Home
Search Site
Largest
Finding
How Many?
Mersenne
Glossary
Prime Curios!
e-mail list
FAQ
Prime Lists
Titans
Submit primes
|
This is the Prime Pages'
interface to our BibTeX database. Rather than being an exhaustive database,
it just lists the references we cite on these pages. Please let me know of any errors you notice.References: [ Home | Author index | Key index | Search ] All items with keys beginning with the letter(s): g
- Gandhi71
- J. M. Gandhi, Formulae for the Nth prime. In "Proc. Washington State University Conference on Number Theory," J. H. Jordan and W. A. Webb editors, Department of Mathematics, Washington State University, 1971. Pullman, Washington, pp. 96--106, MR 48:218
- Garciadiego92
- A. R. Garciadiego, Bertrand Russell and the origins of the set-theoretic 'paradoxes', Birhäuser-Verlag, Basel, 1992. pp. xxx+264 pp., ISBN 3-7643-2669-7. MR 94b:01033
- Gardner68
- M. Gardner, "Mathematical games," Scientific American, 218 (1968) 121--124.
- Gardner85
- M. Gardner, Magic numbers of Dr. Matrix, Prometheus Books, 1985. ISBN 0879752823.
- GC1969
- H. Gabai and D. Coogan, "On palindromes and palindromic primes," Math. Mag., 42 (1969) 252--254. MR0253979
- GH79
- E. Grosswald and P. Hagis, Jr., "Arithmetic progression consisting only of primes," Math. Comp., 33:148 (October 1979) 1343--1352. MR 80k:10054 (Abstract available)
- Gillies64
- D. B. Gillies, "Three new Mersenne primes and a statistical theory," Math. Comp., 18 (1964) 93--95. Corrigendum in Math. Comp. 31 (1977), 1051. MR 28:2990 [The primes are 211213-1, 29941-1 and 29689-1.]
- GK1999
- S. Goldwasser and J. Kilian, "Primality testing using elliptic curves," J. ACM, 46:4 (1999) 450--472. MR 2002e:11182
- GK86
- S. Goldwasser and J. Kilian, Almost all primes can be quickly certified. In "STOC'86, Proceedings of the 18th Annual ACM Symposium on the Theory of Computing (Berkeley, CA, 1986)," ACM, New York, NY, May 1986. pp. 316--329,
- GKS1981
- Györy, K., Kiss, P. and Schinzel, A., "On Lucas and Lehmer sequences and their applications to Diophantine equations," Colloq. Math., 45:1 (1981) 75--80 (1982). MR 83g:10009
- Gleason1988
- A. M. Gleason, "Angle trisection, the heptagon, and the triskaidecagon," Amer. Math. Monthly, 95:3 (1988) 185--194. MR935432
- GLS87
- R. K. Guy, C. B. Lacampagne and J. L. Selfridge, "Primes at a glance," Math. Comp., 48 (1987) 183--202. MR 87m:11008
- GM2006
- A. Granville and G. Martin, "Prime number races," Amer. Math. Monthly, 113:1 (2006) 1--33. MR2158415
- GO2011
- Grau, José Maria and Oller-Marcén, Antonio M., "An ~O(log 2(N)) time primality test for generalized Cullen numbers," Math. Comp., 80:276 (2011) 2315--2323. (http://dx.doi.org/10.1090/S0025-5718-2011-02489-0) MR 2813363
- Golomb76
- S. W. Golomb, "Formulas for the next prime," Pacific J. Math., 63 (1976) 401--404. MR 53:13094
- Golomb81
- S. W. Golomb, "The evidence for Fortune's conjecture," Math. Mag., 54 (1981) 209--210. MR 82i:10053
- Golomb92
- S. W. Golomb, "Probability, information theory, and prime number theory," Discrete Math., 106/107 (1992) 219--229. MR 93f:94010
- Good55
- I. J. Good, "Conjectures concerning the Mersenne numbers," Math. Tables Aids Comput., 9 (1955) 120--121. MR 17,127g
- Gordon89
- D. M. Gordon, Pseudoprimes on elliptic curves. In "Th{\'e}orie des nombres," J. M. DeKoninck and C. Levesque editors, de Gruyter, Berlin, 1989. pp. 290--305, MR 91g:11158
- Gostin95
- G. B. Gostin, "New factors of Fermat numbers," Math. Comp., 64 (1995) 393--395. MR 95c:11151
- GP2001
- A. Granville and C. Pomerance, "Two contradictory conjectures concerning Carmichael numbers," Math. Comp., 71 (2002) 883--908. MR 1 885 636 (Abstract available)
- GP91
- D. M. Gordon and C. Pomerance, "The distribution of lucas and elliptic pseudoprimes," Math. Comp., 51:196 (1991) 825--838. Corrigendum: 60:202 (1993) 877. MR 92h:11081
- GPY2006
- D. A. Goldston, J. Pintz and C. Y. Yıldırım, "Primes in tuples. III. On the difference pn+ν-pn," Funct. Approx. Comment. Math., 35 (2006) 79--89. MR 2271608
- GPY2009
- D. A. Goldston, J. Pintz and C. Y. Yıldırım, "Primes in tuples. I," Ann. of Math. (2), 170:2 (2009) 819--862. (http://dx.doi.org/10.4007/annals.2009.170.819) MR 2552109
- GPY2010
- D. A. Goldston, J. Pintz and C. Y. Yıldırım, "Primes in tuples. II," Acta Math., 204:1 (2010) 1--47. (http://dx.doi.org/10.1007/s11511-010-0044-9) MR 2600432
- Grantham2000
- J. Grantham, "Frobenius pseudoprimes," Math. Comp., 70 (2001) 873--891. MR 2001g:11191 (Abstract available)
- Grantham97
- J. Grantham, "Frobenius pseudoprimes," Ph.D. thesis, University of Georgia, (1997)
- Grantham98
- J. Grantham, "A probable prime test with high confidence," J. Number Theory, 72 (1998) 32--47. MR 2000e:11160
- Granville1995
- A. Granville, "Harald Cram\'er and the distribution of prime numbers," Scand. Actuar. J.,:1 (1995) 12--28. Harald Cram\'er Symposium (Stockholm, 1993). MR1349149
- Granville1995b
- A. Granville, Unexpected irregularities in the distribution of prime numbers. In "Proceedings of the International Congress of Mathematicians, Vol.\ 1, 2 (Z\"urich, 1994)," Birkhäuser Boston, 1995. Basel, pp. 388--399, MR1403939
- Granville87
- A. Granville, "Diophantine equations with varying exponents," Ph.D. thesis, Queen's University in Kingston, (1987)
- GRL89
- A. Granville, H. J. J. te Riele and J. van de Lune,"Checking the Goldbach conjecture on a vector computer" in Number theory and its applications. R. A. Mollin editor, Kluwer, Dordrect, 1989. pp. 423--433,
- Grosswald82
- E. Grosswald, "Arithmetic progressions that consist only of primes," J. Number Theory, 14 (1982) 9--31. MR 83k:10081
- GT2004a
- Green, Ben and Tao, Terence, "The primes contain arbitrarily long arithmetic progressions," Ann. of Math. (2), 167:2 (2008) 481--547. (http://dx.doi.org/10.4007/annals.2008.167.481) MR 2415379
- GT2004b
- B. Green and T. Tao, "A bound for progressions of length k in the primes," (2004) Available from http://people.maths.ox.ac.uk/greenbj/papers/back-of-an-envelope.pdf.
- GT2006a
- Green, Benjamin and Tao, Terence, "Linear equations in primes," Ann. of Math. (2), 171:3 (2010) 1753--1850. (http://dx.doi.org/10.4007/annals.2010.171.1753) MR 2680398
- Gut1950
- M. Gut, "Eulersche zahlen und grosser Fermat'sche satz," Comment. Math. Helv., 24 (1950) 73--99. MR 12,243d
- Guy2004
- R. K. Guy, Unsolved problems in number theory, Third edition, Problem Books in Mathematics Springer-Verlag, 2004. New York, pp. xviii+437, ISBN 0-387-20860-7. MR 2076335
- Guy88
- R. K. Guy, "The strong law of small numbers," Amer. Math. Monthly, 95:8 (1988) 697--712. MR 90c:11002
- Guy94
- R. K. Guy, Unsolved problems in number theory, Springer-Verlag, New York, NY, 1994. ISBN 0-387-94289-0. MR 96e:11002 [An excellent resource! Guy briefly describes many open questions, then provides numerous references. See his newer editions of this text.]
- Gyory1982
- Györy, K., "On some arithmetical properties of Lucas and Lehmer numbers," Acta Arith., 40:4 (1981/82) 369--373. MR667047
- Gyory2003
- Györy, K., "On some arithmetical properties of Lucas and Lehmer numbers. II," Acta Acad. Paedagog. Agriensis Sect. Mat. (N.S.), 30 (2003) 67--73. Dedicated to the memory of Professor Dr. P\'eter Kiss. MR2054716
|