The New Mersenne Prime Conjecture

Leonhard Euler showed:

Theorem:  If  k>1 and  p=4k+3  is prime, then 2p+1 is prime if and only if 2p+1 divides 2p-1.

It is also clear that if p is an odd composite, then 2p-1 and (2p+1)/3 are composite.  Looking at these theorems and various numerical results, Bateman, Selfridge and Wagstaff (The new Mersenne conjecture, Amer. Math. Monthly, 96 (1989) 125-128 [BSW89]) have conjectured the following.

Conjecture (*): Let p be any odd natural number.  If two of the following conditions hold, then so does the third:
  1. p = 2k+/-1   or   p = 4k+/-3
  2. 2p-1 is a prime (obviously a Mersenne prime)
  3. (2p+1)/3 is a prime.

Below we list all of the primes p where

Details are in the table and notes below.  (The conjecture is that if any two of the entries in a row is yes, so is the third.)

(There is more current data at https://sites.google.com/site/bearnol/math/mersenneplustwo)

p p = 2k±1 or 4k±3? 2p - 1 prime? (2p + 1)/3 prime?
3 yes (-1) yes yes
5 yes (+1) yes yes
7 yes (-1 or +3) yes yes
11 no no: 23 yes
13 yes (-3) yes yes
17 yes (+1) yes yes
19 yes (+3) yes yes
23 no no: 47 yes
31 yes (-1) yes yes
43 no no: 431 yes
61 yes (-3) yes yes
67 yes (+3) no: 193707721 no: 7327657
79 no no: 2687 yes
89 no yes no: 179
101 no no: 7432339208719 yes
107 no yes no: 643
127 yes (-1) yes yes
167 no no: 2349023 yes
191 no no: 383 yes
199 no no: 164504919713 yes
257 yes (+1) no: 535006138814359 no: 37239639534523
313 no no: 10960009 yes
347 no no: 14143189112952632419639 yes
521 no yes no: 501203
607 no yes no: 115331
701 no no: 796337 yes
1021 yes (-3) no: 40841 no: 10211
1279 no yes no: 706009
1709 no no: 379399 yes [Morain1990a]
2203 no yes no: 13219
2281 no yes no: 22811
2617 no no: 78511 yes [Morain1990a]
3217 no yes no: 7489177
3539 no no: 7079 yes [Morain1990a]
4093 yes (-3) no: 2397911088359 no: 3732912210059
4099 yes(+3) no: 73783 no: 2164273
4253 no yes no: 118071787
4423 no yes no: 2827782322058633
5807 no no: 139369 yes (note 6)
8191 yes (-1) no: 338193759479 no
9689 no yes no: 19379
9941 no yes no: 11120148512909357034073
10501 no no: 2160708549249199 yes (note 5)
10691 no no: 21383 yes (note 1)
11213 no yes no: 181122707148161338644285289935461939
11279 no no: 2198029886879 yes (note 4)
12391 no no: 198257 yes (note 3)
14479 no no: 27885728233673 yes (note 2)
16381 yes (-3) no: 8114899840326779533679915276470289950126585679 no: 163811
19937 no yes no
21701 no yes no: 43403
23209 no yes no: 4688219
42737 no no yes (note 7)
44497 no yes no: 2135857
65537 yes (+1) no: 513668017883326358119 no: 13091975735977
65539 yes (+3) no: 3354489977369 no: 58599599603
83339 no no: 166679 yes
86243 no yes no: 1627710365249
95369 no no: 297995890279 yes
110503 no yes no: 48832113344350037579071829046935480686609
117239 no no yes
127031 no no: 12194977 yes
131071 yes (-1) no: 231733529 no: 2883563
132049 no yes no: 618913299601153
138937 no no: 100068818503 yes
141079 no no: 458506751 yes (prp)
216091 no yes no: 10704103333093885136919332089553661899
262147 yes (+3) no: 268179002471 no: 4194353
267017 no no: 1602103 yes (prp)
269987 no no: 1940498230606195707774295455176153 yes (prp)
374321 no no yes (prp)
524287 yes (-1) no: 62914441 no
756839 no yes no: 1640826953
859433 no yes no: 1718867
986191 no no yes (prp)
1048573 yes (-3) no: 73400111 no
1257787 no yes no: 20124593
1398269 no yes no: 23609117451215727502931
2976221 no yes no: 434313978089
3021377 no yes no: 95264016811
4031399 no no: 8062799 yes (prp)
4194301 yes (-3) no: 2873888432993463577 no: 14294177809
6972593 no yes no: 142921867730820791335455211

When a small factor is known we listed it above.

Notes:

## prime note
* (any) The integers listed after 'no' are small factors of the corresponding composite.
** (any) The expression prp means probable-prime
1 10691 ECPP primality proof by David Broadhurst via Primo, certificate n10691.zip
2 14479 ECPP primality proof by David Broadhurst via Primo, certificate n14479.zip
3 12391 Proof by François Morain, see his notes.
4 11279 Proof by Preda Mihailescu, see his notes.
5 10501 Proof by François Morain, see his notes.
6 5807 Proof by Preda Mihailescu, see his notes.
7 42737 Proof by François Morain, see his notes on the prime's page.
     

This page was originally created based off Conrad Curry's excellent New Mersenne Conjecture page.  Thanks to Alex Kruppa and David Broadhurst for the suggestion.

Printed from the PrimePages <t5k.org> © Reginald McLean.