THE LARGEST KNOWN PRIMES (The 5,000 largest known primes) (selected smaller primes which have comments are included) Originally Compiled by Samuel Yates -- Continued by Chris Caldwell and now maintained by Reginald McLean (Fri Sep 22 23:38:05 UTC 2023) So that I can maintain this database of the 5,000 largest known primes (plus selected smaller primes with 1,000 or more digits), please send any new primes (that are large enough) to: https://t5k.org/bios/submission.php This list in a searchable form (plus information such as how to find large primes and how to prove primality) is available at the interactive web site: https://t5k.org/primes/ See the last pages for information about the provers. The letters after the rank refer to when the prime was submitted. 'a' is this month, 'b' last month... ----- ------------------------------- -------- ----- ---- -------------- rank description digits who year comment ----- ------------------------------- -------- ----- ---- -------------- 1 2^82589933-1 24862048 G16 2018 Mersenne 51?? 2 2^77232917-1 23249425 G15 2018 Mersenne 50?? 3 2^74207281-1 22338618 G14 2016 Mersenne 49?? 4 2^57885161-1 17425170 G13 2013 Mersenne 48 5 2^43112609-1 12978189 G10 2008 Mersenne 47 6 2^42643801-1 12837064 G12 2009 Mersenne 46 7e Phi(3,-465859^1048576) 11887192 L4561 2023 Generalized unique 8 2^37156667-1 11185272 G11 2008 Mersenne 45 9 2^32582657-1 9808358 G9 2006 Mersenne 44 10 10223*2^31172165+1 9383761 SB12 2016 11 2^30402457-1 9152052 G9 2005 Mersenne 43 12 2^25964951-1 7816230 G8 2005 Mersenne 42 13 2^24036583-1 7235733 G7 2004 Mersenne 41 14 1963736^1048576+1 6598776 L4245 2022 Generalized Fermat 15 1951734^1048576+1 6595985 L5583 2022 Generalized Fermat 16 202705*2^21320516+1 6418121 L5181 2021 17 2^20996011-1 6320430 G6 2003 Mersenne 40 18 1059094^1048576+1 6317602 L4720 2018 Generalized Fermat 19c 3*2^20928756-1 6300184 L5799 2023 20 919444^1048576+1 6253210 L4286 2017 Generalized Fermat 21d 81*2^20498148+1 6170560 L4965 2023 Generalized Fermat 22 7*2^20267500+1 6101127 L4965 2022 Divides GF(20267499,12) [GG] 23 168451*2^19375200+1 5832522 L4676 2017 24 69*2^19374980-1 5832452 L4965 2022 25 3*2^18924988-1 5696990 L5530 2022 26 69*2^18831865-1 5668959 L4965 2021 27f 97139*2^18397548-1 5538219 L4965 2023 28 7*2^18233956+1 5488969 L4965 2020 Divides Fermat F(18233954) 29 3*2^18196595-1 5477722 L5461 2022 30 3*2^17748034-1 5342692 L5404 2021 31 Phi(3,-123447^524288) 5338805 L4561 2017 Generalized unique 32 3622*5^7558139-1 5282917 L4965 2022 33 7*6^6772401+1 5269954 L4965 2019 34 2*3^10852677+1 5178044 L4965 2023 Divides phi 35 8508301*2^17016603-1 5122515 L4784 2018 Woodall 36 3*2^16819291-1 5063112 L5230 2021 37 3*2^16408818+1 4939547 L5171 2020 Divides GF(16408814,3), GF(16408817,5) 38 69*2^15866556-1 4776312 L4965 2021 39 2525532*73^2525532+1 4705888 L5402 2021 Generalized Cullen 40 11*2^15502315+1 4666663 L4965 2023 Divides GF(15502313,10) [GG] 41 37*2^15474010+1 4658143 L4965 2022 42 93839*2^15337656-1 4617100 L4965 2022 43 2^15317227+2^7658614+1 4610945 L5123 2020 Gaussian Mersenne norm 41?, generalized unique 44 6*5^6546983+1 4576146 L4965 2020 45 69*2^14977631-1 4508719 L4965 2021 46 192971*2^14773498-1 4447272 L4965 2021 47 4*5^6181673-1 4320805 L4965 2022 48 6962*31^2863120-1 4269952 L5410 2020 49 37*2^14166940+1 4264676 L4965 2022 50 99739*2^14019102+1 4220176 L5008 2019 51 69*2^13832885-1 4164116 L4965 2022 52 404849*2^13764867+1 4143644 L4976 2021 Generalized Cullen 53 25*2^13719266+1 4129912 L4965 2022 Generalized Fermat 54 81*2^13708272+1 4126603 L4965 2022 Generalized Fermat 55 2740879*2^13704395-1 4125441 L4976 2019 Generalized Woodall 56 479216*3^8625889-1 4115601 L4976 2019 Generalized Woodall 57 Phi(3,-143332^393216) 4055114 L4506 2017 Generalized unique 58 81*2^13470584+1 4055052 L4965 2022 Generalized Fermat 59 2^13466917-1 4053946 G5 2001 Mersenne 39 60 9*2^13334487+1 4014082 L4965 2020 Divides GF(13334485,3) 61 206039*2^13104952-1 3944989 L4965 2021 62 2805222*5^5610444+1 3921539 L4972 2019 Generalized Cullen 63 19249*2^13018586+1 3918990 SB10 2007 64 2293*2^12918431-1 3888839 L4965 2021 65 81*2^12804541+1 3854553 L4965 2022 66 4*5^5380542+1 3760839 L4965 2023 Generalized Fermat 67 9*2^12406887+1 3734847 L4965 2020 Divides GF(12406885,3) 68d 7*2^12286041-1 3698468 L4965 2023 69 69*2^12231580-1 3682075 L4965 2021 70 27*2^12184319+1 3667847 L4965 2021 71 3761*2^11978874-1 3606004 L4965 2022 72 3*2^11895718-1 3580969 L4159 2015 73 37*2^11855148+1 3568757 L4965 2022 74d 6339004^524288+1 3566218 L1372 2023 Generalized Fermat 75 5897794^524288+1 3549792 x50 2022 Generalized Fermat 76 3*2^11731850-1 3531640 L4103 2015 77 69*2^11718455-1 3527609 L4965 2020 78 41*2^11676439+1 3514960 L4965 2022 79 4896418^524288+1 3507424 L4245 2022 Generalized Fermat 80 81*2^11616017+1 3496772 L4965 2022 81 69*2^11604348-1 3493259 L4965 2020 82a 4450871*6^4450871+1 3463458 L5765 2023 Generalized Cullen 83 9*2^11500843+1 3462100 L4965 2020 Divides GF(11500840,12) 84 3*2^11484018-1 3457035 L3993 2014 85 193997*2^11452891+1 3447670 L4398 2018 86 3638450^524288+1 3439810 L4591 2020 Generalized Fermat 87 9221*2^11392194-1 3429397 L5267 2021 88 9*2^11366286+1 3421594 L4965 2020 Generalized Fermat 89 5*2^11355764-1 3418427 L4965 2021 90a 732050*6^4392301+1 3417881 L5765 2023 Generalized Cullen 91 3214654^524288+1 3411613 L4309 2019 Generalized Fermat 92 146561*2^11280802-1 3395865 L5181 2020 93 2985036^524288+1 3394739 L4752 2019 Generalized Fermat 94 6929*2^11255424-1 3388225 L4965 2022 95 2877652^524288+1 3386397 L4250 2019 Generalized Fermat 96 2788032^524288+1 3379193 L4584 2019 Generalized Fermat 97 2733014^524288+1 3374655 L4929 2019 Generalized Fermat 98 9*2^11158963+1 3359184 L4965 2020 Divides GF(11158962,5) 99 9271*2^11134335-1 3351773 L4965 2021 100 2312092^524288+1 3336572 L4720 2018 Generalized Fermat 101 2061748^524288+1 3310478 L4783 2018 Generalized Fermat 102 1880370^524288+1 3289511 L4201 2018 Generalized Fermat 103 27*2^10902757-1 3282059 L4965 2022 104 3*2^10829346+1 3259959 L3770 2014 Divides GF(10829343,3), GF(10829345,5) 105 11*2^10803449+1 3252164 L4965 2022 Divides GF(10803448,6) 106 11*2^10797109+1 3250255 L4965 2022 107 7*2^10612737-1 3194754 L4965 2022 108 37*2^10599476+1 3190762 L4965 2022 Divides GF(10599475,10) 109 5*2^10495620-1 3159498 L4965 2021 110d Phi(3,-3^3304302+1)/3 3153105 L5123 2023 Generalized unique 111 5*2^10349000-1 3115361 L4965 2021 112 Phi(3,-844833^262144) 3107335 L4506 2017 Generalized unique 113b 52922*5^4399812-1 3075342 A1 2023 114 Phi(3,-712012^262144) 3068389 L4506 2017 Generalized unique 115c 177742*5^4386703-1 3066180 L5807 2023 116 874208*54^1748416-1 3028951 L4976 2019 Generalized Woodall 117 475856^524288+1 2976633 L3230 2012 Generalized Fermat 118 2*3^6236772+1 2975697 L4965 2022 119b 15*2^9830108+1 2959159 A2 2023 120 9*2^9778263+1 2943552 L4965 2020 121 1806676*41^1806676+1 2913785 L4668 2018 Generalized Cullen 122 356926^524288+1 2911151 L3209 2012 Generalized Fermat 123 341112^524288+1 2900832 L3184 2012 Generalized Fermat 124 213988*5^4138363-1 2892597 L5621 2022 125 43*2^9596983-1 2888982 L4965 2022 126 121*2^9584444+1 2885208 L5183 2020 Generalized Fermat 127 11*2^9381365+1 2824074 L4965 2020 Divides GF(9381364,6) 128b 15*2^9312889+1 2803461 L4965 2023 129 49*2^9187790+1 2765803 L4965 2022 Generalized Fermat 130 27653*2^9167433+1 2759677 SB8 2005 131 90527*2^9162167+1 2758093 L1460 2010 132 6795*2^9144320-1 2752719 L4965 2021 133c 75*2^9079482+1 2733199 L4965 2023 134 1323365*116^1323365+1 2732038 L4718 2018 Generalized Cullen 135 57*2^9075622-1 2732037 L4965 2022 136 63838*5^3887851-1 2717497 L5558 2022 137 13*2^8989858+1 2706219 L4965 2020 138 4159*2^8938471-1 2690752 L4965 2022 139 273809*2^8932416-1 2688931 L1056 2017 140 2*3^5570081+1 2657605 L4965 2020 Divides Phi(3^5570081,2) [g427] 141 25*2^8788628+1 2645643 L5161 2021 Generalized Fermat 142 2038*366^1028507-1 2636562 L2054 2016 143 64598*5^3769854-1 2635020 L5427 2022 144 8*785^900325+1 2606325 L4786 2022 145 17*2^8636199+1 2599757 L5161 2021 Divides GF(8636198,10) 146 75898^524288+1 2558647 p334 2011 Generalized Fermat 147 25*2^8456828+1 2545761 L5237 2021 Divides GF(8456827,12), generalized Fermat 148 39*2^8413422+1 2532694 L5232 2021 149 31*2^8348000+1 2513000 L5229 2021 150 27*2^8342438-1 2511326 L3483 2021 151 3687*2^8261084-1 2486838 L4965 2021 152 273662*5^3493296-1 2441715 L5444 2021 153 81*2^8109236+1 2441126 L4965 2022 Generalized Fermat 154 11*2^8103463+1 2439387 L4965 2020 Divides GF(8103462,12) 155 102818*5^3440382-1 2404729 L5427 2021 156 11*2^7971110-1 2399545 L2484 2019 157 27*2^7963247+1 2397178 L5161 2021 Divides Fermat F(7963245) 158 3177*2^7954621-1 2394584 L4965 2021 159 39*2^7946769+1 2392218 L5226 2021 Divides GF(7946767,12) 160 7*6^3072198+1 2390636 L4965 2019 161 3765*2^7904593-1 2379524 L4965 2021 162 29*2^7899985+1 2378134 L5161 2021 Divides GF(7899984,6) 163 5113*2^7895471-1 2376778 L4965 2022 164 861*2^7895451-1 2376771 L4965 2021 165a 75*2^7886683+1 2374131 A2 2023 166 28433*2^7830457+1 2357207 SB7 2004 167 2589*2^7803339-1 2349043 L4965 2022 168f 8401*2^7767655-1 2338302 L4965 2023 169 5*2^7755002-1 2334489 L4965 2021 170 2945*2^7753232-1 2333959 L4965 2022 171 2545*2^7732265-1 2327648 L4965 2021 172 5539*2^7730709-1 2327180 L4965 2021 173 4817*2^7719584-1 2323831 L4965 2021 174 1341174*53^1341174+1 2312561 L4668 2017 Generalized Cullen 175 9467*2^7680034-1 2311925 L4965 2022 176 45*2^7661004+1 2306194 L5200 2020 177 15*2^7619838+1 2293801 L5192 2020 178 3597*2^7580693-1 2282020 L4965 2021 179 3129*2^7545557-1 2271443 L4965 2023 180 7401*2^7523295-1 2264742 L4965 2021 181 45*2^7513661+1 2261839 L5179 2020 182 Phi(3,-558640^196608) 2259865 L4506 2017 Generalized unique 183d 9*2^7479919-1 2251681 L3345 2023 184 1875*2^7474308-1 2249995 L4965 2022 185 69*2^7452023+1 2243285 L4965 2023 Divides GF(7452020,3) [GG] 186 4*5^3189669-1 2229484 L4965 2022 187 29*2^7374577+1 2219971 L5169 2020 Divides GF(7374576,3) 188 3197*2^7359542-1 2215447 L4965 2022 189 109838*5^3168862-1 2214945 L5129 2020 190 101*2^7345194-1 2211126 L1884 2019 191 15*2^7300254+1 2197597 L5167 2020 192 422429!+1 2193027 p425 2022 Factorial 193 1759*2^7284439-1 2192838 L4965 2021 194e 1909683*14^1909683+1 2188748 L5765 2023 Generalized Cullen 195 737*2^7269322-1 2188287 L4665 2017 196 118568*5^3112069+1 2175248 L690 2020 197 6039*2^7207973-1 2169820 L4965 2021 198 502573*2^7181987-1 2162000 L3964 2014 199 402539*2^7173024-1 2159301 L3961 2014 200 3343*2^7166019-1 2157191 L1884 2016 201 161041*2^7107964+1 2139716 L4034 2015 202 27*2^7046834+1 2121310 L3483 2018 203 1759*2^7046791-1 2121299 L4965 2021 204 327*2^7044001-1 2120459 L4965 2021 205 5*2^7037188-1 2118406 L4965 2021 206 3*2^7033641+1 2117338 L2233 2011 Divides GF(7033639,3) 207 33661*2^7031232+1 2116617 SB11 2007 208 Phi(3,-237804^196608) 2114016 L4506 2017 Generalized unique 209 207494*5^3017502-1 2109149 L5083 2020 210 15*2^6993631-1 2105294 L4965 2021 211 8943501*2^6972593-1 2098967 L466 2022 212 6020095*2^6972593-1 2098967 L466 2022 213 2^6972593-1 2098960 G4 1999 Mersenne 38 214 273*2^6963847-1 2096330 L4965 2022 215 6219*2^6958945-1 2094855 L4965 2021 216 51*2^6945567+1 2090826 L4965 2020 Divides GF(6945564,12) [p286] 217 238694*5^2979422-1 2082532 L5081 2020 218 4*72^1119849-1 2079933 L4444 2016 219 33*2^6894190-1 2075360 L4965 2021 220 2345*2^6882320-1 2071789 L4965 2022 221b 57*2^6857990+1 2064463 A2 2023 222 146264*5^2953282-1 2064261 L1056 2020 223 69*2^6838971-1 2058738 L5037 2020 224 35816*5^2945294-1 2058677 L5076 2020 225 127*2^6836153-1 2057890 L1862 2018 226 19*2^6833086+1 2056966 L5166 2020 227a 65*2^6810465+1 2050157 A2 2023 228 40597*2^6808509-1 2049571 L3749 2013 229 283*2^6804731-1 2048431 L2484 2020 230 1861709*2^6789999+1 2044000 L5191 2020 231 5781*2^6789459-1 2043835 L4965 2021 232 8435*2^6786180-1 2042848 L4965 2021 233 51*2^6753404+1 2032979 L4965 2020 234a 93*2^6750726+1 2032173 A2 2023 235 69*2^6745775+1 2030683 L4965 2023 236 9995*2^6711008-1 2020219 L4965 2021 237 39*2^6684941+1 2012370 L5162 2020 238 6679881*2^6679881+1 2010852 L917 2009 Cullen 239 37*2^6660841-1 2005115 L3933 2014 240 39*2^6648997+1 2001550 L5161 2020 241 304207*2^6643565-1 1999918 L3547 2013 242 69*2^6639971-1 1998833 L5037 2020 243 6471*2^6631137-1 1996175 L4965 2021 244 9935*2^6603610-1 1987889 L4965 2023 245d 554051*2^6517658-1 1962017 L5811 2023 246 1319*2^6506224-1 1958572 L4965 2021 247 3163*2^6504943-1 1958187 L4965 2023 248 322498*5^2800819-1 1957694 L4954 2019 249b 99*2^6502814+1 1957545 A2 2023 250 88444*5^2799269-1 1956611 L3523 2019 251 13*2^6481780+1 1951212 L4965 2020 252 21*2^6468257-1 1947141 L4965 2021 253a 26128000^262144+1 1944350 L5821 2023 Generalized Fermat 254b 25875054^262144+1 1943243 L5070 2023 Generalized Fermat 255b 25690360^262144+1 1942427 L5809 2023 Generalized Fermat 256b 25635940^262144+1 1942186 L4307 2023 Generalized Fermat 257c 25461468^262144+1 1941408 L4210 2023 Generalized Fermat 258c 25333402^262144+1 1940834 L5802 2023 Generalized Fermat 259d 24678636^262144+1 1937853 L5586 2023 Generalized Fermat 260 138514*5^2771922+1 1937496 L4937 2019 261e 24429706^262144+1 1936699 L4670 2023 Generalized Fermat 262 33*2^6432160-1 1936275 L4965 2022 263 15*2^6429089-1 1935350 L4965 2021 264f 23591460^262144+1 1932724 L5720 2023 Generalized Fermat 265f 23479122^262144+1 1932181 L5773 2023 Generalized Fermat 266 398023*2^6418059-1 1932034 L3659 2013 267 22984886^262144+1 1929758 L4928 2023 Generalized Fermat 268d Phi(3,3^2021560+1)/3 1929059 L5123 2023 Generalized unique 269 22790808^262144+1 1928793 L5047 2023 Generalized Fermat 270 22480000^262144+1 1927230 L4307 2023 Generalized Fermat 271 22479752^262144+1 1927229 L5159 2023 Generalized Fermat 272 22470828^262144+1 1927183 L4201 2023 Generalized Fermat 273b 55*2^6395254+1 1925166 A2 2023 274 20866766^262144+1 1918752 L4245 2023 Generalized Fermat 275 20710506^262144+1 1917896 L5676 2023 Generalized Fermat 276 20543682^262144+1 1916975 L5663 2023 Generalized Fermat 277 20105956^262144+1 1914523 L5005 2023 Generalized Fermat 278 631*2^6359347-1 1914357 L4965 2021 279 4965*2^6356707-1 1913564 L4965 2022 280 19859450^262144+1 1913119 L5025 2023 Generalized Fermat 281 19527922^262144+1 1911202 L4745 2023 Generalized Fermat 282 19322744^262144+1 1910000 L4775 2023 Generalized Fermat 283 1995*2^6333396-1 1906546 L4965 2021 284 1582137*2^6328550+1 1905090 L801 2009 Cullen 285 18395930^262144+1 1904404 x50 2022 Generalized Fermat 286 17191822^262144+1 1896697 x50 2022 Generalized Fermat 287b 87*2^6293522+1 1894541 A2 2023 288 16769618^262144+1 1893866 L4677 2022 Generalized Fermat 289 16048460^262144+1 1888862 L5127 2022 Generalized Fermat 290 10^1888529-10^944264-1 1888529 p423 2021 Near-repdigit, palindrome 291 15913772^262144+1 1887902 L4387 2022 Generalized Fermat 292 15859176^262144+1 1887511 L5544 2022 Generalized Fermat 293 3303*2^6264946-1 1885941 L4965 2021 294 15417192^262144+1 1884293 L5051 2022 Generalized Fermat 295 14741470^262144+1 1879190 L4204 2022 Generalized Fermat 296 14399216^262144+1 1876516 L4745 2021 Generalized Fermat 297 14103144^262144+1 1874151 L5254 2021 Generalized Fermat 298 13911580^262144+1 1872594 L5068 2021 Generalized Fermat 299 13640376^262144+1 1870352 L4307 2021 Generalized Fermat 300 13553882^262144+1 1869628 L4307 2021 Generalized Fermat 301a 8825*2^6199424-1 1866217 A2 2023 302 13039868^262144+1 1865227 L5273 2021 Generalized Fermat 303 7*6^2396573+1 1864898 L4965 2019 304 12959788^262144+1 1864525 L4591 2021 Generalized Fermat 305 69*2^6186659+1 1862372 L4965 2023 306 12582496^262144+1 1861162 L5202 2021 Generalized Fermat 307 12529818^262144+1 1860684 L4871 2020 Generalized Fermat 308 12304152^262144+1 1858615 L4591 2020 Generalized Fermat 309 12189878^262144+1 1857553 L4905 2020 Generalized Fermat 310 39*2^6164630+1 1855741 L4087 2020 Divides GF(6164629,5) 311 11081688^262144+1 1846702 L5051 2020 Generalized Fermat 312 10979776^262144+1 1845650 L5088 2020 Generalized Fermat 313 10829576^262144+1 1844082 L4677 2020 Generalized Fermat 314 194368*5^2638045-1 1843920 L690 2018 315 10793312^262144+1 1843700 L4905 2020 Generalized Fermat 316 10627360^262144+1 1841936 L4956 2020 Generalized Fermat 317 10578478^262144+1 1841411 L4307 2020 Generalized Fermat 318 66916*5^2628609-1 1837324 L690 2018 319e 521921*2^6101122-1 1836627 L5811 2023 320 3*2^6090515-1 1833429 L1353 2010 321 9812766^262144+1 1832857 L4245 2020 Generalized Fermat 322 9750938^262144+1 1832137 L4309 2020 Generalized Fermat 323 8349*2^6082397-1 1830988 L4965 2021 324 9450844^262144+1 1828578 L5020 2020 Generalized Fermat 325b 71*2^6070943+1 1827538 L4965 2023 326 32*470^683151+1 1825448 L4064 2021 327 9125820^262144+1 1824594 L5002 2019 Generalized Fermat 328 8883864^262144+1 1821535 L4715 2019 Generalized Fermat 329 21*2^6048861+1 1820890 L5106 2020 Divides GF(6048860,5) 330 9999*2^6037057-1 1817340 L4965 2021 331 8521794^262144+1 1816798 L4289 2019 Generalized Fermat 332 33*2^6019138-1 1811943 L4965 2022 333b 67*2^6018626+1 1811789 L4965 2023 334 1583*2^5989282-1 1802957 L4036 2015 335f 101806*15^1527091-1 1796004 L5765 2023 Generalized Woodall 336 6291332^262144+1 1782250 L4864 2018 Generalized Fermat 337 6287774^262144+1 1782186 L4726 2018 Generalized Fermat 338 327926*5^2542838-1 1777374 L4807 2018 339 81556*5^2539960+1 1775361 L4809 2018 340 5828034^262144+1 1773542 L4720 2018 Generalized Fermat 341 993*10^1768283-1 1768286 L4879 2019 Near-repdigit 342 9*10^1762063-1 1762064 L4879 2020 Near-repdigit 343 5205422^262144+1 1760679 L4201 2018 Generalized Fermat 344 5152128^262144+1 1759508 L4720 2018 Generalized Fermat 345 4489246^262144+1 1743828 L4591 2018 Generalized Fermat 346c 2240501*6^2240501+1 1743456 L5765 2023 Generalized Cullen 347 2*3^3648969+1 1741001 L5043 2020 Divides Phi(3^3648964,2) [g427] 348 7*2^5775996+1 1738749 L3325 2012 349 4246258^262144+1 1737493 L4720 2018 Generalized Fermat 350 3933508^262144+1 1728783 L4309 2018 Generalized Fermat 351 3853792^262144+1 1726452 L4715 2018 Generalized Fermat 352 3673932^262144+1 1721010 L4649 2017 Generalized Fermat 353 (10^859669-1)^2-2 1719338 p405 2022 Near-repdigit 354 3596074^262144+1 1718572 L4689 2017 Generalized Fermat 355 3547726^262144+1 1717031 L4201 2017 Generalized Fermat 356 8*10^1715905-1 1715906 L4879 2020 Near-repdigit 357 1243*2^5686715-1 1711875 L1828 2016 358 25*2^5658915-1 1703505 L1884 2021 359e 1486287*14^1486287+1 1703482 L5765 2023 Generalized Cullen 360 41*2^5651731+1 1701343 L1204 2020 361 3060772^262144+1 1700222 L4649 2017 Generalized Fermat 362 9*2^5642513+1 1698567 L3432 2013 363 10*3^3550446+1 1693995 L4965 2020 364 2622*11^1621920-1 1689060 L2054 2015 365 81*2^5600028+1 1685779 L4965 2022 Generalized Fermat 366 2676404^262144+1 1684945 L4591 2017 Generalized Fermat 367 301562*5^2408646-1 1683577 L4675 2017 368 2611294^262144+1 1682141 L4250 2017 Generalized Fermat 369 171362*5^2400996-1 1678230 L4669 2017 370 2514168^262144+1 1677825 L4564 2017 Generalized Fermat 371 31*2^5560820+1 1673976 L1204 2020 Divides GF(5560819,6) 372 13*2^5523860+1 1662849 L1204 2020 Divides Fermat F(5523858) 373 252191*2^5497878-1 1655032 L3183 2012 374 2042774^262144+1 1654187 L4499 2016 Generalized Fermat 375 1828858^262144+1 1641593 L4200 2016 Generalized Fermat 376 258317*2^5450519+1 1640776 g414 2008 377 7*6^2104746+1 1637812 L4965 2019 378 5*2^5429494-1 1634442 L3345 2017 379 43*2^5408183-1 1628027 L1884 2018 380 1615588^262144+1 1627477 L4200 2016 Generalized Fermat 381 2*296598^296598-1 1623035 L4965 2022 382 1349*2^5385004-1 1621051 L1828 2017 383 1488256^262144+1 1618131 L4249 2016 Generalized Fermat 384 1415198^262144+1 1612400 L4308 2016 Generalized Fermat 385 45*2^5308037+1 1597881 L4761 2019 386 5468*70^864479-1 1595053 L5410 2022 387f 92*10^1585996-1 1585998 L4789 2023 Near-repdigit 388 Phi(3,-1082083^131072) 1581846 L4506 2017 Generalized unique 389 7*2^5229669-1 1574289 L4965 2021 390 180062*5^2249192-1 1572123 L4435 2016 391 124125*6^2018254+1 1570512 L4001 2019 392 27*2^5213635+1 1569462 L3760 2015 393 9992*10^1567410-1 1567414 L4879 2020 Near-repdigit 394 308084!+1 1557176 p425 2022 Factorial 395 Phi(3,-843575^131072) 1553498 L4506 2017 Generalized unique 396 25*2^5152151-1 1550954 L1884 2020 397 53546*5^2216664-1 1549387 L4398 2016 398 773620^262144+1 1543643 L3118 2012 Generalized Fermat 399 39*2^5119458+1 1541113 L1204 2019 400 607*26^1089034+1 1540957 L5410 2021 401 81*2^5115131+1 1539810 L4965 2022 Divides GF(5115128,12) [GG] 402 223*2^5105835-1 1537012 L2484 2019 403 99*10^1536527-1 1536529 L4879 2019 Near-repdigit 404 81*2^5100331+1 1535355 L4965 2022 Divides GF(5100327,6) [GG] 405 992*10^1533933-1 1533936 L4879 2019 Near-repdigit 406 51*2^5085142-1 1530782 L760 2014 407 3*2^5082306+1 1529928 L780 2009 Divides GF(5082303,3), GF(5082305,5) 408 676754^262144+1 1528413 L2975 2012 Generalized Fermat 409 296024*5^2185270-1 1527444 L671 2016 410 5359*2^5054502+1 1521561 SB6 2003 411f 1405486*12^1405486-1 1516781 L5765 2023 Generalized Woodall 412c 53*2^5019181+1 1510926 L4965 2023 413 13*2^4998362+1 1504659 L3917 2014 414 525094^262144+1 1499526 p338 2012 Generalized Fermat 415 92158*5^2145024+1 1499313 L4348 2016 416 499238*10^1497714-1 1497720 L4976 2019 Generalized Woodall 417 77072*5^2139921+1 1495746 L4340 2016 418 2*3^3123036+1 1490068 L5043 2020 419c 51*2^4923905+1 1482245 L4965 2023 420 519397*2^4908893-1 1477730 L5410 2022 421 306398*5^2112410-1 1476517 L4274 2016 422b 39*684^519468-1 1472723 L5410 2023 423 265711*2^4858008+1 1462412 g414 2008 424 154222*5^2091432+1 1461854 L3523 2015 425 1271*2^4850526-1 1460157 L1828 2012 426 333*2^4846958-1 1459083 L5546 2022 427f 156*532^534754-1 1457695 L5410 2023 428 Phi(3,-362978^131072) 1457490 p379 2015 Generalized unique 429 361658^262144+1 1457075 p332 2011 Generalized Fermat 430 100186*5^2079747-1 1453686 L4197 2015 431 288465!+1 1449771 p3 2022 Factorial 432 15*2^4800315+1 1445040 L1754 2019 Divides GF(4800313,3), GF(4800310,5) 433 2^4792057-2^2396029+1 1442553 L3839 2014 Gaussian Mersenne norm 40, generalized unique 434 92*10^1439761-1 1439763 L4789 2020 Near-repdigit 435 653*10^1435026-1 1435029 p355 2014 436 197*2^4765318-1 1434506 L5175 2021 437 1401*2^4759435-1 1432736 L4965 2023 438 2169*2^4754343-1 1431204 L4965 2023 439 188*468^535963+1 1431156 L4832 2019 440 1809*2^4752792-1 1430737 L4965 2022 441 2427*2^4749044-1 1429609 L4965 2022 442b 303*2^4748019-1 1429299 L5545 2023 443 2259*2^4746735-1 1428913 L4965 2022 444b 309*2^4745713-1 1428605 L5545 2023 445 2223*2^4729304-1 1423666 L4965 2022 446 1851*2^4727663-1 1423172 L4965 2022 447 1725*2^4727375-1 1423085 L4965 2022 448 1611*2^4724014-1 1422074 L4965 2022 449 1383*2^4719270-1 1420645 L4965 2022 450 1749*2^4717431-1 1420092 L4965 2022 451 2325*2^4713991-1 1419057 L4965 2022 452 3267113#-1 1418398 p301 2021 Primorial 453 100*406^543228+1 1417027 L5410 2020 Generalized Fermat 454 2337*2^4705660-1 1416549 L4965 2022 455 1229*2^4703492-1 1415896 L1828 2018 456 144052*5^2018290+1 1410730 L4146 2015 457 195*2^4685711-1 1410542 L5175 2021 458 9*2^4683555-1 1409892 L1828 2012 459 31*2^4673544+1 1406879 L4990 2019 460 34*993^469245+1 1406305 L4806 2018 461 79*2^4658115-1 1402235 L1884 2018 462 39*2^4657951+1 1402185 L1823 2019 463 4*650^498101-1 1401116 L4294 2021 464 11*2^4643238-1 1397755 L2484 2014 465e 884411*38^884411+1 1397184 L5765 2023 Generalized Cullen 466 68*995^465908-1 1396712 L4001 2017 467 7*6^1793775+1 1395830 L4965 2019 468 Phi(3,-192098^131072) 1385044 p379 2015 Generalized unique 469f 6*10^1380098+1 1380099 L5009 2023 470 27*2^4583717-1 1379838 L2992 2014 471d Phi(3,-3^1444194+1)/3 1378111 L5123 2023 Generalized unique 472e 1198433*14^1198433+1 1373564 L5765 2023 Generalized Cullen 473 121*2^4553899-1 1370863 L3023 2012 474 9473*2^4543680-1 1367788 L5037 2022 475 27*2^4542344-1 1367384 L1204 2014 476 29*2^4532463+1 1364409 L4988 2019 477 4*797^468702+1 1359920 L4548 2017 Generalized Fermat 478 145310^262144+1 1353265 p314 2011 Generalized Fermat 479 25*2^4481024+1 1348925 L4364 2019 Generalized Fermat 480 81*536^493229+1 1346106 p431 2023 481 303*2^4471002-1 1345909 L5545 2022 482 2*1283^432757+1 1345108 L4879 2019 Divides Phi(1283^432757,2) 483 36772*6^1723287-1 1340983 L1301 2014 484 583854*14^1167708-1 1338349 L4976 2019 Generalized Woodall 485e 20*634^476756-1 1335915 L4975 2023 486c 85*2^4432870+1 1334429 L4965 2023 487 151*2^4424321-1 1331856 L1884 2016 488 195*2^4373994-1 1316706 L5175 2020 489 (10^657559-1)^2-2 1315118 p405 2022 Near-repdigit 490 49*2^4365175-1 1314051 L1959 2017 491 49*2^4360869-1 1312755 L1959 2017 492 13*2^4333087-1 1304391 L1862 2018 493 353159*2^4331116-1 1303802 L2408 2011 494 9959*2^4308760-1 1297071 L5037 2022 495 23*2^4300741+1 1294654 L4147 2019 496 682156*79^682156+1 1294484 L4472 2016 Generalized Cullen 497 141941*2^4299438-1 1294265 L689 2011 498c 87*2^4297718+1 1293744 L4965 2023 499a 435*2^4292968+1 1292315 L5783 2023 500e 993149*20^993149+1 1292123 L5765 2023 Generalized Cullen 501a 415*2^4280864+1 1288672 L5818 2023 502c 79*2^4279006+1 1288112 L4965 2023 503b 205*2^4270310+1 1285494 L5517 2023 504b 483*2^4270112+1 1285435 L5178 2023 505b 123*2^4266441+1 1284329 L5178 2023 506 612749*2^4254500-1 1280738 L5410 2022 507b 223*2^4252660+1 1280181 L5178 2023 508c 1644731*6^1644731+1 1279856 L5765 2023 Generalized Cullen 509 2*1151^417747+1 1278756 L4879 2019 Divides Phi(1151^417747,2) 510 15*2^4246384+1 1278291 L3432 2013 Divides GF(4246381,6) 511 3*2^4235414-1 1274988 L606 2008 512 2*1259^411259+1 1274914 L4879 2020 Divides Phi(1259^411259,2) 513c 93*2^4232892+1 1274230 L4965 2023 514b 131*2^4227493+1 1272605 L5226 2023 515 45*436^481613+1 1271213 L5410 2020 516 109208*5^1816285+1 1269534 L3523 2014 517c 435*2^4216447+1 1269280 L5178 2023 518 1091*2^4215518-1 1269001 L1828 2018 519 191*2^4203426-1 1265360 L2484 2012 520c 269*2^4198809+1 1263970 L5226 2023 521c 545*2^4198333+1 1263827 L5804 2023 522c 53*2^4197093+1 1263453 L5563 2023 523 1259*2^4196028-1 1263134 L1828 2016 524c 329*2^4193199+1 1262282 L5226 2023 525c 141*2^4192911+1 1262195 L5226 2023 Divides Fermat F(4192909) 526 325918*5^1803339-1 1260486 L3567 2014 527c 345*2^4173969+1 1256493 L5226 2023 528c 161*2^4164267+1 1253572 L5178 2023 529c 135*2^4162529+1 1253049 L5178 2023 Divides GF(4162525,10) 530c 177*2^4162494+1 1253038 L5796 2023 531d 237*2^4153348+1 1250285 L5178 2023 532 69*2^4151165+1 1249628 L4965 2023 533 133778*5^1785689+1 1248149 L3903 2014 534d 201*2^4146003+1 1248074 L5161 2023 535d 329*2^4136019+1 1245069 L5178 2023 536 81*2^4131975+1 1243851 L4965 2022 537d 459*2^4129577+1 1243130 L5226 2023 538d 551*2^4126303+1 1242144 L5226 2023 539d 363*2^4119017+1 1239951 L5226 2023 540d 105*2^4113039+1 1238151 L5178 2023 541f 204*532^454080-1 1237785 L5410 2023 542 17*2^4107544-1 1236496 L4113 2015 543e 261*2^4106385+1 1236148 L5178 2023 544 24032*5^1768249+1 1235958 L3925 2014 545 172*159^561319-1 1235689 L4001 2017 546 10^1234567-20342924302*10^617278-1 1234567 p423 2021 Palindrome 547d 10^1234567-1927633367291*10^617277-1 1234567 p423 2023 Palindrome 548 10^1234567-3626840486263*10^617277-1 1234567 p423 2021 Palindrome 549 10^1234567-4708229228074*10^617277-1 1234567 p423 2021 Palindrome 550e 67*2^4100746+1 1234450 L5178 2023 551e 191*2^4099097+1 1233954 L5563 2023 552e 325*2^4097700+1 1233534 L5226 2023 553e 519*2^4095491+1 1232869 L5226 2023 554e 111*2^4091044+1 1231530 L5783 2023 Divides GF(4091041,3) 555f 1182072*11^1182072-1 1231008 L5765 2023 Generalized Woodall 556 64*425^467857-1 1229712 p268 2021 557e 381*2^4069617+1 1225080 L5226 2023 558 97*2^4066717-1 1224206 L2484 2019 559e 95*2^4063895+1 1223357 L5226 2023 560e 79*2^4062818+1 1223032 L5178 2023 561 1031*2^4054974-1 1220672 L1828 2017 562e 309*2^4054114+1 1220413 L5178 2023 563 2022202116^131072+1 1219734 L4704 2022 Generalized Fermat 564 37*2^4046360+1 1218078 L2086 2019 565f 141*2^4043116+1 1217102 L5517 2023 566 39653*430^460397-1 1212446 L4187 2016 567 1777034894^131072+1 1212377 L4704 2022 Generalized Fermat 568f 141*2^4024411+1 1211471 L5226 2023 569f 515*2^4021165+1 1210494 L5174 2023 570f 73*2^4016912+1 1209213 L5226 2023 571 40734^262144+1 1208473 p309 2011 Generalized Fermat 572f 235*2^4013398+1 1208156 L5178 2023 573 9*2^4005979-1 1205921 L1828 2012 574f 417*2^4003224+1 1205094 L5764 2023 575 12*68^656921+1 1203815 L4001 2016 576 67*688^423893+1 1202836 L4001 2017 577 221*2^3992723+1 1201932 L5178 2023 578 213*2^3990702+1 1201324 L5216 2023 579 1993191*2^3986382-1 1200027 L3532 2015 Generalized Woodall 580 163*2^3984604+1 1199488 L5756 2023 581 725*2^3983355+1 1199113 L5706 2023 582 (146^276995+1)^2-2 1199030 p405 2022 583 455*2^3981067+1 1198424 L5724 2023 584 138172*5^1714207-1 1198185 L3904 2014 585 50*383^463313+1 1196832 L2012 2021 586 339*2^3974295+1 1196385 L5178 2023 587 699*2^3974045+1 1196310 L5750 2023 588 Phi(3,-1202113^98304) 1195366 L4506 2016 Generalized unique 589 29*2^3964697+1 1193495 L1204 2019 590 599*2^3963655+1 1193182 L5226 2023 591 683*2^3962937+1 1192966 L5226 2023 592 39*2^3961129+1 1192421 L1486 2019 593 165*2^3960664+1 1192281 L5178 2023 594 79*2^3957238+1 1191250 L5745 2023 595 687*2^3955918+1 1190853 L5554 2023 Divides GF(3955915,6) 596 163*2^3954818+1 1190522 L5178 2023 597 431*2^3953647+1 1190169 L5554 2023 598 Phi(3,-1110815^98304) 1188622 L4506 2016 Generalized unique 599 341*2^3938565+1 1185629 L5554 2023 600 503*2^3936845+1 1185112 L5706 2023 601 717*2^3934760+1 1184484 L5285 2023 602 493*2^3929192+1 1182808 L5161 2023 603 273*2^3929128+1 1182788 L5554 2023 604 609*2^3928682+1 1182654 L5178 2023 605 609*2^3928441+1 1182582 L5527 2023 606 281*2^3926467+1 1181987 L5174 2023 607 153*2^3922478+1 1180786 L5554 2023 608 69*2^3920863+1 1180300 L5554 2023 609 273*2^3919321+1 1179836 L5706 2023 610 531*2^3918985+1 1179735 L5706 2023 611 1000032472^131072+1 1179650 L4704 2022 Generalized Fermat 612 555*2^3916875+1 1179100 L5302 2023 613 571*2^3910616+1 1177216 L5178 2023 614 421*2^3905144+1 1175569 L5600 2023 615 P1174253 1174253 p414 2022 616 567*2^3897588+1 1173294 L5600 2023 617 417*2^3895404+1 1172637 L5600 2023 618 539*2^3894953+1 1172501 L5285 2023 619 645*2^3893849+1 1172169 L5600 2023 620f 818764*3^2456293-1 1171956 L4965 2023 Generalized Woodall 621 22478*5^1675150-1 1170884 L3903 2014 622 1199*2^3889576-1 1170883 L1828 2018 623 298989*2^3886857+1 1170067 L2777 2014 Generalized Cullen 624 93*10^1170023-1 1170025 L4789 2022 Near-repdigit 625 711*2^3886480+1 1169950 L5320 2023 626 375*2^3884634+1 1169394 L5600 2023 627 94*872^397354+1 1168428 L5410 2019 628 269*2^3877485+1 1167242 L5649 2023 629 163*2^3874556+1 1166360 L5646 2023 Divides GF(3874552,5) 630b 1365*2^3872811+1 1165836 L1134 2023 631 313*2^3869536+1 1164849 L5600 2023 632 159*2^3860863+1 1162238 L5226 2023 633 445*2^3860780+1 1162214 L5640 2023 634 397*2^3859450+1 1161813 L5226 2023 635 685*2^3856790+1 1161013 L5226 2023 636 27*2^3855094-1 1160501 L3033 2012 637 537*2^3853860+1 1160131 L5636 2022 638 164*978^387920-1 1160015 L4700 2018 639 175*2^3850344+1 1159072 L5226 2022 640 685*2^3847268+1 1158146 L5226 2022 641 655*2^3846352+1 1157871 L5282 2022 642 583*2^3846196+1 1157824 L5226 2022 643 615*2^3844151+1 1157208 L5226 2022 644 14772*241^485468-1 1156398 L5410 2022 645 525*2^3840963+1 1156248 L5613 2022 646 313*2^3837304+1 1155147 L5298 2022 647 49*2^3837090+1 1155081 L4979 2019 Generalized Fermat 648 431*2^3835247+1 1154528 L5161 2022 649 97*2^3833722+1 1154068 L5226 2022 650 2*839^394257+1 1152714 L4879 2019 Divides Phi(839^394257,2) 651 125*392^444161+1 1151839 L4832 2022 652 255*2^3824348+1 1151246 L5226 2022 653 30*514^424652-1 1151218 L4001 2017 654 569*2^3823191+1 1150898 L5226 2022 655 24518^262144+1 1150678 g413 2008 Generalized Fermat 656 563*2^3819237+1 1149708 L5178 2022 657 345*2^3817949+1 1149320 L5373 2022 658 Phi(3,-700219^98304) 1149220 L4506 2016 Generalized unique 659 241*2^3815727-1 1148651 L2484 2019 660 351*2^3815467+1 1148573 L5226 2022 661 109*980^383669-1 1147643 L4001 2018 662 427*2^3811610+1 1147412 L5614 2022 663 569*2^3810475+1 1147071 L5610 2022 664 213*2^3807864+1 1146284 L5609 2022 665 87*2^3806438+1 1145854 L5607 2022 666 369*2^3805321+1 1145519 L5541 2022 667 123547*2^3804809-1 1145367 L2371 2011 668 2564*75^610753+1 1145203 L3610 2014 669 539*2^3801705+1 1144430 L5161 2022 670 159*2^3801463+1 1144357 L5197 2022 671 235*2^3801284+1 1144303 L5608 2022 672 Phi(3,-660955^98304) 1144293 L4506 2016 Generalized unique 673 519*2^3800625+1 1144105 L5315 2022 674 281*2^3798465+1 1143455 L5178 2022 675 166*443^432000+1 1143249 L5410 2020 676 85*2^3797698+1 1143223 L5161 2022 677 326834*5^1634978-1 1142807 L3523 2014 678 459*2^3795969+1 1142704 L5161 2022 679 447*2^3780151+1 1137942 L5596 2022 680 345*2^3779921+1 1137873 L5557 2022 681 477*2^3779871+1 1137858 L5197 2022 682 251*2^3774587+1 1136267 L5592 2022 683 439*2^3773958+1 1136078 L5557 2022 684 43*182^502611-1 1135939 L4064 2020 685 415267*2^3771929-1 1135470 L2373 2011 686 11*2^3771821+1 1135433 p286 2013 687 427*2^3768104+1 1134315 L5192 2022 688 1455*2^3768024-1 1134292 L1134 2022 689 711*2^3767492+1 1134131 L5161 2022 690 265*2^3765189-1 1133438 L2484 2018 691 297*2^3765140+1 1133423 L5197 2022 692 381*2^3764189+1 1133137 L5589 2022 693 115*2^3763650+1 1132974 L5554 2022 694 411*2^3759067+1 1131595 L5589 2022 695 405*2^3757192+1 1131031 L5590 2022 696 938237*2^3752950-1 1129757 L521 2007 Woodall 697 399866798^131072+1 1127471 L4964 2019 Generalized Fermat 698 701*2^3744713+1 1127274 L5554 2022 699 207394*5^1612573-1 1127146 L3869 2014 700 684*10^1127118+1 1127121 L4036 2017 701 Phi(3,-535386^98304) 1126302 L4506 2016 Generalized unique 702 104944*5^1610735-1 1125861 L3849 2014 703 23451*2^3739388+1 1125673 L591 2015 704e 78*622^402915-1 1125662 L5645 2023 705 615*2^3738023+1 1125260 L5161 2022 706 347*2^3737875+1 1125216 L5178 2022 707 163*2^3735726+1 1124568 L5477 2022 Divides GF(3735725,6) 708 375*2^3733510+1 1123902 L5584 2022 709 25*2^3733144+1 1123790 L2125 2019 Generalized Fermat 710 629*2^3731479+1 1123290 L5283 2022 711 113*2^3728113+1 1122276 L5161 2022 712 303*2^3725438+1 1121472 L5161 2022 713 187*2^3723972+1 1121030 L5178 2022 714 2*1103^368361+1 1120767 L4879 2019 Divides Phi(1103^368361,2) 715 105*2^3720512+1 1119988 L5493 2022 716 447*2^3719024+1 1119541 L5493 2022 717 177*2^3717746+1 1119156 L5279 2022 718 2*131^528469+1 1118913 L4879 2019 Divides Phi(131^528469,2) 719 123*2^3716758+1 1118858 L5563 2022 720 313*2^3716716+1 1118846 L5237 2022 721 367*2^3712952+1 1117713 L5264 2022 722 53*2^3709297+1 1116612 L5197 2022 723 2^3704053+2^1852027+1 1115032 L3839 2014 Gaussian Mersenne norm 39, generalized unique 724 395*2^3701693+1 1114324 L5536 2022 725 589*2^3699954+1 1113800 L5576 2022 726 314187728^131072+1 1113744 L4704 2019 Generalized Fermat 727 119*2^3698412-1 1113336 L2484 2018 728 391*2^3693728+1 1111926 L5493 2022 729 485*2^3688111+1 1110235 L5237 2022 730 341*2^3686613+1 1109784 L5573 2022 731 87*2^3686558+1 1109767 L5573 2022 732 675*2^3682616+1 1108581 L5231 2022 733 569*2^3682167+1 1108446 L5488 2022 734 330286*5^1584399-1 1107453 L3523 2014 735 34*951^371834-1 1107391 L5410 2019 736 45*2^3677787+1 1107126 L1204 2019 737 625*2^3676300+1 1106680 L5302 2022 Generalized Fermat 738 13*2^3675223-1 1106354 L1862 2016 739 271643232^131072+1 1105462 L4704 2019 Generalized Fermat 740 463*2^3671262+1 1105163 L5524 2022 741 735*2^3670991+1 1105082 L5575 2022 742 475*2^3670046+1 1104797 L5524 2022 743 15*2^3668194-1 1104238 L3665 2013 744 273*2^3665736+1 1103499 L5192 2022 745 13*2^3664703-1 1103187 L1862 2016 746 Phi(3,-406515^98304) 1102790 L4506 2016 Generalized unique 747 609*2^3662931+1 1102655 L5573 2022 748 118*892^373012+1 1100524 L5071 2020 749 33300*430^417849-1 1100397 L4393 2016 750 655*2^3653008+1 1099668 L5574 2022 751 291*268^452750-1 1099341 L5410 2022 752 33*2^3649810+1 1098704 L4958 2019 753 295*2^3642206+1 1096416 L5161 2022 754 989*2^3640585+1 1095929 L5115 2020 755 567*2^3639287+1 1095538 L4959 2019 756 639*2^3635707+1 1094460 L1823 2019 757 753*2^3631472+1 1093185 L1823 2019 758 2*205731^205731-1 1093111 L4965 2022 759 65531*2^3629342-1 1092546 L2269 2011 760 1121*2^3629201+1 1092502 L4761 2019 761 215*2^3628962-1 1092429 L2484 2018 762 113*2^3628034-1 1092150 L2484 2014 763 1175*2^3627541+1 1092002 L4840 2019 764 2*431^414457+1 1091878 L4879 2019 Divides Phi(431^414457,2) 765 951*2^3623185+1 1090691 L1823 2019 766 29*920^367810-1 1090113 L4064 2015 767 14641*2^3618876+1 1089395 L181 2018 Generalized Fermat 768 485*2^3618563+1 1089299 L3924 2019 769 95*2^3614033+1 1087935 L1474 2019 770 1005*2^3612300+1 1087414 L1823 2019 771 861*2^3611815+1 1087268 L1745 2019 772 1087*2^3611476+1 1087166 L4834 2019 773 485767*2^3609357-1 1086531 L622 2008 774 675*2^3606447+1 1085652 L3278 2019 775 669*2^3606266+1 1085598 L1675 2019 776 65077*2^3605944+1 1085503 L4685 2020 777 1365*2^3605491+1 1085365 L1134 2022 778 851*2^3604395+1 1085034 L2125 2019 779 1143*2^3602429+1 1084443 L4754 2019 780 1183*2^3601898+1 1084283 L1823 2019 781 189*2^3596375+1 1082620 L3760 2016 782 1089*2^3593267+1 1081685 L3035 2019 783a 176207346^131072+1 1080823 L5805 2023 Generalized Fermat 784a 176085282^131072+1 1080784 L5805 2023 Generalized Fermat 785b 175482140^131072+1 1080589 L5639 2023 Generalized Fermat 786b 175271418^131072+1 1080520 L5051 2023 Generalized Fermat 787 19581121*2^3589357-1 1080512 p49 2022 788b 175200596^131072+1 1080497 L5817 2023 Generalized Fermat 789 1101*2^3589103+1 1080431 L1823 2019 790b 174728608^131072+1 1080344 L5416 2023 Generalized Fermat 791b 174697724^131072+1 1080334 L4747 2023 Generalized Fermat 792b 174534362^131072+1 1080280 L5814 2023 Generalized Fermat 793b 174142738^131072+1 1080152 L4249 2023 Generalized Fermat 794b 174103532^131072+1 1080140 L4249 2023 Generalized Fermat 795b 173962482^131072+1 1080093 L4249 2023 Generalized Fermat 796 35*2^3587843+1 1080050 L1979 2014 Divides GF(3587841,5) 797b 173717408^131072+1 1080013 L5634 2023 Generalized Fermat 798b 173561300^131072+1 1079962 L4249 2023 Generalized Fermat 799b 173343810^131072+1 1079891 L4249 2023 Generalized Fermat 800c 172026454^131072+1 1079456 L4737 2023 Generalized Fermat 801c 172004036^131072+1 1079449 L5512 2023 Generalized Fermat 802 275*2^3585539+1 1079358 L3803 2016 803c 171677924^131072+1 1079341 L5512 2023 Generalized Fermat 804c 171610156^131072+1 1079319 L4249 2023 Generalized Fermat 805c 171518672^131072+1 1079288 L5586 2023 Generalized Fermat 806c 171128300^131072+1 1079158 L4249 2023 Generalized Fermat 807c 170982934^131072+1 1079110 L4201 2023 Generalized Fermat 808c 170626040^131072+1 1078991 L5748 2023 Generalized Fermat 809c 169929578^131072+1 1078758 L5748 2023 Generalized Fermat 810d 169369502^131072+1 1078570 L4410 2023 Generalized Fermat 811d 169299904^131072+1 1078547 L4559 2023 Generalized Fermat 812d 169059224^131072+1 1078466 L5746 2023 Generalized Fermat 813d 168885632^131072+1 1078408 L5793 2023 Generalized Fermat 814d 168602250^131072+1 1078312 L5782 2023 Generalized Fermat 815d 168576546^131072+1 1078303 L5639 2023 Generalized Fermat 816d 167845698^131072+1 1078056 L5735 2023 Generalized Fermat 817d 167604930^131072+1 1077974 L4859 2023 Generalized Fermat 818 2*59^608685+1 1077892 g427 2014 Divides Phi(59^608685,2) 819e 167206862^131072+1 1077839 L5641 2023 Generalized Fermat 820e 166964502^131072+1 1077756 L5627 2023 Generalized Fermat 821 651*2^3579843+1 1077643 L3035 2018 822e 166609122^131072+1 1077635 L5782 2023 Generalized Fermat 823e 166397330^131072+1 1077563 L5578 2023 Generalized Fermat 824e 166393356^131072+1 1077561 L5782 2023 Generalized Fermat 825e 166288612^131072+1 1077525 L4672 2023 Generalized Fermat 826e 166277052^131072+1 1077521 L5755 2023 Generalized Fermat 827e 166052226^131072+1 1077444 L4670 2023 Generalized Fermat 828e 165430644^131072+1 1077231 L4672 2023 Generalized Fermat 829e 165427494^131072+1 1077230 L4249 2023 Generalized Fermat 830 583*2^3578402+1 1077210 L3035 2018 831e 165361824^131072+1 1077207 L5586 2023 Generalized Fermat 832e 165258594^131072+1 1077172 L4884 2023 Generalized Fermat 833e 165036358^131072+1 1077095 L5156 2023 Generalized Fermat 834e 164922680^131072+1 1077056 L4249 2023 Generalized Fermat 835e 164800594^131072+1 1077014 L5775 2023 Generalized Fermat 836f 164660428^131072+1 1076965 L4249 2023 Generalized Fermat 837 309*2^3577339+1 1076889 L4406 2016 838f 164440734^131072+1 1076889 L5485 2023 Generalized Fermat 839f 163871194^131072+1 1076692 L5772 2023 Generalized Fermat 840f 163838506^131072+1 1076680 L5758 2023 Generalized Fermat 841f 163821336^131072+1 1076674 L5544 2023 Generalized Fermat 842f 163820256^131072+1 1076674 L5452 2023 Generalized Fermat 843f 163666380^131072+1 1076621 L5030 2023 Generalized Fermat 844f 163585288^131072+1 1076592 L4928 2023 Generalized Fermat 845f 163359994^131072+1 1076514 L5769 2023 Generalized Fermat 846f 163214942^131072+1 1076463 L4933 2023 Generalized Fermat 847f 163193584^131072+1 1076456 L5595 2023 Generalized Fermat 848f 163152818^131072+1 1076442 L5639 2023 Generalized Fermat 849f 163044252^131072+1 1076404 L5775 2023 Generalized Fermat 850f 162950466^131072+1 1076371 L5694 2023 Generalized Fermat 851f 162874590^131072+1 1076345 L5586 2023 Generalized Fermat 852f 162850104^131072+1 1076336 L5769 2023 Generalized Fermat 853f 162817576^131072+1 1076325 L5772 2023 Generalized Fermat 854 1185*2^3574583+1 1076060 L4851 2018 855 251*2^3574535+1 1076045 L3035 2016 856 1485*2^3574333+1 1075985 L1134 2022 857f 161706626^131072+1 1075935 L4870 2023 Generalized Fermat 858f 161619620^131072+1 1075904 L5586 2023 Generalized Fermat 859f 161588716^131072+1 1075893 L4928 2023 Generalized Fermat 860f 161571504^131072+1 1075887 L5030 2023 Generalized Fermat 861f 161569668^131072+1 1075887 L5639 2023 Generalized Fermat 862f 160998114^131072+1 1075685 L5586 2023 Generalized Fermat 863 160607310^131072+1 1075547 L5763 2023 Generalized Fermat 864 160325616^131072+1 1075447 L5586 2023 Generalized Fermat 865 160228242^131072+1 1075412 L5632 2023 Generalized Fermat 866 160146172^131072+1 1075383 L4773 2023 Generalized Fermat 867 159800918^131072+1 1075260 L5586 2023 Generalized Fermat 868 159794566^131072+1 1075258 L4249 2023 Generalized Fermat 869 159784836^131072+1 1075254 L5639 2023 Generalized Fermat 870 159784822^131072+1 1075254 L5637 2023 Generalized Fermat 871 1019*2^3571635+1 1075173 L1823 2018 872 159509138^131072+1 1075156 L5637 2023 Generalized Fermat 873 119*2^3571416-1 1075106 L2484 2018 874 159214418^131072+1 1075051 L5755 2023 Generalized Fermat 875 158831096^131072+1 1074914 L5022 2023 Generalized Fermat 876 35*2^3570777+1 1074913 L2891 2014 877 158696888^131072+1 1074865 L5030 2023 Generalized Fermat 878 158472238^131072+1 1074785 L5586 2023 Generalized Fermat 879 33*2^3570132+1 1074719 L2552 2014 880 157923226^131072+1 1074587 L4249 2023 Generalized Fermat 881 157541220^131072+1 1074449 L5416 2023 Generalized Fermat 882 5*2^3569154-1 1074424 L503 2009 883 157374268^131072+1 1074389 L5578 2023 Generalized Fermat 884 81*492^399095-1 1074352 L4001 2015 885 156978838^131072+1 1074246 L5332 2023 Generalized Fermat 886 156789840^131072+1 1074177 L4747 2023 Generalized Fermat 887 156756400^131072+1 1074165 L4249 2023 Generalized Fermat 888 22934*5^1536762-1 1074155 L3789 2014 889 156625064^131072+1 1074117 L5694 2023 Generalized Fermat 890 156519708^131072+1 1074079 L5746 2023 Generalized Fermat 891 156468140^131072+1 1074060 L4249 2023 Generalized Fermat 892 156203340^131072+1 1073964 L5578 2023 Generalized Fermat 893 156171526^131072+1 1073952 L5698 2023 Generalized Fermat 894 155778562^131072+1 1073809 L4309 2023 Generalized Fermat 895 155650426^131072+1 1073762 L5668 2023 Generalized Fermat 896 155536474^131072+1 1073720 L4249 2023 Generalized Fermat 897 155339878^131072+1 1073648 L5206 2023 Generalized Fermat 898 155305266^131072+1 1073636 L5549 2023 Generalized Fermat 899 155006218^131072+1 1073526 L4742 2023 Generalized Fermat 900 154553092^131072+1 1073359 L4920 2023 Generalized Fermat 901 154492166^131072+1 1073337 L4326 2023 Generalized Fermat 902 154478286^131072+1 1073332 L4544 2023 Generalized Fermat 903 154368914^131072+1 1073291 L5738 2023 Generalized Fermat 904 153966766^131072+1 1073143 L5732 2023 Generalized Fermat 905 265*2^3564373-1 1072986 L2484 2018 906 153485148^131072+1 1072965 L5736 2023 Generalized Fermat 907 153432848^131072+1 1072945 L5030 2023 Generalized Fermat 908 153413432^131072+1 1072938 L4835 2023 Generalized Fermat 909 771*2^3564109+1 1072907 L2125 2018 910 381*2^3563676+1 1072776 L4190 2016 911 152966530^131072+1 1072772 L5070 2023 Generalized Fermat 912 555*2^3563328+1 1072672 L4850 2018 913 152542626^131072+1 1072614 L5460 2023 Generalized Fermat 914 151999396^131072+1 1072411 L5586 2023 Generalized Fermat 915 151609814^131072+1 1072265 L5663 2023 Generalized Fermat 916 151218242^131072+1 1072118 L5588 2023 Generalized Fermat 917 151108236^131072+1 1072076 L4672 2023 Generalized Fermat 918 151044622^131072+1 1072052 L5544 2023 Generalized Fermat 919 151030068^131072+1 1072047 L4774 2023 Generalized Fermat 920 150908454^131072+1 1072001 L4758 2023 Generalized Fermat 921 150863054^131072+1 1071984 L5720 2023 Generalized Fermat 922 1183*2^3560584+1 1071846 L1823 2018 923 150014492^131072+1 1071663 L4476 2023 Generalized Fermat 924 149972788^131072+1 1071647 L4559 2023 Generalized Fermat 925 415*2^3559614+1 1071554 L3035 2016 926 149665588^131072+1 1071530 L4892 2023 Generalized Fermat 927 149142686^131072+1 1071331 L4684 2023 Generalized Fermat 928 149057554^131072+1 1071298 L4933 2023 Generalized Fermat 929 148598024^131072+1 1071123 L4476 2023 Generalized Fermat 930 1103*2^3558177-503*2^1092022-1 1071122 p423 2022 Arithmetic progression (3,d=1103*2^3558176-503*2^1092022) 931 1103*2^3558176-1 1071121 L1828 2018 932 148592576^131072+1 1071121 L4476 2023 Generalized Fermat 933 148425726^131072+1 1071057 L4289 2023 Generalized Fermat 934 148154288^131072+1 1070952 L5714 2023 Generalized Fermat 935 148093952^131072+1 1070929 L4720 2023 Generalized Fermat 936 148070542^131072+1 1070920 L5155 2023 Generalized Fermat 937 147988292^131072+1 1070889 L5155 2023 Generalized Fermat 938 147816036^131072+1 1070822 L5634 2023 Generalized Fermat 939 1379*2^3557072-1 1070789 L1828 2018 940 147539992^131072+1 1070716 L4917 2023 Generalized Fermat 941 147433824^131072+1 1070675 L4753 2023 Generalized Fermat 942 147310498^131072+1 1070627 L5403 2023 Generalized Fermat 943 147265916^131072+1 1070610 L5543 2023 Generalized Fermat 944 146994540^131072+1 1070505 L5634 2023 Generalized Fermat 945 146520528^131072+1 1070321 L5469 2023 Generalized Fermat 946 146465338^131072+1 1070300 L5704 2023 Generalized Fermat 947 146031082^131072+1 1070131 L4697 2023 Generalized Fermat 948 145949782^131072+1 1070099 L5029 2023 Generalized Fermat 949 145728478^131072+1 1070013 L5543 2023 Generalized Fermat 950 145245346^131072+1 1069824 L5586 2023 Generalized Fermat 951 145137270^131072+1 1069781 L4742 2023 Generalized Fermat 952 145132288^131072+1 1069779 L4774 2023 Generalized Fermat 953 144926960^131072+1 1069699 L5036 2023 Generalized Fermat 954 144810806^131072+1 1069653 L5543 2023 Generalized Fermat 955 681*2^3553141+1 1069605 L3035 2018 956 144602744^131072+1 1069571 L5543 2023 Generalized Fermat 957 143844356^131072+1 1069272 L5693 2023 Generalized Fermat 958 599*2^3551793+1 1069200 L3824 2018 959 143421820^131072+1 1069104 L4904 2023 Generalized Fermat 960 621*2^3551472+1 1069103 L4687 2018 961 143416574^131072+1 1069102 L4591 2023 Generalized Fermat 962 143126384^131072+1 1068987 L5288 2023 Generalized Fermat 963 142589776^131072+1 1068773 L4201 2023 Generalized Fermat 964 773*2^3550373+1 1068772 L1808 2018 965 142527792^131072+1 1068748 L4387 2023 Generalized Fermat 966 142207386^131072+1 1068620 L5694 2023 Generalized Fermat 967 142195844^131072+1 1068616 L5548 2023 Generalized Fermat 968 141636602^131072+1 1068391 L5639 2023 Generalized Fermat 969 141554190^131072+1 1068358 L4956 2023 Generalized Fermat 970 1199*2^3548380-1 1068172 L1828 2018 971 140928044^131072+1 1068106 L4870 2023 Generalized Fermat 972 191*2^3548117+1 1068092 L4203 2015 973 140859866^131072+1 1068078 L5011 2023 Generalized Fermat 974 140824516^131072+1 1068064 L4760 2023 Generalized Fermat 975 140649396^131072+1 1067993 L5578 2023 Generalized Fermat 976 867*2^3547711+1 1067971 L4155 2018 977 140473436^131072+1 1067922 L4210 2023 Generalized Fermat 978 140237690^131072+1 1067826 L5051 2023 Generalized Fermat 979 139941370^131072+1 1067706 L5671 2023 Generalized Fermat 980 Phi(3,3^1118781+1)/3 1067588 L3839 2014 Generalized unique 981 139352402^131072+1 1067466 L5663 2023 Generalized Fermat 982 351*2^3545752+1 1067381 L4082 2016 983 138896860^131072+1 1067279 L4745 2023 Generalized Fermat 984 138894074^131072+1 1067278 L5041 2023 Generalized Fermat 985 138830036^131072+1 1067252 L5662 2023 Generalized Fermat 986 138626864^131072+1 1067169 L5663 2023 Generalized Fermat 987 138527284^131072+1 1067128 L5663 2023 Generalized Fermat 988 93*2^3544744+1 1067077 L1728 2014 989 138000006^131072+1 1066911 L5051 2023 Generalized Fermat 990 137900696^131072+1 1066870 L4249 2023 Generalized Fermat 991 137878102^131072+1 1066860 L5051 2023 Generalized Fermat 992 1159*2^3543702+1 1066764 L1823 2018 993 137521726^131072+1 1066713 L4672 2023 Generalized Fermat 994 137486564^131072+1 1066699 L5586 2023 Generalized Fermat 995 136227118^131072+1 1066175 L5416 2023 Generalized Fermat 996 136192168^131072+1 1066160 L5556 2023 Generalized Fermat 997 136124076^131072+1 1066132 L5041 2023 Generalized Fermat 998 136122686^131072+1 1066131 L5375 2023 Generalized Fermat 999 178658*5^1525224-1 1066092 L3789 2014 1000 135744154^131072+1 1065973 L5068 2023 Generalized Fermat 1001 135695350^131072+1 1065952 L4249 2023 Generalized Fermat 1002 135623220^131072+1 1065922 L5657 2023 Generalized Fermat 1003 135513092^131072+1 1065876 L5656 2023 Generalized Fermat 1004 135497678^131072+1 1065869 L4387 2023 Generalized Fermat 1005 135458028^131072+1 1065852 L5051 2023 Generalized Fermat 1006 135332960^131072+1 1065800 L5655 2023 Generalized Fermat 1007 135135930^131072+1 1065717 L4387 2023 Generalized Fermat 1008 1085*2^3539671+1 1065551 L3035 2018 1009 134706086^131072+1 1065536 L5378 2023 Generalized Fermat 1010 134459616^131072+1 1065431 L5658 2023 Generalized Fermat 1011 134447516^131072+1 1065426 L4387 2023 Generalized Fermat 1012 134322272^131072+1 1065373 L4387 2023 Generalized Fermat 1013 134206304^131072+1 1065324 L4684 2023 Generalized Fermat 1014 134176868^131072+1 1065311 L5375 2023 Generalized Fermat 1015 133954018^131072+1 1065217 L5088 2023 Generalized Fermat 1016 133676500^131072+1 1065099 L4387 2023 Generalized Fermat 1017 133569020^131072+1 1065053 L5277 2023 Generalized Fermat 1018 133345154^131072+1 1064958 L4210 2023 Generalized Fermat 1019 133180238^131072+1 1064887 L5586 2023 Generalized Fermat 1020 133096042^131072+1 1064851 L4755 2023 Generalized Fermat 1021 465*2^3536871+1 1064707 L4459 2016 1022 1019*2^3536312-1 1064539 L1828 2012 1023 131820886^131072+1 1064303 L5069 2023 Generalized Fermat 1024 131412078^131072+1 1064126 L5653 2023 Generalized Fermat 1025 131370186^131072+1 1064108 L5036 2023 Generalized Fermat 1026 131309874^131072+1 1064082 L5069 2023 Generalized Fermat 1027 131112524^131072+1 1063996 L4245 2023 Generalized Fermat 1028 1179*2^3534450+1 1063979 L3035 2018 1029 130907540^131072+1 1063907 L4526 2023 Generalized Fermat 1030 130593462^131072+1 1063771 L4559 2023 Generalized Fermat 1031 447*2^3533656+1 1063740 L4457 2016 1032 130518578^131072+1 1063738 L5029 2023 Generalized Fermat 1033 1059*2^3533550+1 1063708 L1823 2018 1034 130198372^131072+1 1063598 L5416 2023 Generalized Fermat 1035 130148002^131072+1 1063576 L4387 2023 Generalized Fermat 1036 130128232^131072+1 1063567 L5029 2023 Generalized Fermat 1037 130051980^131072+1 1063534 L5416 2023 Generalized Fermat 1038 130048816^131072+1 1063533 L4245 2023 Generalized Fermat 1039 345*2^3532957+1 1063529 L4314 2016 1040 553*2^3532758+1 1063469 L1823 2018 1041 129292212^131072+1 1063201 L4285 2023 Generalized Fermat 1042 129159632^131072+1 1063142 L5051 2023 Generalized Fermat 1043 128558886^131072+1 1062877 L5518 2023 Generalized Fermat 1044 128520182^131072+1 1062860 L4745 2023 Generalized Fermat 1045 543131*2^3529754-1 1062568 L4925 2022 1046 127720948^131072+1 1062504 L5378 2023 Generalized Fermat 1047 141*2^3529287+1 1062424 L4185 2015 1048 127093036^131072+1 1062224 L4591 2023 Generalized Fermat 1049 126611934^131072+1 1062008 L4776 2023 Generalized Fermat 1050 126423276^131072+1 1061923 L4201 2023 Generalized Fermat 1051 126334514^131072+1 1061883 L4249 2023 Generalized Fermat 1052 13*2^3527315-1 1061829 L1862 2016 1053 126199098^131072+1 1061822 L4591 2023 Generalized Fermat 1054 126189358^131072+1 1061818 L4704 2023 Generalized Fermat 1055 125966884^131072+1 1061717 L4747 2023 Generalized Fermat 1056 125714084^131072+1 1061603 L4745 2023 Generalized Fermat 1057 125141096^131072+1 1061343 L4559 2023 Generalized Fermat 1058 1393*2^3525571-1 1061306 L1828 2017 1059 125006494^131072+1 1061282 L5639 2023 Generalized Fermat 1060 124877454^131072+1 1061223 L4245 2023 Generalized Fermat 1061 124875502^131072+1 1061222 L4591 2023 Generalized Fermat 1062 124749274^131072+1 1061164 L4591 2023 Generalized Fermat 1063 124586054^131072+1 1061090 L4249 2023 Generalized Fermat 1064 124582356^131072+1 1061088 L5606 2023 Generalized Fermat 1065 124543852^131072+1 1061071 L4249 2023 Generalized Fermat 1066 124393514^131072+1 1061002 L4774 2023 Generalized Fermat 1067 124219534^131072+1 1060922 L4249 2023 Generalized Fermat 1068 124133348^131072+1 1060883 L5088 2023 Generalized Fermat 1069 124080788^131072+1 1060859 L5639 2023 Generalized Fermat 1070 1071*2^3523944+1 1060816 L1675 2018 1071 123910270^131072+1 1060780 L4249 2023 Generalized Fermat 1072 123856592^131072+1 1060756 L4201 2023 Generalized Fermat 1073 123338660^131072+1 1060517 L4905 2022 Generalized Fermat 1074 123306230^131072+1 1060502 L5638 2023 Generalized Fermat 1075 123195196^131072+1 1060451 L5029 2022 Generalized Fermat 1076 122941512^131072+1 1060333 L4559 2022 Generalized Fermat 1077 122869094^131072+1 1060300 L4939 2022 Generalized Fermat 1078 122481106^131072+1 1060120 L4704 2022 Generalized Fermat 1079 122414564^131072+1 1060089 L5627 2022 Generalized Fermat 1080 122372192^131072+1 1060069 L5099 2022 Generalized Fermat 1081 121854624^131072+1 1059828 L5051 2022 Generalized Fermat 1082 121462664^131072+1 1059645 L5632 2022 Generalized Fermat 1083 121158848^131072+1 1059502 L4774 2022 Generalized Fermat 1084a 2220172*3^2220172+1 1059298 p137 2023 Generalized Cullen 1085 329*2^3518451+1 1059162 L1823 2016 1086 135*2^3518338+1 1059128 L4045 2015 1087 120106930^131072+1 1059006 L4249 2022 Generalized Fermat 1088 2*10^1059002-1 1059003 L3432 2013 Near-repdigit 1089 119744014^131072+1 1058833 L4249 2022 Generalized Fermat 1090 64*10^1058794+1 1058796 L4036 2017 Generalized Fermat 1091 119604848^131072+1 1058767 L4201 2022 Generalized Fermat 1092 119541900^131072+1 1058737 L4747 2022 Generalized Fermat 1093 119510296^131072+1 1058722 L4201 2022 Generalized Fermat 1094 119246256^131072+1 1058596 L4249 2022 Generalized Fermat 1095 119137704^131072+1 1058544 L4201 2022 Generalized Fermat 1096 118888350^131072+1 1058425 L4999 2022 Generalized Fermat 1097 599*2^3515959+1 1058412 L1823 2018 1098 118583824^131072+1 1058279 L4210 2022 Generalized Fermat 1099 118109876^131072+1 1058051 L4550 2022 Generalized Fermat 1100 117906758^131072+1 1057953 L4249 2022 Generalized Fermat 1101 117687318^131072+1 1057847 L4245 2022 Generalized Fermat 1102 117375862^131072+1 1057696 L4774 2022 Generalized Fermat 1103 117345018^131072+1 1057681 L4848 2022 Generalized Fermat 1104 117196584^131072+1 1057609 L4559 2022 Generalized Fermat 1105 117153716^131072+1 1057588 L4774 2022 Generalized Fermat 1106 117088740^131072+1 1057557 L4559 2022 Generalized Fermat 1107 116936156^131072+1 1057483 L5332 2022 Generalized Fermat 1108 116402336^131072+1 1057222 L4760 2022 Generalized Fermat 1109 7*2^3511774+1 1057151 p236 2008 Divides GF(3511773,6) 1110 116036228^131072+1 1057043 L4773 2022 Generalized Fermat 1111 116017862^131072+1 1057034 L4559 2022 Generalized Fermat 1112 115992582^131072+1 1057021 L4835 2022 Generalized Fermat 1113 115873312^131072+1 1056963 L4677 2022 Generalized Fermat 1114 1135*2^3510890+1 1056887 L1823 2018 1115 115704568^131072+1 1056880 L4559 2022 Generalized Fermat 1116 115479166^131072+1 1056769 L4774 2022 Generalized Fermat 1117 115409608^131072+1 1056735 L4774 2022 Generalized Fermat 1118 115256562^131072+1 1056659 L4559 2022 Generalized Fermat 1119 114687250^131072+1 1056377 L5007 2022 Generalized Fermat 1120 114643510^131072+1 1056356 L4659 2022 Generalized Fermat 1121 114340846^131072+1 1056205 L4559 2022 Generalized Fermat 1122 114159720^131072+1 1056115 L4787 2022 Generalized Fermat 1123 114055498^131072+1 1056063 L4387 2022 Generalized Fermat 1124 114009952^131072+1 1056040 L4387 2022 Generalized Fermat 1125 113904214^131072+1 1055987 L4559 2022 Generalized Fermat 1126 113807058^131072+1 1055939 L5157 2022 Generalized Fermat 1127 113550956^131072+1 1055810 L5578 2022 Generalized Fermat 1128 113521888^131072+1 1055796 L4387 2022 Generalized Fermat 1129 113431922^131072+1 1055751 L4559 2022 Generalized Fermat 1130 113328940^131072+1 1055699 L4787 2022 Generalized Fermat 1131 113327472^131072+1 1055698 L5467 2022 Generalized Fermat 1132 113325850^131072+1 1055698 L4559 2022 Generalized Fermat 1133 113313172^131072+1 1055691 L5005 2022 Generalized Fermat 1134 113191714^131072+1 1055630 L5056 2022 Generalized Fermat 1135 113170004^131072+1 1055619 L4584 2022 Generalized Fermat 1136 428639*2^3506452-1 1055553 L2046 2011 1137 112996304^131072+1 1055532 L5544 2022 Generalized Fermat 1138 112958834^131072+1 1055513 L5512 2022 Generalized Fermat 1139 112852910^131072+1 1055459 L5157 2022 Generalized Fermat 1140 112719374^131072+1 1055392 L4793 2022 Generalized Fermat 1141 112580428^131072+1 1055322 L5512 2022 Generalized Fermat 1142 112248096^131072+1 1055154 L5359 2022 Generalized Fermat 1143 112053266^131072+1 1055055 L5359 2022 Generalized Fermat 1144 112023072^131072+1 1055039 L5156 2022 Generalized Fermat 1145 111673524^131072+1 1054861 L5548 2022 Generalized Fermat 1146 111181588^131072+1 1054610 L4550 2022 Generalized Fermat 1147 104*383^408249+1 1054591 L2012 2021 1148 110866802^131072+1 1054449 L5547 2022 Generalized Fermat 1149 555*2^3502765+1 1054441 L1823 2018 1150 110824714^131072+1 1054427 L4201 2022 Generalized Fermat 1151e 8300*171^472170+1 1054358 L5780 2023 1152 110428380^131072+1 1054223 L5543 2022 Generalized Fermat 1153 110406480^131072+1 1054212 L5051 2022 Generalized Fermat 1154 643*2^3501974+1 1054203 L1823 2018 1155 2*23^774109+1 1054127 g427 2014 Divides Phi(23^774109,2) 1156 1159*2^3501490+1 1054057 L2125 2018 1157 109678642^131072+1 1053835 L4559 2022 Generalized Fermat 1158 109654098^131072+1 1053823 L5143 2022 Generalized Fermat 1159 109142690^131072+1 1053557 L4201 2022 Generalized Fermat 1160 109082020^131072+1 1053525 L4773 2022 Generalized Fermat 1161 1189*2^3499042+1 1053320 L4724 2018 1162 108584736^131072+1 1053265 L5057 2022 Generalized Fermat 1163 108581414^131072+1 1053263 L5088 2022 Generalized Fermat 1164 108195632^131072+1 1053060 L5025 2022 Generalized Fermat 1165 108161744^131072+1 1053043 L4945 2022 Generalized Fermat 1166 108080390^131072+1 1053000 L4945 2022 Generalized Fermat 1167 107979316^131072+1 1052947 L4559 2022 Generalized Fermat 1168 107922308^131072+1 1052916 L5025 2022 Generalized Fermat 1169 609*2^3497474+1 1052848 L1823 2018 1170 9*2^3497442+1 1052836 L1780 2012 Generalized Fermat, divides GF(3497441,10) 1171 107732730^131072+1 1052816 L5518 2022 Generalized Fermat 1172 107627678^131072+1 1052761 L5025 2022 Generalized Fermat 1173 107492880^131072+1 1052689 L4550 2022 Generalized Fermat 1174 107420312^131072+1 1052651 L4550 2022 Generalized Fermat 1175 107404768^131072+1 1052643 L4267 2022 Generalized Fermat 1176 107222132^131072+1 1052546 L5019 2022 Generalized Fermat 1177 107126228^131072+1 1052495 L5025 2022 Generalized Fermat 1178 87*2^3496188+1 1052460 L1576 2014 1179 106901434^131072+1 1052375 L4760 2022 Generalized Fermat 1180 106508704^131072+1 1052166 L5505 2022 Generalized Fermat 1181 106440698^131072+1 1052130 L4245 2022 Generalized Fermat 1182 106019242^131072+1 1051904 L5025 2022 Generalized Fermat 1183 105937832^131072+1 1051860 L4745 2022 Generalized Fermat 1184 783*2^3494129+1 1051841 L3824 2018 1185 105861526^131072+1 1051819 L5500 2022 Generalized Fermat 1186 105850338^131072+1 1051813 L5504 2022 Generalized Fermat 1187 105534478^131072+1 1051643 L5025 2022 Generalized Fermat 1188 105058710^131072+1 1051386 L5499 2022 Generalized Fermat 1189 104907548^131072+1 1051304 L4245 2022 Generalized Fermat 1190 104808996^131072+1 1051250 L4591 2022 Generalized Fermat 1191 104641854^131072+1 1051159 L4245 2022 Generalized Fermat 1192 51*2^3490971+1 1050889 L1823 2014 1193 1485*2^3490746+1 1050823 L1134 2021 1194 103828182^131072+1 1050715 L5072 2022 Generalized Fermat 1195 103605376^131072+1 1050593 L5056 2022 Generalized Fermat 1196 103289324^131072+1 1050419 L5044 2022 Generalized Fermat 1197 103280694^131072+1 1050414 L4745 2022 Generalized Fermat 1198 103209792^131072+1 1050375 L5025 2022 Generalized Fermat 1199 103094212^131072+1 1050311 L4245 2022 Generalized Fermat 1200 103013294^131072+1 1050266 L4745 2022 Generalized Fermat 1201 753*2^3488818+1 1050242 L1823 2018 1202 102507732^131072+1 1049986 L4245 2022 Generalized Fermat 1203 102469684^131072+1 1049965 L4245 2022 Generalized Fermat 1204 102397132^131072+1 1049925 L4720 2022 Generalized Fermat 1205 102257714^131072+1 1049847 L4245 2022 Generalized Fermat 1206 699*2^3487253+1 1049771 L1204 2018 1207 102050324^131072+1 1049732 L5036 2022 Generalized Fermat 1208 102021074^131072+1 1049716 L4245 2022 Generalized Fermat 1209 101915106^131072+1 1049656 L5469 2022 Generalized Fermat 1210 101856256^131072+1 1049623 L4774 2022 Generalized Fermat 1211 249*2^3486411+1 1049517 L4045 2015 1212 195*2^3486379+1 1049507 L4108 2015 1213 101607438^131072+1 1049484 L4591 2022 Generalized Fermat 1214 101328382^131072+1 1049328 L4591 2022 Generalized Fermat 1215 101270816^131072+1 1049295 L4245 2022 Generalized Fermat 1216 100865034^131072+1 1049067 L4387 2022 Generalized Fermat 1217 59912*5^1500861+1 1049062 L3772 2014 1218 495*2^3484656+1 1048989 L3035 2016 1219 100719472^131072+1 1048985 L5270 2022 Generalized Fermat 1220 100534258^131072+1 1048880 L4245 2022 Generalized Fermat 1221 100520930^131072+1 1048872 L4201 2022 Generalized Fermat 1222 100441116^131072+1 1048827 L4309 2022 Generalized Fermat 1223a Phi(3,-3*2^1742059) 1048825 A3 2023 Generalized unique 1224 100382228^131072+1 1048794 L4308 2022 Generalized Fermat 1225 100369508^131072+1 1048786 L5157 2022 Generalized Fermat 1226 100324226^131072+1 1048761 L4201 2022 Generalized Fermat 1227 100010426^131072+1 1048582 L5375 2022 Generalized Fermat 1228 323*2^3482789+1 1048427 L1204 2016 1229a 3801*2^3482723+1 1048408 L5517 2023 1230 99665972^131072+1 1048386 L4201 2022 Generalized Fermat 1231 99650934^131072+1 1048377 L5375 2022 Generalized Fermat 1232 99557826^131072+1 1048324 L5466 2022 Generalized Fermat 1233a 8235*2^3482277+1 1048274 L5820 2023 1234a 9155*2^3482129+1 1048230 L5226 2023 1235 99351950^131072+1 1048206 L5143 2022 Generalized Fermat 1236a 4325*2^3481969+1 1048181 L5434 2023 1237 99189780^131072+1 1048113 L4201 2022 Generalized Fermat 1238 1149*2^3481694+1 1048098 L1823 2018 1239 98978354^131072+1 1047992 L5465 2022 Generalized Fermat 1240a 6127*2^3481244+1 1047963 L5226 2023 1241 98922946^131072+1 1047960 L5453 2022 Generalized Fermat 1242a 8903*2^3481217+1 1047955 L5226 2023 1243a 3595*2^3481178+1 1047943 L5214 2023 1244b 3799*2^3480810+1 1047832 L5226 2023 1245b 6101*2^3480801+1 1047830 L5226 2023 1246 98652282^131072+1 1047804 L4201 2022 Generalized Fermat 1247c 1740349*2^3480698+1 1047801 L5765 2023 Generalized Cullen 1248 98557818^131072+1 1047750 L5464 2022 Generalized Fermat 1249 98518362^131072+1 1047727 L5460 2022 Generalized Fermat 1250b 5397*2^3480379+1 1047703 L5226 2023 1251b 5845*2^3479972+1 1047580 L5517 2023 1252 98240694^131072+1 1047566 L4720 2022 Generalized Fermat 1253 98200338^131072+1 1047543 L4559 2022 Generalized Fermat 1254 701*2^3479779+1 1047521 L2125 2018 1255 98137862^131072+1 1047507 L4525 2022 Generalized Fermat 1256 813*2^3479728+1 1047506 L4724 2018 1257b 7125*2^3479509+1 1047441 L5812 2023 1258b 1971*2^3479061+1 1047306 L5226 2023 1259b 1215*2^3478543+1 1047149 L5226 2023 1260 97512766^131072+1 1047143 L5460 2022 Generalized Fermat 1261b 5985*2^3478217+1 1047052 L5387 2023 1262b 3093*2^3478148+1 1047031 L5261 2023 1263b 2145*2^3478095+1 1047015 L5387 2023 1264b 6685*2^3478086+1 1047013 L5237 2023 1265b 9603*2^3478084+1 1047012 L5178 2023 1266b 1315*2^3477718+1 1046901 L5316 2023 1267 97046574^131072+1 1046870 L4956 2022 Generalized Fermat 1268 197*2^3477399+1 1046804 L2125 2015 1269b 8303*2^3477201+1 1046746 L5387 2023 1270 96821302^131072+1 1046738 L5453 2022 Generalized Fermat 1271c 5925*2^3477009+1 1046688 L5810 2023 1272 96734274^131072+1 1046686 L5297 2022 Generalized Fermat 1273c 7825*2^3476524+1 1046542 L5174 2023 1274 96475576^131072+1 1046534 L4424 2022 Generalized Fermat 1275c 8197*2^3476332+1 1046485 L5174 2023 1276c 8529*2^3476111+1 1046418 L5387 2023 1277c 8411*2^3476055+1 1046401 L5783 2023 1278c 4319*2^3475955+1 1046371 L5803 2023 1279 96111850^131072+1 1046319 L4245 2022 Generalized Fermat 1280 95940796^131072+1 1046218 L4591 2022 Generalized Fermat 1281c 6423*2^3475393+1 1046202 L5174 2023 1282c 2281*2^3475340+1 1046185 L5302 2023 1283c 7379*2^3474983+1 1046078 L5798 2023 1284 4*5^1496566+1 1046056 L4965 2023 Generalized Fermat 1285 95635202^131072+1 1046036 L5452 2021 Generalized Fermat 1286 95596816^131072+1 1046013 L4591 2021 Generalized Fermat 1287d 4737*2^3474562+1 1045952 L5302 2023 1288d 2407*2^3474406+1 1045904 L5557 2023 1289 95308284^131072+1 1045841 L4584 2021 Generalized Fermat 1290 491*2^3473837+1 1045732 L4343 2016 1291d 2693*2^3473721+1 1045698 L5174 2023 1292 94978760^131072+1 1045644 L4201 2021 Generalized Fermat 1293d 3375*2^3473210+1 1045544 L5294 2023 1294d 8835*2^3472666+1 1045381 L5178 2023 1295d 5615*2^3472377+1 1045294 L5174 2023 1296d 1785*2^3472229+1 1045249 L875 2023 1297d 8997*2^3472036+1 1045191 L5302 2023 1298d 9473*2^3471885+1 1045146 L5294 2023 1299d 7897*2^3471568+1 1045050 L5294 2023 1300 93950924^131072+1 1045025 L5425 2021 Generalized Fermat 1301 93886318^131072+1 1044985 L5433 2021 Generalized Fermat 1302 1061*2^3471354-1 1044985 L1828 2017 1303e 1913*2^3471177+1 1044932 L5189 2023 1304 93773904^131072+1 1044917 L4939 2021 Generalized Fermat 1305e 7723*2^3471074+1 1044902 L5189 2023 1306e 4195*2^3470952+1 1044865 L5294 2023 1307 93514592^131072+1 1044760 L4591 2021 Generalized Fermat 1308e 5593*2^3470520+1 1044735 L5387 2023 1309e 3665*2^3469955+1 1044565 L5189 2023 1310e 3301*2^3469708+1 1044490 L5261 2023 1311e 6387*2^3469634+1 1044468 L5192 2023 1312 93035888^131072+1 1044467 L4245 2021 Generalized Fermat 1313e 8605*2^3469570+1 1044449 L5387 2023 1314e 1359*2^3468725+1 1044194 L5197 2023 1315 92460588^131072+1 1044114 L5254 2021 Generalized Fermat 1316e 7585*2^3468338+1 1044078 L5197 2023 1317e 1781*2^3468335+1 1044077 L5387 2023 1318f 6885*2^3468181+1 1044031 L5197 2023 1319f 7287*2^3467938+1 1043958 L5776 2023 1320 92198216^131072+1 1043953 L4738 2021 Generalized Fermat 1321f 3163*2^3467710+1 1043889 L5517 2023 1322f 6099*2^3467689+1 1043883 L5197 2023 1323f 6665*2^3467627+1 1043864 L5174 2023 1324f 4099*2^3467462+1 1043814 L5774 2023 1325f 5285*2^3467445+1 1043809 L5189 2023 1326 91767880^131072+1 1043686 L5051 2021 Generalized Fermat 1327 91707732^131072+1 1043649 L4591 2021 Generalized Fermat 1328f 5935*2^3466880+1 1043639 L5197 2023 1329 91689894^131072+1 1043638 L4591 2021 Generalized Fermat 1330 91685784^131072+1 1043635 L4591 2021 Generalized Fermat 1331f 8937*2^3466822+1 1043622 L5174 2023 1332 91655310^131072+1 1043616 L4659 2021 Generalized Fermat 1333f 8347*2^3466736+1 1043596 L5770 2023 1334f 8863*2^3465780+1 1043308 L5766 2023 1335f 3895*2^3465744+1 1043297 L5640 2023 1336 91069366^131072+1 1043251 L5277 2021 Generalized Fermat 1337 91049202^131072+1 1043239 L4591 2021 Generalized Fermat 1338 91033554^131072+1 1043229 L4591 2021 Generalized Fermat 1339 8561*2^3465371+1 1043185 L5197 2023 1340 90942952^131072+1 1043172 L4387 2021 Generalized Fermat 1341 90938686^131072+1 1043170 L4387 2021 Generalized Fermat 1342 9971*2^3465233+1 1043144 L5488 2023 1343 90857490^131072+1 1043119 L4591 2021 Generalized Fermat 1344 3801*2^3464980+1 1043067 L5197 2023 1345 3099*2^3464739+1 1042994 L5284 2023 1346 90382348^131072+1 1042820 L4267 2021 Generalized Fermat 1347 641*2^3464061+1 1042790 L1444 2018 1348 6717*2^3463735+1 1042692 L5754 2023 1349 6015*2^3463561+1 1042640 L5387 2023 1350 90006846^131072+1 1042583 L4773 2021 Generalized Fermat 1351 1667*2^3463355+1 1042577 L5226 2023 1352 2871*2^3463313+1 1042565 L5189 2023 1353 89977312^131072+1 1042565 L5070 2021 Generalized Fermat 1354 6007*2^3463048+1 1042486 L5226 2023 1355 89790434^131072+1 1042446 L5007 2021 Generalized Fermat 1356 9777*2^3462742+1 1042394 L5197 2023 1357 5215*2^3462740+1 1042393 L5174 2023 1358 8365*2^3462722+1 1042388 L5320 2023 1359 3597*2^3462056+1 1042187 L5174 2023 1360 2413*2^3461890+1 1042137 L5197 2023 1361 89285798^131072+1 1042125 L5157 2021 Generalized Fermat 1362 453*2^3461688+1 1042075 L3035 2016 1363 89113896^131072+1 1042016 L5338 2021 Generalized Fermat 1364 4401*2^3461476+1 1042012 L5197 2023 1365 9471*2^3461305+1 1041961 L5594 2023 1366 7245*2^3461070+1 1041890 L5449 2023 1367 3969*2^3460942+1 1041851 L5471 2023 Generalized Fermat 1368 4365*2^3460914+1 1041843 L5197 2023 1369 4613*2^3460861+1 1041827 L5614 2023 1370 88760062^131072+1 1041789 L4903 2021 Generalized Fermat 1371 5169*2^3460553+1 1041734 L5742 2023 1372 8395*2^3460530+1 1041728 L5284 2023 1373 5835*2^3460515+1 1041723 L5740 2023 1374 8059*2^3460246+1 1041642 L5350 2023 1375 571*2^3460216+1 1041632 L3035 2018 1376 6065*2^3460205+1 1041630 L5683 2023 1377 88243020^131072+1 1041457 L4774 2021 Generalized Fermat 1378 88166868^131072+1 1041408 L5277 2021 Generalized Fermat 1379 6237*2^3459386+1 1041383 L5509 2023 1380 88068088^131072+1 1041344 L4933 2021 Generalized Fermat 1381 4029*2^3459062+1 1041286 L5727 2023 1382 87920992^131072+1 1041249 L4249 2021 Generalized Fermat 1383 7055*2^3458909+1 1041240 L5509 2023 1384 7297*2^3458768+1 1041197 L5726 2023 1385 2421*2^3458432+1 1041096 L5725 2023 1386 7907*2^3458207+1 1041028 L5509 2023 1387 87547832^131072+1 1041006 L4591 2021 Generalized Fermat 1388 87454694^131072+1 1040946 L4672 2021 Generalized Fermat 1389 7839*2^3457846+1 1040920 L5231 2023 1390 87370574^131072+1 1040891 L5297 2021 Generalized Fermat 1391 87352356^131072+1 1040879 L4387 2021 Generalized Fermat 1392 87268788^131072+1 1040825 L4917 2021 Generalized Fermat 1393 87192538^131072+1 1040775 L4861 2021 Generalized Fermat 1394 5327*2^3457363+1 1040774 L5715 2023 1395 87116452^131072+1 1040725 L5297 2021 Generalized Fermat 1396 87039658^131072+1 1040675 L5297 2021 Generalized Fermat 1397 6059*2^3457001+1 1040665 L5197 2023 1398 8953*2^3456938+1 1040646 L5724 2023 1399 8669*2^3456759+1 1040593 L5710 2023 1400 86829162^131072+1 1040537 L5265 2021 Generalized Fermat 1401 4745*2^3456167+1 1040414 L5705 2023 1402 8213*2^3456141+1 1040407 L5703 2023 1403 86413544^131072+1 1040264 L4914 2021 Generalized Fermat 1404 86347638^131072+1 1040221 L4848 2021 Generalized Fermat 1405 86295564^131072+1 1040186 L5030 2021 Generalized Fermat 1406 1155*2^3455254+1 1040139 L4711 2017 1407 37292*5^1487989+1 1040065 L3553 2013 1408 86060696^131072+1 1040031 L5057 2021 Generalized Fermat 1409 5525*2^3454069+1 1039783 L5651 2023 1410 4235*2^3453573+1 1039633 L5650 2023 1411 6441*2^3453227+1 1039529 L5683 2023 1412 4407*2^3453195+1 1039519 L5650 2023 1413 9867*2^3453039+1 1039473 L5686 2023 1414 85115888^131072+1 1039403 L4909 2021 Generalized Fermat 1415 4857*2^3452675+1 1039363 L5600 2023 1416 8339*2^3452667+1 1039361 L5651 2023 1417 84924212^131072+1 1039275 L4309 2021 Generalized Fermat 1418 7079*2^3452367+1 1039270 L5650 2023 1419 5527*2^3452342+1 1039263 L5679 2023 1420 84817722^131072+1 1039203 L4726 2021 Generalized Fermat 1421 84765338^131072+1 1039168 L4245 2021 Generalized Fermat 1422 84757790^131072+1 1039163 L5051 2021 Generalized Fermat 1423 84723284^131072+1 1039140 L5051 2021 Generalized Fermat 1424 84715930^131072+1 1039135 L4963 2021 Generalized Fermat 1425 84679936^131072+1 1039111 L4864 2021 Generalized Fermat 1426 3719*2^3451667+1 1039059 L5294 2023 1427 6725*2^3451455+1 1038996 L5685 2023 1428 8407*2^3451334+1 1038959 L5524 2023 1429 84445014^131072+1 1038952 L4909 2021 Generalized Fermat 1430 84384358^131072+1 1038912 L4622 2021 Generalized Fermat 1431 1623*2^3451109+1 1038891 L5308 2023 1432 8895*2^3450982+1 1038854 L5666 2023 1433 84149050^131072+1 1038753 L5033 2021 Generalized Fermat 1434 2899*2^3450542+1 1038721 L5600 2023 1435 6337*2^3449506+1 1038409 L5197 2023 1436 4381*2^3449456+1 1038394 L5392 2023 1437 2727*2^3449326+1 1038355 L5421 2023 1438 2877*2^3449311+1 1038350 L5517 2023 1439 7507*2^3448920+1 1038233 L5284 2023 1440 3629*2^3448919+1 1038232 L5192 2023 1441 83364886^131072+1 1038220 L4591 2021 Generalized Fermat 1442 83328182^131072+1 1038195 L5051 2021 Generalized Fermat 1443 1273*2^3448551-1 1038121 L1828 2012 1444 1461*2^3448423+1 1038082 L4944 2023 1445 3235*2^3448352+1 1038061 L5571 2023 1446 4755*2^3448344+1 1038059 L5524 2023 1447 5655*2^3448288+1 1038042 L5651 2023 1448 4873*2^3448176+1 1038009 L5524 2023 1449 83003850^131072+1 1037973 L4963 2021 Generalized Fermat 1450 8139*2^3447967+1 1037946 L5652 2023 1451 1065*2^3447906+1 1037927 L4664 2017 1452 1717*2^3446756+1 1037581 L5517 2023 1453 6357*2^3446434+1 1037484 L5284 2023 1454 1155*2^3446253+1 1037429 L3035 2017 1455 9075*2^3446090+1 1037381 L5648 2023 1456 82008736^131072+1 1037286 L4963 2021 Generalized Fermat 1457 82003030^131072+1 1037282 L4410 2021 Generalized Fermat 1458 1483*2^3445724+1 1037270 L5650 2023 1459 81976506^131072+1 1037264 L4249 2021 Generalized Fermat 1460 2223*2^3445682+1 1037257 L5647 2023 1461 8517*2^3445488+1 1037200 L5302 2023 1462 2391*2^3445281+1 1037137 L5596 2023 1463 6883*2^3444784+1 1036988 L5264 2023 1464 81477176^131072+1 1036916 L4245 2020 Generalized Fermat 1465 81444036^131072+1 1036893 L4245 2020 Generalized Fermat 1466 8037*2^3443920+1 1036728 L5626 2023 1467 1375*2^3443850+1 1036706 L5192 2023 1468 81096098^131072+1 1036649 L4249 2020 Generalized Fermat 1469 27288429267119080686...(1036580 other digits)...83679577406643267931 1036620 p384 2015 1470 943*2^3442990+1 1036447 L4687 2017 1471 7743*2^3442814+1 1036395 L5514 2023 1472 5511*2^3442468+1 1036290 L5514 2022 1473 80284312^131072+1 1036076 L5051 2020 Generalized Fermat 1474 6329*2^3441717+1 1036064 L5631 2022 1475 3957*2^3441568+1 1036019 L5476 2022 1476 80146408^131072+1 1035978 L5051 2020 Generalized Fermat 1477 4191*2^3441427+1 1035977 L5189 2022 1478 2459*2^3441331+1 1035948 L5514 2022 1479 4335*2^3441306+1 1035940 L5178 2022 1480 2331*2^3441249+1 1035923 L5626 2022 1481 79912550^131072+1 1035812 L5186 2020 Generalized Fermat 1482 79801426^131072+1 1035733 L4245 2020 Generalized Fermat 1483 79789806^131072+1 1035725 L4658 2020 Generalized Fermat 1484 2363*2^3440385+1 1035663 L5625 2022 1485 5265*2^3440332+1 1035647 L5421 2022 1486 6023*2^3440241+1 1035620 L5517 2022 1487 943*2^3440196+1 1035606 L1448 2017 1488 6663*2^3439901+1 1035518 L5624 2022 1489 79485098^131072+1 1035507 L5130 2020 Generalized Fermat 1490 79428414^131072+1 1035466 L4793 2020 Generalized Fermat 1491 79383608^131072+1 1035434 L4387 2020 Generalized Fermat 1492 5745*2^3439450+1 1035382 L5178 2022 1493 79201682^131072+1 1035303 L5051 2020 Generalized Fermat 1494 5109*2^3439090+1 1035273 L5594 2022 1495 543*2^3438810+1 1035188 L3035 2017 1496 625*2^3438572+1 1035117 L1355 2017 Generalized Fermat 1497 3325*2^3438506+1 1035097 L5619 2022 1498 78910032^131072+1 1035093 L5051 2020 Generalized Fermat 1499 78880690^131072+1 1035072 L5159 2020 Generalized Fermat 1500 78851276^131072+1 1035051 L4928 2020 Generalized Fermat 1501 4775*2^3438217+1 1035011 L5618 2022 1502 78714954^131072+1 1034953 L5130 2020 Generalized Fermat 1503 6963*2^3437988+1 1034942 L5616 2022 1504 74*941^348034-1 1034913 L5410 2020 1505 7423*2^3437856+1 1034902 L5192 2022 1506 6701*2^3437801+1 1034886 L5615 2022 1507 5741*2^3437773+1 1034877 L5517 2022 1508 78439440^131072+1 1034753 L5051 2020 Generalized Fermat 1509 5601*2^3437259+1 1034722 L5612 2022 1510 7737*2^3437192+1 1034702 L5611 2022 1511 113*2^3437145+1 1034686 L4045 2015 1512 78240016^131072+1 1034608 L4245 2020 Generalized Fermat 1513 6387*2^3436719+1 1034560 L5613 2022 1514 78089172^131072+1 1034498 L4245 2020 Generalized Fermat 1515 2921*2^3436299+1 1034433 L5231 2022 1516 9739*2^3436242+1 1034416 L5178 2022 1517 77924964^131072+1 1034378 L5051 2020 Generalized Fermat 1518 77918854^131072+1 1034374 L4760 2020 Generalized Fermat 1519 1147*2^3435970+1 1034334 L3035 2017 1520 4589*2^3435707+1 1034255 L5174 2022 1521 7479*2^3435683+1 1034248 L5421 2022 1522 2863*2^3435616+1 1034227 L5197 2022 1523 77469882^131072+1 1034045 L4591 2020 Generalized Fermat 1524 9863*2^3434697+1 1033951 L5189 2022 1525 4065*2^3434623+1 1033929 L5197 2022 1526 77281404^131072+1 1033906 L4963 2020 Generalized Fermat 1527 9187*2^3434126+1 1033779 L5600 2022 1528 9531*2^3434103+1 1033772 L5601 2022 1529 1757*2^3433547+1 1033604 L5594 2022 1530 1421*2^3433099+1 1033469 L5237 2022 1531 3969*2^3433007+1 1033442 L5189 2022 1532 6557*2^3433003+1 1033441 L5261 2022 1533 7335*2^3432982+1 1033435 L5231 2022 1534 7125*2^3432836+1 1033391 L5594 2022 1535 2517*2^3432734+1 1033360 L5231 2022 1536 911*2^3432643+1 1033332 L1355 2017 1537 5413*2^3432626+1 1033328 L5231 2022 1538 76416048^131072+1 1033265 L4672 2020 Generalized Fermat 1539 3753*2^3432413+1 1033263 L5261 2022 1540 2691*2^3432191+1 1033196 L5585 2022 1541 3933*2^3432125+1 1033177 L5387 2022 1542 76026988^131072+1 1032975 L5094 2020 Generalized Fermat 1543 76018874^131072+1 1032969 L4774 2020 Generalized Fermat 1544 1435*2^3431284+1 1032923 L5587 2022 1545 75861530^131072+1 1032851 L5053 2020 Generalized Fermat 1546 6783*2^3430781+1 1032772 L5261 2022 1547 8079*2^3430683+1 1032743 L5585 2022 1548 75647276^131072+1 1032690 L4677 2020 Generalized Fermat 1549 75521414^131072+1 1032595 L4584 2020 Generalized Fermat 1550 6605*2^3430187+1 1032593 L5463 2022 1551 3761*2^3430057+1 1032554 L5582 2022 1552 6873*2^3429937+1 1032518 L5294 2022 1553 8067*2^3429891+1 1032504 L5581 2022 1554 3965*2^3429719+1 1032452 L5579 2022 1555 3577*2^3428812+1 1032179 L5401 2022 1556 8747*2^3428755+1 1032163 L5493 2022 1557 9147*2^3428638+1 1032127 L5493 2022 1558 3899*2^3428535+1 1032096 L5174 2022 1559 74833516^131072+1 1032074 L5102 2020 Generalized Fermat 1560 74817490^131072+1 1032062 L4591 2020 Generalized Fermat 1561 8891*2^3428303+1 1032026 L5532 2022 1562e 793181*20^793181+1 1031959 L5765 2023 Generalized Cullen 1563 2147*2^3427371+1 1031745 L5189 2022 1564 74396818^131072+1 1031741 L4791 2020 Generalized Fermat 1565 74381296^131072+1 1031729 L4550 2020 Generalized Fermat 1566 74363146^131072+1 1031715 L4898 2020 Generalized Fermat 1567 1127*2^3427219+1 1031699 L3035 2017 1568 74325990^131072+1 1031687 L5024 2020 Generalized Fermat 1569 3021*2^3427059+1 1031652 L5554 2022 1570 3255*2^3426983+1 1031629 L5231 2022 1571 1733*2^3426753+1 1031559 L5565 2022 1572 2339*2^3426599+1 1031513 L5237 2022 1573 4729*2^3426558+1 1031501 L5493 2022 1574 73839292^131072+1 1031313 L4550 2020 Generalized Fermat 1575 5445*2^3425839+1 1031285 L5237 2022 1576 159*2^3425766+1 1031261 L4045 2015 1577 73690464^131072+1 1031198 L4884 2020 Generalized Fermat 1578 3405*2^3425045+1 1031045 L5261 2022 1579 73404316^131072+1 1030976 L5011 2020 Generalized Fermat 1580 1695*2^3424517+1 1030886 L5387 2022 1581 4715*2^3424433+1 1030861 L5557 2022 1582 5525*2^3424423+1 1030858 L5387 2022 1583 8615*2^3424231+1 1030801 L5261 2022 1584 5805*2^3424200+1 1030791 L5237 2022 1585 73160610^131072+1 1030787 L4550 2020 Generalized Fermat 1586 73132228^131072+1 1030765 L4905 2020 Generalized Fermat 1587 73099962^131072+1 1030740 L5068 2020 Generalized Fermat 1588 2109*2^3423798-3027*2^988658+1 1030670 CH13 2023 Arithmetic progression (3,d=2109*2^3423797-3027*2^988658) 1589 2109*2^3423797+1 1030669 L5197 2022 1590 4929*2^3423494+1 1030579 L5554 2022 1591 2987*2^3422911+1 1030403 L5226 2022 1592 72602370^131072+1 1030351 L4201 2020 Generalized Fermat 1593 4843*2^3422644+1 1030323 L5553 2022 1594 5559*2^3422566+1 1030299 L5555 2022 1595 7583*2^3422501+1 1030280 L5421 2022 1596 1119*2^3422189+1 1030185 L1355 2017 1597 2895*2^3422031-143157*2^2144728+1 1030138 p423 2023 Arithmetic progression (3,d=2895*2^3422030-143157*2^2144728) 1598 2895*2^3422030+1 1030138 L5237 2022 1599 2835*2^3421697+1 1030037 L5387 2022 1600 3363*2^3421353+1 1029934 L5226 2022 1601 72070092^131072+1 1029932 L4201 2020 Generalized Fermat 1602 9147*2^3421264+1 1029908 L5237 2022 1603 9705*2^3420915+1 1029803 L5540 2022 1604 1005*2^3420846+1 1029781 L2714 2017 Divides GF(3420844,10) 1605 8919*2^3420758+1 1029755 L5226 2022 1606 71732900^131072+1 1029665 L5053 2020 Generalized Fermat 1607 71679108^131072+1 1029623 L5072 2020 Generalized Fermat 1608 5489*2^3420137+1 1029568 L5174 2022 1609 9957*2^3420098+1 1029557 L5237 2022 1610 93*10^1029523-1 1029525 L4789 2019 Near-repdigit 1611 71450224^131072+1 1029440 L5029 2020 Generalized Fermat 1612 7213*2^3419370+1 1029337 L5421 2022 1613 7293*2^3419264+1 1029305 L5192 2022 1614 975*2^3419230+1 1029294 L3545 2017 1615 4191*2^3419227+1 1029294 L5421 2022 1616 2393*2^3418921+1 1029202 L5197 2022 1617 999*2^3418885+1 1029190 L3035 2017 1618 2925*2^3418543+1 1029088 L5174 2022 1619 70960658^131072+1 1029049 L5039 2020 Generalized Fermat 1620 70948704^131072+1 1029039 L4660 2020 Generalized Fermat 1621 70934282^131072+1 1029028 L5067 2020 Generalized Fermat 1622 7383*2^3418297+1 1029014 L5189 2022 1623 70893680^131072+1 1028995 L5063 2020 Generalized Fermat 1624 907*2^3417890+1 1028891 L3035 2017 1625 5071*2^3417884+1 1028890 L5237 2022 1626 3473*2^3417741+1 1028847 L5541 2022 1627 191249*2^3417696-1 1028835 L1949 2010 1628 70658696^131072+1 1028806 L5051 2020 Generalized Fermat 1629 3299*2^3417329+1 1028723 L5421 2022 1630 6947*2^3416979+1 1028618 L5540 2022 1631 70421038^131072+1 1028615 L4984 2020 Generalized Fermat 1632 8727*2^3416652+1 1028519 L5226 2022 1633 8789*2^3416543+1 1028486 L5197 2022 1634 70050828^131072+1 1028315 L5021 2020 Generalized Fermat 1635 7917*2^3415947+1 1028307 L5537 2022 1636 70022042^131072+1 1028291 L4201 2020 Generalized Fermat 1637 2055*2^3415873+1 1028284 L5535 2022 1638 4731*2^3415712+1 1028236 L5192 2022 1639 2219*2^3415687+1 1028228 L5178 2022 1640 69915032^131072+1 1028204 L4591 2020 Generalized Fermat 1641 5877*2^3415419+1 1028148 L5532 2022 1642 3551*2^3415275+1 1028104 L5231 2022 1643 69742382^131072+1 1028063 L5053 2020 Generalized Fermat 1644 2313*2^3415046+1 1028035 L5226 2022 1645 69689592^131072+1 1028020 L4387 2020 Generalized Fermat 1646 7637*2^3414875+1 1027984 L5507 2022 1647 2141*2^3414821+1 1027967 L5226 2022 1648 69622572^131072+1 1027965 L4909 2020 Generalized Fermat 1649 3667*2^3414686+1 1027927 L5226 2022 1650 69565722^131072+1 1027919 L4387 2020 Generalized Fermat 1651 6159*2^3414623+1 1027908 L5226 2022 1652 69534788^131072+1 1027894 L5029 2020 Generalized Fermat 1653 4577*2^3413539+1 1027582 L5387 2022 1654 5137*2^3413524+1 1027577 L5261 2022 1655 8937*2^3413364+1 1027529 L5527 2022 1656 8829*2^3413339+1 1027522 L5531 2022 1657 7617*2^3413315+1 1027515 L5197 2022 1658 68999820^131072+1 1027454 L5044 2020 Generalized Fermat 1659 3141*2^3413112+1 1027453 L5463 2022 1660 8831*2^3412931+1 1027399 L5310 2022 1661 68924112^131072+1 1027391 L4745 2020 Generalized Fermat 1662 68918852^131072+1 1027387 L5021 2020 Generalized Fermat 1663 5421*2^3412877+1 1027383 L5310 2022 1664 9187*2^3412700+1 1027330 L5337 2022 1665 68811158^131072+1 1027298 L4245 2020 Generalized Fermat 1666 8243*2^3412577+1 1027292 L5524 2022 1667 1751*2^3412565+1 1027288 L5523 2022 1668 9585*2^3412318+1 1027215 L5197 2022 1669 9647*2^3412247+1 1027193 L5178 2022 1670 3207*2^3412108+1 1027151 L5189 2022 1671 479*2^3411975+1 1027110 L2873 2016 1672 245*2^3411973+1 1027109 L1935 2015 1673 177*2^3411847+1 1027071 L4031 2015 1674 68536972^131072+1 1027071 L5027 2020 Generalized Fermat 1675 9963*2^3411566+1 1026988 L5237 2022 1676 68372810^131072+1 1026934 L4956 2020 Generalized Fermat 1677 9785*2^3411223+1 1026885 L5189 2022 1678 5401*2^3411136+1 1026858 L5261 2022 1679 68275006^131072+1 1026853 L4963 2020 Generalized Fermat 1680 9431*2^3411105+1 1026849 L5237 2022 1681 8227*2^3410878+1 1026781 L5316 2022 1682 4735*2^3410724+1 1026734 L5226 2022 1683 9515*2^3410707+1 1026730 L5237 2022 1684 6783*2^3410690+1 1026724 L5434 2022 1685 8773*2^3410558+1 1026685 L5261 2022 1686 4629*2^3410321+1 1026613 L5517 2022 1687 67894288^131072+1 1026535 L5025 2020 Generalized Fermat 1688 113*2^3409934-1 1026495 L2484 2014 1689 5721*2^3409839+1 1026468 L5226 2022 1690 67725850^131072+1 1026393 L5029 2020 Generalized Fermat 1691 6069*2^3409493+1 1026364 L5237 2022 1692 1981*910^346850+1 1026347 L1141 2021 1693 5317*2^3409236+1 1026287 L5471 2022 1694 7511*2^3408985+1 1026211 L5514 2022 1695 7851*2^3408909+1 1026188 L5176 2022 1696 67371416^131072+1 1026094 L4550 2020 Generalized Fermat 1697 6027*2^3408444+1 1026048 L5239 2022 1698 59*2^3408416-1 1026038 L426 2010 1699 2153*2^3408333+1 1026014 L5237 2022 1700 9831*2^3408056+1 1025932 L5233 2022 1701 3615*2^3408035+1 1025925 L5217 2022 1702 6343*2^3407950+1 1025899 L5226 2022 1703 8611*2^3407516+1 1025769 L5509 2022 1704 66982940^131072+1 1025765 L4249 2020 Generalized Fermat 1705 7111*2^3407452+1 1025750 L5508 2022 1706 66901180^131072+1 1025696 L5018 2020 Generalized Fermat 1707 6945*2^3407256+1 1025691 L5507 2022 1708 6465*2^3407229+1 1025682 L5301 2022 1709 1873*2^3407156+1 1025660 L5440 2022 1710 7133*2^3406377+1 1025426 L5279 2022 1711 7063*2^3406122+1 1025349 L5178 2022 1712 3105*2^3405800+1 1025252 L5502 2022 1713 953*2^3405729+1 1025230 L3035 2017 1714 66272848^131072+1 1025159 L5013 2020 Generalized Fermat 1715 66131722^131072+1 1025037 L4530 2020 Generalized Fermat 1716 373*2^3404702+1 1024921 L3924 2016 1717 7221*2^3404507+1 1024863 L5231 2022 1718 6641*2^3404259+1 1024788 L5501 2022 1719 9225*2^3404209+1 1024773 L5250 2022 1720 65791182^131072+1 1024743 L4623 2019 Generalized Fermat 1721 833*2^3403765+1 1024639 L3035 2017 1722 65569854^131072+1 1024552 L4210 2019 Generalized Fermat 1723 2601*2^3403459+1 1024547 L5350 2022 1724 8835*2^3403266+1 1024490 L5161 2022 1725 7755*2^3403010+1 1024412 L5161 2022 1726 3123*2^3402834+1 1024359 L5260 2022 1727 65305572^131072+1 1024322 L5001 2019 Generalized Fermat 1728 65200798^131072+1 1024230 L4999 2019 Generalized Fermat 1729 1417*2^3402246+1 1024182 L5497 2022 1730 5279*2^3402241+1 1024181 L5250 2022 1731 6651*2^3402137+1 1024150 L5476 2022 1732 1779*2^3401715+1 1024022 L5493 2022 1733 64911056^131072+1 1023977 L4870 2019 Generalized Fermat 1734 8397*2^3401502+1 1023959 L5476 2022 1735 4057*2^3401472+1 1023949 L5492 2022 1736 64791668^131072+1 1023872 L4905 2019 Generalized Fermat 1737 4095*2^3401174+1 1023860 L5418 2022 1738 5149*2^3400970+1 1023798 L5176 2022 1739 4665*2^3400922+1 1023784 L5308 2022 1740 24*414^391179+1 1023717 L4273 2016 1741 64568930^131072+1 1023676 L4977 2019 Generalized Fermat 1742 64506894^131072+1 1023621 L4977 2019 Generalized Fermat 1743 1725*2^3400371+1 1023617 L5197 2022 1744 64476916^131072+1 1023595 L4997 2019 Generalized Fermat 1745 9399*2^3400243+1 1023580 L5488 2022 1746 1241*2^3400127+1 1023544 L5279 2022 1747 1263*2^3399876+1 1023468 L5174 2022 1748 1167*2^3399748+1 1023430 L3545 2017 1749 64024604^131072+1 1023194 L4591 2019 Generalized Fermat 1750 7679*2^3398569+1 1023076 L5295 2022 1751 6447*2^3398499+1 1023054 L5302 2022 1752 63823568^131072+1 1023015 L4585 2019 Generalized Fermat 1753 2785*2^3398332+1 1023004 L5250 2022 1754 611*2^3398273+1 1022985 L3035 2017 1755 2145*2^3398034+1 1022914 L5302 2022 1756 3385*2^3397254+1 1022679 L5161 2022 1757 4*3^2143374+1 1022650 L4965 2020 Generalized Fermat 1758 4463*2^3396657+1 1022500 L5476 2022 1759 2889*2^3396450+1 1022437 L5178 2022 1760 8523*2^3396448+1 1022437 L5231 2022 1761 63168480^131072+1 1022428 L4861 2019 Generalized Fermat 1762 63165756^131072+1 1022425 L4987 2019 Generalized Fermat 1763 3349*2^3396326+1 1022400 L5480 2022 1764 63112418^131072+1 1022377 L4201 2019 Generalized Fermat 1765 4477*2^3395786+1 1022238 L5161 2022 1766 3853*2^3395762+1 1022230 L5302 2022 1767 2693*2^3395725+1 1022219 L5284 2022 1768 8201*2^3395673+1 1022204 L5178 2022 1769 255*2^3395661+1 1022199 L3898 2014 1770 1049*2^3395647+1 1022195 L3035 2017 1771 9027*2^3395623+1 1022189 L5263 2022 1772 2523*2^3395549+1 1022166 L5472 2022 1773 3199*2^3395402+1 1022122 L5264 2022 1774 342924651*2^3394939-1 1021988 L4166 2017 1775 3825*2^3394947+1 1021985 L5471 2022 1776 1895*2^3394731+1 1021920 L5174 2022 1777 62276102^131072+1 1021618 L4715 2019 Generalized Fermat 1778 555*2^3393389+1 1021515 L2549 2017 1779 1865*2^3393387+1 1021515 L5237 2022 1780 4911*2^3393373+1 1021511 L5231 2022 1781 62146946^131072+1 1021500 L4720 2019 Generalized Fermat 1782 5229*2^3392587+1 1021275 L5463 2022 1783 61837354^131072+1 1021215 L4656 2019 Generalized Fermat 1784 609*2^3392301+1 1021188 L3035 2017 1785 9787*2^3392236+1 1021169 L5350 2022 1786 303*2^3391977+1 1021090 L2602 2016 1787 805*2^3391818+1 1021042 L4609 2017 1788 6475*2^3391496+1 1020946 L5174 2022 1789 67*2^3391385-1 1020911 L1959 2014 1790 61267078^131072+1 1020688 L4923 2019 Generalized Fermat 1791 4639*2^3390634+1 1020687 L5189 2022 1792 5265*2^3390581+1 1020671 L5456 2022 1793 663*2^3390469+1 1020636 L4316 2017 1794 6945*2^3390340+1 1020598 L5174 2022 1795 5871*2^3390268+1 1020577 L5231 2022 1796 7443*2^3390141+1 1020539 L5226 2022 1797 5383*2^3389924+1 1020473 L5350 2021 1798 61030988^131072+1 1020468 L4898 2019 Generalized Fermat 1799 9627*2^3389331+1 1020295 L5231 2021 1800 60642326^131072+1 1020104 L4591 2019 Generalized Fermat 1801 8253*2^3388624+1 1020082 L5226 2021 1802 3329*2^3388472-1 1020036 L4841 2020 1803 4695*2^3388393+1 1020012 L5237 2021 1804 60540024^131072+1 1020008 L4591 2019 Generalized Fermat 1805 7177*2^3388144+1 1019937 L5174 2021 1806 60455792^131072+1 1019929 L4760 2019 Generalized Fermat 1807 9611*2^3388059+1 1019912 L5435 2021 1808 1833*2^3387760+1 1019821 L5226 2021 1809 9003*2^3387528+1 1019752 L5189 2021 1810 3161*2^3387141+1 1019635 L5226 2021 1811 7585*2^3387110+1 1019626 L5189 2021 1812 60133106^131072+1 1019624 L4942 2019 Generalized Fermat 1813 453*2^3387048+1 1019606 L2602 2016 1814 5177*2^3386919+1 1019568 L5226 2021 1815 8739*2^3386813+1 1019537 L5226 2021 1816 2875*2^3386638+1 1019484 L5226 2021 1817 7197*2^3386526+1 1019450 L5178 2021 1818 1605*2^3386229+1 1019360 L5226 2021 1819 8615*2^3386181+1 1019346 L5442 2021 1820 3765*2^3386141+1 1019334 L5174 2021 1821 5379*2^3385806+1 1019233 L5237 2021 1822 59720358^131072+1 1019232 L4656 2019 Generalized Fermat 1823 59692546^131072+1 1019206 L4747 2019 Generalized Fermat 1824 59515830^131072+1 1019037 L4737 2019 Generalized Fermat 1825 173198*5^1457792-1 1018959 L3720 2013 1826 59405420^131072+1 1018931 L4645 2019 Generalized Fermat 1827 2109*2^3384733+1 1018910 L5261 2021 1828 7067*2^3384667+1 1018891 L5439 2021 1829 59362002^131072+1 1018890 L4249 2019 Generalized Fermat 1830 59305348^131072+1 1018835 L4932 2019 Generalized Fermat 1831 2077*2^3384472+1 1018831 L5237 2021 1832 59210784^131072+1 1018745 L4926 2019 Generalized Fermat 1833 59161754^131072+1 1018697 L4928 2019 Generalized Fermat 1834 9165*2^3383917+1 1018665 L5435 2021 1835 5579*2^3383209+1 1018452 L5434 2021 1836 8241*2^3383131+1 1018428 L5387 2021 1837 7409*2^3382869+1 1018349 L5161 2021 1838 4883*2^3382813+1 1018332 L5161 2021 1839 9783*2^3382792+1 1018326 L5189 2021 1840 58589880^131072+1 1018145 L4923 2019 Generalized Fermat 1841 58523466^131072+1 1018080 L4802 2019 Generalized Fermat 1842 8877*2^3381936+1 1018069 L5429 2021 1843 58447816^131072+1 1018006 L4591 2019 Generalized Fermat 1844 58447642^131072+1 1018006 L4591 2019 Generalized Fermat 1845 6675*2^3381688+1 1017994 L5197 2021 1846 2445*2^3381129+1 1017825 L5231 2021 1847 58247118^131072+1 1017811 L4309 2019 Generalized Fermat 1848 3381*2^3380585+1 1017662 L5237 2021 1849 7899*2^3380459+1 1017624 L5421 2021 1850 5945*2^3379933+1 1017465 L5418 2021 1851 1425*2^3379921+1 1017461 L1134 2020 1852 4975*2^3379420+1 1017311 L5161 2021 1853 57704312^131072+1 1017278 L4591 2019 Generalized Fermat 1854 57694224^131072+1 1017268 L4656 2019 Generalized Fermat 1855 57594734^131072+1 1017169 L4656 2019 Generalized Fermat 1856 9065*2^3378851+1 1017140 L5414 2021 1857 2369*2^3378761+1 1017112 L5197 2021 1858 57438404^131072+1 1017015 L4745 2019 Generalized Fermat 1859 621*2^3378148+1 1016927 L3035 2017 1860 7035*2^3378141+1 1016926 L5408 2021 1861 2067*2^3378115+1 1016918 L5405 2021 1862 1093*2^3378000+1 1016883 L4583 2017 1863 9577*2^3377612+1 1016767 L5406 2021 1864 861*2^3377601+1 1016763 L4582 2017 1865 5811*2^3377016+1 1016587 L5261 2021 1866 2285*2^3376911+1 1016555 L5261 2021 1867 4199*2^3376903+1 1016553 L5174 2021 1868 6405*2^3376890+1 1016549 L5269 2021 1869 1783*2^3376810+1 1016525 L5261 2021 1870 5401*2^3376768+1 1016513 L5174 2021 1871 56917336^131072+1 1016496 L4729 2019 Generalized Fermat 1872 2941*2^3376536+1 1016443 L5174 2021 1873 1841*2^3376379+1 1016395 L5401 2021 1874 6731*2^3376133+1 1016322 L5261 2021 1875 56735576^131072+1 1016314 L4760 2019 Generalized Fermat 1876 8121*2^3375933+1 1016262 L5356 2021 1877 5505*2^3375777+1 1016214 L5174 2021 1878 56584816^131072+1 1016162 L4289 2019 Generalized Fermat 1879 3207*2^3375314+1 1016075 L5237 2021 1880 56459558^131072+1 1016036 L4892 2019 Generalized Fermat 1881 5307*2^3374939+1 1015962 L5392 2021 1882 56383242^131072+1 1015959 L4889 2019 Generalized Fermat 1883 56307420^131072+1 1015883 L4843 2019 Generalized Fermat 1884 208003!-1 1015843 p394 2016 Factorial 1885 6219*2^3374198+1 1015739 L5393 2021 1886 3777*2^3374072+1 1015701 L5261 2021 1887 9347*2^3374055+1 1015696 L5387 2021 1888 1461*2^3373383+1 1015493 L5384 2021 1889 6395*2^3373135+1 1015419 L5382 2021 1890 7869*2^3373021+1 1015385 L5381 2021 1891 55645700^131072+1 1015210 L4745 2019 Generalized Fermat 1892 4905*2^3372216+1 1015142 L5261 2021 1893 55579418^131072+1 1015142 L4745 2019 Generalized Fermat 1894 2839*2^3372034+1 1015087 L5174 2021 1895 7347*2^3371803+1 1015018 L5217 2021 1896 9799*2^3371378+1 1014890 L5261 2021 1897 4329*2^3371201+1 1014837 L5197 2021 1898 3657*2^3371183+1 1014831 L5360 2021 1899 55268442^131072+1 1014822 L4525 2019 Generalized Fermat 1900 179*2^3371145+1 1014819 L3763 2014 1901 5155*2^3371016+1 1014781 L5237 2021 1902 7575*2^3371010+1 1014780 L5237 2021 1903 55184170^131072+1 1014736 L4871 2018 Generalized Fermat 1904 9195*2^3370798+1 1014716 L5178 2021 1905 1749*2^3370786+1 1014711 L5362 2021 1906 8421*2^3370599+1 1014656 L5174 2021 1907 55015050^131072+1 1014561 L4205 2018 Generalized Fermat 1908 4357*2^3369572+1 1014346 L5231 2021 1909 6073*2^3369544+1 1014338 L5358 2021 1910 839*2^3369383+1 1014289 L2891 2017 1911 65*2^3369359+1 1014280 L5236 2021 1912 8023*2^3369228+1 1014243 L5356 2021 1913 677*2^3369115+1 1014208 L2103 2017 1914 1437*2^3369083+1 1014199 L5282 2021 1915 9509*2^3368705+1 1014086 L5237 2021 1916 54548788^131072+1 1014076 L4726 2018 Generalized Fermat 1917 4851*2^3368668+1 1014074 L5307 2021 1918 7221*2^3368448+1 1014008 L5353 2021 1919 5549*2^3368437+1 1014005 L5217 2021 1920 715*2^3368210+1 1013936 L4527 2017 1921 617*2^3368119+1 1013908 L4552 2017 1922 54361742^131072+1 1013881 L4210 2018 Generalized Fermat 1923 1847*2^3367999+1 1013872 L5352 2021 1924 54334044^131072+1 1013852 L4745 2018 Generalized Fermat 1925 6497*2^3367743+1 1013796 L5285 2021 1926 2533*2^3367666+1 1013772 L5326 2021 1927 6001*2^3367552+1 1013738 L5350 2021 1928 54212352^131072+1 1013724 L4307 2018 Generalized Fermat 1929 54206254^131072+1 1013718 L4249 2018 Generalized Fermat 1930 777*2^3367372+1 1013683 L4408 2017 1931 9609*2^3367351+1 1013678 L5285 2021 1932 54161106^131072+1 1013670 L4307 2018 Generalized Fermat 1933 2529*2^3367317+1 1013667 L5237 2021 1934 5941*2^3366960+1 1013560 L5189 2021 1935 5845*2^3366956+1 1013559 L5197 2021 1936 54032538^131072+1 1013535 L4591 2018 Generalized Fermat 1937 9853*2^3366608+1 1013454 L5178 2021 1938 61*2^3366033-1 1013279 L4405 2017 1939 7665*2^3365896+1 1013240 L5345 2021 1940 8557*2^3365648+1 1013165 L5346 2021 1941 369*2^3365614+1 1013154 L4364 2016 1942 53659976^131072+1 1013141 L4823 2018 Generalized Fermat 1943 8201*2^3365283+1 1013056 L5345 2021 1944 9885*2^3365151+1 1013016 L5344 2021 1945 5173*2^3365096+1 1012999 L5285 2021 1946 8523*2^3364918+1 1012946 L5237 2021 1947 3985*2^3364776+1 1012903 L5178 2021 1948 9711*2^3364452+1 1012805 L5192 2021 1949 7003*2^3364172+1 1012721 L5217 2021 1950 6703*2^3364088+1 1012696 L5337 2021 1951 7187*2^3364011+1 1012673 L5217 2021 1952 53161266^131072+1 1012610 L4307 2018 Generalized Fermat 1953 53078434^131072+1 1012521 L4835 2018 Generalized Fermat 1954 2345*2^3363157+1 1012415 L5336 2021 1955 6527*2^3363135+1 1012409 L5167 2021 1956 9387*2^3363088+1 1012395 L5161 2021 1957 8989*2^3362986+1 1012364 L5161 2021 1958 533*2^3362857+1 1012324 L3171 2017 1959 619*2^3362814+1 1012311 L4527 2017 1960 2289*2^3362723+1 1012284 L5161 2021 1961 7529*2^3362565+1 1012237 L5161 2021 1962 7377*2^3362366+1 1012177 L5161 2021 1963 4509*2^3362311+1 1012161 L5324 2021 1964 7021*2^3362208+1 1012130 L5178 2021 1965 52712138^131072+1 1012127 L4819 2018 Generalized Fermat 1966 104*873^344135-1 1012108 L4700 2018 1967 4953*2^3362054+1 1012083 L5323 2021 1968 8575*2^3361798+1 1012006 L5237 2021 1969 2139*2^3361706+1 1011978 L5174 2021 1970 6939*2^3361203+1 1011827 L5217 2021 1971 52412612^131072+1 1011802 L4289 2018 Generalized Fermat 1972 3^2120580-3^623816-1 1011774 CH9 2019 1973 8185*2^3360896+1 1011735 L5189 2021 1974 2389*2^3360882+1 1011730 L5317 2021 1975 2787*2^3360631+1 1011655 L5197 2021 1976 6619*2^3360606+1 1011648 L5316 2021 1977 2755*2^3360526+1 1011623 L5174 2021 1978 1445*2^3360099+1 1011494 L5261 2021 1979c 2846*67^553905-1 1011476 L4955 2023 1980 8757*2^3359788+1 1011401 L5197 2021 1981 52043532^131072+1 1011400 L4810 2018 Generalized Fermat 1982 5085*2^3359696+1 1011373 L5261 2021 1983 51954384^131072+1 1011303 L4720 2018 Generalized Fermat 1984 6459*2^3359457+1 1011302 L5310 2021 1985 51872628^131072+1 1011213 L4591 2018 Generalized Fermat 1986 6115*2^3358998+1 1011163 L5309 2021 1987 7605*2^3358929+1 1011143 L5308 2021 1988 2315*2^3358899+1 1011133 L5197 2021 1989 6603*2^3358525+1 1011021 L5307 2021 1990 51580416^131072+1 1010891 L4765 2018 Generalized Fermat 1991 51570250^131072+1 1010880 L4591 2018 Generalized Fermat 1992 51567684^131072+1 1010877 L4800 2018 Generalized Fermat 1993 5893*2^3357490+1 1010709 L5285 2021 1994 6947*2^3357075+1 1010585 L5302 2021 1995 4621*2^3357068+1 1010582 L5301 2021 1996 51269192^131072+1 1010547 L4795 2018 Generalized Fermat 1997 1479*2^3356275+1 1010343 L5178 2021 1998 3645*2^3356232+1 1010331 L5296 2021 1999 1259*2^3356215+1 1010325 L5298 2021 2000 2075*2^3356057+1 1010278 L5174 2021 2001 4281*2^3356051+1 1010276 L5295 2021 2002 1275*2^3356045+1 1010274 L5294 2021 2003 50963598^131072+1 1010206 L4726 2018 Generalized Fermat 2004 4365*2^3355770+1 1010192 L5261 2021 2005 50844724^131072+1 1010074 L4656 2018 Generalized Fermat 2006 2183*2^3355297+1 1010049 L5266 2021 2007 3087*2^3355000+1 1009960 L5226 2021 2008 8673*2^3354760+1 1009888 L5233 2021 2009 50495632^131072+1 1009681 L4591 2018 Generalized Fermat 2010 3015*2^3353943+1 1009641 L5290 2021 2011 6819*2^3353877+1 1009622 L5174 2021 2012 9*10^1009567-1 1009568 L3735 2016 Near-repdigit 2013 6393*2^3353366+1 1009468 L5287 2021 2014 3573*2^3353273+1 1009440 L5161 2021 2015 4047*2^3353222+1 1009425 L5286 2021 2016 1473*2^3353114+1 1009392 L5161 2021 2017 1183*2^3353058+1 1009375 L3824 2017 2018 50217306^131072+1 1009367 L4720 2018 Generalized Fermat 2019 81*2^3352924+1 1009333 L1728 2012 Generalized Fermat 2020 50110436^131072+1 1009245 L4591 2018 Generalized Fermat 2021 50055102^131072+1 1009183 L4309 2018 Generalized Fermat 2022 7123*2^3352180+1 1009111 L5161 2021 2023 2757*2^3352180+1 1009111 L5285 2021 2024 9307*2^3352014+1 1009061 L5284 2021 2025 2217*2^3351732+1 1008976 L5283 2021 2026 543*2^3351686+1 1008961 L4198 2017 2027 4419*2^3351666+1 1008956 L5279 2021 2028 49817700^131072+1 1008912 L4760 2018 Generalized Fermat 2029 3059*2^3351379+1 1008870 L5278 2021 2030 7789*2^3351046+1 1008770 L5276 2021 2031 9501*2^3350668+1 1008656 L5272 2021 2032 49530004^131072+1 1008582 L4591 2018 Generalized Fermat 2033 9691*2^3349952+1 1008441 L5242 2021 2034 49397682^131072+1 1008430 L4764 2018 Generalized Fermat 2035 3209*2^3349719+1 1008370 L5269 2021 2036 49331672^131072+1 1008354 L4763 2018 Generalized Fermat 2037 393*2^3349525+1 1008311 L3101 2016 2038 49243622^131072+1 1008252 L4741 2018 Generalized Fermat 2039 5487*2^3349303+1 1008245 L5266 2021 2040 49225986^131072+1 1008232 L4757 2018 Generalized Fermat 2041 2511*2^3349104+1 1008185 L5264 2021 2042 1005*2^3349046-1 1008167 L4518 2021 2043 7659*2^3348894+1 1008122 L5263 2021 2044 9703*2^3348872+1 1008115 L5262 2021 2045 49090656^131072+1 1008075 L4752 2018 Generalized Fermat 2046 7935*2^3348578+1 1008027 L5161 2021 2047 49038514^131072+1 1008015 L4743 2018 Generalized Fermat 2048 7821*2^3348400+1 1007973 L5260 2021 2049 7911*2^3347532+1 1007712 L5250 2021 2050 8295*2^3347031+1 1007561 L5249 2021 2051 48643706^131072+1 1007554 L4691 2018 Generalized Fermat 2052 4029*2^3346729+1 1007470 L5239 2021 2053 9007*2^3346716+1 1007466 L5161 2021 2054 8865*2^3346499+1 1007401 L5238 2021 2055 6171*2^3346480+1 1007395 L5174 2021 2056 6815*2^3346045+1 1007264 L5235 2021 2057 5*326^400785+1 1007261 L4786 2019 2058 5951*2^3345977+1 1007244 L5233 2021 2059 48370248^131072+1 1007234 L4701 2018 Generalized Fermat 2060 1257*2^3345843+1 1007203 L5192 2021 2061 4701*2^3345815+1 1007195 L5192 2021 2062 48273828^131072+1 1007120 L4456 2018 Generalized Fermat 2063 7545*2^3345355+1 1007057 L5231 2021 2064 5559*2^3344826+1 1006897 L5223 2021 2065 6823*2^3344692+1 1006857 L5223 2021 2066 4839*2^3344453+1 1006785 L5188 2021 2067 7527*2^3344332+1 1006749 L5220 2021 2068 7555*2^3344240+1 1006721 L5188 2021 2069 6265*2^3344080+1 1006673 L5197 2021 2070 1299*2^3343943+1 1006631 L5217 2021 2071 2815*2^3343754+1 1006574 L5216 2021 2072 5349*2^3343734+1 1006568 L5174 2021 2073 2863*2^3342920+1 1006323 L5179 2020 2074 7387*2^3342848+1 1006302 L5208 2020 2075 9731*2^3342447+1 1006181 L5203 2020 2076 7725*2^3341708+1 1005959 L5195 2020 2077 7703*2^3341625+1 1005934 L5178 2020 2078 7047*2^3341482+1 1005891 L5194 2020 2079 4839*2^3341309+1 1005838 L5192 2020 2080 47179704^131072+1 1005815 L4673 2017 Generalized Fermat 2081 47090246^131072+1 1005707 L4654 2017 Generalized Fermat 2082 8989*2^3340866+1 1005705 L5189 2020 2083 6631*2^3340808+1 1005688 L5188 2020 2084 1341*2^3340681+1 1005649 L5188 2020 2085 733*2^3340464+1 1005583 L3035 2016 2086 2636*138^469911+1 1005557 L5410 2021 2087 3679815*2^3340001+1 1005448 L4922 2019 2088 57*2^3339932-1 1005422 L3519 2015 2089 46776558^131072+1 1005326 L4659 2017 Generalized Fermat 2090 46736070^131072+1 1005277 L4245 2017 Generalized Fermat 2091 46730280^131072+1 1005270 L4656 2017 Generalized Fermat 2092 3651*2^3339341+1 1005246 L5177 2020 2093 3853*2^3339296+1 1005232 L5178 2020 2094 8015*2^3339267+1 1005224 L5176 2020 2095 3027*2^3339182+1 1005198 L5174 2020 2096 9517*2^3339002+1 1005144 L5172 2020 2097 4003*2^3338588+1 1005019 L3035 2020 2098 6841*2^3338336+1 1004944 L1474 2020 2099 2189*2^3338209+1 1004905 L5031 2020 2100 46413358^131072+1 1004883 L4626 2017 Generalized Fermat 2101 46385310^131072+1 1004848 L4622 2017 Generalized Fermat 2102 46371508^131072+1 1004831 L4620 2017 Generalized Fermat 2103 2957*2^3337667+1 1004742 L5144 2020 2104 1515*2^3337389+1 1004658 L1474 2020 2105 7933*2^3337270+1 1004623 L4666 2020 2106 1251*2^3337116+1 1004576 L4893 2020 2107 651*2^3337101+1 1004571 L3260 2016 2108 46077492^131072+1 1004469 L4595 2017 Generalized Fermat 2109 8397*2^3336654+1 1004437 L5125 2020 2110 8145*2^3336474+1 1004383 L5110 2020 2111 1087*2^3336385-1 1004355 L1828 2012 2112 5325*2^3336120+1 1004276 L2125 2020 2113 849*2^3335669+1 1004140 L3035 2016 2114 8913*2^3335216+1 1004005 L5079 2020 2115 7725*2^3335213+1 1004004 L3035 2020 2116 611*2^3334875+1 1003901 L3813 2016 2117 45570624^131072+1 1003840 L4295 2017 Generalized Fermat 2118 403*2^3334410+1 1003761 L4293 2016 2119 5491*2^3334392+1 1003756 L4815 2020 2120 6035*2^3334341+1 1003741 L2125 2020 2121 1725*2^3334341+1 1003740 L2125 2020 2122 4001*2^3334031+1 1003647 L1203 2020 2123 2315*2^3333969+1 1003629 L2125 2020 2124 6219*2^3333810+1 1003581 L4582 2020 2125 8063*2^3333721+1 1003554 L1823 2020 2126 9051*2^3333677+1 1003541 L3924 2020 2127 45315256^131072+1 1003520 L4562 2017 Generalized Fermat 2128 4091*2^3333153+1 1003383 L1474 2020 2129 9949*2^3332750+1 1003262 L5090 2020 2130 3509*2^3332649+1 1003231 L5085 2020 2131 3781*2^3332436+1 1003167 L1823 2020 2132 4425*2^3332394+1 1003155 L3431 2020 2133 6459*2^3332086+1 1003062 L2629 2020 2134 44919410^131072+1 1003020 L4295 2017 Generalized Fermat 2135 5257*2^3331758+1 1002963 L1188 2020 2136 2939*2^3331393+1 1002853 L1823 2020 2137 6959*2^3331365+1 1002845 L1675 2020 2138 8815*2^3330748+1 1002660 L3329 2020 2139 4303*2^3330652+1 1002630 L4730 2020 2140 8595*2^3330649+1 1002630 L4723 2020 2141 673*2^3330436+1 1002564 L3035 2016 2142 8163*2^3330042+1 1002447 L3278 2020 2143 44438760^131072+1 1002408 L4505 2016 Generalized Fermat 2144 193*2^3329782+1 1002367 L3460 2014 Divides Fermat F(3329780) 2145 44330870^131072+1 1002270 L4501 2016 Generalized Fermat 2146 2829*2^3329061+1 1002151 L4343 2020 2147 5775*2^3329034+1 1002143 L1188 2020 2148 7101*2^3328905+1 1002105 L4568 2020 2149 7667*2^3328807+1 1002075 L4087 2020 2150 129*2^3328805+1 1002073 L3859 2014 2151 7261*2^3328740+1 1002055 L2914 2020 2152 4395*2^3328588+1 1002009 L3924 2020 2153 44085096^131072+1 1001953 L4482 2016 Generalized Fermat 2154 143183*2^3328297+1 1001923 L4504 2017 2155 44049878^131072+1 1001908 L4466 2016 Generalized Fermat 2156 9681*2^3327987+1 1001828 L1204 2020 2157 2945*2^3327987+1 1001828 L2158 2020 2158 5085*2^3327789+1 1001769 L1823 2020 2159 8319*2^3327650+1 1001727 L1204 2020 2160 4581*2^3327644+1 1001725 L2142 2020 2161 655*2^3327518+1 1001686 L4490 2016 2162 8863*2^3327406+1 1001653 L1675 2020 2163 659*2^3327371+1 1001642 L3502 2016 2164 3411*2^3327343+1 1001634 L1675 2020 2165 4987*2^3327294+1 1001619 L3924 2020 2166 821*2^3327003+1 1001531 L3035 2016 2167 2435*2^3326969+1 1001521 L3035 2020 2168 1931*2^3326850-1 1001485 L4113 2022 2169 2277*2^3326794+1 1001469 L5014 2020 2170 6779*2^3326639+1 1001422 L3924 2020 2171 6195*2^3325993+1 1001228 L1474 2019 2172 555*2^3325925+1 1001206 L4414 2016 2173 9041*2^3325643+1 1001123 L3924 2019 2174 1965*2^3325639-1 1001121 L4113 2022 2175 1993*2^3325302+1 1001019 L3662 2019 2176 6179*2^3325027+1 1000937 L3048 2019 2177 4485*2^3324900+1 1000899 L1355 2019 2178 3559*2^3324650+1 1000823 L3035 2019 2179 43165206^131072+1 1000753 L4309 2016 Generalized Fermat 2180 43163894^131072+1 1000751 L4334 2016 Generalized Fermat 2181 6927*2^3324387+1 1000745 L3091 2019 2182 9575*2^3324287+1 1000715 L3824 2019 2183 1797*2^3324259+1 1000705 L3895 2019 2184 4483*2^3324048+1 1000642 L3035 2019 2185 791*2^3323995+1 1000626 L3035 2016 2186 6987*2^3323926+1 1000606 L4973 2019 2187 3937*2^3323886+1 1000593 L3035 2019 2188 2121*2^3323852+1 1000583 L1823 2019 2189 1571*2^3323493+1 1000475 L3035 2019 2190 2319*2^3323402+1 1000448 L4699 2019 2191 2829*2^3323341+1 1000429 L4754 2019 2192 4335*2^3323323+1 1000424 L1823 2019 2193 8485*2^3322938+1 1000308 L4858 2019 2194 6505*2^3322916+1 1000302 L4858 2019 2195 597*2^3322871+1 1000287 L3035 2016 2196 9485*2^3322811+1 1000270 L2603 2019 2197 8619*2^3322774+1 1000259 L3035 2019 2198 387*2^3322763+1 1000254 L1455 2016 2199 1965*2^3322579-1 1000200 L4113 2022 2200 42654182^131072+1 1000075 L4208 2015 Generalized Fermat 2201 6366*745^348190-1 1000060 L4189 2022 2202 5553507*2^3322000+1 1000029 p391 2016 2203 5029159647*2^3321910-1 1000005 L4960 2021 2204 5009522505*2^3321910-1 1000005 L4960 2021 2205 4766298357*2^3321910-1 1000005 L4960 2021 2206 4759383915*2^3321910-1 1000005 L4960 2021 2207 4635733263*2^3321910-1 1000005 L4960 2021 2208 4603393047*2^3321910-1 1000005 L4960 2021 2209 4550053935*2^3321910-1 1000005 L4960 2021 2210 4288198767*2^3321910-1 1000005 L4960 2021 2211 4229494557*2^3321910-1 1000005 L4960 2021 2212 4110178197*2^3321910-1 1000005 L4960 2021 2213 4022490843*2^3321910-1 1000005 L4960 2021 2214 3936623697*2^3321910-1 1000005 L4960 2021 2215 3751145343*2^3321910-1 1000005 L4960 2021 2216 3715773735*2^3321910-1 1000005 L4960 2021 2217 3698976057*2^3321910-1 1000005 L4960 2021 2218 3659465685*2^3321910-1 1000005 L4960 2020 2219 3652932033*2^3321910-1 1000005 L4960 2020 2220 3603204333*2^3321910-1 1000005 L4960 2020 2221 3543733545*2^3321910-1 1000005 L4960 2020 2222 3191900133*2^3321910-1 1000005 L4960 2020 2223 3174957723*2^3321910-1 1000005 L4960 2020 2224 2973510903*2^3321910-1 1000005 L4960 2019 2225 2848144257*2^3321910-1 1000005 L4960 2019 2226 2820058827*2^3321910-1 1000005 L4960 2019 2227 2611553775*2^3321910-1 1000004 L4960 2020 2228 2601087525*2^3321910-1 1000004 L4960 2019 2229 2386538565*2^3321910-1 1000004 L4960 2019 2230 2272291887*2^3321910-1 1000004 L4960 2019 2231 2167709265*2^3321910-1 1000004 L4960 2019 2232 2087077797*2^3321910-1 1000004 L4960 2019 2233 1848133623*2^3321910-1 1000004 L4960 2019 2234 1825072257*2^3321910-1 1000004 L4960 2019 2235 1633473837*2^3321910-1 1000004 L4960 2019 2236 1228267623*2^3321910-1 1000004 L4808 2019 2237 1148781333*2^3321910-1 1000004 L4808 2019 2238 1065440787*2^3321910-1 1000004 L4808 2019 2239 1055109357*2^3321910-1 1000004 L4960 2019 2240 992309607*2^3321910-1 1000004 L4808 2019 2241 926102325*2^3321910-1 1000004 L4808 2019 2242 892610007*2^3321910-1 1000004 L4960 2019 2243 763076757*2^3321910-1 1000004 L4960 2019 2244 607766997*2^3321910-1 1000004 L4808 2019 2245 539679177*2^3321910-1 1000004 L4808 2019 2246 425521077*2^3321910-1 1000004 L4808 2019 2247 132940575*2^3321910-1 1000003 L4808 2019 2248 239378138685*2^3321891+1 1000001 L5104 2020 2249 464253*2^3321908-1 1000000 L466 2013 2250 3^2095902+3^647322-1 1000000 x44 2018 2251 191273*2^3321908-1 1000000 L466 2013 2252 1814570322984178^65536+1 1000000 L5080 2020 Generalized Fermat 2253 1814570322977518^65536+1 1000000 L5080 2020 Generalized Fermat 2254 3292665455999520712131952624640^32768+1 1000000 L5749 2023 Generalized Fermat 2255 3292665455999520712131951642528^32768+1 1000000 L5120 2020 Generalized Fermat 2256 3292665455999520712131951625894^32768+1 1000000 L5122 2020 Generalized Fermat 2257e 10841645805132531666786792405311319418846637043199917731999190^16384+1 1000000 L5749 2023 Generalized Fermat 2258 10841645805132531666786792405311319418846637043199917731311876^16384+1 1000000 L5207 2020 Generalized Fermat 2259 10841645805132531666786792405311319418846637043199917731150000^16384+1 1000000 L5122 2020 Generalized Fermat 2260d 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729599864^8192+1 1000000 L5749 2023 Generalized Fermat 2261 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729375350^8192+1 1000000 p417 2021 Generalized Fermat 2262 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729240092^8192+1 1000000 p419 2021 Generalized Fermat 2263 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729154678^8192+1 1000000 p418 2021 Generalized Fermat 2264 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729122666^8192+1 1000000 p417 2021 Generalized Fermat 2265 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729023786^8192+1 1000000 p416 2021 Generalized Fermat 2266 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097875144^4096+1 1000000 p421 2021 Generalized Fermat 2267 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097840702^4096+1 1000000 p417 2021 Generalized Fermat 2268 ((sqrtnint(10^999999,2048)+2)+364176)^2048+1 1000000 p417 2022 Generalized Fermat 2269 10^999999+308267*10^292000+1 1000000 CH10 2021 2270 10^999999-1022306*10^287000-1 999999 CH13 2021 2271 10^999999-1087604*10^287000-1 999999 CH13 2021 2272 531631540026641*6^1285077+1 999999 L3494 2021 2273 3139*2^3321905-1 999997 L185 2008 2274 42550702^131072+1 999937 L4309 2022 Generalized Fermat 2275 42414020^131072+1 999753 L5030 2022 Generalized Fermat 2276 4847*2^3321063+1 999744 SB9 2005 2277 42254832^131072+1 999539 L5375 2022 Generalized Fermat 2278 42243204^131072+1 999524 L4898 2022 Generalized Fermat 2279 42230406^131072+1 999506 L5453 2022 Generalized Fermat 2280 42168978^131072+1 999424 L5462 2022 Generalized Fermat 2281 439*2^3318318+1 998916 L5573 2022 2282 41688706^131072+1 998772 L5270 2022 Generalized Fermat 2283 41364744^131072+1 998327 L5453 2022 Generalized Fermat 2284 41237116^131072+1 998152 L5459 2022 Generalized Fermat 2285e 47714*17^811139+1 998070 L5765 2023 Generalized Cullen 2286 41102236^131072+1 997965 L4245 2022 Generalized Fermat 2287 41007562^131072+1 997834 L4210 2022 Generalized Fermat 2288 41001148^131072+1 997825 L4210 2022 Generalized Fermat 2289 975*2^3312951+1 997301 L5231 2022 2290 40550398^131072+1 997196 L4245 2022 Generalized Fermat 2291 11796*46^599707+1 997172 L5670 2023 2292 40463598^131072+1 997074 L4591 2022 Generalized Fermat 2293 689*2^3311423+1 996841 L5226 2022 2294 40151896^131072+1 996633 L4245 2022 Generalized Fermat 2295 593*2^3309333+1 996212 L5572 2022 2296 383*2^3309321+1 996208 L5570 2022 2297 49*2^3309087-1 996137 L1959 2013 2298 39746366^131072+1 996056 L4201 2022 Generalized Fermat 2299 139413*6^1279992+1 996033 L4001 2015 2300c 1274*67^545368-1 995886 L5410 2023 2301 51*2^3308171+1 995861 L2840 2015 2302 719*2^3308127+1 995849 L5192 2022 2303 39597790^131072+1 995842 L4737 2022 Generalized Fermat 2304 39502358^131072+1 995705 L5453 2022 Generalized Fermat 2305 39324372^131072+1 995448 L5202 2022 Generalized Fermat 2306 245114*5^1424104-1 995412 L3686 2013 2307 39100746^131072+1 995123 L5441 2022 Generalized Fermat 2308 38824296^131072+1 994719 L4245 2022 Generalized Fermat 2309 38734748^131072+1 994588 L4249 2021 Generalized Fermat 2310 175124*5^1422646-1 994393 L3686 2013 2311 453*2^3303073+1 994327 L5568 2022 2312 38310998^131072+1 993962 L4737 2021 Generalized Fermat 2313 531*2^3301693+1 993912 L5226 2022 2314 38196496^131072+1 993791 L4861 2021 Generalized Fermat 2315 38152876^131072+1 993726 L4245 2021 Generalized Fermat 2316 195*2^3301018+1 993708 L5569 2022 2317 341*2^3300789+1 993640 L5192 2022 2318 37909914^131072+1 993363 L4249 2021 Generalized Fermat 2319 849*2^3296427+1 992327 L5571 2022 2320 1611*22^738988+1 992038 L4139 2015 2321 36531196^131072+1 991254 L4249 2021 Generalized Fermat 2322 2017*2^3292325-1 991092 L3345 2017 2323 36422846^131072+1 991085 L4245 2021 Generalized Fermat 2324 36416848^131072+1 991076 L5202 2021 Generalized Fermat 2325 885*2^3290927+1 990671 L5161 2022 2326 36038176^131072+1 990481 L4245 2021 Generalized Fermat 2327 35997532^131072+1 990416 L4245 2021 Generalized Fermat 2328 35957420^131072+1 990353 L4245 2021 Generalized Fermat 2329 Phi(3,-107970^98304) 989588 L4506 2016 Generalized unique 2330 35391288^131072+1 989449 L5070 2021 Generalized Fermat 2331 35372304^131072+1 989419 L5443 2021 Generalized Fermat 2332 219*2^3286614+1 989372 L5567 2022 2333 61*2^3286535-1 989348 L4405 2016 2334 35327718^131072+1 989347 L4591 2021 Generalized Fermat 2335 35282096^131072+1 989274 L4245 2021 Generalized Fermat 2336 35141602^131072+1 989046 L4729 2021 Generalized Fermat 2337 35139782^131072+1 989043 L4245 2021 Generalized Fermat 2338 35047222^131072+1 988893 L4249 2021 Generalized Fermat 2339 531*2^3284944+1 988870 L5536 2022 2340 34957136^131072+1 988747 L5321 2021 Generalized Fermat 2341 301*2^3284232+1 988655 L5564 2022 2342 34871942^131072+1 988608 L4245 2021 Generalized Fermat 2343 34763644^131072+1 988431 L4737 2021 Generalized Fermat 2344 34585314^131072+1 988138 L4201 2021 Generalized Fermat 2345 311*2^3282455+1 988120 L5568 2022 2346 34530386^131072+1 988048 L5070 2021 Generalized Fermat 2347 833*2^3282181+1 988038 L5564 2022 2348 561*2^3281889+1 987950 L5477 2022 2349 34087952^131072+1 987314 L4764 2021 Generalized Fermat 2350 87*2^3279368+1 987191 L3458 2015 2351 965*2^3279151+1 987126 L5564 2022 2352 33732746^131072+1 986717 L4359 2021 Generalized Fermat 2353 33474284^131072+1 986279 L5051 2021 Generalized Fermat 2354 33395198^131072+1 986145 L4658 2021 Generalized Fermat 2355 427*2^3275606+1 986059 L5566 2022 2356 33191418^131072+1 985796 L4201 2021 Generalized Fermat 2357 337*2^3274106+1 985607 L5564 2022 2358 357*2^3273543+1 985438 L5237 2022 Divides GF(3273542,10) 2359 1045*2^3273488+1 985422 L5192 2022 2360 32869172^131072+1 985241 L4285 2021 Generalized Fermat 2361 32792696^131072+1 985108 L5198 2021 Generalized Fermat 2362 1047*2^3272351+1 985079 L5563 2022 2363 32704348^131072+1 984955 L5312 2021 Generalized Fermat 2364 32608738^131072+1 984788 L5395 2021 Generalized Fermat 2365 933*2^3270993+1 984670 L5562 2022 2366 311*2^3270759+1 984600 L5560 2022 2367 32430486^131072+1 984476 L4245 2021 Generalized Fermat 2368 32417420^131072+1 984453 L4245 2021 Generalized Fermat 2369 65*2^3270127+1 984409 L3924 2015 2370 32348894^131072+1 984333 L4245 2021 Generalized Fermat 2371 579*2^3269850+1 984326 L5226 2022 2372 32286660^131072+1 984223 L5400 2021 Generalized Fermat 2373 32200644^131072+1 984071 L4387 2021 Generalized Fermat 2374 32137342^131072+1 983959 L4559 2021 Generalized Fermat 2375 32096608^131072+1 983887 L4559 2021 Generalized Fermat 2376 32055422^131072+1 983814 L4559 2021 Generalized Fermat 2377 31821360^131072+1 983397 L4861 2021 Generalized Fermat 2378 31768014^131072+1 983301 L4252 2021 Generalized Fermat 2379 335*2^3266237+1 983238 L5559 2022 2380 1031*2^3265915+1 983142 L5364 2022 2381 31469984^131072+1 982765 L5078 2021 Generalized Fermat 2382 5*2^3264650-1 982759 L384 2013 2383 223*2^3264459-1 982703 L1884 2012 2384 1101*2^3264400+1 982686 L5231 2022 2385 483*2^3264181+1 982620 L5174 2022 2386 525*2^3263227+1 982332 L5231 2022 2387 31145080^131072+1 982174 L4201 2021 Generalized Fermat 2388 622*48^584089+1 981998 L5629 2023 2389 31044982^131072+1 981991 L5041 2021 Generalized Fermat 2390 683*2^3262037+1 981974 L5192 2022 2391 923*2^3261401+1 981783 L5477 2022 2392 30844300^131072+1 981622 L5102 2021 Generalized Fermat 2393 30819256^131072+1 981575 L4201 2021 Generalized Fermat 2394 9*2^3259381-1 981173 L1828 2011 2395 1059*2^3258751+1 980985 L5231 2022 2396 6*5^1403337+1 980892 L4965 2020 2397 30318724^131072+1 980643 L4309 2021 Generalized Fermat 2398 30315072^131072+1 980636 L5375 2021 Generalized Fermat 2399 30300414^131072+1 980609 L4755 2021 Generalized Fermat 2400 30225714^131072+1 980468 L4201 2021 Generalized Fermat 2401 875*2^3256589+1 980334 L5550 2022 2402 30059800^131072+1 980155 L4928 2021 Generalized Fermat 2403 30022816^131072+1 980085 L5273 2021 Generalized Fermat 2404 29959190^131072+1 979964 L4905 2021 Generalized Fermat 2405 29607314^131072+1 979292 L5378 2021 Generalized Fermat 2406 779*2^3253063+1 979273 L5192 2022 2407 29505368^131072+1 979095 L5378 2021 Generalized Fermat 2408 163*2^3250978+1 978645 L5161 2022 Divides GF(3250977,6) 2409 29169314^131072+1 978443 L5380 2021 Generalized Fermat 2410 417*2^3248255+1 977825 L5178 2022 2411 28497098^131072+1 977116 L4308 2021 Generalized Fermat 2412 28398204^131072+1 976918 L5379 2021 Generalized Fermat 2413 28294666^131072+1 976710 L5375 2021 Generalized Fermat 2414 28175634^131072+1 976470 L5378 2021 Generalized Fermat 2415 33*2^3242126-1 975979 L3345 2014 2416 27822108^131072+1 975752 L4760 2021 Generalized Fermat 2417 39*2^3240990+1 975637 L3432 2014 2418 27758510^131072+1 975621 L4289 2021 Generalized Fermat 2419 27557876^131072+1 975208 L4245 2021 Generalized Fermat 2420 27544748^131072+1 975181 L4387 2021 Generalized Fermat 2421 27408050^131072+1 974898 L4210 2021 Generalized Fermat 2422 225*2^3236967+1 974427 L5529 2022 2423 27022768^131072+1 974092 L4309 2021 Generalized Fermat 2424 26896670^131072+1 973826 L5376 2021 Generalized Fermat 2425 1075*2^3234606+1 973717 L5192 2022 2426 26757382^131072+1 973530 L5375 2021 Generalized Fermat 2427 26599558^131072+1 973194 L4245 2021 Generalized Fermat 2428 6*5^1392287+1 973168 L4965 2020 2429 26500832^131072+1 972982 L4956 2021 Generalized Fermat 2430 325*2^3231474+1 972774 L5536 2022 2431 933*2^3231438+1 972763 L5197 2022 2432 123*2^3230548+1 972494 L5178 2022 Divides GF(3230546,12) 2433 26172278^131072+1 972272 L4245 2021 Generalized Fermat 2434 697*2^3229518+1 972185 L5534 2022 2435 22598*745^338354-1 971810 L4189 2022 2436 385*2^3226814+1 971371 L5178 2022 2437 211195*2^3224974+1 970820 L2121 2013 2438 1173*2^3223546+1 970388 L5178 2022 2439 7*6^1246814+1 970211 L4965 2019 2440 25128150^131072+1 969954 L4738 2021 Generalized Fermat 2441 25124378^131072+1 969946 L5102 2021 Generalized Fermat 2442 1089*2^3221691+1 969829 L5178 2022 2443 35*832^332073-1 969696 L4001 2019 2444 600921*2^3219922-1 969299 g337 2018 2445 939*2^3219319+1 969115 L5178 2022 2446 24734116^131072+1 969055 L5070 2021 Generalized Fermat 2447 24644826^131072+1 968849 L5070 2021 Generalized Fermat 2448 24642712^131072+1 968844 L5070 2021 Generalized Fermat 2449 24641166^131072+1 968840 L5070 2021 Generalized Fermat 2450 129*2^3218214+1 968782 L5529 2022 2451 24522386^131072+1 968565 L5070 2021 Generalized Fermat 2452 24486806^131072+1 968483 L4737 2021 Generalized Fermat 2453 811*2^3216944+1 968400 L5233 2022 2454 24297936^131072+1 968042 L4201 2021 Generalized Fermat 2455 1023*2^3214745+1 967738 L5178 2022 2456 187*2^3212152+1 966957 L5178 2022 2457 301*2^3211281-1 966695 L5545 2022 2458 6*409^369832+1 965900 L4001 2015 2459 23363426^131072+1 965809 L5033 2021 Generalized Fermat 2460 1165*2^3207702+1 965618 L5178 2022 2461 94373*2^3206717+1 965323 L2785 2013 2462 2751*2^3206569-1 965277 L4036 2015 2463 761*2^3206341+1 965208 L5178 2022 2464 23045178^131072+1 965029 L5023 2021 Generalized Fermat 2465 23011666^131072+1 964946 L5273 2021 Generalized Fermat 2466 911*2^3205225+1 964872 L5364 2022 2467 22980158^131072+1 964868 L4201 2021 Generalized Fermat 2468 22901508^131072+1 964673 L4743 2021 Generalized Fermat 2469 22808110^131072+1 964440 L5248 2021 Generalized Fermat 2470 22718284^131072+1 964215 L5254 2021 Generalized Fermat 2471 22705306^131072+1 964183 L5248 2021 Generalized Fermat 2472 113983*2^3201175-1 963655 L613 2008 2473 34*888^326732-1 963343 L4001 2017 2474 899*2^3198219+1 962763 L5503 2022 2475 22007146^131072+1 962405 L4245 2020 Generalized Fermat 2476 4*3^2016951+1 962331 L4965 2020 2477 21917442^131072+1 962173 L4622 2020 Generalized Fermat 2478 987*2^3195883+1 962060 L5282 2022 2479 21869554^131072+1 962048 L5061 2020 Generalized Fermat 2480 21757066^131072+1 961754 L4773 2020 Generalized Fermat 2481 21582550^131072+1 961296 L5068 2020 Generalized Fermat 2482 21517658^131072+1 961125 L5126 2020 Generalized Fermat 2483 20968936^131072+1 959654 L4245 2020 Generalized Fermat 2484 671*2^3185411+1 958908 L5315 2022 2485 20674450^131072+1 958849 L4245 2020 Generalized Fermat 2486 1027*2^3184540+1 958646 L5174 2022 2487 789*2^3183463+1 958321 L5482 2022 2488 855*2^3183158+1 958229 L5161 2022 2489 20234282^131072+1 957624 L4942 2020 Generalized Fermat 2490 20227142^131072+1 957604 L4677 2020 Generalized Fermat 2491 625*2^3180780+1 957513 L5178 2022 Generalized Fermat 2492 20185276^131072+1 957486 L4201 2020 Generalized Fermat 2493 935*2^3180599+1 957459 L5477 2022 2494 573*2^3179293+1 957066 L5226 2022 2495 33*2^3176269+1 956154 L3432 2013 2496 81*2^3174353-1 955578 L3887 2022 2497 19464034^131072+1 955415 L4956 2020 Generalized Fermat 2498 600921*2^3173683-1 955380 g337 2018 2499 587*2^3173567+1 955342 L5301 2022 2500 19216648^131072+1 954687 L5024 2020 Generalized Fermat 2501 1414*95^482691-1 954633 L4877 2019 2502 305*2^3171039+1 954581 L5301 2022 2503 755*2^3170701+1 954479 L5302 2022 2504 775*2^3170580+1 954443 L5449 2022 2505 78*236^402022-1 953965 L5410 2020 2506 18968126^131072+1 953946 L5011 2020 Generalized Fermat 2507 18813106^131072+1 953479 L4201 2020 Generalized Fermat 2508 18608780^131072+1 952857 L4488 2020 Generalized Fermat 2509 1087*2^3164677-1 952666 L1828 2012 2510 18509226^131072+1 952552 L4884 2020 Generalized Fermat 2511 18501600^131072+1 952528 L4875 2020 Generalized Fermat 2512 459*2^3163175+1 952214 L5178 2022 2513 15*2^3162659+1 952057 p286 2012 2514 18309468^131072+1 951934 L4928 2020 Generalized Fermat 2515 18298534^131072+1 951900 L4201 2020 Generalized Fermat 2516 849*2^3161727+1 951778 L5178 2022 2517 67*2^3161450+1 951694 L3223 2015 2518 119*2^3161195+1 951617 L5320 2022 2519 1759*2^3160863-1 951518 L4965 2021 2520 58*117^460033+1 951436 L5410 2020 2521 417*2^3160443+1 951391 L5302 2022 2522 9231*70^515544+1 951234 L5410 2021 2523 671*2^3159523+1 951115 L5188 2022 2524 17958952^131072+1 950834 L4201 2020 Generalized Fermat 2525 17814792^131072+1 950375 L4752 2020 Generalized Fermat 2526 17643330^131072+1 949824 L4201 2020 Generalized Fermat 2527 19*2^3155009-1 949754 L1828 2012 2528 281*2^3151457+1 948686 L5316 2022 2529 179*2^3150265+1 948327 L5302 2022 2530 17141888^131072+1 948183 L4963 2019 Generalized Fermat 2531 17138628^131072+1 948172 L4963 2019 Generalized Fermat 2532 17119936^131072+1 948110 L4963 2019 Generalized Fermat 2533 17052490^131072+1 947885 L4715 2019 Generalized Fermat 2534 17025822^131072+1 947796 L4870 2019 Generalized Fermat 2535 16985784^131072+1 947662 L4295 2019 Generalized Fermat 2536 865*2^3147482+1 947490 L5178 2021 2537 963*2^3145753+1 946969 L5451 2021 2538 16741226^131072+1 946837 L4201 2019 Generalized Fermat 2539 387*2^3144483+1 946587 L5450 2021 2540 1035*2^3144236+1 946513 L5449 2021 2541 1065*2^3143667+1 946342 L4944 2021 2542 193*2^3142150+1 945884 L5178 2021 2543 915*2^3141942+1 945822 L5448 2021 2544 939*2^3141397+1 945658 L5320 2021 2545 1063*2^3141350+1 945644 L5178 2021 2546 16329572^131072+1 945420 L4201 2019 Generalized Fermat 2547 69*2^3140225-1 945304 L3764 2014 2548 3*2^3136255-1 944108 L256 2007 2549 417*2^3136187+1 944089 L5178 2021 2550 15731520^131072+1 943296 L4245 2019 Generalized Fermat 2551 Phi(3,-62721^98304) 943210 L4506 2016 Generalized unique 2552 15667716^131072+1 943064 L4387 2019 Generalized Fermat 2553 15567144^131072+1 942698 L4918 2019 Generalized Fermat 2554 299*2^3130621+1 942414 L5178 2021 2555 15342502^131072+1 941870 L4245 2019 Generalized Fermat 2556 15237960^131072+1 941481 L4898 2019 Generalized Fermat 2557 571*2^3127388+1 941441 L5440 2021 2558 15147290^131072+1 941141 L4861 2019 Generalized Fermat 2559 197*2^3126343+1 941126 L5178 2021 2560 15091270^131072+1 940930 L4760 2019 Generalized Fermat 2561 1097*2^3124455+1 940558 L5178 2021 2562 3125*2^3124079+1 940445 L1160 2019 2563 495*2^3123624+1 940308 L5438 2021 2564 14790404^131072+1 939784 L4871 2019 Generalized Fermat 2565 1041*2^3120649+1 939412 L5437 2021 2566 14613898^131072+1 939101 L4926 2019 Generalized Fermat 2567 3317*2^3117162-1 938363 L5399 2021 2568 763*2^3115684+1 937918 L4944 2021 2569 581*2^3114611+1 937595 L5178 2021 2570 14217182^131072+1 937534 L4387 2019 Generalized Fermat 2571 134*864^319246-1 937473 L5410 2020 2572 700057*2^3113753-1 937339 L5410 2022 2573 1197*2^3111838+1 936760 L5178 2021 2574 14020004^131072+1 936739 L4249 2019 Generalized Fermat 2575 27777*2^3111027+1 936517 L2777 2014 Generalized Cullen 2576 755*2^3110759+1 936435 L5320 2021 2577 13800346^131072+1 935840 L4880 2019 Generalized Fermat 2578f 866981*12^866981-1 935636 L5765 2023 Generalized Woodall 2579 13613070^131072+1 935062 L4245 2019 Generalized Fermat 2580 628*80^491322+1 935033 L5410 2021 2581 761*2^3105087+1 934728 L5197 2021 2582 13433028^131072+1 934305 L4868 2018 Generalized Fermat 2583 1019*2^3103680-1 934304 L1828 2012 2584 579*2^3102639+1 933991 L5315 2021 2585 99*2^3102401-1 933918 L1862 2017 2586 256612*5^1335485-1 933470 L1056 2013 2587 13083418^131072+1 932803 L4747 2018 Generalized Fermat 2588 69*2^3097340-1 932395 L3764 2014 2589 153*2^3097277+1 932376 L4944 2021 2590 12978952^131072+1 932347 L4849 2018 Generalized Fermat 2591 12961862^131072+1 932272 L4245 2018 Generalized Fermat 2592 207*2^3095391+1 931808 L5178 2021 2593 12851074^131072+1 931783 L4670 2018 Generalized Fermat 2594 45*2^3094632-1 931579 L1862 2018 2595 259*2^3094582+1 931565 L5214 2021 2596 553*2^3094072+1 931412 L4944 2021 2597 57*2^3093440-1 931220 L2484 2020 2598 12687374^131072+1 931054 L4289 2018 Generalized Fermat 2599 513*2^3092705+1 931000 L4329 2016 2600 12661786^131072+1 930939 L4819 2018 Generalized Fermat 2601 933*2^3091825+1 930736 L5178 2021 2602 38*875^316292-1 930536 L4001 2019 2603 5*2^3090860-1 930443 L1862 2012 2604 12512992^131072+1 930266 L4814 2018 Generalized Fermat 2605 4*5^1330541-1 930009 L4965 2022 2606 12357518^131072+1 929554 L4295 2018 Generalized Fermat 2607 12343130^131072+1 929488 L4720 2018 Generalized Fermat 2608 297*2^3087543+1 929446 L5326 2021 2609 1149*2^3087514+1 929438 L5407 2021 2610 745*2^3087428+1 929412 L5178 2021 2611 373*520^342177+1 929357 L3610 2014 2612 19401*2^3086450-1 929119 L541 2015 2613 75*2^3086355+1 929088 L3760 2015 2614 65*2^3080952-1 927461 L2484 2020 2615 11876066^131072+1 927292 L4737 2018 Generalized Fermat 2616 1139*2^3079783+1 927111 L5174 2021 2617 271*2^3079189-1 926931 L2484 2018 2618 766*33^610412+1 926923 L4001 2016 2619 11778792^131072+1 926824 L4672 2018 Generalized Fermat 2620 555*2^3078792+1 926812 L5226 2021 2621 31*332^367560+1 926672 L4294 2018 2622 167*2^3077568-1 926443 L1862 2020 2623 10001*2^3075602-1 925853 L4405 2019 2624 116*107^455562-1 924513 L4064 2021 2625 11292782^131072+1 924425 L4672 2018 Generalized Fermat 2626 14844*430^350980-1 924299 L4001 2016 2627 11267296^131072+1 924297 L4654 2017 Generalized Fermat 2628 4*3^1936890+1 924132 L4965 2020 Generalized Fermat 2629 1105*2^3069884+1 924131 L5314 2021 2630 319*2^3069362+1 923973 L5377 2021 2631 11195602^131072+1 923933 L4706 2017 Generalized Fermat 2632 973*2^3069092+1 923892 L5214 2021 2633 765*2^3068511+1 923717 L5174 2021 2634 60849*2^3067914+1 923539 L591 2014 2635 674*249^385359+1 923400 L5410 2019 2636 499*2^3066970+1 923253 L5373 2021 2637 553*2^3066838+1 923213 L5368 2021 2638 629*2^3066827+1 923210 L5226 2021 2639 11036888^131072+1 923120 L4660 2017 Generalized Fermat 2640 261*2^3066009+1 922964 L5197 2021 2641 10994460^131072+1 922901 L4704 2017 Generalized Fermat 2642f 214916*3^1934246-1 922876 L4965 2023 Generalized Woodall 2643 21*2^3065701+1 922870 p286 2012 2644 10962066^131072+1 922733 L4702 2017 Generalized Fermat 2645 10921162^131072+1 922520 L4559 2017 Generalized Fermat 2646 875*2^3063847+1 922313 L5364 2021 2647 43*2^3063674+1 922260 L3432 2013 2648 677*2^3063403+1 922180 L5346 2021 2649 8460*241^387047-1 921957 L5410 2019 2650 10765720^131072+1 921704 L4695 2017 Generalized Fermat 2651 111*2^3060238-1 921226 L2484 2020 2652 1165*2^3060228+1 921224 L5360 2021 2653 5*2^3059698-1 921062 L503 2008 2654 10453790^131072+1 920031 L4694 2017 Generalized Fermat 2655 453*2^3056181+1 920005 L5320 2021 2656 791*2^3055695+1 919859 L5177 2021 2657 10368632^131072+1 919565 L4692 2017 Generalized Fermat 2658 582971*2^3053414-1 919175 L5410 2022 2659 123*2^3049038+1 917854 L4119 2015 2660 10037266^131072+1 917716 L4691 2017 Generalized Fermat 2661 400*95^463883-1 917435 L4001 2019 2662 9907326^131072+1 916975 L4690 2017 Generalized Fermat 2663 454*383^354814+1 916558 L2012 2020 2664 9785844^131072+1 916272 L4326 2017 Generalized Fermat 2665 435*2^3041954+1 915723 L5320 2021 2666 639*2^3040438+1 915266 L5320 2021 2667 1045*2^3037988+1 914529 L5178 2021 2668 291*2^3037904+1 914503 L3545 2015 2669 311*2^3037565+1 914401 L5178 2021 2670 373*2^3036746+1 914155 L5178 2021 2671 9419976^131072+1 914103 L4591 2017 Generalized Fermat 2672 801*2^3036045+1 913944 L5348 2021 2673 915*2^3033775+1 913261 L5178 2021 2674 38804*3^1913975+1 913203 L5410 2021 2675 9240606^131072+1 913009 L4591 2017 Generalized Fermat 2676 869*2^3030655+1 912322 L5260 2021 2677 643*2^3030650+1 912320 L5320 2021 2678 99*2^3029959-1 912111 L1862 2020 2679 417*2^3029342+1 911926 L5178 2021 2680 345*2^3027769+1 911452 L5343 2021 2681 26*3^1910099+1 911351 L4799 2020 2682 355*2^3027372+1 911333 L5174 2021 2683 99*2^3026660-1 911118 L1862 2020 2684 417*2^3026492+1 911068 L5197 2021 2685 1065*2^3025527+1 910778 L5208 2021 2686 34202*3^1908800+1 910734 L5410 2021 2687 8343*42^560662+1 910099 L4444 2020 2688 699*2^3023263+1 910096 L5335 2021 2689 8770526^131072+1 910037 L4245 2017 Generalized Fermat 2690 8704114^131072+1 909604 L4670 2017 Generalized Fermat 2691 383731*2^3021377-1 909531 L466 2011 2692 46821*2^3021380-374567 909531 p363 2013 2693 2^3021377-1 909526 G3 1998 Mersenne 37 2694 615*2^3019445+1 908947 L5260 2021 2695 389*2^3019025+1 908820 L5178 2021 2696 875*2^3018175+1 908565 L5334 2021 2697c 375*2^3016803-1 908151 L2235 2023 2698 555*2^3016352+1 908016 L5178 2021 2699 7*2^3015762+1 907836 g279 2008 2700 759*2^3015314+1 907703 L5178 2021 2701 32582*3^1901790+1 907389 L5372 2021 2702 75*2^3012342+1 906808 L3941 2015 2703 459*2^3011814+1 906650 L5178 2021 2704 991*2^3010036+1 906115 L5326 2021 2705 583*2^3009698+1 906013 L5325 2021 2706 8150484^131072+1 905863 L4249 2017 Generalized Fermat 2707 593*2^3006969+1 905191 L5178 2021 2708 327*2^3006540-1 905062 L2257 2023 2709 367*2^3004536+1 904459 L5178 2021 2710 7926326^131072+1 904276 L4249 2017 Generalized Fermat 2711 1003*2^3003756+1 904224 L5320 2021 2712 573*2^3002662+1 903895 L5319 2021 2713 7858180^131072+1 903784 L4201 2017 Generalized Fermat 2714 329*2^3002295+1 903784 L5318 2021 2715 4*5^1292915-1 903710 L4965 2022 2716 7832704^131072+1 903599 L4249 2017 Generalized Fermat 2717 268514*5^1292240-1 903243 L3562 2013 2718 7*10^902708+1 902709 p342 2013 2719 435*2^2997453+1 902326 L5167 2021 2720 583*2^2996526+1 902047 L5174 2021 2721 1037*2^2995695+1 901798 L5178 2021 2722 717*2^2995326+1 901686 L5178 2021 2723 885*2^2995274+1 901671 L5178 2021 2724 43*2^2994958+1 901574 L3222 2013 2725 1065*2^2994154+1 901334 L5315 2021 2726 561*2^2994132+1 901327 L5314 2021 2727 1095*2^2992587-1 900862 L1828 2011 2728 519*2^2991849+1 900640 L5311 2021 2729 7379442^131072+1 900206 L4201 2017 Generalized Fermat 2730 459*2^2990134+1 900123 L5197 2021 2731 15*2^2988834+1 899730 p286 2012 2732 29*564^326765+1 899024 L4001 2017 2733 971*2^2982525+1 897833 L5197 2021 2734 1033*2^2980962+1 897362 L5305 2021 2735 357*2^2980540-1 897235 L2257 2023 2736 367*2^2979033-1 896781 L2257 2023 2737 39*2^2978894+1 896739 L2719 2013 2738 38*977^299737+1 896184 L5410 2021 2739 4348099*2^2976221-1 895939 L466 2008 2740 205833*2^2976222-411665 895938 L4667 2017 2741 18976*2^2976221-18975 895937 p373 2014 2742 2^2976221-1 895932 G2 1997 Mersenne 36 2743 1024*3^1877301+1 895704 p378 2014 2744 1065*2^2975442+1 895701 L5300 2021 Divides GF(2975440,3) 2745 24704*3^1877135+1 895626 L5410 2021 2746 591*2^2975069+1 895588 L5299 2021 2747 249*2^2975002+1 895568 L2322 2015 2748 195*2^2972947+1 894949 L3234 2015 2749 6705932^131072+1 894758 L4201 2017 Generalized Fermat 2750 391*2^2971600+1 894544 L5242 2021 2751 46425*2^2971203+1 894426 L2777 2014 Generalized Cullen 2752 625*2^2970336+1 894164 L5233 2021 Generalized Fermat 2753 369*2^2968175-1 893513 L2257 2023 2754 493*72^480933+1 893256 L3610 2014 2755 561*2^2964753+1 892483 L5161 2021 2756 1185*2^2964350+1 892362 L5161 2021 2757 6403134^131072+1 892128 L4510 2016 Generalized Fermat 2758 6391936^131072+1 892028 L4511 2016 Generalized Fermat 2759 395*2^2961370-1 891464 L2257 2023 2760 21*2^2959789-1 890987 L5313 2021 2761 627*2^2959098+1 890781 L5197 2021 2762 45*2^2958002-1 890449 L1862 2017 2763 729*2^2955389+1 889664 L5282 2021 2764 198677*2^2950515+1 888199 L2121 2012 2765 88*985^296644+1 887987 L5410 2020 2766 303*2^2949403-1 887862 L1817 2022 2767 5877582^131072+1 887253 L4245 2016 Generalized Fermat 2768 321*2^2946654-1 887034 L1817 2022 2769 17*2^2946584-1 887012 L3519 2013 2770 489*2^2944673+1 886438 L5167 2021 2771 141*2^2943065+1 885953 L3719 2015 2772 757*2^2942742+1 885857 L5261 2021 2773 5734100^131072+1 885846 L4477 2016 Generalized Fermat 2774 33*2^2939064-5606879602425*2^1290000-1 884748 p423 2021 Arithmetic progression (3,d=33*2^2939063-5606879602425*2^1290000) 2775 33*2^2939063-1 884748 L3345 2013 2776 5903*2^2938744-1 884654 L4036 2015 2777 717*2^2937963+1 884418 L5256 2021 2778 5586416^131072+1 884361 L4454 2016 Generalized Fermat 2779 243*2^2937316+1 884223 L4114 2015 2780 973*2^2937046+1 884142 L5253 2021 2781 61*2^2936967-1 884117 L2484 2017 2782 903*2^2934602+1 883407 L5246 2021 2783 5471814^131072+1 883181 L4362 2016 Generalized Fermat 2784 188*228^374503+1 883056 L4786 2020 2785 53*248^368775+1 883016 L5196 2020 2786 5400728^131072+1 882436 L4201 2016 Generalized Fermat 2787 17*326^350899+1 881887 L4786 2019 2788 855*2^2929550+1 881886 L5200 2021 2789 5326454^131072+1 881648 L4201 2016 Generalized Fermat 2790 839*2^2928551+1 881585 L5242 2021 2791 7019*10^881309-1 881313 L3564 2013 2792 25*2^2927222+1 881184 L1935 2013 Generalized Fermat 2793 391*2^2925759-1 880744 L2257 2023 2794 577*2^2925602+1 880697 L5201 2021 2795 97366*5^1259955-1 880676 L3567 2013 2796 973*2^2923062+1 879933 L5228 2021 2797 1126*177^391360+1 879770 L4955 2020 2798 243944*5^1258576-1 879713 L3566 2013 2799 693*2^2921528+1 879471 L5201 2021 2800 6*10^879313+1 879314 L5009 2019 2801 269*2^2918105+1 878440 L2715 2015 2802 331*2^2917844+1 878362 L5210 2021 2803 169*2^2917805-1 878350 L2484 2018 2804 1085*2^2916967+1 878098 L5174 2020 2805 389*2^2916499+1 877957 L5215 2020 2806 431*2^2916429+1 877936 L5214 2020 2807 1189*2^2916406+1 877929 L5174 2020 2808f 1011*2^2916119-1 877843 L4518 2023 2809 7*2^2915954+1 877791 g279 2008 Divides GF(2915953,12) [g322] 2810 4974408^131072+1 877756 L4380 2016 Generalized Fermat 2811 465*2^2914079+1 877228 L5210 2020 2812 427194*113^427194+1 877069 p310 2012 Generalized Cullen 2813 4893072^131072+1 876817 L4303 2016 Generalized Fermat 2814 493*2^2912552+1 876769 L5192 2021 2815 379*2^2911423-1 876429 L2257 2023 2816 143157*2^2911403+1 876425 L4504 2017 2817 567*2^2910402+1 876122 L5201 2020 2818 683*2^2909217+1 875765 L5199 2020 2819 674*249^365445+1 875682 L5410 2019 2820 475*2^2908802+1 875640 L5192 2021 2821 371*2^2907377+1 875211 L5197 2020 2822 207*2^2903535+1 874054 L3173 2015 2823 851*2^2902731+1 873813 L5177 2020 2824 777*2^2901907+1 873564 L5192 2020 2825 717*2^2900775+1 873224 L5185 2020 2826 99*2^2899303-1 872780 L1862 2017 2827 63*2^2898957+1 872675 L3262 2013 2828 11*2^2897409+1 872209 L2973 2013 Divides GF(2897408,3) 2829 747*2^2895307+1 871578 L5178 2020 2830 403*2^2894566+1 871354 L5180 2020 2831 629*2^2892961+1 870871 L5173 2020 2832 627*2^2891514+1 870436 L5168 2020 2833 325*2^2890955-1 870267 L5545 2022 2834 363*2^2890208+1 870042 L3261 2020 2835 471*2^2890148+1 870024 L5158 2020 2836 4329134^131072+1 869847 L4395 2016 Generalized Fermat 2837 583*2^2889248+1 869754 L5139 2020 2838 353*2^2888332-1 869478 L2257 2023 2839 955*2^2887934+1 869358 L4958 2020 2840c 8300*171^389286+1 869279 L5410 2023 2841 303*2^2887603-1 869258 L5184 2022 2842 937*2^2887130+1 869116 L5134 2020 2843 885*2^2886389+1 868893 L3924 2020 2844 763*2^2885928+1 868754 L2125 2020 2845 1071*2^2884844+1 868428 L3593 2020 2846 1181*2^2883981+1 868168 L3593 2020 2847 327*2^2881349-1 867375 L5545 2022 2848 51*2^2881227+1 867338 L3512 2013 2849 933*2^2879973+1 866962 L4951 2020 2850 261*2^2879941+1 866952 L4119 2015 2851 4085818^131072+1 866554 L4201 2016 Generalized Fermat 2852 65*2^2876718-1 865981 L2484 2016 2853 21*948^290747-1 865500 L4985 2019 2854 4013*2^2873250-1 864939 L1959 2014 2855 41*2^2872058-1 864578 L2484 2013 2856 359*2^2870935+1 864241 L1300 2020 2857 165*2^2870868+1 864220 L4119 2015 2858 961*2^2870596+1 864139 L1300 2020 Generalized Fermat 2859 665*2^2869847+1 863913 L2885 2020 2860 283*2^2868750+1 863583 L3877 2015 2861f 663703*20^663703-1 863504 L5765 2023 Generalized Woodall 2862 845*2^2868291+1 863445 L5100 2020 2863 3125*2^2867399+1 863177 L1754 2019 2864 701*2^2867141+1 863099 L1422 2020 2865 3814944^131072+1 862649 L4201 2016 Generalized Fermat 2866 119*954^289255+1 861852 L5410 2022 2867 307*2^2862962+1 861840 L4740 2020 2868 147*2^2862651+1 861746 L1741 2015 2869 1207*2^2861901-1 861522 L1828 2011 2870 231*2^2860725+1 861167 L2873 2015 2871 193*2^2858812+1 860591 L2997 2015 2872 629*2^2857891+1 860314 L3035 2020 2873 493*2^2857856+1 860304 L5087 2020 2874 241*2^2857313-1 860140 L2484 2018 2875 707*2^2856331+1 859845 L5084 2020 2876 3615210^131072+1 859588 L4201 2016 Generalized Fermat 2877 949*2^2854946+1 859428 L2366 2020 2878 222361*2^2854840+1 859398 g403 2006 2879 725*2^2854661+1 859342 L5031 2020 2880 399*2^2851994+1 858539 L4099 2020 2881 225*2^2851959+1 858528 L3941 2015 2882 247*2^2851602+1 858421 L3865 2015 2883 183*2^2850321+1 858035 L2117 2015 2884 1191*2^2849315+1 857733 L1188 2020 2885 717*2^2848598+1 857517 L1204 2020 2886 795*2^2848360+1 857445 L4099 2020 2887 4242104*15^728840-1 857189 L5410 2023 2888 3450080^131072+1 856927 L4201 2016 Generalized Fermat 2889 705*2^2846638+1 856927 L1808 2020 2890 369*2^2846547+1 856899 L4099 2020 2891 233*2^2846392-1 856852 L2484 2021 2892 955*2^2844974+1 856426 L1188 2020 2893 753*2^2844700+1 856343 L1204 2020 2894 11138*745^297992-1 855884 L4189 2019 2895 111*2^2841992+1 855527 L1792 2015 2896 44*744^297912-1 855478 L5410 2021 2897 649*2^2841318+1 855325 L4732 2020 2898 228*912^288954-1 855305 L5410 2022 2899 305*2^2840155+1 854975 L4907 2020 2900d 914*871^290787-1 854923 L5787 2023 2901 1149*2^2839622+1 854815 L2042 2020 2902 95*2^2837909+1 854298 L3539 2013 2903 199*2^2835667-1 853624 L2484 2019 2904 595*2^2833406+1 852943 L4343 2020 2905 1101*2^2832061+1 852539 L4930 2020 2906 813*2^2831757+1 852447 L4951 2020 2907 435*2^2831709+1 852432 L4951 2020 2908 393*2^2828738-1 851538 L2257 2023 2909 543*2^2828217+1 851381 L4746 2019 2910f 68*1010^283267+1 851027 L5778 2023 2911 704*249^354745+1 850043 L5410 2019 2912 1001*2^2822037+1 849521 L1209 2019 2913 84466*5^1215373-1 849515 L3562 2013 2914 97*2^2820650+1 849103 L2163 2013 2915 381*2^2820157-1 848955 L2257 2023 2916 107*2^2819922-1 848884 L2484 2013 2917 84256*3^1778899+1 848756 L4789 2018 2918 45472*3^1778899-1 848756 L4789 2018 2919 14804*3^1778530+1 848579 L4064 2021 2920 497*2^2818787+1 848543 L4842 2019 2921 97*2^2818306+1 848397 L3262 2013 2922 313*2^2817751-1 848231 L802 2021 2923 177*2^2816050+1 847718 L129 2012 2924 553*2^2815596+1 847582 L4980 2019 2925 1071*2^2814469+1 847243 L3035 2019 2926 105*2^2813000+1 846800 L3200 2015 2927 1115*2^2812911+1 846774 L1125 2019 2928 96*10^846519-1 846521 L2425 2011 Near-repdigit 2929 763*2^2811726+1 846417 L3919 2019 2930 1125*2^2811598+1 846379 L4981 2019 2931 891*2^2810100+1 845928 L4981 2019 2932 441*2^2809881+1 845862 L4980 2019 2933 711*2^2808473+1 845438 L1502 2019 2934 1089*2^2808231+1 845365 L4687 2019 2935 63*2^2807130+1 845033 L3262 2013 2936 1083*2^2806536+1 844855 L3035 2019 2937 675*2^2805669+1 844594 L1932 2019 2938 819*2^2805389+1 844510 L3372 2019 2939 1027*2^2805222+1 844459 L3035 2019 2940 437*2^2803775+1 844024 L3168 2019 2941 381*2^2801281-1 843273 L2257 2023 2942 4431*372^327835-1 842718 L5410 2019 2943 150344*5^1205508-1 842620 L3547 2013 2944 311*2^2798459+1 842423 L4970 2019 2945 81*2^2797443-1 842117 L3887 2021 2946 400254*127^400254+1 842062 g407 2013 Generalized Cullen 2947 2639850^131072+1 841690 L4249 2016 Generalized Fermat 2948 43*2^2795582+1 841556 L2842 2013 2949 1001*2^2794357+1 841189 L1675 2019 2950 117*2^2794014+1 841085 L1741 2015 2951 1057*2^2792700+1 840690 L1675 2019 2952 345*2^2792269+1 840560 L1754 2019 2953 711*2^2792072+1 840501 L4256 2019 2954 315*2^2791414-1 840302 L2235 2021 2955 973*2^2789516+1 839731 L3372 2019 2956 27602*3^1759590+1 839543 L4064 2021 2957 2187*2^2786802+1 838915 L1745 2019 2958 15*2^2785940+1 838653 p286 2012 2959 333*2^2785626-1 838560 L802 2021 2960 1337*2^2785444-1 838506 L4518 2017 2961 711*2^2784213+1 838135 L4687 2019 2962 58582*91^427818+1 838118 L5410 2020 2963 923*2^2783153+1 837816 L1675 2019 2964 1103*2^2783149+1 837815 L3784 2019 2965 485*2^2778151+1 836310 L1745 2019 2966 600921*2^2776014-1 835670 g337 2017 2967 1129*2^2774934+1 835342 L1774 2019 2968 750*1017^277556-1 834703 L4955 2021 2969 8700*241^350384-1 834625 L5410 2019 2970 1023*2^2772512+1 834613 L4724 2019 2971 656*249^348030+1 833953 L5410 2019 2972 92*10^833852-1 833854 L4789 2018 Near-repdigit 2973 437*2^2769299+1 833645 L3760 2019 2974 967*2^2768408+1 833377 L3760 2019 2975 2280466^131072+1 833359 L4201 2016 Generalized Fermat 2976 1171*2^2768112+1 833288 L2676 2019 2977 57*2^2765963+1 832640 L3262 2013 2978 1323*2^2764024+1 832058 L1115 2019 2979 77*2^2762047+1 831461 L3430 2013 2980 745*2^2761514+1 831302 L1204 2019 2981 2194180^131072+1 831164 L4276 2016 Generalized Fermat 2982 7*10^830865+1 830866 p342 2014 2983 893*2^2758841+1 830497 L4826 2019 2984 537*2^2755164+1 829390 L3035 2019 2985 579*2^2754370+1 829151 L1823 2019 2986 441*2^2754188+1 829096 L2564 2019 Generalized Fermat 2987b 677*792^285769-1 828369 L541 2023 2988 215*2^2751022-1 828143 L2484 2018 2989 337*2^2750860+1 828094 L4854 2019 2990 701*2^2750267+1 827916 L3784 2019 2991 467*2^2749195+1 827593 L1745 2019 2992 245*2^2748663+1 827433 L3173 2015 2993 591*2^2748315+1 827329 L3029 2019 2994 57*2^2747499+1 827082 L3514 2013 Divides Fermat F(2747497) 2995 1007*2^2747268-1 827014 L4518 2022 2996 1089*2^2746155+1 826679 L2583 2019 2997 707*2^2745815+1 826576 L3760 2019 2998 459*2^2742310+1 825521 L4582 2019 2999 777*2^2742196+1 825487 L3919 2019 3000 609*2^2741078+1 825150 L3091 2019 3001 684*157^375674+1 824946 L5112 2022 3002 639*2^2740186+1 824881 L4958 2019 3003 905*2^2739805+1 824767 L4958 2019 3004 119*954^276761+1 824625 L5410 2022 3005 1955556^131072+1 824610 L4250 2015 Generalized Fermat 3006 777*2^2737282+1 824007 L1823 2019 3007 765*2^2735232+1 823390 L1823 2019 3008 609*2^2735031+1 823330 L1823 2019 3009 305*2^2733989+1 823016 L1823 2019 3010 165*2^2732983+1 822713 L1741 2015 3011 1133*2^2731993+1 822415 L4687 2019 3012 251*2^2730917+1 822091 L3924 2015 3013 1185*2^2730620+1 822002 L4948 2019 3014 (10^410997+1)^2-2 821995 p405 2022 3015 173*2^2729905+1 821786 L3895 2015 3016 1981*2^2728877-1 821478 L1134 2018 3017 693*2^2728537+1 821375 L3035 2019 3018 501*2^2728224+1 821280 L3035 2019 3019 763*2^2727928+1 821192 L3924 2019 3020 10*743^285478+1 819606 L4955 2019 3021 17*2^2721830-1 819354 p279 2010 3022 1006*639^291952+1 819075 L4444 2021 3023 1101*2^2720091+1 818833 L4935 2019 3024 1766192^131072+1 818812 L4231 2015 Generalized Fermat 3025 165*2^2717378-1 818015 L2055 2012 3026 68633*2^2715609+1 817485 L5105 2020 3027 1722230^131072+1 817377 L4210 2015 Generalized Fermat 3028 9574*5^1169232+1 817263 L5410 2021 3029 1717162^131072+1 817210 L4226 2015 Generalized Fermat 3030 133*2^2713410+1 816820 L3223 2015 3031 45*2^2711732+1 816315 L1349 2012 3032 569*2^2711451+1 816231 L4568 2019 3033 12830*3^1709456+1 815622 L5410 2021 3034 335*2^2708958-1 815481 L2235 2020 3035 93*2^2708718-1 815408 L1862 2016 3036 1660830^131072+1 815311 L4207 2015 Generalized Fermat 3037 837*2^2708160+1 815241 L4314 2019 3038 1005*2^2707268+1 814972 L4687 2019 3039 13*458^306196+1 814748 L3610 2015 3040 253*2^2705844+1 814543 L4083 2015 3041 657*2^2705620+1 814476 L4907 2019 3042 39*2^2705367+1 814399 L1576 2013 Divides GF(2705360,3) 3043 303*2^2703864+1 813947 L1204 2019 3044 141*2^2702160+1 813434 L1741 2015 3045 753*2^2701925+1 813364 L4314 2019 3046 133*2^2701452+1 813221 L3173 2015 3047 521*2^2700095+1 812813 L4854 2019 3048 393*2^2698956+1 812470 L1823 2019 3049 417*2^2698652+1 812378 L3035 2019 3050 525*2^2698118+1 812218 L1823 2019 3051 3125*2^2697651+1 812078 L3924 2019 3052 153*2^2697173+1 811933 L3865 2015 3053 1560730^131072+1 811772 L4201 2015 Generalized Fermat 3054 26*3^1700041+1 811128 L4799 2020 3055 Phi(3,-1538654^65536) 810961 L4561 2017 Generalized unique 3056 11*2^2691961+1 810363 p286 2013 Divides GF(2691960,12) 3057 58*536^296735-1 809841 L5410 2021 3058 33016*3^1696980+1 809670 L5366 2021 3059 7335*2^2689080-1 809498 L4036 2015 3060 1049*2^2688749+1 809398 L4869 2018 3061b 120*957^271487-1 809281 L541 2023 3062 329*2^2688221+1 809238 L3035 2018 3063 865*2^2687434+1 809002 L4844 2018 3064 989*2^2686591+1 808748 L2805 2018 3065 136*904^273532+1 808609 L5410 2020 3066 243*2^2685873+1 808531 L3865 2015 3067 909*2^2685019+1 808275 L3431 2018 3068 1455*2^2683954-6325241166627*2^1290000-1 807954 p423 2021 Arithmetic progression (3,d=1455*2^2683953-6325241166627*2^1290000) 3069 1455*2^2683953-1 807954 L1134 2020 3070 11210*241^339153-1 807873 L5410 2019 3071 Phi(3,-1456746^65536) 807848 L4561 2017 Generalized unique 3072 975*2^2681840+1 807318 L4155 2018 3073 999*2^2681353-1 807171 L4518 2022 3074 295*2^2680932+1 807044 L1741 2015 3075 Phi(3,-1427604^65536) 806697 L4561 2017 Generalized unique 3076 575*2^2679711+1 806677 L2125 2018 3077 2386*52^469972+1 806477 L4955 2019 3078a 2778*991^269162+1 806433 p433 2023 3079 10*80^423715-1 806369 p247 2023 3080 219*2^2676229+1 805628 L1792 2015 3081 637*2^2675976+1 805552 L3035 2018 3082 Phi(3,-1395583^65536) 805406 L4561 2017 Generalized unique 3083 951*2^2674564+1 805127 L1885 2018 3084 1372930^131072+1 804474 g236 2003 Generalized Fermat 3085 662*1009^267747-1 804286 L5410 2020 3086 261*2^2671677+1 804258 L3035 2015 3087 895*2^2671520+1 804211 L3035 2018 3088 1361244^131072+1 803988 g236 2004 Generalized Fermat 3089 789*2^2670409+1 803877 L3035 2018 3090 256*11^771408+1 803342 L3802 2014 Generalized Fermat 3091 503*2^2668529+1 803310 L4844 2018 3092 255*2^2668448+1 803286 L1129 2015 3093 4189*2^2666639-1 802742 L1959 2017 3094 539*2^2664603+1 802129 L4717 2018 3095 3^1681130+3^445781+1 802103 CH9 2022 3096 26036*745^279261-1 802086 L4189 2020 3097 1396*5^1146713-1 801522 L3547 2013 3098 676*687^282491-1 801418 L5426 2023 3099 267*2^2662090+1 801372 L3234 2015 Divides Fermat F(2662088) 3100 51*892^271541+1 801147 L5410 2019 3101 297*2^2660048+1 800757 L3865 2015 3102 99*2^2658496-1 800290 L1862 2021 3103 851*2^2656411+1 799663 L4717 2018 3104 487*2^2655008+1 799240 L3760 2018 3105 371*2^2651663+1 798233 L3760 2018 3106 69*2^2649939-1 797713 L3764 2014 3107 207*2^2649810+1 797675 L1204 2015 3108 505*2^2649496+1 797581 L3760 2018 3109 993*2^2649256+1 797509 L3760 2018 3110 517*2^2648698+1 797341 L3760 2018 3111 340*703^280035+1 797250 L4001 2018 3112 441*2^2648307+1 797223 L3760 2018 3113 1129*2^2646590+1 796707 L3760 2018 3114 128*518^293315+1 796156 L4001 2019 3115 211*744^277219-1 796057 L5410 2021 3116 Phi(3,-1181782^65536) 795940 L4142 2015 Generalized unique 3117 1176694^131072+1 795695 g236 2003 Generalized Fermat 3118 13*2^2642943-1 795607 L1862 2012 3119 119*410^304307+1 795091 L4294 2019 3120 501*2^2641052+1 795039 L3035 2018 3121 879*2^2639962+1 794711 L3760 2018 3122 57*2^2639528-1 794579 L2484 2016 3123 342673*2^2639439-1 794556 L53 2007 3124 813*2^2639092+1 794449 L2158 2018 3125 Phi(3,-1147980^65536) 794288 L4142 2015 Generalized unique 3126 197*972^265841-1 794247 L4955 2022 3127 1027*2^2638186+1 794177 L3760 2018 3128 889*2^2637834+1 794071 L3545 2018 3129 92182*5^1135262+1 793520 L3547 2013 3130 5608*70^429979+1 793358 L5390 2021 3131 741*2^2634385+1 793032 L1204 2018 3132 465*2^2630496+1 791861 L1444 2018 3133 189*2^2630487+1 791858 L3035 2015 3134 87*2^2630468+1 791852 L3262 2013 3135 4*5^1132659-1 791696 L4965 2022 3136 1131*2^2629345+1 791515 L4826 2018 3137 967*2^2629344+1 791515 L3760 2018 3138 267*2^2629210+1 791474 L3035 2015 3139 154*883^268602+1 791294 L5410 2020 3140 819*2^2627529+1 790968 L1387 2018 3141 17152*5^1131205-1 790683 L3552 2013 3142 183*2^2626442+1 790641 L3035 2015 3143 813*2^2626224+1 790576 L4830 2018 3144 807*2^2625044+1 790220 L1412 2018 3145 1063730^131072+1 789949 g260 2013 Generalized Fermat 3146 1243*2^2623707-1 789818 L1828 2011 3147 693*2^2623557+1 789773 L3278 2018 3148 981*2^2622032+1 789314 L1448 2018 3149 145*2^2621020+1 789008 L3035 2015 3150 963*792^271959-1 788338 L5410 2021 3151 541*2^2614676+1 787099 L4824 2018 3152 (10^393063-1)^2-2 786126 p405 2022 Near-repdigit 3153 1061*268^323645-1 785857 L5410 2019 3154 1662*483^292719-1 785646 L5410 2022 3155 Phi(3,-984522^65536) 785545 p379 2015 Generalized unique 3156 1071*2^2609316+1 785486 L3760 2018 3157 87*2^2609046+1 785404 L2520 2013 3158 18922*111^383954+1 785315 L4927 2021 3159 543*2^2608129+1 785128 L4822 2018 3160 377*2^2607856-1 785046 L2257 2023 3161 329584*5^1122935-1 784904 L3553 2013 3162 10*311^314806+1 784737 L3610 2014 3163 1019*2^2606525+1 784646 L1201 2018 3164 977*2^2606211+1 784551 L4746 2018 3165 13*2^2606075-1 784508 L1862 2011 3166 693*2^2605905+1 784459 L4821 2018 3167 147*2^2604275+1 783968 L1741 2015 3168 105*2^2603631+1 783774 L3459 2015 3169 93*2^2602483-1 783428 L1862 2016 3170 155*2^2602213+1 783347 L2719 2015 3171a 545*2^2602018-1 783289 L5516 2023 3172 303*2^2601525+1 783140 L4816 2018 3173 711*2^2600535+1 782842 L4815 2018 3174 1133*2^2599345+1 782484 L4796 2018 3175 397*2^2598796+1 782319 L3877 2018 3176a 421*2^2597273-1 781860 L5516 2023 3177a 585*2^2596523-1 781635 L5819 2023 3178 1536*177^347600+1 781399 L5410 2020 3179 1171*2^2595736+1 781398 L3035 2018 3180 (146^180482+1)^2-2 781254 p405 2022 3181a 579*2^2595159-1 781224 L5516 2023 3182a 543*2^2594975-1 781169 L5516 2023 3183 909548^131072+1 781036 p387 2015 Generalized Fermat 3184 2*218^333925+1 780870 L4683 2017 3185e 15690*841^266965+1 780823 L5787 2023 3186 1149*2^2593359+1 780682 L1125 2018 3187 225*2^2592918+1 780549 L1792 2015 Generalized Fermat 3188a 495*2^2592802-1 780514 L5516 2023 3189 333*2^2591874-1 780235 L2017 2019 3190 Phi(3,-883969^65536) 779412 p379 2015 Generalized unique 3191 2154*687^274573-1 778956 L5752 2023 3192 Phi(3,-872989^65536) 778700 p379 2015 Generalized unique 3193 703*2^2586728+1 778686 L4256 2018 3194 2642*372^302825-1 778429 L5410 2019 3195 120*825^266904+1 778416 L4001 2018 3196 337*2^2585660+1 778364 L2873 2018 3197 31*2^2585311-1 778258 L4521 2022 3198 393*2^2584957+1 778153 L4600 2018 3199 151*2^2584480+1 778009 L4043 2015 3200 Phi(3,-862325^65536) 778001 p379 2015 Generalized unique 3201 385*2^2584280+1 777949 L4600 2018 3202 Phi(3,-861088^65536) 777919 p379 2015 Generalized unique 3203 65*2^2583720-1 777780 L2484 2015 3204 25*2^2583690+1 777770 L3249 2013 Generalized Fermat 3205 82*920^262409-1 777727 L4064 2015 3206 1041*2^2582112+1 777297 L1456 2018 3207 334310*211^334310-1 777037 p350 2012 Generalized Woodall 3208 229*2^2581111-1 776995 L1862 2017 3209 61*2^2580689-1 776867 L2484 2015 3210 1113*2^2580205+1 776723 L4724 2018 3211 51*2^2578652+1 776254 L3262 2013 3212 173*2^2578197+1 776117 L3035 2015 3213 833*2^2578029+1 776067 L4724 2018 3214 80*394^298731-1 775358 L541 2020 3215 302*423^295123-1 775096 L5413 2021 3216 460*628^276994+1 775021 L5410 2020 3217 459*2^2573899+1 774824 L1204 2018 3218b 593*2^2572634-1 774443 L5516 2023 3219 Phi(3,-806883^65536) 774218 p379 2015 Generalized unique 3220 357*2^2568110-1 773081 L2257 2023 3221 627*2^2567718+1 772963 L3803 2018 3222 933*2^2567598+1 772927 L4724 2018 3223 757*2^2566468+1 772587 L2606 2018 3224b 471*2^2566323-1 772543 L5516 2023 3225 231*2^2565263+1 772224 L3035 2015 3226 4*737^269302+1 772216 L4294 2016 Generalized Fermat 3227 941*2^2564867+1 772105 L4724 2018 3228 923*2^2563709+1 771757 L1823 2018 3229 151*596^278054+1 771671 L4876 2019 3230 Phi(3,-770202^65536) 771570 p379 2015 Generalized unique 3231 303*2^2562423-1 771369 L2017 2018 3232 75*2^2562382-1 771356 L2055 2011 3233 147559*2^2562218+1 771310 L764 2012 3234 117*412^294963+1 771300 p268 2021 3235 829*2^2561730+1 771161 L1823 2018 3236 404*12^714558+1 771141 L1471 2011 3237 Phi(3,-757576^65536) 770629 p379 2015 Generalized unique 3238 295*80^404886+1 770537 L5410 2021 3239 1193*2^2559453+1 770476 L2030 2018 3240 19*984^257291+1 770072 L5410 2020 3241 116*950^258458-1 769619 L5410 2021 3242e 612497*18^612497+1 768857 L5765 2023 Generalized Cullen 3243 Phi(3,-731582^65536) 768641 p379 2015 Generalized unique 3244b 479*2^2553152-1 768579 L5516 2023 3245 65*752^267180-1 768470 L5410 2020 3246 419*2^2552363+1 768341 L4713 2018 3247 369*2^2551955-1 768218 L2257 2023 3248 34*759^266676-1 768093 L4001 2019 3249 315*2^2550412+1 767754 L4712 2017 3250 415*2^2549590+1 767506 L4710 2017 3251 1152*792^264617-1 767056 L4955 2021 3252 693*2^2547752+1 766953 L4600 2017 3253 673*2^2547226+1 766795 L2873 2017 3254 169*2^2545526+1 766282 L2125 2015 Divides GF(2545525,10), generalized Fermat 3255 196*814^263256+1 766242 L5410 2021 Generalized Fermat 3256 183*2^2545116+1 766159 L3035 2015 3257 311*2^2544778-1 766058 L2017 2018 3258 9*2^2543551+1 765687 L1204 2011 Divides Fermat F(2543548), GF(2543549,3), GF(2543549,6), GF(2543549,12) 3259 67*446^288982+1 765612 L4273 2020 3260 663*2^2542990+1 765520 L4703 2017 3261 705*2^2542464+1 765361 L2873 2017 3262 689186^131072+1 765243 g429 2013 Generalized Fermat 3263 745*2^2540726+1 764838 L4696 2017 3264 Phi(3,-682504^65536) 764688 p379 2015 Generalized unique 3265 64*177^340147-1 764644 L3610 2015 3266 421*2^2539336+1 764419 L4148 2017 3267 123287*2^2538167+1 764070 L3054 2012 3268 305716*5^1093095-1 764047 L3547 2013 3269 223*2^2538080+1 764041 L2125 2015 3270 83*2^2537641+1 763908 L1300 2013 3271 543539*2^2536028-1 763427 L4187 2022 3272b 473*2^2533376-1 762625 L5516 2023 3273 645*2^2532811+1 762455 L4600 2017 3274 953*2^2531601+1 762091 L4404 2017 3275 694*567^276568-1 761556 L4444 2021 3276 545*2^2528179+1 761061 L1502 2017 3277c 517*2^2527857-1 760964 L5516 2023 3278 203*2^2526505+1 760557 L3910 2015 3279 967*2^2526276+1 760488 L1204 2017 3280 3317*2^2523366-1 759613 L5399 2021 3281 241*2^2522801-1 759442 L2484 2018 3282 360307*6^975466-1 759066 p255 2017 3283 326*80^398799+1 758953 L4444 2021 3284 749*2^2519457+1 758436 L1823 2017 3285 199*2^2518871-1 758259 L2484 2018 3286 6*10^758068+1 758069 L5009 2019 3287 87*2^2518122-1 758033 L2484 2014 3288c 515*2^2517626-1 757884 L5516 2023 3289 Phi(3,-605347^65536) 757859 p379 2015 Generalized unique 3290 711*2^2516187+1 757451 L3035 2017 3291 967*2^2514698+1 757003 L4600 2017 3292 33*2^2513872-1 756753 L3345 2013 3293 973*2^2511920+1 756167 L1823 2017 3294 679*2^2511814+1 756135 L4598 2017 3295 1093*2^2511384+1 756005 L1823 2017 3296 38*875^256892-1 755780 L4001 2019 3297 45*2^2507894+1 754953 L1349 2012 3298 130484*5^1080012-1 754902 L3547 2013 3299 572186^131072+1 754652 g0 2004 Generalized Fermat 3300 242*501^279492-1 754586 L4911 2019 3301 883*2^2506382+1 754500 L1823 2017 3302 847*2^2505540+1 754246 L4600 2017 3303 191*2^2504121+1 753818 L3035 2015 3304 783*2^2500912+1 752853 L1823 2017 3305d 133*488^279973-1 752688 L541 2023 3306 165*2^2500130-1 752617 L2055 2011 3307 33*2^2499883-1 752542 L3345 2013 3308 319*2^2498685-1 752182 L2017 2018 3309c 477*2^2496685-1 751580 L5516 2023 3310 321*2^2496594-1 751553 L2235 2018 3311c 531*2^2495930-1 751353 L5516 2023 3312 365*2^2494991+1 751070 L3035 2017 3313 213*2^2493004-1 750472 L1863 2017 3314 777*2^2492560+1 750339 L3035 2017 3315 57*2^2492031+1 750178 L1230 2013 3316 879*2^2491342+1 749972 L4600 2017 3317 14*152^343720-1 749945 L3610 2015 3318 231*2^2489083+1 749292 L3035 2015 3319 255*2^2488562+1 749135 L3035 2015 3320c 483*2^2488154-1 749012 L5516 2023 3321 708*48^445477-1 748958 L5410 2022 3322 221*780^258841-1 748596 L4001 2018 3323 303*2^2486629+1 748553 L3035 2017 3324 6*433^283918-1 748548 L3610 2015 3325c 413*2^2486596-1 748543 L5516 2023 3326 617*2^2485919+1 748339 L1885 2017 3327 515*2^2484885+1 748028 L3035 2017 3328 1095*2^2484828+1 748011 L3035 2017 3329 1113*2^2484125+1 747800 L3035 2017 3330 607*2^2483616+1 747646 L3035 2017 3331 625*2^2483272+1 747543 L2487 2017 Generalized Fermat 3332c 527*2^2482876-1 747423 L5516 2023 3333 723*2^2482064+1 747179 L3035 2017 3334 2154*687^263317-1 747023 L5410 2023 3335 26*3^1565545+1 746957 L4799 2020 3336 14336*3^1563960+1 746203 L5410 2021 3337 3*2^2478785+1 746190 g245 2003 Divides Fermat F(2478782), GF(2478782,3), GF(2478776,6), GF(2478782,12) 3338c 483*2^2478266-1 746036 L5516 2023 3339c 429*2^2478139-1 745997 L5516 2023 3340 1071*2^2477584+1 745831 L3035 2017 3341 22*30^504814-1 745673 p355 2014 3342 2074*483^277812-1 745637 L5410 2022 3343 11*2^2476839+1 745604 L2691 2011 3344 825*2^2474996+1 745051 L1300 2017 3345 1061*2^2474282-1 744837 L1828 2012 3346 435*2^2473905+1 744723 L3035 2017 3347 1005*2^2473724-1 744669 L4518 2021 3348 1121*2^2473401+1 744571 L3924 2017 3349 325*2^2473267-1 744531 L2017 2018 3350 400*639^265307-1 744322 L5410 2022 3351 11996*3^1559395+1 744025 L5410 2021 3352 889*2^2471082+1 743873 L1300 2017 3353 529*2^2470514+1 743702 L3924 2017 Generalized Fermat 3354d 561*2^2469713-1 743461 L5516 2023 3355 883*2^2469268+1 743327 L4593 2017 3356 5754*313^297824-1 743237 L5089 2020 3357 81*2^2468789+1 743182 g418 2009 3358 55154*5^1063213+1 743159 L3543 2013 3359 119*2^2468556-1 743112 L2484 2018 3360 2136*396^285974+1 742877 L5410 2021 3361 525*2^2467658+1 742842 L3035 2017 3362d 465*2^2467625-1 742832 L5516 2023 3363 715*2^2465640+1 742235 L3035 2017 3364 26773*2^2465343-1 742147 L197 2006 3365 581*550^270707-1 741839 L5410 2020 3366 993*2^2464082+1 741766 L3035 2017 3367 1179*2^2463746+1 741665 L3035 2017 3368 857*2^2463411+1 741564 L3662 2017 3369 103*2^2462567-1 741309 L2484 2014 3370 12587*2^2462524-1 741298 L2012 2017 3371 5*2^2460482-1 740680 L503 2008 3372 763*2^2458592+1 740113 L1823 2017 3373 453*2^2458461+1 740074 L3035 2017 3374 519*2^2458058+1 739952 L3803 2017 3375 373*2^2457859-1 739892 L2257 2023 3376d 545*2^2457692-1 739842 L5516 2023 3377 137*2^2457639+1 739826 L4021 2014 3378d 411*2^2457241-1 739706 L5516 2023 3379 41676*7^875197-1 739632 L2777 2012 Generalized Woodall 3380 2688*991^246849+1 739582 L5410 2021 3381 133*2^2455666+1 739232 L2322 2014 3382 99*2^2455541-1 739194 L1862 2015 3383 377*2^2452639+1 738321 L3035 2017 3384 2189*138^345010+1 738284 L5410 2020 3385 1129*2^2452294+1 738218 L3035 2017 3386 1103*2^2451133+1 737868 L4531 2017 3387 65*2^2450614-1 737711 L2074 2014 3388 549*2^2450523+1 737684 L3035 2017 3389 4*789^254595+1 737582 L4955 2019 3390 3942*55^423771-1 737519 L4955 2019 3391d 441*2^2449825-1 737474 L5516 2023 3392b Phi(3,-3*2^1224895) 737462 A3 2023 Generalized unique 3393 2166*483^274670-1 737204 L5410 2022 3394 765*2^2448660+1 737123 L4412 2017 3395 607*2^2447836+1 736875 L4523 2017 3396 1261*988^246031+1 736807 L5342 2021 3397 1005*2^2446722+1 736540 L4522 2017 3398 703*2^2446472+1 736465 L2805 2017 3399 75*2^2446050+1 736337 L3035 2013 3400 115*26^520277-1 736181 L1471 2014 3401 114986*5^1052966-1 735997 L3528 2013 3402 1029*2^2444707+1 735934 L3035 2017 3403 4*5^1052422+1 735613 L4965 2023 Generalized Fermat 3404 1035*2^2443369+1 735531 L3173 2017 3405 1017*2^2442723+1 735336 L4417 2017 3406d 489*2^2442281-1 735203 L5516 2023 3407 962*3^1540432+1 734976 L5410 2021 3408 1065*2^2441132+1 734857 L1823 2017 3409 369*2^2436949-1 733598 L2257 2023 3410 393*2^2436849+1 733568 L3035 2016 3411 1425*2^2435607-1 733194 L1134 2020 3412 386892^131072+1 732377 p259 2009 Generalized Fermat 3413 465*2^2431455+1 731944 L3035 2016 3414 905*2^2430509+1 731660 L4408 2016 3415 223*2^2430490+1 731653 L4016 2014 3416 8*410^279991+1 731557 L4700 2019 3417 69*2^2428251-1 730979 L384 2014 3418 6070*466^273937+1 730974 L5410 2021 3419d 541*2^2427667-1 730804 L5516 2023 3420 233*2^2426512-1 730456 L2484 2020 3421 645*2^2426494+1 730451 L3035 2016 3422 665*2^2425789+1 730239 L3173 2016 3423d 539*2^2425704-1 730213 L5516 2023 3424 23*2^2425641+1 730193 L2675 2011 3425d 527*2^2424868-1 729961 L5516 2023 3426 361*2^2424232+1 729770 L3035 2016 Generalized Fermat 3427e 433*2^2423839-1 729651 L5516 2023 3428 753*2^2422914+1 729373 L3035 2016 3429 5619*52^424922+1 729172 L5410 2019 3430 105*2^2422105+1 729129 L2520 2014 3431 62*962^244403+1 729099 L5409 2021 3432 3338*396^280633+1 729003 L5410 2021 3433e 539*2^2421556-1 728964 L5516 2023 3434 201*2^2421514-1 728951 L1862 2016 3435 1084*7^862557+1 728949 L5211 2021 3436 239*2^2421404-1 728918 L2484 2018 3437 577*2^2420868+1 728757 L4489 2016 3438 929*2^2417767+1 727824 L3924 2016 3439 4075*2^2417579-1 727768 L1959 2017 3440 303*2^2417452-1 727729 L2235 2018 3441 895*2^2417396+1 727712 L3035 2016 3442d 113*1010^242194-1 727631 L5789 2023 3443 1764*327^289322+1 727518 L5410 2020 Generalized Fermat 3444 3317*2^2415998-1 727292 L5399 2021 3445 5724*313^291243-1 726814 L4444 2020 3446 1081*2^2412780+1 726323 L1203 2016 3447 333*2^2412735-1 726309 L2017 2018 3448 6891*52^423132+1 726100 L5410 2019 3449 83*2^2411962-1 726075 L1959 2018 3450 69*2^2410035-1 725495 L2074 2013 3451 12362*1027^240890-1 725462 L4444 2018 3452 143157*2^2409056+1 725204 L4504 2016 3453 Phi(3,-340594^65536) 725122 p379 2015 Generalized unique 3454 339*2^2408337+1 724985 L3029 2016 3455 811*2^2408096+1 724913 L2526 2016 3456 157*2^2407958+1 724870 L1741 2014 3457 243686*5^1036954-1 724806 L3549 2013 3458 3660*163^327506+1 724509 L4955 2019 3459 303*2^2406433+1 724411 L4425 2016 3460 345*2^2405701+1 724191 L3035 2016 3461 921*2^2405056+1 723997 L2805 2016 3462 673*2^2403606+1 723561 L3035 2016 3463 475*2^2403220+1 723444 L4445 2016 3464 837*2^2402798+1 723318 L3372 2016 3465 Phi(3,-329886^65536) 723303 p379 2015 Generalized unique 3466 231*2^2402748+1 723302 L3995 2014 3467 375*2^2401881+1 723041 L2805 2016 3468e 511*2^2401795-1 723016 L5516 2023 3469 107*2^2401731+1 722996 L3998 2014 3470e 419*2^2401672-1 722978 L5516 2023 3471 1023*2^2398601+1 722054 L4414 2016 3472 539*2^2398227+1 721941 L4061 2016 3473 659*2^2397567+1 721743 L4441 2016 3474 40*844^246524+1 721416 L4001 2017 3475e 453*2^2395836-1 721222 L5516 2023 3476 465*2^2395133+1 721010 L4088 2016 3477 56*318^288096+1 720941 L1471 2019 3478 667*2^2394430+1 720799 L4408 2016 3479 15*2^2393365+1 720476 L1349 2010 3480 1642*273^295670+1 720304 L5410 2019 3481 8*908^243439+1 720115 L5410 2021 3482e 427*2^2391685-1 719972 L5516 2023 3483 633*2^2391222+1 719833 L3743 2016 3484 273*2^2388104+1 718894 L3668 2014 3485 118*558^261698+1 718791 L4877 2019 3486 1485*2^2386037-1 718272 L1134 2017 3487 399*2^2384115+1 717693 L4412 2016 3488 99*2^2383846+1 717612 L1780 2013 3489 737*2^2382804-1 717299 L191 2007 3490 111*2^2382772+1 717288 L3810 2014 3491e 423*2^2382134-1 717097 L2519 2023 3492 61*2^2381887-1 717022 L2432 2012 3493 202*249^299162+1 716855 L5410 2019 3494 321*2^2378535-1 716013 L2017 2018 3495 435*2^2378522+1 716010 L1218 2016 3496 4*3^1499606+1 715495 L4962 2020 Generalized Fermat 3497 147*2^2375995+1 715248 L1130 2014 3498 915*2^2375923+1 715228 L1741 2016 3499 1981*2^2375591-1 715128 L1134 2017 3500 81*2^2375447-1 715083 L3887 2021 3501 1129*2^2374562+1 714818 L3035 2016 3502 97*2^2374485-1 714794 L2484 2018 3503 1117*2^2373977-1 714642 L1828 2012 3504 949*2^2372902+1 714318 L4408 2016 3505 1005*2^2372754-1 714274 L4518 2021 3506 659*2^2372657+1 714244 L3035 2016 3507 1365*2^2372586+1 714223 L1134 2016 3508 509*2^2370721+1 713661 L1792 2016 3509 99*2^2370390+1 713561 L1204 2013 3510 959*2^2370077+1 713468 L1502 2016 3511 1135*2^2369808+1 713387 L2520 2016 3512 125*2^2369461+1 713281 L3035 2014 3513f 475*2^2369411-1 713267 L5516 2023 3514 1183953*2^2367907-1 712818 L447 2007 Woodall 3515 57671892869766803925...(712708 other digits)...06520121133805600769 712748 p360 2013 3516 119878*5^1019645-1 712707 L3528 2013 3517 453*2^2367388+1 712658 L3035 2016 3518 150209!+1 712355 p3 2011 Factorial 3519 281*2^2363327+1 711435 L1741 2014 3520 2683*2^2360743-1 710658 L1959 2012 3521 409*2^2360166+1 710484 L1199 2016 3522f 465*2^2360088-1 710460 L5516 2023 3523f 561*2^2359543-1 710296 L5516 2023 3524 305*2^2358854-1 710089 L2017 2018 3525 1706*123^339764+1 710078 L5410 2021 3526 403*2^2357572+1 709703 L3029 2016 3527 155*2^2357111+1 709564 L3975 2014 3528f 523*2^2356047-1 709244 L2519 2023 3529 365*2^2355607+1 709111 L2117 2016 3530 33706*6^910462+1 708482 L587 2014 3531f 423*2^2353447-1 708461 L5516 2023 3532 1087*2^2352830+1 708276 L1492 2016 3533 152*1002^235971+1 708120 L5410 2019 3534 179*2^2352291+1 708113 L1741 2014 3535 559*2^2351894+1 707994 L3924 2016 3536 24573*2^2350824+1 707673 p168 2018 3537 1035*2^2350388+1 707541 L2526 2016 3538f 513*2^2348508-1 706975 L5516 2023 3539 433*2^2348252+1 706897 L2322 2016 3540 329*2^2348105+1 706853 L3029 2016 3541 45*2^2347187+1 706576 L1349 2012 3542 7675*46^424840+1 706410 L5410 2019 3543 127*2^2346377-1 706332 L282 2009 3544 933*2^2345893+1 706188 L3035 2016 3545 903*2^2345013+1 705923 L2006 2016 3546 33*2^2345001+1 705918 L2322 2013 3547 Phi(3,-242079^65536) 705687 p379 2015 Generalized unique 3548f 495*2^2343641-1 705509 L5516 2023 3549 627*2^2343140+1 705359 L3125 2016 3550 83*2^2342345+1 705119 L2626 2013 3551d 914*871^239796-1 705008 L5410 2023 3552 61*380^273136+1 704634 L5410 2019 3553 277*2^2340182+1 704468 L1158 2014 3554 159*2^2339566+1 704282 L3035 2014 3555 335*2^2338972-1 704104 L2235 2017 3556 535*2^2338971-1 704104 L2519 2023 3557 22*422^268038+1 703685 L4955 2019 3558 9602*241^295318-1 703457 L5410 2019 3559 1149*2^2336638+1 703402 L4388 2016 3560 339*2^2336421-1 703336 L2519 2017 3561 231*2^2335281-1 702992 L1862 2019 3562 275293*2^2335007-1 702913 L193 2006 3563 105*2^2334755-1 702834 L1959 2018 3564 228188^131072+1 702323 g124 2010 Generalized Fermat 3565 809*2^2333017+1 702312 L2675 2016 3566 795*2^2332488+1 702152 L3029 2016 3567 3^1471170-3^529291+1 701927 p269 2019 3568 351*2^2331311-1 701798 L2257 2023 3569 229*2^2331017-1 701709 L1862 2021 3570 118*761^243458+1 701499 L5410 2019 3571 435*2^2329948+1 701387 L2322 2016 3572 585*2^2329350+1 701207 L2707 2016 3573 213*2^2328530-1 700960 L1863 2017 3574 1482*327^278686+1 700773 L5410 2020 3575 26472*91^357645+1 700646 L5410 2020 3576 1107*2^2327472+1 700642 L3601 2016 3577 435*2^2327152+1 700546 L2337 2016 3578 413*2^2327048-1 700514 L5516 2023 3579 4161*2^2326875-1 700463 L1959 2016 3580 427*2^2326288+1 700286 L2719 2016 3581 438*19^547574-1 700215 L5410 2020 3582 147855!-1 700177 p362 2013 Factorial 3583 5872*3^1467401+1 700132 L4444 2021 3584 421*2^2324375-1 699710 L5516 2023 3585 451*2^2323952+1 699582 L3173 2016 3586 431*2^2323633+1 699486 L3260 2016 3587d 3084*871^237917-1 699484 L5790 2023 3588 228*912^236298-1 699444 L5366 2022 3589 1085*2^2323291+1 699384 L1209 2016 3590 15*2^2323205-1 699356 L2484 2011 3591 7566*46^420563+1 699299 L5410 2019 3592 1131*2^2322167+1 699045 L1823 2016 3593 385*2^2321502+1 698845 L1129 2016 3594 8348*3^1464571+1 698782 L5367 2021 3595 645*2^2320231+1 698462 L3377 2016 3596 1942*877^237267+1 698280 L5410 2022 3597 165*2^2319575+1 698264 L2627 2014 3598 809*2^2319373+1 698204 L3924 2016 3599 125098*6^896696+1 697771 L587 2014 3600 65536*5^997872+1 697488 L3802 2014 Generalized Fermat 3601 381*2^2314743+1 696810 L4358 2016 3602 120*825^238890+1 696714 L4837 2018 3603 3375*2^2314297+1 696677 L1745 2019 3604 4063*2^2313843-1 696540 L1959 2016 3605 345*2^2313720-1 696502 L2017 2017 3606 74*830^238594-1 696477 L5410 2020 3607 495*2^2313462-1 696425 L5545 2023 3608 926*639^248221-1 696388 L4444 2022 3609 361*2^2312832+1 696235 L3415 2016 Generalized Fermat 3610 1983*366^271591-1 696222 L2054 2012 3611 3*2^2312734-1 696203 L158 2005 3612 2643996*7^823543-1 695981 p396 2021 3613 53653*2^2311848+1 695941 L2012 2017 3614 873*2^2311086+1 695710 L2526 2016 3615 1033*2^2310976+1 695677 L4352 2016 3616 4063*2^2310187-1 695440 L1959 2016 3617 4063*2^2309263-1 695162 L1959 2016 3618 565*2^2308984+1 695077 L2322 2016 3619 447*2^2308104-1 694812 L5516 2023 3620 450457*2^2307905-1 694755 L172 2006 3621 1018*3^1455600+1 694501 L5410 2021 3622 553*2^2306343-1 694282 L5516 2023 3623 1185*2^2306324+1 694276 L4347 2016 3624 3267*2^2305266+1 693958 L1204 2019 3625 107*770^240408-1 693938 L4955 2020 3626 467*2^2304298-1 693666 L5516 2023 3627 537*2^2304115+1 693611 L3267 2016 3628 842*1017^230634-1 693594 L4001 2017 3629 729*2^2303162+1 693324 L1204 2016 Generalized Fermat 3630 641*2^2302879+1 693239 L2051 2016 3631 729*2^2300290+1 692460 L1204 2016 Generalized Fermat 3632 189*2^2299959+1 692359 L2627 2014 3633 2582*111^338032-1 691389 L4786 2021 3634 659*2^2294393+1 690684 L3378 2016 3635 1087*2^2293345-1 690369 L1828 2011 3636 97768*5^987383-1 690157 L1016 2013 3637 4761657101009*2^2292504-1 690126 L257 2019 3638 3*2^2291610+1 689844 L753 2008 Divides GF(2291607,3), GF(2291609,5) 3639 319*2^2290722+1 689579 L1792 2015 3640e 3066*697^242498-1 689482 L5410 2023 3641 779*2^2290273+1 689444 L3034 2016 3642 1001*2^2289438-1 689193 L4518 2020 3643 971*2^2289135+1 689102 L4198 2016 3644 399*2^2288691+1 688968 L1990 2015 3645 1425*2^2288483-1 688906 L1134 2021 3646 Phi(3,-180139^65536) 688864 p379 2015 Generalized unique 3647 74270*151^315734-1 687982 L4001 2018 3648 23902*52^400831+1 687832 L5410 2019 3649 417*2^2284402+1 687677 L2322 2015 3650 130*686^242244+1 687085 L4064 2018 3651 427*2^2282080+1 686978 L3260 2015 3652 109*2^2280194+1 686409 L2520 2014 3653 105*2^2280078-1 686374 L2444 2014 3654 1019*2^2278467+1 685890 L4323 2016 3655 213*2^2277870-1 685710 L1863 2017 3656 904*957^229937-1 685425 L5410 2022 3657 547*2^2276648+1 685343 L3260 2015 3658 26*3^1435875+1 685088 L4799 2020 3659 7913*2^2275664-1 685048 L4036 2015 3660 5*6^880336+1 685036 p420 2023 3661 651*2^2275040+1 684859 L4082 2016 3662 155877*2^2273465-1 684387 L541 2014 3663 16*710^240014+1 684344 L5410 2019 Generalized Fermat 3664 739*2^2272938+1 684226 L1209 2016 3665 279*798^235749-1 684147 L541 2021 3666 4821*396^263301+1 683980 L5410 2021 3667 (362^133647+1)^2-2 683928 p403 2019 3668 943*2^2269594+1 683219 L1823 2016 3669 493*2^2269427-1 683169 L5516 2023 3670 182*792^235539+1 682766 L4837 2019 3671 1286*603^245567+1 682758 L4444 2019 3672 50*893^231310-1 682564 L4975 2019 3673 329*2^2266631+1 682327 L4109 2015 3674 739*2^2266602+1 682319 L2520 2016 3675 19683*2^2265896+1 682107 L2914 2019 3676 1151*2^2265761+1 682066 L1823 2016 3677 851*2^2265691+1 682044 L3173 2016 3678 977*2^2265655+1 682034 L2413 2016 3679 2*11171^168429+1 681817 g427 2014 Divides Phi(11171^168429,2) 3680 185*2^2264906-1 681807 L2484 2022 3681 31924*3^1428855+1 681742 L5410 2021 3682 217*2^2264546+1 681699 L3179 2014 3683 178*821^233901-1 681671 L5410 2022 3684 841*2^2264184+1 681591 L1823 2016 Generalized Fermat 3685 93*2^2263894+1 681502 L2826 2013 3686 34*912^230098+1 681091 L5410 2022 3687 377*2^2262094-1 680961 L2257 2023 3688 74*932^229308-1 680913 L4444 2021 3689 217499*28^470508-1 680905 p366 2013 3690 963*2^2261357+1 680740 L1300 2016 3691 2138*3^1426626+1 680677 L5410 2021 3692 1065*2^2260193+1 680389 L1204 2016 3693 837*2^2259470+1 680172 L1823 2016 3694 927*2^2258112+1 679763 L4287 2016 3695 265*2^2258071-1 679750 L2484 2018 3696e 430157*38^430157+1 679561 L5765 2023 Generalized Cullen 3697 561*2^2256600+1 679308 L3877 2015 3698 495*2^2255944+1 679110 L4119 2015 3699 489*2^2255331-1 678925 L5516 2023 3700 129*2^2255199+1 678885 L3049 2014 3701 735*2^2254660+1 678724 L4283 2016 3702 162*814^233173+1 678682 L5410 2021 3703 403*2^2254355-1 678632 L5516 2023 3704 973*2^2254320+1 678621 L1204 2016 3705 275102*151^311399-1 678537 L4001 2018 3706 603*2^2252402+1 678044 L1803 2016 3707 1029*2^2252198+1 677983 L3125 2016 3708 39*2^2251104-1 677652 L177 2015 3709 575*2^2250751+1 677547 L1741 2015 3710 2838*88^348438+1 677536 L5410 2020 3711 725*2^2250697+1 677531 L2859 2016 3712 65*2^2250637+1 677512 L3487 2013 3713 14641*2^2250096+1 677351 L181 2017 Generalized Fermat 3714 187*2^2249974+1 677312 L2322 2014 3715 141*2^2249967+1 677310 L3877 2014 3716 459*2^2249183+1 677075 L3877 2015 3717 904*957^227111-1 677001 L5410 2022 3718 319*2^2248914+1 676994 L2322 2015 3719 569*2^2248709+1 676932 L4133 2015 3720 571*2^2248701-1 676930 L5516 2023 3721 221*2^2248363+1 676828 L1130 2014 3722 144912*151^310514-1 676609 L4001 2018 3723 649*2^2247490+1 676565 L1204 2016 3724 374565*2^2247391+1 676538 L3532 2013 Generalized Cullen 3725 721*2^2246420+1 676243 L3037 2016 3726 875*2^2246363+1 676226 L2859 2016 3727 3888*931^227714-1 676075 L4001 2018 3728 347*2^2245598-1 675995 L2519 2017 3729 1199*2^2244631+1 675705 L3593 2016 3730 137*2^2244398-1 675634 L2484 2022 3731 197*2^2244347+1 675619 L1129 2014 3732 6510*565^245490+1 675605 L5410 2022 3733 507*2^2244237-1 675586 L5516 2023 3734 5055*2^2242777-1 675147 L4036 2015 3735 651*2^2241783+1 674847 L3260 2016 3736 35*2^2241049+1 674625 L2742 2013 3737 4161*2^2240358-1 674419 L1959 2016 3738 164978*151^309413-1 674210 L4001 2018 3739 493*2^2238775-1 673942 L5516 2023 3740 2354*138^314727+1 673482 L5410 2020 3741 20*698^236810-1 673455 L5410 2020 3742 146*447^254042-1 673292 L4001 2018 3743 675*2^2236244+1 673180 L4191 2016 3744 615*2^2235833+1 673056 L1823 2016 3745 53069*28^465060-1 673021 p257 2016 3746 831*2^2235253+1 672882 L3432 2013 3747 185*2^2235003+1 672806 L2322 2014 3748 103*2^2234536+1 672665 L3865 2014 3749 885*2^2234318+1 672600 L3125 2016 3750 963*2^2234249+1 672579 L1823 2016 3751 305*2^2233655+1 672400 L4118 2015 3752 267*2^2233376+1 672316 L1792 2014 3753 221*994^224221-1 672080 L5410 2020 3754 103*2^2232551-1 672067 L2484 2013 3755 889*2^2231034+1 671612 L2526 2016 3756 1779*88^345359+1 671548 L5410 2020 3757 907*2^2230776+1 671534 L4269 2016 3758 11*2^2230369+1 671410 L2561 2011 Divides GF(2230368,3) 3759 1425*2^2229009+1 671002 L1134 2016 3760 747*2^2228814+1 670943 L2526 2016 3761 9760*3^1406070+1 670870 L4444 2021 3762 969*2^2228379+1 670812 L4262 2016 3763 887*2^2228179+1 670752 L2840 2015 3764 130816^131072+1 670651 g308 2003 Generalized Fermat 3765 1123*2^2227338+1 670499 L3924 2015 3766 3478*378^260076+1 670348 L4955 2021 3767 213*2^2226329+1 670195 L2125 2014 3768 505*2^2225296+1 669884 L4111 2015 3769 11*878^227481+1 669591 L5410 2019 3770 271*2^2223601-1 669374 L2484 2018 3771 325*2^2223243-1 669266 L2235 2016 3772 (10^334568-1)^2-2 669136 p405 2022 Near-repdigit 3773 84363*2^2222321+1 668991 L541 2014 3774 2516745*2^2222222+1 668962 p396 2017 3775 7043*48^397817-1 668831 p255 2016 3776 1137*2^2221062+1 668610 L4040 2015 3777 471*2^2220478-1 668434 L5516 2023 3778 152*806^229984-1 668413 L4001 2018 3779 1425*2^2219664-1 668189 L1134 2021 3780 1031*2^2218785+1 667924 L1204 2015 3781 911*2^2218151+1 667733 L3260 2015 3782 27*2^2218064+1 667706 L690 2009 3783 587*2^2217355+1 667494 L4109 2015 3784 547*2^2216110+1 667119 L2322 2015 3785 67*2^2215581-1 666959 L268 2010 3786 33*2^2215291-1 666871 L3345 2013 3787 157533*2^2214598-1 666666 L3494 2013 3788 1105*2^2213846+1 666438 L2321 2015 3789 33*2^2212971-1 666173 L3345 2013 3790 101*2^2212769+1 666112 L1741 2014 3791 3*10^665829+1 665830 p300 2012 3792 4207801666259*2^2211084-1 665616 L257 2019 3793 298*912^224846+1 665546 L5410 2022 3794 631*2^2210260+1 665358 L2322 2015 3795 479*2^2209541+1 665141 L4106 2015 3796 165*2^2207550-1 664541 L2055 2011 3797 819*2^2206370+1 664187 L2526 2015 3798 19*2^2206266+1 664154 p189 2006 3799 45*2^2205977-1 664067 L1862 2015 3800 1323*2^2205832+1 664025 L4893 2019 3801 2*179^294739+1 664004 g424 2011 Divides Phi(179^294739,2) 3802 73*416^253392+1 663660 L3610 2015 3803 531*2^2203439-1 663304 L5516 2022 3804 790*821^227461-1 662903 L5410 2022 3805b Phi(3,3*2^1100957) 662844 A3 2023 Generalized unique 3806 Phi(3,-16159^78732) 662674 p294 2014 Generalized unique 3807 1041*2^2201196+1 662630 L3719 2015 3808 481*2^2201148+1 662615 L1741 2015 3809 1344*73^355570+1 662545 L3610 2014 3810 551*2^2200462-1 662408 L5516 2022 3811 783*2^2200256+1 662346 L3924 2015 3812 969*2^2200223+1 662337 L1209 2015 3813 173*2^2199301+1 662058 L1204 2014 3814 5077*2^2198565-1 661838 L251 2008 3815 114487*2^2198389-1 661787 L179 2006 3816 1035*2^2197489+1 661514 L2517 2014 3817 903*2^2197294+1 661455 L2322 2014 3818 404882*43^404882-1 661368 p310 2011 Generalized Woodall 3819 638*520^243506-1 661366 L4877 2019 3820 537*2^2196693-1 661274 L5516 2022 3821 12192710656^65536+1 661003 L5218 2021 Generalized Fermat 3822 256*3^1384608+1 660629 L3802 2014 Generalized Fermat 3823 2*10271^164621+1 660397 g427 2014 Divides Phi(10271^164621,2) 3824 10880*151^302997-1 660228 L4001 2018 3825 1073*2^2193069+1 660183 L2487 2014 3826 169*2^2193049-1 660176 L2484 2018 3827 26040*421^251428+1 659823 L5410 2021 3828 202064*151^302700-1 659582 L4001 2018 3829 2*659^233973+1 659544 g424 2015 Divides Phi(659^233973,2) 3830 819*2^2190853+1 659516 L3234 2014 3831 591*2^2190433-1 659389 L5516 2022 3832 1179*2^2189870+1 659220 L2517 2014 3833 385*2^2189441-1 659091 L2235 2022 3834 269*2^2189235+1 659028 L1204 2014 3835 39*2^2188855+1 658913 p286 2013 3836 433*2^2188076+1 658680 L3855 2014 3837 1323*2^2186806+1 658298 L4974 2019 3838 815*2^2185439+1 657886 L3035 2014 3839 249*2^2185003+1 657754 L1300 2014 3840 585*2^2184510+1 657606 L3838 2014 3841 1033*2^2183858+1 657410 L3865 2014 3842 1035*2^2183770+1 657384 L3514 2014 3843 193020*151^301686-1 657373 L4001 2018 3844 353938*7^777777+1 657304 L4789 2020 3845 1179*2^2182691+1 657059 L2163 2014 3846 2*191^287901+1 656713 g424 2015 Divides Phi(191^287901,2) 3847 23902*52^382687+1 656697 L4876 2019 3848 525*2^2180848+1 656504 L3797 2014 3849 135*2^2180256-1 656325 L1959 2019 3850 1107*2^2180142+1 656292 L1741 2014 3851 447*2^2180102+1 656279 L3760 2014 3852 315*2^2179612-1 656132 L2235 2015 3853 1423*2^2179023-1 655955 L3887 2015 3854 995*2^2178819+1 655893 L1741 2014 3855 219*2^2178673-1 655849 L5313 2021 3856 1423*2^2178363-1 655756 L3887 2015 3857 196597*2^2178109-1 655682 L175 2006 3858 6*10^655642+1 655643 L5009 2019 3859 879*2^2177186+1 655402 L2981 2014 3860 573*2^2176326-1 655143 L5516 2022 3861 67*410^250678+1 654970 L4444 2019 3862 587*2^2175602-1 654925 L5516 2022 3863 70082*5^936972-1 654921 L3523 2013 3864 699*2^2175031+1 654753 L3865 2014 3865 1260*991^218477+1 654577 L5410 2021 3866 69*2^2174213-1 654506 L2055 2012 3867 1069*2^2174122+1 654479 L3865 2014 3868 793*2^2173720+1 654358 L2322 2014 3869 3267*2^2173170+1 654193 L1204 2019 3870 651*2^2173159+1 654189 L3864 2014 3871 187*2^2172693-1 654049 L1959 2019 3872 10001*2^2172615+1 654027 L4405 2018 3873 1011*2^2172063+1 653860 L2826 2014 3874 1105*2^2171956+1 653827 L3035 2014 3875 4165*2^2171145-1 653584 L1959 2017 3876 Phi(3,-96873^65536) 653552 L4026 2014 Generalized unique 3877 739*2^2170786+1 653475 L2121 2014 3878 134*937^219783-1 653140 L5410 2021 3879 701*2^2169041+1 652950 L3863 2014 3880 1779*88^335783+1 652928 L5410 2020 3881 295*2^2168448+1 652771 L1935 2014 3882 7*2^2167800+1 652574 g279 2007 Divides Fermat F(2167797), GF(2167799,5), GF(2167799,10) 3883 359*2^2165551+1 651899 L3838 2014 3884 453*2^2165267-1 651813 L5516 2022 3885 1059*2^2164149+1 651477 L2322 2014 3886 329*2^2163717+1 651347 L2117 2014 3887 559*2^2163382+1 651246 L1741 2014 3888 235*2^2163273-1 651213 L5313 2021 3889 775*2^2162344+1 650934 L3588 2014 3890 21*2^2160479-1 650371 L2074 2012 3891 399*2^2160379-1 650342 L5545 2022 3892 102976*5^929801-1 649909 L3313 2013 3893 1007*2^2158720-1 649843 L4518 2021 3894 1179*2^2158475+1 649769 L3035 2014 Divides GF(2158470,6) 3895 617*2^2156699+1 649234 L1675 2014 3896 65536*3^1360576+1 649165 L3802 2014 Generalized Fermat 3897f 551878*15^551878+1 649065 L5765 2023 Generalized Cullen 3898 57*572^235362+1 648989 L4444 2021 3899 2*3^1360104-1 648935 p390 2015 3900 483*2^2155456+1 648860 L3760 2014 3901 105*2^2155392+1 648840 L3580 2014 3902 40*1017^215605+1 648396 L4927 2018 3903 1005*2^2153712-1 648335 L4518 2021 3904 31340*6^833096+1 648280 p271 2013 3905 537*2^2153392-1 648239 L5516 2022 3906 415*2^2153341-1 648223 L5516 2022 3907 427*2^2153306+1 648213 L3838 2014 3908 834*709^227380-1 648183 L5410 2021 3909 395*2^2152816-1 648065 L5598 2022 3910 261*2^2152805+1 648062 L1125 2014 3911 405*2^2152377-1 647933 L1862 2022 3912 371*2^2150871+1 647480 L2545 2014 3913 111*2^2150802-1 647458 L2484 2013 3914 357*2^2148518+1 646771 L1741 2014 3915 993*2^2148205+1 646678 L1741 2014 3916 67*2^2148060+1 646633 L3276 2013 3917 243*2^2147387-1 646431 L2444 2014 3918 693*2^2147024+1 646322 L3862 2014 3919 567*2^2146332-1 646114 L5516 2022 3920 3*2^2145353+1 645817 g245 2003 Divides Fermat F(2145351), GF(2145351,3), GF(2145352,5), GF(2145348,6), GF(2145352,10), GF(2145351,12) 3921 143157*2^2144728+1 645633 L4504 2016 3922 509*2^2144181+1 645466 L3035 2014 3923 753*2^2143388+1 645227 L2583 2014 Divides GF(2143383,3) 3924 161*2^2142431+1 644939 L3105 2014 3925 587*2^2142136-1 644850 L5516 2022 3926 25*2^2141884+1 644773 L1741 2011 Divides Fermat F(2141872), GF(2141871,5), GF(2141872,10); generalized Fermat 3927 571*2^2141727-1 644727 L5516 2022 3928 23*2^2141626-1 644696 L545 2008 3929 519*2^2140311+1 644301 L2659 2014 3930 7*2^2139912+1 644179 g279 2007 Divides GF(2139911,12) 3931 315*2^2139665+1 644106 L3838 2014 3932 193*2^2139400+1 644026 L3538 2014 3933 1113*2^2139060+1 643925 L3914 2014 3934 292402*159^292402+1 643699 g407 2012 Generalized Cullen 3935 307*2^2137553-1 643471 L2235 2015 3936 1051*2^2137440+1 643437 L3865 2014 3937 1185*2^2137344+1 643408 L3877 2014 3938 405*2^2137280-1 643388 L1862 2016 3939 483*2^2136414-1 643128 L5516 2022 3940 513*2^2135642+1 642896 L3843 2014 3941 241*2^2135279-1 642786 L2484 2018 3942 915*2^2135151+1 642748 L2322 2014 3943 61*2^2134577-1 642574 L2055 2011 3944 2*3^1346542+1 642465 L5043 2020 3945 93*10^642225-1 642227 L4789 2020 Near-repdigit 3946 26362*421^244658+1 642057 L5388 2021 3947 5428*378^249058+1 641949 L5410 2021 3948 711*2^2132477+1 641943 L2125 2014 3949 81*984^214452+1 641856 L5410 2020 Generalized Fermat 3950 215*2^2131988-1 641795 L2484 2018 3951 473*2^2130944-1 641481 L5516 2022 3952 319*2^2130729-1 641416 L1817 2015 3953 78792*151^294324-1 641331 L4001 2018 3954 75*2^2130432-1 641326 L2055 2011 3955 1145*2^2130307+1 641290 L3909 2014 3956 110488*5^917100+1 641031 L3354 2013 3957 37*2^2128328+1 640693 L3422 2013 3958 103*2^2128242+1 640667 L3787 2014 3959 185*2^2127966-1 640584 L1959 2019 3960 3762*70^347127+1 640487 L4876 2019 3961 253*2^2126968+1 640284 L1935 2014 3962 583*2^2126166+1 640043 L1741 2014 3963 999*2^2125575+1 639865 L1741 2014 3964 7*848^218439-1 639677 L5410 2020 3965 587*2^2124947+1 639676 L3838 2014 3966 451*2^2124636+1 639582 L1741 2014 3967 887*2^2124027+1 639399 L3865 2014 3968 721751*2^2123838-1 639345 L4001 2022 3969 545*2^2122250-1 638864 L5516 2022 3970c 745*2^2121591-1 638666 L2519 2023 3971 693*2^2121393+1 638606 L3278 2014 3972 118*107^314663-1 638575 L5227 2021 3973 8331405*2^2120345-1 638295 L2055 2013 3974 975*2^2119209+1 637949 L1158 2014 3975 33*2^2118570-1 637755 L3345 2013 3976 117*2^2117600-1 637464 L1959 2019 3977 254*5^911506-1 637118 p292 2010 3978 579*2^2116044-1 636996 L5516 2022 3979 1139*2^2115949+1 636968 L3865 2014 3980 771*2^2115741+1 636905 L1675 2014 3981 411*2^2115559+1 636850 L2840 2014 3982 34*3^1334729+1 636830 L4799 2021 3983 189*2^2115473+1 636824 L3784 2014 Divides GF(2115468,6) 3984 929*2^2114679+1 636585 L3035 2014 3985 571*2^2113491-1 636227 L5516 2022 3986 1065*2^2113463+1 636219 L2826 2014 3987d 753*2^2112554-1 635945 L1817 2023 3988 609179*2^2111132-1 635520 L5410 2022 3989 591*2^2111001+1 635478 L1360 2014 3990 357*2^2109585-1 635051 L5546 2022 3991 1051*2^2109344+1 634979 L3035 2014 3992 433*2^2109146+1 634919 L1935 2014 3993 519*2^2108910+1 634848 L1356 2014 3994 1047*2^2108751+1 634801 L3824 2014 3995 257*2^2108554-1 634741 L5313 2021 3996 3261*46^381439+1 634245 L5000 2019 3997 765*2^2106027+1 633981 L3838 2014 3998 503*2^2106013+1 633976 L1741 2014 3999 316903*10^633806+1 633812 L3532 2014 Generalized Cullen 4000 113*2^2104825+1 633618 L3785 2014 4001f 981*2^2104657-1 633568 L2257 2023 4002 381*2^2103999+1 633370 L2322 2014 4003 1246461300659*2^2103424-1 633206 L2484 2015 4004 57*2^2103370-1 633180 L2055 2011 4005 539*2^2102167+1 632819 L3125 2014 4006 1425*2^2101260-1 632546 L1134 2020 4007 1001*2^2101062-1 632486 L4518 2020 4008 179*894^214290-1 632445 L5209 2020 4009 633*2^2100738-1 632388 L2257 2023 4010 687*2^2100243+1 632239 L3867 2014 4011 329*2^2099771+1 632097 L2507 2014 4012 35*2^2099769+1 632095 L3432 2013 4013 405*2^2099716+1 632081 L3154 2014 4014 575*2^2098483+1 631710 L3168 2014 4015 523*2^2098043-1 631577 L5516 2022 4016 1005*2^2097683-1 631469 L4518 2021 4017 919*2^2097543-1 631427 L1817 2023 4018 729*2^2097449-1 631398 L2257 2023 4019 2509589*2^2097152-1 631313 L466 2022 4020 522335*2^2097154-1 631312 L466 2022 4021 695265*2^2097153-1 631312 L466 2020 4022 208703*2^2097153+1 631312 L466 2018 4023 28401*2^2097152+1 631311 L4547 2017 4024 399*2^2096857-1 631220 L5546 2022 4025 907*2^2095896+1 630931 L1129 2014 4026 815730721*2^2095440+1 630800 L466 2019 Generalized Fermat 4027 2503*2^2094587-1 630537 L4113 2017 4028 14641*2^2093384+1 630176 L181 2017 Generalized Fermat 4029 103*2^2093350+1 630164 L3432 2013 4030 4001*2^2093286-1 630146 L1959 2014 4031 14172*1027^209226-1 630103 L4001 2018 4032 369*2^2093022+1 630065 L3514 2014 4033 217*2^2092673-1 629960 L2484 2018 4034 2188*253^262084+1 629823 L5410 2020 4035 68*920^212407+1 629532 L4001 2017 4036 165*2^2090645+1 629350 L1209 2014 4037 1119*2^2090509+1 629309 L2520 2014 4038 941*2^2090243+1 629229 L1356 2014 4039 435*2^2089948-1 629140 L5516 2022 4040 615*2^2089329-1 628954 L2257 2023 4041 62722^131072+1 628808 g308 2003 Generalized Fermat 4042 401*2^2088713+1 628768 L3035 2014 4043 1702*1021^208948+1 628734 L5410 2021 4044 819*2^2088423+1 628681 L3890 2014 4045 363*2^2088182-1 628608 L5545 2022 4046 423*2^2088102-1 628584 L5516 2022 4047 1009*2^2087690+1 628461 L3728 2014 4048 85*2^2087651-1 628448 L2338 2013 4049 467*2^2085835+1 627902 L3625 2014 4050 563528*13^563528-1 627745 p262 2009 Generalized Woodall 4051 55*2^2084305-1 627441 L3887 2021 4052 (146^144882-1)^2-2 627152 p405 2022 4053 437960*3^1313880+1 626886 L2777 2012 Generalized Cullen 4054 18*984^209436-1 626843 L5410 2019 4055 247*2^2082202+1 626808 L3294 2014 4056 107*2^2081775+1 626679 L3432 2013 Divides GF(2081774,6) 4057 159*2^2081069-1 626467 L1959 2019 4058 27*634^223550+1 626409 L4001 2018 4059 399*2^2080579-1 626320 L5546 2022 4060 655*2^2080562+1 626315 L3859 2014 4061 201*2^2080464+1 626285 L1741 2014 4062 269328*211^269328+1 626000 p354 2012 Generalized Cullen 4063 153*2^2079401+1 625965 L3601 2014 4064 279*2^2079167+1 625895 L2413 2014 4065 692*95^316400-1 625755 L4444 2019 4066 643*2^2078306+1 625636 L3035 2014 4067 79*2^2078162+1 625591 L2117 2013 4068 1485*2^2077172+1 625295 L1134 2015 4069 777*2^2076841-1 625195 L2257 2023 4070 405*2^2076673-1 625144 L5516 2022 4071 239*2^2076663+1 625141 L2413 2014 4072 1003*2^2076535-1 625103 L51 2008 4073 2186*7^739474-1 624932 p258 2011 4074 73*2^2075936+1 624921 L3464 2013 4075 825*2^2075800-1 624881 L2257 2023 4076 807*2^2075519+1 624797 L3555 2014 4077 585*2^2075384-1 624756 L5516 2022 4078 1425*2^2075382+1 624756 L1134 2015 4079c 1308596*3^1308596+1 624366 p137 2023 Generalized Cullen 4080 65*2^2073229+1 624106 L1480 2013 4081 693*2^2072564+1 623907 L3290 2014 4082 55*552^227540-1 623903 L4786 2019 4083 867*2^2072142-1 623780 L2257 2023 4084 375*2^2071598+1 623616 L2413 2014 4085 73*2^2071592+1 623614 L1480 2013 4086 125*2^2071555+1 623603 L3432 2013 4087 1107*2^2071480+1 623581 L2520 2014 4088 6207*28^430803-1 623444 L1471 2014 4089 299*2^2070979+1 623430 L1741 2014 4090 99*2^2070908-1 623408 L1862 2015 4091 831*2^2070622-1 623323 L5545 2023 4092 19062*1027^206877-1 623029 L4444 2018 4093 891*2^2069024+1 622842 L2520 2014 4094 943*2^2068944+1 622818 L1741 2014 4095 579*2^2068647+1 622728 L2967 2014 4096 911*2^2068497+1 622683 L1741 2014 4097 501*2^2067915-1 622508 L5551 2022 4098 1005*2^2067272+1 622314 L3895 2014 4099 441*2^2067233-1 622302 L5516 2022 4100 3474*5^890253+1 622264 L5410 2021 4101 393*2^2066540+1 622094 L3700 2014 4102 44*950^208860-1 621929 L4187 2021 4103 951*2^2065180+1 621685 L1403 2014 4104 915*2^2064663+1 621529 L3035 2014 4105 213*2^2064426-1 621457 L1863 2017 4106 29*468^232718+1 621416 L4832 2018 4107 1455*2^2064103-1 621361 L1134 2016 4108 983*2^2064020-1 621335 L2257 2023 4109 824*423^236540-1 621238 L5410 2021 4110 447*2^2063218-1 621094 L5551 2022 4111 9756404*15^527590-1 620501 L5630 2022 4112 9*2^2060941-1 620407 L503 2008 4113 813*2^2060392-1 620243 L2257 2023 4114 1455*2^2059553+1 619991 L1134 2015 4115 659*2^2058623+1 619711 L3860 2014 4116 128448*151^284308-1 619506 L4001 2018 4117 477*2^2057225-1 619290 L5516 2022 4118 909*2^2056937-1 619203 L2257 2023 4119 575*2^2056081+1 618945 L1935 2014 4120 1095*2^2055975+1 618914 L3518 2014 4121 589*2^2055877-1 618884 L5516 2022 4122 3*10^618853+1 618854 p300 2012 4123 225*2^2055433-1 618750 L2484 2022 4124 819*2^2054470+1 618461 L2826 2014 4125 969*2^2054054+1 618335 L3668 2014 4126 3394*28^427262+1 618320 p385 2015 4127 318564*151^283711-1 618206 L4444 2018 4128 675*2^2053578+1 618192 L1792 2014 4129 178998*151^283702-1 618186 L4001 2018 4130 551*2^2051922-1 617693 L5516 2022 4131 281*2^2051865+1 617676 L5519 2022 4132 5916*277^252878-1 617654 L5410 2020 4133 739*2^2051658+1 617614 L3838 2014 4134 71*2^2051313+1 617509 L1480 2013 4135 265*2^2051155-1 617462 L2484 2018 4136 779*2^2050881+1 617380 L3453 2014 4137 75*2^2050637-1 617306 L2055 2011 4138 377*2^2050148-1 617159 L2235 2022 4139 935*2^2050113+1 617149 L3696 2014 4140 847*2^2049400+1 616934 L2322 2014 4141 4998*235^260170-1 616885 L5410 2019 4142 541*2^2049193-1 616872 L5516 2022 4143 73*2^2048754+1 616739 L3432 2013 4144 30*712^215913+1 615889 L4444 2022 4145 527*2^2045751+1 615836 L4123 2014 4146 785*2^2045419+1 615736 L3861 2014 4147 195*2^2044789+1 615546 L3744 2014 4148 537*2^2044162+1 615357 L1741 2014 4149 413*2^2043829+1 615257 L1300 2014 4150 1682*655^218457-1 615231 L4925 2022 4151 431*2^2043666-1 615208 L5516 2022 4152 1334*567^223344-1 615000 L5410 2021 4153 345*2^2042295+1 614795 L2562 2014 4154 777*2^2041710-1 614619 L2257 2023 4155 216848*151^282017-1 614514 L4700 2018 4156 104*579^222402-1 614428 L4001 2018 4157 57257*2^2040062-1 614125 L4812 2019 4158 1069*2^2039562+1 613973 L1741 2014 4159 625*2^2039416+1 613929 L1741 2014 Generalized Fermat 4160 7188*313^245886-1 613624 L5410 2020 4161 1085*2^2038005+1 613504 L2520 2014 4162 125*2^2037752-1 613427 L2444 2014 4163 1069*2^2036902+1 613172 L3876 2014 4164 10020*171^274566+1 613109 L5410 2019 4165 417*2^2036482+1 613045 L1847 2014 4166 701*2^2035955+1 612887 L2823 2014 4167 1025*2^2034405+1 612420 L1741 2014 4168 651*2^2034352+1 612404 L3459 2014 4169 121*2^2033941-1 612280 L162 2006 4170 19683*2^2033900+1 612270 L1823 2019 4171 57*2^2033643+1 612190 L3432 2013 4172 4175*2^2032552-1 611863 L1959 2017 4173 249*2^2031803+1 611637 L2327 2014 4174 783*2^2031629+1 611585 L2126 2014 4175 10005*2^2031284+1 611482 p168 2022 4176 (290^124116-1)^2-2 611246 p403 2019 4177 767*2^2030354-1 611201 L2257 2023 4178 872*268^251714-1 611199 L5410 2019 4179 921*2^2030231-1 611164 L2257 2023 4180 4157*2^2029894-1 611063 L1959 2017 4181 293028*151^280273-1 610714 L4001 2018 4182 285*2^2028495+1 610641 L2594 2014 4183 615*2^2028140-1 610534 L2257 2023 4184 775*2^2027562+1 610360 L1204 2014 4185 199*686^215171-1 610297 L4001 2018 4186 4190*235^257371-1 610248 L5410 2019 4187 621*2^2026864+1 610150 L3446 2014 4188 357*2^2026846+1 610144 L2163 2014 4189 425*2^2026610-1 610074 L5516 2022 4190 122112*151^279966-1 610045 L4001 2018 4191 879*2^2026501+1 610041 L1139 2014 4192 4185*2^2026400-1 610011 L1959 2017 4193 787*2^2026242+1 609963 L2122 2014 4194 2*3^1277862+1 609696 L5043 2020 4195 273*2^2024810-1 609531 L5118 2020 4196 919*2^2024094+1 609316 L1741 2014 4197 325*2^2024035-1 609298 L4076 2015 4198 811*2^2023885-1 609254 L2257 2023 4199 235*2^2023486+1 609133 L2594 2014 4200 559*2^2023437-1 609118 L5516 2022 4201 195*2^2023030+1 608996 L4122 2014 4202 8*10^608989-1 608990 p297 2011 Near-repdigit 4203 1485*2^2022873+1 608949 L1134 2015 4204 233*2^2022801+1 608927 L3767 2014 4205 521*2^2022059+1 608704 L3760 2014 4206 569*2^2021884-1 608651 L5516 2022 4207 5678*1027^202018-1 608396 L4001 2018 4208 94*790^209857+1 608090 L4001 2018 4209 19650619*2^2019807-1 608030 L3432 2022 4210 431*2^2019693+1 607991 L2100 2014 4211 1155*2^2019244+1 607857 L3873 2014 4212 195*2^2018866+1 607742 L2413 2014 4213 59506*6^780877+1 607646 p254 2013 4214 4101*2^2018133-1 607523 L1959 2017 4215 2152*177^270059+1 607089 L5410 2020 4216 5844*693^213666+1 606972 L5410 2022 4217e (2634^88719+1)^2-2 606948 p432 2023 4218 4081*2^2015959-1 606868 L1959 2017 4219 4191*2^2015150-1 606625 L1959 2017 4220 45*2^2014557+1 606444 L1349 2012 Divides GF(2014552,10) 4221 251749*2^2013995-1 606279 L436 2007 Woodall 4222e 77777*2^2013487+1 606125 p420 2023 4223 126*523^222906-1 605973 L4001 2017 4224 1023*2^2012570+1 605847 L1741 2014 4225 403*2^2012412+1 605799 L3538 2014 4226 1173*2^2012185+1 605732 L1413 2014 4227 85*730^211537+1 605701 L4001 2018 4228 Phi(3,-1449889^49152) 605684 L4142 2017 Generalized unique 4229 751*2^2010924+1 605352 L3859 2014 4230 101*2^2009735+1 604993 L3432 2013 4231 915*2^2009048-1 604787 L2257 2023 4232 1069*2^2008558+1 604640 L1595 2014 4233 881*2^2008309+1 604565 L3260 2014 4234 959*2^2008035+1 604482 L1422 2014 4235 633*2^2007897+1 604441 L3857 2014 4236 143*2^2007888-1 604437 L384 2016 4237 4*5^864751-1 604436 L4881 2019 4238 223*2^2007748+1 604395 L1741 2014 4239 461*2^2007631+1 604360 L1300 2014 4240 1731*352^237258-1 604191 L5410 2022 4241 477*2^2006719+1 604086 L3803 2014 4242 428551*2^2006520+1 604029 g411 2011 4243 6844*565^219383+1 603757 L5580 2022 4244 1097*2^2005203+1 603630 L3868 2014 4245 Phi(3,-1373894^49152) 603386 L4142 2016 Generalized unique 4246 6*5^862923+1 603159 L4965 2020 4247 493*2^2002964+1 602955 L3800 2014 4248 315*2^2002904+1 602937 L3790 2014 4249 77*2^2002742-1 602888 L2074 2013 4250 585*2^2002589+1 602843 L3035 2014 4251 1059*2^2001821+1 602612 L2103 2014 4252 249*2^2001627-1 602553 L1862 2015 4253 47*158^273942-1 602307 L541 2020 4254 1115*2^2000291+1 602151 L3588 2014 4255 891*2^2000268+1 602144 L3440 2014 4256 1067*792^207705-1 602083 L5410 2021 4257 841*2^1999951-1 602049 L2257 2023 4258 17872*430^228564+1 601921 L4955 2020 4259 343388*151^276191-1 601820 L4700 2018 4260 537*2^1999105-1 601794 L5516 2022 4261 657*2^1998854+1 601718 L2520 2013 Divides GF(1998852,10) 4262 Phi(3,-1316236^49152) 601555 L4142 2016 Generalized unique 4263 573*2^1998232+1 601531 L1300 2013 4264 1323*2^1998103-1 601493 L1828 2016 4265 Phi(3,-1310544^49152) 601370 L4142 2016 Generalized unique 4266e 2588*697^211483-1 601299 L5410 2023 4267 1274*3^1260173+1 601259 L5410 2021 4268 561*2^1996865-1 601120 L5516 2022 4269 669*2^1995918+1 600835 L2659 2013 4270 19861029*2^1995311-1 600656 L895 2013 4271 261*2^1995105+1 600589 L3378 2013 4272 68398*1027^199397+1 600503 L4001 2018 4273 1031*2^1994741+1 600480 L2626 2014 4274 577*2^1994634+1 600448 L3035 2013 4275a 550935*2^1994609+1 600443 A4 2023 4276a 193365*2^1994609+1 600443 A4 2023 4277 497*2^1994051+1 600272 L2413 2013 4278 8331405*2^1993674-1 600163 L260 2011 4279 655*2^1993685-1 600162 L5598 2023 4280 1965*2^1993666-1 600157 L4113 2022 4281 467917*2^1993429-1 600088 L160 2005 4282 137137*2^1993201-1 600019 L321 2007 4283 781*2^1993173-1 600008 L2257 2023 4284 2*7^709976+2*7^211441+1 600000 CH9 2023 4285 589*2^1992774+1 599888 L2322 2013 4286 209*2^1992071+1 599676 L3422 2013 4287 2955*2^1991780-1 599589 L1862 2019 4288 317*2^1991592-1 599532 L1809 2014 4289 Phi(3,-1249158^49152) 599322 L4142 2016 Generalized unique 4290 547*2^1990606+1 599235 L3173 2013 4291 17*2^1990299+1 599141 g267 2006 Divides GF(1990298,3) 4292 508*1017^199220-1 599122 L4700 2017 4293 885*2^1990215-1 599118 L5184 2023 4294 1606*877^203564+1 599092 L5410 2022 4295 105*2^1989208-1 598814 L1959 2014 4296 1925975*2^1989191+1 598813 L5327 2022 4297 1019*2^1988959+1 598740 L3514 2013 4298 1455*2^1988795-1 598691 L1134 2015 4299 629*2^1988579+1 598625 L2117 2013 4300 101*2^1988279+1 598534 L3141 2013 Divides GF(1988278,12) 4301 733*2^1988086+1 598477 L3502 2013 4302 135*2^1987735+1 598370 L1300 2013 4303 162434*5^856004-1 598327 L3410 2013 4304 749*2^1986977+1 598143 L1492 2013 4305 4141*2^1986959-1 598138 L1959 2016 4306e 2172*697^210354-1 598089 L5410 2023 4307 34*3^1253399+1 598025 L4799 2020 4308 3792*217^255934-1 597984 L5410 2020 4309 32*236^251993+1 597959 L4786 2019 4310 174344*5^855138-1 597722 L3354 2013 4311 6292*1027^198459+1 597678 L4001 2018 4312 4125*2^1984855-1 597505 L1959 2017 4313 8331405*2^1984565-1 597421 L260 2011 4314 1133*2^1984488-1 597394 L1828 2016 4315 195*2^1983875-1 597209 L1828 2014 4316 2631730144*10^597115+1 597125 L4789 2022 4317 675*2^1982779-1 596879 L2257 2023 4318d 4442553*2^1981910-1 596622 L5340 2023 4319a 3256715*2^1981910-1 596621 L5340 2023 4320 1071855*2^1981910-1 596621 L5340 2021 4321 523895*2^1981910-1 596621 L5340 2021 4322 496177*2^1981910+1 596621 L5340 2021 4323 445*2^1980900+1 596313 L3577 2013 4324 731*2^1980503+1 596194 L3035 2013 4325 1147*2^1978390+1 595558 L1741 2013 4326 5758*211^256223+1 595539 L5410 2020 4327 4*5^851878+1 595438 L4965 2023 Generalized Fermat 4328 25*2^1977369-1 595249 L426 2008 4329 245478*151^273168-1 595233 L4001 2018 4330 1197*2^1977152-1 595186 L1828 2016 4331 43*780^205685+1 594863 L5410 2019 4332 1234*95^300749-1 594802 L4444 2019 4333 866*183^262883+1 594763 L3610 2015 4334 386*117^287544+1 594698 L5410 2020 4335 1149*2^1975451-1 594674 L1828 2016 4336 651*2^1974918-1 594513 L2257 2023 4337 381*2^1974841-1 594489 L1809 2014 4338 19920911*2^1974666-1 594441 L806 2017 4339 Phi(3,-1109580^49152) 594264 L4142 2016 Generalized unique 4340 148323*2^1973319-1 594034 L587 2011 4341 705*2^1972428+1 593763 L3043 2013 4342 549*2^1971947-1 593618 L5516 2022 4343 74*894^201093+1 593496 L5410 2022 4344 549*2^1971183+1 593388 L2840 2013 4345f 549721*12^549721-1 593255 L5765 2023 Generalized Woodall 4346 4197*2^1970430-1 593163 L1959 2016 4347 1387*2^1970033-1 593043 L1828 2016 4348 92163*2^1969778+1 592968 L5115 2022 4349 1616*277^242731-1 592869 L5410 2020 4350 84969*2^1969323+1 592831 L5115 2022 4351 1693*396^228140+1 592642 L5410 2021 4352 441*2^1968431+1 592560 L3035 2013 4353 1485*2^1968400-1 592551 L1134 2014 4354 1159*2^1968190+1 592488 L3035 2013 4355 731*2^1968039+1 592442 L3682 2013 4356 833*2^1967841+1 592383 L3744 2013 4357 989*2^1967819+1 592376 L3738 2013 4358 1035*2^1967708+1 592343 L3739 2013 4359 148*789^204455+1 592325 L5410 2019 4360 1309*2^1967613-1 592314 L1828 2016 4361 449*2^1967140-1 592171 L5516 2022 4362 611*2^1966866-1 592089 L2257 2023 4363 4025*2^1966732-1 592049 L1959 2016 4364 203*2^1966689+1 592035 L1408 2013 4365 101594*151^271697-1 592027 L4001 2018 4366 921*2^1966634-1 592019 L2257 2023 4367 273*2^1966630+1 592018 L2532 2013 4368 93*2^1965880+1 591791 L1210 2011 4369 465*2^1965363-1 591636 L5516 2022 4370 253*2^1965215-1 591592 L3345 2012 4371 1089*2^1964781+1 591462 L3737 2013 4372 657*2^1964578-1 591400 L2257 2023 4373 10*173^264234+1 591369 L1471 2015 4374 1089*2^1964474+1 591369 L3736 2013 Generalized Fermat 4375 125*2^1963964-1 591215 L1959 2014 4376b 265*110^289460+1 590904 L4789 2023 4377 Phi(3,-1020993^49152) 590711 L4142 2016 Generalized unique 4378 175*2^1962288+1 590710 L2137 2013 Divides GF(1962284,10) 4379 102088*6^759012-1 590632 L4521 2019 4380 4065*2^1961907-1 590597 L1959 2016 4381 609*2^1961889-1 590591 L2257 2023 4382 113*2^1960341+1 590124 L3091 2013 4383 57406*5^844253-1 590113 L3313 2012 4384 1010036096^65536+1 590109 L4704 2022 Generalized Fermat 4385 225*2^1960083+1 590047 L3548 2013 Divides GF(1960078,6) 4386 1111*2^1959625-1 589909 L1828 2016 4387 24838*421^224768+1 589860 L5410 2021 4388 803*2^1959445+1 589855 L2724 2013 4389 552*360^230680+1 589691 L5410 2021 4390 915*2^1958653-1 589617 L2257 2023 4391 6166*3^1235741+1 589603 L5365 2021 4392 727*2^1958505-1 589572 L2257 2023 4393 45*2^1957377-1 589231 L1862 2014 4394 1065*2^1957291-1 589207 L1828 2016 4395 1149*2^1957223+1 589186 L1935 2013 4396 6326*333^233552+1 589126 L4001 2017 4397 129*2^1956915+1 589093 L2826 2013 4398 229*2^1956294+1 588906 L3548 2013 4399 74*500^218184-1 588874 p355 2013 4400 27*342^232379+1 588856 L5410 2021 4401 801*2^1956058-1 588836 L2257 2023 4402 525*2^1955409-1 588640 L5516 2022 4403 1045*2^1955356+1 588624 L1186 2013 4404 112*113^286643-1 588503 L426 2012 4405 1137*2^1954730+1 588436 L3733 2013 4406 673*2^1954456+1 588353 L3666 2013 4407 Phi(3,-965206^49152) 588313 L4142 2017 Generalized unique 4408 121*2^1954243-1 588288 L162 2006 4409 351*2^1954003+1 588217 L2413 2013 4410 829*2^1953661-1 588114 L2257 2023 4411 539*2^1953060-1 587933 L5516 2022 4412 641*2^1952941+1 587897 L3487 2013 4413 188378*151^269725-1 587730 L4001 2018 4414 4027*2^1951909-1 587587 L1959 2016 4415 1019*138^274533+1 587471 L5410 2020 4416 Phi(3,94259^59049) 587458 p269 2014 Generalized unique 4417 1173*2^1951169+1 587364 L3171 2013 4418 1101*2^1950812+1 587256 L2719 2013 4419 P587124 587124 p414 2020 4420 3317*2^1949958-1 587000 L5399 2021 4421 4007*2^1949916-1 586987 L1959 2016 4422 313*2^1949544+1 586874 L2520 2013 4423 391*2^1949159-1 586758 L2519 2014 4424 539*2^1949135+1 586751 L1130 2013 4425 675*2^1949015-1 586715 L2257 2023 4426 1167*2^1949013-1 586715 L1828 2016 4427 351*2^1947281-1 586193 L1809 2014 4428 3068*5^838561+1 586133 L5410 2021 4429 4892*693^206286+1 586008 L5410 2022 4430 21290*745^203998-1 585919 L4189 2017 4431 111*2^1946322-1 585904 L2484 2012 4432 1209*2^1946260-1 585886 L1828 2016 4433 1339*2^1945965-1 585797 L1828 2016 4434 149*2^1945668-1 585707 L3967 2015 4435 4011*2^1945630-1 585697 L1959 2016 4436 639*2^1945473+1 585649 L2649 2013 4437 675*2^1945232+1 585577 L3688 2013 4438 949*2^1944741-1 585429 L2257 2023 4439 603*2^1944086-1 585231 L2257 2023 4440 30364*1027^194319+1 585210 L4001 2018 4441 417*2^1943755+1 585132 L3173 2013 4442 89*2^1943337+1 585005 L2413 2011 4443 Phi(3,-889529^49152) 584827 L4142 2016 Generalized unique 4444 607*2^1942565-1 584774 L2257 2023 4445 269*2^1942389+1 584720 L3548 2013 4446 549*2^1942139-1 584645 L5545 2022 4447 4173*2^1941820-1 584550 L1959 2016 4448 1093*2^1941672+1 584505 L2322 2013 4449 144*471^218627-1 584397 L4064 2021 4450 193*2^1940804+1 584243 L3418 2013 4451 827*2^1940747+1 584226 L3206 2013 4452 221*2^1940211+1 584065 L2327 2013 4453 421*138^272919-1 584017 L5410 2020 4454 Phi(3,-872232^49152) 583988 L4142 2017 Generalized unique 4455 9105446*15^496499-1 583936 L5629 2022 4456 9*10^583696+1 583697 L4789 2020 Generalized Fermat 4457 575*2^1938673+1 583602 L2019 2013 4458 1179*2^1938570+1 583571 L1300 2013 4459 743*2^1938344-1 583503 L2257 2023 4460 865*2^1938180+1 583454 L3233 2013 4461 17702*1027^193732-1 583442 L4700 2018 4462 1091*2^1937857+1 583357 L3731 2013 4463 555*2^1937595+1 583277 L2826 2013 4464 765*2^1937364-1 583208 L2257 2023 4465 9299*2^1937309+1 583193 L3886 2014 4466 30*386^225439+1 583120 L3610 2015 4467 34910*430^221380-1 583002 L4001 2015 4468 56064*1027^193573+1 582964 L4700 2018 4469 239*2^1936025+1 582804 L1741 2013 4470 1191*2^1935613-1 582681 L1828 2016 4471 859*2^1935299-1 582586 L2257 2023 4472 4047*2^1934881-1 582461 L1959 2016 4473 357*2^1934704-1 582407 L1809 2014 4474 182627*2^1934664-1 582398 L3336 2012 4475 64*497^215875-1 582078 L4925 2019 4476 771*2^1933543-1 582058 L2257 2023 4477 14172*1027^193213-1 581879 L4001 2018 4478 363*2^1932724+1 581811 L3171 2013 4479 1265*2^1932660-1 581792 L1828 2016 4480 134*383^225187+1 581705 L2012 2019 4481 143*2^1932112-1 581626 L1828 2012 4482 48764*5^831946-1 581510 L3313 2012 4483 1095*2^1931213-1 581357 L1828 2016 4484 1365*2^1931200+1 581353 L1134 2016 4485 1789*138^271671+1 581347 L5211 2020 4486 387*2^1930200+1 581051 L1129 2013 4487 2135489665061*2^1929362-1 580809 L2484 2015 4488 1101*2^1929297-1 580780 L1828 2016 4489 735*2^1929225+1 580758 L3378 2013 4490 214519*2^1929114+1 580727 g346 2006 4491 481*2^1928773-1 580622 L5516 2022 4492 1071*2^1928515-1 580544 L1828 2016 4493 877*2^1927713-1 580303 L2257 2023 4494 2*47^346759+1 579816 g424 2011 Divides Phi(47^346759,2) 4495 3871*2^1925976+1 579781 L5327 2022 4496 633*2^1925684+1 579692 L1408 2013 4497 3580*408^222030+1 579649 L5410 2021 4498 5724*313^232269-1 579642 L5410 2020 4499 1965*2^1925248-1 579561 L4113 2022 4500 968*288^235591+1 579414 L5410 2020 4501 1283*2^1924402-1 579306 L1828 2016 4502 1005*2^1923658+1 579082 L3514 2013 4503 243*2^1923567-1 579054 L2055 2011 4504 4005*2^1923385-1 579001 L1959 2016 4505 4508*687^204090-1 578999 L5410 2023 4506 319*2^1923378+1 578997 L3548 2013 4507 1620198*7^684923-1 578834 L4786 2021 4508 815*2^1922594-1 578762 L2257 2023 4509 280992*151^265553-1 578640 L4001 2018 4510 851*2^1922179+1 578637 L3180 2013 4511 685*2^1921923-1 578560 L2257 2023 4512 625*2^1921056+1 578299 L3378 2013 Generalized Fermat 4513 314159*2^1920875+1 578247 L4994 2019 4514 157*2^1920152+1 578026 L2494 2013 4515 14066*60^324990+1 577886 L4444 2018 4516 689*2^1919392-1 577798 L2257 2023 4517 143171*2^1918679+1 577586 L4504 2017 4518 1187*2^1918188-1 577436 L1828 2015 4519 Phi(3,-747624^49152) 577407 L4142 2016 Generalized unique 4520 75492*151^264966-1 577360 L4444 2018 4521 459*2^1917881-1 577343 L5551 2022 4522 1071*2^1917749-1 577304 L1828 2015 4523 335*2^1917610-1 577261 L1809 2014 4524 51*712^202369-1 577256 L4001 2018 4525 133631*28^398790-1 577118 p255 2013 4526 783*2^1916988-1 577074 L2257 2023 4527 191*2^1916611+1 576960 L1792 2013 4528 1087*2^1916212+1 576841 L2719 2013 4529 1065*2^1916200-1 576837 L1828 2015 4530 1682*161^261371+1 576804 L5410 2020 4531 861*2^1915741-1 576699 L2257 2023 4532 1125*2^1915695+1 576685 L3719 2013 4533 Phi(3,-731896^49152) 576499 L4142 2016 Generalized unique 4534 63348*1027^191392+1 576396 L4001 2018 4535 93788*151^264402-1 576131 L4001 2018 4536 461*2^1913118-1 575909 L5551 2022 4537 207*2^1913067+1 575893 L1741 2013 4538 80618*151^264291-1 575889 L4001 2018 4539 849*2^1913021+1 575880 L2413 2013 4540 72844*1027^191206+1 575836 L4001 2018 4541 859*430^218562+1 575580 L5410 2020 4542 535*2^1911715-1 575487 L5545 2022 4543 280*53^333574+1 575177 L4294 2021 4544 85*2^1910520+1 575126 L2703 2011 4545 267*2^1909876-1 574933 L1828 2013 4546 4103*2^1909766-1 574901 L1959 2016 4547 621*2^1909716+1 574885 L2117 2013 4548 611*2^1909525+1 574828 L2413 2013 4549 379*2^1909097-1 574699 L1809 2014 4550 435*2^1908579+1 574543 L3385 2013 4551 4035*2^1907685-1 574275 L1959 2016 4552 291*2^1907541-1 574230 L2484 2013 4553 573*2^1907450+1 574203 L2520 2013 4554 10005*2^1906876-1 574031 L4405 2019 4555 14*814^197138-1 573796 L4001 2018 4556 751*2^1905889-1 573733 L2257 2022 4557 19061965*2^1905351-1 573576 p286 2022 4558 263*2^1904406-1 573286 L2484 2015 4559 969*2^1904357+1 573272 L2719 2013 4560 17*962^192155+1 573234 L4786 2020 4561 699*2^1903573-1 573036 L2257 2022 4562 27*2^1902689-1 572768 L1153 2009 4563 553*2^1902102+1 572593 L2520 2013 4564 1112*423^218014-1 572583 L5410 2021 4565 4171*2^1901433-1 572392 L1959 2016 4566 86*394^220461-1 572208 L541 2020 4567 20707410481*2^1900579-1 572142 L5327 2021 4568 825*2^1899868-1 571921 L2257 2022 4569 271562*151^262431-1 571837 L4001 2018 4570 1323*2^1899548-1 571825 L1828 2014 4571 10005*2^1898938-1 571642 L4405 2019 4572 4806*37^364466-1 571560 L4001 2015 4573 314159*2^1898333+1 571461 L4994 2019 4574 2707*352^224386+1 571412 L5410 2021 4575 633*2^1897632+1 571247 L1741 2013 4576 451*2^1897621-1 571244 L5516 2022 4577 1131*2^1897379-1 571172 L1828 2014 4578d 137*1010^190044-1 570956 L5410 2023 4579 7092*313^228770-1 570910 L5410 2020 4580 707*2^1895035+1 570466 L3035 2013 4581 429*2^1894947-1 570439 L5516 2022 4582 781*2^1894473-1 570297 L2257 2022 4583 3945*2^1894329-1 570254 L4036 2015 4584 5732*29^389934-1 570243 L5660 2023 4585 Phi(3,-628716^49152) 570012 L4142 2016 Generalized unique 4586 4157*2^1892772-1 569785 L1959 2015 4587 154*730^198988+1 569770 L4001 2018 4588 10005*2^1892466-1 569694 L4405 2019 4589 1053*2^1891799-1 569492 L1828 2014 4590 687*2^1891730+1 569471 L3221 2013 4591 5758*211^244970+1 569384 L5410 2020 4592 87*2^1891391+1 569368 L2673 2011 4593 929*2^1890324-1 569048 L2257 2022 4594 85287*2^1890011+1 568955 p254 2011 4595 221*2^1889983+1 568944 L1741 2013 4596 597*2^1889088-1 568675 L5516 2022 4597 607*2^1888525-1 568506 L2257 2022 4598f 379*954^190738-1 568316 L5410 2023 4599 585*2^1887819+1 568293 L3171 2013 4600 347*2^1887507+1 568199 L3548 2013 4601 391*2^1886863-1 568005 L1809 2014 4602 759*2^1886119-1 567782 L2257 2022 4603 791*2^1885961+1 567734 L3075 2013 4604 975*2^1885724+1 567663 L1129 2013 4605 22*615^203539-1 567647 L4001 2018 4606 987*2^1885160+1 567493 L2070 2013 4607 Phi(3,-590826^49152) 567358 L4142 2017 Generalized unique 4608 744716047603963*2^1884575-1 567329 L257 2013 4609 485*2^1884579+1 567318 L3548 2013 4610 14296*421^216090+1 567086 L5410 2021 4611 879*2^1883385+1 566959 L3223 2013 4612 815730721*2^1882432+1 566678 L466 2018 Generalized Fermat 4613 693*2^1881882+1 566506 L2322 2013 4614 30*7^670289+1 566462 L3610 2014 4615 639*2^1880451+1 566075 L3141 2013 4616 927*2^1880136-1 565981 L2257 2022 4617 277*2^1880022+1 565946 L3418 2013 4618 46498*1027^187913+1 565918 L4001 2018 4619 747*2^1879749-1 565864 L2257 2022 4620 2655*2^1879275-1 565722 L2484 2018 4621 89*2^1879132-1 565678 L1828 2013 4622 441*2^1879067+1 565659 L2840 2013 4623 283*2^1879051-1 565654 L2484 2015 4624 214*378^219424-1 565566 L5410 2020 4625 729*2^1877995+1 565336 L1792 2013 4626 645*2^1877756+1 565264 L2981 2013 4627 Phi(3,-561180^49152) 565160 L4142 2017 Generalized unique 4628 613*2^1876758+1 564964 L2413 2013 4629 10005*2^1876648-1 564932 L4405 2019 4630 267*2^1876604+1 564917 L1792 2013 4631 345067*2^1876573-1 564911 g59 2005 4632 1063*2^1876427-1 564864 L1828 2014 4633 1389*2^1876376-1 564849 L1828 2014 4634 1183414*3^1183414+1 564639 L2841 2014 Generalized Cullen 4635 4015*2^1875453-1 564572 L1959 2014 4636 1043*2^1875213+1 564499 L2413 2013 4637 1209*2^1874804-1 564376 L1828 2014 4638 4125*2^1874718-1 564350 L1959 2015 4639 1199*2^1874495+1 564283 L2827 2013 4640 495*2^1874077+1 564157 L1344 2013 4641 505*2^1873631-1 564022 L5516 2022 4642 71*2^1873569+1 564003 L1223 2011 Divides GF(1873568,5) 4643 Phi(3,-544951^49152) 563907 L4142 2017 Generalized unique 4644 1958*687^198762-1 563883 L4955 2023 4645 21*2^1872923-1 563808 L2074 2012 4646 4039*2^1872875-1 563796 L1959 2015 4647 789*2^1872863-1 563791 L2257 2022 4648 439*2^1872789-1 563769 L5516 2022 4649 399878576^65536+1 563736 L4964 2019 Generalized Fermat 4650 357*2^1871600-1 563411 L2519 2014 4651 1309*2^1871045-1 563244 L1828 2014 4652 901*2^1870997-1 563230 L2257 2022 4653 859*2^1870639-1 563122 L2519 2022 4654 Phi(3,-533612^49152) 563010 L4142 2017 Generalized unique 4655 735*2^1870118+1 562965 L3075 2013 4656 575*2^1869989+1 562926 L3650 2013 4657 315*2^1869119-1 562664 L2235 2012 4658 19683*2^1868828+1 562578 L3784 2019 4659 400*315^225179-1 562570 L4444 2021 4660 933*2^1868602+1 562509 L3709 2013 4661 503*2^1868417+1 562453 L3378 2013 4662 1073*2^1867944-1 562311 L1828 2014 4663 2*1595^175532-1 562188 L4961 2019 4664 13162*3^1177896+1 562004 L5410 2021 4665 1115*2^1866094-1 561754 L1828 2014 4666 955*2^1865553-1 561591 L2257 2022 4667 621*2^1865542-1 561587 L2257 2022 4668 70*905^189879-1 561408 L541 2017 4669 407*2^1864735+1 561344 L2520 2013 4670f 627912!6+1 561315 p397 2023 Multifactorial 4671 10005*2^1864432-1 561254 L4405 2019 4672 489*2^1864339+1 561225 L2520 2013 4673 427*2^1863702+1 561033 L3586 2013 4674 1161*2^1863637+1 561014 L3213 2013 4675 653*2^1862782-1 560757 L2257 2022 4676 2*3^1175232+1 560729 p199 2010 4677 347*2^1861974-1 560513 L2519 2014 4678 13*2^1861732+1 560439 g267 2005 Divides GF(1861731,6) 4679 411*2^1861627+1 560409 L1741 2013 4680 281*2^1860862-1 560178 L2484 2015 4681 1165*2^1860749-1 560145 L1828 2014 4682 231*2^1860743-1 560142 L1862 2015 4683 103*2^1860103-1 559949 L2484 2012 4684 350006744^65536+1 559945 L4964 2019 Generalized Fermat 4685 11726*1027^185913-1 559895 L4001 2018 4686 2655*2^1859692-1 559827 L1862 2018 4687 161*2^1859586-1 559794 L177 2013 4688 813*2^1859419-1 559744 L2519 2022 4689 981*2^1859266-1 559698 L2257 2022 4690 51*2^1859193+1 559675 L1204 2011 4691 1177*2^1859144+1 559662 L3625 2013 4692 1818*378^217098+1 559572 L5410 2021 4693 1455*2^1858634-1 559508 L1134 2015 4694 8331405*2^1858587-1 559498 L260 2011 4695 8*3^1172480+1 559417 L4799 2020 4696 663*2^1858195-1 559376 L1817 2022 4697 671*2^1857950-1 559302 L1817 2022 4698 145*590^201814+1 559199 L5410 2022 4699 435*2^1857332-1 559116 L5551 2022 4700 669*2^1857223+1 559083 L2413 2013 4701 296990*151^256535-1 558990 L4700 2018 4702 525*2^1856834-1 558966 L5516 2022 4703 1125*2^1856703-1 558927 L1828 2014 4704 429*2^1856373-1 558827 L5516 2022 4705 52600*91^285235+1 558792 L5410 2020 4706 1155*2^1855389-1 558531 L1828 2014 4707 4031*2^1855338-1 558516 L1959 2014 4708 229*372^217261-1 558482 L4876 2019 4709 Phi(3,-478421^49152) 558349 L4142 2017 Generalized unique 4710 917*2^1854642-1 558306 L1817 2022 4711 126072*31^374323-1 558257 L2054 2012 4712 3^1170000+3^364398+1 558232 x44 2017 4713 4918*3^1169850+1 558164 L5410 2021 4714 19*932^187910+1 557985 L5410 2022 4715 435*2^1853363-1 557921 L4036 2015 4716 1229*2^1853192-1 557870 L1828 2014 4717 3161*618^199877+1 557858 L4714 2018 4718 333*2^1853115-1 557846 L1830 2012 4719 87*2^1852590-1 557688 L2055 2011 4720 765*2^1849609+1 556791 L1792 2013 4721 137*2^1849238-1 556679 L321 2007 4722 639*2^1848903+1 556579 L3439 2013 4723 1061*268^229202-1 556537 L5410 2019 4724 261*2^1848217+1 556372 L1983 2013 4725 Phi(3,-456551^49152) 556351 L4142 2017 Generalized unique 4726 917*2^1847872-1 556268 L2519 2022 4727 465*2^1847589-1 556183 L5516 2022 4728 663*2^1847319-1 556102 L1817 2022 4729 775*2^1846945-1 555989 L1817 2022 4730 88*107^273915-1 555881 L4444 2021 4731 275*2^1846390-1 555822 L2444 2014 4732 1011*2^1846173+1 555757 L3221 2013 4733 575*2^1845718-1 555620 L5516 2022 4734 1029*2^1844975+1 555396 L2626 2013 4735 133*2^1843619-1 554987 L1959 2014 4736 261*2^1843555-1 554968 L1828 2013 4737 655*2^1843379-1 554916 L1817 2022 4738 2^120*611953#*611957^50000+1 554832 p383 2015 4739 73246*1027^184192+1 554713 L4001 2018 4740 503*2^1842034-1 554511 L5516 2022 4741a 288721164^65536+1 554466 L5772 2023 Generalized Fermat 4742a 288686746^65536+1 554463 L5639 2023 Generalized Fermat 4743a 288683836^65536+1 554463 L5823 2023 Generalized Fermat 4744a 288675878^65536+1 554462 L5772 2023 Generalized Fermat 4745a 288212888^65536+1 554416 L5772 2023 Generalized Fermat 4746a 288163930^65536+1 554411 L5620 2023 Generalized Fermat 4747a 288090918^65536+1 554404 L5772 2023 Generalized Fermat 4748a 287967504^65536+1 554392 L4933 2023 Generalized Fermat 4749a 287895384^65536+1 554385 L4968 2023 Generalized Fermat 4750a 287877392^65536+1 554383 L5822 2023 Generalized Fermat 4751a 287747230^65536+1 554370 L5639 2023 Generalized Fermat 4752a 287571970^65536+1 554353 L5620 2023 Generalized Fermat 4753 953*2^1841461+1 554338 L3612 2013 4754a 287423798^65536+1 554338 L4371 2023 Generalized Fermat 4755a 287286178^65536+1 554325 L4933 2023 Generalized Fermat 4756a 287234044^65536+1 554319 L5077 2023 Generalized Fermat 4757a 287196594^65536+1 554316 L5070 2023 Generalized Fermat 4758a 287130118^65536+1 554309 L5639 2023 Generalized Fermat 4759a 287114344^65536+1 554308 L5077 2023 Generalized Fermat 4760a 287028470^65536+1 554299 L5070 2023 Generalized Fermat 4761a 286986062^65536+1 554295 L5070 2023 Generalized Fermat 4762a 286897030^65536+1 554286 L4477 2023 Generalized Fermat 4763a 286844394^65536+1 554281 L5634 2023 Generalized Fermat 4764b 286591074^65536+1 554256 L5639 2023 Generalized Fermat 4765 713*2^1841166-1 554250 L1817 2022 4766 4171*2^1841157-1 554248 L1959 2016 4767b 286487634^65536+1 554245 L5070 2023 Generalized Fermat 4768b 286130010^65536+1 554210 L5816 2023 Generalized Fermat 4769b 286096802^65536+1 554207 L5077 2023 Generalized Fermat 4770b 285911424^65536+1 554188 L5022 2023 Generalized Fermat 4771b 285894112^65536+1 554186 L5077 2023 Generalized Fermat 4772 19061965*2^1840922+1 554181 p286 2022 4773b 285744852^65536+1 554172 L4249 2023 Generalized Fermat 4774b 285657432^65536+1 554163 L5347 2023 Generalized Fermat 4775b 285568918^65536+1 554154 L5077 2023 Generalized Fermat 4776b 285303034^65536+1 554127 L5022 2023 Generalized Fermat 4777b 285249588^65536+1 554122 L5077 2023 Generalized Fermat 4778b 285162248^65536+1 554113 L5432 2023 Generalized Fermat 4779 1089*2^1840695-1 554108 L1828 2014 4780b 284839974^65536+1 554081 L4928 2023 Generalized Fermat 4781b 284492270^65536+1 554046 L5815 2023 Generalized Fermat 4782b 284435642^65536+1 554041 L5813 2023 Generalized Fermat 4783b 284425404^65536+1 554040 L4933 2023 Generalized Fermat 4784b 284328160^65536+1 554030 L5070 2023 Generalized Fermat 4785 705*2^1840379-1 554013 L1817 2022 4786b 284130644^65536+1 554010 L5022 2023 Generalized Fermat 4787b 284063728^65536+1 554004 L4737 2023 Generalized Fermat 4788b 284039224^65536+1 554001 L5627 2023 Generalized Fermat 4789 105*2^1840262-1 553977 L1959 2014 4790 1009*2^1840225-1 553966 L1828 2014 4791b 283636836^65536+1 553961 L5627 2023 Generalized Fermat 4792b 283489024^65536+1 553946 L4933 2023 Generalized Fermat 4793b 283267288^65536+1 553924 L5772 2023 Generalized Fermat 4794b 283137222^65536+1 553911 L5077 2023 Generalized Fermat 4795b 282940616^65536+1 553891 L5620 2023 Generalized Fermat 4796b 282868132^65536+1 553884 L5077 2023 Generalized Fermat 4797b 282771412^65536+1 553874 L5070 2023 Generalized Fermat 4798b 282596850^65536+1 553856 L5784 2023 Generalized Fermat 4799c 282493816^65536+1 553846 L5627 2023 Generalized Fermat 4800c 282464682^65536+1 553843 L5634 2023 Generalized Fermat 4801c 282143224^65536+1 553810 L5809 2023 Generalized Fermat 4802 1323*2^1839623-1 553785 L1828 2014 4803c 281862512^65536+1 553782 L5526 2023 Generalized Fermat 4804c 281859504^65536+1 553782 L4933 2023 Generalized Fermat 4805c 281833104^65536+1 553779 L5639 2023 Generalized Fermat 4806c 281588454^65536+1 553754 L5806 2023 Generalized Fermat 4807c 281522310^65536+1 553748 L5760 2023 Generalized Fermat 4808c 281292474^65536+1 553725 L5403 2023 Generalized Fermat 4809c 281286938^65536+1 553724 L5805 2023 Generalized Fermat 4810c 281151930^65536+1 553710 L5347 2023 Generalized Fermat 4811c 281128342^65536+1 553708 L5070 2023 Generalized Fermat 4812 681*2^1839269+1 553678 L3141 2013 4813c 280735020^65536+1 553668 L5639 2023 Generalized Fermat 4814c 280662244^65536+1 553661 L4737 2023 Generalized Fermat 4815 667*2^1839205-1 553659 L1817 2022 4816c 280558854^65536+1 553650 L4387 2023 Generalized Fermat 4817c 280491706^65536+1 553643 L5639 2023 Generalized Fermat 4818c 280388348^65536+1 553633 L5760 2023 Generalized Fermat 4819c 280295540^65536+1 553623 L5347 2023 Generalized Fermat 4820c 280240520^65536+1 553618 L5143 2023 Generalized Fermat 4821c 280233868^65536+1 553617 L5801 2023 Generalized Fermat 4822 399*2^1839019-1 553603 L1809 2014 4823c 280073642^65536+1 553601 L5143 2023 Generalized Fermat 4824c 279934378^65536+1 553587 L4933 2023 Generalized Fermat 4825 779*2^1838955+1 553584 L3640 2013 4826c 279828194^65536+1 553576 L5051 2023 Generalized Fermat 4827c 279710598^65536+1 553564 L5800 2023 Generalized Fermat 4828c 279526044^65536+1 553545 L5143 2023 Generalized Fermat 4829c 279337808^65536+1 553526 L4933 2023 Generalized Fermat 4830c 279168686^65536+1 553509 L5077 2023 Generalized Fermat 4831c 279168218^65536+1 553509 L5143 2023 Generalized Fermat 4832c 279065654^65536+1 553498 L5797 2023 Generalized Fermat 4833c 278914560^65536+1 553483 L5797 2023 Generalized Fermat 4834c 278901336^65536+1 553482 L5143 2023 Generalized Fermat 4835c 278573258^65536+1 553448 L5070 2023 Generalized Fermat 4836c 278480374^65536+1 553439 L5797 2023 Generalized Fermat 4837 503*2^1838444-1 553430 L5545 2022 4838c 278378566^65536+1 553428 L5784 2023 Generalized Fermat 4839c 278311344^65536+1 553421 L4933 2023 Generalized Fermat 4840c 278271548^65536+1 553417 L5416 2023 Generalized Fermat 4841d 278263718^65536+1 553416 L5070 2023 Generalized Fermat 4842d 278185106^65536+1 553408 L5761 2023 Generalized Fermat 4843d 278131874^65536+1 553403 L4928 2023 Generalized Fermat 4844d 278124408^65536+1 553402 L4359 2023 Generalized Fermat 4845d 278002954^65536+1 553390 L5639 2023 Generalized Fermat 4846d 277985464^65536+1 553388 L5347 2023 Generalized Fermat 4847d 277821740^65536+1 553371 L5070 2023 Generalized Fermat 4848d 277816522^65536+1 553371 L5143 2023 Generalized Fermat 4849d 277779168^65536+1 553367 L4672 2023 Generalized Fermat 4850d 277680222^65536+1 553357 L5795 2023 Generalized Fermat 4851d 277676682^65536+1 553356 L4387 2023 Generalized Fermat 4852d 277619668^65536+1 553350 L5794 2023 Generalized Fermat 4853d 277513352^65536+1 553340 L4387 2023 Generalized Fermat 4854 135*2^1838124+1 553333 L3472 2013 4855d 277403366^65536+1 553328 L4387 2023 Generalized Fermat 4856d 277344684^65536+1 553322 L4387 2023 Generalized Fermat 4857d 277304596^65536+1 553318 L4359 2023 Generalized Fermat 4858d 276966990^65536+1 553283 L5627 2023 Generalized Fermat 4859d 276846832^65536+1 553271 L4933 2023 Generalized Fermat 4860d 276779720^65536+1 553264 L5416 2023 Generalized Fermat 4861 15*2^1837873-1 553257 L632 2008 4862d 276513748^65536+1 553237 L4672 2023 Generalized Fermat 4863d 276312804^65536+1 553216 L4629 2023 Generalized Fermat 4864d 276289408^65536+1 553214 L5793 2023 Generalized Fermat 4865d 276196344^65536+1 553204 L5772 2023 Generalized Fermat 4866d 276109738^65536+1 553195 L5077 2023 Generalized Fermat 4867d 275981748^65536+1 553182 L5792 2023 Generalized Fermat 4868d 275744042^65536+1 553158 L5772 2023 Generalized Fermat 4869d 275702614^65536+1 553153 L4359 2023 Generalized Fermat 4870d 275560040^65536+1 553139 L5639 2023 Generalized Fermat 4871 28*392^213295-1 553137 L4001 2017 4872d 275518122^65536+1 553134 L4933 2023 Generalized Fermat 4873d 275336392^65536+1 553115 L5416 2023 Generalized Fermat 4874d 275029884^65536+1 553084 L5791 2023 Generalized Fermat 4875 1111*792^190801-1 553083 L5426 2021 4876 379*2^1837291-1 553083 L1809 2014 4877d 274885318^65536+1 553069 L4933 2023 Generalized Fermat 4878d 274737458^65536+1 553053 L5634 2023 Generalized Fermat 4879d 274690448^65536+1 553049 L5143 2023 Generalized Fermat 4880 333*2^1837105+1 553027 L3470 2013 4881d 274372420^65536+1 553016 L5639 2023 Generalized Fermat 4882 825*2^1837054-1 553012 L1817 2022 4883d 274269120^65536+1 553005 L5639 2023 Generalized Fermat 4884d 274179144^65536+1 552996 L5526 2023 Generalized Fermat 4885d 274171652^65536+1 552995 L5070 2023 Generalized Fermat 4886d 273780490^65536+1 552954 L5077 2023 Generalized Fermat 4887d 273679286^65536+1 552944 L4999 2023 Generalized Fermat 4888d 273498220^65536+1 552925 L5788 2023 Generalized Fermat 4889e 273465348^65536+1 552921 L5143 2023 Generalized Fermat 4890e 273412686^65536+1 552916 L5785 2023 Generalized Fermat 4891e 272667828^65536+1 552838 L5526 2023 Generalized Fermat 4892 4167*2^1836466-1 552835 L1959 2015 4893d 272445424^65536+1 552815 L5416 2023 Generalized Fermat 4894e 272335146^65536+1 552803 L4933 2023 Generalized Fermat 4895 523061!5+1 552801 x46 2022 Multifactorial 4896e 272284168^65536+1 552798 L5070 2023 Generalized Fermat 4897e 272096382^65536+1 552778 L5784 2023 Generalized Fermat 4898e 272064584^65536+1 552775 L5760 2023 Generalized Fermat 4899e 272034326^65536+1 552772 L5620 2023 Generalized Fermat 4900e 272033228^65536+1 552772 L5070 2023 Generalized Fermat 4901e 271870308^65536+1 552755 L5639 2023 Generalized Fermat 4902e 271761074^65536+1 552743 L5784 2023 Generalized Fermat 4903e 271742714^65536+1 552741 L5786 2023 Generalized Fermat 4904 309*2^1836139+1 552736 L3460 2013 4905e 271645276^65536+1 552731 L5077 2023 Generalized Fermat 4906e 271633032^65536+1 552730 L4201 2023 Generalized Fermat 4907e 271481852^65536+1 552714 L5599 2023 Generalized Fermat 4908e 271450498^65536+1 552711 L5490 2023 Generalized Fermat 4909e 271396206^65536+1 552705 L5634 2023 Generalized Fermat 4910e 271317774^65536+1 552697 L5077 2023 Generalized Fermat 4911d 271079666^65536+1 552672 L5416 2023 Generalized Fermat 4912e 271031136^65536+1 552667 L5781 2023 Generalized Fermat 4913 271018852^65536+1 552666 L4704 2019 Generalized Fermat 4914e 270953578^65536+1 552659 L5779 2023 Generalized Fermat 4915e 270900338^65536+1 552653 L5643 2023 Generalized Fermat 4916e 270881478^65536+1 552651 L4387 2023 Generalized Fermat 4917e 270870834^65536+1 552650 L5639 2023 Generalized Fermat 4918e 270738766^65536+1 552636 L4933 2023 Generalized Fermat 4919d 270729942^65536+1 552635 L5416 2023 Generalized Fermat 4920d 270650780^65536+1 552627 L5416 2023 Generalized Fermat 4921e 270226036^65536+1 552582 L5627 2023 Generalized Fermat 4922e 270152854^65536+1 552574 L4933 2023 Generalized Fermat 4923e 270118384^65536+1 552571 L5654 2023 Generalized Fermat 4924 4061*2^1835582-1 552569 L1959 2014 4925 423*2^1835585+1 552569 L2873 2013 4926 621*2^1835567-1 552564 L1817 2022 4927e 270017480^65536+1 552560 L5070 2023 Generalized Fermat 4928e 269455002^65536+1 552501 L5416 2023 Generalized Fermat 4929e 269348314^65536+1 552490 L4839 2023 Generalized Fermat 4930e 269192112^65536+1 552473 L5777 2023 Generalized Fermat 4931e 269177540^65536+1 552472 L4933 2023 Generalized Fermat 4932e 269095066^65536+1 552463 L5639 2023 Generalized Fermat 4933e 269088864^65536+1 552462 L5485 2023 Generalized Fermat 4934e 268778680^65536+1 552429 L5143 2023 Generalized Fermat 4935e 268758496^65536+1 552427 L5654 2023 Generalized Fermat 4936e 268667968^65536+1 552418 L5717 2023 Generalized Fermat 4937e 268581226^65536+1 552408 L5654 2023 Generalized Fermat 4938e 268580560^65536+1 552408 L5639 2023 Generalized Fermat 4939e 268526572^65536+1 552403 L5654 2023 Generalized Fermat 4940e 268501802^65536+1 552400 L4387 2023 Generalized Fermat 4941f 268337126^65536+1 552383 L5143 2023 Generalized Fermat 4942f 267890702^65536+1 552335 L5627 2023 Generalized Fermat 4943 1181*2^1834802-1 552334 L1828 2014 4944f 267754986^65536+1 552321 L4933 2023 Generalized Fermat 4945f 267633214^65536+1 552308 L5761 2023 Generalized Fermat 4946f 267535458^65536+1 552297 L4933 2023 Generalized Fermat 4947f 267275536^65536+1 552270 L5634 2023 Generalized Fermat 4948f 267203854^65536+1 552262 L4933 2023 Generalized Fermat 4949 73*2^1834526+1 552250 L1513 2011 4950f 267077662^65536+1 552249 L5634 2023 Generalized Fermat 4951f 267075766^65536+1 552248 L5070 2023 Generalized Fermat 4952f 267010136^65536+1 552241 L5156 2023 Generalized Fermat 4953 309*2^1834379+1 552206 L3471 2013 4954f 266524754^65536+1 552190 L5747 2023 Generalized Fermat 4955 3748*333^218908+1 552187 L4575 2017 4956f 266186666^65536+1 552154 L5673 2023 Generalized Fermat 4957f 266185914^65536+1 552153 L5673 2023 Generalized Fermat 4958f 265916906^65536+1 552125 L5416 2023 Generalized Fermat 4959 87*2^1834098+1 552121 L1513 2011 4960f 265876478^65536+1 552120 L4933 2023 Generalized Fermat 4961f 265830698^65536+1 552115 L4672 2023 Generalized Fermat 4962f 265641702^65536+1 552095 L5669 2023 Generalized Fermat 4963f 265498354^65536+1 552080 L5771 2023 Generalized Fermat 4964 26*578^199886-1 552073 L5415 2021 4965f 265337706^65536+1 552063 L5620 2023 Generalized Fermat 4966f 265119988^65536+1 552039 L5457 2023 Generalized Fermat 4967f 265085200^65536+1 552035 L5717 2023 Generalized Fermat 4968f 265072156^65536+1 552034 L5717 2023 Generalized Fermat 4969f 264996308^65536+1 552026 L5759 2023 Generalized Fermat 4970f 264906106^65536+1 552016 L5769 2023 Generalized Fermat 4971f 264769234^65536+1 552002 L5620 2023 Generalized Fermat 4972f 264664796^65536+1 551990 L5347 2023 Generalized Fermat 4973f 264647588^65536+1 551988 L5070 2023 Generalized Fermat 4974f 264551432^65536+1 551978 L5768 2023 Generalized Fermat 4975f 264535130^65536+1 551976 L5457 2023 Generalized Fermat 4976f 264499238^65536+1 551973 L5767 2023 Generalized Fermat 4977f 264497192^65536+1 551972 L5762 2023 Generalized Fermat 4978f 264438670^65536+1 551966 L5459 2023 Generalized Fermat 4979f 264426558^65536+1 551965 L5460 2023 Generalized Fermat 4980f 264301176^65536+1 551951 L5143 2023 Generalized Fermat 4981f 264203868^65536+1 551941 L5632 2023 Generalized Fermat 4982 1021*2^1833459-1 551930 L1828 2014 4983 34*813^189659-1 551927 L4001 2018 4984f 264072794^65536+1 551927 L5370 2023 Generalized Fermat 4985f 264032558^65536+1 551922 L5143 2023 Generalized Fermat 4986f 264031336^65536+1 551922 L5759 2023 Generalized Fermat 4987 489*2^1833431-1 551921 L5545 2022 4988f 263988664^65536+1 551918 L5654 2023 Generalized Fermat 4989f 263952980^65536+1 551914 L5070 2023 Generalized Fermat 4990 263586530^65536+1 551874 L5457 2023 Generalized Fermat 4991f 263569112^65536+1 551872 L5760 2023 Generalized Fermat 4992 263517354^65536+1 551867 L5070 2023 Generalized Fermat 4993 121458*151^253264-1 551862 L4001 2018 4994 263430480^65536+1 551857 L4933 2023 Generalized Fermat 4995 263266882^65536+1 551840 L5143 2023 Generalized Fermat 4996f 263163114^65536+1 551828 L5416 2023 Generalized Fermat 4997 263096256^65536+1 551821 L5460 2023 Generalized Fermat 4998 263088168^65536+1 551820 L5143 2023 Generalized Fermat 4999 263087188^65536+1 551820 L5460 2023 Generalized Fermat 5000 3*2^1832496+1 551637 p189 2007 Divides GF(1832490,3), GF(1832494,5) 5001 39*2^1824871+1 549343 L2664 2011 Divides GF(1824867,6) 5002 45*2^1779971+1 535827 L1223 2011 Divides GF(1779969,5) 5003 5*2^1777515+1 535087 p148 2005 Divides GF(1777511,5), GF(1777514,6) 5004 129*2^1774709+1 534243 L2526 2013 Divides GF(1774705,12) 5005 190088*5^760352-1 531469 L2841 2012 Generalized Woodall 5006 2*191^232149+1 529540 g424 2011 Divides Phi(191^232149,2) 5007 183*2^1747660+1 526101 L2163 2013 Divides Fermat F(1747656) 5008f 524427*10^524427-1 524433 L5765 2023 Generalized Woodall 5009 63*2^1686050+1 507554 L2085 2011 Divides GF(1686047,12) 5010 110059!+1 507082 p312 2011 Factorial 5011 55*2^1669798+1 502662 L2518 2011 Divides GF(1669797,12) 5012 2^1667321-2^833661+1 501914 L137 2011 Gaussian Mersenne norm 38, generalized unique 5013 2*359^192871+1 492804 g424 2014 Divides Phi(359^192871,2) 5014 10^490000+3*(10^7383-1)/9*10^241309+1 490001 p413 2021 Palindrome 5015 1098133#-1 476311 p346 2012 Primorial 5016 10^474500+999*10^237249+1 474501 p363 2014 Palindrome 5017 103040!-1 471794 p301 2010 Factorial 5018 3803*2^1553013+1 467508 L1957 2020 Divides GF(1553012,5) 5019 135*2^1515894+1 456332 L1129 2013 Divides GF(1515890,10) 5020 2*839^155785+1 455479 g424 2014 Divides Phi(839^155785,2) 5021 131*2^1494099+1 449771 L2959 2012 Divides Fermat F(1494096) 5022 1467763*2^1467763-1 441847 L381 2007 Woodall 5023 4125*2^1445205-1 435054 L1959 2014 Arithmetic progression (2,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5024 5529*2^1430926+1 430756 L3035 2017 Divides GF(1430925,5) 5025 94550!-1 429390 p290 2010 Factorial 5026 15*2^1418605+1 427044 g279 2006 Divides GF(1418600,5), GF(1418601,6) 5027 2415*2^1413627-1 425548 L1959 2014 Arithmetic progression (2,d=2415*2^1413627-1489088842587*2^1290000) [p199] 5028 2985*2^1404274-1 422733 L1959 2014 Arithmetic progression (2,d=2985*2^1404274-770527213395*2^1290000) [p199] 5029 2^1398269-1 420921 G1 1996 Mersenne 35 5030 17*2^1388355+1 417938 g267 2005 Divides GF(1388354,10) 5031 338707*2^1354830+1 407850 L124 2005 Cullen 5032 107*2^1337019+1 402485 L2659 2012 Divides GF(1337018,10) 5033 1389*2^1335434+1 402009 L1209 2015 Divides GF(1335433,10) 5034 10^400000+4*(10^102381-1)/9*10^148810+1 400001 p413 2021 Palindrome 5035 5*2^1320487+1 397507 g55 2002 Divides GF(1320486,12) 5036 10^390636+999*10^195317+1 390637 p363 2014 Palindrome 5037 6325241166627*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=1455*2^2683953-6325241166627*2^1290000) 5038 5606879602425*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=33*2^2939063-5606879602425*2^1290000) 5039 2618163402417*2^1290001-1 388342 L927 2016 Sophie Germain (2p+1) 5040 4966510140375*2^1290000-1 388342 L3573 2020 Arithmetic progression (2,d=2227792035315*2^1290001) 5041 2996863034895*2^1290000+1 388342 L2035 2016 Twin (p+2) 5042 2996863034895*2^1290000-1 388342 L2035 2016 Twin (p) 5043 2723880039837*2^1290000-1 388342 L3829 2016 Arithmetic progression (1,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5044 2618163402417*2^1290000-1 388342 L927 2016 Sophie Germain (p) 5045 2060323099527*2^1290000-1 388342 L3606 2015 Arithmetic progression (2,d=69718264533*2^1290002) [p199] 5046 1938662032575*2^1290000-1 388341 L927 2015 Arithmetic progression (1,d=10032831585*2^1290001) [p199] 5047 1781450041395*2^1290000-1 388341 L3203 2015 Arithmetic progression (1,d=69718264533*2^1290002) [p199] 5048 15*2^1276177+1 384169 g279 2006 Divides GF(1276174,3), GF(1276174,10) 5049 1268979*2^1268979-1 382007 L201 2007 Woodall 5050 2^1257787-1 378632 SG 1996 Mersenne 34 5051 329*2^1246017+1 375092 L2085 2012 Divides Fermat F(1246013) 5052 843301#-1 365851 p302 2010 Primorial 5053 25*2^1211488+1 364696 g279 2005 Generalized Fermat, divides GF(1211487,12) 5054 10^362600+666*10^181299+1 362601 p363 2014 Palindrome 5055 2^1203793-2^601897+1 362378 L192 2006 Gaussian Mersenne norm 37, generalized unique 5056 1195203*2^1195203-1 359799 L124 2005 Woodall 5057 29*2^1152765+1 347019 g300 2005 Divides GF(1152760,10) 5058 2145*2^1099064+1 330855 L1792 2013 Divides Fermat F(1099061) 5059 Phi(3,10^160118)+(137*10^160119+731*10^159275)*(10^843-1)/999 320237 p44 2014 Palindrome 5060 Phi(3,10^160048)+(137*10^160049+731*10^157453)*(10^2595-1)/999 320097 p44 2014 Palindrome 5061 10^314727-8*10^157363-1 314727 p235 2013 Near-repdigit, palindrome 5062 10^300000+5*(10^48153-1)/9*10^125924+1 300001 p413 2021 Palindrome 5063 2^991961-2^495981+1 298611 x28 2005 Gaussian Mersenne norm 36, generalized unique 5064 10^290253-2*10^145126-1 290253 p235 2012 Near-repdigit, Palindrome 5065 11*2^960901+1 289262 g277 2005 Divides Fermat F(960897) 5066 10^283355-737*10^141676-1 283355 p399 2020 Palindrome 5067 Phi(3,10^137747)+(137*10^137748+731*10^129293)*(10^8454-1)/999 275495 p44 2012 Palindrome 5068 1705*2^906110+1 272770 L3174 2012 Divides Fermat F(906108) 5069 10^269479-7*10^134739-1 269479 p235 2012 Near-repdigit, Palindrome 5070 10^262144+7*(10^5193-1)/9*10^128476+1 262145 p413 2021 Palindrome 5071 2^859433-1 258716 SG 1994 Mersenne 33 5072 2^756839-1 227832 SG 1992 Mersenne 32 5073 10^223663-454*10^111830-1 223663 p363 2016 Palindrome 5074c 13243*2^699764+1 210655 L5808 2023 Divides Fermat F(699760) 5075 27*2^672007+1 202296 g279 2005 Divides Fermat F(672005) 5076 667071*2^667071-1 200815 g55 2000 Woodall 5077 18543637900515*2^666668-1 200701 L2429 2012 Sophie Germain (2p+1) 5078 18543637900515*2^666667-1 200701 L2429 2012 Sophie Germain (p) 5079 3756801695685*2^666669+1 200700 L1921 2011 Twin (p+2) 5080 3756801695685*2^666669-1 200700 L1921 2011 Twin (p) 5081 392113#+1 169966 p16 2001 Primorial 5082 213778324725*2^561418+1 169015 p430 2023 Cunningham chain 2nd kind (2p-1) 5083 213778324725*2^561417+1 169015 p430 2023 Cunningham chain 2nd kind (p) 5084 366439#+1 158936 p16 2001 Primorial 5085 2*893962950^16384+1 146659 p428 2023 Cunningham chain 2nd kind (2p-1) 5086 893962950^16384+1 146659 p427 2023 Cunningham chain 2nd kind (p), generalized Fermat 5087 481899*2^481899+1 145072 gm 1998 Cullen 5088 34790!-1 142891 p85 2002 Factorial 5089 2^364289-2^182145+1 109662 p58 2001 Gaussian Mersenne norm 35, generalized unique 5090 361275*2^361275+1 108761 DS 1998 Cullen 5091 26951!+1 107707 p65 2002 Factorial 5092 65516468355*2^333333+1 100355 L923 2009 Twin (p+2) 5093 65516468355*2^333333-1 100355 L923 2009 Twin (p) 5094 (7176^24691-1)/7175 95202 CH2 2017 Generalized repunit 5095e R(86453) 86453 E3 2023 Repunit, ECPP, unique 5096 21480!-1 83727 p65 2001 Factorial 5097 183027*2^265441-1 79911 L983 2010 Sophie Germain (2p+1) 5098 183027*2^265440-1 79911 L983 2010 Sophie Germain (p) 5099 262419*2^262419+1 79002 DS 1998 Cullen 5100 160204065*2^262148+1 78923 L5115 2021 Twin (p+2) 5101 160204065*2^262148-1 78923 L5115 2021 Twin (p) 5102 3622179275715*2^256003+1 77078 x47 2020 Cunningham chain 2nd kind (2p-1) 5103 3622179275715*2^256002+1 77077 x47 2020 Cunningham chain 2nd kind (p) 5104 648621027630345*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5105 620366307356565*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5106 648621027630345*2^253824-1 76424 x24 2009 Sophie Germain (p) 5107 620366307356565*2^253824-1 76424 x24 2009 Sophie Germain (p) 5108 2570606397*2^252763+1 76099 p364 2020 Cunningham chain 2nd kind (2p-1) 5109 2570606397*2^252762+1 76099 p364 2020 Cunningham chain 2nd kind (p) 5110 (40734^16111-1)/40733 74267 CH2 2015 Generalized repunit 5111 (64758^15373-1)/64757 73960 p170 2018 Generalized repunit 5112 5^104824+104824^5 73269 E4 2023 ECPP 5113 primV(111534,1,27000) 72683 x25 2013 Generalized Lucas primitive part 5114 (58729^15091-1)/58728 71962 CH2 2017 Generalized repunit 5115 2*352666770^8192+1 70021 p409 2020 Cunningham chain 2nd kind (2p-1) 5116 352666770^8192+1 70021 p411 2020 Cunningham chain 2nd kind (p), generalized Fermat 5117 (27987^15313-1)/27986 68092 CH12 2020 Generalized repunit 5118 (23340^15439-1)/23339 67435 p170 2020 Generalized repunit 5119 12770275971*2^222225+1 66907 L527 2017 Twin (p+2) 5120 12770275971*2^222225-1 66907 L527 2017 Twin (p) 5121 (24741^15073-1)/24740 66218 p170 2020 Generalized repunit 5122 (63847^13339-1)/63846 64091 p170 2013 Generalized repunit 5123 12599682117*2^211088+1 63554 L4166 2022 Twin (p+2) 5124 12599682117*2^211088-1 63554 L4166 2022 Twin (p) 5125 12566577633*2^211088+1 63554 L4166 2022 Twin (p+2) 5126 12566577633*2^211088-1 63554 L4166 2022 Twin (p) 5127 1068669447*2^211089-1 63554 L4166 2020 Sophie Germain (2p+1) 5128 1068669447*2^211088-1 63553 L4166 2020 Sophie Germain (p) 5129 145823#+1 63142 p21 2000 Primorial 5130 U(15694,1,14700)+U(15694,1,14699) 61674 x45 2019 Lehmer number 5131 (28507^13831-1)/28506 61612 CH12 2020 Generalized repunit 5132 2^203789+2^101895+1 61347 O 2000 Gaussian Mersenne norm 34, generalized unique 5133 (26371^13681-1)/26370 60482 p170 2012 Generalized repunit 5134 U(24,-25,43201) 60391 CH12 2020 Generalized Lucas number 5135 99064503957*2^200009-1 60220 L95 2016 Sophie Germain (2p+1) 5136 99064503957*2^200008-1 60220 L95 2016 Sophie Germain (p) 5137 70965694293*2^200006+1 60219 L95 2016 Twin (p+2) 5138 70965694293*2^200006-1 60219 L95 2016 Twin (p) 5139 66444866235*2^200003+1 60218 L95 2016 Twin (p+2) 5140 66444866235*2^200003-1 60218 L95 2016 Twin (p) 5141 (4529^16381-1)/4528 59886 CH2 2012 Generalized repunit 5142 4884940623*2^198800+1 59855 L4166 2015 Twin (p+2) 5143 4884940623*2^198800-1 59855 L4166 2015 Twin (p) 5144 3^125330+1968634623437000 59798 E4 2022 ECPP 5145 (9082^15091-1)/9081 59729 CH2 2014 Generalized repunit 5146 2003663613*2^195000+1 58711 L202 2007 Twin (p+2) 5147 2003663613*2^195000-1 58711 L202 2007 Twin (p) 5148 primV(27655,1,19926) 57566 x25 2013 Generalized Lucas primitive part 5149 Ramanujan tau function at 199^4518 57125 E3 2022 ECPP 5150 (43326^12041-1)/43325 55827 p170 2017 Generalized repunit 5151 12443794755*2^184517-1 55556 L3494 2021 Sophie Germain (2p+1) 5152 21749869755*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 5153 14901867165*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 5154 12443794755*2^184516-1 55555 L3494 2021 Sophie Germain (p) 5155 21749869755*2^184515-1 55555 L3494 2021 Sophie Germain (p) 5156 14901867165*2^184515-1 55555 L3494 2021 Sophie Germain (p) 5157 17976255129*2^183241+1 55172 p415 2021 Twin (p+2) 5158 17976255129*2^183241-1 55172 p415 2021 Twin (p) 5159 607095*2^176312-1 53081 L983 2009 Sophie Germain (2p+1) 5160 607095*2^176311-1 53081 L983 2009 Sophie Germain (p) 5161 (38284^11491-1)/38283 52659 CH2 2013 Generalized repunit 5162 (2^174533-1)/193594572654550537/91917886778031629891960890057 52494 E5 2022 Mersenne cofactor, ECPP 5163 191547657*2^173372+1 52199 L5116 2020 Twin (p+2) 5164 191547657*2^173372-1 52199 L5116 2020 Twin (p) 5165 38529154785*2^173250+1 52165 L3494 2014 Twin (p+2) 5166 38529154785*2^173250-1 52165 L3494 2014 Twin (p) 5167 29055814795*(2^172486-2^86243)+2^86245+1 51934 p408 2022 Consecutive primes arithmetic progression (2,d=4) 5168 11922002779*(2^172486-2^86243)+2^86245+1 51934 p408 2022 Consecutive primes arithmetic progression (2,d=6) 5169 48047305725*2^172404-1 51910 L99 2007 Sophie Germain (2p+1) 5170 48047305725*2^172403-1 51910 L99 2007 Sophie Germain (p) 5171 137211941292195*2^171961-1 51780 x24 2006 Sophie Germain (2p+1) 5172 194772106074315*2^171960+1 51780 x24 2007 Twin (p+2) 5173 194772106074315*2^171960-1 51780 x24 2007 Twin (p) 5174 137211941292195*2^171960-1 51780 x24 2006 Sophie Germain (p) 5175 100314512544015*2^171960+1 51780 x24 2006 Twin (p+2) 5176 100314512544015*2^171960-1 51780 x24 2006 Twin (p) 5177 16869987339975*2^171960+1 51779 x24 2005 Twin (p+2) 5178 16869987339975*2^171960-1 51779 x24 2005 Twin (p) 5179 (34120^11311-1)/34119 51269 CH2 2011 Generalized repunit 5180 33218925*2^169690+1 51090 g259 2002 Twin (p+2) 5181 33218925*2^169690-1 51090 g259 2002 Twin (p) 5182 U(809,1,17325)-U(809,1,17324) 50378 x45 2019 Lehmer number 5183 10^50000+65859 50001 E3 2022 ECPP 5184 R(49081) 49081 c70 2022 Repunit, unique, ECPP 5185 (50091^10357-1)/50090 48671 p170 2016 Generalized repunit 5186 268981272*5^69421+1 48532 L5695 2023 Twin (p+2) 5187 268981272*5^69421-1 48532 L5695 2023 Twin (p) 5188 2^160423-2^80212+1 48293 O 2000 Gaussian Mersenne norm 33, generalized unique 5189 U(67,-1,26161) 47773 x45 2019 Generalized Lucas number 5190 primV(40395,-1,15588) 47759 x23 2007 Generalized Lucas primitive part 5191 110427610*3^100003+1 47722 p415 2021 Twin (p+2) 5192 110427610*3^100003-1 47722 p415 2021 Twin (p) 5193 primV(53394,-1,15264) 47200 CH4 2007 Generalized Lucas primitive part 5194 (44497^10093-1)/44496 46911 p170 2016 Generalized repunit 5195 4931286045*2^152850-1 46023 L5389 2021 Sophie Germain (2p+1) 5196 4318624617*2^152850-1 46023 L5389 2021 Sophie Germain (2p+1) 5197 4931286045*2^152849-1 46022 L5389 2021 Sophie Germain (p) 5198 4318624617*2^152849-1 46022 L5389 2021 Sophie Germain (p) 5199 151023*2^151023-1 45468 g25 1998 Woodall 5200 (1852^13477-1)/1851 44035 p170 2015 Generalized repunit 5201 U(52245,1,9241)+U(52245,1,9240) 43595 x45 2019 Lehmer number 5202 17147299833*2^143732-1 43278 L3494 2023 Sophie Germain (2p+1) 5203 17147299833*2^143731-1 43278 L3494 2023 Sophie Germain (p) 5204 21195711*2^143631-1 43245 L3494 2019 Sophie Germain (2p+1) 5205 21195711*2^143630-1 43245 L3494 2019 Sophie Germain (p) 5206 (42417^9337-1)/42416 43203 p170 2015 Generalized repunit 5207 838269645*2^143166-1 43107 L3494 2019 Sophie Germain (2p+1) 5208 838269645*2^143165-1 43106 L3494 2019 Sophie Germain (p) 5209 570409245*2^143164-1 43106 L3494 2019 Sophie Germain (2p+1) 5210 570409245*2^143163-1 43106 L3494 2019 Sophie Germain (p) 5211 2830598517*2^143113-1 43091 L3494 2019 Sophie Germain (2p+1) 5212 2830598517*2^143112-1 43091 L3494 2019 Sophie Germain (p) 5213 71509*2^143019-1 43058 g23 1998 Woodall, arithmetic progression (2,d=(143018*2^83969-80047)*2^59049) [x12] 5214 U(2449,-1,12671) 42939 x45 2018 Generalized Lucas number, cyclotomy 5215 (36210^9319-1)/36209 42480 p170 2019 Generalized repunit 5216a U(201107) 42029 E11 2023 Fibonacci number, ECPP 5217 E(11848)/7910215 40792 E8 2022 Euler irregular, ECPP 5218 10^40000+14253 40001 E3 2022 ECPP 5219 p(1289844341) 40000 c84 2020 Partitions, ECPP 5220 primV(4836,1,16704) 39616 x25 2013 Generalized Lucas primitive part 5221 (2^130439-1)/260879 39261 E9 2023 Mersenne cofactor, ECPP 5222 U(21041,-1,9059) 39159 x45 2018 Generalized Lucas number, cyclotomy 5223 tau(47^4176) 38404 E3 2022 ECPP 5224 (2^127031+1)/3 38240 E5 2023 Wagstaff, ECPP, generalized Lucas number 5225 3^78296+479975120078336 37357 E4 2022 ECPP 5226 63^20018+20018^63 36020 E4 2023 ECPP 5227 U(5617,-1,9539) 35763 x45 2019 Generalized Lucas number, cyclotomy 5228 (2^117239+1)/3 35292 E2 2022 Wagstaff, ECPP, generalized Lucas number 5229 p(1000007396) 35219 E4 2022 Partitions, ECPP 5230 2^116224-15905 34987 c87 2017 ECPP 5231 (V(60145,1,7317)-1)/(V(60145,1,27)-1) 34841 x45 2019 Lehmer primitive part 5232 primV(38513,-1,11502) 34668 x23 2006 Generalized Lucas primitive part 5233 primV(9008,1,16200) 34168 x23 2005 Generalized Lucas primitive part 5234 (14665*10^34110-56641)/9999 34111 c89 2018 ECPP, Palindrome 5235 (V(28138,1,7587)-1)/(V(28138,1,27)-1) 33637 x45 2019 Lehmer primitive part 5236 U(35896,1,7260)+U(35896,1,7259) 33066 x45 2019 Lehmer number 5237 primV(6586,1,16200) 32993 x25 2013 Generalized Lucas primitive part 5238 U(1624,-1,10169) 32646 x45 2018 Generalized Lucas number, cyclotomy 5239 (V(48395,1,6921)-1)/(V(48395,1,9)-1) 32382 x45 2019 Lehmer primitive part 5240 2^106693+2^53347+1 32118 O 2000 Gaussian Mersenne norm 32, generalized unique 5241 primV(28875,1,13500) 32116 x25 2016 Generalized Lucas primitive part 5242 (2^106391-1)/286105171290931103 32010 c95 2022 Mersenne cofactor, ECPP 5243 (V(77786,1,6453)+1)/(V(77786,1,27)+1) 31429 x25 2012 Lehmer primitive part 5244 primV(10987,1,14400) 31034 x25 2005 Generalized Lucas primitive part 5245 V(148091) 30950 c81 2015 Lucas number, ECPP 5246 U(148091) 30949 x49 2021 Fibonacci number, ECPP 5247e -E(9266)/(61657889*34536574993) 30900 E10 2023 Euler irregular, ECPP 5248 Phi(11589,-10000) 30897 E1 2022 Unique,ECPP 5249 (V(73570,1,6309)-1)/(V(73570,1,9)-1) 30661 x25 2016 Lehmer primitive part 5250 1524633857*2^99902-1 30083 p364 2022 Arithmetic progression (4,d=928724769*2^99901) 5251 Phi(36547,-10) 29832 E1 2022 Unique, ECPP 5252 49363*2^98727-1 29725 Y 1997 Woodall 5253 U(2341,-1,8819) 29712 x25 2008 Generalized Lucas number 5254 primV(24127,-1,6718) 29433 CH3 2005 Generalized Lucas primitive part 5255 primV(12215,-1,13500) 29426 x25 2016 Generalized Lucas primitive part 5256 V(140057) 29271 c76 2014 Lucas number,ECPP 5257 U(1404,-1,9209) 28981 CH10 2018 Generalized Lucas number, cyclotomy 5258 U(23396,1,6615)+U(23396,1,6614) 28898 x45 2019 Lehmer number 5259 (2^95369+1)/3 28709 x49 2021 Generalized Lucas number, Wagstaff, ECPP 5260 primV(45922,1,11520) 28644 x25 2011 Generalized Lucas primitive part 5261 primV(205011) 28552 x39 2009 Lucas primitive part 5262 -30*Bern(10264)/(1040513*252354668864651) 28506 c94 2021 Irregular, ECPP 5263 U(16531,1,6721)-U(16531,1,6720) 28347 x36 2007 Lehmer number 5264 (V(28286,1,6309)+1)/(V(28286,1,9)+1) 28045 x25 2016 Lehmer primitive part 5265 U(5092,1,7561)+U(5092,1,7560) 28025 x25 2014 Lehmer number 5266 90825*2^90825+1 27347 Y 1997 Cullen 5267 U(5239,1,7350)-U(5239,1,7349) 27333 CH10 2017 Lehmer number 5268 U(130021) 27173 x48 2021 Fibonacci number, ECPP 5269 primV(5673,1,13500) 27028 CH3 2005 Generalized Lucas primitive part 5270 primV(44368,1,9504) 26768 CH3 2005 Generalized Lucas primitive part 5271 546351925018076058*Bern(9702)/129255048976106804786904258880518941 26709 c77 2021 Irregular, ECPP 5272 22359307*60919#+1 26383 p364 2022 Arithmetic progression (4,d=5210718*60919#) 5273 17029817*60919#+1 26383 p364 2022 Arithmetic progression (4,d=1809778*60919#) 5274 (2^87691-1)/806957040167570408395443233 26371 E1 2022 Mersenne cofactor, ECPP 5275 primV(10986,-1,9756) 26185 x23 2005 Generalized Lucas primitive part 5276 1043945909*60013#+1 25992 p155 2019 Arithmetic progression (4,d=7399459*60013#) 5277 1041073153*60013#+1 25992 p155 2019 Arithmetic progression (4,d=10142823*60013#) 5278 (2^86371-1)/41681512921035887 25984 E2 2022 Mersenne cofactor, ECPP 5279 (2^86137-1)/2584111/7747937967916174363624460881 25896 c84 2022 Mersenne cofactor, ECPP 5280 primV(11076,-1,12000) 25885 x25 2005 Generalized Lucas primitive part 5281e -E(7894)/19 25790 E10 2023 Euler irregular, ECPP 5282 2^85237+2^42619+1 25659 x16 2000 Gaussian Mersenne norm 31, generalized unique 5283 primV(17505,1,11250) 25459 x25 2011 Generalized Lucas primitive part 5284 U(2325,-1,7561) 25451 x20 2013 Generalized Lucas number 5285 U(13084,-13085,6151) 25319 x45 2018 Generalized Lucas number, cyclotomy 5286 (2^84211-1)/1347377/31358793176711980763958121/33146416760423478241695\ 91561 25291 c95 2020 Mersenne cofactor, ECPP 5287 primV(42,-1,23376) 25249 x23 2007 Generalized Lucas primitive part 5288 U(1064,-1065,8311) 25158 CH10 2018 Generalized Lucas number, cyclotomy 5289 primV(7577,-1,10692) 25140 x33 2007 Generalized Lucas primitive part 5290 (2^83339+1)/3 25088 c54 2014 ECPP, generalized Lucas number, Wagstaff 5291 (2^82939-1)/883323903012540278033571819073 24938 c84 2021 Mersenne cofactor, ECPP 5292e -E(7634)/1559 24828 E10 2023 Euler irregular, ECPP 5293 U(1766,1,7561)-U(1766,1,7560) 24548 x25 2013 Lehmer number 5294 U(1383,1,7561)+U(1383,1,7560) 23745 x25 2013 Lehmer number 5295 798*Bern(8766)/(2267959*6468702182951641) 23743 c94 2021 Irregular, ECPP 5296 Phi(11867,-100) 23732 c47 2021 Unique, ECPP 5297 (2^78737-1)/1590296767505866614563328548192658003295567890593 23654 E2 2022 Mersenne cofactor, ECPP 5298 Phi(35421,-10) 23613 c77 2021 Unique, ECPP 5299 6917!-1 23560 g1 1998 Factorial 5300 2^77291+2^38646+1 23267 O 2000 Gaussian Mersenne norm 30, generalized unique 5301 (V(59936,1,4863)+1)/(V(59936,1,3)+1) 23220 x25 2013 Lehmer primitive part 5302 U(1118,1,7561)-U(1118,1,7560) 23047 x25 2013 Lehmer number 5303 (V(45366,1,4857)+1)/(V(45366,1,3)+1) 22604 x25 2013 Lehmer primitive part 5304 348054*Bern(8286)/1570865077944473903275073668721 22234 E1 2022 Irregular, ECPP 5305 p(398256632) 22223 E1 2022 Partitions, ECPP 5306 U(105509)/144118801533126010445795676378394340544227572822879081 21997 E1 2022 Fibonacci cofactor, ECPP 5307 U(104911) 21925 c82 2015 Fibonacci number, ECPP 5308 Phi(1203,10^27) 21600 c47 2021 Unique, ECPP 5309 U(19258,-1,5039) 21586 x23 2007 Generalized Lucas number 5310 6380!+1 21507 g1 1998 Factorial 5311 U(43100,1,4620)+U(43100,1,4619) 21407 x25 2016 Lehmer number 5312 -E(6658)/85079 21257 c77 2020 Euler irregular, ECPP 5313 Phi(39855,-10) 21248 c95 2020 Unique, ECPP 5314 (V(23354,1,4869)-1)/(V(23354,1,9)-1) 21231 x25 2013 Lehmer primitive part 5315 U(15631,1,5040)-U(15631,1,5039) 21134 x25 2003 Lehmer number 5316a primA(413205) 21127 E1 2023 Lucas Aurifeuillian primitive part, ECPP 5317 U(35759,1,4620)+U(35759,1,4619) 21033 x25 2016 Lehmer number 5318 p(355646102) 21000 E1 2022 Partitions, ECPP 5319 p(350199893) 20838 E7 2022 Partitions, ECPP 5320 U(31321,1,4620)-U(31321,1,4619) 20767 x25 2016 Lehmer number 5321 primU(105821) 20598 E1 2022 Fibonacci primitive part, ECPP 5322 primU(172179) 20540 E1 2022 Fibonacci primitive part, ECPP 5323 U(11200,-1,5039) 20400 x25 2004 Generalized Lucas number, cyclotomy 5324 Phi(23749,-10) 20160 c47 2014 Unique, ECPP 5325 U(22098,1,4620)+U(22098,1,4619) 20067 x25 2016 Lehmer number 5326 primV(112028) 20063 E1 2022 Lucas primitive part, ECPP 5327 1128330746865*2^66441-1 20013 p158 2020 Cunningham chain (4p+3) 5328 1128330746865*2^66440-1 20013 p158 2020 Cunningham chain (2p+1) 5329 1128330746865*2^66439-1 20013 p158 2020 Cunningham chain (p) 5330 4111286921397*2^66420+5 20008 c88 2019 Triplet (3) 5331 4111286921397*2^66420+1 20008 L4808 2019 Triplet (2) 5332 4111286921397*2^66420-1 20008 L4808 2019 Triplet (1) 5333 U(21412,1,4620)-U(21412,1,4619) 20004 x25 2016 Lehmer number 5334 p(322610098) 20000 E1 2022 Partitions, ECPP 5335 primV(151521) 19863 E1 2022 Lucas primitive part, ECPP 5336 V(94823) 19817 c73 2014 Lucas number, ECPP 5337 U(19361,1,4620)+U(19361,1,4619) 19802 x25 2016 Lehmer number 5338 U(8454,-1,5039) 19785 x25 2013 Generalized Lucas number 5339 U(6584,-1,5039) 19238 x23 2007 Generalized Lucas number 5340 V(91943)/551659/2390519/9687119153094919 19187 E1 2022 Lucas cofactor, ECPP 5341 (V(428,1,8019)-1)/(V(428,1,729)-1) 19184 E1 2022 Lehmer primitive part, ECPP 5342 V(91873)/3674921/193484539/167745030829 19175 E1 2022 Lucas cofactor, ECPP 5343 (2^63703-1)/42808417 19169 c59 2014 Mersenne cofactor, ECPP 5344 primU(137439) 19148 E1 2022 Fibonacci primitive part, ECPP 5345 primU(107779) 18980 E1 2022 Fibonacci primitive part, ECPP 5346 (U(162,1,8581)+U(162,1,8580))/(U(162,1,66)+U(162,1,65)) 18814 E1 2022 Lehmer primitive part, ECPP 5347 V(89849) 18778 c70 2014 Lucas number, ECPP 5348 primV(145353) 18689 c69 2013 ECPP, Lucas primitive part 5349 Phi(14943,-100) 18688 c47 2014 Unique, ECPP 5350 (U(859,1,6385)-U(859,1,6384))/(U(859,1,57)-U(859,1,56)) 18567 E1 2022 Lehmer primitive part, ECPP 5351 Phi(18827,10) 18480 c47 2014 Unique, ECPP 5352 primB(220895) 18465 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5353 primV(153279) 18283 E1 2022 Lucas primitive part, ECPP 5354 42209#+1 18241 p8 1999 Primorial 5355 (V(46662,1,3879)-1)/(V(46662,1,9)-1) 18069 x25 2012 Lehmer primitive part 5356 V(86477)/1042112515940998434071039 18049 c77 2020 Lucas cofactor, ECPP 5357 7457*2^59659+1 17964 Y 1997 Cullen 5358 primB(235015) 17856 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5359 primV(148197) 17696 E1 2022 Lucas primitive part, ECPP 5360 (V(447,1,6723)+1)/(V(447,1,81)+1) 17604 E1 2022 Lehmer primitive part, ECPP 5361 (2^58199-1)/237604901713907577052391 17497 c59 2015 Mersenne cofactor, ECPP 5362 Phi(26031,-10) 17353 c47 2014 Unique, ECPP 5363 primV(169830) 17335 E1 2022 Lucas primitive part, ECPP 5364 (V(561,1,6309)+1)/(V(561,1,9)+1) 17319 x25 2016 Lehmer primitive part 5365 U(5768,-5769,4591) 17264 x45 2018 Generalized Lucas number, cyclotomy 5366 U(9657,1,4321)-U(9657,1,4320) 17215 x23 2005 Lehmer number 5367 (2^57131-1)/61481396117165983261035042726614288722959856631 17152 c59 2015 Mersenne cofactor, ECPP 5368 U(81839) 17103 p54 2001 Fibonacci number 5369 (V(1578,1,5589)+1)/(V(1578,1,243)+1) 17098 E1 2022 Lehmer primitive part, ECPP 5370 V(81671) 17069 c66 2013 Lucas number, ECPP 5371 primV(101510) 16970 E1 2022 Lucas primitive part, ECPP 5372 primV(86756) 16920 c74 2015 Lucas primitive part, ECPP 5373 V(80761)/(23259169*24510801979) 16861 c77 2020 Lucas cofactor, ECPP 5374 6521953289619*2^55555+1 16737 p296 2013 Triplet (3) 5375 6521953289619*2^55555-1 16737 p296 2013 Triplet (2) 5376 6521953289619*2^55555-5 16737 c58 2013 Triplet (1), ECPP 5377 primV(122754) 16653 c77 2021 Lucas primitive part, ECPP 5378 U(15823,1,3960)-U(15823,1,3959) 16625 x25 2002 Lehmer number, cyclotomy 5379 p(221444161) 16569 c77 2017 Partitions, ECPP 5380 (V(1240,1,5589)-1)/(V(1240,1,243)-1) 16538 E1 2022 Lehmer primitive part, ECPP 5381 primA(201485) 16535 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5382 U(78919)/15574900936381642440917 16471 c77 2020 Fibonacci cofactor, ECPP 5383 (U(800,1,5725)-U(800,1,5724))/(U(800,1,54)-U(800,1,53)) 16464 E1 2022 Lehmer primitive part, ECPP 5384 (V(21151,1,3777)-1)/(V(21151,1,3)-1) 16324 x25 2011 Lehmer primitive part 5385 primV(123573) 16198 c77 2019 Lucas primitive part, ECPP 5386 primB(225785) 16176 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5387 V(77417)/313991497376559420151 16159 c77 2020 Lucas cofactor, ECPP 5388 (2^53381-1)/15588960193/38922536168186976769/1559912715971690629450336\ 68006103 16008 c84 2017 Mersenne cofactor, ECPP 5389 -E(5186)/(704695260558899*578291717*726274378546751504461) 15954 c63 2018 Euler irregular, ECPP 5390 primV(121227) 15890 c77 2019 Lucas primitive part, ECPP 5391 Phi(2949,-100000000) 15713 c47 2013 Unique, ECPP 5392 primU(131481) 15695 c77 2019 Fibonacci primitive part, ECPP 5393 primV(120258) 15649 c77 2019 Lucas primitive part, ECPP 5394 (U(9275,1,3961)+U(9275,1,3960))/(U(9275,1,45)+U(9275,1,44)) 15537 x38 2009 Lehmer primitive part 5395 (2^51487-1)/57410994232247/17292148963401772464767849635553 15455 c77 2018 Mersenne cofactor, ECPP 5396 primB(183835) 15368 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5397 primU(77387) 15319 c77 2019 Fibonacci primitive part, ECPP 5398 primB(181705) 15189 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5399 primV(76568) 15034 c74 2015 Lucas primitive part, ECPP 5400 U(71983)/5614673/363946049 15028 c77 2018 Fibonacci cofactor, ECPP 5401 2494779036241*2^49800+13 15004 c93 2022 Consecutive primes arithmetic progression (3,d=6) 5402 2494779036241*2^49800+7 15004 c93 2022 Consecutive primes arithmetic progression (2,d=6) 5403 2494779036241*2^49800+1 15004 p408 2022 Consecutive primes arithmetic progression (1,d=6) 5404 primB(268665) 14972 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5405 primV(75316) 14897 c74 2015 Lucas primitive part, ECPP 5406 Phi(5015,-10000) 14848 c47 2013 Unique, ECPP 5407 primV(91322) 14847 c74 2016 Lucas primitive part, ECPP 5408 2^49207-2^24604+1 14813 x16 2000 Gaussian Mersenne norm 29, generalized unique 5409 primV(110676) 14713 c74 2016 Lucas primitive part, ECPP 5410 primA(284895) 14626 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5411 U(69239)/1384781 14464 c77 2018 Fibonacci cofactor, ECPP 5412 primV(112914) 14446 c74 2016 Lucas primitive part, ECPP 5413 primA(170575) 14258 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5414 V(68213)/7290202116115634431 14237 c77 2018 Lucas cofactor, ECPP 5415 p(158375386) 14011 E1 2022 Partitions, ECPP 5416 p(158295265) 14007 E1 2022 Partitions, ECPP 5417 p(158221457) 14004 E1 2022 Partitions, ECPP 5418 primU(67703) 13954 c77 2018 Fibonacci primitive part, ECPP 5419 U(66947)/12485272838388758877279873712131648167413 13951 c77 2017 Fibonacci cofactor, ECPP 5420 V(66533)/2128184670585621839884209100279 13875 c77 2018 Lucas cofactor, ECPP 5421 6*Bern(5534)/(89651360098907*22027790155387*114866371) 13862 c71 2014 Irregular, ECPP 5422 4410546*Bern(5526)/(4931516285027*1969415121333695957254369297) 13840 c63 2018 Irregular,ECPP 5423 primV(82630) 13814 c74 2014 Lucas primitive part, ECPP 5424 primB(163595) 13675 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5425 6*Bern(5462)/(724389557*8572589*3742097186099) 13657 c64 2013 Irregular, ECPP 5426 56667641271*2^44441+5 13389 c99 2022 Triplet (3), ECPP 5427 56667641271*2^44441+1 13389 p426 2022 Triplet (2) 5428 56667641271*2^44441-1 13389 p426 2022 Triplet (1) 5429 512792361*30941#+1 13338 p364 2022 Arithmetic progression (5,d=18195056*30941#) 5430 1815615642825*2^44046-1 13272 p395 2016 Cunningham chain (4p+3) 5431 1815615642825*2^44045-1 13272 p395 2016 Cunningham chain (2p+1) 5432 1815615642825*2^44044-1 13271 p395 2016 Cunningham chain (p) 5433 p(141528106) 13244 E6 2022 Partitions, ECPP 5434 p(141513546) 13244 E6 2022 Partitions, ECPP 5435 p(141512238) 13244 E6 2022 Partitions, ECPP 5436 p(141255053) 13232 E6 2022 Partitions, ECPP 5437 p(141150528) 13227 E6 2022 Partitions, ECPP 5438 p(141112026) 13225 E6 2022 Partitions, ECPP 5439 p(141111278) 13225 E6 2022 Partitions, ECPP 5440 p(140859260) 13213 E6 2022 Partitions, ECPP 5441 p(140807155) 13211 E6 2022 Partitions, ECPP 5442 p(140791396) 13210 E6 2022 Partitions, ECPP 5443 primU(94551) 13174 c77 2018 Fibonacci primitive part, ECPP 5444 primB(242295) 13014 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5445 U(61813)/594517433/3761274442997 12897 c77 2018 Fibonacci cofactor, ECPP 5446 (2^42737+1)/3 12865 M 2007 ECPP, generalized Lucas number, Wagstaff 5447 primU(62771) 12791 c77 2018 Fibonacci primitive part, ECPP 5448 primA(154415) 12728 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5449 primA(263865) 12570 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5450 6*Bern(5078)/(64424527603*9985070580644364287) 12533 c63 2013 Irregular, ECPP 5451 (2^41681-1)/1052945423/16647332713153/2853686272534246492102086015457 12495 c77 2015 Mersenne cofactor, ECPP 5452 (2^41521-1)/41602235382028197528613357724450752065089 12459 c54 2012 Mersenne cofactor, ECPP 5453 (2^41263-1)/(1402943*983437775590306674647) 12395 c59 2012 Mersenne cofactor, ECPP 5454 U(59369)/2442423669148466039458303756169988568809269383644075940757020\ 9763004757 12337 c79 2015 Fibonacci cofactor, ECPP 5455 primV(73549) 12324 c74 2015 Lucas primitive part, ECPP 5456 742478255901*2^40069+1 12074 p395 2016 Cunningham chain 2nd kind (4p-3) 5457 996824343*2^40074+1 12073 p395 2016 Cunningham chain 2nd kind (4p-3) 5458 664342014133*2^39840+1 12005 p408 2020 Consecutive primes arithmetic progression (3,d=30) 5459 664342014133*2^39840-29 12005 c93 2020 Consecutive primes arithmetic progression (2,d=30), ECPP 5460 664342014133*2^39840-59 12005 c93 2020 Consecutive primes arithmetic progression (1,d=30), ECPP 5461 V(56003) 11704 p193 2006 Lucas number 5462 primA(143705) 11703 c77 2017 Lucas Aurifeuillian primitive part, ECPP 5463 4207993863*2^38624+5 11637 L5354 2021 Triplet (3), ECPP 5464 4207993863*2^38624+1 11637 L5354 2021 Triplet (2) 5465 4207993863*2^38624-1 11637 L5354 2021 Triplet (1) 5466 primU(73025) 11587 c77 2015 Fibonacci primitive part, ECPP 5467 primU(67781) 11587 c77 2015 Fibonacci primitive part, ECPP 5468 primB(219165) 11557 c77 2015 Lucas Aurifeuillian primitive part, ECPP 5469 198429723072*11^11005+1 11472 L3323 2016 Cunningham chain 2nd kind (4p-3) 5470 U(54799)/4661437953906084533621577211561 11422 c8 2015 Fibonacci cofactor, ECPP 5471 U(54521)/6403194135342743624071073 11370 c8 2015 Fibonacci cofactor, ECPP 5472 primU(67825) 11336 x23 2007 Fibonacci primitive part 5473 3610!-1 11277 C 1993 Factorial 5474 U(53189)/69431662887136064191105625570683133711989 11075 c8 2014 Fibonacci cofactor, ECPP 5475 primU(61733) 11058 c77 2015 Fibonacci primitive part, ECPP 5476 14059969053*2^36672+1 11050 p364 2018 Triplet (3) 5477 14059969053*2^36672-1 11050 p364 2018 Triplet (2) 5478 14059969053*2^36672-5 11050 c67 2018 Triplet (1), ECPP 5479 778965587811*2^36627-1 11038 p395 2016 Cunningham chain (4p+3) 5480 778965587811*2^36626-1 11038 p395 2016 Cunningham chain (2p+1) 5481 778965587811*2^36625-1 11038 p395 2016 Cunningham chain (p) 5482 272879344275*2^36622-1 11036 p395 2016 Cunningham chain (4p+3) 5483 272879344275*2^36621-1 11036 p395 2016 Cunningham chain (2p+1) 5484 272879344275*2^36620-1 11036 p395 2016 Cunningham chain (p) 5485 V(52859)/1124137922466041911 11029 c8 2014 Lucas cofactor, ECPP 5486 3507!-1 10912 C 1992 Factorial 5487 V(52201)/70585804042896975505694709575919458733851279868446609 10857 c8 2015 Lucas cofactor, ECPP 5488 V(52009)/39772636393178951550299332730909 10838 c8 2015 Lucas cofactor, ECPP 5489 V(51941)/2808052157610902114547210696868337380250300924116591143641642\ 866931 10789 c8 2015 Lucas cofactor, ECPP 5490 1258566*Bern(4462)/(2231*596141126178107*4970022131749) 10763 c64 2013 Irregular, ECPP 5491 3428602715439*2^35678+13 10753 c93 2020 Consecutive primes arithmetic progression (3,d=6), ECPP 5492 3428602715439*2^35678+7 10753 c93 2020 Consecutive primes arithmetic progression (2,d=6), ECPP 5493 3428602715439*2^35678+1 10753 p408 2020 Consecutive primes arithmetic progression (1,d=6) 5494 333645655005*2^35549-1 10713 p364 2015 Cunningham chain (4p+3) 5495 333645655005*2^35548-1 10713 p364 2015 Cunningham chain (2p+1) 5496 333645655005*2^35547-1 10713 p364 2015 Cunningham chain (p) 5497 V(51349)/224417260052884218046541 10708 c8 2014 Lucas cofactor, ECPP 5498 V(51169) 10694 p54 2001 Lucas number 5499 U(51031)/95846689435051369 10648 c8 2014 Fibonacci cofactor, ECPP 5500 V(50989)/69818796119453411 10640 c8 2014 Lucas cofactor, ECPP 5501 Phi(13285,-10) 10625 c47 2012 Unique, ECPP 5502 U(50833) 10624 CH4 2005 Fibonacci number 5503 2683143625525*2^35176+13 10602 c92 2019 Consecutive primes arithmetic progression (3,d=6),ECPP 5504 2683143625525*2^35176+1 10602 p407 2019 Consecutive primes arithmetic progression (1,d=6) 5505 3020616601*24499#+1 10593 p422 2021 Arithmetic progression (6,d=56497325*24499#) 5506 2964119276*24499#+1 10593 p422 2021 Arithmetic progression (5,d=56497325*24499#) 5507 (2^35339-1)/4909884303849890402839544048623503366767426783548098123390\ 4512709297747031041 10562 c77 2015 Mersenne cofactor, ECPP 5508 1213266377*2^35000+4859 10546 c4 2014 ECPP, consecutive primes arithmetic progression (3,d=2430) 5509 1213266377*2^35000-1 10546 p44 2014 Consecutive primes arithmetic progression (1,d=2430) 5510 primU(55297) 10483 c8 2014 Fibonacci primitive part, ECPP 5511 primA(219135) 10462 c8 2014 Lucas Aurifeuillian primitive part, ECPP 5512 24029#+1 10387 C 1993 Primorial 5513 400791048*24001#+1 10378 p155 2018 Arithmetic progression (5,d=59874860*24001#) 5514 393142614*24001#+1 10378 p155 2018 Arithmetic progression (5,d=54840724*24001#) 5515 221488788*24001#+1 10377 p155 2018 Arithmetic progression (5,d=22703701*24001#) 5516 6*Bern(4306)/2153 10342 FE8 2009 Irregular, ECPP 5517 V(49391)/298414424560419239 10305 c8 2013 Lucas cofactor, ECPP 5518 23801#+1 10273 C 1993 Primorial 5519 667674063382677*2^33608+7 10132 c88 2019 Quadruplet (4), ECPP 5520 667674063382677*2^33608+5 10132 c88 2019 Quadruplet (3), ECPP 5521 667674063382677*2^33608+1 10132 L4808 2019 Quadruplet (2) 5522 667674063382677*2^33608-1 10132 L4808 2019 Quadruplet (1) 5523 Phi(427,-10^28) 10081 FE9 2009 Unique, ECPP 5524 9649755890145*2^33335+1 10048 p364 2015 Cunningham chain 2nd kind (4p-3) 5525 15162914750865*2^33219+1 10014 p364 2015 Cunningham chain 2nd kind (4p-3) 5526 32469*2^32469+1 9779 MM 1997 Cullen 5527 (2^32531-1)/(65063*25225122959) 9778 c60 2012 Mersenne cofactor, ECPP 5528 (2^32611-1)/1514800731246429921091778748731899943932296901864652928732\ 838910515860494755367311 9736 c90 2018 Mersenne cofactor, ECPP 5529 8073*2^32294+1 9726 MM 1997 Cullen 5530 V(45953)/4561241750239 9591 c56 2012 Lucas cofactor, ECPP 5531 E(3308)/39308792292493140803643373186476368389461245 9516 c8 2014 Euler irregular, ECPP 5532 Phi(5161,-100) 9505 c47 2012 Unique, ECPP 5533 primA(196035) 9359 c8 2014 Lucas Aurifeuillian primitive part, ECPP 5534 V(44507) 9302 CH3 2005 Lucas number 5535 V(43987)/175949 9188 c8 2014 Lucas cofactor, ECPP 5536 U(43399)/470400609575881344601538056264109423291827366228494341196421 9010 c8 2013 Fibonacci cofactor, ECPP 5537 primU(44113) 8916 c8 2014 Fibonacci primitive part, ECPP 5538 U(42829)/107130175995197969243646842778153077 8916 c8 2014 Fibonacci cofactor, ECPP 5539 primA(159165) 8803 c8 2013 Lucas Aurifeuillian primitive part, ECPP 5540 U(42043)/1681721 8780 c56 2012 Fibonacci cofactor, ECPP 5541 Phi(6105,-1000) 8641 c47 2010 Unique, ECPP 5542 Phi(4667,-100) 8593 c47 2009 Unique, ECPP 5543 U(40763)/643247084652261620737 8498 c8 2013 Fibonacci cofactor, ECPP 5544 primU(46711) 8367 c8 2013 Fibonacci primitive part, ECPP 5545 V(39769)/18139109172816581 8295 c8 2013 Lucas cofactor, ECPP 5546 2^27529-2^13765+1 8288 O 2000 Gaussian Mersenne norm 28, generalized unique 5547 primB(148605) 8282 c8 2013 Lucas Aurifeuillian primitive part, ECPP 5548 V(39607)/158429 8273 c46 2011 Lucas cofactor, ECPP 5549 primU(62373) 8173 c8 2013 Fibonacci primitive part, ECPP 5550 18523#+1 8002 D 1990 Primorial 5551 primU(43121) 7975 c8 2013 Fibonacci primitive part, ECPP 5552 6*Bern(3458)/28329084584758278770932715893606309 7945 c8 2013 Irregular, ECPP 5553 U(37987)/(16117960073*94533840409*1202815961509) 7906 c39 2012 Fibonacci cofactor, ECPP 5554 U(37511) 7839 x13 2005 Fibonacci number 5555 V(37357)/20210113386303842894568629 7782 c8 2013 Lucas cofactor, ECPP 5556 U(37217)/4466041 7771 c46 2011 Fibonacci cofactor, ECPP 5557 -E(2762)/2670541 7760 c11 2004 Euler irregular, ECPP 5558 V(36779) 7687 CH3 2005 Lucas number 5559 U(35999) 7523 p54 2001 Fibonacci number, cyclotomy 5560 Phi(4029,-1000) 7488 c47 2009 Unique, ECPP 5561 V(35449) 7409 p12 2001 Lucas number 5562 V(35107)/525110138418084707309 7317 c8 2013 Lucas cofactor, ECPP 5563 U(34897)/4599458691503517435329 7272 c8 2013 Fibonacci cofactor, ECPP 5564 U(34807)/551750980997908879677508732866536453 7239 c8 2013 Fibonacci cofactor, ECPP 5565 U(34607)/13088506284255296513 7213 c8 2013 Fibonacci cofactor, ECPP 5566 -30*Bern(3176)/(169908471493279*905130251538800883547330531*4349908093\ 09147283469396721753169) 7138 c63 2016 Irregular, ECPP 5567 2154675239*16301#+1 7036 p155 2018 Arithmetic progression (6,d=141836149*16301#) 5568 primU(48965) 7012 c8 2013 Fibonacci primitive part, ECPP 5569 -10365630*Bern(3100)/(140592076277*66260150981141825531862457*17930747\ 9508256366206520177467103) 6943 c63 2016 Irregular ECPP 5570 23005*2^23005-1 6930 Y 1997 Woodall 5571 22971*2^22971-1 6920 Y 1997 Woodall 5572 15877#-1 6845 CD 1992 Primorial 5573 primU(58773) 6822 c8 2013 Fibonacci primitive part, ECPP 5574 6*Bern(2974)/19622040971147542470479091157507 6637 c8 2013 Irregular, ECPP 5575 U(30757) 6428 p54 2001 Fibonacci number, cyclotomy 5576 E(2220)/392431891068600713525 6011 c8 2013 Euler irregular, ECPP 5577 -E(2202)/53781055550934778283104432814129020709 5938 c8 2013 Euler irregular, ECPP 5578 13649#+1 5862 D 1988 Primorial 5579 274386*Bern(2622)/8518594882415401157891061256276973722693 5701 c8 2013 Irregular, ECPP 5580 18885*2^18885-1 5690 K 1988 Woodall 5581 1963!-1 5614 CD 1992 Factorial 5582 13033#-1 5610 CD 1992 Primorial 5583 289*2^18502+1 5573 K 1985 Cullen, generalized Fermat 5584 E(2028)/11246153954845684745 5412 c55 2011 Euler irregular, ECPP 5585 -30*Bern(2504)/(313*424524649821233650433*117180678030577350578887*801\ 6621720796146291948744439) 5354 c63 2013 Irregular ECPP 5586 U(25561) 5342 p54 2001 Fibonacci number 5587 -E(1990)/8338208577950624722417016286765473477033741642105671913 5258 c8 2013 Euler irregular, ECPP 5588 33957462*Bern(2370)/40685 5083 c11 2003 Irregular, ECPP 5589 4122429552750669*2^16567+7 5003 c83 2016 Quadruplet (4), ECPP 5590 4122429552750669*2^16567+5 5003 c83 2016 Quadruplet (3), ECPP 5591 4122429552750669*2^16567+1 5003 L4342 2016 Quadruplet (2) 5592 4122429552750669*2^16567-1 5003 L4342 2016 Quadruplet (1) 5593 11549#+1 4951 D 1987 Primorial 5594 E(1840)/31237282053878368942060412182384934425 4812 c4 2011 Euler irregular, ECPP 5595 7911*2^15823-1 4768 K 1988 Woodall 5596 E(1736)/(55695515*75284987831*3222089324971117) 4498 c4 2004 Euler irregular, ECPP 5597 2^14699+2^7350+1 4425 O 2000 Gaussian Mersenne norm 27, generalized unique 5598 (2^14479+1)/3 4359 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5599 62399583639*9923#-3399421517 4285 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5600 49325406476*9811#*8+1 4234 p382 2019 Cunningham chain 2nd kind (8p-7) 5601 276474*Bern(2030)/(19426085*24191786327543) 4200 c8 2003 Irregular, ECPP 5602 V(19469) 4069 x25 2002 Lucas number, cyclotomy, APR-CL assisted 5603 1477!+1 4042 D 1985 Factorial 5604 -2730*Bern(1884)/100983617849 3844 c8 2003 Irregular, ECPP 5605 2840178*Bern(1870)/85 3821 c8 2003 Irregular, ECPP 5606c (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+9 3753 c101 2023 Quadruplet (4),ECPP 5607c (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+7 3753 c101 2023 Quadruplet (3),ECPP 5608c (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+3 3753 c101 2023 Quadruplet (2),ECPP 5609c (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+1 3753 c101 2023 Quadruplet (1),ECPP 5610 12379*2^12379-1 3731 K 1985 Woodall 5611 (2^12391+1)/3 3730 M 1996 Generalized Lucas number, Wagstaff 5612 -E(1466)/167900532276654417372106952612534399239 3682 c8 2013 Euler irregular, ECPP 5613 E(1468)/(95*217158949445380764696306893*597712879321361736404369071) 3671 c4 2003 Euler irregular, ECPP 5614 101406820312263*2^12042+7 3640 c67 2018 Quadruplet (4) 5615 101406820312263*2^12042+5 3640 c67 2018 Quadruplet (3) 5616 101406820312263*2^12042+1 3640 p364 2018 Quadruplet (2) 5617 101406820312263*2^12042-1 3640 p364 2018 Quadruplet (1) 5618 2673092556681*15^3048+4 3598 c67 2015 Quadruplet (4) 5619 2673092556681*15^3048+2 3598 c67 2015 Quadruplet (3) 5620 2673092556681*15^3048-2 3598 c67 2015 Quadruplet (2) 5621 2673092556681*15^3048-4 3598 c67 2015 Quadruplet (1) 5622 6016459977*7927#-1 3407 p364 2022 Arithmetic progression (7,d=577051223*7927#) 5623 5439408754*7927#-1 3407 p364 2022 Arithmetic progression (6,d=577051223*7927#) 5624 62753735335*7919#+3399421667 3404 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5625 (2^11279+1)/3 3395 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 5626 109766820328*7877#-1 3385 p395 2016 Cunningham chain (8p+7) 5627 585150568069684836*7757#/85085+17 3344 c88 2022 Quintuplet (5), ECPP 5628 585150568069684836*7757#/85085+13 3344 c88 2022 Quintuplet (4), ECPP 5629 585150568069684836*7757#/85085+11 3344 c88 2022 Quintuplet (3), ECPP 5630 585150568069684836*7757#/85085+7 3344 c88 2022 Quintuplet (2), ECPP 5631 585150568069684836*7757#/85085+5 3344 c88 2022 Quintuplet (1), ECPP 5632 104052837*7759#-1 3343 p398 2017 Arithmetic progression (6,d=12009836*7759#) 5633 2072453060816*7699#+1 3316 p364 2019 Cunningham chain 2nd kind (8p-7) 5634 (2^10691+1)/3 3218 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5635 231692481512*7517#-1 3218 p395 2016 Cunningham chain (8p+7) 5636c (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+19 3207 c100 2023 Consecutive primes arithmetic progression (4,d=6),ECPP 5637 (2^10501+1)/3 3161 M 1996 Generalized Lucas number, Wagstaff 5638 2^10141+2^5071+1 3053 O 2000 Gaussian Mersenne norm 26, generalized unique 5639 121152729080*7019#/1729+19 3025 c92 2019 Consecutive primes arithmetic progression (4,d=6), ECPP 5640 62037039993*7001#+7811555813 3021 x38 2013 Consecutive primes arithmetic progression (4,d=30), ECPP 5641 V(14449) 3020 DK 1995 Lucas number 5642 3124777373*7001#+1 3019 p155 2012 Arithmetic progression (7,d=481789017*7001#) 5643 2996180304*7001#+1 3019 p155 2012 Arithmetic progression (6,d=46793757*7001#) 5644 U(14431) 3016 p54 2001 Fibonacci number 5645 138281163736*6977#+1 3006 p395 2016 Cunningham chain 2nd kind (8p-7) 5646 375967981369*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5647 354362289656*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5648 285993323512*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5649 V(13963) 2919 c11 2002 Lucas number, ECPP 5650 284787490256*6701#+1 2879 p364 2015 Cunningham chain 2nd kind (8p-7) 5651 9531*2^9531-1 2874 K 1985 Woodall 5652 -E(1174)/50550511342697072710795058639332351763 2829 c8 2013 Euler irregular, ECPP 5653 6569#-1 2811 D 1992 Primorial 5654 -E(1142)/6233437695283865492412648122953349079446935570718422828539863\ 59013986902240869 2697 c77 2015 Euler irregular, ECPP 5655 -E(1078)/361898544439043 2578 c4 2002 Euler irregular, ECPP 5656 V(12251) 2561 p54 2001 Lucas number 5657 974!-1 2490 CD 1992 Factorial 5658 E(1028)/(6415*56837916301577) 2433 c4 2002 Euler irregular, ECPP 5659 7755*2^7755-1 2339 K 1985 Woodall 5660 772463767240*5303#+1 2272 p308 2019 Cunningham chain 2nd kind (8p-7) 5661 116814018316*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10892863626*5303#) 5662 116746086504*5303#+1 2271 p406 2019 Arithmetic progression (7,d=9726011684*5303#) 5663 116242725347*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10388428124*5303#) 5664 69285767989*5303#+1 2271 p406 2019 Arithmetic progression (8,d=3026809034*5303#) 5665 V(10691) 2235 DK 1996 Lucas number 5666 872!+1 2188 D 1984 Factorial 5667 4787#+1 2038 D 1985 Primorial 5668 566761969187*4733#/2+4 2034 c67 2020 Quintuplet (5) 5669 566761969187*4733#/2+2 2034 c67 2020 Quintuplet (4) 5670 566761969187*4733#/2-2 2034 c67 2020 Quintuplet (3) 5671 566761969187*4733#/2-4 2034 c67 2020 Quintuplet (2) 5672 566761969187*4733#/2-8 2034 c67 2020 Quintuplet (1) 5673 U(9677) 2023 c2 2000 Fibonacci number, ECPP 5674 126831252923413*4657#/273+13 2002 c88 2020 Quintuplet (5) 5675 126831252923413*4657#/273+9 2002 c88 2020 Quintuplet (4) 5676 126831252923413*4657#/273+7 2002 c88 2020 Quintuplet (3) 5677 126831252923413*4657#/273+3 2002 c88 2020 Quintuplet (2) 5678 126831252923413*4657#/273+1 2002 c88 2020 Quintuplet (1) 5679 6611*2^6611+1 1994 K 1985 Cullen 5680 4583#-1 1953 D 1992 Primorial 5681 U(9311) 1946 DK 1995 Fibonacci number 5682 4547#+1 1939 D 1985 Primorial 5683 4297#-1 1844 D 1992 Primorial 5684 2738129459017*4211#+3399421637 1805 c98 2022 Consecutive primes arithmetic progression (5,d=30) 5685 V(8467) 1770 c2 2000 Lucas number, ECPP 5686 4093#-1 1750 CD 1992 Primorial 5687 5795*2^5795+1 1749 K 1985 Cullen 5688 (2^5807+1)/3 1748 PM 1999 Cyclotomy, generalized Lucas number, Wagstaff 5689 54201838768*3917#-1 1681 p395 2016 Cunningham chain (16p+15) 5690 102619722624*3797#+1 1631 p395 2016 Cunningham chain 2nd kind (16p-15) 5691 V(7741) 1618 DK 1995 Lucas number 5692 394254311495*3733#/2+4 1606 c67 2017 Quintuplet (5) 5693 394254311495*3733#/2+2 1606 c67 2017 Quintuplet (4) 5694 394254311495*3733#/2-2 1606 c67 2017 Quintuplet (3) 5695 394254311495*3733#/2-4 1606 c67 2017 Quintuplet (2) 5696 394254311495*3733#/2-8 1606 c67 2017 Quintuplet (1) 5697 83*2^5318-1 1603 K 1985 Woodall 5698 2316765173284*3593#+16073 1543 c18 2016 Quintuplet (5), ECPP 5699 2316765173284*3593#+16069 1543 c18 2016 Quintuplet (4), ECPP 5700 2316765173284*3593#+16067 1543 c18 2016 Quintuplet (3), ECPP 5701 2316765173284*3593#+16063 1543 c18 2016 Quintuplet (2), ECPP 5702 2316765173284*3593#+16061 1543 c18 2016 Quintuplet (1), ECPP 5703 652229318541*3527#+3399421637 1504 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5704 16*199949435137*3499#-1 1494 p382 2016 Cunningham chain (16p+15) 5705 4713*2^4713+1 1423 K 1985 Cullen 5706 449209457832*3307#+1633050403 1408 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5707 5780736564512*3023#-1 1301 p364 2015 Cunningham chain (16p+15) 5708 2746496109133*3001#+27011 1290 c97 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5709 898966996992*3001#+1 1289 p364 2015 Cunningham chain 2nd kind (16p-15) 5710 16*2658132486528*2969#+1 1281 p382 2017 Cunningham chain 2nd kind (16p-15) 5711 16*1413951139648*2969#+1 1280 p382 2017 Cunningham chain 2nd kind (16p-15) 5712b 1542946580224*2851#-1 1231 p364 2023 Cunningham chain (16p+15) 5713 V(5851) 1223 DK 1995 Lucas number 5714 406463527990*2801#+1633050403 1209 x38 2013 Consecutive primes arithmetic progression (5,d=30) 5715 16*(257578748915*2777#-1)+15 1197 p429 2023 Cunningham chain (16p+15) 5716 1290733709840*2677#+1 1141 p295 2011 Cunningham chain 2nd kind (16p-15) 5717 U(5387) 1126 WM 1991 Fibonacci number 5718 1176100079*2591#+1 1101 p252 2019 Arithmetic progression (8,d=60355670*2591#) 5719 (2^3539+1)/3 1065 M 1990 First titanic by ECPP, generalized Lucas number, Wagstaff 5720 2968802755*2459#+1 1057 p155 2009 Arithmetic progression (8,d=359463429*2459#) 5721 28993093368077*2399#+19433 1037 c18 2016 Sextuplet (6), ECPP 5722 28993093368077*2399#+19429 1037 c18 2016 Sextuplet (5), ECPP 5723 28993093368077*2399#+19427 1037 c18 2016 Sextuplet (4), ECPP 5724 28993093368077*2399#+19423 1037 c18 2016 Sextuplet (3), ECPP 5725 28993093368077*2399#+19421 1037 c18 2016 Sextuplet (2), ECPP 5726 6179783529*2411#+1 1037 p102 2003 Arithmetic progression (8,d=176836494*2411#) 5727 R(1031) 1031 WD 1986 Repunit 5728 89595955370432*2371#-1 1017 p364 2015 Cunningham chain (32p+31) 5729 116040452086*2371#+1 1014 p308 2012 Arithmetic progression (9,d=6317280828*2371#) 5730 115248484057*2371#+1 1014 p308 2013 Arithmetic progression (8,d=7327002535*2371#) 5731 97336164242*2371#+1 1014 p308 2013 Arithmetic progression (9,d=6350457699*2371#) 5732 93537753980*2371#+1 1014 p308 2013 Arithmetic progression (9,d=3388165411*2371#) 5733 92836168856*2371#+1 1014 p308 2013 Arithmetic progression (9,d=127155673*2371#) 5734 69318339141*2371#+1 1014 p308 2011 Arithmetic progression (9,d=1298717501*2371#) 5735 533098369554*2357#+3399421667 1012 c98 2021 Consecutive primes arithmetic progression (6,d=30), ECPP 5736 V(4793) 1002 DK 1995 Lucas number 5737 113225039190926127209*2339#/57057+21 1002 c88 2021 Septuplet (7) 5738 113225039190926127209*2339#/57057+19 1002 c88 2021 Septuplet (6) 5739 113225039190926127209*2339#/57057+13 1002 c88 2021 Septuplet (5) 5740 113225039190926127209*2339#/57057+9 1002 c88 2021 Septuplet (4) 5741 113225039190926127209*2339#/57057+7 1002 c88 2021 Septuplet (3) 5742 V(4787) 1001 DK 1995 Lucas number ----- ------------------------------- -------- ----- ---- -------------- KEY TO PROOF-CODES (primality provers): A1 Propper, Srsieve, PrimeGrid, PRST A2 Propper, Srsieve, PRST A3 Atnashev, PRST A4 Gingrich1, LLR2, MultiSieve, PRST C Caldwell, Cruncher c2 Water, Primo c4 Broadhurst, Primo c8 Broadhurst, Water, Primo c11 Oakes, Primo c18 Luhn, Primo c39 Minovic, OpenPFGW, Primo c46 Boncompagni, Primo c47 Chandler, Primo c54 Wu_T, Primo c55 Gramolin, Primo c56 Soule, Minovic, OpenPFGW, Primo c58 Kaiser1, NewPGen, OpenPFGW, Primo c59 Metcalfe, OpenPFGW, Primo c60 Lemsafer, Primo c63 Ritschel, TOPS, Primo c64 Metcalfe, Minovic, Ritschel, TOPS, Primo c66 Steine, Primo c67 Batalov, NewPGen, OpenPFGW, Primo c69 Jacobsen, Primo c70 Underwood, Dubner, Primo c71 Metcalfe, Ritschel, Andersen, TOPS, Primo c73 Underwood, Lifchitz, Primo c74 Lasher, Dubner, Primo c76 Kaiser1, Water, Underwood, Primo c77 Batalov, Primo c79 Batalov, Broadhurst, Water, Primo c81 Water, Underwood, Primo c82 Steine, Water, Primo c83 Kaiser1, PolySieve, NewPGen, Primo c84 Underwood, Primo c87 Kaiser1, OpenPFGW, Primo c88 Kaiser1, PolySieve, Primo c89 Broadhurst, Underwood, Primo c90 Palameta, Batalov, Primo c92 Lamprecht, Luhn, Primo c93 Batalov, PolySieve, Primo c94 Gelhar, Ritschel, TOPS, Primo c95 Gelhar, Primo c97 Lamprecht, Luhn, APSieve, OpenPFGW, Primo c98 Batalov, EMsieve, Primo c99 Kruse, Schoeler, Primo c100 DavisK, APTreeSieve, NewPGen, OpenPFGW, Primo c101 DavisK, APTreeSieve, OpenPFGW, Primo CD Caldwell, Dubner, Cruncher CH10 Batalov, OpenPFGW, Primo, CHG CH12 Propper, Batalov, OpenPFGW, Primo, CHG CH13 Propper, Batalov, EMsieve, OpenPFGW, CHG CH2 Wu_T, OpenPFGW, Primo, CHG CH3 Broadhurst, Water, OpenPFGW, Primo, CHG CH4 Irvine, Broadhurst, Water, OpenPFGW, Primo, CHG CH9 Zhou, OpenPFGW, CHG D Dubner, Cruncher DK Dubner, Keller, Cruncher DS Smith_Darren, Proth.exe E1 Batalov, CM E2 Propper, CM E3 Enge, CM E4 Childers, CM E5 Underwood, CM E6 Lasher, Broadhurst, Underwood, CM E7 Lasher, CM E8 Broadhurst, Underwood, CM E9 Mock, CM E10 Doornink, CM E11 Karpovich, CM FE8 Oakes, Broadhurst, Water, Morain, FastECPP FE9 Broadhurst, Water, Morain, FastECPP g0 Gallot, Proth.exe g1 Caldwell, Proth.exe G1 Armengaud, GIMPS, Prime95 G2 Spence, GIMPS, Prime95 G3 Clarkson, Kurowski, GIMPS, Prime95 G4 Hajratwala, Kurowski, GIMPS, Prime95 G5 Cameron, Kurowski, GIMPS, Prime95 G6 Shafer, GIMPS, Prime95 G7 Findley_J, GIMPS, Prime95 G8 Nowak, GIMPS, Prime95 G9 Boone, Cooper, GIMPS, Prime95 G10 Smith_E, GIMPS, Prime95 G11 Elvenich, GIMPS, Prime95 G12 Strindmo, GIMPS, Prime95 G13 Cooper, GIMPS, Prime95 G14 Cooper, GIMPS, Prime95 G15 Pace, GIMPS, Prime95 G16 Laroche, GIMPS, Prime95 g23 Ballinger, Proth.exe g25 OHare, Proth.exe g55 Toplic, Proth.exe g59 Linton, Proth.exe g124 Crickman, Proth.exe g236 Heuer, GFN17Sieve, GFNSearch, Proth.exe g245 Cosgrave, NewPGen, PRP, Proth.exe g259 Papp, Proth.exe g260 AYENI, Proth.exe g267 Grobstich, NewPGen, PRP, Proth.exe g277 Eaton, NewPGen, PRP, Proth.exe g279 Cooper, NewPGen, PRP, Proth.exe g300 Zilmer, Proth.exe g308 Angel, GFN17Sieve, GFNSearch, Proth.exe g337 Hsieh, NewPGen, PRP, Proth.exe g346 Dausch, ProthSieve, PrimeSierpinski, PRP, Proth.exe g403 Yoshimura, ProthSieve, PrimeSierpinski, LLR, Proth.exe g407 HermleGC, MultiSieve, PRP, Proth.exe g411 Brittenham, NewPGen, PRP, Proth.exe g413 Scott, AthGFNSieve, Proth.exe g414 Gilvey, Srsieve, PrimeGrid, PrimeSierpinski, LLR, Proth.exe g418 Taura, NewPGen, PRP, Proth.exe g424 Broadhurst, NewPGen, OpenPFGW, Proth.exe g427 Batalov, Srsieve, LLR, Proth.exe g429 Underbakke, GenefX64, AthGFNSieve, PrimeGrid, Proth.exe gm Morii, Proth.exe K Keller L51 Hedges, NewPGen, PRP, LLR L53 Zaveri, ProthSieve, RieselSieve, PRP, LLR L95 Urushi, LLR L99 Underbakke, TwinGen, LLR L124 Rodenkirch, MultiSieve, LLR L129 Snyder, LLR L137 Jaworski, Rieselprime, LLR L158 Underwood, NewPGen, 321search, LLR L160 Wong, ProthSieve, RieselSieve, LLR L162 Banka, NewPGen, 12121search, LLR L172 Smith, ProthSieve, RieselSieve, LLR L175 Duggan, ProthSieve, RieselSieve, LLR L177 Kwok, Rieselprime, LLR L179 White, ProthSieve, RieselSieve, LLR L181 Siegert, LLR L185 Hassler, NewPGen, LLR L191 Banka, NewPGen, LLR L192 Jaworski, LLR L193 Rosink, ProthSieve, RieselSieve, LLR L197 DaltonJ, ProthSieve, RieselSieve, LLR L201 Siemelink, LLR L202 Vautier, McKibbon, Gribenko, NewPGen, PrimeGrid, TPS, LLR L251 Burt, NewPGen, Rieselprime, LLR L256 Underwood, Srsieve, NewPGen, 321search, LLR L257 Ritschel, Srsieve, Rieselprime, LLR L260 Soule, Srsieve, Rieselprime, LLR L268 Metcalfe, Srsieve, Rieselprime, LLR L282 Curtis, Srsieve, Rieselprime, LLR L321 Broadhurst, NewPGen, OpenPFGW, LLR L381 Mate, Siemelink, Rodenkirch, MultiSieve, LLR L384 Pinho, Srsieve, Rieselprime, LLR L426 Jaworski, Srsieve, Rieselprime, LLR L436 Andersen2, Gcwsieve, MultiSieve, PrimeGrid, LLR L447 Kohlman, Gcwsieve, MultiSieve, PrimeGrid, LLR L466 Zhou, NewPGen, LLR L503 Benson, Srsieve, LLR L521 Thompson1, Gcwsieve, MultiSieve, PrimeGrid, LLR L527 Tornberg, TwinGen, LLR L541 Barnes, Srsieve, CRUS, LLR L545 AndersonM, NewPGen, Rieselprime, LLR L587 Dettweiler, Srsieve, CRUS, LLR L591 Penne, Srsieve, CRUS, LLR L606 Bennett, Srsieve, NewPGen, PrimeGrid, 321search, LLR L613 Keogh, Srsieve, ProthSieve, RieselSieve, LLR L622 Cardall, Srsieve, ProthSieve, RieselSieve, LLR L632 Stokkedalen, Rieselprime, LLR L671 Wong, Srsieve, PrimeGrid, LLR L689 Brown1, Srsieve, PrimeGrid, LLR L690 Cholt, Srsieve, PrimeGrid, LLR L753 Wolfram, Srsieve, PrimeGrid, LLR L760 Riesen, Srsieve, Rieselprime, LLR L764 Ewing, Srsieve, PrimeGrid, LLR L780 Brady, Srsieve, PrimeGrid, LLR L801 Gesker, Gcwsieve, MultiSieve, PrimeGrid, LLR L802 Zachariassen, Srsieve, NPLB, LLR L806 Stevens, Srsieve, LLR L875 Hatland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L895 Dinkel, Srsieve, LLR L917 Bergman1, Gcwsieve, MultiSieve, PrimeGrid, LLR L923 Kaiser1, Klahn, NewPGen, PrimeGrid, TPS, SunGard, LLR L927 Brown1, TwinGen, PrimeGrid, LLR L983 Wu_T, LLR L1016 Hartel, Srsieve, PrimeGrid, LLR L1056 Schwieger, Srsieve, PrimeGrid, LLR L1115 Splain, PSieve, Srsieve, PrimeGrid, LLR L1125 Laluk, PSieve, Srsieve, PrimeGrid, LLR L1129 Slomma, PSieve, Srsieve, PrimeGrid, LLR L1130 Adolfsson, PSieve, Srsieve, PrimeGrid, LLR L1134 Ogawa, Srsieve, NewPGen, LLR L1139 Harvey1, PSieve, Srsieve, PrimeGrid, LLR L1141 Ogawa, NewPGen, LLR L1153 Kaiser1, Srsieve, PrimeGrid, 12121search, LLR L1158 Vogel, PSieve, Srsieve, PrimeGrid, LLR L1160 Sunderland, PSieve, Srsieve, PrimeGrid, LLR L1186 Richard1, PSieve, Srsieve, PrimeGrid, LLR L1188 Faith, PSieve, Srsieve, PrimeGrid, LLR L1199 DeRidder, PSieve, Srsieve, PrimeGrid, LLR L1201 Carpenter1, PSieve, Srsieve, PrimeGrid, LLR L1203 Mauno, PSieve, Srsieve, PrimeGrid, LLR L1204 Brown1, PSieve, Srsieve, PrimeGrid, LLR L1209 Wong, PSieve, Srsieve, PrimeGrid, LLR L1210 Rhodes, PSieve, Srsieve, PrimeGrid, LLR L1218 Winslow, PSieve, Srsieve, PrimeGrid, LLR L1223 Courty, PSieve, Srsieve, PrimeGrid, LLR L1230 Yooil1, PSieve, Srsieve, PrimeGrid, LLR L1300 Yama, PSieve, Srsieve, PrimeGrid, LLR L1301 Sorbera, Srsieve, CRUS, LLR L1344 Kobara, PSieve, Srsieve, PrimeGrid, LLR L1349 Wallace, Srsieve, NewPGen, PrimeGrid, LLR L1353 Mumper, Srsieve, PrimeGrid, LLR L1355 Beck, PSieve, Srsieve, PrimeGrid, LLR L1356 Gockel, PSieve, Srsieve, PrimeGrid, LLR L1360 Tatterson, PSieve, Srsieve, PrimeGrid, LLR L1372 Glennie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L1387 Anonymous, PSieve, Srsieve, PrimeGrid, LLR L1403 Andrews1, PSieve, Srsieve, PrimeGrid, LLR L1408 Emery, PSieve, Srsieve, PrimeGrid, LLR L1412 Jones_M, PSieve, Srsieve, PrimeGrid, LLR L1413 Morton, PSieve, Srsieve, PrimeGrid, LLR L1422 Steichen, PSieve, Srsieve, PrimeGrid, LLR L1444 Davies, PSieve, Srsieve, PrimeGrid, LLR L1448 Hron, PSieve, Srsieve, PrimeGrid, LLR L1455 Heikkila, PSieve, Srsieve, PrimeGrid, LLR L1456 Webster, PSieve, Srsieve, PrimeGrid, LLR L1460 Salah, Srsieve, PrimeGrid, PrimeSierpinski, LLR L1471 Gunn, Srsieve, CRUS, LLR L1474 Brown6, PSieve, Srsieve, PrimeGrid, LLR L1480 Goudie, PSieve, Srsieve, PrimeGrid, LLR L1486 Dinkel, PSieve, Srsieve, PrimeGrid, LLR L1492 Eiterig, PSieve, Srsieve, PrimeGrid, LLR L1502 Champ, PSieve, Srsieve, PrimeGrid, LLR L1513 Miller1, PSieve, Srsieve, PrimeGrid, LLR L1576 Craig, PSieve, Srsieve, PrimeGrid, LLR L1595 Cilliers, PSieve, Srsieve, PrimeGrid, LLR L1675 Schwieger, PSieve, Srsieve, PrimeGrid, LLR L1728 Gasewicz, PSieve, Srsieve, PrimeGrid, LLR L1741 Granowski, PSieve, Srsieve, PrimeGrid, LLR L1745 Cholt, PSieve, Srsieve, PrimeGrid, LLR L1754 Hubbard, PSieve, Srsieve, PrimeGrid, LLR L1774 Schoefer, PSieve, Srsieve, PrimeGrid, LLR L1780 Ming, PSieve, Srsieve, PrimeGrid, LLR L1792 Tang, PSieve, Srsieve, PrimeGrid, LLR L1803 Puppi, PSieve, Srsieve, PrimeGrid, LLR L1808 Reynolds1, PSieve, Srsieve, PrimeGrid, LLR L1809 Vogel, PSieve, Srsieve, NPLB, LLR L1817 Barnes, PSieve, Srsieve, NPLB, LLR L1823 Larsson, PSieve, Srsieve, PrimeGrid, LLR L1828 Benson, PSieve, Srsieve, Rieselprime, LLR L1830 Bonath, PSieve, Srsieve, NPLB, LLR L1847 Liu1, PSieve, Srsieve, PrimeGrid, LLR L1862 Curtis, PSieve, Srsieve, Rieselprime, LLR L1863 Wozny, PSieve, Srsieve, Rieselprime, LLR L1884 Jaworski, PSieve, Srsieve, Rieselprime, LLR L1885 Ostaszewski, PSieve, Srsieve, PrimeGrid, LLR L1921 Winslow, TwinGen, PrimeGrid, LLR L1932 Dragnev, PSieve, Srsieve, PrimeGrid, LLR L1935 Channing, PSieve, Srsieve, PrimeGrid, LLR L1949 Pritchard, Srsieve, PrimeGrid, RieselSieve, LLR L1957 Hemsley, PSieve, Srsieve, PrimeGrid, LLR L1959 Metcalfe, PSieve, Srsieve, Rieselprime, LLR L1979 Tibbott, PSieve, Srsieve, PrimeGrid, LLR L1983 Safford, PSieve, Srsieve, PrimeGrid, LLR L1990 Makowski, PSieve, Srsieve, PrimeGrid, LLR L2006 Rix, PSieve, Srsieve, PrimeGrid, LLR L2012 Pedersen_K, Srsieve, CRUS, OpenPFGW, LLR L2017 Hubbard, PSieve, Srsieve, NPLB, LLR L2019 Wood_D, PSieve, Srsieve, PrimeGrid, LLR L2030 Tonner, PSieve, Srsieve, PrimeGrid, LLR L2035 Greer, TwinGen, PrimeGrid, LLR L2042 Lachance, PSieve, Srsieve, PrimeGrid, LLR L2046 Melvold, Srsieve, PrimeGrid, LLR L2051 Reich, PSieve, Srsieve, PrimeGrid, LLR L2054 Kaiser1, Srsieve, CRUS, LLR L2055 Soule, PSieve, Srsieve, Rieselprime, LLR L2070 Schemmel, PSieve, Srsieve, PrimeGrid, LLR L2074 Minovic, PSieve, Srsieve, Rieselprime, LLR L2085 Dodson1, PSieve, Srsieve, PrimeGrid, LLR L2086 Sveen, PSieve, Srsieve, PrimeGrid, LLR L2100 Christensen, PSieve, Srsieve, PrimeGrid, LLR L2103 Schmidt1, PSieve, Srsieve, PrimeGrid, LLR L2117 Karlsteen, PSieve, Srsieve, PrimeGrid, LLR L2121 VanRangelrooij, PSieve, Srsieve, PrimeGrid, LLR L2122 Megele, PSieve, Srsieve, PrimeGrid, LLR L2125 Greer, PSieve, Srsieve, PrimeGrid, LLR L2126 Senftleben, PSieve, Srsieve, PrimeGrid, LLR L2137 Hayashi1, PSieve, Srsieve, PrimeGrid, LLR L2142 Hajek, PSieve, Srsieve, PrimeGrid, LLR L2158 Krauss, PSieve, Srsieve, PrimeGrid, LLR L2163 VanRooijen1, PSieve, Srsieve, PrimeGrid, LLR L2233 Herder, Srsieve, PrimeGrid, LLR L2235 Mullage, PSieve, Srsieve, NPLB, LLR L2257 Dettweiler, PSieve, Srsieve, NPLB, LLR L2269 Schori, Srsieve, PrimeGrid, LLR L2321 Medcalf, PSieve, Srsieve, PrimeGrid, LLR L2322 Szafranski, PSieve, Srsieve, PrimeGrid, LLR L2327 Oh, PSieve, Srsieve, PrimeGrid, LLR L2337 Schmalen, PSieve, Srsieve, PrimeGrid, LLR L2338 Burt, PSieve, Srsieve, Rieselprime, LLR L2366 Satoh, PSieve, Srsieve, PrimeGrid, LLR L2371 Luszczek, Srsieve, PrimeGrid, LLR L2373 Tarasov1, Srsieve, PrimeGrid, LLR L2408 Reinman, Srsieve, PrimeGrid, LLR L2413 Blyth, PSieve, Srsieve, PrimeGrid, LLR L2425 DallOsto, LLR L2429 Bliedung, TwinGen, PrimeGrid, LLR L2432 Sutton1, PSieve, Srsieve, Rieselprime, LLR L2444 Batalov, PSieve, Srsieve, Rieselprime, LLR L2484 Ritschel, PSieve, Srsieve, Rieselprime, LLR L2487 Liao, PSieve, Srsieve, PrimeGrid, LLR L2494 Javtokas, PSieve, Srsieve, PrimeGrid, LLR L2507 Geis, PSieve, Srsieve, PrimeGrid, LLR L2517 McPherson, PSieve, Srsieve, PrimeGrid, LLR L2518 Karevik, PSieve, Srsieve, PrimeGrid, LLR L2519 Schmidt2, PSieve, Srsieve, NPLB, LLR L2520 Mamanakis, PSieve, Srsieve, PrimeGrid, LLR L2526 Martinik, PSieve, Srsieve, PrimeGrid, LLR L2532 Papp2, PSieve, Srsieve, PrimeGrid, LLR L2545 Nose, PSieve, Srsieve, PrimeGrid, LLR L2549 McKay, PSieve, Srsieve, PrimeGrid, LLR L2552 Foulher, PSieve, Srsieve, PrimeGrid, LLR L2561 Vinklat, PSieve, Srsieve, PrimeGrid, LLR L2562 Jones3, PSieve, Srsieve, PrimeGrid, LLR L2564 Bravin, PSieve, Srsieve, PrimeGrid, LLR L2583 Nakamura, PSieve, Srsieve, PrimeGrid, LLR L2594 Sheridan, PSieve, Srsieve, PrimeGrid, LLR L2602 Mueller4, PSieve, Srsieve, PrimeGrid, LLR L2603 Hoffman, PSieve, Srsieve, PrimeGrid, LLR L2606 Slakans, PSieve, Srsieve, PrimeGrid, LLR L2626 DeKlerk, PSieve, Srsieve, PrimeGrid, LLR L2627 Graham2, PSieve, Srsieve, PrimeGrid, LLR L2629 Becker2, PSieve, Srsieve, PrimeGrid, LLR L2649 Brandstaetter, PSieve, Srsieve, PrimeGrid, LLR L2659 Reber, PSieve, Srsieve, PrimeGrid, LLR L2664 Koluvere, PSieve, Srsieve, PrimeGrid, LLR L2673 Burningham, PSieve, Srsieve, PrimeGrid, LLR L2675 Ling, PSieve, Srsieve, PrimeGrid, LLR L2676 Cox2, PSieve, Srsieve, PrimeGrid, LLR L2691 Pettersen, PSieve, Srsieve, PrimeGrid, LLR L2703 Armstrong, PSieve, Srsieve, PrimeGrid, LLR L2707 Out, PSieve, Srsieve, PrimeGrid, LLR L2714 Piotrowski, PSieve, Srsieve, PrimeGrid, LLR L2715 Donovan, PSieve, Srsieve, PrimeGrid, LLR L2719 Yost, PSieve, Srsieve, PrimeGrid, LLR L2724 AverayJones, PSieve, Srsieve, PrimeGrid, LLR L2742 Fluttert, PSieve, Srsieve, PrimeGrid, LLR L2777 Ritschel, Gcwsieve, TOPS, LLR L2785 Meili, PSieve, Srsieve, PrimeGrid, LLR L2805 Barr, PSieve, Srsieve, PrimeGrid, LLR L2823 Loureiro, PSieve, Srsieve, PrimeGrid, LLR L2826 Jeudy, PSieve, Srsieve, PrimeGrid, LLR L2827 Melzer, PSieve, Srsieve, PrimeGrid, LLR L2840 Santana, PSieve, Srsieve, PrimeGrid, LLR L2841 Minovic, Gcwsieve, MultiSieve, TOPS, LLR L2842 English1, PSieve, Srsieve, PrimeGrid, LLR L2859 Keenan, PSieve, Srsieve, PrimeGrid, LLR L2873 Jurach, PSieve, Srsieve, PrimeGrid, LLR L2885 Busacker, PSieve, Srsieve, PrimeGrid, LLR L2891 Lacroix, PSieve, Srsieve, PrimeGrid, LLR L2914 Merrylees, PSieve, Srsieve, PrimeGrid, LLR L2959 Derrera, PSieve, Srsieve, PrimeGrid, LLR L2967 Ryjkov, PSieve, Srsieve, PrimeGrid, LLR L2973 Kurtovic, Srsieve, PrimeGrid, LLR L2975 Loureiro, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L2981 Yoshigoe, PSieve, Srsieve, PrimeGrid, LLR L2992 Boehm, PSieve, Srsieve, PrimeGrid, LLR L2997 Williams2, PSieve, Srsieve, PrimeGrid, LLR L3023 Winslow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3029 Walsh, PSieve, Srsieve, PrimeGrid, LLR L3033 Snow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3034 Wakolbinger, PSieve, Srsieve, PrimeGrid, LLR L3035 Scalise, PSieve, Srsieve, PrimeGrid, LLR L3037 Noltensmeier, PSieve, Srsieve, PrimeGrid, LLR L3043 Hayase, PSieve, Srsieve, PrimeGrid, LLR L3048 Breslin, PSieve, Srsieve, PrimeGrid, LLR L3049 Tardy, PSieve, Srsieve, PrimeGrid, LLR L3054 Winslow, Srsieve, PrimeGrid, LLR L3075 Goellner, PSieve, Srsieve, PrimeGrid, LLR L3091 Ridgway, PSieve, Srsieve, PrimeGrid, LLR L3101 Reichard, PSieve, Srsieve, PrimeGrid, LLR L3105 Eldredge, PSieve, Srsieve, PrimeGrid, LLR L3118 Yama, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3125 Rizman, PSieve, Srsieve, PrimeGrid, LLR L3141 Kus, PSieve, Srsieve, PrimeGrid, LLR L3154 Hentrich, PSieve, Srsieve, PrimeGrid, LLR L3168 Schwegler, PSieve, Srsieve, PrimeGrid, LLR L3171 Bergelt, PSieve, Srsieve, PrimeGrid, LLR L3173 Zhou2, PSieve, Srsieve, PrimeGrid, LLR L3174 Boniecki, PSieve, Srsieve, PrimeGrid, LLR L3179 Hamada, PSieve, Srsieve, PrimeGrid, LLR L3180 Poon, PSieve, Srsieve, PrimeGrid, LLR L3183 Haller, Srsieve, PrimeGrid, LLR L3184 Hayslette, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3200 Athanas, PSieve, Srsieve, PrimeGrid, LLR L3203 Scalise, TwinGen, PrimeGrid, LLR L3206 Chang2, PSieve, Srsieve, PrimeGrid, LLR L3209 McArdle, GenefX64, AthGFNSieve, PrimeGrid, LLR L3213 OBrien1, PSieve, Srsieve, PrimeGrid, LLR L3221 Vicena, PSieve, Srsieve, PrimeGrid, LLR L3222 Yamamoto, PSieve, Srsieve, PrimeGrid, LLR L3223 Yurgandzhiev, PSieve, Srsieve, PrimeGrid, LLR L3230 Kumagai, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3233 Nadeau, PSieve, Srsieve, PrimeGrid, LLR L3234 Parangalan, PSieve, Srsieve, PrimeGrid, LLR L3249 Lind, PSieve, Srsieve, PrimeGrid, LLR L3260 Stanko, PSieve, Srsieve, PrimeGrid, LLR L3261 Batalov, PSieve, Srsieve, PrimeGrid, LLR L3262 Molder, PSieve, Srsieve, PrimeGrid, LLR L3267 Cain, PSieve, Srsieve, PrimeGrid, LLR L3276 Jeka, PSieve, Srsieve, PrimeGrid, LLR L3278 Fischer1, PSieve, Srsieve, PrimeGrid, LLR L3290 Bednar1, PSieve, Srsieve, PrimeGrid, LLR L3294 Bartlett, PSieve, Srsieve, PrimeGrid, LLR L3313 Yost, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3323 Ritschel, NewPGen, TOPS, LLR L3325 Elvy, PSieve, Srsieve, PrimeGrid, LLR L3329 Tatearka, PSieve, Srsieve, PrimeGrid, LLR L3336 Dongen, Siemelink, Srsieve, LLR L3345 Domanov1, PSieve, Rieselprime, LLR L3354 Willig, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3372 Ryan, PSieve, Srsieve, PrimeGrid, LLR L3377 Ollivier, PSieve, Srsieve, PrimeGrid, LLR L3378 Glasgow, PSieve, Srsieve, PrimeGrid, LLR L3385 Rassokhin, PSieve, Srsieve, PrimeGrid, LLR L3410 Kurtovic, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3415 Johnston1, PSieve, Srsieve, PrimeGrid, LLR L3418 Stein, PSieve, Srsieve, PrimeGrid, LLR L3422 Micom, PSieve, Srsieve, PrimeGrid, LLR L3430 Durstewitz, PSieve, Srsieve, PrimeGrid, LLR L3431 Gahan, PSieve, Srsieve, PrimeGrid, LLR L3432 Batalov, Srsieve, LLR L3439 Huang, PSieve, Srsieve, PrimeGrid, LLR L3440 Pelikan, PSieve, Srsieve, PrimeGrid, LLR L3446 Marshall3, PSieve, Srsieve, PrimeGrid, LLR L3453 Benes, PSieve, Srsieve, PrimeGrid, LLR L3458 Jia, PSieve, Srsieve, PrimeGrid, LLR L3459 Boruvka, PSieve, Srsieve, PrimeGrid, LLR L3460 Ottusch, PSieve, Srsieve, PrimeGrid, LLR L3464 Ferrell, PSieve, Srsieve, PrimeGrid, LLR L3470 Fisan, PSieve, Srsieve, PrimeGrid, LLR L3471 Gieorgijewski, PSieve, Srsieve, PrimeGrid, LLR L3472 Hernas, PSieve, Srsieve, PrimeGrid, LLR L3483 Farrow, PSieve, Srsieve, PrimeGrid, LLR L3487 Ziemann, PSieve, Srsieve, PrimeGrid, LLR L3494 Batalov, NewPGen, LLR L3502 Ristic, PSieve, Srsieve, PrimeGrid, LLR L3512 Tsuji, PSieve, Srsieve, PrimeGrid, LLR L3514 Bishop1, PSieve, Srsieve, PrimeGrid, OpenPFGW, LLR L3518 Papendick, PSieve, Srsieve, PrimeGrid, LLR L3519 Kurtovic, PSieve, Srsieve, Rieselprime, LLR L3523 Brown1, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3528 Batalov, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3532 Batalov, Gcwsieve, LLR L3538 Beard1, PSieve, Srsieve, PrimeGrid, LLR L3539 Jacobs, PSieve, Srsieve, PrimeGrid, LLR L3543 Yama, PrimeGrid, LLR L3545 Eskam1, PSieve, Srsieve, PrimeGrid, LLR L3547 Ready, Srsieve, PrimeGrid, LLR L3548 Ready, PSieve, Srsieve, PrimeGrid, LLR L3549 Hirai, Srsieve, PrimeGrid, LLR L3552 Benson2, Srsieve, PrimeGrid, LLR L3553 Cilliers, Srsieve, PrimeGrid, LLR L3555 Cervelle, PSieve, Srsieve, PrimeGrid, LLR L3562 Schouten, Srsieve, PrimeGrid, LLR L3564 Jaworski, Srsieve, CRUS, LLR L3566 Slakans, Srsieve, PrimeGrid, LLR L3567 Meili, Srsieve, PrimeGrid, LLR L3573 Batalov, TwinGen, PrimeGrid, LLR L3577 Sriworarat, PSieve, Srsieve, PrimeGrid, LLR L3580 Nelson1, PSieve, Srsieve, PrimeGrid, LLR L3586 Wharton, PSieve, Srsieve, PrimeGrid, LLR L3588 Matousek, PSieve, Srsieve, PrimeGrid, LLR L3593 Veit, PSieve, Srsieve, PrimeGrid, LLR L3601 Jablonski1, PSieve, Srsieve, PrimeGrid, LLR L3606 Sander, TwinGen, PrimeGrid, LLR L3610 Batalov, Srsieve, CRUS, LLR L3612 Smits, PSieve, Srsieve, PrimeGrid, LLR L3625 Haymoz, PSieve, Srsieve, PrimeGrid, LLR L3640 Stopper, PSieve, Srsieve, PrimeGrid, LLR L3650 Smit, PSieve, Srsieve, PrimeGrid, LLR L3659 Volynsky, Srsieve, PrimeGrid, LLR L3662 Schawe, PSieve, Srsieve, PrimeGrid, LLR L3665 Kelava1, PSieve, Srsieve, Rieselprime, LLR L3666 Bielecki, PSieve, Srsieve, PrimeGrid, LLR L3668 Prokopchuk, PSieve, Srsieve, PrimeGrid, LLR L3682 Schaible, PSieve, Srsieve, PrimeGrid, LLR L3686 Yost, Srsieve, PrimeGrid, LLR L3688 Hasznos, PSieve, Srsieve, PrimeGrid, LLR L3696 Linderson, PSieve, Srsieve, PrimeGrid, LLR L3700 Kim4, PSieve, Srsieve, PrimeGrid, LLR L3709 Buss, PSieve, Srsieve, PrimeGrid, LLR L3719 Skinner, PSieve, Srsieve, PrimeGrid, LLR L3720 Ohno, Srsieve, PrimeGrid, LLR L3728 Rietveld, PSieve, Srsieve, PrimeGrid, LLR L3731 Deram, PSieve, Srsieve, PrimeGrid, LLR L3733 Bryniarski, PSieve, Srsieve, PrimeGrid, LLR L3735 Kurtovic, Srsieve, LLR L3736 Lukosevisius, PSieve, Srsieve, PrimeGrid, LLR L3737 Cartiaux, PSieve, Srsieve, PrimeGrid, LLR L3738 Larsson1, PSieve, Srsieve, PrimeGrid, LLR L3739 Gournay, PSieve, Srsieve, PrimeGrid, LLR L3743 Parker1, PSieve, Srsieve, PrimeGrid, LLR L3744 Green1, PSieve, Srsieve, PrimeGrid, LLR L3749 Meador, Srsieve, PrimeGrid, LLR L3760 Okazaki, PSieve, Srsieve, PrimeGrid, LLR L3763 Martin4, PSieve, Srsieve, PrimeGrid, LLR L3764 Diepeveen, PSieve, Srsieve, Rieselprime, LLR L3767 Huang1, PSieve, Srsieve, PrimeGrid, LLR L3770 Tang, Srsieve, PrimeGrid, LLR L3772 Ottusch, Srsieve, PrimeGrid, LLR L3784 Cavnaugh, PSieve, Srsieve, PrimeGrid, LLR L3785 Reichel, PSieve, Srsieve, PrimeGrid, LLR L3787 Palumbo, PSieve, Srsieve, PrimeGrid, LLR L3789 Toda, Srsieve, PrimeGrid, LLR L3790 Tamagawa, PSieve, Srsieve, PrimeGrid, LLR L3797 Schmidt3, PSieve, Srsieve, PrimeGrid, LLR L3800 Amschl, PSieve, Srsieve, PrimeGrid, LLR L3802 Aggarwal, Srsieve, LLR L3803 Bredl, PSieve, Srsieve, PrimeGrid, LLR L3810 Radle, PSieve, Srsieve, PrimeGrid, LLR L3813 Chambers2, PSieve, Srsieve, PrimeGrid, LLR L3824 Mazzucato, PSieve, Srsieve, PrimeGrid, LLR L3829 Abrahmi, TwinGen, PrimeGrid, LLR L3838 Boyden, PSieve, Srsieve, PrimeGrid, LLR L3839 Batalov, EMsieve, LLR L3843 Whiteley, PSieve, Srsieve, PrimeGrid, LLR L3849 Smith10, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3855 Lunner, PSieve, Srsieve, PrimeGrid, LLR L3857 Hudec, PSieve, Srsieve, PrimeGrid, LLR L3859 Clifton, PSieve, Srsieve, PrimeGrid, LLR L3860 Cimrman, PSieve, Srsieve, PrimeGrid, LLR L3861 Roemer, PSieve, Srsieve, PrimeGrid, LLR L3862 Gudenschwager, PSieve, Srsieve, PrimeGrid, LLR L3863 WaldenForrest, PSieve, Srsieve, PrimeGrid, LLR L3864 Piantoni, PSieve, Srsieve, PrimeGrid, LLR L3865 Silva, PSieve, Srsieve, PrimeGrid, LLR L3867 Traebert, PSieve, Srsieve, PrimeGrid, LLR L3868 Miller3, PSieve, Srsieve, PrimeGrid, LLR L3869 Cholt, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3873 Sala, PSieve, Srsieve, PrimeGrid, LLR L3876 Apreutesei, PSieve, Srsieve, PrimeGrid, LLR L3877 Jarne, PSieve, Srsieve, PrimeGrid, LLR L3886 Vogel, Srsieve, CRUS, LLR L3887 Byerly, PSieve, Rieselprime, LLR L3890 Beeson, PSieve, Srsieve, PrimeGrid, LLR L3895 Englehard, PSieve, Srsieve, PrimeGrid, LLR L3898 Christy, PSieve, Srsieve, PrimeGrid, LLR L3903 Miao, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3904 Darimont, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3909 Taylor2, PSieve, Srsieve, PrimeGrid, LLR L3910 Bischof, PSieve, Srsieve, PrimeGrid, LLR L3914 Matsuda, PSieve, Srsieve, PrimeGrid, LLR L3917 Rodenkirch, PSieve, Srsieve, LLR L3919 Pickering, PSieve, Srsieve, PrimeGrid, LLR L3924 Kim5, PSieve, Srsieve, PrimeGrid, LLR L3925 Okazaki, Srsieve, PrimeGrid, LLR L3933 Batalov, PSieve, Srsieve, CRUS, Rieselprime, LLR L3941 Lee8, PSieve, Srsieve, PrimeGrid, LLR L3961 Darimont, Srsieve, PrimeGrid, LLR L3964 Iakovlev, Srsieve, PrimeGrid, LLR L3967 Inouye, PSieve, Srsieve, Rieselprime, LLR L3975 Hou, PSieve, Srsieve, PrimeGrid, LLR L3993 Gushchak, Srsieve, PrimeGrid, LLR L3995 Unbekannt, PSieve, Srsieve, PrimeGrid, LLR L3998 Rossman, PSieve, Srsieve, PrimeGrid, LLR L4001 Willig, Srsieve, CRUS, LLR L4016 Bedenbaugh, PSieve, Srsieve, PrimeGrid, LLR L4021 Busse, PSieve, Srsieve, PrimeGrid, LLR L4026 Batalov, Cyclo, EMsieve, PIES, LLR L4031 Darney, PSieve, Srsieve, PrimeGrid, LLR L4034 Vanc, Srsieve, PrimeGrid, LLR L4036 Domanov1, PSieve, Srsieve, CRUS, LLR L4040 Oddone, PSieve, Srsieve, PrimeGrid, LLR L4043 Niedbala, PSieve, Srsieve, PrimeGrid, LLR L4045 Chew, PSieve, Srsieve, PrimeGrid, LLR L4061 Lee, PSieve, Srsieve, PrimeGrid, LLR L4064 Davies, Srsieve, CRUS, LLR L4076 Lacroix, PSieve, Srsieve, NPLB, LLR L4082 Zimmerman, PSieve, Srsieve, PrimeGrid, LLR L4083 Charrondiere, PSieve, Srsieve, PrimeGrid, LLR L4087 Kecic, PSieve, Srsieve, PrimeGrid, LLR L4088 Graeber, PSieve, Srsieve, PrimeGrid, LLR L4099 Nietering, PSieve, Srsieve, PrimeGrid, LLR L4103 Klopffleisch, Srsieve, PrimeGrid, LLR L4106 Ga, PSieve, Srsieve, PrimeGrid, LLR L4108 Yoshioka, PSieve, Srsieve, PrimeGrid, LLR L4109 Palmer1, PSieve, Srsieve, PrimeGrid, LLR L4111 Leps1, PSieve, Srsieve, PrimeGrid, LLR L4113 Batalov, PSieve, Srsieve, LLR L4114 Bubloski, PSieve, Srsieve, PrimeGrid, LLR L4118 Slegel, PSieve, Srsieve, PrimeGrid, LLR L4119 Nelson3, PSieve, Srsieve, PrimeGrid, LLR L4122 Sasaki1, PSieve, Srsieve, PrimeGrid, LLR L4123 Bush, PSieve, Srsieve, PrimeGrid, LLR L4133 Ito, PSieve, Srsieve, PrimeGrid, LLR L4139 Hawker, Srsieve, CRUS, LLR L4142 Batalov, CycloSv, EMsieve, PIES, LLR L4146 Schmidt1, Srsieve, PrimeGrid, LLR L4147 Mohacsy, PSieve, Srsieve, PrimeGrid, LLR L4148 Glatte, PSieve, Srsieve, PrimeGrid, LLR L4155 Jones4, PSieve, Srsieve, PrimeGrid, LLR L4159 Schulz5, Srsieve, PrimeGrid, LLR L4166 Kwok, PSieve, LLR L4185 Hoefliger, PSieve, Srsieve, PrimeGrid, LLR L4187 Schmidt2, Srsieve, CRUS, LLR L4189 Lawrence, Powell, Srsieve, CRUS, LLR L4190 Fnasek, PSieve, Srsieve, PrimeGrid, LLR L4191 Mahan, PSieve, Srsieve, PrimeGrid, LLR L4197 Kumagai1, Srsieve, PrimeGrid, LLR L4198 Rawles, PSieve, Srsieve, PrimeGrid, LLR L4200 Harste, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4201 Brown1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4203 Azarenko, PSieve, Srsieve, PrimeGrid, LLR L4204 Winslow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4205 Bischof, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4207 Jaamann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4208 Farrow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4210 Cholt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4226 Heath, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4231 Schneider1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4245 Greer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4249 Larsson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4250 Vogt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4252 Nietering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4256 Gniesmer, PSieve, Srsieve, PrimeGrid, LLR L4262 Hutchins, PSieve, Srsieve, PrimeGrid, LLR L4267 Batalov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4269 Romanov, PSieve, Srsieve, PrimeGrid, LLR L4273 Rangelrooij, Srsieve, CRUS, LLR L4274 AhlforsDahl, Srsieve, PrimeGrid, LLR L4276 Borbely, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4283 Crawford1, PSieve, Srsieve, PrimeGrid, LLR L4285 Bravin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4286 Zimmerman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4287 Suzuki1, PSieve, Srsieve, PrimeGrid, LLR L4289 Ito2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4293 Trunov, PSieve, Srsieve, PrimeGrid, LLR L4294 Kurtovic, Srsieve, CRUS, Prime95, LLR L4295 Splain, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4303 Thorson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4307 Keller1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4308 Matillek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4309 Kecic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4314 DeThomas, PSieve, Srsieve, PrimeGrid, LLR L4316 Nilsson1, PSieve, Srsieve, PrimeGrid, LLR L4323 Seisums, PSieve, Srsieve, PrimeGrid, LLR L4326 Steel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4329 Okon, Srsieve, LLR L4334 Miller5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4340 Becker4, Srsieve, PrimeGrid, LLR L4342 Kaiser1, PolySieve, NewPGen, LLR L4343 Norton, PSieve, Srsieve, PrimeGrid, LLR L4347 Schaeffer, PSieve, Srsieve, PrimeGrid, LLR L4348 Burridge, Srsieve, PrimeGrid, LLR L4352 Fahlenkamp1, PSieve, Srsieve, PrimeGrid, LLR L4358 Tesarz, PSieve, Srsieve, PrimeGrid, LLR L4359 Andou, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4362 Mochizuki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4364 Steinbach, PSieve, Srsieve, PrimeGrid, LLR L4371 Schmidt2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4380 Rix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4387 Davies, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4388 Mena, PSieve, Srsieve, PrimeGrid, LLR L4393 Veit1, Srsieve, CRUS, LLR L4395 Nilsson1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4398 Greer, Srsieve, PrimeGrid, LLR L4404 Stepnicka, PSieve, Srsieve, PrimeGrid, LLR L4405 Eckhard, Srsieve, LLR L4406 Mathers, PSieve, Srsieve, PrimeGrid, LLR L4408 Fricke, PSieve, Srsieve, PrimeGrid, LLR L4410 Andresson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4412 Simpson3, PSieve, Srsieve, PrimeGrid, LLR L4414 Falk, PSieve, Srsieve, PrimeGrid, LLR L4417 Rasp, PSieve, Srsieve, PrimeGrid, LLR L4424 Miyauchi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4425 Weber1, PSieve, Srsieve, PrimeGrid, LLR L4435 Larsson, Srsieve, PrimeGrid, LLR L4441 Miyauchi, PSieve, Srsieve, PrimeGrid, LLR L4444 Terber, Srsieve, CRUS, LLR L4445 Leudesdorff, PSieve, Srsieve, PrimeGrid, LLR L4454 Clark5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4456 Chambers2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4457 Geiger, PSieve, Srsieve, PrimeGrid, LLR L4459 Biscop, PSieve, Srsieve, PrimeGrid, LLR L4466 Falk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4472 Harvanek, Gcwsieve, MultiSieve, PrimeGrid, LLR L4476 Shane, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4477 Tennant, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4482 Mena, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4488 Vrontakis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4489 Szreter, PSieve, Srsieve, PrimeGrid, LLR L4490 Mazumdar, PSieve, Srsieve, PrimeGrid, LLR L4499 Ohsugi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4501 Eskam1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4504 Sesok, NewPGen, LLR L4505 Lind, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4506 Propper, Batalov, CycloSv, EMsieve, PIES, Prime95, LLR L4510 Ming, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4511 Donovan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4518 Primecrunch.com, Hedges, Srsieve, LLR L4521 Curtis, Srsieve, CRUS, LLR L4522 Lorsung, PSieve, Srsieve, PrimeGrid, LLR L4523 Mull, PSieve, Srsieve, PrimeGrid, LLR L4525 Kong1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4526 Schoefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4527 Fruzynski, PSieve, Srsieve, PrimeGrid, LLR L4530 Reynolds1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4531 Butez, PSieve, Srsieve, PrimeGrid, LLR L4544 Krauss, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4547 Nair, TwinGen, NewPGen, LLR L4548 Sydekum, Srsieve, CRUS, Prime95, LLR L4550 Terry, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4552 Koski, PSieve, Srsieve, PrimeGrid, LLR L4559 Okazaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4561 Propper, Batalov, CycloSv, Cyclo, EMsieve, PIES, LLR L4562 Donovan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4564 DeThomas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4568 Vrontakis, PSieve, Srsieve, PrimeGrid, LLR L4575 Gingrich2, Srsieve, CRUS, LLR L4582 Kinney, PSieve, Srsieve, PrimeGrid, LLR L4583 Rohmann, PSieve, Srsieve, PrimeGrid, LLR L4584 Goforth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4585 Schawe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4591 Schwieger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4593 Mangio, PSieve, Srsieve, PrimeGrid, LLR L4595 Mangio, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4598 Connaughty, PSieve, Srsieve, PrimeGrid, LLR L4600 Simbarsky, PSieve, Srsieve, PrimeGrid, LLR L4609 Elgetz, PSieve, Srsieve, PrimeGrid, LLR L4620 Kinney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4622 Jurach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4623 Dugger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4626 Iltus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4629 Chen2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4645 McKibbon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4649 Humphries, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4654 Voskoboynikov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4656 Beck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4658 Maguin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4659 AverayJones, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4660 Snow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4664 Toledo, PSieve, Srsieve, PrimeGrid, LLR L4665 Szeluga, Kupidura, Banka, LLR L4666 Slade, PSieve, Srsieve, PrimeGrid, LLR L4667 Morelli, LLR L4668 Okazaki, Gcwsieve, MultiSieve, PrimeGrid, LLR L4669 Schwegler, Srsieve, PrimeGrid, LLR L4670 Drumm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4672 Slade, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4673 Okhrimouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4675 Lind, Srsieve, PrimeGrid, LLR L4676 Maloney, Srsieve, PrimeGrid, PrimeSierpinski, LLR L4677 Provencher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4683 Bird2, Srsieve, CRUS, LLR L4684 Sveen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4685 Masser, Srsieve, CRUS, LLR L4687 Campbell1, PSieve, Srsieve, PrimeGrid, LLR L4689 Gordon2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4690 Brandt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4691 Fruzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4692 Hajek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4694 Schapendonk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4695 Goudie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4696 Plottel, PSieve, Srsieve, PrimeGrid, LLR L4697 Sellsted, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4699 Parsonnet, PSieve, Srsieve, PrimeGrid, LLR L4700 Liu4, Srsieve, CRUS, LLR L4701 Kalus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4702 Charette, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4703 Pacini, PSieve, Srsieve, PrimeGrid, LLR L4704 Kurtovic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4706 Kraemer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4710 Wiedemann, PSieve, Srsieve, PrimeGrid, LLR L4711 Closs, PSieve, Srsieve, PrimeGrid, LLR L4712 Gravemeyer, PSieve, Srsieve, PrimeGrid, LLR L4713 Post, PSieve, Srsieve, PrimeGrid, LLR L4714 James1, Srsieve, CRUS, LLR L4715 Skinner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4717 Wypych, PSieve, Srsieve, PrimeGrid, LLR L4718 Brown1, Gcwsieve, MultiSieve, PrimeGrid, LLR L4720 Gahan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4723 Lexut, PSieve, Srsieve, PrimeGrid, LLR L4724 Thonon, PSieve, Srsieve, PrimeGrid, LLR L4726 Miller7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4729 Wimmer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4730 Bowe, PSieve, Srsieve, PrimeGrid, LLR L4732 Miller7, PSieve, Srsieve, PrimeGrid, LLR L4737 Reinhardt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4738 Gelhar, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4740 Silva1, PSieve, Srsieve, PrimeGrid, LLR L4741 Wong, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4742 Schlereth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4743 Plsak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4745 Cavnaugh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4746 Brech, PSieve, Srsieve, PrimeGrid, LLR L4747 Brech, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4752 Harvey2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4753 Riemann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4754 Calvin, PSieve, Srsieve, PrimeGrid, LLR L4755 Glatte, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4757 Johnson9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4758 Walling, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4760 Sipes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4761 Romaidis, PSieve, Srsieve, PrimeGrid, LLR L4763 Guilleminot, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4764 McLean2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4765 Kumsta, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4773 Tohmola, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4774 Boehm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4775 Steinbach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4776 Lee7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4783 Marini, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4784 Bertolotti, Gcwsieve, MultiSieve, PrimeGrid, LLR L4786 Sydekum, Srsieve, CRUS, LLR L4787 Sunderland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4789 Kurtovic, Srsieve, Prime95, LLR L4791 Vaisanen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4793 Koski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4795 Lawson2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4796 White2, PSieve, Srsieve, PrimeGrid, LLR L4799 Vanderveen1, LLR L4800 Doenges, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4802 Jones5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4806 Rajala, Srsieve, CRUS, LLR L4807 Tsuji, Srsieve, PrimeGrid, LLR L4808 Kaiser1, PolySieve, LLR L4809 Bocan, Srsieve, PrimeGrid, LLR L4810 Dhuyvetters, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4812 Nezumi, LLR L4814 Telesz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4815 Kozisek, PSieve, Srsieve, PrimeGrid, LLR L4816 Doenges, PSieve, Srsieve, PrimeGrid, LLR L4819 Inci, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4821 Svantner, PSieve, Srsieve, PrimeGrid, LLR L4822 Magklaras, PSieve, Srsieve, PrimeGrid, LLR L4823 Helm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4824 Allivato, PSieve, Srsieve, PrimeGrid, LLR L4826 Soraku, PSieve, Srsieve, PrimeGrid, LLR L4830 Eisler1, PSieve, Srsieve, PrimeGrid, LLR L4832 Meekins, Srsieve, CRUS, LLR L4834 Helm, PSieve, Srsieve, PrimeGrid, LLR L4835 Katzur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4837 Hines, Srsieve, CRUS, LLR L4839 Harris, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4840 Ylijoki, PSieve, Srsieve, PrimeGrid, LLR L4841 Baur, PSieve, Srsieve, PrimeGrid, LLR L4842 Smith11, PSieve, Srsieve, PrimeGrid, LLR L4843 Hutchins, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4844 Valentino, PSieve, Srsieve, PrimeGrid, LLR L4848 Adamec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4849 Burt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4850 Jones5, PSieve, Srsieve, PrimeGrid, LLR L4851 Schioler, PSieve, Srsieve, PrimeGrid, LLR L4854 Gory, PSieve, Srsieve, PrimeGrid, LLR L4858 Koriabine, PSieve, Srsieve, PrimeGrid, LLR L4859 Wang4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4861 Thonon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4864 Freihube, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4868 Bergmann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4869 Ogata, PSieve, Srsieve, PrimeGrid, LLR L4870 Wharton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4871 Gory, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4875 Parsonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4876 Tennant, Srsieve, CRUS, LLR L4877 Cherenkov, Srsieve, CRUS, LLR L4879 Propper, Batalov, Srsieve, LLR L4880 Goossens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4881 Bonath, Srsieve, LLR L4884 Somer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4889 Hundhausen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4892 Hewitt1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4893 Little, PSieve, Srsieve, PrimeGrid, LLR L4898 Kozisek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4903 Laurent1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4904 Dunchouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4905 Niegocki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4907 Reinhardt, PSieve, Srsieve, PrimeGrid, LLR L4909 Hall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4911 Calveley, Srsieve, CRUS, LLR L4914 Bishop_D, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4917 Corlatti, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4918 Weiss1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4920 Walsh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4922 Bulba, Sesok, LLR L4923 Koriabine, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4925 Korolev, Srsieve, CRUS, LLR L4926 Shenton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4927 Smith12, Srsieve, SRBase, CRUS, LLR L4928 Doornink, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4929 Givoni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4930 Shintani, PSieve, Srsieve, PrimeGrid, LLR L4932 Schroeder2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4933 Jacques, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4935 Simard, PSieve, Srsieve, PrimeGrid, LLR L4937 Ito2, Srsieve, PrimeGrid, LLR L4939 Coscia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4942 Matheis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4944 Schori, LLR2, PSieve, Srsieve, PrimeGrid, LLR L4945 Meili, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4948 SchwartzLowe, PSieve, Srsieve, PrimeGrid, LLR L4951 Niegocki, PSieve, Srsieve, PrimeGrid, LLR L4954 Romaidis, Srsieve, PrimeGrid, LLR L4955 Grosvenor, Srsieve, CRUS, LLR L4956 Merrylees, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4958 Shenton, PSieve, Srsieve, PrimeGrid, LLR L4959 Deakin, PSieve, Srsieve, PrimeGrid, LLR L4960 Kaiser1, NewPGen, TPS, LLR L4961 Vornicu, LLR L4962 Baur, Srsieve, NewPGen, LLR L4963 Mortimore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4964 Doescher, GFNSvCUDA, GeneFer, LLR L4965 Propper, LLR L4968 Kaczala, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4970 Michael, PSieve, Srsieve, PrimeGrid, LLR L4972 Greer, Gcwsieve, MultiSieve, PrimeGrid, LLR L4973 Landrum, PSieve, Srsieve, PrimeGrid, LLR L4974 Monroe, PSieve, Srsieve, PrimeGrid, LLR L4975 Thompson5, Srsieve, CRUS, LLR L4976 Propper, Batalov, Gcwsieve, LLR L4977 Miller8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4979 Matheis, PSieve, Srsieve, PrimeGrid, LLR L4980 Poon1, PSieve, Srsieve, PrimeGrid, LLR L4981 MartinezCucalon, PSieve, Srsieve, PrimeGrid, LLR L4984 Hemsley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4985 Veit, Srsieve, CRUS, LLR L4987 Canossi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4988 Harris3, PSieve, Srsieve, PrimeGrid, LLR L4990 Heindl, PSieve, Srsieve, PrimeGrid, LLR L4994 Wong, Srsieve, NewPGen, LLR L4997 Gardner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4999 Andrews1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5000 Wimmer2, Srsieve, CRUS, LLR L5001 Mamonov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5002 Kato, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5005 Hass, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5007 Faith, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5008 Niegocki, Srsieve, PrimeGrid, LLR L5009 Jungmann, Srsieve, LLR L5011 Strajt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5013 Wypych, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5014 Strokov, PSieve, Srsieve, PrimeGrid, LLR L5018 Nielsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5019 Ayiomamitis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5020 Eikelenboom, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5021 Svantner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5022 Manz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5023 Schulz6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5024 Schumacher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5025 Lexut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5027 Moudy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5029 Krompolc, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5030 Calvin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5031 Schumacher, PSieve, Srsieve, PrimeGrid, LLR L5033 Ni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5036 Jung2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5037 Diepeveen, Underwood, PSieve, Srsieve, Rieselprime, LLR L5039 Gilliland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5041 Wallbaum, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5043 Vanderveen1, Propper, LLR L5044 Bergelt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5047 Little, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5051 Veit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5053 Yoshigoe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5056 Chu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5057 Hauhia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5061 Cooper5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5063 Wendelboe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5067 Tirkkonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5068 Silva1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5069 Friedrichsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5070 Millerick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5071 McLean2, Srsieve, CRUS, LLR L5072 Romaidis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5076 Atnashev, Srsieve, PrimeGrid, LLR L5077 Martinelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5078 McDonald4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5079 Meditz, PSieve, Srsieve, PrimeGrid, LLR L5080 Gahan, GFNSvCUDA, PrivGfnServer, LLR L5081 Howell, Srsieve, PrimeGrid, LLR L5083 Pickering, Srsieve, PrimeGrid, LLR L5084 Yagi, PSieve, Srsieve, PrimeGrid, LLR L5085 Strajt, PSieve, Srsieve, PrimeGrid, LLR L5087 Coscia, PSieve, Srsieve, PrimeGrid, LLR L5088 Hall1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5089 MARSIN, Srsieve, CRUS, LLR L5090 Jourdan, PSieve, Srsieve, PrimeGrid, LLR L5094 Th�mmler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5099 Lobring, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5100 Stephens, PSieve, Srsieve, PrimeGrid, LLR L5102 Liu6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5104 Gahan, LLR2, NewPGen, LLR L5105 Helm, LLR2, Srsieve, PrivGfnServer, LLR L5106 Glennie, PSieve, Srsieve, PrimeGrid, LLR L5110 Provencher, PSieve, Srsieve, PrimeGrid, LLR L5112 Vanderveen1, Srsieve, CRUS, LLR L5115 Doescher, LLR L5116 Schoeler, MultiSieve, LLR L5118 Vanderveen1, PSieve, Srsieve, PrimeGrid, Rieselprime, LLR L5120 Greer, LLR2, PrivGfnServer, LLR L5122 Tennant, LLR2, PrivGfnServer, LLR L5123 Propper, Batalov, EMsieve, LLR L5125 Tirkkonen, PSieve, Srsieve, PrimeGrid, LLR L5126 Warach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5127 Kemenes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5129 Veit, Srsieve, PrimeGrid, LLR L5130 Jourdan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5134 Cooper5, PSieve, Srsieve, PrimeGrid, LLR L5139 Belozersky, PSieve, Srsieve, PrimeGrid, LLR L5143 Dickinson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5144 McNary, PSieve, Srsieve, PrimeGrid, LLR L5155 Harju, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5156 Dinkel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5157 Asano, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5158 Zuschlag, PSieve, Srsieve, PrimeGrid, LLR L5159 Huetter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5161 Greer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5162 Th�mmler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5166 Jaros1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5167 Gelhar, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5168 Hawkinson, PSieve, Srsieve, PrimeGrid, LLR L5169 Atnashev, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5171 Brown1, LLR2, Srsieve, PrimeGrid, LLR L5172 McNary, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5173 Bishop_D, PSieve, Srsieve, PrimeGrid, LLR L5174 Scalise, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5175 Liiv, PSieve, Srsieve, Rieselprime, LLR L5176 Early, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5177 Tapper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5178 Larsson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5179 Okazaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5180 Laluk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5181 Atnashev, LLR2, Srsieve, PrimeGrid, LLR L5183 Winskill1, PSieve, Srsieve, PrimeGrid, 12121search, LLR L5184 Byerly, PSieve, Srsieve, NPLB, LLR L5185 Elgetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5186 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, United, PrimeGrid, LLR L5188 Wong, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5189 Jackson1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5191 Kaiser1, NewPGen, LLR L5192 Anonymous, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5194 Jonas, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5195 Ridgway, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5196 Sielemann, Srsieve, CRUS, LLR L5197 Propper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5198 Elgetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5199 Romaidis, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5200 Terry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5201 Ford, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5202 Molne, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5203 Topham, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5206 Wiseler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5207 Atnashev, LLR2, PrivGfnServer, LLR L5208 Schnur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5209 Hansen1, Srsieve, CRUS, LLR L5210 Brech, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5211 Orpen1, Srsieve, CRUS, LLR L5214 Dinkel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5215 Hawkinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5216 Brazier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5217 Wiseler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5218 Atnashev, LLR2, LLR L5220 Jones4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5223 Vera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5226 Brown1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5227 Nagayama, Srsieve, CRUS, LLR L5228 Jacques, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5229 Karpenko, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5230 Tapper, LLR2, Srsieve, PrimeGrid, LLR L5231 Veit, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5232 Bliedung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5233 Sipes, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5235 Karpinski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5236 Shenton, LLR2, PSieve, Srsieve, PrivGfnServer, PrimeGrid, LLR L5237 Schwieger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5238 Jourdan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5239 Strajt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5242 Krompolc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5246 Vaisanen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5248 Delgado, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5249 Racanelli, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5250 Nakamura, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5253 Burt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5254 Gerstenberger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5256 Snow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5260 Ostaszewski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5261 Kim5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5262 Clark5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5263 Ito2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5264 Cholt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5265 Fleischman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5266 Sheridan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5267 Schnur, LLR2, Srsieve, PrimeGrid, LLR L5269 Clemence, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5270 Hennebert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5272 Conner, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5273 McGonegal, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5276 Schawe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5277 McDevitt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5278 Nose, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5279 Schick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5282 Somer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5283 Hua, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5284 Fischer1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5285 Merrylees, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5286 Reynolds1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5287 Thonon, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5288 Heindl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5290 Cooper5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5294 Hewitt1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5295 Gilliland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5296 Piaive, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5297 Nakamura, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5298 Kaczmarek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5299 Corlatti, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5300 Hajek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5301 Harju, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5302 Davies, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5305 Thanry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5307 Bauer2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5308 Krauss, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5309 Bishop_D, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5310 Hubbard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5311 Reich, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5312 Tyndall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5313 Barnes, PSieve, Srsieve, Rieselprime, LLR L5314 Satoh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5315 Dec, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5316 Walsh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5317 Freeze, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5318 Ruber, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5319 Abbey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5320 Niegocki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5321 Dark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5323 Chan1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5324 Boehm, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5325 Drager, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5326 Deakin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5327 Shenton, LLR2, Srsieve, LLR L5332 Mizusawa, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5334 Jones6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5335 Harvey1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5336 Leblanc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5337 Kawamura1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5338 Deakin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5340 Ogawa, MultiSieve, NewPGen, LLR L5342 Rodenkirch, Srsieve, CRUS, LLR L5343 Tajika, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5344 Lowe1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5345 Johnson8, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5346 Polansky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5347 Whyte, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5348 Adam, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5350 McDevitt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5352 Eklof, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5353 Belolipetskiy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5354 Doornink, NewPGen, OpenPFGW, LLR L5356 Hsu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5358 Gmirkin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5359 Ridgway, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5360 Leitch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5362 Domanov1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5364 Blyth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5365 Racanelli, Srsieve, CRUS, LLR L5366 Michael, Srsieve, CRUS, LLR L5367 Hsu2, Srsieve, CRUS, LLR L5368 Valentino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5370 Piotrowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5372 Vitiello, Srsieve, CRUS, LLR L5373 Baranchikov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5375 Blanchard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5376 Ranch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5377 Yasuhisa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5378 Seeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5379 Smith4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5380 Campulka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5381 Meppiel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5382 Bulanov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5384 Riemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5387 Johns, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5388 Dewar, Srsieve, CRUS, LLR L5389 Doornink, TwinGen, LLR L5390 Lemkau, Srsieve, CRUS, LLR L5392 McDonald4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5393 Lu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5395 Early, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5399 Kolesov, LLR L5400 Hefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5401 Champ, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5402 Greer, LLR2, Gcwsieve, MultiSieve, PrimeGrid, LLR L5403 Slade1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5404 Wiseler, LLR2, Srsieve, PrimeGrid, LLR L5405 Gerstenberger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5406 Jaros, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5407 Mahnken, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5408 Kreth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5409 Lu, Srsieve, CRUS, LLR L5410 Anonymous, Srsieve, CRUS, LLR L5413 David1, Srsieve, CRUS, LLR L5414 Mollerus, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5415 VanHullebusch, Srsieve, CRUS, LLR L5416 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5418 Pollak, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5421 Iwasaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5425 Lichtenwimmer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5426 Gilliland, Srsieve, CRUS, LLR L5427 Hewitt1, LLR2, Srsieve, PrimeGrid, LLR L5429 Meditz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5432 Tatsianenka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5433 Hatanaka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5434 Parsonnet, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5435 Murphy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5437 Rijfers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5438 Tang, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5439 Batalov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5440 McGonegal, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5441 Cherenkov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5442 Moreira, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5443 Venjakob, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5444 Platz, LLR2, Srsieve, PrimeGrid, LLR L5448 Rubin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5449 Reinhardt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5450 Mizusawa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5451 Wilkins, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5452 Morera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5453 Slaets, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5456 Gundermann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5457 Iwasaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5459 Sekanina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5460 Headrick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5461 Anonymous, LLR2, Srsieve, PrimeGrid, LLR L5462 Raimist, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5463 Goforth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5464 Pickering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5465 Hubbard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5466 Furushima, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5467 Tamai1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5469 Bishopp, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5471 Dunchouk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5472 Ready, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5476 Steinbach, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5477 Meador, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5480 Boddener, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5482 Raimist, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5485 Mahnken, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5488 Kecic, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5490 Vasiliu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5492 Slaets, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5493 Liu6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5497 Goetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5499 Osada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5500 Racanelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5501 Seeley, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5502 Floyd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5503 Soule, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5504 Cerny, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5505 Chovanec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5507 Brandt2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5508 Gauch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5509 Nietering, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5512 Akesson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5514 Cavnaugh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5516 Piesker, PSieve, Srsieve, NPLB, LLR L5517 Cavecchia, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5518 Eisler1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5519 Atnashev, LLR2, PSieve, Srsieve, PrivGfnServer, PrimeGrid, LLR L5523 Sekanina, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5524 Matillek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5526 Kickler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5527 Doornink, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5529 Baur1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5530 Matillek, LLR2, Srsieve, PrimeGrid, LLR L5531 Koci, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5532 Morera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5534 Cervelle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5535 Skahill, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5536 Bennett1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5537 Schafer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5540 Brown6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5541 Parker, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5543 Lucendo, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5544 Byerly, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5545 Kruse, PSieve, Srsieve, NPLB, LLR L5546 Steinwedel, PSieve, Srsieve, NPLB, LLR L5547 Hoonoki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5548 Steinberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5549 Zhang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5550 Provencher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5551 Marler, PSieve, Srsieve, NPLB, LLR L5553 DAmico, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5554 Lucendo, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5555 Parangalan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5556 Javens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5557 Drake, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5558 Lee7, LLR2, Srsieve, PrimeGrid, LLR L5559 Roberts, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5560 Amberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5562 Cheung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5563 Akesson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5564 Lee7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5565 Bailey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5566 Latge, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5567 Marshall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5568 Schioler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5569 Michael, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5570 Arnold, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5571 Williams7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5572 Sveen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5573 Friedrichsen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5574 Laboisne, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5575 Blanchard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5576 Amorim, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5578 Jablonski1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5579 Cox2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5580 Ivanek1, Srsieve, CRUS, LLR L5581 Pickles, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5582 Einvik, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5583 Tanaka3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5584 Barr, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5585 Faith, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5586 Vultur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5587 AverayJones, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5588 Shi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5589 Kupka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5590 Schumacher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5592 Shintani, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5594 Brown7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5595 Hyvonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5596 Kozisek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5598 Rodermond, PSieve, Srsieve, NPLB, LLR L5599 Jayaputera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5600 Steinberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5601 Sato1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5606 Clark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5607 Rodermond, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5608 Pieritz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5609 Sielemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5610 Katzur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5611 Smith13, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5612 Lugowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5613 Delisle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5614 Becker2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5615 Dodd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5616 Miller7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5618 Wilson4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5619 Piotrowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5620 He, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5621 Millerick, LLR2, Srsieve, PrimeGrid, LLR L5624 Farrow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5625 Sellsted, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5626 Clark, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5627 Bulanov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5629 Dickinson, Srsieve, CRUS, LLR L5630 Orpen1, LLR L5631 Mittelstadt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5632 Marler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5634 Gao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5636 Santosa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5637 Bestor, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5638 Piskun, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5639 Cavecchia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5640 Xu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5641 Kwok, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5643 Fisher1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5645 Orpen1, SRBase, LLR L5646 Dickey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5647 Soraku, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5648 York, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5649 Dietsch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5650 Ketamino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5651 Lexut, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5652 Wilson5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5653 Beck1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5654 DeJesus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5655 Hoffman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5656 McAdams, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5657 Alden, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5658 Sloan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5660 Andrews2, LLR L5662 OMalley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5663 Li5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5666 Wendelboe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5668 Finn, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5669 Song, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5670 Heindl1, Srsieve, CRUS, LLR L5671 Rauh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5673 Lepri, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5676 Fnasek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5679 Shane, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5683 Glatte, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5685 Bestor, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5686 Pistorius, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5693 Huan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5694 Petersen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5695 Steinberg, NewPGen, LLR L5698 Stenschke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5703 Koudelka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5704 Hampicke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5705 Wharton, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5706 Wallbaum, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5710 Hass, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5714 Loucks, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5715 Calvin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5717 Natividad, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5720 Trigueiro, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5724 Pilz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5725 Gingrich1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5726 Noxe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5727 Headrick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5732 Monroe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5735 Kobrzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5736 Riva, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5738 Schaeffer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5740 Chu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5742 Steinmetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5745 Saladin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5746 Meister1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5747 Pettit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5748 Norbert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5749 Gahan, LLR2, LLR L5750 Shi, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5752 Wissel, LLR L5754 Abad, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5755 Kwiatkowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5756 Wei, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5758 Bishop1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5759 Benz1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5760 West, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5761 Sawyer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5762 Liskay, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5763 Williams7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5764 Tirkkonen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5765 Propper, Gcwsieve, LLR L5766 Takahashi2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5767 Xu2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5768 Lewis2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5769 Welsh1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5770 Silva1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5771 Becker-Bergemann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5772 Tarson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5773 Lugowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5774 Chambers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5775 Garambois, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5776 Anonymous, LLR2, PSieve, Srsieve, United, PrimeGrid, LLR L5777 New, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5778 Sarok, Srsieve, CRUS, LLR L5779 Wakeland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5780 Blanchard, Srsieve, CRUS, LLR L5781 Cesarini, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5782 Kang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5783 Bishop1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5784 Coplin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5785 Kelley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5786 Madarasz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5787 Johnson10, Srsieve, CRUS, LLR L5788 Gordon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5789 Williams8, LLR L5790 Kolencik, Srsieve, CRUS, LLR L5791 Rindahl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5792 Puada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5793 Wang5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5794 Morgan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5795 VandeVelde, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5796 Hall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5797 Ivanovski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5798 Schoeberl, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5799 Lehmann1, LLR2, Srsieve, PrimeGrid, LLR L5800 Geiger1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5801 Rozkosz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5802 Borgerding, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5803 Kwok, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5804 Bowe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5805 Belozersky, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5806 Georgell, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5807 Krauss, Srsieve, PrimeGrid, PRST, LLR L5808 Propper, Batalov, PSieve, Srsieve, LLR L5809 Zhao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5810 Meister1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5811 Dettweiler, LLR2, Srsieve, CRUS, LLR L5812 Song, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5813 Griffiths, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5814 Chodzinski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5815 Huerta, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5816 Guenter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5817 Kilstromer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5818 Belozersky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5819 Schmidt2, LLR2, PSieve, Srsieve, NPLB, LLR L5820 Hoonoki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5821 Elmore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5822 Kulbanau, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5823 Xu1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR M Morain MM Morii O Oakes p3 Dohmen, OpenPFGW p8 Caldwell, OpenPFGW p12 Water, OpenPFGW p16 Heuer, OpenPFGW p21 Anderson, Robinson, OpenPFGW p44 Broadhurst, OpenPFGW p49 Berg, OpenPFGW p54 Broadhurst, Water, OpenPFGW p58 Glover, Oakes, OpenPFGW p65 DavisK, Kuosa, OpenPFGW p85 Marchal, Carmody, Kuosa, OpenPFGW p102 Frind, Underwood, OpenPFGW p137 Rodenkirch, MultiSieve, OpenPFGW p148 Yama, Noda, Nohara, NewPGen, MatGFN, PRP, OpenPFGW p155 DavisK, NewPGen, OpenPFGW p158 Paridon, NewPGen, OpenPFGW p168 Cami, OpenPFGW p170 Wu_T, Primo, OpenPFGW p189 Bohanon, LLR, OpenPFGW p193 Irvine, Broadhurst, Primo, OpenPFGW p199 Broadhurst, NewPGen, OpenPFGW p235 Bedwell, OpenPFGW p236 Cooper, NewPGen, PRP, OpenPFGW p247 Bonath, Srsieve, CRUS, LLR, OpenPFGW p252 Oakes, NewPGen, OpenPFGW p254 Vogel, Srsieve, CRUS, OpenPFGW p255 Siemelink, Srsieve, CRUS, OpenPFGW p257 Siemelink, Srsieve, OpenPFGW p258 Batalov, Srsieve, CRUS, OpenPFGW p259 Underbakke, GenefX64, AthGFNSieve, OpenPFGW p262 Vogel, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p268 Rodenkirch, Srsieve, CRUS, OpenPFGW p269 Zhou, OpenPFGW p271 Dettweiler, Srsieve, CRUS, OpenPFGW p279 Domanov1, Srsieve, Rieselprime, Prime95, OpenPFGW p286 Batalov, Srsieve, OpenPFGW p290 Domanov1, Fpsieve, PrimeGrid, OpenPFGW p292 Dausch, Srsieve, SierpinskiRiesel, OpenPFGW p294 Batalov, EMsieve, PIES, LLR, OpenPFGW p295 Angel, NewPGen, OpenPFGW p296 Kaiser1, Srsieve, LLR, OpenPFGW p297 Broadhurst, Srsieve, NewPGen, LLR, OpenPFGW p300 Gramolin, NewPGen, OpenPFGW p301 Winskill1, Fpsieve, PrimeGrid, OpenPFGW p302 Gasewicz, Fpsieve, PrimeGrid, OpenPFGW p308 DavisK, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p309 Yama, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p310 Hubbard, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p312 Doggart, Fpsieve, PrimeGrid, OpenPFGW p314 Hubbard, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p332 Johnson6, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p334 Goetz, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p338 Tomecko, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p342 Trice, OpenPFGW p346 Burt, Fpsieve, PrimeGrid, OpenPFGW p350 Koen, Gcwsieve, GenWoodall, OpenPFGW p354 Koen, Gcwsieve, OpenPFGW p355 Domanov1, Srsieve, CRUS, OpenPFGW p360 Kinne, Exoo, OpenPFGW p362 Snow, Fpsieve, PrimeGrid, OpenPFGW p363 Batalov, OpenPFGW p364 Batalov, NewPGen, OpenPFGW p366 Demeyer, Siemelink, Srsieve, CRUS, OpenPFGW p373 Morelli, OpenPFGW p378 Batalov, Srsieve, CRUS, LLR, OpenPFGW p379 Batalov, CycloSv, Cyclo, EMsieve, PIES, OpenPFGW p382 Oestlin, NewPGen, OpenPFGW p383 Maloy, OpenPFGW p384 Booker, OpenPFGW p385 Rajala, Srsieve, CRUS, OpenPFGW p387 Zimmerman, GeneFer, AthGFNSieve, PrimeGrid, OpenPFGW p390 Jaworski, Srsieve, Rieselprime, Prime95, OpenPFGW p391 Keiser, NewPGen, OpenPFGW p394 Fukui, MultiSieve, OpenPFGW p395 Angel, Augustin, NewPGen, OpenPFGW p396 Ikisugi, OpenPFGW p397 Rodenkirch, Fpsieve, OpenPFGW p398 Stocker, OpenPFGW p399 Kebbaj, OpenPFGW p403 Bonath, Cksieve, OpenPFGW p405 Propper, Cksieve, OpenPFGW p406 DavisK, Luhn, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p407 Lamprecht, Luhn, OpenPFGW p408 Batalov, PolySieve, OpenPFGW p409 Nielsen1, OpenPFGW p411 Larsson, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p413 Morimoto, OpenPFGW p414 Naimi, OpenPFGW p415 Doornink, TwinGen, OpenPFGW p416 Monnin, LLR2, PrivGfnServer, OpenPFGW p417 Tennant, LLR2, PrivGfnServer, OpenPFGW p418 Sielemann, LLR2, PrivGfnServer, OpenPFGW p419 Bird1, LLR2, PrivGfnServer, OpenPFGW p420 Alex, OpenPFGW p421 Gahan, LLR2, PrivGfnServer, OpenPFGW p422 Kaiser1, PolySieve, OpenPFGW p423 Propper, Batalov, EMsieve, OpenPFGW p425 Propper, MultiSieve, OpenPFGW p426 Schoeler, NewPGen, OpenPFGW p427 Niegocki, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p428 Trunov, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p429 Steinberg, MultiSieve, OpenPFGW p430 Propper, Batalov, NewPGen, OpenPFGW p431 Piesker, Srsieve, CRUS, OpenPFGW p432 Rodermond, Cksieve, OpenPFGW p433 Dettweiler, LLR2, Srsieve, CRUS, OpenPFGW PM Mihailescu SB10 Agafonov, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB11 Sunde, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB12 Szabolcs, Srsieve, SoBSieve, ProthSieve, Ksieve, PrimeGrid, LLR, SB SB6 Sundquist, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB7 Team_Prime_Rib, SoBSieve, ProthSieve, Ksieve, PRP, SB SB8 Gordon, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB9 Hassler, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SG Slowinski, Gage WD Williams, Dubner, Cruncher WM Morain, Williams x13 Renze x16 Doumen, Beelen, Unknown x20 Irvine, Broadhurst, Water x23 Broadhurst, Water, Renze, OpenPFGW, Primo x24 Jarai_Z, Farkas, Csajbok, Kasza, Jarai, Unknown x25 Broadhurst, Water, OpenPFGW, Primo x28 Iskra x33 Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x36 Irvine, Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x38 Broadhurst, OpenPFGW, Primo x39 Broadhurst, Dubner, Keller, OpenPFGW, Primo x44 Zhou, Unknown x45 Batalov, OpenPFGW, Primo, Unknown x46 Otremba, Fpsieve, OpenPFGW, Unknown x47 Szekeres, Magyar, Gevay, Farkas, Jarai, Unknown x48 Asuncion, Allombert, Unknown x49 Facq, Asuncion, Allombert, Unknown x50 Propper, GFNSvCUDA, GeneFer, Unknown Y Young