 Fibonacci number 5518 2683143625525*2^35176+13 10602 c92 2019 Consecutive primes arithmetic progression (3,d=6),ECPP 5519 2683143625525*2^35176+1 10602 p407 2019 Consecutive primes arithmetic progression (1,d=6) 5520 3020616601*24499#+1 10593 p422 2021 Arithmetic progression (6,d=56497325*24499#) 5521 2964119276*24499#+1 10593 p422 2021 Arithmetic progression (5,d=56497325*24499#) 5522 (2^35339-1)/4909884303849890402839544048623503366767426783548098123390\ 4512709297747031041 10562 c77 2015 Mersenne cofactor, ECPP 5523 1213266377*2^35000+4859 10546 c4 2014 ECPP, consecutive primes arithmetic progression (3,d=2430) 5524 1213266377*2^35000-1 10546 p44 2014 Consecutive primes arithmetic progression (1,d=2430) 5525 primU(55297) 10483 c8 2014 Fibonacci primitive part, ECPP 5526 primA(219135) 10462 c8 2014 Lucas Aurifeuillian primitive part, ECPP 5527 24029#+1 10387 C 1993 Primorial 5528 400791048*24001#+1 10378 p155 2018 Arithmetic progression (5,d=59874860*24001#) 5529 393142614*24001#+1 10378 p155 2018 Arithmetic progression (5,d=54840724*24001#) 5530 221488788*24001#+1 10377 p155 2018 Arithmetic progression (5,d=22703701*24001#) 5531 6*Bern(4306)/2153 10342 FE8 2009 Irregular, ECPP 5532 V(49391)/298414424560419239 10305 c8 2013 Lucas cofactor, ECPP 5533 23801#+1 10273 C 1993 Primorial 5534 667674063382677*2^33608+7 10132 c88 2019 Quadruplet (4), ECPP 5535 667674063382677*2^33608+5 10132 c88 2019 Quadruplet (3), ECPP 5536 667674063382677*2^33608+1 10132 L4808 2019 Quadruplet (2) 5537 667674063382677*2^33608-1 10132 L4808 2019 Quadruplet (1) 5538 Phi(427,-10^28) 10081 FE9 2009 Unique, ECPP 5539 9649755890145*2^33335+1 10048 p364 2015 Cunningham chain 2nd kind (4p-3) 5540 15162914750865*2^33219+1 10014 p364 2015 Cunningham chain 2nd kind (4p-3) 5541 32469*2^32469+1 9779 MM 1997 Cullen 5542 (2^32531-1)/(65063*25225122959) 9778 c60 2012 Mersenne cofactor, ECPP 5543 (2^32611-1)/1514800731246429921091778748731899943932296901864652928732\ 838910515860494755367311 9736 c90 2018 Mersenne cofactor, ECPP 5544 8073*2^32294+1 9726 MM 1997 Cullen 5545 V(45953)/4561241750239 9591 c56 2012 Lucas cofactor, ECPP 5546 E(3308)/39308792292493140803643373186476368389461245 9516 c8 2014 Euler irregular, ECPP 5547 Phi(5161,-100) 9505 c47 2012 Unique, ECPP 5548 primA(196035) 9359 c8 2014 Lucas Aurifeuillian primitive part, ECPP 5549 V(44507) 9302 CH3 2005 Lucas number 5550 V(43987)/175949 9188 c8 2014 Lucas cofactor, ECPP 5551 U(43399)/470400609575881344601538056264109423291827366228494341196421 9010 c8 2013 Fibonacci cofactor, ECPP 5552 primU(44113) 8916 c8 2014 Fibonacci primitive part, ECPP 5553 U(42829)/107130175995197969243646842778153077 8916 c8 2014 Fibonacci cofactor, ECPP 5554 primA(159165) 8803 c8 2013 Lucas Aurifeuillian primitive part, ECPP 5555 U(42043)/1681721 8780 c56 2012 Fibonacci cofactor, ECPP 5556 Phi(6105,-1000) 8641 c47 2010 Unique, ECPP 5557 Phi(4667,-100) 8593 c47 2009 Unique, ECPP 5558 U(40763)/643247084652261620737 8498 c8 2013 Fibonacci cofactor, ECPP 5559 primU(46711) 8367 c8 2013 Fibonacci primitive part, ECPP 5560 V(39769)/18139109172816581 8295 c8 2013 Lucas cofactor, ECPP 5561 2^27529-2^13765+1 8288 O 2000 Gaussian Mersenne norm 28, generalized unique 5562 primB(148605) 8282 c8 2013 Lucas Aurifeuillian primitive part, ECPP 5563 V(39607)/158429 8273 c46 2011 Lucas cofactor, ECPP 5564 primB(103645) 8202 c8 2013 Lucas Aurifeuillian primitive part, ECPP 5565 primU(62373) 8173 c8 2013 Fibonacci primitive part, ECPP 5566 18523#+1 8002 D 1990 Primorial 5567 primU(43121) 7975 c8 2013 Fibonacci primitive part, ECPP 5568 6*Bern(3458)/28329084584758278770932715893606309 7945 c8 2013 Irregular, ECPP 5569 U(37987)/(16117960073*94533840409*1202815961509) 7906 c39 2012 Fibonacci cofactor, ECPP 5570 U(37511) 7839 x13 2005 Fibonacci number 5571 V(37357)/20210113386303842894568629 7782 c8 2013 Lucas cofactor, ECPP 5572 U(37217)/4466041 7771 c46 2011 Fibonacci cofactor, ECPP 5573 -E(2762)/2670541 7760 c11 2004 Euler irregular, ECPP 5574 V(36779) 7687 CH3 2005 Lucas number 5575 U(35999) 7523 p54 2001 Fibonacci number, cyclotomy 5576 Phi(4029,-1000) 7488 c47 2009 Unique, ECPP 5577 V(35449) 7409 p12 2001 Lucas number 5578 V(35107)/525110138418084707309 7317 c8 2013 Lucas cofactor, ECPP 5579 U(34897)/4599458691503517435329 7272 c8 2013 Fibonacci cofactor, ECPP 5580 U(34807)/551750980997908879677508732866536453 7239 c8 2013 Fibonacci cofactor, ECPP 5581 U(34607)/13088506284255296513 7213 c8 2013 Fibonacci cofactor, ECPP 5582 Phi(9455,-10) 7200 c33 2005 Unique, ECPP 5583 -30*Bern(3176)/(169908471493279*905130251538800883547330531*4349908093\ 09147283469396721753169) 7138 c63 2016 Irregular, ECPP 5584 2154675239*16301#+1 7036 p155 2018 Arithmetic progression (6,d=141836149*16301#) 5585 primU(48965) 7012 c8 2013 Fibonacci primitive part, ECPP 5586 -10365630*Bern(3100)/(140592076277*66260150981141825531862457*17930747\ 9508256366206520177467103) 6943 c63 2016 Irregular ECPP 5587 23005*2^23005-1 6930 Y 1997 Woodall 5588 22971*2^22971-1 6920 Y 1997 Woodall 5589 15877#-1 6845 CD 1992 Primorial 5590 primU(58773) 6822 c8 2013 Fibonacci primitive part, ECPP 5591 6*Bern(2974)/19622040971147542470479091157507 6637 c8 2013 Irregular, ECPP 5592 U(30757) 6428 p54 2001 Fibonacci number, cyclotomy 5593 E(2220)/392431891068600713525 6011 c8 2013 Euler irregular, ECPP 5594 -E(2202)/53781055550934778283104432814129020709 5938 c8 2013 Euler irregular, ECPP 5595 13649#+1 5862 D 1988 Primorial 5596 274386*Bern(2622)/8518594882415401157891061256276973722693 5701 c8 2013 Irregular, ECPP 5597 18885*2^18885-1 5690 K 1988 Woodall 5598 1963!-1 5614 CD 1992 Factorial 5599 13033#-1 5610 CD 1992 Primorial 5600 289*2^18502+1 5573 K 1985 Cullen, generalized Fermat 5601 E(2028)/11246153954845684745 5412 c55 2011 Euler irregular, ECPP 5602 -30*Bern(2504)/(313*424524649821233650433*117180678030577350578887*801\ 6621720796146291948744439) 5354 c63 2013 Irregular ECPP 5603 U(25561) 5342 p54 2001 Fibonacci number 5604 -E(1990)/8338208577950624722417016286765473477033741642105671913 5258 c8 2013 Euler irregular, ECPP 5605 33957462*Bern(2370)/40685 5083 c11 2003 Irregular, ECPP 5606 4122429552750669*2^16567+7 5003 c83 2016 Quadruplet (4), ECPP 5607 4122429552750669*2^16567+5 5003 c83 2016 Quadruplet (3), ECPP 5608 4122429552750669*2^16567+1 5003 L4342 2016 Quadruplet (2) 5609 4122429552750669*2^16567-1 5003 L4342 2016 Quadruplet (1) 5610 11549#+1 4951 D 1987 Primorial 5611 E(1840)/31237282053878368942060412182384934425 4812 c4 2011 Euler irregular, ECPP 5612 7911*2^15823-1 4768 K 1988 Woodall 5613 E(1736)/(55695515*75284987831*3222089324971117) 4498 c4 2004 Euler irregular, ECPP 5614 2^14699+2^7350+1 4425 O 2000 Gaussian Mersenne norm 27, generalized unique 5615 (2^14479+1)/3 4359 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5616 62399583639*9923#-3399421517 4285 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5617 49325406476*9811#*8+1 4234 p382 2019 Cunningham chain 2nd kind (8p-7) 5618 276474*Bern(2030)/(19426085*24191786327543) 4200 c8 2003 Irregular, ECPP 5619 V(19469) 4069 x25 2002 Lucas number, cyclotomy, APR-CL assisted 5620 1477!+1 4042 D 1985 Factorial 5621 -2730*Bern(1884)/100983617849 3844 c8 2003 Irregular, ECPP 5622 2840178*Bern(1870)/85 3821 c8 2003 Irregular, ECPP 5623 12379*2^12379-1 3731 K 1985 Woodall 5624 (2^12391+1)/3 3730 M 1996 Generalized Lucas number, Wagstaff 5625 -E(1466)/167900532276654417372106952612534399239 3682 c8 2013 Euler irregular, ECPP 5626 E(1468)/(95*217158949445380764696306893*597712879321361736404369071) 3671 c4 2003 Euler irregular, ECPP 5627 101406820312263*2^12042+7 3640 c67 2018 Quadruplet (4) 5628 101406820312263*2^12042+5 3640 c67 2018 Quadruplet (3) 5629 101406820312263*2^12042+1 3640 p364 2018 Quadruplet (2) 5630 101406820312263*2^12042-1 3640 p364 2018 Quadruplet (1) 5631 2673092556681*15^3048+4 3598 c67 2015 Quadruplet (4) 5632 2673092556681*15^3048+2 3598 c67 2015 Quadruplet (3) 5633 2673092556681*15^3048-2 3598 c67 2015 Quadruplet (2) 5634 2673092556681*15^3048-4 3598 c67 2015 Quadruplet (1) 5635 2339662057597*10^3490+9 3503 c67 2013 Quadruplet (4) 5636 2339662057597*10^3490+7 3503 c67 2013 Quadruplet (3) 5637 2339662057597*10^3490+3 3503 c67 2013 Quadruplet (2) 5638 2339662057597*10^3490+1 3503 p364 2013 Quadruplet (1) 5639 6016459977*7927#-1 3407 p364 2022 Arithmetic progression (7,d=577051223*7927#) 5640 5439408754*7927#-1 3407 p364 2022 Arithmetic progression (6,d=577051223*7927#) 5641 62753735335*7919#+3399421667 3404 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5642 (2^11279+1)/3 3395 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 5643 109766820328*7877#-1 3385 p395 2016 Cunningham chain (8p+7) 5644 585150568069684836*7757#/85085+17 3344 c88 2022 Quintuplet (5), ECPP 5645 585150568069684836*7757#/85085+13 3344 c88 2022 Quintuplet (4), ECPP 5646 585150568069684836*7757#/85085+11 3344 c88 2022 Quintuplet (3), ECPP 5647 585150568069684836*7757#/85085+7 3344 c88 2022 Quintuplet (2), ECPP 5648 585150568069684836*7757#/85085+5 3344 c88 2022 Quintuplet (1), ECPP 5649 104052837*7759#-1 3343 p398 2017 Arithmetic progression (6,d=12009836*7759#) 5650 2072453060816*7699#+1 3316 p364 2019 Cunningham chain 2nd kind (8p-7) 5651 (2^10691+1)/3 3218 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5652 231692481512*7517#-1 3218 p395 2016 Cunningham chain (8p+7) 5653 (2^10501+1)/3 3161 M 1996 Generalized Lucas number, Wagstaff 5654 2^10141+2^5071+1 3053 O 2000 Gaussian Mersenne norm 26, generalized unique 5655 121152729080*7019#/1729+19 3025 c92 2019 Consecutive primes arithmetic progression (4,d=6), ECPP 5656 62037039993*7001#+7811555813 3021 x38 2013 Consecutive primes arithmetic progression (4,d=30), ECPP 5657 50946848056*7001#+7811555813 3021 x38 2013 Consecutive primes arithmetic progression (4,d=30), ECPP 5658 V(14449) 3020 DK 1995 Lucas number 5659 3124777373*7001#+1 3019 p155 2012 Arithmetic progression (7,d=481789017*7001#) 5660 2996180304*7001#+1 3019 p155 2012 Arithmetic progression (6,d=46793757*7001#) 5661 U(14431) 3016 p54 2001 Fibonacci number 5662 138281163736*6977#+1 3006 p395 2016 Cunningham chain 2nd kind (8p-7) 5663 375967981369*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5664 354362289656*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5665 285993323512*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5666 V(13963) 2919 c11 2002 Lucas number, ECPP 5667 284787490256*6701#+1 2879 p364 2015 Cunningham chain 2nd kind (8p-7) 5668 9531*2^9531-1 2874 K 1985 Woodall 5669 -E(1174)/50550511342697072710795058639332351763 2829 c8 2013 Euler irregular, ECPP 5670 6569#-1 2811 D 1992 Primorial 5671 -E(1142)/6233437695283865492412648122953349079446935570718422828539863\ 59013986902240869 2697 c77 2015 Euler irregular, ECPP 5672 -E(1078)/361898544439043 2578 c4 2002 Euler irregular, ECPP 5673 V(12251) 2561 p54 2001 Lucas number 5674 974!-1 2490 CD 1992 Factorial 5675 E(1028)/(6415*56837916301577) 2433 c4 2002 Euler irregular, ECPP 5676 E(1004)/(579851915*80533376783) 2364 c4 2002 Euler irregular, ECPP 5677 7755*2^7755-1 2339 K 1985 Woodall 5678 772463767240*5303#+1 2272 p308 2019 Cunningham chain 2nd kind (8p-7) 5679 116814018316*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10892863626*5303#) 5680 116746086504*5303#+1 2271 p406 2019 Arithmetic progression (7,d=9726011684*5303#) 5681 116242725347*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10388428124*5303#) 5682 69285767989*5303#+1 2271 p406 2019 Arithmetic progression (8,d=3026809034*5303#) 5683 V(10691) 2235 DK 1996 Lucas number 5684 872!+1 2188 D 1984 Factorial 5685 -E(958)/(23041998673*60728415169*1169782469256830327*67362435411492751\ 3970319552187639) 2183 c63 2020 Euler irregular, ECPP 5686 -E(902)/(9756496279*314344516832998594237) 2069 c4 2002 Euler irregular, ECPP 5687 4787#+1 2038 D 1985 Primorial 5688 566761969187*4733#/2+4 2034 c67 2020 Quintuplet (5) 5689 566761969187*4733#/2+2 2034 c67 2020 Quintuplet (4) 5690 566761969187*4733#/2-2 2034 c67 2020 Quintuplet (3) 5691 566761969187*4733#/2-4 2034 c67 2020 Quintuplet (2) 5692 566761969187*4733#/2-8 2034 c67 2020 Quintuplet (1) 5693 U(9677) 2023 c2 2000 Fibonacci number, ECPP 5694 126831252923413*4657#/273+13 2002 c88 2020 Quintuplet (5) 5695 126831252923413*4657#/273+9 2002 c88 2020 Quintuplet (4) 5696 126831252923413*4657#/273+7 2002 c88 2020 Quintuplet (3) 5697 126831252923413*4657#/273+3 2002 c88 2020 Quintuplet (2) 5698 126831252923413*4657#/273+1 2002 c88 2020 Quintuplet (1) 5699 6611*2^6611+1 1994 K 1985 Cullen 5700 4583#-1 1953 D 1992 Primorial 5701 U(9311) 1946 DK 1995 Fibonacci number 5702 4547#+1 1939 D 1985 Primorial 5703 4297#-1 1844 D 1992 Primorial 5704 2738129459017*4211#+3399421637 1805 c98 2022 Consecutive primes arithmetic progression (5,d=30) 5705 V(8467) 1770 c2 2000 Lucas number, ECPP 5706 4093#-1 1750 CD 1992 Primorial 5707 5795*2^5795+1 1749 K 1985 Cullen 5708 (2^5807+1)/3 1748 PM 1999 Cyclotomy, generalized Lucas number, Wagstaff 5709 54201838768*3917#-1 1681 p395 2016 Cunningham chain (16p+15) 5710 102619722624*3797#+1 1631 p395 2016 Cunningham chain 2nd kind (16p-15) 5711 V(7741) 1618 DK 1995 Lucas number 5712 394254311495*3733#/2+4 1606 c67 2017 Quintuplet (5) 5713 394254311495*3733#/2+2 1606 c67 2017 Quintuplet (4) 5714 394254311495*3733#/2-2 1606 c67 2017 Quintuplet (3) 5715 394254311495*3733#/2-4 1606 c67 2017 Quintuplet (2) 5716 394254311495*3733#/2-8 1606 c67 2017 Quintuplet (1) 5717 83*2^5318-1 1603 K 1985 Woodall 5718 2316765173284*3593#+16073 1543 c18 2016 Quintuplet (5), ECPP 5719 2316765173284*3593#+16069 1543 c18 2016 Quintuplet (4), ECPP 5720 2316765173284*3593#+16067 1543 c18 2016 Quintuplet (3), ECPP 5721 2316765173284*3593#+16063 1543 c18 2016 Quintuplet (2), ECPP 5722 2316765173284*3593#+16061 1543 c18 2016 Quintuplet (1), ECPP 5723 652229318541*3527#+3399421637 1504 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5724 16*199949435137*3499#-1 1494 p382 2016 Cunningham chain (16p+15) 5725 4713*2^4713+1 1423 K 1985 Cullen 5726 449209457832*3307#+1633050403 1408 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5727 5780736564512*3023#-1 1301 p364 2015 Cunningham chain (16p+15) 5728 2746496109133*3001#+27011 1290 c97 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5729 898966996992*3001#+1 1289 p364 2015 Cunningham chain 2nd kind (16p-15) 5730 16*2658132486528*2969#+1 1281 p382 2017 Cunningham chain 2nd kind (16p-15) 5731 16*1413951139648*2969#+1 1280 p382 2017 Cunningham chain 2nd kind (16p-15) 5732 V(5851) 1223 DK 1995 Lucas number 5733 406463527990*2801#+1633050403 1209 x38 2013 Consecutive primes arithmetic progression (5,d=30) 5734a 16*(257578748915*2777#-1)+15 1197 p429 2023 Cunningham chain (16p+15) 5735a 16*(205743162092*2777#-1)+15 1197 p429 2023 Cunningham chain (16p+15) 5736 1290733709840*2677#+1 1141 p295 2011 Cunningham chain 2nd kind (16p-15) 5737 U(5387) 1126 WM 1991 Fibonacci number 5738 1176100079*2591#+1 1101 p252 2019 Arithmetic progression (8,d=60355670*2591#) 5739 (2^3539+1)/3 1065 M 1990 First titanic by ECPP, generalized Lucas number, Wagstaff 5740 2968802755*2459#+1 1057 p155 2009 Arithmetic progression (8,d=359463429*2459#) 5741 28993093368077*2399#+19433 1037 c18 2016 Sextuplet (6), ECPP 5742 28993093368077*2399#+19429 1037 c18 2016 Sextuplet (5), ECPP 5743 28993093368077*2399#+19427 1037 c18 2016 Sextuplet (4), ECPP 5744 28993093368077*2399#+19423 1037 c18 2016 Sextuplet (3), ECPP 5745 28993093368077*2399#+19421 1037 c18 2016 Sextuplet (2), ECPP 5746 6179783529*2411#+1 1037 p102 2003 Arithmetic progression (8,d=176836494*2411#) 5747 R(1031) 1031 WD 1986 Repunit 5748 89595955370432*2371#-1 1017 p364 2015 Cunningham chain (32p+31) 5749 116040452086*2371#+1 1014 p308 2012 Arithmetic progression (9,d=6317280828*2371#) 5750 115248484057*2371#+1 1014 p308 2013 Arithmetic progression (8,d=7327002535*2371#) 5751 97336164242*2371#+1 1014 p308 2013 Arithmetic progression (9,d=6350457699*2371#) 5752 93537753980*2371#+1 1014 p308 2013 Arithmetic progression (9,d=3388165411*2371#) 5753 92836168856*2371#+1 1014 p308 2013 Arithmetic progression (9,d=127155673*2371#) 5754 69318339141*2371#+1 1014 p308 2011 Arithmetic progression (9,d=1298717501*2371#) 5755 533098369554*2357#+3399421667 1012 c98 2021 Consecutive primes arithmetic progression (6,d=30), ECPP 5756 V(4793) 1002 DK 1995 Lucas number 5757 113225039190926127209*2339#/57057+21 1002 c88 2021 Septuplet (7) 5758 113225039190926127209*2339#/57057+19 1002 c88 2021 Septuplet (6) 5759 113225039190926127209*2339#/57057+13 1002 c88 2021 Septuplet (5) 5760 113225039190926127209*2339#/57057+9 1002 c88 2021 Septuplet (4) 5761 113225039190926127209*2339#/57057+7 1002 c88 2021 Septuplet (3) 5762 V(4787) 1001 DK 1995 Lucas number ----- ------------------------------- -------- ----- ---- -------------- KEY TO PROOF-CODES (primality provers): C Caldwell, Cruncher c2 Water, Primo c4 Broadhurst, Primo c8 Broadhurst, Water, Primo c11 Oakes, Primo c18 Luhn, Primo c33 Chaglassian, Primo c39 Minovic, OpenPFGW, Primo c46 Boncompagni, Primo c47 Chandler, Primo c54 Wu_T, Primo c55 Gramolin, Primo c56 Soule, Minovic, OpenPFGW, Primo c58 Kaiser1, NewPGen, OpenPFGW, Primo c59 Metcalfe, OpenPFGW, Primo c60 Lemsafer, Primo c63 Ritschel, TOPS, Primo c64 Metcalfe, Minovic, Ritschel, TOPS, Primo c66 Steine, Primo c67 Batalov, NewPGen, OpenPFGW, Primo c69 Jacobsen, Primo c70 Underwood, Dubner, Primo c71 Metcalfe, Ritschel, Andersen, TOPS, Primo c73 Underwood, Lifchitz, Primo c74 Lasher, Dubner, Primo c76 Kaiser1, Water, Underwood, Primo c77 Batalov, Primo c79 Batalov, Broadhurst, Water, Primo c81 Water, Underwood, Primo c82 Steine, Water, Primo c83 Kaiser1, PolySieve, NewPGen, Primo c84 Underwood, Primo c87 Kaiser1, OpenPFGW, Primo c88 Kaiser1, PolySieve, Primo c89 Broadhurst, Underwood, Primo c90 Palameta, Batalov, Primo c92 Lamprecht, Luhn, Primo c93 Batalov, PolySieve, Primo c94 Gelhar, Ritschel, TOPS, Primo c95 Gelhar, Primo c97 Lamprecht, Luhn, APSieve, OpenPFGW, Primo c98 Batalov, EMsieve, Primo c99 Kruse, Schoeler, Primo CD Caldwell, Dubner, Cruncher CH10 Batalov, OpenPFGW, Primo, CHG CH12 Propper, Batalov, OpenPFGW, Primo, CHG CH13 Propper, Batalov, EMsieve, OpenPFGW, CHG CH2 Wu_T, OpenPFGW, Primo, CHG CH3 Broadhurst, Water, OpenPFGW, Primo, CHG CH4 Irvine, Broadhurst, Water, OpenPFGW, Primo, CHG CH9 Zhou, OpenPFGW, CHG D Dubner, Cruncher DK Dubner, Keller, Cruncher DS Smith_Darren, Proth.exe E1 Batalov, CM E2 Propper, CM E3 Enge, CM E4 Childers, CM E5 Underwood, CM E6 Lasher, Broadhurst, Underwood, CM E7 Lasher, CM E8 Broadhurst, Underwood, CM E9 Mock, CM FE8 Oakes, Broadhurst, Water, Morain, FastECPP FE9 Broadhurst, Water, Morain, FastECPP g0 Gallot, Proth.exe G1 Armengaud, GIMPS, Prime95 g1 Caldwell, Proth.exe G2 Spence, GIMPS, Prime95 G3 Clarkson, Kurowski, GIMPS, Prime95 G4 Hajratwala, Kurowski, GIMPS, Prime95 G5 Cameron, Kurowski, GIMPS, Prime95 G6 Shafer, GIMPS, Prime95 G7 Findley_J, GIMPS, Prime95 G8 Nowak, GIMPS, Prime95 G9 Boone, Cooper, GIMPS, Prime95 G10 Smith_E, GIMPS, Prime95 G11 Elvenich, GIMPS, Prime95 G12 Strindmo, GIMPS, Prime95 G13 Cooper, GIMPS, Prime95 G14 Cooper, GIMPS, Prime95 G15 Pace, GIMPS, Prime95 G16 Laroche, GIMPS, Prime95 g23 Ballinger, Proth.exe g25 OHare, Proth.exe g55 Toplic, Proth.exe g59 Linton, Proth.exe g124 Crickman, Proth.exe g236 Heuer, GFN17Sieve, GFNSearch, Proth.exe g245 Cosgrave, NewPGen, PRP, Proth.exe g259 Papp, Proth.exe g260 AYENI, Proth.exe g267 Grobstich, NewPGen, PRP, Proth.exe g277 Eaton, NewPGen, PRP, Proth.exe g279 Cooper, NewPGen, PRP, Proth.exe g300 Zilmer, Proth.exe g308 Angel, GFN17Sieve, GFNSearch, Proth.exe g337 Hsieh, NewPGen, PRP, Proth.exe g346 Dausch, ProthSieve, PrimeSierpinski, PRP, Proth.exe g403 Yoshimura, ProthSieve, PrimeSierpinski, LLR, Proth.exe g407 HermleGC, MultiSieve, PRP, Proth.exe g411 Brittenham, NewPGen, PRP, Proth.exe g413 Scott, AthGFNSieve, Proth.exe g414 Gilvey, Srsieve, PrimeGrid, PrimeSierpinski, LLR, Proth.exe g418 Taura, NewPGen, PRP, Proth.exe g424 Broadhurst, NewPGen, OpenPFGW, Proth.exe g427 Batalov, Srsieve, LLR, Proth.exe g429 Underbakke, GenefX64, AthGFNSieve, PrimeGrid, Proth.exe gm Morii, Proth.exe K Keller L51 Hedges, NewPGen, PRP, LLR L53 Zaveri, ProthSieve, RieselSieve, PRP, LLR L95 Urushi, LLR L99 Underbakke, TwinGen, LLR L124 Rodenkirch, MultiSieve, LLR L129 Snyder, LLR L137 Jaworski, Rieselprime, LLR L158 Underwood, NewPGen, 321search, LLR L160 Wong, ProthSieve, RieselSieve, LLR L162 Banka, NewPGen, 12121search, LLR L165 Keiser, NewPGen, OpenPFGW, LLR L172 Smith, ProthSieve, RieselSieve, LLR L175 Duggan, ProthSieve, RieselSieve, LLR L177 Kwok, Rieselprime, LLR L179 White, ProthSieve, RieselSieve, LLR L181 Siegert, LLR L185 Hassler, NewPGen, LLR L191 Banka, NewPGen, LLR L192 Jaworski, LLR L193 Rosink, ProthSieve, RieselSieve, LLR L197 DaltonJ, ProthSieve, RieselSieve, LLR L201 Siemelink, LLR L202 Vautier, McKibbon, Gribenko, NewPGen, PrimeGrid, TPS, LLR L251 Burt, NewPGen, Rieselprime, LLR L256 Underwood, Srsieve, NewPGen, 321search, LLR L257 Ritschel, Srsieve, Rieselprime, LLR L260 Soule, Srsieve, Rieselprime, LLR L268 Metcalfe, Srsieve, Rieselprime, LLR L282 Curtis, Srsieve, Rieselprime, LLR L321 Broadhurst, NewPGen, OpenPFGW, LLR L381 Mate, Siemelink, Rodenkirch, MultiSieve, LLR L384 Pinho, Srsieve, Rieselprime, LLR L426 Jaworski, Srsieve, Rieselprime, LLR L436 Andersen2, Gcwsieve, MultiSieve, PrimeGrid, LLR L446 Saridis, NewPGen, Proth.exe, LLR L447 Kohlman, Gcwsieve, MultiSieve, PrimeGrid, LLR L466 Zhou, NewPGen, LLR L503 Benson, Srsieve, LLR L521 Thompson1, Gcwsieve, MultiSieve, PrimeGrid, LLR L527 Tornberg, TwinGen, LLR L541 Barnes, Srsieve, CRUS, LLR L545 AndersonM, NewPGen, Rieselprime, LLR L587 Dettweiler, Srsieve, CRUS, LLR L591 Penne, Srsieve, CRUS, LLR L606 Bennett, Srsieve, NewPGen, PrimeGrid, 321search, LLR L613 Keogh, Srsieve, ProthSieve, RieselSieve, LLR L621 Sutton1, Srsieve, Rieselprime, LLR L622 Cardall, Srsieve, ProthSieve, RieselSieve, LLR L632 Stokkedalen, Rieselprime, LLR L671 Wong, Srsieve, PrimeGrid, LLR L689 Brown1, Srsieve, PrimeGrid, LLR L690 Cholt, Srsieve, PrimeGrid, LLR L732 Embling, Srsieve, PrimeGrid, LLR L753 Wolfram, Srsieve, PrimeGrid, LLR L760 Riesen, Srsieve, Rieselprime, LLR L764 Ewing, Srsieve, PrimeGrid, LLR L780 Brady, Srsieve, PrimeGrid, LLR L801 Gesker, Gcwsieve, MultiSieve, PrimeGrid, LLR L802 Zachariassen, Srsieve, NPLB, LLR L806 Stevens, Srsieve, LLR L895 Dinkel, Srsieve, LLR L917 Bergman1, Gcwsieve, MultiSieve, PrimeGrid, LLR L923 Kaiser1, Klahn, NewPGen, PrimeGrid, TPS, SunGard, LLR L927 Brown1, TwinGen, PrimeGrid, LLR L983 Wu_T, LLR L1016 Hartel, Srsieve, PrimeGrid, LLR L1056 Schwieger, Srsieve, PrimeGrid, LLR L1115 Splain, PSieve, Srsieve, PrimeGrid, LLR L1125 Laluk, PSieve, Srsieve, PrimeGrid, LLR L1129 Slomma, PSieve, Srsieve, PrimeGrid, LLR L1130 Adolfsson, PSieve, Srsieve, PrimeGrid, LLR L1134 Ogawa, Srsieve, NewPGen, LLR L1139 Harvey1, PSieve, Srsieve, PrimeGrid, LLR L1141 Ogawa, NewPGen, LLR L1153 Kaiser1, Srsieve, PrimeGrid, 12121search, LLR L1158 Vogel, PSieve, Srsieve, PrimeGrid, LLR L1160 Sunderland, PSieve, Srsieve, PrimeGrid, LLR L1186 Richard1, PSieve, Srsieve, PrimeGrid, LLR L1188 Faith, PSieve, Srsieve, PrimeGrid, LLR L1199 DeRidder, PSieve, Srsieve, PrimeGrid, LLR L1201 Carpenter1, PSieve, Srsieve, PrimeGrid, LLR L1203 Mauno, PSieve, Srsieve, PrimeGrid, LLR L1204 Brown1, PSieve, Srsieve, PrimeGrid, LLR L1209 Wong, PSieve, Srsieve, PrimeGrid, LLR L1210 Rhodes, PSieve, Srsieve, PrimeGrid, LLR L1218 Winslow, PSieve, Srsieve, PrimeGrid, LLR L1223 Courty, PSieve, Srsieve, PrimeGrid, LLR L1230 Yooil1, PSieve, Srsieve, PrimeGrid, LLR L1300 Yama, PSieve, Srsieve, PrimeGrid, LLR L1301 Sorbera, Srsieve, CRUS, LLR L1312 Nye, PSieve, Srsieve, PrimeGrid, LLR L1344 Kobara, PSieve, Srsieve, PrimeGrid, LLR L1349 Wallace, Srsieve, NewPGen, PrimeGrid, LLR L1353 Mumper, Srsieve, PrimeGrid, LLR L1355 Beck, PSieve, Srsieve, PrimeGrid, LLR L1356 Gockel, PSieve, Srsieve, PrimeGrid, LLR L1360 Tatterson, PSieve, Srsieve, PrimeGrid, LLR L1387 Anonymous, PSieve, Srsieve, PrimeGrid, LLR L1403 Andrews1, PSieve, Srsieve, PrimeGrid, LLR L1408 Emery, PSieve, Srsieve, PrimeGrid, LLR L1412 Jones_M, PSieve, Srsieve, PrimeGrid, LLR L1413 Morton, PSieve, Srsieve, PrimeGrid, LLR L1422 Steichen, PSieve, Srsieve, PrimeGrid, LLR L1444 Davies, PSieve, Srsieve, PrimeGrid, LLR L1448 Hron, PSieve, Srsieve, PrimeGrid, LLR L1455 Heikkila, PSieve, Srsieve, PrimeGrid, LLR L1456 Webster, PSieve, Srsieve, PrimeGrid, LLR L1460 Salah, Srsieve, PrimeGrid, PrimeSierpinski, LLR L1471 Gunn, Srsieve, CRUS, LLR L1474 Brown6, PSieve, Srsieve, PrimeGrid, LLR L1480 Goudie, PSieve, Srsieve, PrimeGrid, LLR L1486 Dinkel, PSieve, Srsieve, PrimeGrid, LLR L1487 Krompolc, PSieve, Srsieve, PrimeGrid, LLR L1492 Eiterig, PSieve, Srsieve, PrimeGrid, LLR L1502 Champ, PSieve, Srsieve, PrimeGrid, LLR L1513 Miller1, PSieve, Srsieve, PrimeGrid, LLR L1576 Craig, PSieve, Srsieve, PrimeGrid, LLR L1595 Cilliers, PSieve, Srsieve, PrimeGrid, LLR L1675 Schwieger, PSieve, Srsieve, PrimeGrid, LLR L1728 Gasewicz, PSieve, Srsieve, PrimeGrid, LLR L1741 Granowski, PSieve, Srsieve, PrimeGrid, LLR L1745 Cholt, PSieve, Srsieve, PrimeGrid, LLR L1751 Eckhard, Srsieve, PrimeGrid, LLR L1754 Hubbard, PSieve, Srsieve, PrimeGrid, LLR L1774 Schoefer, PSieve, Srsieve, PrimeGrid, LLR L1780 Ming, PSieve, Srsieve, PrimeGrid, LLR L1792 Tang, PSieve, Srsieve, PrimeGrid, LLR L1803 Puppi, PSieve, Srsieve, PrimeGrid, LLR L1808 Reynolds1, PSieve, Srsieve, PrimeGrid, LLR L1809 Vogel, PSieve, Srsieve, NPLB, LLR L1817 Barnes, PSieve, Srsieve, NPLB, LLR L1823 Larsson, PSieve, Srsieve, PrimeGrid, LLR L1828 Benson, PSieve, Srsieve, Rieselprime, LLR L1830 Bonath, PSieve, Srsieve, NPLB, LLR L1847 Liu1, PSieve, Srsieve, PrimeGrid, LLR L1862 Curtis, PSieve, Srsieve, Rieselprime, LLR L1863 Wozny, PSieve, Srsieve, Rieselprime, LLR L1884 Jaworski, PSieve, Srsieve, Rieselprime, LLR L1885 Ostaszewski, PSieve, Srsieve, PrimeGrid, LLR L1921 Winslow, TwinGen, PrimeGrid, LLR L1932 Dragnev, PSieve, Srsieve, PrimeGrid, LLR L1935 Channing, PSieve, Srsieve, PrimeGrid, LLR L1949 Pritchard, Srsieve, PrimeGrid, RieselSieve, LLR L1957 Hemsley, PSieve, Srsieve, PrimeGrid, LLR L1959 Metcalfe, PSieve, Srsieve, Rieselprime, LLR L1979 Tibbott, PSieve, Srsieve, PrimeGrid, LLR L1983 Safford, PSieve, Srsieve, PrimeGrid, LLR L1990 Makowski, PSieve, Srsieve, PrimeGrid, LLR L2006 Rix, PSieve, Srsieve, PrimeGrid, LLR L2012 Pedersen_K, Srsieve, CRUS, OpenPFGW, LLR L2017 Hubbard, PSieve, Srsieve, NPLB, LLR L2019 Wood_D, PSieve, Srsieve, PrimeGrid, LLR L2030 Tonner, PSieve, Srsieve, PrimeGrid, LLR L2035 Greer, TwinGen, PrimeGrid, LLR L2042 Lachance, PSieve, Srsieve, PrimeGrid, LLR L2046 Melvold, Srsieve, PrimeGrid, LLR L2051 Reich, PSieve, Srsieve, PrimeGrid, LLR L2054 Kaiser1, Srsieve, CRUS, LLR L2055 Soule, PSieve, Srsieve, Rieselprime, LLR L2070 Schemmel, PSieve, Srsieve, PrimeGrid, LLR L2074 Minovic, PSieve, Srsieve, Rieselprime, LLR L2085 Dodson1, PSieve, Srsieve, PrimeGrid, LLR L2086 Sveen, PSieve, Srsieve, PrimeGrid, LLR L2100 Christensen, PSieve, Srsieve, PrimeGrid, LLR L2103 Schmidt1, PSieve, Srsieve, PrimeGrid, LLR L2117 Karlsteen, PSieve, Srsieve, PrimeGrid, LLR L2121 VanRangelrooij, PSieve, Srsieve, PrimeGrid, LLR L2122 Megele, PSieve, Srsieve, PrimeGrid, LLR L2125 Greer, PSieve, Srsieve, PrimeGrid, LLR L2126 Senftleben, PSieve, Srsieve, PrimeGrid, LLR L2131 Johnson4, PSieve, Srsieve, PrimeGrid, LLR L2137 Hayashi1, PSieve, Srsieve, PrimeGrid, LLR L2142 Hajek, PSieve, Srsieve, PrimeGrid, LLR L2158 Krauss, PSieve, Srsieve, PrimeGrid, LLR L2163 VanRooijen1, PSieve, Srsieve, PrimeGrid, LLR L2233 Herder, Srsieve, PrimeGrid, LLR L2235 Mullage, PSieve, Srsieve, NPLB, LLR L2257 Dettweiler, PSieve, Srsieve, NPLB, LLR L2269 Schori, Srsieve, PrimeGrid, LLR L2321 Medcalf, PSieve, Srsieve, PrimeGrid, LLR L2322 Szafranski, PSieve, Srsieve, PrimeGrid, LLR L2327 Oh, PSieve, Srsieve, PrimeGrid, LLR L2337 Schmalen, PSieve, Srsieve, PrimeGrid, LLR L2338 Burt, PSieve, Srsieve, Rieselprime, LLR L2366 Satoh, PSieve, Srsieve, PrimeGrid, LLR L2371 Luszczek, Srsieve, PrimeGrid, LLR L2373 Tarasov1, Srsieve, PrimeGrid, LLR L2399 Bouch, PSieve, Srsieve, PrimeGrid, LLR L2408 Reinman, Srsieve, PrimeGrid, LLR L2413 Blyth, PSieve, Srsieve, PrimeGrid, LLR L2425 DallOsto, LLR L2429 Bliedung, TwinGen, PrimeGrid, LLR L2432 Sutton1, PSieve, Srsieve, Rieselprime, LLR L2444 Batalov, PSieve, Srsieve, Rieselprime, LLR L2484 Ritschel, PSieve, Srsieve, Rieselprime, LLR L2487 Liao, PSieve, Srsieve, PrimeGrid, LLR L2494 Javtokas, PSieve, Srsieve, PrimeGrid, LLR L2507 Geis, PSieve, Srsieve, PrimeGrid, LLR L2517 McPherson, PSieve, Srsieve, PrimeGrid, LLR L2518 Karevik, PSieve, Srsieve, PrimeGrid, LLR L2519 Schmidt2, PSieve, Srsieve, NPLB, LLR L2520 Mamanakis, PSieve, Srsieve, PrimeGrid, LLR L2526 Martinik, PSieve, Srsieve, PrimeGrid, LLR L2532 Papp2, PSieve, Srsieve, PrimeGrid, LLR L2545 Nose, PSieve, Srsieve, PrimeGrid, LLR L2549 McKay, PSieve, Srsieve, PrimeGrid, LLR L2552 Foulher, PSieve, Srsieve, PrimeGrid, LLR L2561 Vinklat, PSieve, Srsieve, PrimeGrid, LLR L2562 Jones3, PSieve, Srsieve, PrimeGrid, LLR L2564 Bravin, PSieve, Srsieve, PrimeGrid, LLR L2583 Nakamura, PSieve, Srsieve, PrimeGrid, LLR L2594 Sheridan, PSieve, Srsieve, PrimeGrid, LLR L2602 Mueller4, PSieve, Srsieve, PrimeGrid, LLR L2603 Hoffman, PSieve, Srsieve, PrimeGrid, LLR L2606 Slakans, PSieve, Srsieve, PrimeGrid, LLR L2626 DeKlerk, PSieve, Srsieve, PrimeGrid, LLR L2627 Graham2, PSieve, Srsieve, PrimeGrid, LLR L2629 Becker2, PSieve, Srsieve, PrimeGrid, LLR L2649 Brandstaetter, PSieve, Srsieve, PrimeGrid, LLR L2659 Reber, PSieve, Srsieve, PrimeGrid, LLR L2664 Koluvere, PSieve, Srsieve, PrimeGrid, LLR L2673 Burningham, PSieve, Srsieve, PrimeGrid, LLR L2675 Ling, PSieve, Srsieve, PrimeGrid, LLR L2676 Cox2, PSieve, Srsieve, PrimeGrid, LLR L2691 Pettersen, PSieve, Srsieve, PrimeGrid, LLR L2703 Armstrong, PSieve, Srsieve, PrimeGrid, LLR L2707 Out, PSieve, Srsieve, PrimeGrid, LLR L2714 Piotrowski, PSieve, Srsieve, PrimeGrid, LLR L2715 Donovan, PSieve, Srsieve, PrimeGrid, LLR L2719 Yost, PSieve, Srsieve, PrimeGrid, LLR L2724 AverayJones, PSieve, Srsieve, PrimeGrid, LLR L2742 Fluttert, PSieve, Srsieve, PrimeGrid, LLR L2777 Ritschel, Gcwsieve, TOPS, LLR L2785 Meili, PSieve, Srsieve, PrimeGrid, LLR L2805 Barr, PSieve, Srsieve, PrimeGrid, LLR L2823 Loureiro, PSieve, Srsieve, PrimeGrid, LLR L2826 Jeudy, PSieve, Srsieve, PrimeGrid, LLR L2827 Melzer, PSieve, Srsieve, PrimeGrid, LLR L2840 Santana, PSieve, Srsieve, PrimeGrid, LLR L2841 Minovic, Gcwsieve, MultiSieve, TOPS, LLR L2842 English1, PSieve, Srsieve, PrimeGrid, LLR L2859 Keenan, PSieve, Srsieve, PrimeGrid, LLR L2873 Jurach, PSieve, Srsieve, PrimeGrid, LLR L2885 Busacker, PSieve, Srsieve, PrimeGrid, LLR L2891 Lacroix, PSieve, Srsieve, PrimeGrid, LLR L2895 Leonard1, PSieve, Srsieve, PrimeGrid, LLR L2914 Merrylees, PSieve, Srsieve, PrimeGrid, LLR L2959 Derrera, PSieve, Srsieve, PrimeGrid, LLR L2967 Ryjkov, PSieve, Srsieve, PrimeGrid, LLR L2973 Kurtovic, Srsieve, PrimeGrid, LLR L2975 Loureiro, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L2981 Yoshigoe, PSieve, Srsieve, PrimeGrid, LLR L2992 Boehm, PSieve, Srsieve, PrimeGrid, LLR L2997 Williams2, PSieve, Srsieve, PrimeGrid, LLR L3023 Winslow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3029 Walsh, PSieve, Srsieve, PrimeGrid, LLR L3033 Snow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3034 Wakolbinger, PSieve, Srsieve, PrimeGrid, LLR L3035 Scalise, PSieve, Srsieve, PrimeGrid, LLR L3037 Noltensmeier, PSieve, Srsieve, PrimeGrid, LLR L3043 Hayase, PSieve, Srsieve, PrimeGrid, LLR L3048 Breslin, PSieve, Srsieve, PrimeGrid, LLR L3049 Tardy, PSieve, Srsieve, PrimeGrid, LLR L3054 Winslow, Srsieve, PrimeGrid, LLR L3075 Goellner, PSieve, Srsieve, PrimeGrid, LLR L3091 Ridgway, PSieve, Srsieve, PrimeGrid, LLR L3101 Reichard, PSieve, Srsieve, PrimeGrid, LLR L3105 Eldredge, PSieve, Srsieve, PrimeGrid, LLR L3118 Yama, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3125 Rizman, PSieve, Srsieve, PrimeGrid, LLR L3141 Kus, PSieve, Srsieve, PrimeGrid, LLR L3154 Hentrich, PSieve, Srsieve, PrimeGrid, LLR L3168 Schwegler, PSieve, Srsieve, PrimeGrid, LLR L3171 Bergelt, PSieve, Srsieve, PrimeGrid, LLR L3173 Zhou2, PSieve, Srsieve, PrimeGrid, LLR L3174 Boniecki, PSieve, Srsieve, PrimeGrid, LLR L3179 Hamada, PSieve, Srsieve, PrimeGrid, LLR L3180 Poon, PSieve, Srsieve, PrimeGrid, LLR L3183 Haller, Srsieve, PrimeGrid, LLR L3184 Hayslette, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3190 Vogel, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3200 Athanas, PSieve, Srsieve, PrimeGrid, LLR L3203 Scalise, TwinGen, PrimeGrid, LLR L3206 Chang2, PSieve, Srsieve, PrimeGrid, LLR L3209 McArdle, GenefX64, AthGFNSieve, PrimeGrid, LLR L3213 OBrien1, PSieve, Srsieve, PrimeGrid, LLR L3221 Vicena, PSieve, Srsieve, PrimeGrid, LLR L3222 Yamamoto, PSieve, Srsieve, PrimeGrid, LLR L3223 Yurgandzhiev, PSieve, Srsieve, PrimeGrid, LLR L3230 Kumagai, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3233 Nadeau, PSieve, Srsieve, PrimeGrid, LLR L3234 Parangalan, PSieve, Srsieve, PrimeGrid, LLR L3249 Lind, PSieve, Srsieve, PrimeGrid, LLR L3260 Stanko, PSieve, Srsieve, PrimeGrid, LLR L3261 Batalov, PSieve, Srsieve, PrimeGrid, LLR L3262 Molder, PSieve, Srsieve, PrimeGrid, LLR L3267 Cain, PSieve, Srsieve, PrimeGrid, LLR L3276 Jeka, PSieve, Srsieve, PrimeGrid, LLR L3277 Wijnen, PSieve, Srsieve, PrimeGrid, LLR L3278 Fischer1, PSieve, Srsieve, PrimeGrid, LLR L3289 Evans1, PSieve, Srsieve, PrimeGrid, LLR L3290 Bednar1, PSieve, Srsieve, PrimeGrid, LLR L3294 Bartlett, PSieve, Srsieve, PrimeGrid, LLR L3313 Yost, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3323 Ritschel, NewPGen, TOPS, LLR L3325 Elvy, PSieve, Srsieve, PrimeGrid, LLR L3329 Tatearka, PSieve, Srsieve, PrimeGrid, LLR L3336 Dongen, Siemelink, Srsieve, LLR L3345 Domanov1, PSieve, Rieselprime, LLR L3354 Willig, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3372 Ryan, PSieve, Srsieve, PrimeGrid, LLR L3377 Ollivier, PSieve, Srsieve, PrimeGrid, LLR L3378 Glasgow, PSieve, Srsieve, PrimeGrid, LLR L3385 Rassokhin, PSieve, Srsieve, PrimeGrid, LLR L3410 Kurtovic, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3415 Johnston1, PSieve, Srsieve, PrimeGrid, LLR L3418 Stein, PSieve, Srsieve, PrimeGrid, LLR L3422 Micom, PSieve, Srsieve, PrimeGrid, LLR L3430 Durstewitz, PSieve, Srsieve, PrimeGrid, LLR L3431 Gahan, PSieve, Srsieve, PrimeGrid, LLR L3432 Batalov, Srsieve, LLR L3439 Huang, PSieve, Srsieve, PrimeGrid, LLR L3440 Pelikan, PSieve, Srsieve, PrimeGrid, LLR L3446 Marshall3, PSieve, Srsieve, PrimeGrid, LLR L3452 Resto, PSieve, Srsieve, PrimeGrid, LLR L3453 Benes, PSieve, Srsieve, PrimeGrid, LLR L3456 Murai, PSieve, Srsieve, PrimeGrid, LLR L3458 Jia, PSieve, Srsieve, PrimeGrid, LLR L3459 Boruvka, PSieve, Srsieve, PrimeGrid, LLR L3460 Ottusch, PSieve, Srsieve, PrimeGrid, LLR L3464 Ferrell, PSieve, Srsieve, PrimeGrid, LLR L3470 Fisan, PSieve, Srsieve, PrimeGrid, LLR L3471 Gieorgijewski, PSieve, Srsieve, PrimeGrid, LLR L3472 Hernas, PSieve, Srsieve, PrimeGrid, LLR L3483 Farrow, PSieve, Srsieve, PrimeGrid, LLR L3487 Ziemann, PSieve, Srsieve, PrimeGrid, LLR L3494 Batalov, NewPGen, LLR L3502 Ristic, PSieve, Srsieve, PrimeGrid, LLR L3512 Tsuji, PSieve, Srsieve, PrimeGrid, LLR L3514 Bishop1, PSieve, Srsieve, PrimeGrid, OpenPFGW, LLR L3518 Papendick, PSieve, Srsieve, PrimeGrid, LLR L3519 Kurtovic, PSieve, Srsieve, Rieselprime, LLR L3523 Brown1, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3528 Batalov, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3532 Batalov, Gcwsieve, LLR L3538 Beard1, PSieve, Srsieve, PrimeGrid, LLR L3539 Jacobs, PSieve, Srsieve, PrimeGrid, LLR L3543 Yama, PrimeGrid, LLR L3544 Minovic, Gcwsieve, GenWoodall, LLR L3545 Eskam1, PSieve, Srsieve, PrimeGrid, LLR L3547 Ready, Srsieve, PrimeGrid, LLR L3548 Ready, PSieve, Srsieve, PrimeGrid, LLR L3549 Hirai, Srsieve, PrimeGrid, LLR L3552 Benson2, Srsieve, PrimeGrid, LLR L3553 Cilliers, Srsieve, PrimeGrid, LLR L3555 Cervelle, PSieve, Srsieve, PrimeGrid, LLR L3562 Schouten, Srsieve, PrimeGrid, LLR L3564 Jaworski, Srsieve, CRUS, LLR L3566 Slakans, Srsieve, PrimeGrid, LLR L3567 Meili, Srsieve, PrimeGrid, LLR L3573 Batalov, TwinGen, PrimeGrid, LLR L3577 Sriworarat, PSieve, Srsieve, PrimeGrid, LLR L3580 Nelson1, PSieve, Srsieve, PrimeGrid, LLR L3586 Wharton, PSieve, Srsieve, PrimeGrid, LLR L3588 Matousek, PSieve, Srsieve, PrimeGrid, LLR L3593 Veit, PSieve, Srsieve, PrimeGrid, LLR L3601 Jablonski1, PSieve, Srsieve, PrimeGrid, LLR L3606 Sander, TwinGen, PrimeGrid, LLR L3610 Batalov, Srsieve, CRUS, LLR L3612 Smits, PSieve, Srsieve, PrimeGrid, LLR L3625 Haymoz, PSieve, Srsieve, PrimeGrid, LLR L3630 Brebois, PSieve, Srsieve, PrimeGrid, LLR L3640 Stopper, PSieve, Srsieve, PrimeGrid, LLR L3641 Adams4, PSieve, Srsieve, PrimeGrid, LLR L3650 Smit, PSieve, Srsieve, PrimeGrid, LLR L3659 Volynsky, Srsieve, PrimeGrid, LLR L3662 Schawe, PSieve, Srsieve, PrimeGrid, LLR L3665 Kelava1, PSieve, Srsieve, Rieselprime, LLR L3666 Bielecki, PSieve, Srsieve, PrimeGrid, LLR L3668 Prokopchuk, PSieve, Srsieve, PrimeGrid, LLR L3682 Schaible, PSieve, Srsieve, PrimeGrid, LLR L3686 Yost, Srsieve, PrimeGrid, LLR L3688 Hasznos, PSieve, Srsieve, PrimeGrid, LLR L3691 Williams5, PSieve, Srsieve, PrimeGrid, LLR L3696 Linderson, PSieve, Srsieve, PrimeGrid, LLR L3700 Kim4, PSieve, Srsieve, PrimeGrid, LLR L3709 Buss, PSieve, Srsieve, PrimeGrid, LLR L3719 Skinner, PSieve, Srsieve, PrimeGrid, LLR L3720 Ohno, Srsieve, PrimeGrid, LLR L3728 Rietveld, PSieve, Srsieve, PrimeGrid, LLR L3731 Deram, PSieve, Srsieve, PrimeGrid, LLR L3733 Bryniarski, PSieve, Srsieve, PrimeGrid, LLR L3735 Kurtovic, Srsieve, LLR L3736 Lukosevisius, PSieve, Srsieve, PrimeGrid, LLR L3737 Cartiaux, PSieve, Srsieve, PrimeGrid, LLR L3738 Larsson1, PSieve, Srsieve, PrimeGrid, LLR L3739 Gournay, PSieve, Srsieve, PrimeGrid, LLR L3743 Parker1, PSieve, Srsieve, PrimeGrid, LLR L3744 Green1, PSieve, Srsieve, PrimeGrid, LLR L3749 Meador, Srsieve, PrimeGrid, LLR L3760 Okazaki, PSieve, Srsieve, PrimeGrid, LLR L3763 Martin4, PSieve, Srsieve, PrimeGrid, LLR L3764 Diepeveen, PSieve, Srsieve, Rieselprime, LLR L3767 Huang1, PSieve, Srsieve, PrimeGrid, LLR L3770 Tang, Srsieve, PrimeGrid, LLR L3772 Ottusch, Srsieve, PrimeGrid, LLR L3784 Cavnaugh, PSieve, Srsieve, PrimeGrid, LLR L3785 Reichel, PSieve, Srsieve, PrimeGrid, LLR L3787 Palumbo, PSieve, Srsieve, PrimeGrid, LLR L3789 Toda, Srsieve, PrimeGrid, LLR L3790 Tamagawa, PSieve, Srsieve, PrimeGrid, LLR L3797 Schmidt3, PSieve, Srsieve, PrimeGrid, LLR L3800 Amschl, PSieve, Srsieve, PrimeGrid, LLR L3802 Aggarwal, Srsieve, LLR L3803 Bredl, PSieve, Srsieve, PrimeGrid, LLR L3810 Radle, PSieve, Srsieve, PrimeGrid, LLR L3813 Chambers2, PSieve, Srsieve, PrimeGrid, LLR L3824 Mazzucato, PSieve, Srsieve, PrimeGrid, LLR L3829 Abrahmi, TwinGen, PrimeGrid, LLR L3838 Boyden, PSieve, Srsieve, PrimeGrid, LLR L3839 Batalov, EMsieve, LLR L3843 Whiteley, PSieve, Srsieve, PrimeGrid, LLR L3849 Smith10, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3855 Lunner, PSieve, Srsieve, PrimeGrid, LLR L3857 Hudec, PSieve, Srsieve, PrimeGrid, LLR L3859 Clifton, PSieve, Srsieve, PrimeGrid, LLR L3860 Cimrman, PSieve, Srsieve, PrimeGrid, LLR L3861 Roemer, PSieve, Srsieve, PrimeGrid, LLR L3862 Gudenschwager, PSieve, Srsieve, PrimeGrid, LLR L3863 WaldenForrest, PSieve, Srsieve, PrimeGrid, LLR L3864 Piantoni, PSieve, Srsieve, PrimeGrid, LLR L3865 Silva, PSieve, Srsieve, PrimeGrid, LLR L3867 Traebert, PSieve, Srsieve, PrimeGrid, LLR L3868 Miller3, PSieve, Srsieve, PrimeGrid, LLR L3869 Cholt, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3873 Sala, PSieve, Srsieve, PrimeGrid, LLR L3876 Apreutesei, PSieve, Srsieve, PrimeGrid, LLR L3877 Jarne, PSieve, Srsieve, PrimeGrid, LLR L3886 Vogel, Srsieve, CRUS, LLR L3887 Byerly, PSieve, Rieselprime, LLR L3890 Beeson, PSieve, Srsieve, PrimeGrid, LLR L3895 Englehard, PSieve, Srsieve, PrimeGrid, LLR L3898 Christy, PSieve, Srsieve, PrimeGrid, LLR L3903 Miao, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3904 Darimont, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3909 Taylor2, PSieve, Srsieve, PrimeGrid, LLR L3910 Bischof, PSieve, Srsieve, PrimeGrid, LLR L3914 Matsuda, PSieve, Srsieve, PrimeGrid, LLR L3917 Rodenkirch, PSieve, Srsieve, LLR L3919 Pickering, PSieve, Srsieve, PrimeGrid, LLR L3924 Kim5, PSieve, Srsieve, PrimeGrid, LLR L3925 Okazaki, Srsieve, PrimeGrid, LLR L3933 Batalov, PSieve, Srsieve, CRUS, Rieselprime, LLR L3941 Lee8, PSieve, Srsieve, PrimeGrid, LLR L3961 Darimont, Srsieve, PrimeGrid, LLR L3964 Iakovlev, Srsieve, PrimeGrid, LLR L3967 Inouye, PSieve, Srsieve, Rieselprime, LLR L3975 Hou, PSieve, Srsieve, PrimeGrid, LLR L3993 Gushchak, Srsieve, PrimeGrid, LLR L3995 Unbekannt, PSieve, Srsieve, PrimeGrid, LLR L3998 Rossman, PSieve, Srsieve, PrimeGrid, LLR L4001 Willig, Srsieve, CRUS, LLR L4016 Bedenbaugh, PSieve, Srsieve, PrimeGrid, LLR L4021 Busse, PSieve, Srsieve, PrimeGrid, LLR L4026 Batalov, Cyclo, EMsieve, PIES, LLR L4031 Darney, PSieve, Srsieve, PrimeGrid, LLR L4034 Vanc, Srsieve, PrimeGrid, LLR L4036 Domanov1, PSieve, Srsieve, CRUS, LLR L4040 Oddone, PSieve, Srsieve, PrimeGrid, LLR L4043 Niedbala, PSieve, Srsieve, PrimeGrid, LLR L4045 Chew, PSieve, Srsieve, PrimeGrid, LLR L4061 Lee, PSieve, Srsieve, PrimeGrid, LLR L4064 Davies, Srsieve, CRUS, LLR L4076 Lacroix, PSieve, Srsieve, NPLB, LLR L4082 Zimmerman, PSieve, Srsieve, PrimeGrid, LLR L4083 Charrondiere, PSieve, Srsieve, PrimeGrid, LLR L4087 Kecic, PSieve, Srsieve, PrimeGrid, LLR L4088 Graeber, PSieve, Srsieve, PrimeGrid, LLR L4099 Nietering, PSieve, Srsieve, PrimeGrid, LLR L4103 Klopffleisch, Srsieve, PrimeGrid, LLR L4106 Ga, PSieve, Srsieve, PrimeGrid, LLR L4108 Yoshioka, PSieve, Srsieve, PrimeGrid, LLR L4109 Palmer1, PSieve, Srsieve, PrimeGrid, LLR L4111 Leps1, PSieve, Srsieve, PrimeGrid, LLR L4113 Batalov, PSieve, Srsieve, LLR L4114 Bubloski, PSieve, Srsieve, PrimeGrid, LLR L4118 Slegel, PSieve, Srsieve, PrimeGrid, LLR L4119 Nelson3, PSieve, Srsieve, PrimeGrid, LLR L4122 Sasaki1, PSieve, Srsieve, PrimeGrid, LLR L4123 Bush, PSieve, Srsieve, PrimeGrid, LLR L4133 Ito, PSieve, Srsieve, PrimeGrid, LLR L4139 Hawker, Srsieve, CRUS, LLR L4142 Batalov, CycloSv, EMsieve, PIES, LLR L4146 Schmidt1, Srsieve, PrimeGrid, LLR L4147 Mohacsy, PSieve, Srsieve, PrimeGrid, LLR L4148 Glatte, PSieve, Srsieve, PrimeGrid, LLR L4155 Jones4, PSieve, Srsieve, PrimeGrid, LLR L4159 Schulz5, Srsieve, PrimeGrid, LLR L4166 Kwok, PSieve, LLR L4185 Hoefliger, PSieve, Srsieve, PrimeGrid, LLR L4187 Schmidt2, Srsieve, CRUS, LLR L4189 Lawrence, Powell, Srsieve, CRUS, LLR L4190 Fnasek, PSieve, Srsieve, PrimeGrid, LLR L4191 Mahan, PSieve, Srsieve, PrimeGrid, LLR L4197 Kumagai1, Srsieve, PrimeGrid, LLR L4198 Rawles, PSieve, Srsieve, PrimeGrid, LLR L4200 Harste, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4201 Brown1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4203 Azarenko, PSieve, Srsieve, PrimeGrid, LLR L4204 Winslow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4205 Bischof, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4207 Jaamann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4208 Farrow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4210 Cholt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4226 Heath, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4231 Schneider1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4245 Greer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4249 Larsson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4250 Vogt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4252 Nietering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4256 Gniesmer, PSieve, Srsieve, PrimeGrid, LLR L4262 Hutchins, PSieve, Srsieve, PrimeGrid, LLR L4267 Batalov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4269 Romanov, PSieve, Srsieve, PrimeGrid, LLR L4273 Rangelrooij, Srsieve, CRUS, LLR L4274 AhlforsDahl, Srsieve, PrimeGrid, LLR L4276 Borbely, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4283 Crawford1, PSieve, Srsieve, PrimeGrid, LLR L4285 Bravin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4286 Zimmerman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4287 Suzuki1, PSieve, Srsieve, PrimeGrid, LLR L4289 Ito2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4293 Trunov, PSieve, Srsieve, PrimeGrid, LLR L4294 Kurtovic, Srsieve, CRUS, Prime95, LLR L4295 Splain, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4303 Thorson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4307 Keller1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4308 Matillek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4309 Kecic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4314 DeThomas, PSieve, Srsieve, PrimeGrid, LLR L4316 Nilsson1, PSieve, Srsieve, PrimeGrid, LLR L4318 Marshall1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4323 Seisums, PSieve, Srsieve, PrimeGrid, LLR L4326 Steel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4329 Okon, Srsieve, LLR L4334 Miller5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4340 Becker4, Srsieve, PrimeGrid, LLR L4342 Kaiser1, PolySieve, NewPGen, LLR L4343 Norton, PSieve, Srsieve, PrimeGrid, LLR L4347 Schaeffer, PSieve, Srsieve, PrimeGrid, LLR L4348 Burridge, Srsieve, PrimeGrid, LLR L4352 Fahlenkamp1, PSieve, Srsieve, PrimeGrid, LLR L4358 Tesarz, PSieve, Srsieve, PrimeGrid, LLR L4359 Andou, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4362 Mochizuki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4364 Steinbach, PSieve, Srsieve, PrimeGrid, LLR L4380 Rix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4387 Davies, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4388 Mena, PSieve, Srsieve, PrimeGrid, LLR L4393 Veit1, Srsieve, CRUS, LLR L4395 Nilsson1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4398 Greer, Srsieve, PrimeGrid, LLR L4404 Stepnicka, PSieve, Srsieve, PrimeGrid, LLR L4405 Eckhard, Srsieve, LLR L4406 Mathers, PSieve, Srsieve, PrimeGrid, LLR L4408 Fricke, PSieve, Srsieve, PrimeGrid, LLR L4410 Andresson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4412 Simpson3, PSieve, Srsieve, PrimeGrid, LLR L4414 Falk, PSieve, Srsieve, PrimeGrid, LLR L4417 Rasp, PSieve, Srsieve, PrimeGrid, LLR L4424 Miyauchi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4425 Weber1, PSieve, Srsieve, PrimeGrid, LLR L4435 Larsson, Srsieve, PrimeGrid, LLR L4441 Miyauchi, PSieve, Srsieve, PrimeGrid, LLR L4444 Terber, Srsieve, CRUS, LLR L4445 Leudesdorff, PSieve, Srsieve, PrimeGrid, LLR L4454 Clark5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4456 Chambers2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4457 Geiger, PSieve, Srsieve, PrimeGrid, LLR L4459 Biscop, PSieve, Srsieve, PrimeGrid, LLR L4466 Falk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4472 Harvanek, Gcwsieve, MultiSieve, PrimeGrid, LLR L4476 Shane, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4477 Tennant, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4482 Mena, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4488 Vrontakis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4489 Szreter, PSieve, Srsieve, PrimeGrid, LLR L4490 Mazumdar, PSieve, Srsieve, PrimeGrid, LLR L4499 Ohsugi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4501 Eskam1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4504 Sesok, NewPGen, LLR L4505 Lind, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4506 Propper, Batalov, CycloSv, EMsieve, PIES, Prime95, LLR L4510 Ming, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4511 Donovan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4518 Primecrunch.com, Hedges, Srsieve, LLR L4521 Curtis, Srsieve, CRUS, LLR L4522 Lorsung, PSieve, Srsieve, PrimeGrid, LLR L4523 Mull, PSieve, Srsieve, PrimeGrid, LLR L4525 Kong1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4526 Schoefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4527 Fruzynski, PSieve, Srsieve, PrimeGrid, LLR L4530 Reynolds1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4531 Butez, PSieve, Srsieve, PrimeGrid, LLR L4537 Mayer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4544 Krauss, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4547 Nair, TwinGen, NewPGen, LLR L4548 Sydekum, Srsieve, CRUS, Prime95, LLR L4549 Schick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4550 Terry, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4552 Koski, PSieve, Srsieve, PrimeGrid, LLR L4559 Okazaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4561 Propper, Batalov, CycloSv, Cyclo, EMsieve, PIES, LLR L4562 Donovan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4564 DeThomas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4568 Vrontakis, PSieve, Srsieve, PrimeGrid, LLR L4575 Gingrich2, Srsieve, CRUS, LLR L4582 Kinney, PSieve, Srsieve, PrimeGrid, LLR L4583 Rohmann, PSieve, Srsieve, PrimeGrid, LLR L4584 Goforth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4585 Schawe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4591 Schwieger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4593 Mangio, PSieve, Srsieve, PrimeGrid, LLR L4595 Mangio, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4598 Connaughty, PSieve, Srsieve, PrimeGrid, LLR L4600 Simbarsky, PSieve, Srsieve, PrimeGrid, LLR L4609 Elgetz, PSieve, Srsieve, PrimeGrid, LLR L4620 Kinney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4622 Jurach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4623 Dugger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4626 Iltus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4645 McKibbon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4649 Humphries, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4654 Voskoboynikov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4656 Beck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4658 Maguin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4659 AverayJones, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4660 Snow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4664 Toledo, PSieve, Srsieve, PrimeGrid, LLR L4665 Szeluga, Kupidura, Banka, LLR L4666 Slade, PSieve, Srsieve, PrimeGrid, LLR L4667 Morelli, LLR L4668 Okazaki, Gcwsieve, MultiSieve, PrimeGrid, LLR L4669 Schwegler, Srsieve, PrimeGrid, LLR L4670 Drumm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4672 Slade, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4673 Okhrimouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4675 Lind, Srsieve, PrimeGrid, LLR L4676 Maloney, Srsieve, PrimeGrid, PrimeSierpinski, LLR L4677 Provencher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4683 Bird2, Srsieve, CRUS, LLR L4684 Sveen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4685 Masser, Srsieve, CRUS, LLR L4687 Campbell1, PSieve, Srsieve, PrimeGrid, LLR L4689 Gordon2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4690 Brandt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4691 Fruzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4692 Hajek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4694 Schapendonk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4695 Goudie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4696 Plottel, PSieve, Srsieve, PrimeGrid, LLR L4697 Sellsted, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4699 Parsonnet, PSieve, Srsieve, PrimeGrid, LLR L4700 Liu4, Srsieve, CRUS, LLR L4701 Kalus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4702 Charette, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4703 Pacini, PSieve, Srsieve, PrimeGrid, LLR L4704 Kurtovic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4706 Kraemer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4710 Wiedemann, PSieve, Srsieve, PrimeGrid, LLR L4711 Closs, PSieve, Srsieve, PrimeGrid, LLR L4712 Gravemeyer, PSieve, Srsieve, PrimeGrid, LLR L4713 Post, PSieve, Srsieve, PrimeGrid, LLR L4714 James1, Srsieve, CRUS, LLR L4715 Skinner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4717 Wypych, PSieve, Srsieve, PrimeGrid, LLR L4718 Brown1, Gcwsieve, MultiSieve, PrimeGrid, LLR L4720 Gahan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4723 Lexut, PSieve, Srsieve, PrimeGrid, LLR L4724 Thonon, PSieve, Srsieve, PrimeGrid, LLR L4726 Miller7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4729 Wimmer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4730 Bowe, PSieve, Srsieve, PrimeGrid, LLR L4732 Miller7, PSieve, Srsieve, PrimeGrid, LLR L4737 Reinhardt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4738 Gelhar, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4740 Silva1, PSieve, Srsieve, PrimeGrid, LLR L4741 Wong, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4742 Schlereth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4743 Plsak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4745 Cavnaugh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4746 Brech, PSieve, Srsieve, PrimeGrid, LLR L4747 Brech, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4752 Harvey2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4753 Riemann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4754 Calvin, PSieve, Srsieve, PrimeGrid, LLR L4755 Glatte, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4757 Johnson9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4758 Walling, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4760 Sipes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4761 Romaidis, PSieve, Srsieve, PrimeGrid, LLR L4763 Guilleminot, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4764 McLean2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4765 Kumsta, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4773 Tohmola, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4774 Boehm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4775 Steinbach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4776 Lee7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4780 Harvey, Gcwsieve, MultiSieve, GenWoodall, LLR L4783 Marini, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4784 Bertolotti, Gcwsieve, MultiSieve, PrimeGrid, LLR L4786 Sydekum, Srsieve, CRUS, LLR L4787 Sunderland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4789 Kurtovic, Srsieve, Prime95, LLR L4791 Vaisanen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4793 Koski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4795 Lawson2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4796 White2, PSieve, Srsieve, PrimeGrid, LLR L4799 Vanderveen1, LLR L4800 Doenges, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4802 Jones5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4806 Rajala, Srsieve, CRUS, LLR L4807 Tsuji, Srsieve, PrimeGrid, LLR L4808 Kaiser1, PolySieve, LLR L4809 Bocan, Srsieve, PrimeGrid, LLR L4810 Dhuyvetters, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4812 Nezumi, LLR L4814 Telesz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4815 Kozisek, PSieve, Srsieve, PrimeGrid, LLR L4816 Doenges, PSieve, Srsieve, PrimeGrid, LLR L4819 Inci, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4821 Svantner, PSieve, Srsieve, PrimeGrid, LLR L4822 Magklaras, PSieve, Srsieve, PrimeGrid, LLR L4823 Helm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4824 Allivato, PSieve, Srsieve, PrimeGrid, LLR L4826 Soraku, PSieve, Srsieve, PrimeGrid, LLR L4830 Eisler1, PSieve, Srsieve, PrimeGrid, LLR L4832 Meekins, Srsieve, CRUS, LLR L4834 Helm, PSieve, Srsieve, PrimeGrid, LLR L4835 Katzur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4837 Hines, Srsieve, CRUS, LLR L4840 Ylijoki, PSieve, Srsieve, PrimeGrid, LLR L4841 Baur, PSieve, Srsieve, PrimeGrid, LLR L4842 Smith11, PSieve, Srsieve, PrimeGrid, LLR L4843 Hutchins, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4844 Valentino, PSieve, Srsieve, PrimeGrid, LLR L4848 Adamec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4849 Burt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4850 Jones5, PSieve, Srsieve, PrimeGrid, LLR L4851 Schioler, PSieve, Srsieve, PrimeGrid, LLR L4854 Gory, PSieve, Srsieve, PrimeGrid, LLR L4858 Koriabine, PSieve, Srsieve, PrimeGrid, LLR L4861 Thonon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4862 McNary, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4864 Freihube, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4868 Bergmann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4869 Ogata, PSieve, Srsieve, PrimeGrid, LLR L4870 Wharton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4871 Gory, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4875 Parsonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4876 Tennant, Srsieve, CRUS, LLR L4877 Cherenkov, Srsieve, CRUS, LLR L4879 Propper, Batalov, Srsieve, LLR L4880 Goossens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4881 Bonath, Srsieve, LLR L4884 Somer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4889 Hundhausen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4892 Hewitt1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4893 Little, PSieve, Srsieve, PrimeGrid, LLR L4894 Bredl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4898 Kozisek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4899 Schioler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4903 Laurent1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4904 Dunchouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4905 Niegocki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4907 Reinhardt, PSieve, Srsieve, PrimeGrid, LLR L4909 Hall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4911 Calveley, Srsieve, CRUS, LLR L4914 Bishop_D, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4917 Corlatti, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4918 Weiss1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4920 Walsh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4922 Bulba, Sesok, LLR L4923 Koriabine, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4925 Korolev, Srsieve, CRUS, LLR L4926 Shenton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4927 Smith12, Srsieve, SRBase, CRUS, LLR L4928 Doornink, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4929 Givoni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4930 Shintani, PSieve, Srsieve, PrimeGrid, LLR L4932 Schroeder2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4933 Jacques, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4935 Simard, PSieve, Srsieve, PrimeGrid, LLR L4937 Ito2, Srsieve, PrimeGrid, LLR L4939 Coscia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4942 Matheis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4944 Schori, LLR2, PSieve, Srsieve, PrimeGrid, LLR L4945 Meili, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4948 SchwartzLowe, PSieve, Srsieve, PrimeGrid, LLR L4951 Niegocki, PSieve, Srsieve, PrimeGrid, LLR L4954 Romaidis, Srsieve, PrimeGrid, LLR L4955 Grosvenor, Srsieve, CRUS, LLR L4956 Merrylees, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4958 Shenton, PSieve, Srsieve, PrimeGrid, LLR L4959 Deakin, PSieve, Srsieve, PrimeGrid, LLR L4960 Kaiser1, NewPGen, TPS, LLR L4961 Vornicu, LLR L4962 Baur, Srsieve, NewPGen, LLR L4963 Mortimore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4964 Doescher, GFNSvCUDA, GeneFer, LLR L4965 Propper, LLR L4968 Kaczala, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4970 Michael, PSieve, Srsieve, PrimeGrid, LLR L4972 Greer, Gcwsieve, MultiSieve, PrimeGrid, LLR L4973 Landrum, PSieve, Srsieve, PrimeGrid, LLR L4974 Monroe, PSieve, Srsieve, PrimeGrid, LLR L4975 Thompson5, Srsieve, CRUS, LLR L4976 Propper, Batalov, Gcwsieve, LLR L4977 Miller8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4979 Matheis, PSieve, Srsieve, PrimeGrid, LLR L4980 Poon1, PSieve, Srsieve, PrimeGrid, LLR L4981 MartinezCucalon, PSieve, Srsieve, PrimeGrid, LLR L4984 Hemsley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4985 Veit, Srsieve, CRUS, LLR L4987 Canossi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4988 Harris3, PSieve, Srsieve, PrimeGrid, LLR L4990 Heindl, PSieve, Srsieve, PrimeGrid, LLR L4994 Wong, Srsieve, NewPGen, LLR L4997 Gardner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4999 Andrews1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5000 Wimmer2, Srsieve, CRUS, LLR L5001 Mamonov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5002 Kato, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5005 Hass, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5007 Faith, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5008 Niegocki, Srsieve, PrimeGrid, LLR L5009 Jungmann, Srsieve, LLR L5011 Strajt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5013 Wypych, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5014 Strokov, PSieve, Srsieve, PrimeGrid, LLR L5018 Nielsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5019 Ayiomamitis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5020 Eikelenboom, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5021 Svantner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5022 Manz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5023 Schulz6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5024 Schumacher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5025 Lexut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5027 Moudy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5029 Krompolc, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5030 Calvin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5031 Schumacher, PSieve, Srsieve, PrimeGrid, LLR L5033 Ni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5036 Jung2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5037 Diepeveen, Underwood, PSieve, Srsieve, Rieselprime, LLR L5039 Gilliland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5041 Wallbaum, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5043 Vanderveen1, Propper, LLR L5044 Bergelt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5047 Little, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5051 Veit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5053 Yoshigoe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5056 Chu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5057 Hauhia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5061 Cooper5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5063 Wendelboe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5067 Tirkkonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5068 Silva1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5069 Friedrichsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5070 Millerick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5071 McLean2, Srsieve, CRUS, LLR L5072 Romaidis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5076 Atnashev, Srsieve, PrimeGrid, LLR L5078 McDonald4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5079 Meditz, PSieve, Srsieve, PrimeGrid, LLR L5080 Gahan, GFNSvCUDA, PrivGfnServer, LLR L5081 Howell, Srsieve, PrimeGrid, LLR L5083 Pickering, Srsieve, PrimeGrid, LLR L5084 Yagi, PSieve, Srsieve, PrimeGrid, LLR L5085 Strajt, PSieve, Srsieve, PrimeGrid, LLR L5087 Coscia, PSieve, Srsieve, PrimeGrid, LLR L5088 Hall1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5089 MARSIN, Srsieve, CRUS, LLR L5090 Jourdan, PSieve, Srsieve, PrimeGrid, LLR L5094 Th�mmler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5099 Lobring, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5100 Stephens, PSieve, Srsieve, PrimeGrid, LLR L5102 Liu6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5104 Gahan, LLR2, NewPGen, LLR L5105 Helm, LLR2, Srsieve, PrivGfnServer, LLR L5106 Glennie, PSieve, Srsieve, PrimeGrid, LLR L5110 Provencher, PSieve, Srsieve, PrimeGrid, LLR L5112 Vanderveen1, Srsieve, CRUS, LLR L5115 Doescher, LLR L5116 Schoeler, MultiSieve, LLR L5118 Vanderveen1, PSieve, Srsieve, PrimeGrid, Rieselprime, LLR L5120 Greer, LLR2, PrivGfnServer, LLR L5122 Tennant, LLR2, PrivGfnServer, LLR L5123 Propper, Batalov, EMsieve, LLR L5125 Tirkkonen, PSieve, Srsieve, PrimeGrid, LLR L5126 Warach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5127 Kemenes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5128 Gulla, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5129 Veit, Srsieve, PrimeGrid, LLR L5130 Jourdan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5134 Cooper5, PSieve, Srsieve, PrimeGrid, LLR L5139 Belozersky, PSieve, Srsieve, PrimeGrid, LLR L5143 Dickinson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5144 McNary, PSieve, Srsieve, PrimeGrid, LLR L5155 Harju, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5156 Dinkel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5157 Asano, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5158 Zuschlag, PSieve, Srsieve, PrimeGrid, LLR L5159 Huetter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5161 Greer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5162 Th�mmler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5166 Jaros1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5167 Gelhar, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5168 Hawkinson, PSieve, Srsieve, PrimeGrid, LLR L5169 Atnashev, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5171 Brown1, LLR2, Srsieve, PrimeGrid, LLR L5172 McNary, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5173 Bishop_D, PSieve, Srsieve, PrimeGrid, LLR L5174 Scalise, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5175 Liiv, PSieve, Srsieve, Rieselprime, LLR L5176 Early, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5177 Tapper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5178 Larsson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5179 Okazaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5180 Laluk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5181 Atnashev, LLR2, Srsieve, PrimeGrid, LLR L5183 Winskill1, PSieve, Srsieve, PrimeGrid, 12121search, LLR L5184 Byerly, PSieve, Srsieve, NPLB, LLR L5185 Elgetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5186 United, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5188 Wong, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5189 Jackson1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5191 Kaiser1, NewPGen, LLR L5192 Anonymous, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5194 Jonas, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5195 Ridgway, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5196 Sielemann, Srsieve, CRUS, LLR L5197 Propper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5198 Elgetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5199 Romaidis, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5200 Terry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5201 Ford, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5202 Molne, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5203 Topham, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5206 Wiseler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5207 Atnashev, LLR2, PrivGfnServer, LLR L5208 Schnur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5209 Hansen1, Srsieve, CRUS, LLR L5210 Brech, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5211 Orpen1, Srsieve, CRUS, LLR L5214 Dinkel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5215 Hawkinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5216 Brazier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5217 Wiseler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5218 Atnashev, LLR2, LLR L5220 Jones4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5223 Vera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5226 Brown1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5227 Nagayama, Srsieve, CRUS, LLR L5228 Jacques, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5229 Karpenko, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5230 Tapper, LLR2, Srsieve, PrimeGrid, LLR L5231 Veit, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5232 Bliedung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5233 Sipes, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5235 Karpinski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5236 Shenton, LLR2, PSieve, Srsieve, PrivGfnServer, PrimeGrid, LLR L5237 Schwieger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5238 Jourdan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5239 Strajt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5242 Krompolc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5246 Vaisanen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5248 Delgado, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5249 Racanelli, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5250 Nakamura, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5253 Burt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5254 Gerstenberger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5256 Snow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5260 Ostaszewski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5261 Kim5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5262 Clark5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5263 Ito2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5264 Cholt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5265 Fleischman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5266 Sheridan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5267 Schnur, LLR2, Srsieve, PrimeGrid, LLR L5269 Clemence, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5270 Hennebert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5272 Conner, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5273 McGonegal, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5275 Templin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5276 Schawe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5277 McDevitt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5278 Nose, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5279 Schick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5282 Somer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5283 Hua, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5284 Fischer1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5285 Merrylees, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5286 Reynolds1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5287 Thonon, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5288 Heindl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5289 Nemeth1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5290 Cooper5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5294 Hewitt1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5295 Gilliland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5296 Piaive, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5297 Nakamura, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5298 Kaczmarek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5299 Corlatti, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5300 Hajek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5301 Harju, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5302 Davies, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5305 Thanry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5307 Bauer2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5308 Krauss, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5309 Bishop_D, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5310 Hubbard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5311 Reich, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5312 Tyndall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5313 Barnes, PSieve, Srsieve, Rieselprime, LLR L5314 Satoh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5315 Dec, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5316 Walsh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5317 Freeze, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5318 Ruber, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5319 Abbey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5320 Niegocki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5321 Dark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5323 Chan1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5324 Boehm, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5325 Drager, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5326 Deakin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5327 Shenton, LLR2, Srsieve, LLR L5332 Mizusawa, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5334 Jones6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5335 Harvey1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5336 Leblanc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5337 Kawamura1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5338 Deakin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5340 Ogawa, MultiSieve, NewPGen, LLR L5341 Toenjes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5342 Rodenkirch, Srsieve, CRUS, LLR L5343 Tajika, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5344 Lowe1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5345 Johnson8, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5346 Polansky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5347 Whyte, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5348 Adam, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5350 McDevitt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5352 Eklof, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5353 Belolipetskiy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5354 Doornink, NewPGen, OpenPFGW, LLR L5356 Hsu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5358 Gmirkin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5359 Ridgway, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5360 Leitch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5361 Schneider6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5362 Domanov1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5364 Blyth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5365 Racanelli, Srsieve, CRUS, LLR L5366 Michael, Srsieve, CRUS, LLR L5367 Hsu2, Srsieve, CRUS, LLR L5368 Valentino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5372 Vitiello, Srsieve, CRUS, LLR L5373 Baranchikov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5375 Blanchard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5376 Ranch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5377 Yasuhisa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5378 Seeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5379 Smith4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5380 Campulka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5381 Meppiel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5382 Bulanov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5384 Riemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5387 Johns, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5388 Dewar, Srsieve, CRUS, LLR L5389 Doornink, TwinGen, LLR L5390 Lemkau, Srsieve, CRUS, LLR L5392 McDonald4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5393 Lu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5395 Early, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5399 Kolesov, LLR L5400 Hefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5401 Champ, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5402 Greer, LLR2, Gcwsieve, MultiSieve, PrimeGrid, LLR L5403 Slade1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5404 Wiseler, LLR2, Srsieve, PrimeGrid, LLR L5405 Gerstenberger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5406 Jaros, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5407 Mahnken, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5408 Kreth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5409 Lu, Srsieve, CRUS, LLR L5410 Anonymous, Srsieve, CRUS, LLR L5413 David1, Srsieve, CRUS, LLR L5414 Mollerus, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5415 VanHullebusch, Srsieve, CRUS, LLR L5416 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5418 Pollak, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5419 Straub, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5421 Iwasaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5425 Lichtenwimmer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5426 Gilliland, Srsieve, CRUS, LLR L5427 Hewitt1, LLR2, Srsieve, PrimeGrid, LLR L5429 Meditz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5433 Hatanaka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5434 Parsonnet, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5435 Murphy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5436 Dewar1, Srsieve, CRUS, LLR L5437 Rijfers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5438 Tang, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5439 Batalov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5440 McGonegal, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5441 Cherenkov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5442 Moreira, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5443 Venjakob, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5444 Platz, LLR2, Srsieve, PrimeGrid, LLR L5448 Rubin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5449 Reinhardt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5450 Mizusawa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5451 Wilkins, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5452 Morera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5453 Slaets, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5456 Gundermann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5457 Iwasaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5459 Sekanina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5460 Headrick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5461 Anonymous, LLR2, Srsieve, PrimeGrid, LLR L5462 Raimist, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5463 Goforth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5464 Pickering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5465 Hubbard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5466 Furushima, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5467 Tamai1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5469 Bishopp, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5470 Latge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5471 Dunchouk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5472 Ready, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5476 Steinbach, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5477 Meador, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5480 Boddener, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5482 Raimist, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5485 Mahnken, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5488 Kecic, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5490 Vasiliu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5492 Slaets, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5493 Liu6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5497 Goetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5499 Osada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5500 Racanelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5501 Seeley, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5502 Floyd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5503 Soule, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5504 Cerny, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5505 Chovanec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5507 Brandt2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5508 Gauch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5509 Nietering, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5512 Akesson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5514 Cavnaugh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5516 Piesker, PSieve, Srsieve, NPLB, LLR L5517 Cavecchia, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5518 Eisler1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5519 Atnashev, LLR2, PSieve, Srsieve, PrivGfnServer, PrimeGrid, LLR L5520 Bennett1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5523 Sekanina, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5524 Matillek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5526 Kickler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5527 Doornink, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5529 Baur1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5530 Matillek, LLR2, Srsieve, PrimeGrid, LLR L5531 Koci, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5532 Morera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5533 Schadt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5534 Cervelle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5535 Skahill, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5536 Bennett1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5537 Schafer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5539 Choliy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5540 Brown6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5541 Parker, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5543 Lucendo, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5544 Byerly, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5545 Kruse, PSieve, Srsieve, NPLB, LLR L5546 Steinwedel, PSieve, Srsieve, NPLB, LLR L5547 Hoonoki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5548 Steinberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5549 Zhang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5550 Provencher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5551 Marler, PSieve, Srsieve, NPLB, LLR L5553 DAmico, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5554 Lucendo, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5555 Parangalan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5556 Javens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5557 Drake, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5558 Lee7, LLR2, Srsieve, PrimeGrid, LLR L5559 Roberts, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5560 Amberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5561 Howell, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5562 Cheung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5563 Akesson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5564 Lee7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5565 Bailey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5566 Latge, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5567 Marshall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5568 Schioler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5569 Michael, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5570 Arnold, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5571 Williams7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5572 Sveen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5573 Friedrichsen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5574 Laboisne, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5575 Blanchard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5576 Amorim, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5578 Jablonski1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5579 Cox2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5580 Ivanek1, Srsieve, CRUS, LLR L5581 Pickles, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5582 Einvik, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5583 Tanaka3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5584 Barr, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5585 Faith, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5586 Vultur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5587 AverayJones, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5588 Shi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5589 Kupka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5590 Schumacher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5592 Shintani, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5594 Brown7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5596 Kozisek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5598 Rodermond, PSieve, Srsieve, NPLB, LLR L5599 Jayaputera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5600 Steinberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5601 Sato1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5606 Clark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5607 Rodermond, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5608 Pieritz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5609 Sielemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5610 Katzur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5611 Smith13, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5612 Lugowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5613 Delisle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5614 Becker2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5615 Dodd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5616 Miller7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5618 Wilson4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5619 Piotrowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5621 Millerick, LLR2, Srsieve, PrimeGrid, LLR L5624 Farrow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5625 Sellsted, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5626 Clark, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5627 Bulanov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5628 Baranchikov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5629 Dickinson, Srsieve, CRUS, LLR L5630 Orpen1, LLR L5631 Mittelstadt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5632 Marler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5634 Gao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5636 Santosa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5637 Bestor, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5638 Piskun, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5639 Cavecchia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5640 Xu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5643 Fisher1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5645 Orpen1, SRBase, LLR L5646 Dickey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5647 Soraku, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5648 York, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5649 Dietsch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5650 Ketamino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5651 Lexut, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5652 Wilson5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5653 Beck1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5655 Hoffman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5656 McAdams, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5657 Alden, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5658 Sloan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5660 Andrews2, LLR L5662 OMalley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5663 Li5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5666 Wendelboe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5668 Finn, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5670 Heindl1, Srsieve, CRUS, LLR L5671 Rauh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5673 Lepri, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5674 Dickson1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5676 Fnasek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5679 Shane, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5681 Schmidt5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5682 Floyd, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5683 Glatte, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5684 Mesh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5685 Bestor, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5686 Pistorius, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5687 Wellck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5688 Rodermond, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5689 Leblanc, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5690 Eldred, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5691 Miguel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5692 Boboi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5693 Huan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5694 Petersen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5695 Steinberg, NewPGen, LLR L5696 Earle, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5697 Black2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5698 Stenschke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5699 Myers1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5700 Huang1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5701 Felix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5702 Herber, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5703 Koudelka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5704 Hampicke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5705 Wharton, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5706 Wallbaum, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5707 Johns, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5708 Erdmann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5709 DeWitt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5710 Hass, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5711 Gingrich1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5712 Stahl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5713 Mardis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5714 Loucks, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5715 Calvin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5716 Steinmetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5717 Natividad, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5718 Ketamino, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5719 Kledzik, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5720 Trigueiro, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5721 Fischer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5722 Rickard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5723 Fergusson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5724 Pilz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5725 Gingrich1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5726 Noxe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5727 Headrick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5728 Shurtz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5729 Oynes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5730 Wind, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5731 Michael, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5732 Monroe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5733 Johnson5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5734 Wuhler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5735 Kobrzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5736 Riva, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5737 Walsh1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5738 Schaeffer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5739 Pistorius, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5740 Chu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5741 Sheng, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5742 Steinmetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5743 Bird3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5744 Harvey1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5745 Saladin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5746 Meister1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5747 Pettit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5748 Norbert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5749 Gahan, LLR2, LLR L5750 Shi, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5751 Au, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5752 Wissel, LLR L5753 Zeng, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5754 Abad, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5755 Kwiatkowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5756 Wei, LLR2, PSieve, Srsieve, PrimeGrid, LLR M Morain MM Morii O Oakes p3 Dohmen, OpenPFGW p8 Caldwell, OpenPFGW p12 Water, OpenPFGW p16 Heuer, OpenPFGW p21 Anderson, Robinson, OpenPFGW p44 Broadhurst, OpenPFGW p49 Berg, OpenPFGW p54 Broadhurst, Water, OpenPFGW p58 Glover, Oakes, OpenPFGW p65 DavisK, Kuosa, OpenPFGW p77 Harvey, MultiSieve, GenWoodall, OpenPFGW p85 Marchal, Carmody, Kuosa, OpenPFGW p102 Frind, Underwood, OpenPFGW p148 Yama, Noda, Nohara, NewPGen, MatGFN, PRP, OpenPFGW p155 DavisK, NewPGen, OpenPFGW p158 Paridon, NewPGen, OpenPFGW p166 Yamada, Noda, Nohara, NewPGen, MatGFN, PRP, OpenPFGW p168 Cami, OpenPFGW p170 Wu_T, Primo, OpenPFGW p189 Bohanon, LLR, OpenPFGW p193 Irvine, Broadhurst, Primo, OpenPFGW p199 Broadhurst, NewPGen, OpenPFGW p235 Bedwell, OpenPFGW p236 Cooper, NewPGen, PRP, OpenPFGW p252 Oakes, NewPGen, OpenPFGW p254 Vogel, Srsieve, CRUS, OpenPFGW p255 Siemelink, Srsieve, CRUS, OpenPFGW p257 Siemelink, Srsieve, OpenPFGW p258 Batalov, Srsieve, CRUS, OpenPFGW p259 Underbakke, GenefX64, AthGFNSieve, OpenPFGW p260 Harvey, Gcwsieve, MultiSieve, GenWoodall, OpenPFGW p262 Vogel, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p268 Rodenkirch, Srsieve, CRUS, OpenPFGW p269 Zhou, OpenPFGW p271 Dettweiler, Srsieve, CRUS, OpenPFGW p279 Domanov1, Srsieve, Rieselprime, Prime95, OpenPFGW p286 Batalov, Srsieve, OpenPFGW p290 Domanov1, Fpsieve, PrimeGrid, OpenPFGW p292 Dausch, Srsieve, SierpinskiRiesel, OpenPFGW p294 Batalov, EMsieve, PIES, LLR, OpenPFGW p295 Angel, NewPGen, OpenPFGW p296 Kaiser1, Srsieve, LLR, OpenPFGW p297 Broadhurst, Srsieve, NewPGen, LLR, OpenPFGW p300 Gramolin, NewPGen, OpenPFGW p301 Winskill1, Fpsieve, PrimeGrid, OpenPFGW p302 Gasewicz, Fpsieve, PrimeGrid, OpenPFGW p308 DavisK, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p309 Yama, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p310 Hubbard, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p312 Doggart, Fpsieve, PrimeGrid, OpenPFGW p314 Hubbard, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p325 Broadhurst, Gcwsieve, MultiSieve, OpenPFGW p332 Johnson6, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p334 Goetz, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p338 Tomecko, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p342 Trice, OpenPFGW p346 Burt, Fpsieve, PrimeGrid, OpenPFGW p350 Koen, Gcwsieve, GenWoodall, OpenPFGW p354 Koen, Gcwsieve, OpenPFGW p355 Domanov1, Srsieve, CRUS, OpenPFGW p360 Kinne, Exoo, OpenPFGW p362 Snow, Fpsieve, PrimeGrid, OpenPFGW p363 Batalov, OpenPFGW p364 Batalov, NewPGen, OpenPFGW p366 Demeyer, Siemelink, Srsieve, CRUS, OpenPFGW p373 Morelli, OpenPFGW p378 Batalov, Srsieve, CRUS, LLR, OpenPFGW p379 Batalov, CycloSv, Cyclo, EMsieve, PIES, OpenPFGW p382 Oestlin, NewPGen, OpenPFGW p383 Maloy, OpenPFGW p384 Booker, OpenPFGW p385 Rajala, Srsieve, CRUS, OpenPFGW p387 Zimmerman, GeneFer, AthGFNSieve, PrimeGrid, OpenPFGW p390 Jaworski, Srsieve, Rieselprime, Prime95, OpenPFGW p391 Keiser, NewPGen, OpenPFGW p394 Fukui, MultiSieve, OpenPFGW p395 Angel, Augustin, NewPGen, OpenPFGW p396 Ikisugi, OpenPFGW p398 Stocker, OpenPFGW p399 Kebbaj, OpenPFGW p403 Bonath, Cksieve, OpenPFGW p405 Propper, Cksieve, OpenPFGW p406 DavisK, Luhn, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p407 Lamprecht, Luhn, OpenPFGW p408 Batalov, PolySieve, OpenPFGW p409 Nielsen1, OpenPFGW p411 Larsson, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p413 Morimoto, OpenPFGW p414 Naimi, OpenPFGW p415 Doornink, TwinGen, OpenPFGW p416 Monnin, LLR2, PrivGfnServer, OpenPFGW p417 Tennant, LLR2, PrivGfnServer, OpenPFGW p418 Sielemann, LLR2, PrivGfnServer, OpenPFGW p419 Bird1, LLR2, PrivGfnServer, OpenPFGW p421 Gahan, LLR2, PrivGfnServer, OpenPFGW p422 Kaiser1, PolySieve, OpenPFGW p423 Propper, Batalov, EMsieve, OpenPFGW p425 Propper, MultiSieve, OpenPFGW p426 Schoeler, NewPGen, OpenPFGW p427 Niegocki, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p428 Trunov, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p429 Steinberg, MultiSieve, OpenPFGW p430 Propper, Batalov, NewPGen, OpenPFGW p431 Piesker, Srsieve, CRUS, OpenPFGW PM Mihailescu SB10 Agafonov, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB11 Sunde, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB12 Szabolcs, Srsieve, SoBSieve, ProthSieve, Ksieve, PrimeGrid, LLR, SB SB6 Sundquist, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB7 Team_Prime_Rib, SoBSieve, ProthSieve, Ksieve, PRP, SB SB8 Gordon, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB9 Hassler, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SG Slowinski, Gage WD Williams, Dubner, Cruncher WM Morain, Williams x13 Renze x16 Doumen, Beelen, Unknown x20 Irvine, Broadhurst, Water x23 Broadhurst, Water, Renze, OpenPFGW, Primo x24 Jarai_Z, Farkas, Csajbok, Kasza, Jarai, Unknown x25 Broadhurst, Water, OpenPFGW, Primo x28 Iskra x33 Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x36 Irvine, Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x38 Broadhurst, OpenPFGW, Primo x39 Broadhurst, Dubner, Keller, OpenPFGW, Primo x44 Zhou, Unknown x45 Batalov, OpenPFGW, Primo, Unknown x46 Otremba, Fpsieve, OpenPFGW, Unknown x47 Szekeres, Magyar, Gevay, Farkas, Jarai, Unknown x48 Asuncion, Allombert, Unknown x49 Facq, Asuncion, Allombert, Unknown x50 Propper, GFNSvCUDA, GeneFer, Unknown Y Young